UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Advanced Automated Web Application Vulnerability Analysis

Permalink
https://escholarship.org/uc/item/63d660tg

Author
Doupé, Adam

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/63d660tp
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
Santa Barbara

Advanced Automated Web Application
Vulnerability Analysis

A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
in
Computer Science
by

Adam Loe Doupé

Committee in Charge:
Professor Giovanni Vigna, Chair
Professor Christopher Kruegel

Professor Ben Hardekopf

September 2014

The Dissertation of
Adam Loe Doupé is approved:

Professor Christopher Kruegel

Professor Ben Hardekopf

Professor Giovanni Vigna, Committee Chairperson

April 2014

Advanced Automated Web Application Vulnerability Analysis

Copyright © 2014
by

Adam Loe Doupé

1ii

Acknowledgements

I would like to thank the following people who, with their love and support, encour-
aged and motivated me to finish this dissertation.

Giovanni is the reason that I became addicted to computer security: From the mo-
ment that I took his undergrad security class I was hooked. I am forever indebted to
him because he has constantly invested his time in me. First, by inviting me to join
his hacking club. Then, he took a chance on mentoring a Master’s student, and, upon
graduation for my Master’s degree, told me that I could “come back for the real thing.”
One year later I did, and I don’t regret it for a second. I hope that I always have the
enthusiasm and energy that Giovanni brings to research and life. He is truly a role
model.

From Chris, I learned a great deal about what it means to be an academic and a
scientist. He is able to focus so intensely on the details of the project while not loosing
sight of the bigger picture—if I am able to do this half as well I will consider myself a
success. He constantly inspires and encourages me to heights I never dreamed possible.

I would never have been able to finish this dissertation without the help and encour-
agement of all the past and current seclab members. I am forever grateful to the now
departed members of the seclab who were here when I started my Masters. You took

me under your wing, taught me, and created and infused within me the seclab culture.

iv

I would like to thank: Wil, Vika, Sean, Nick, Brett, Lorenzo, Fede, Martin, Max, and
especially Marco, for his wisdom and guidance.

The only way I was able to stay sane during my PhD was because of my fellow sec-
lab members. We forged a bond during those 3am deadlines, iCTF all-nighters, walks
to Freebirds!, costume parties, and soccer games—a bond which makes us brothers-in-
arms. In no particular order, thanks to: Gianluca, Alexandros, Luca, Antonio, Gorkem,
Ali, Patrick, Kevin, Jacopo, Dhilung, Kyle, Yan, Fish, Bob, Ludo, Manuel, Gregoire,
and Bryce.

A very special thanks to my Mom, Dad, and brother for their love, support, and
constant ribbing and teasing.

And finally, thank you Becca, for being my rock.

Education

2010 - 2014
2008 — 2009
2004 — 2008

Research Experience

2010 -2014

2013 Summer

2012 Summer

2009

Curriculum Vitae

Adam Loe Doupé

PhD in Computer Science

University of California, Santa Barbara

Master’s Degree in Computer Science

University of California, Santa Barbara

Bachelor’s Degree in Computer Science with Honors

University of California, Santa Barbara

Research Assistant, University of California, Santa Barbara

Visiting PhD Student, Stanford University

Advisor: John C. Mitchell

Research Intern, Microsoft Research

Advisor: Weidong Cui

Research Assistant, University of California, Santa Barbara

Vi

Industry Experience

2009 - 2010

2008 Summer

2007 — 2008
2005 -2010
2004 — 2005

Teaching Experience

October 2013

Fall 2013

November 2012

April 2012

October 2011

Software Developer Engineer, Microsoft

Software Developer Engineer Intern, Microsoft
Software Developer, AT&T Government Solutions
Founder/Developer, WootWatchers.com

Mobile Product Manager, VCEL, Inc.

Taught class lecture for undergraduate security class on web secu-
rity, and created web application vulnerability homework by request
of Richard Kemmerer

Co-created and Co-taught “Recent Trends in Computing Research,” a
2-unit seminar graduate class

Created web application vulnerability homework and designed in-class
lecture for undergraduate security class by request of Richard Kem-
merer

Created and ran a three hour hands-on workshop at UC Santa Barbara
by request of the Web Standard Group entitled “Into the Mind of the
Hacker”

Taught class on crypto analysis for undergraduate security class by

request of Richard Kemmerer

vii

Fall 2010 Teaching Assistant for CS 279 (Advanced Topics in Computer Secu-
rity), won Outstanding Teaching Assistant Award from the Computer
Science Department

Fall 2008 Teaching Assistant for CS 177 (Introduction to Computer Security),
won Outstanding Teaching Assistant Award from the Computer Sci-

ence Department

viii

Abstract

Advanced Automated Web Application Vulnerability
Analysis

Adam Loe Doupé

Web applications are an integral part of our lives and culture. We use web applica-
tions to manage our bank accounts, interact with friends, and file our taxes. A single
vulnerability in one of these web applications could allow a malicious hacker to steal
your money, to impersonate you on Facebook, or to access sensitive information, such
as tax returns. It is vital that we develop new approaches to discover and fix these
vulnerabilities before the cybercriminals exploit them.

In this dissertation, I will present my research on securing the web against current
threats and future threats. First, I will discuss my work on improving black-box vulner-
ability scanners, which are tools that can automatically discover vulnerabilities in web
applications. Then, I will describe a new type of web application vulnerability: Exe-
cution After Redirect, or EAR, and an approach to automatically detect EARs in web
applications. Finally, I will present deDacota, a first step in the direction of making

web applications secure by construction.

X

Contents

Acknowledgements

Curriculum Vitae

Abstract
List of Figures
List of Tables
Listings
1 Introduction
1.1 History of Web Applications
1.2 Web Application Vulnerabilities
1.2.1 Injection Vulnerabilities
1.2.2 LogicFlaws
1.3 Securing Web Applications
1.3.1 Anomaly Detection
1.3.2 Vulnerability AnalysisTools
1.4 SecuringtheWebo

2 Related Work

2.1
2.2
23
24

Evaluating Black-Box Web Vulnerability Scanners
Black-Box Vulnerability Scanners
Automated Discovery of Logic Flaws
Cross-Site Scripting Defense
2.4.1 Server-Side Methods

iv

vi

ix

xiii

xiv

XV

QN DN =

15
16
17
21

24.2 Client-Side Methods
3 An Analysis of Black-Box Web Application Vulnerability Scanners
3.1 Backgroundo
3.1.1 Web Application Vulnerabilities
3.1.2 Web Application Scanners
3.2 The WackoPicko Web Site
32,1 Designo
3.2.2 Vulnerabilities Lo
3.2.3 Crawling Challenges
3.3 Experimental Evaluation
33.1 Setup
3.3.2 DetectionResultso
3.3.3 Attack and Analysis Capabilities
3.3.4 Crawling Capabilities
34 LessonsLearned
3.5 Conclusions
4 A State-Aware Black-Box Web Vulnerability Scanner
4.1 Motivationo
4.2 State-Aware Crawling Lo
4.2.1 Web Applicationso
4.2.2 Inferring the State Machine
4.3 Technical Details
4.3.1 Clustering Similar Pages
4.3.2 Determine the State-Changing Request
4.3.3 Collapsing Similar States
434 Navigatingo
4.4 State-Aware Fuzzing oL
4.5 Evaluation
4.5.1 Experimentso
452 Results.
4.6 Limitations
477 Conclusion
S Discovering and Mitigating Execution After Redirect Vulnerabilities
5.1 Overviewof EARs
5.1.1 EARHistoryo
5.1.2 EARsasLogicFlaws
513 Typesof EARs.

xi

5.1.4 Framework Analysis
5.1.5 EAR Security Challenge
5.2 EARDetection
5.2.1 Detection Algorithm
5.2.2 Limitations
53 Results
5.3.1 Detection Effectiveness
5.3.2 Performance
54 Prevention
5.5 Conclusions
Toward Preventing Server-Side XSS
6.1 Backgroundo
6.1.1 Cross-Site Scripting
6.1.2 Code and Data Separation
6.1.3 Content Security Policy
6.2 ThreatModel
6.3 Design
6.3.1 Exampleo
6.3.2 Approximating HTML Output
6.3.3 Extracting Inline JavaScript
6.3.4 Application Rewriting
6.3.5 Dynamic Inline JavaScript L.
6.3.6 Generality
6.4 Implementation
6.5 Evaluation
6.5.1 Applications
6.5.2 Security
6.5.3 Functional Correctness
6.5.4 Performance
6.5.5 Discussion
6.6 Limitations
6.7 Conclusion

7 Conclusions

Bibliography

Xii

List of Figures

1.1
1.2

3.1
3.2
33
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2

6.1
6.2
6.3

Example interaction between a web browser and a web server.
Sample web application with server-side code and a database.

Detection performance of the scanners.
Scanner running times.
Dominates graph.o
WIVET results.

Navigation graph of a simple web application.
State machine of a simple web application.
The state machine of a simple e-commerce application.
A page’s link vectors stored in a prefix tree.
Abstract Page Tree example.o
Graph of scanner code coverageresults.
State machine that state-aware-scanner inferred for WackoPicko v2.

The logical flow of the white-box tool.
Control Flow Graph for the code shown in Listing 5.4.

Approximation graph for the code in Listing 6.1 and Listing 6.2.
Approximation graph with branches and aloop.
ASP.NET control parent-child relationship example.

xiil

List of Tables

3.1
3.2
33
3.4
3.5
3.6
3.7

4.1
4.2
4.3

5.1
5.2

6.1
6.2
6.3

Characteristics of the scanners evaluated. 54
Detection results of the scanners. 56
False positives. 60
Vulnerability scores. 64
Finalranking. oo 65
Number of accesses to vulnerable web pages. 79
Accountcreation. 80
Applications used to evaluate the scanners. 107
Black-box web vulnerability scanners that we compared. 112
Code coverage results of the scanners. 116
Results of running white-box detector. 151
Results of manually inspecting all vulnerable EARs. 153
ASP.NET Web Form applications used in the evaluation. 187
Results of the DEDACOTA evaluation. 192
Performance measurements after running DEDACOTA. 192

Xiv

Listings

1.1
1.2

4.1

5.1
52
53
54
5.5

6.1
6.2
6.3

Example of an SQL injection vulnerability. 8
Example of a XSS vulnerability. 11
Psuedocode for fuzzing state-changing request. 105
Example of an Execution After Redirect (EAR) vulnerability. 127
Example of a complex Execution After Redirect vulnerability. 129
Example of an information leakage EAR vulnerability. 131
Example of a potential false positive. 146
True positive EAR vulnerability example. 154
Example of a simple ASPNET Web Form page. 171
The compiled C# output of Listing 6.1. 172
The result of the rewriting algorithm applied to Listing 6.2. 179

XV

Chapter 1

Introduction

Web applications are a fundamental part of our lives and culture. We use web ap-
plications in almost every facet of society: socializing, banking, health care, taxes,
education, news, and entertainment, to name a few. These web applications are always
available from anywhere with an Internet connection, and they enable us to communi-
cate and collaborate at a speed that was unthinkable just a few decades ago.

As more and more of our lives and data move to web applications, hackers have
shifted their focus to web applications. In 2011, hackers stole 1 million usernames and
passwords from Sony [17]. In 2007, hackers stole 45 million customer credit cards from
TJ Maxx [76]. In 2009, hackers stole 100 million customer credit cards from Heartland
Payment Systems [1]. In 2012, hackers stole 24,000 Bitcoins' from BitFloor, a major

Bitcoin exchange [84]. What all of these instances have in common is that hackers

! These Bitcoins are worth about $10 million at this time of writing.

Chapter 1. Introduction

exploited vulnerabilities in a web application to steal either usernames and passwords,
credit cards, or Bitcoins.

Those same properties that make web applications so attractive to users also attract
hackers. A web application never closes, so they are always available for hackers.
Web applications also house a vast treasure-trove of data, which hackers can use for
monetary gain. Finally, as we will explore in the next section, web applications are
a complex hodgepodge of various technologies. This complexity, combined with the
intense time-to-market pressure of companies and people that build web applications,
is a breeding ground for bugs and vulnerabilities.

The situation is dire. We must focus on new ways to secure web applications from
attack. We must develop new tools in order to find the vulnerabilities before a hacker

does. We must, because web applications and the data they store are too important.

1.1 History of Web Applications

The World Wide Web was created by Sir. Tim Berners-Lee in 1989 as a means of
sharing information for the CERN research organization. What began as a way to share
simple hyper-linked textual documents over the nascent Internet quickly exploded in

popularity over the proceeding years.

Chapter 1. Introduction

(1)

\ 22) = |l
\ 2 = HH”\

Figure 1.1: Example interaction between a web browser and a web server. In (1), the
web browser makes an HTTP request to the webserver, and in (2) the web server sends
the web browser an HTTP response containing the HTML of the web page.

The core of the web has remained relatively the same throughout the years: a web
browser (operated by a user) connects to a web server using the Hypertext Transfer
Protocol (HTTP) [49]. The web server then sends back a response, typically in the form
of a HyperText Markup Language (HTML) page [16]. The web browser then parses
the raw HTML page to create a graphical web page that is displayed to the user. The
fundamental underlying principle, and the definition of HyperText, is that an HTML
page contains links to other HTML pages.

Figure 1.1 shows a graphical representation of the interaction between the web
browser and the web server. In (1), the web browser will make an HTTP request to
the web server, to request a resource. Then, the web server will respond, as in (2), with
an HTTP response which contains the HTML of the requested web page.

The beginning of the web was envisioned as a set of documents with links pointing
to other documents?. In other words, the web was mostly a set of read-only documents

(from the perspective of the user with the web browser). This is where the term web

2This is where the name web comes from, as each link forms a strand in the web.

Chapter 1. Introduction

site comes from: a web site is typically thought of as a collection of documents that
exist under the same domain name.

As the web evolved, web sites started to shift from static, read-only documents.
Developers realized that the HTML response returned to the client could be dynamic—
that is, the content of the HTML response could vary programmatically. This shift in
thinking caused web sites to transition to web applications which emulated features of
traditional desktop applications. Web applications enabled scenarios that caused the
web’s popularity to increase: e-commerce, news sites, and web-based email clients. It
is hard to overstate the impact that web applications had on the uptake of the web.

Now, with web applications, the architecture of the web changed. When the web
browser makes an HTTP request to the server, instead of returning a static HTML
response, the web server typically will invoke server-side code. This server-side code
is responsible for returning a response, typically HTML, to the browser. The server-
side code can use any number of inputs to determine the response, but typically the
server-side code reads the parameters sent in the browser’s HTTP request, consults an
SQL database, and returns an HTML response.

Figure 1.2 shows an example web application with a back-end SQL database. Now,
when the web browser sends an HTTP request to the web application, as in (1), the web
application’s server-side code will start to execute. Then, as (2) shows, the server-side

code can make one or more request to the SQL database, when executes the queries

Chapter 1. Introduction

(D) 2) q

| o > = > s
4) = | (3) -
B < =

Figure 1.2: Sample web application with servers-side code and a back-end database. In
(1), the web browser makes an HTTP request to the web application. Then the server-
side code can issue one or more SQL queries to the back-end SQL database, shown
as (2). The SQL server returns the data in (3), which the web application will use to
generate an HTTP response with HTML, as in (4).

and returns the data to the server-side code in (3). Finally, the web application finishes
processing the request and sends an HTTP response with an HTML web page to the
web browser in (4).

The HTTP mechanism is, by design, stateless: Each HTTP request that the web
server receives is independent of any other request. It is difficult to build an interactive
application on top of a stateless protocol, thus a standard was developed to add state to
the HTTP protocol [87]. This standard added the cookie mechanism to the HTTP layer.
In this way, a web server can ask the web browser to set a cookie, then, in subsequent
requests, the web browser will include the cookie. Therefore, a web server or web
application can link the requests into a session based on the common cookie and thus
develop state-aware web applications.

Even after the advent of web applications, the server-side code would return an
HTML page that was statically rendered and displayed to the user. To change to content

on the page or otherwise interact with the web application, the browser must perform

Chapter 1. Introduction

another HTTP request and receive a response based on a link the user clicked or a form
the user submitted. In 1997, Brendan Eich, a programmer at Netscape, created a client-
side scripting language called JavaScript [46]. The user’s web browser implemented an
interpreter for this scripting language so that it could manipulate the web page. Now,
with JavaScript, web developers could programmatically alter the content on the web
page without making a request to the web server. The final linchpin which enabled
web applications to truly rival traditional applications was the creation and standard-
ization of the XMLHttpRequest JavaScript API [137]. This API allowed the client-side
JavaScript code to make asynchronous requests to the web application and then update
the content of the web page according to the response from the web application. Com-
bined together, these web application development technologies came to be known as
AJAX [56], which rivaled traditional desktop applications in functionality.

This architecture of a web application is what we will use throughout this chapter to
discuss the security aspects of web applications. In this dissertation, other details and

complexities of web applications will be explained in the chapter where it is needed.

1.2 Web Application Vulnerabilities

The security properties of a web application are similar to the security of any other

software system: confidentially of the data, integrity of the data, and availability of the

Chapter 1. Introduction

application. In this dissertation, we will focus on attacks that compromise the confi-

dentially or integrity of the web application’s data.

1.2.1 Injection Vulnerabilities

This class of vulnerabilities occur when an attacker is able to control or influence the
value of parameters that are used as part of an outside® query, command, or language.
If the attacker can manipulate and change the semantics of the query, command, or
language, and this manipulation compromises the security of the application, then that
is an injection vulnerability.

There are many types of injection vulnerabilities in web applications, and the types
depend on the query, command, or language that is being injected. These include SQL
queries, HTML responses, OS commands, email headers, HTTP headers, and many
more. Next we will focus on two of the most serious and prevalent classes of injection

vulnerabilities in web applications: SQL injection and Cross-Site Scripting (XSS).

SQL Injection

SQL injection vulnerabilities, while declining in the number reported compared to

XSS vulnerabilities, are still numerous and are incredibly critical when they occur.

3Qutside from the perspective of the web application’s server-side language.

Chapter 1. Introduction

1 Sname = $_GET['name'];
2 Sg = "select % from users where name = '" . Sname . "';";

Sresult = mysql_query (Sq);

Listing 1.1: Example of an SQL injection vulnerability in a PHP web application. The
attacker-controlled $name parameter is used unsanitized in the SQL query created on
Line 2 and issued on Line 3.

The root cause of SQL injection vulnerabilities is that the server-side code of the
web application, to issue an SQL query to the SQL database, concatenates strings to-
gether. This format allows the queries to be parameterized, and therefore the server-side
code can be more general.

The code in Listing 1.1 shows a sample PHP web application that contains an SQL
injection vulnerability. In Line 1 of this sample, the variable $name is set based on the
value of the query parameter called name. The $name variable is used in Line 2 to
construct an SQL query to look up the given user by name in the SQL table users.
The web application issues the query on Line 3.

The problem is that, according to the server-side language, the resulting query is
simply a string, whereas when that string is passed to the SQL server, the SQL server
parses the string into a SQL query. Therefore, what the server-side code treats as a
simple string is a complex language with syntax and semantics.

In Listing 1.1, the vulnerability comes from the fact that the query parameter name
comes from the user and therefore may be modified by an attacker. As seen in the

example, the $name variable is used in the SQL query to select based on the SQL

Chapter 1. Introduction

name column. In order to do this, the programmer constrains the value to be in be-
tween matching ' which is SQL query syntax for delimiting data. Therefore, for the
attacker to alter the semantics of the query, the attacker need only input something like
the following: 'or 1=1; #. This input would cause the SQL query that the web
application issues to the database to be the following:

select » from users where name = ''or 1=1; #';

The # is an SQL comment which means that everything after that in the query is
ignored. Now the attacker has been able to alter the semantics of the SQL query, in this
case by adding another SQL clause (or 1=1) that was not in the original statement.

Thus, in order for an attacker to not alter the semantics of the SQL query, a web
developer must be careful to properly sanitize all potentially attacker-controlled input.
Here, sanitize means to transform the input from the user to a form that renders it
neutral in the target language. In the case of SQL, this typically means converting any
' (which are used by an attacker to escape out of an SQL query) to the inert \ '.

With an SQL injection vulnerability, an attacker can violate both the confidentially
and integrity of the application’s data. An attacker can insert arbitrary data into the
database, potentially adding a new admin user to the web application. Also, an attacker
can exfiltrate any data that the database user can access (typically all data that the web

application can access). Finally, the attacker can also delete all of the web application’s

Chapter 1. Introduction

data. All of these consequences are the result of a single SQL injection vulnerability,
and that is why SQL injection vulnerabilities can critically compromise a web applica-
tion’s security.

To prevent SQL injections with sanitization, a developer must be extremely careful
that no user-supplied data is used in an SQL statement, including any paths that the data
could have taken through the web application. In practice, this is (understandably) dif-
ficult for developers to always accomplish. Therefore, developers should use prepared
statements, which is a way to tell the database the structure of an SQL query before
the data is given. In this way, the database already knows the structure of the SQL
query, and therefore there is no way for an attacker to alter the structure and semantics
of the query. Almost every server-side language or framework has support for prepared
statements. Unfortunately, even with widespread support for prepared statements, SQL

injections are still frequently found in web applications.

Cross-Site Scripting

Cross-Site Scripting (XSS) vulnerabilities are similar in spirit to SQL injection vul-
nerabilities. Instead of an injection into a SQL query, XSS vulnerabilities are injections
into the HTML output that the web application generates. XSS vulnerabilities are fre-

quently in the top three of reported vulnerabilities in all software systems.

10

Chapter 1. Introduction

1 Sname = $_GET['name'];
echo "Hello " . Sname . "";

Listing 1.2: Example of a XSS vulnerability in a PHP web application. The attacker-
controlled $name parameter is used unsanitized in the HTML output on Line 2.

The root cause of XSS vulnerabilities is that the server-side code of a web applica-
tion, in order to create the web application’s HTML response, essentially concatenates
strings together.

Listing 1.2 shows an example PHP web application that has an XSS vulnerability.
In Line 1, the variable $name is retrieved from the query parameter name. Then,
$name is used in Line 2 as an argument to PHP’s echo function, which sends its
string argument to the HTTP response. The goal of this code is to output the user’s
name in bold. This is accomplished in HTML by wrapping the user’s name in a bold
tag ().

If an attacker is able to control the HTML output of the web application, as the
$name parameter in Listing 1.2, then the attacker can trick the user’s web browser into
executing the attacker’s JavaScript. This can be accomplished in a variety of ways, one
example would be inputting the following for the name query parameter:

<script>alert ('xss’);</script>

Matching <script> HTML tags is the way for the web application to tell the

user’s browser to execute JavaScript.

11

Chapter 1. Introduction

The fundamental building block of JavaScript security in the web browser is the
Same Origin Policy. In essence, this security policy means that only JavaScript that
comes from the same origin* can interact. In practice, what this means is that JavaScript
running on a web browser from hacker . com cannot interact with or affect JavaScript
running on the same web browser from example . com.

The name Cross-Site Scripting is derived from the fact that XSS circumvents the
browser’s Same Origin Policy. By using an XSS vulnerability, an attacker is able to
trick a user’s browser to execute JavaScript code of their choosing in the web appli-
cation’s origin. This is because, from the browser’s perspective, the JavaScript came
from the web application, so the browser happily executes the attacker’s JavaScript
along with the web application’s JavaScript.

With an XSS vulnerability, an attacker can compromise a web application signifi-
cantly. A popular XSS exploitation technique is to steal the web application’s cookies
and send them to the attacker. Typically the web application’s cookies are used to au-
thenticate and keep state with the web application, which could allow the attacker to
impersonate the user.

By executing JavaScript in the same origin as the web application, the attacker’s
JavaScript has total control over the graphical appearance of the web page. What this

means is that the attacker can completely alter the look of the web page, and could, for

4Here, we omit the definition of the same origin. We will define it later in the dissertation when
necessary.

12

Chapter 1. Introduction

instance, force the page to resemble the web application’s login form. However, once
the user puts their information into the form, the attacker’s JavaScript could steal that
information. In this way, the attacker is able to phish the user’s credentials, except in
this instance the user is on the proper domain name for the web application.

Another insidious thing that an attacker’s JavaScript can do if it executes in the
user’s browser is interact with the web application on behalf of the user’. In practice,
what this means is that the attacker’s JavaScript can interact with the web application,
and the web application has no way of knowing that the requests did not come from the
user. Imagine an attacker’s JavaScript sending emails on a user’s behalf or initiating a
bank transfer.

XSS vulnerabilities can be fixed by proper sanitizaiton at all program points in
the web application that output HTML. This sanitization process typically will convert
entities that are significant in parsing HTML to their display equivalent. For instance,
the HTML < character is transformed to its HTML entity equivalent > ;, which
means to display a < character on the resulting web page, rather than starting an HTML
tag.

There are a number of practical difficulties that make properly sanitizing output
for XSS vulnerabilities particularly challenging (especially when compared to SQL

injection vulnerabilities). One difficulty is that, as shown by Saxena, Molnar, and

SThis defeats any CSRF protection that the web application has enabled, as the attacker’s JavaScript
can read the web application’s CSRF tokens.

13

Chapter 1. Introduction

Livshits [125], there are numerous types of sanitization for XSS vulnerabilities, and
which type of sanitization to use depends on where the output is used in the resulting
HTML page. This means that the developer must reason not only about all program
paths that a variable may take to get to a specific program point (to see if an attacker
can influence its value), but also about all the different places in the HTML output
where the variable is used. The complex nature of XSS vulnerabilities contribute to the
reason that it is still the most frequent web application vulnerability.

Unfortunately XSS vulnerabilities have no easy, widely supported fix, as prepared
statements are to SQL injection vulnerabilities. However, in Chapter 6 we will look at

an approach to fundamentally solve a large class of XSS vulnerabilities.

1.2.2 Logic Flaws

Logic flaws are a class of vulnerabilities that occur when the implemented logic
of the web application does not match with the developer’s intended logic of the web
application. One popular example would be, on an ecommerce application, if a user
is able to submit a coupon multiple times, until the price of the item is zero. Another
example might be a financial services web application which accidentally sends confi-
dential financial reports to unauthorized users.

An injection vulnerability can affect any web application, and the fix of the vulner-

ability will be the same, regardless of the underlying web application. In contrast, logic

14

Chapter 1. Introduction

flaws are specific and unique to the web application. Identical behavior that appears in
two web applications may be a logic flaw in one but a security vulnerability in the other.
Consider the behavior of an unauthenticated user altering the content of a web page. In
most applications, this would represent a vulnerability, however it is the core mechanic
and defining feature of a wiki, such as Wikipedia. The distinguishing feature of logic
flaw vulnerabilities is that the web application code is functioning correctly—that is, an
attacker is not able to alter how the code executes or execute code of her choosing, how-
ever the behavior that the code executes violates the developer’s security model of the
application. Therefore, these vulnerabilities are incredibly difficult to detect in an au-
tomated fashion, as the automated tool must reverse engineer the developer’s intended
security model.

In Chapter 5, we will describe a novel class of logic flaw vulnerabilities called

Execution After Redirect.

1.3 Securing Web Applications

Given their rise in popularity, ensuring that web applications are secure is critical.
Security flaws in a web application can allow an attacker unprecedented access to secret

and sensitive data.

15

Chapter 1. Introduction

There are numerous approaches to secure web applications, depending on where
the defense is put into place. One approach is to detect attacks as they happen and
block the attack traffic. Another approach is to construct the web application in a way
such that it is not vulnerable to entire classes of security vulnerabilities. Finally, and the
approach taken in the majority of this dissertation, is automated tools to automatically

find vulnerabilities in web applications.

1.3.1 Anomaly Detection

One way to secure web applications is to have tools and approaches that look for
attacks against web applications in the inbound web traffic [118]. There are many ap-
proaches in this area, but most of them involve first creating a model of the normal
behavior of the web application. Then, after this model is created, a monitoring/detec-
tion phase starts which analyzes inbound web application traffic looking for anomalous
web requests which signify an attack. Depending on the anomaly detection system, the
request can be blocked or prevented at that time.

Anomaly detection systems are good for preventing unknown exploits against the
web application. However, the effectiveness of the anomaly detection depends on the
creation of the web application model and the presence of extensive attack-free traffic.

In practice, it is difficult to automatically create extensive attack-free traffic.

16

Chapter 1. Introduction

Modern web application can use anomaly detection systems in production environ-

ments as a defense-in-depth approach.

1.3.2 Vulnerability Analysis Tools

Vulnerability analysis is the art of finding vulnerabilities in software. The idea is to
find vulnerabilities either before an application is deployed or before an attacker is able
to find the vulnerability.

Manual vulnerability analysis is when a team of humans manually analyze an ap-
plication for vulnerabilities. These manual vulnerability analyses, frequently called
pentesting, employ a team of experts to find vulnerabilities in a software system. The
downside is that an expert’s time is costly, and therefore, due to the cost, a company
will very infrequently do an external pentest of its web applications.

Vulnerability analysis tools are automated approaches to find vulnerabilities in soft-
ware. The goal of this type of software is to find all possible vulnerabilities in an ap-
plication. The core idea is to develop software that can encapsulate a human security
expert’s knowledge.

Because vulnerability analysis tools are automated, they can be used against a va-
riety of applications. Furthermore, they are significantly less expensive than hiring
a team of human experts, so they can be used much more frequently throughout the

software development process.

17

Chapter 1. Introduction

Vulnerability analysis tools can be categorized based on what information of the
web application they use. In the following sections we will describe the difference

between white-box, black-box, and grey-box vulnerability analysis tools.

White-Box

A white-box vulnerability analysis tool looks at the source code of the web appli-
cation to find vulnerabilities. By analyzing the source code of the web application,
a white-box tool can see all potential program paths throughout the application. This
enables a white-box tool to potentially find vulnerabilities along all program paths. Typ-
ically approaches leverage ideas and techniques from the program analysis and static
analysis communities to find vulnerabilities.

The biggest strength of white-box tools is that they are able to see all possible pro-
gram paths through the application. However, as precisely identifying all vulnerabilities
in an application via static analysis is equivalent to the halting problem, trade-offs must
be made in order to create useful tools. The trade-off that is often made in white-box
tools is one of being sound rather than complete. What this means is that a white-box
tool will report vulnerabilities that are not actual vulnerabilities. This is usually be-
cause the static analysis will over-approximate the program paths that the application

can take. Thus, there will be vulnerabilities reported that cannot occur in practice.

18

Chapter 1. Introduction

The downside of white-box tools is that they are tied to the specific language or
framework. A white-box vulnerability analysis tool written for PHP will not work for
Ruby on Rails without significant engineering work. These tools are tightly coupled to

not only language features, but also framework features.

Black-Box

In contrast to white-box tools, black-box vulnerability analysis tools assume no
knowledge of the source-code of the web application. Instead of using the source code,
black-box tools interact with the web application being tested just as a user with a web
browser would. Specifically, this means that the black-box tools issue HTTP requests
to the web application and receive HTTP responses containing HTML. These HTML
pages tell the black-box tool how to generate new HTTP requests to the application.

Black-box tools first will crawl the web application looking for all possible injection
vectors into the web application. An injection vector is any way that an attacker can
feed input into the web application. In practice, web application injection vectors are:
URL parameters, HTML form parameters, HTTP cookies, HTTP headers, URL path,
and so on.

Once the black-box tool has enumerated all possible injection vectors in the appli-
cation, the next step is to give the web application input which is intended to trigger or

expose a vulnerability in the web application. This process is typically called fuzzing.

19

Chapter 1. Introduction

The specifics of choosing which injection vectors to fuzz and when are specific to each
black-box tool.

Finally, the black-box tool will analyze the HTML and HTTP response to the
fuzzing attempts in order to tell if the attempt was successful. If it was, the black-box
tool will report it as a vulnerability.

There are two major benefits of black-box tools as opposed to white-box tools.
The first is that black-box tools are general and can find vulnerabilities in any web
application, regardless of what language the server-side code is written in. In this way,
black-box tools emulate an external hacker who has no access to the source code of the
application. Therefore, black-box tools are applicable to a much larger number of web
applications.

The second major benefit is that black-box tools have significantly lower false posi-
tives® than white-box tools. This is because the fuzzing attempt actually tries to trigger
the vulnerability, and, for most web vulnerabilities, a successful exploitation will be
evident in the resulting HTML page. Ultimately, lower false positives causes the de-
velopers who run these tools against their own web applications to trust the output of a
black-box tool over a white-box tool.

The drawback of a black-box tool is that it is not guaranteed to find all vulnerabil-

ities in your web application. This limitation is because a black-box tool can only find

S A false positive is a vulnerability that the tool reports which is not actually a vulnerability.

20

Chapter 1. Introduction

vulnerabilities along program paths that it executes, whereas a white-box tool can see

all program paths through an application.

Grey-Box

As the name suggests, grey-box tools are a combination of white-box techniques
and black-box techniques. The main idea is to use white-box static analysis techniques
to generate possible vulnerabilities. Then, there is a confirmation step where the tool
will actually try to exploit the vulnerability. Only if this step is successful will the tool
report the vulnerability.

Grey-box tools inherit the benefits of white-box tools: The ability to find vulner-
abilities in all program paths along with the low false positive rate associated with
black-box tools (as the vulnerabilities are verified by the black-box techniques). How-
ever, grey-box tools also inherit the drawbacks of white-box tools: Applicability to a
single web application language or framework. Therefore, these types of tools are not

as popular as white-box and black-box tools.

1.4 Securing the Web

Given the empowering nature of web applications, it is clear that securing web applica-

tions is important. Specifically, we must focus on the needs of the users: making sure

21

Chapter 1. Introduction

that their data is safe, and that they are safe while browsing the web. To accomplish
this, I believe that we must make the necessary strides to create automated tools that are
able to automatically find security vulnerabilities. These tools can be used by develop-
ers with no security expertise, thus putting developers on a level playing field with the

attackers.

In this dissertation, I make the following contributions to securing web applications

from attack:

¢ | methodically analyze existing black-box web application vulnerability scan-
ners. We develop a known-vulnerable web application, then evaluate several real-
world black-box web application vulnerability scanners to identify their strengths

and weaknesses.

e Then, using the previously developed work as a guide, I aim to solve the biggest
problem restricting modern black-box web application vulnerability scanners:
They do not understand that they are analyzing a web application with state. |
develop an approach to automatically reverse-engineer the state machine of a web
application solely through black-box interactions. Incorporating this knowledge
into a black-box web application vulnerability scanner enables the scanner to test

significantly more of the web application.

22

Chapter 1. Introduction

o [identify and study a novel class of web application vulnerabilities, called Exe-
cution After Redirect, or EARs. These logic flaw vulnerabilities can affect web
applications written in a number of languages or frameworks. In addition to
studying this class of vulnerabilities, we developed a white-box static analysis
tool to automatically identify EARs in Ruby on Rails web applications. By ap-
plying this tool to a large corpus of real-world open-source web application, we

found many previously unknown vulnerabilities.

e Finally, I propose a new approach to fundamentally solve Cross-Site Scripting
vulnerabilities. By using the fundamental security principles of Code and Data
separation, we can view XSS vulnerabilities as a problem of Code and Data sep-
aration. New applications can be designed with Code and Data separation in
mind, however it is difficult to separate Code and Data manually. To prevent
XSS vulnerabilities in existing web applications, I created a tool to automatically
perform Code and Data separation for legacy web applications. After applying
this tool, the web applications are fundamentally secure from server-side XSS

vulnerabilities.

23

Chapter 2
Related Work

Automated web application vulnerability analysis tools are an area of research that
has received considerable study. In this chapter, we will discuss works related to differ-
ent areas of web application vulnerability scanners: how black-box web vulnerability
scanners are evaluated, the history of black-box and white-box tools, and finally the

various proposed defenses for Cross-Site Scripting vulnerabilities.

2.1 Evaluating Black-Box Web Vulnerability Scanners

Our work on evaluating black-box vulnerability scanners in Chapter 3 is related to
two main areas of research: the design of web applications for assessing vulnerability
analysis tools and the evaluation of web scanners.

Designing test web applications. Vulnerable test applications are required to assess

web vulnerability scanners. Unfortunately, no standard test suite is currently avail-

24

Chapter 2. Related Work

able or accepted by the industry and research community. HacmeBank [53] and Web-
Goat [105] are two well-known, publicly-available, vulnerable web applications, but
their design is focused more on teaching web application security rather than testing
automated scanners.

SiteGenerator [104] is a tool to generate sites with certain characteristics (e.g.,
classes of vulnerabilities) according to its input configuration. While SiteGenerator is
useful to automatically produce different vulnerable sites, we found it easier to manu-
ally introduce in WackoPicko the vulnerabilities with the characteristics that we wished
to test.

Evaluating web vulnerability scanners. There exists a growing body of literature
on the evaluation of web vulnerability scanners. For example, Suto compared three
scanners against three different applications and used code coverage, among other met-
rics, as a measure of the effectiveness of each scanner [134]. In a follow-up study,
Suto [135] assessed seven scanners and compared their detection capabilities and the
time required to run them. Wiegenstein et al. ran five unnamed scanners against a
custom benchmark [144]. Unfortunately, the authors do not discuss in detail the rea-
sons for detections or spidering failures. In their survey of web security assessment
tools, Curphey and Araujo reported that black-box scanners perform poorly [39]. Peine
examined in depth the functionality and user interfaces of seven scanners (three com-

mercial) that were run against WebGoat and one real-world application [111]. Kals et

25

Chapter 2. Related Work

al. developed a new web vulnerability scanner and tested it on approximately 25,000
live web pages [82]. Because no ground truth is available for these sites, the authors did
not discuss false negative rate or failures of their tool. AnantaSec released an evaluation
of three scanners against 13 real-world applications, three web applications provided
by the scanner vendors, and a series of JavaScript tests [5]. While this experiment as-
sessed a large number of real-world applications, only a limited number of scanners are
tested and no explanation is given for the results. In addition, Vieira et al. tested four
web vulnerability scanners on 300 web services [138]. They also report high rates of

false positives and false negatives.

2.2 Black-Box Vulnerability Scanners

Automatic or semi-automatic web application vulnerability scanning has been a hot
topic in research for many years because of its relevance and its complexity. In Chap-
ter 4 we will discuss the creation of a new black-box vulnerability scanner technique.
Here, we review the relevant literature.

Huang et al. developed a tool (WAVES) for assessing web application security with
which we share many points [71]. Similarly to our work, they have a scanner for finding
the entry points in the web application by mimicking the behavior of a web browser.

They employ a learning mechanism to sensibly fill web form fields and allow deep

26

Chapter 2. Related Work

crawling of pages behind forms. Attempts to discover vulnerabilities are carried out
by submitting the same form multiple times with valid, invalid, and faulty inputs, and
comparing the result pages. Differently from WAVES, we are using the knowledge
gathered by the understanding of the web application’s state to help the fuzzer detect
the effect of a given input. Moreover, black-box vulnerability scanner aims not only at
finding relevant entry-points, but rather at building a complete state-aware navigational
map of the web application.

A number of tools have been developed to try to automatically discover vulnerabil-
ities in web applications, produced as academic prototypes [11,48,61,72,81,82,89], as
open-source projects [26,33, 117], or as commercial products [2,70,73,113].

Multiple projects [14, 135, 138], as well as Chapter 3 tackled the task of evaluat-
ing the effectiveness of popular black-box scanners (in some cases also called point-
and-shoot scanners). The common theme in their results is a relevant discrepancy in
vulnerabilities found across scanners, along with low accuracy. Authors of these eval-
uations acknowledge the difficulties and challenges of the task [59, 138]. In particular,
we highlighted how more deep crawling and reverse engineering capabilities of web
applications are needed in black-box scanners, and we also developed the WackoPicko
web application which contains known vulnerabilities described in Chapter 3. Simi-

larly, Bau et al. investigated the presence of room for research in this area, and found

27

Chapter 2. Related Work

improvement is needed, in particular for detecting second-order XSS and SQL injection
attacks [14].

Reverse engineering of web applications has not been widely explored in the liter-
ature, to our knowledge. Some approaches [42] perform static analysis on the code to
create UML diagrams of the application.

Static analysis, in fact, is the technique mostly employed for automatic vulnerability
detection, often combined with dynamic analysis.

Halfond et al. developed a traditional black-box vulnerability scanner, but improved
its results by leveraging a static analysis technique to better identify input vectors [61].

Pixy [81] employed static analysis with taint propagation in order to detect SQL
injection, XSS, and shell command injection, while Saner [11] used sound static anal-
ysis to detect failures in sanitization routines. Saner also takes advantage of a second
phase of dynamic analysis to reduce false positives. Similarly, WebSSARI [72] also em-
ployed static analysis for detecting injection vulnerabilities, but, in addition, it proposed
a technique for runtime instrumentation of the web application through the insertion of
proper sanitization routines.

Felmetsger et al. investigated an approach for detecting logic flaw vulnerabilities by
combining execution traces and symbolic model checking [48]. Similar approaches are
also used for generic bug finding (in fact, vulnerabilities are considered to be a subset

of the general bug category). Csallner et al. employ dynamic traces for bug finding

28

Chapter 2. Related Work

and for dynamic verification of the alerts generated by the static analysis phase [37].
Artzi et al., on the other hand, use symbolic execution and model checking for finding
general bugs in web applications [6].

On a completely separate track, efforts to improve web application security push
developers toward writing secure code in the first place. Security experts are tying to
achieve this goal by either educating the developers [129] or designing frameworks
which either prohibit the use of bad programming practices or enforce some security
constraints in the code. Robertson and Vigna developed a strongly-typed framework
which statically enforces separation between structure and content of a web page, pre-
venting XSS and SQL injection [119]. Also Chong et al. designed their language for
developers to build web applications with strong confidentiality and integrity guaran-
tees, by means of compile-time and run-time checks [34].

Alternatively, consequences of vulnerabilities in web applications can be mitigated
by attempting to prevent the attacks before they reach potentially vulnerable code, such
as, for example, in the already mentioned WebSSARI [72] work. A different approach
for blocking attacks is followed by Scott and Sharp, who developed a language for
specifying a security policy for the web application; a gateway will then enforce these
policies [126].

Another interesting research track deals with the problem of how to explore web

pages behind forms, also called the hidden web [115]. McAllister et al. monitor user

29

Chapter 2. Related Work

interactions with a web application to collect sensible values for HTML form sub-
mission and generate test cases that can be replayed to increase code coverage [95].
Although not targeted to security goals, the work of Raghavan and Garcia-Molina is
relevant for their contribution in classification of different types of dynamic content
and for their novel approach for automatically filling forms by deducing the domain
of form fields [115]. Raghavan and Garcia-Molina carried out further research in this
direction, by reconstructing complex and hierarchical query interfaces exposed by web
applications.

Moreover, Amalfitano et al. started tackling the problem of reverse engineering the
state machine of client-side AJAX code, which will help in finding the web applica-
tion server-side entry points and in better understating complex and hierarchical query
interfaces [4].

Finally, there is the work by Berg et al. in reversing state machines into a Symbolic
Mealy Machine (SMM) model [15]. Their approach for reversing machines cannot be
directly applied to the case of web applications because of the