
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Leveraging evolutionary information to guide structure- based drug design /

Permalink
https://escholarship.org/uc/item/63d660fg

Author
Friedman, Aaron Jacob

Publication Date
2013
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/63d660fg
https://escholarship.org
http://www.cdlib.org/


 

UNIVERSITY OF CALIFORNIA, SAN DIEGO 
 
 
 

Leveraging evolutionary information to guide structure-based drug design 
 
 
 

A dissertation submitted in partial satisfaction of the requirements for the degree 
Doctor of Philosophy 

 
 
 

in 
 
 
 

Biomedical Sciences 
 
 
 

by 
 
 
 

Aaron Jacob Friedman 
 
 
 
 
 

Committee in charge: 
 
 Professor J. Andrew McCammon, Chair 
 Professor Philip E. Bourne 
 Professor Michael K. Gilson 
 Professor Vivian Hook 
 Professor Christina Sigurdson 
 
 
 
 
 

2013 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright 
 

Aaron Jacob Friedman, 2013 
 

All Rights Reserved



iii 

 
 
 
 
 
 
 
 
 
 
The Dissertation of Aaron Jacob Friedman is approved, and it is acceptable in quality 

and form for publication on microfilm and electronically: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chair 
 
 

University of California, San Diego 
 

2013 
 
 
 



 

 iv 

Dedication 

This work is dedicated to my grandfather, Poppa Ben, who was the first person to truly 

inspire me to pursue medical research. We had many fascinating conversations when I 

was younger, and I still remember them to this day. He shared his love of learning 

with me and taught me so much about science, and I will always cherish that. 

  



 

 v 

Table of Contents 

Signature Page ............................................................................................................. iii 

Dedication .................................................................................................................... iv	
  
Table of Contents ......................................................................................................... v	
  
List of Figures ............................................................................................................. vii	
  
List of Tables ............................................................................................................... xi	
  
List of Schemes ........................................................................................................... xii	
  
Acknowledgements .................................................................................................... xiii	
  
Vita .............................................................................................................................. xv	
  
Abstract of the Dissertation ...................................................................................... xvi	
  
Chapter 1: Leveraging evolution can enhance computer-aided drug discovery 
efforts. ............................................................................................................................ 1	
  

Abstract ................................................................................................................................. 1	
  
Introduction .......................................................................................................................... 1	
  
How can we estimate the affinity of protein-ligand interactions? .................................... 3	
  
The importance of selectivity ............................................................................................... 5	
  
Evolving away from drugs: The development of resistance ............................................. 6	
  
Evolution occurs on a molecular scale: Cysteine cathepsins as an example ................... 7	
  

Chapter 2: The molecular dynamics of Trypanosoma brucei UDP-galactose 4’-
epimerase: a drug target for African Sleeping Sickness ......................................... 10	
  

Abstract ............................................................................................................................... 10	
  
Abbreviations ...................................................................................................................... 11	
  
Introduction ........................................................................................................................ 11	
  
Results and Discussion ....................................................................................................... 14	
  

Evidence of simulation equilibration ............................................................................... 14	
  
A gating mechanism may mediate ligand binding ........................................................... 15	
  
UDP-sugar binding: induced fit vs. population shift ........................................................ 17	
  
Hydrogen bonding of the UDP-sugar ............................................................................... 19	
  
Identification of conserved residues ................................................................................. 22	
  
Allosteric binding ............................................................................................................. 23	
  

Conclusions: ........................................................................................................................ 27	
  
Materials and Methods: ..................................................................................................... 27	
  

System preparation ........................................................................................................... 27	
  
Molecular dynamics simulations ...................................................................................... 29	
  
Trajectory clustering ........................................................................................................ 30	
  
Hydrogen bond analysis ................................................................................................... 30	
  
Principal component analysis ........................................................................................... 31	
  
Identifying highly conserved active site residues ............................................................ 31	
  
HsGalE inhibition and thermal scanning fluorimetry assay ............................................. 31	
  

Acknowledgements: ............................................................................................................ 33	
  



 

 vi 

Supporting Information ..................................................................................................... 34	
  
Chapter 3: CrystalDock: Leveraging Known Structural Information for 
Fragment-Based Drug Design ................................................................................... 38	
  

Abstract ............................................................................................................................... 38	
  
Introduction ........................................................................................................................ 39	
  
Materials and Methods: ..................................................................................................... 41	
  

Creating a Database of Molecular Fragments and Microenvironments ........................... 41	
  
Characterizing a New Binding Pocket ............................................................................. 43	
  
Independent-Trajectories Thermodynamic Integration Calculations ............................... 45	
  

Results and Discussion ....................................................................................................... 47	
  
Acknowledgements ............................................................................................................. 54	
  
Supporting Information ..................................................................................................... 54	
  

Aligning Microenvironments from the Database to an Active-Site of Interest ............... 54	
  
Ranking the Aligned Microenvironments ........................................................................ 57	
  

Chapter 4: The Marine Cyanobacterial Metabolite  Gallinamide A is a Potent 
and Selective Inhibitor of Human Cathepsin L ....................................................... 60	
  

Abstract ............................................................................................................................... 60	
  
Introduction ........................................................................................................................ 61	
  
Results and Discussion ....................................................................................................... 64	
  

Gallinamide A isolation and structure determination. ..................................................... 64	
  
Gallinamide A potently and selectively inhibits cathepsin L ........................................... 67	
  
Gallinamide A is an irreversible inhibitor of cathepsin L ................................................ 70	
  
Gallinamide A inhibits cathepsin L via Michael addition. ............................................... 74	
  

Materials and Methods ...................................................................................................... 80	
  
General Experimental Procedures .................................................................................... 80	
  
Collection, Extraction and Isolation ................................................................................. 80	
  
Cathepsin L assay ............................................................................................................. 82	
  
Inhibitor potency determination ....................................................................................... 82	
  
Selectivity ......................................................................................................................... 83	
  
Reversibility ..................................................................................................................... 83	
  
Active-site directed probe competition binding assay ..................................................... 84	
  
Kinetic Analysis ............................................................................................................... 84	
  
Receptor and ligand preparation ...................................................................................... 85	
  
Docking protocol .............................................................................................................. 86	
  
Molecular dynamics simulations ...................................................................................... 86	
  

Acknowledgements ............................................................................................................. 87	
  
Supporting Information ..................................................................................................... 88	
  

Chapter 5: Conclusions .............................................................................................. 92	
  
References ................................................................................................................... 95	
  
 
  



 

 vii 

List of Figures 

Figure 1.1. Cysteine cathepsins have a high homology. (A) High sequence similarity 
of different human and murine cathepsins, from (32). (B) Cathepsins V and L 
evolved different electrostatic potentials from a common cathepsin ancestor. ..... 9	
  

Figure 2.1. Trajectory RMSD. Each dimer simulation was aligned to the first frame by 
minimizing the root-mean-square deviation (RMSD) of the Cα’s. RMSD was 
calculated using the first frame as a reference. For this plot, and in subsequent 
figures, apo is depicted in black, UDP-galactose in blue, UDP-glucose in red, and 
the UDP-ketose intermediate in brown. As each substrate was derived from UDP-
galactose, the systems needed 9 ns to equilibrate (gray box). Trajectory analysis 
was performed on the subsequent 50 ns of each dimer simulation. ..................... 14	
  

Figure 2.2. Principal component analysis (PCA). To facilitate comparison, all 
trajectories were projected onto the principal components of 
the aposimulation. Apo is shown in black, UDP-galactose in blue, UDP-glucose 
in red, and the UDP-ketose intermediate in brown. (A) Percent of the trajectory 
dynamics attributable to each of the top 25 apo eigenvectors. A majority of these 
motions can be explained by the first two principal components (PC). (B) 
Projection of the trajectories onto the first two apo eigenvectors. 
Each holosimulation explores its own unique set of motions. (C) The PC1 
minimum extreme structures for each simulation, color-coded as above. The 
location of gate is boxed in green. (D) The PC1 maximum extreme structures, 
color-coded as above. The location of gate is boxed in green. (E) The closed 
conformation evident in the PC1 minimum apo structure results from a kink in 
the highlighted α-helix. The PC1 minimum structure is shown in cyan/gray, and 
the maximum is shown in blue/black for reference. ............................................ 16	
  

Figure 2.3. Ligand hydrogen bonding. Hydrogen bonds present in over 75% of the 
1000 equidistant frames extracted from each MD simulation are shown in green. 
In all charts, UDP-galactose is shown in blue, UDP-glucose is shown in red, and 
the UDP-ketose intermediate is shown in brown. For D–F, chain A is represented 
by the darker color, and chain B by the lighter color. (A) UDP-glucose. The 
glucose is held in place by two hydrogen bond interactions with Y173. (B) UDP-
ketose intermediate. The orientation of the sugar is flipped from that of UDP-
glucose. The sugar C6 hydroxyl group interacts with L102, and the intermediate 
carbonyl oxygen is tethered to S142. (C) UDP-galactose. The now epimerized 
sugar, still flipped, forms a single hydrogen bond with Y173. (D–F) Moving 
average using 500 ps windows. (D) Distance from the L102 carbonyl oxygen to 
the C6 hydroxyl on the UDP-sugar. (E) Distance from the S142 side chain 
hydroxyl to the C4 hydroxyl on the UDP-sugar. (F) Distance from the Y173 side 
chain hydroxyl to the C4 hydroxyl on the UDP-sugar. (G) [C1-O-P-O] torsion 
angle of the UDP-sugar. C1 belongs to the sugar. ............................................... 20	
  

Figure 2.4. Binding pocket identification. (A) Active site clustering of theTbGalE 
monomers. The frames of each simulation were clustered by the active site Cα’s 
using 0.70 and 0.75 Å RMSD cutoffs for the holo and aposimulations, 



 

 viii 

respectively. The top two representative structures of chain A from each 
simulation are shown; apo is depicted in black, UDP-galactose in blue, UDP-
glucose in red, and the UDP-ketose intermediate in brown. Darker and lighter 
colors correspond to the most populated and the second most populated cluster, 
respectively. (B) FT-MAP analysis. The top five clusters from each chain were 
submitted to the FT-MAP server. Shown are the results for the top chain A 
cluster of each simulation. These results suggest thatTbGalE contains no 
allosteric sites; the observed agonism likely results from ligand-induced 
dimerization and/or cooperativity between the two monomers. .......................... 25	
  

Figure S2.1. Thermal scanning fluorimetry of HsGalE.  5 µM HsGalE in 10 mM 
HEPES-NaOH, pH 8.8, 1% (v/v) DMSO, 5× Sypro orange  showed a clear 
melting curve resulting in a Tm of 51.5±0.3 °C. .................................................. 37	
  

Figure 3.1. Schematic of the algorithms used to generate a database of 
microenvironments from available Protein Data Bank (PDB) structures: (A) 
43  327 receptor–ligand complexes were identified with 202  584 total ligands; (B) 
each ligand was fragmented into its constituent molecular parts; (C) geometric 
rays, separated by 10° in all directions, were extended from each fragment atom 
out into space; (D) these rays were used to identify microenvironment receptor 
residues; and (E) a ligand–receptor distance cutoff was implemented. The cutoff 
was gradually scaled back from 4 Å to 0 Å, and receptor residues beyond the 
cutoff were discarded at every step. In this way, multiple microenvironments 
were identified for each molecular fragment. Subsequently, only those 
microenvironments with 3, 4, and 5 receptor residues (823  460 in total) were 
considered. ........................................................................................................... 42	
  

Figure 3.2. Schematic of the algorithm used to position binding fragments into a 
pocket of interest: (A) CrystalDock sends out rays to identify the receptor 
residues that line the binding pocket, and, subsequently, all combinations of 3, 4, 
and 5 lining residues are considered (a representative combination of 3 residues is 
shown); (B) CrystalDock searches through the database of predefined 
microenvironments in an attempt to find geometric matches; (C) Although the 
root-mean-square deviation (RMSD) alignment considers only receptor residues 
(i.e., the residues of the microenvironments), the structures include models of the 
original ligand fragments as well; rmsd alignment positions these molecular 
fragments within the binding pocket of interest. .................................................. 44	
  

Figure 3.3. The results of an influenza neuraminidase CrystalDock run, shown 
together with the crystallographic pose of oseltamivir, a known inhibitor. In panel 
(A), CrystalDock identified many ringed fragments derived from several known 
neuraminidase inhibitors; interestingly, the program also placed a sulfate ion near 
the location of the charged oseltamivir carboxylate group. Panel (B) is the same 
as panel (A), but with only selected positioned fragments shown for the sake of 
simplicity. ............................................................................................................. 48	
  

Figure 3.4. Results of a TbREL1 CrystalDock run, shown together with V2 (faintly 
outlined), a low-µM inhibitor docked into the crystallographic TbREL1 active 
site. In panel (A), the CrystalDock-positioned fragments can be generally 
clustered into three groups: a single sulfate positioned near the predicted pose of 



 

 ix 

a V2 sulfonate group, aromatic fragments that are generally in the same region 
and plane as the V2 naphthalene group, and hydrophobic fragments not 
corresponding to any V2 substructure. Panel (B) is the same as panel (A), but 
with only selected positioned fragments shown for the sake of simplicity. Panel 
(C) shows that, serendipitously, the position of a toluene fragment was ideal for 
chemical linking to the Vina-docked V2. ............................................................ 50	
  

Figure 3.5. Histograms of the predicted binding energies generated using IT-TI: (A) 
the predicted binding energies derived from the V2 simulation and (B) the 
predicted binding energies derived from the V2 + toluene composite compound. 
Bin sizes of 0.5 kcal/mol were used, and the x-axis in each is ordered by 
increasing potency (i.e., decreasing predicted binding energy). .......................... 52	
  

Figure 4.1. Fragmentation patterns for (A) gallinamide A (1) and (B) gallinamide B 
(2) by ESI-MS/MS. .............................................................................................. 66	
  

Figure 4.2. Representative blot of competitive activity-based probe labeling of 
cathepsin L. Gallinamide A showed reduced labeling at 111 nM and complete 
inhibition at 333 nM. ............................................................................................ 68	
  

Figure 4.3. Dose response curves following gallinamide A preincubation with 
cathepsin L for 0 min (▲) and 30 min (●). The measured IC50 following 
immediate mixing is 46.5 nM (95%CI = 40.4 nM to 53.5 nM), while 30 min 
preincubation results in an IC50 of 5.01 nM (95%CI = 4.18 nM to 6.02 nM). IC50 
data are significantly different (p<0.0001). .......................................................... 69	
  

Figure 4.4. (A) A concentrated solution of enzyme and gallinamide A was incubated 
for 30 min and then then diluted. (B) The resulting shift in the enzymatic activity 
is based on the dose response curve. (C) The subsequent rate of the reaction was 
monitored for 2 hr, and comparison of initial reaction rates showed 12% of the 
activity with preincubation of gallinamide A (○) as compared to the control (●). 
The reaction rate was constant over the course of the two hour monitoring period, 
demonstrating an irreversible mode of inhibition. ............................................... 72	
  

Figure 4.5. (A) Product formation from the turnover of substrate by cathepsin L in the 
presence of various concentrations of gallinamide A was monitored over time. 
The resulting plots were fitted to a model of irreversible inhibition, and the 
obtained kobs values were plotted against [I]. (B) This produced a linear 
relationship, the slope of which represents the second order inhibition constant, ki 
= 9009 ± 135.6 s-1 M-1. (C) These data fit a simple model of irreversible enzyme 
inhibition. ............................................................................................................. 73	
  

Figure 4.6. (A-B) Induced fit docked poses of representative structures for two 
gallinamide A (1) conformations docked into cathepsin L resulted in ‘top’ and 
‘bottom’ poses, respectively. In C-E, the scores for the ‘top’ pose are represented 
by green and the ‘bottom’ pose blue. (C) RMSD values were obtained for each 
pose, corresponding to differences between the structure at a given time and the 
original pose, and thus are inversely correlated with stability. (D) The distance 
between Cys25-SH and C* for gallinamide A bound to cathepsin L. (E) A 
histogram of hydrogen bond count for both orientations of gallinamide A docked 
into the cathepsin L active site. ............................................................................ 76	
  



 

 x 

Figure S4.1. Cathepsin L activity assay for HPLC collections .................................... 89	
  
Figure S4.2. ESI-MS/MS and MS3 spectra of Gallinamide A (1) ............................... 89	
  
Figure S4.3. ESI-MS/MS and MS3 spectra of Gallinamide B (2) ............................... 90	
  
Figure S4.4. 1H NMR spectrum of gallinamide A (1) in CDCl3 (500 MHz) ............... 91	
  
Figure S4.5. 1H-1H COSY spectrum of gallinamide A (1) in CDCl3 (500 MHz).1H 

NMR (CDCl3, 500 MHz) δ 7.42 (1H, d, J = 15.8 Hz, H-8), 7.14 (1H, brs, 13-
NH), 6.94 (1H, dd, J = 15.8, 4.3 Hz, H-9), 6.21 (1H, brd, 10-NH), 5.16 (1H, dd, J 
= 9.3, 4.0 Hz, H-19), 5.05 (1H, s, H-2), 4.69 (1H, m, H-10), 4.61 (1H, q, J = 6.5 
Hz, H-4), 4.45 (1H, brdd, H-13), 3.88 (3H, s, O-Me), 3.83 (1H, d, J = 5.9 Hz, H-
25), 2.98 (6H, brs, H-30), 2.04 (1H, m, H-26), 1.84 (2H, m, H-20a), 1.67 ( 2H, m, 
H-14), 1.66 (1H, m, H-15), 1.63 (2H, m, H-20b), 1.62 (1H, m, H-21), 1.5 (3H, d, 
J = 6.5 Hz, H-5), 1.4 (2H, brm, H-27), 1.32 (3H, d, J = 6.5 Hz, H-11), 1.08 (3H, 
d, J = 6.5 Hz, H-29), 0.99 (3H, t, J = 7.3 Hz, H-28), 0.96 (3H, d, H-22), 0.96 (3H, 
d, J = 6.2 Hz, H-16), 0.93 (3H, d, J = 6.2 Hz, H-17), 0.92 (3H, d, J = 6.2 Hz, H-
23) ........................................................................................................................ 91	
  

 
  



 

 xi 

List of Tables 

Table 1.1. Cathepsins and disease. Adapted from (27, 30) ............................................ 7	
  
Table S2.1. TbGalE Agonists. Specific methods can be found in Durrant et al. (2010) J 

Med Chem 53, 5025-5032. ................................................................................... 34	
  
Table S2.2. Percentage activity of 20 nM HsGalE in the presence of different DTP 

compounds. The reactions contained 100 µM DTP compound, 100 µM UDP-
Galactose, 10 mM NAD+, 1.2 µM HsUGDH, 10 mM HEPES-NaOH, pH 8.8, 1% 
(v/v) DMSO. Data are reported as the mean ± SD determined from three separate 
experiments.  No compound resulted in a statistically significant (Student’s t-test) 
change in activity. ................................................................................................ 36	
  

Table S2.3. Melting temperatures of HsGalE in the presence of different DTP 
compounds. The reactions contained 5 µM HsGalE, 100 µM DTP compound, 10 
mM HEPES, pH 8.8, 1% (v/v) DMSO, 5× Sypro orange.  The change of melting 
temperature, ∆Tm, due to ligand binding was calculated according to:∆Tm = (Tm 
of protein without compound) - (Tm of protein with compound). Data are reported 
as mean ± SD determined from three experiments.  If a compound bound to the 
enzyme, it would be expected to stabilize the protein’s structure resulting in an 
increase in Tm.  However, none of the compounds tested here resulted in a 
statistically significant (Student’s t-test) change in Tm. aCompounds 260594, 
146771 and 202386 formed a colored precipitate, preventing determination of the 
melting temperature. ............................................................................................ 36	
  

Table S3.1. Rather than requiring exact amino-acid matches, the user can also instruct 
CrystalDock to consider chemically similar amino acids to be equivalent. Amino 
acids (in bold) that are chemically similar are marked with X’s. ........................ 58	
  

Table S3.2. To determine the orientation of protein side chains, representative 
coordinates are chosen corresponding to the side-chain atoms indicated. The atom 
name is given across the top, and the residue name is given on the left. ............. 59	
  

Table 4.1. IC50 values and selectivity indices of gallinamide A (1) for cathepsins L, V 
and B.  A95% confidence intervals: L(0)=0.0042-0.0060; L(30)=0.040-0.053; 
V(0)=0.416-0.500; V(30)=0.119-0.170; B(0)=3.69-4.71; B(30)=1.34-2.04 ....... 70	
  

  



 

 xii 

List of Schemes 

Scheme 1.1. Eleven known molecular processes that can generate new genes. (1) ...... 2	
  
Scheme 2.1. UDP-sugar epimerization. The epimerization reaction proceeds via a 

UDP-ketose intermediate. Epimerization requires a 180° rotation (‘flip’) of the 
sugar portion of the ligand. .................................................................................. 13	
  

Scheme 4.1. Gallinamide Structures ............................................................................ 64	
  
Scheme S4.1. Fractionation and isolation scheme ....................................................... 88	
  
 
  



 

 xiii 

Acknowledgements 

 I would like to first thank Professor Andy McCammon for excellent support 

and guidance during my graduate studies. I also wish to extend extreme thanks to Dr. 

Jacob Durrant, who mentored me in my early graduate years and taught me the 

elegance of simplicity. He has been an incredible resource in both the TbGalE and 

CrystalDock projects. Additionally, I also must thank Dr. Bill Sinko, Dr. Levi Pierce, 

Dr. Kathleen Rogers, Dr. Paul Gasper, Patrick Blachly, and the rest of the McCammon 

lab for all of their help and advice during the past several years. I wish to thank Drs. 

David Timson and Thomas McCorvie for their collaboration on the TbGalE project. 

Bailey Miller, Dr. Hyukjae Choi, Professor Bill Gerwick, and Professor Vivian Hook 

were critical to the cathepsin natural product inhibitors project. I would like to thank 

Professors Philip Bourne, Michael Gilson, and Christina Sigurdson for many helpful 

discussions along the way. 

This work was carried out with funding from the National Institutes of Health  

(NIH) Pharmacology Training Grant 5T32GM007752-32, the David Goeddel 

Chancellor’s Fellowship, and funding from the NIH (GM31749) and National Science 

Foundation (NSF) (MCB-1020765 and MCA93S013). Support from the Howard 

Hughes Medical Institute, the NSF Supercomputer Centers, the San Diego 

Supercomputer Center, the W. M. Keck Foundation, the National Biomedical 

Computational Resource, and the Center for Theoretical Biological Physics is 

gratefully acknowledged. 



 

 xiv 

Chapter 2 is a minimally modified reprint of the material appearing in 

Friedman AJ, Durrant JD, Pierce LCT, McCorvie TJ, Timson DJ, McCammon JA. 

The Molecular Dynamics of Trypanosoma brucei UDP-Galactose 4’-Epimerase: A 

Drug Target for African Sleeping Sickness. Chem Biol Drug Des 2012, 80, 173-181. I 

was the first author and co-principal investigator of this paper. 

Chapter 3 is a minimally modified reprint of the material appearing in Durrant 

JD, Friedman AJ, and McCammon JA. CrystalDock: A Novel Approach to Fragment-

Based Drug Design. J Chem Inf Model 2011, 51(10), 2573-2580. I was the second 

author of this paper. Additional work in this chapter will be included in an upcoming 

paper in which I will be first author. 

Chapter 4 is a minimally modified reprint of the material appearing in Miller 

B, Friedman AJ, Choi H, Hogan J, McCammon JA, Hook V, and Gerwick WH. The 

Marine Cyanobacterial Metabolite Gallinamide A is a Potent and Selective Inhibitor of 

Human Cathepsin L. Submitted. I was the second author, and principal computational 

author, on this paper. 

 

 

 

  



 

 xv 

Vita 

2008  Bachelor of Science, Washington University in St. Louis 
 
2011 Teaching Assistant, Department of Biology, University of California, 

San Diego 
 
2013 Doctor of Philosophy, University of California, San Diego 
 
 
1. Klingenberg JM, McFarland KL, Friedman AJ, Boyce ST, Aronow BJ, Supp 

DM. Engineered human skin substitutes undergo large-scale genomic 
reprogramming and normal skin-like maturation after transplantation to athymic 
mice. J Invest Dermatol. 2010 Feb;130(2):587-601 

2. Friedman AJ, Torkamani A, Verkhivker G, Schork NJ. From Coding Variant to 
Structure and Function Insight. Protein Structure. 2011: 93-103 

3. Durrant JD, Friedman AJ, Rogers KE, McCammon JA. CrystalDock: a novel 
approach to fragment-based drug design. J Chem Inf Model. 2011 Oct 24;51(10): 
2573-80. 

4. Friedman AJ, Durrant JD, Pierce LC, McCorvie TJ, Timson DJ, McCammon JA. 
The Molecular Dynamics of Trypanosoma brucei UDP-galactose 4'-epimerase: a 
drug target for African Sleeping Sickness. Chem Biol Drug Des. 2012 
Aug;80(2):173-81.  

5. Durrant JD, Friedman AJ, Rogers KE, McCammon JA. Comparing Neural-
Network Scoring Functions and the State of the Art: Applications to Common 
Library Screening. J Chem Inf Model. 2013 Jul 22;53(7):1726-35 

6. Miller B, Friedman AJ, Choi H, Hogan J, McCammon JA, Hook V, Gerwick 
WH. The Marine Cyanobacterial Metabolite A is a Potent and Selective Inhibitor 
of Human Cathepsin L. Submitted. 

7. Durrant JD, Friedman AJ, McCammon JA. PyMolecule: A Python Framework 
for Manipulating Biomolecules. In preparation. 

8. Friedman AJ, Durrant JD, McCammon JA. CrystalDock2: Leveraging Known 
Structural Information for Fragment-Based Drug Design. In preparation. 
 

 
  



 

 xvi 

ABSTRACT OF THE DISSERTATION 
 
 
 

Leveraging evolutionary information to guide structure-based drug design 
 
 
 

by 
 
 
 

Aaron Jacob Friedman 

Doctor of Philosophy in Biomedical Sciences 

University of California, San Diego, 2013 

Professor J. Andrew McCammon, Chair 

 

The accurate prediction of biomolecular recognition is fundamental to modern 

drug discovery. Computational chemists seek to optimize interactions between 

proteins and drug candidates. As nature has optimized these interactions over billions 

of years, fundamental understanding of evolutionarily conserved interactions is 

important for the design of selective, high affinity treatments.  

Herein, several projects are described that leverage such understanding. 

Identification of conserved residues in drug targets can suggest residues more resistant 

to mutation, and therefore more attractive for drug discovery. Similarly, analysis of 

slight differences in protein subpockets can be leveraged to identify regions to target 

to improve selectivity between related proteins. Examining interactions between 

functional moieties on the ligand and receptor microenvironments they interact with 

can identify evolutionarily conserved enthalpic contributions.



 

1 

Chapter 1: Leveraging evolution can enhance 

computer-aided drug discovery efforts. 

Abstract 

Ever since Darwin published his theory of natural selection, it has been 

repeatedly validated that selective pressures on a species can dictate dominant 

phenotypes. Mutations resulting in increased fitness for organisms are more likely to 

persist and spread over time. Natural selection and evolution pervades all areas of 

biology, from the creation of novel genes and proteins to the evasion of drugs by 

pathogens. Selective pressures exerted by therapies cause resistant phenotypes to 

become dominant. Consequently, understanding how and why organisms evolve is 

fundamental to drug discovery efforts.  

Introduction 

Over the past several billion years, Earth has accumulated an incredible 

amount of genetic diversity. Through a diverse array of mechanisms, genomes 

diversify, leading to the emergence of new genes, and eventually species (Scheme 

1.1). Based on selective pressures exerted by the surrounding environment, those 

organisms best equipped to survive and proliferate have their specific alleles become 

dominant. If no dominant gene subtype produces protein more apt to survive, multiple 

alleles for a single gene can arise. These genes may duplicate or evolve separately, 

which can increase the rate of evolution.  



 

 

2 

 

Scheme 1.1. Eleven known molecular processes that can generate new genes. (1) 

It is often the case that a mutation in a DNA coding region does not produce a 

measurable effect. Due to the redundancy of the genetic code, a single nucleotide 

polymorphism does not always result in a new protein sequence. In the event that the 

variant translates to a change in primary structure, the magnitude of biological change 

depends on several different variables, including residue similarity and structural 

location of the variant. 

Significant previous work has quantified the effects of mutating one residue to 

another. One such approach is to analyze sequences to generate substitution matrices 

of sequence conservation. One of the most commonly used matrices, BLOSUM, is 

based on of methods that bases substitution rates off of highly conserved regions in the 
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genome (2, 3). By counting substitution probabilities of these regions, Henikoff and 

Henikoff generated log odds scores for each pairing, corresponding to the substitution 

likelihood for each pairing. Alternatively, one can perturb the structure of a protein in 

silico to measure the effect of such mutations on the dynamics and function of 

different proteins. Such methodologies vary in nature and are restricted to such 

proteins with known or modeled structures, but often combine conformational 

sampling with free energy estimations (4). By simulating the wild type and mutant 

versions of the same protein under the same conditions, one might derive the 

functional consequences of a specific variant. These consequences are diverse in 

nature and vary based on the location and type of the mutation. 

As receptors bind specific substrates, one can imagine that a perturbation, 

whether changes in metabolites in the environment or a novel variant in a protein, in 

one would necessitate changes in the other. This purported coevolution of receptors 

and their substrates suggests that due to relative fitness, the interactions between 

proteins and substrates tend to become more optimal over time (5-7). This does not 

always result stronger, or more selective binding, of which the millimolar binding of 

ATP to myriad receptors is a prime example. Understanding how these specific 

perturbations drive coevolution can provide structural and functional insights to 

inform rational drug discovery. 

How can we estimate the affinity of protein-ligand interactions? 

While computer-aided drug design has existed for several decades, many 

problems still persist. As computational chemists, we are primarily concerned with 
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how strongly and selectively an inhibitor binds to a given target. This binding free 

energy can be decomposed into two components, enthalpy, which measures the energy 

of a system, and entropy, which measures system disorder. These components can be 

further decomposed and estimated using various methods (8-10). While calculation of 

the absolute binding free energy is used to identify strong binders, evaluation of the 

relative binding free energy between two targets can identify potential off target side 

effects.  

As many of these methods approximate a combination of full conformational 

search and binding free energy calculations, error persists in these computations. 

Much research is currently underway to improve the accuracy and precision of these 

calculations, but increasing the complexity and accuracy of these calculations almost 

invariably increases the time it takes to evaluate each bound complex. These 

computational approaches have been used to facilitate the design of highly specific 

inhibitors (11). However, standard approaches, such as virtual screening, have 

associated errors in the scoring functions that are often large enough to complicate the 

identification of selective inhibitors (12-15). Nevertheless, such computational 

docking approaches are valuable when screening a large number of compounds 

against a target. Even though precise energies and rankings are not often obtained, 

certain molecular interactions, such as hydrogen bonding and electrostatic interactions 

can still be observed. 

Other approaches focus on characterizing the protein binding site (16-21). 

While these methods do not necessarily allow for the automated placement of a ligand 

or fragment into a binding pocket of interest, they are useful for comparing binding 
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pockets between proteins. Such approaches have been leveraged to both repurpose 

drugs to target new diseases and understand their polypharmacology (22-24). Other 

methods employ physics- and heuristic-based approaches to predict where certain 

atoms may lie in a binding pocket, and use that information to construct molecules 

(16). 

The importance of selectivity 

One of the greatest challenges for computational chemists is designing small 

molecules that are not only high affinity compounds, but also selective for their target. 

Inability to develop selective compounds results in aberrant side effects, which can be 

deleterious for both patients and the pharmaceutical industry. Although these proteins 

are often unrelated on a global scale by sequence, their binding sites have evolved to 

bind similar ligands. Identification of off-target effects earlier in the drug discovery 

process by cataloguing similarities in protein structures could drastically reduce costs 

associated with failures in late-stage clinical trials.  

One recent example of this was the withdrawal of Pfizer’s CETP inhibitor, 

Torcetrapib, from phase III clinical trials. Before this withdrawal, Pfizer had invested 

approximately $800 million in the development of this compound to serve as a 

complement to its lucrative drug, Lipitor (25). Earlier identification of its deadly 

hypertensive side effects would have saved millions in development, and more 

importantly, those who succumbed to these side effects. Later computational analysis 

by Xie et al. found that several proteins that did not share a global structural similarity 

to CETP still possessed binding sites of similar geometry and composition to that of 
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CETP(26). In particular, they postulated that Torcetrapib bound to several nuclear 

hormone receptors and up-regulated the Renin-Angiotension-Aldosterone System, 

leading to potentially fatal hypertension, which was the cause of the initial withdrawal.  

Evolving away from drugs: The development of resistance 

Perhaps the most sobering effect that evolution has is the complication of 

disease treatment through the development of resistance. The evolutionary arms race 

between diseased cells/organisms and corresponding therapies is an incredible medical 

burden and necessitates continual development of novel drugs for many diseases. 

Complicating efforts in treating these diseases is that drug therapies accelerate the rate 

of natural selection, and therefore resistance. Similar to founder effects, these 

remaining cells proliferate with the now-dominant mutations, shifting the tumor allele 

frequency toward the resistant genotype.  

Two diseases of note that have received particular interest from pharmaceutical 

companies as a result of evolved resistance are HIV and cancer. In HIV, virions 

rapidly evolve resistance to standard treatments. Consequently, multiple drugs are 

often used at once under the assumption that fewer virions will be resistant to all 

drugs. However, those that survive such treatments, allow for the multidrug resistance 

to spread more rapidly. Similarly, cancer cells that survive a round of intense 

chemotherapy often have accumulated somatic mutations that have led to their 

survival.  
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Evolution occurs on a molecular scale: Cysteine cathepsins as an example 

During the course of evolution, genes accumulate novel mutations that, over 

time, can lead to novel functions. Such events occur throughout the genome, and give 

rise to gene families with similar, albeit different, functions. One such example is the 

C1A papain-like class of cysteine proteases, more commonly known as cathepsins. 

These proteins are involved in the processing of proneuropeptides and other 

proteolytic processes, and have been implicated in a variety of diseases (Table 1.1). 

For example, cathepsin B has been shown to be involved in the pathogenesis of 

Alzheimer’s disease (27), cathepsin L is over expressed in many cancers and is 

involved in remodeling of the extracellular matrix (28), and cathepsin V has been 

implicated in several autoimmune diseases (29). As these proteins have high structural 

homology, small differences in their subpockets determine selectivity. Since these 

proteases carry out important functions in healthy cells, designing inhibitors to block 

the function of all cathepsins is not desirable. Therefore, the development of selective 

cathepsin inhibitors is necessitated. 

Table 1.1. Cathepsins and disease. Adapted from (27, 30) 

Disease Cysteine cathepsins 

Alzheimer’s Disease B 
Atherosclerosis K, L, and S 
Cancer and metastasis B, F, H, K, L, V, S, and Z 
Metabolic Syndromes K, L, and S 
Lung diseases B, H, K, L, and S 
Immune Defects C, L, V, and S 
Rheumatoid Arthritis B, L, K, and S 
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The high homology of these proteins complicates computer-aided drug 

discovery efforts (Figure 1.1A). In fact, in their mature forms, cathepsins L and V 

share 79% of their sequences as well as structurally indistinguishable protein 

backbones. Interestingly, a significant portion of the differences between these 

proteins involves charged residues. One possible explanation for this is that these two 

proteins likely resulted from a gene duplication of an ancestral cathepsin, with 

cathepsin V evolving to become more positively charged in the active site, and 

cathepsin L becoming more negatively charged (Figure 1.1B). For example, these 

electrostatic differences can help result in differences in selectivity as demonstrated by 

higher binding affinity of the Z-Phe-Arg-AMC fluorogenic substrate for cathepsin L 

as compared to cathepsin V. Specifically, the greater negative charge in the S2 pocket 

of cathepsin L drives this selectivity as it better accommodates a positively charged 

substrate. Thus, despite the high sequence and structural homology, there is hope for 

the design of inhibitors that selectively target each cathepsin. Certain groups have 

taken advantage of these electrostatic differences, and have had particular success in 

designing inhibitors selective for cathepsin L over cathepsin V (31). 
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Figure 1.1. Cysteine cathepsins have a high homology. (A) High sequence similarity of different human 
and murine cathepsins, from (32). (B) Cathepsins V and L evolved different electrostatic potentials 
from a common cathepsin ancestor. 
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Chapter 2: The molecular dynamics of Trypanosoma 

brucei UDP-galactose 4’-epimerase: a drug target for 

African Sleeping Sickness 

Abstract 

During the past century, several epidemics of human African trypanosomiasis, 

a deadly disease caused by the protist Trypanosoma brucei, have afflicted sub-Saharan 

Africa. Over 10,000 new victims are reported each year, with hundreds of thousands 

more at risk. As current drug treatments are either highly toxic or ineffective, novel 

trypanocides are urgently needed. The T. brucei galactose synthesis pathway is one 

potential therapeutic target. Although galactose is essential for T. brucei survival, the 

parasite lacks the transporters required to intake galactose from the environment. 

UDP-galactose 4′-epimerase (TbGalE) is responsible for the epimerization of UDP-

glucose to UDP-galactose and is therefore of great interest to medicinal chemists. 

Using molecular dynamics simulations, we investigate the atomistic motions of 

TbGalE in both the apo and holo states. The sampled conformations and protein 

dynamics depend not only on the presence of a UDP-sugar ligand, but also on the 

chirality of the UDP-sugar C4 atom. This dependence provides important insights into 

TbGalE function and may help guide future computer-aided drug discovery efforts 

targeting this protein. 
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Abbreviations 

 UDP, uridine diphosphate; TbGalE, Trypanosoma brucei UDP-galactose 4’-

epimerase; HAT, Human African Trypanosomiasis; MD, molecular dynamics; RMSD, 

root-mean-square deviation; PCA, principal component analysis; HsUGDH, human 

UDP-glucose dehydrogenase; EcGalE, E. coli UDP-galactose 4’-epimerase; HsGalE, 

human UDP-galactose 4’-epimerase; NAD, nicotinamide adenine dinucleotide; VMD, 

visual molecular dynamics 

Introduction 

Human African trypanosomiasis (HAT), a disease caused by the 

protist Trypanosoma brucei (T. brucei), directly affects thousands of sub-Saharan 

Africans and indirectly places hundreds of thousands more at risk. Current treatments 

are often ineffective or dangerous, necessitating the development of a new generation 

of HAT therapeutics. 

Disease pathology occurs in two stages. The early hemolymphatic stage is 

characterized by fever, cephalgia, arthralgia, and pruritus. Current treatments for 

early-stage HAT include pentamine and suramin. However, pentamine, often used to 

treat the T. brucei gambiense strain, is associated with hypoglycemia and hypotension, 

and suramin, effective against T. brucei rhodesiense, is associated with severe 

cutaneous reactions, renal failure, anaphylactic shock, and neurotoxicity (33-36). 

Once the parasite crosses the blood–brain barrier, the more serious and often 

irreversible symptoms of the neurological phase are manifest, including disrupted 

cognition, coordination, and sleep (37). Since 1949, melarsoprol has been the standard 
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treatment for late-stage HAT. Despite its efficacy, a significant number of patients 

relapse; additionally, 5–10% of those who receive treatment develop severe 

encephalopathy, often leading to death (38). In the late 20th century, Aventis 

developed eflornithine, a drug that targets T. brucei ornithine decarboxylase. While 

eflornithine is significantly less dangerous than melarsoprol (39), it is ineffective 

against the T. brucei rhodesiense subspecies (40). 

As current therapeutics are problematic, medicinal chemists are actively 

seeking to identify novel T. brucei drug targets. The proteins of the biochemical 

pathway involved in galactose synthesis are excellent candidates. 

Although T. brucei requires galactose for the synthesis of vital glycoproteins (41), it is 

unable to intake galactose from the environment. Instead, glucose is acquired via 

hexose transporters (42) and is subsequently converted to galactose. One of the 

proteins in the pathway that effectuates this conversion, UDP-galactose 4′-epimerase 

(TbGalE), inverts the stereochemistry of the UDP-glucose C4 carbon atom to produce 

UDP-galactose. The two-step reaction proceeds via a transient ketose intermediate and 

requires rotation of the sugar portion of the ligand for epimerization (Scheme 2.1) 

(43). Initial drug discovery efforts targeting this protein have identified several 

promising inhibitors (44). Unexpectedly, virtual screening and subsequent 

experimental validation identified several agonists as well. 
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Scheme 2.1. UDP-sugar epimerization. The epimerization reaction proceeds via a UDP-ketose 
intermediate. Epimerization requires a 180° rotation (‘flip’) of the sugar portion of the ligand. 

 
This study provides insight into the general mechanisms of TbGalE ligand 

binding. The static lock-and-key model of binding, first proposed by Emil Fischer in 

1894 (45), has been largely abandoned in favor of theories that account for receptor 

flexibility. Specifically, the induced-fit and population-shift models have been much 

debated over the course of the past 50 years (46). Induced fit suggests 

that apo and holo receptors sample distinct regions of conformational space; ligand 

binding itself induces conformational changes in the receptor (47). Population shift, on 

the other hand, suggests that an apo protein samples many conformations in solution, a 

subset of which are amenable to ligand binding. Ligands bind to rare but amenable 

receptor conformations and energetically stabilize them, causing the population of all 

conformations to shift toward those that can accommodate the ligand (48-51). 

Here, we explore the atomistic dynamics of the TbGalE homodimer by 

investigating the major steps along its reaction coordinate. Using molecular dynamics 

(MD) simulations, we study the motions of TbGalE homodimer in both 

the apo and holo forms, bound to UDP-galactose, UDP-glucose, and the UDP-ketose 

intermediate. The conformations sampled by the protein depend not only on the 

presence of a UDP-sugar ligand, but also on the chirality of the UDP-sugar C4 atom. 
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This dependence provides important insight into TbGalE function and may help guide 

future computer-aided drug discovery efforts targeting this protein. 

Results and Discussion 

Evidence of simulation equilibration 

Alpha carbon RMSD plots of each homodimer trajectory are shown 

in Figure 2.1. As the initial protein conformation of each system was that of the 

crystallographic UDP-galactose-bound state, the first 9 ns of each homodimer 

simulation were discarded to account for system equilibration. The remaining 50 ns of 

the dimeric simulation were used for subsequent analysis. In total, 400 ns of 

productive TbGalE monomer simulation were generated. 

 

Figure 2.1. Trajectory RMSD. Each dimer simulation was aligned to the first frame by minimizing the 
root-mean-square deviation (RMSD) of the Cα’s. RMSD was calculated using the first frame as a 
reference. For this plot, and in subsequent figures, apo is depicted in black, UDP-galactose in blue, 
UDP-glucose in red, and the UDP-ketose intermediate in brown. As each substrate was derived from 
UDP-galactose, the systems needed 9 ns to equilibrate (gray box). Trajectory analysis was performed 
on the subsequent 50 ns of each dimer simulation. 
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A gating mechanism may mediate ligand binding 

To better understand how receptor dynamics might impact ligand binding, 

principal component analysis (PCA) was used to identify the most important 

molecular motions of each of the four simulations. Principal components, or 

eigenvectors, were first calculated for the backbone atoms of each trajectory, and each 

trajectory was subsequently projected onto the apo eigenvectors for reference. A 

majority of the variance in the molecular motions could be explained by the first two 

principal components, with almost 40% of the variance explained by the first 

eigenvector alone (Figure 2.2A). Consequently, only the first two principal 

components were used for subsequent analysis (Figure 2.2B). 

The Interactive Essential Dynamics computer package (52) was used to 

identify the extreme structures of each simulation (Figure 2.2C,D), as judged by 

projection onto the first apo eigenvector. The largest differences in the motions 

defined by the first principal component were present in the loop region containing 

residues 230-255. This loop was already thought to be highly dynamic, given that 

residues 236–248 were unresolved in the 2CNB crystal structure (53). 
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Figure 2.2. Principal component analysis (PCA). To facilitate comparison, all trajectories were 
projected onto the principal components of the aposimulation. Apo is shown in black, UDP-galactose in 
blue, UDP-glucose in red, and the UDP-ketose intermediate in brown. (A) Percent of the trajectory 
dynamics attributable to each of the top 25 apo eigenvectors. A majority of these motions can be 
explained by the first two principal components (PC). (B) Projection of the trajectories onto the first 
two apo eigenvectors. Each holosimulation explores its own unique set of motions. (C) The PC1 
minimum extreme structures for each simulation, color-coded as above. The location of gate is boxed in 
green. (D) The PC1 maximum extreme structures, color-coded as above. The location of gate is boxed 
in green. (E) The closed conformation evident in the PC1 minimum apo structure results from a kink in 
the highlighted α-helix. The PC1 minimum structure is shown in cyan/gray, and the maximum is shown 
in blue/black for reference. 
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Much of the difference in the minimum extreme structures can be explained by 

a kink that forms at the C-terminal end of the α-helix preceding the loop containing 

residues 230–255 in the apo simulation (Figure 2.2E). This helical bend causes the 

flexible loop to move toward the active site, as evidenced by the change in the angle 

defined by the alpha carbon atoms of D245, G228, and R109, which ranges from 

67.69° to 36.01° as PC1 decreases, compacting the protein. Additionally, the 

corresponding distance between D245 and R109 similarly changes from 29.81 Å to 

16.55 Å. The loop may therefore serve as a gating mechanism likely relevant to ligand 

binding. As the gating loop containing residues 230–255 is near the active site, it is 

possible that the movement of this loop helps control the UDP-sugar rate of entry. 

UDP-sugar binding: induced fit vs. population shift 

The principal components suggest that both induced fit and conformational 

shift play a role in the binding of TbGalE to its natural substrates. The projection of 

the apo simulation onto the first two principal components demonstrates that 

the apo protein explores a large region of conformational space (Figure 2.2B). Similar 

projections of the remaining simulations onto the same apo principal components 

reveal that the UDP-glucose and UDP-galactose simulations sample distinct regions 

within this larger, apo conformational space, suggesting a population shift mechanism 

of binding. On the other hand, the UDP-ketose intermediate samples a region of 

conformational space largely unexplored by the apo protein; the intermediate itself 

may therefore provoke receptor conformational changes via an induced-fit 
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mechanism. Limited conformational overlap was expected as the ligands only differ at 

the UDP-sugar C4 atom; these overlaps likely represent the transitions between states 

during the actual reaction. 

These results suggest a general binding mechanism that may be relevant to the 

study of other receptor–ligand systems as well. The apo protein likely samples a large 

region of conformational space, occasionally assuming conformations in which the 

gating loop is open, permitting access to the main, UDP-sugar binding site. When 

UDP-glucose binds, it stabilizes certain conformations, causing the region of the 

sampled conformational space to constrict via a population shift mechanism. Next, the 

bound ligand induces changes in the receptor conformation uncharacteristic of 

the apo protein via an induced-fit mechanism. These conformational changes are 

likely caused by the transformation of the sugar and are required to accommodate the 

UDP-ketose intermediate. As the epimerization progresses, the conformational space 

sampled by the protein returns to that sampled in the apo state, again indicative of a 

population shift mechanism of binding. 

Remarkably, the regions of the apo conformational space sampled by the 

UDP-galactose- and UDP-glucose-bound proteins are distinct, despite the fact that 

these two ligands differ by only a chiral inversion at a single sugar carbon atom, 

demonstrating that even small differences in bound ligands can drastically change the 

region of conformational space sampled. This finding has significant implications for 

computer-aided drug design, as it suggests that the crystallographic and MD-derived 

structures used in virtual screening can vary remarkably depending on the bound 

ligand. As previous computer-aided drug discovery efforts directed toward TbGalE 
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only used holo simulations to generate receptor structures for virtual screening (44), 

additional screening against apo conformations may reveal new, effective TbGalE 

inhibitors. 

Hydrogen bonding of the UDP-sugar 

To examine how the hydrogen bond network of the ligand changes over the 

course of the reaction, we first identified persistent hydrogen bonds present in over 

75% of the trajectory frames analyzed. As expected, the hydrogen bond network that 

mediates the binding of the UDP-ketose intermediate differs from the networks 

associated with UDP-galactose and UDP-glucose (Figure 2.3A–C). Two of the 

identified hydrogen bonds mediate interactions with Y173 and S142, conserved 

residues of the catalytic triad that are critical for the two-step GalE epimerization 

reaction (Scheme 2.1) (43, 54). 

The hydrogen bond with S142 is particularly interesting, as earlier studies 

of EcGalE suggested that S142 shuttles a proton to Y173 (55). However, 

crystallographic studies of several GalE proteins have called into question this theory, 

as they reveal that the distance between the S142 and Y173 hydroxyl groups is 

generally large. Our results suggest that the specific role of S142 is to stabilize the 

UDP-ketose intermediate via hydrogen bonding with the C4 hydroxyl group during 

the conformational flip required for epimerization (Figure 2.3B).  
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Figure 2.3. Ligand hydrogen bonding. Hydrogen bonds present in over 75% of the 1000 equidistant 
frames extracted from each MD simulation are shown in green. In all charts, UDP-galactose is shown in 
blue, UDP-glucose is shown in red, and the UDP-ketose intermediate is shown in brown. For D–F, 
chain A is represented by the darker color, and chain B by the lighter color. (A) UDP-glucose. The 
glucose is held in place by two hydrogen bond interactions with Y173. (B) UDP-ketose intermediate. 
The orientation of the sugar is flipped from that of UDP-glucose. The sugar C6 hydroxyl group interacts 
with L102, and the intermediate carbonyl oxygen is tethered to S142. (C) UDP-galactose. The now 
epimerized sugar, still flipped, forms a single hydrogen bond with Y173. (D–F) Moving average using 
500 ps windows. (D) Distance from the L102 carbonyl oxygen to the C6 hydroxyl on the UDP-sugar. 
(E) Distance from the S142 side chain hydroxyl to the C4 hydroxyl on the UDP-sugar. (F) Distance 
from the Y173 side chain hydroxyl to the C4 hydroxyl on the UDP-sugar. (G) [C1-O-P-O] torsion angle 
of the UDP-sugar. C1 belongs to the sugar. 
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The UDP-sugar hydrogen bond networks were generally similar regardless of 

which monomer was used for analysis, with the exception of UDP-galactose. When 

acceptor–donor heavy-atom distances were calculated over the course of the 

trajectories (Figure 2.3D–F), it was noted that the chain B active site of UDP-galactose 

underwent a conformational shift approximately 5 ns into its trajectory, causing a 

break in the hydrogen bonds between the UDP-galactose and S142 and Y173, 

respectively. However, this shift was not observed in chain A, which had a UDP-sugar 

hydrogen bond network more consistent with the TbGalE crystal structure, 2CNB. 

Additionally, despite the conformational shift evident in chain B, the key sugar 

contacts with S142 and Y173 continued to transiently reform during the course of the 

simulation, confirming that these residues play an important role in stabilizing the 

UDP-sugar. Other residues, such as N202 and H221, also formed hydrogen bonds 

with the UDP-sugar, but more transiently (data not shown). 

Like S142 and Y173, L102 may also be important for catalysis, warranting 

further pharmacological study. Our simulations suggest that L102 may be fundamental 

to the conformational flip required for epimerization (Scheme 2.1). The carbonyl 

oxygen atom of L102 is predicted to form a persistent hydrogen bond with the C6 

hydroxyl group of the UDP-ketose intermediate. Previous crystallographic studies of a 

UDP-galactose-like ligand suggested that L102 might mediate ligand binding through 

interactions with the UDP-sugar C6 hydroxyl group (53). Our simulations suggest that 

an additional function of the L102 backbone carbonyl group is to maintain the UDP-

ketose-intermediate in a conformation approximately halfway between that of UDP-

galactose and UDP-glucose via a persistent hydrogen bond. The average UDP-sugar 
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[C1-O-P-O] dihedral angle of the UDP-ketose intermediate is approximately halfway 

between that of UDP-galactose and UDP-glucose (Figure 2.3G), supporting this 

notion. 

The same hydrogen bond networks that mediate UDP-sugar binding may be 

germane to the design and optimization of potential small-molecule therapeutics. For 

example, a common practice in designing inhibitors is to create transition-state 

analogs. Our simulation of the UDP-ketose intermediate bound to TbGalE has 

elucidated the important role L102 may play in stabilizing this intermediate. These 

results suggest that L102 may be a good residue to target in future drug discovery 

efforts, in addition to the previously identified Y173 and S142 (53). 

Identification of conserved residues 

As current trypanocidal compounds are subject to growing resistance (56-60), 

future drug design strategies should also attempt to anticipate mutations that may 

reduce therapeutic efficacy. One strategy to avoid resistance is to pharmacologically 

target protein residues that are conserved across related members of the same protein 

family. Conserved residues are likely to be essential for catalysis and/or the binding of 

natural substrates and thus are less likely to undergo resistance-conferring mutations. 

After considering the 392 reviewed members of the sugar epimerase family listed in 

UniProt, five representative proteins spanning both the eukaryotic and bacterial 

domains of life were selected: Trypanosoma brucei GalE (PDB ID: 2CNB), a 

chloroplastic protein from Arabidopsis thaliana (UniParc: Q8H124), Gal10 

from Schizosaccharomyces pombe (UniParc: Q9HDU3), bifunctional polymyxin 
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resistance protein ArnA from Yersinia enterocolitica (UniParc: A1JPN5), and 

probable rhamnose biosynthetic enzyme 1 from Arabidopsis thaliana (UniParc: 

Q9SYM5). The sequences of these five proteins were aligned, and the 

following TbGalE active site residues were found to be highly conserved: G7, G10, 

I12, D75, A100, N117, S141, S142, A143, Y173, K177, and R268. Of these, S142, 

A143, Y173, K177, and R268 appear to associate with the UDP-sugar. 

A143 is particularly noteworthy. While A143 did not form a persistent 

hydrogen bond with the UDP-sugar C3 hydroxyl group in our simulations (i.e., the 

bond was present in fewer than 75% of all simulation frames analyzed), this hydrogen 

bond did form transiently, consistent with the 2CNB crystal structure. As S142 and 

A143 form hydrogen bonds with adjacent UDP-sugar hydroxyl groups, concurrent 

binding likely serves to stabilize the conformation of the UDP-sugar in a conformation 

amenable to catalysis. Thus, small-molecule inhibitors that have adjacent hydroxyl 

groups or similar hydrogen bonding moieties might be good candidates targeting these 

two conserved residues. 

Allosteric binding 

In a recent study, Durrant et al. (44) used virtual screening to identify TbGalE 

ligands from among the compounds of the NCI Diversity Set II. Fourteen low-

micromolar inhibitors were ultimately reported. However, in addition to these 

antagonists, seven agonists, unreported at the time, were also identified (Table S2.1). 

We found this result interesting, as the agonists were identified by docking small-
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molecule models into the TbGalE active site and therefore should compete with the 

UDP-sugar substrate rather than enhance its catalysis. 

Although TbGalE agonists are ill suited as HAT therapeutics, a human 

condition known as type III galactosemia arises from a deficiency in HsGalE. 

Understanding GalE agonism is therefore of great therapeutic interest. To determine 

whether agonism might arise from allosteric binding, the holo and apo monomer 

trajectories were clustered into five groups using RMSD cutoffs of 0.7 and 0.75 Å, 

respectively (Figure 2.4A). A representative protein conformation was then taken from 

each cluster; together, these representative conformations are said to constitute 

an ensemble. 

The FT-MAP server (21) was then used to computationally flood the entire 

surface of the ensemble conformations with models of small organic probes in an 

attempt to identify potential binding pockets. FT-MAP identified the NAD(H) and 

UDP-sugar binding pockets in every structure; however, no other potential allosteric 

pockets were consistently recognized (Figure 2.4B), suggesting that agonism does not 

likely occur by allosteric modulation. 
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Figure 2.4. Binding pocket identification. (A) Active site clustering of theTbGalE monomers. The 
frames of each simulation were clustered by the active site Cα’s using 0.70 and 0.75 Å RMSD cutoffs 
for the holo and aposimulations, respectively. The top two representative structures of chain A from 
each simulation are shown; apo is depicted in black, UDP-galactose in blue, UDP-glucose in red, and 
the UDP-ketose intermediate in brown. Darker and lighter colors correspond to the most populated and 
the second most populated cluster, respectively. (B) FT-MAP analysis. The top five clusters from each 
chain were submitted to the FT-MAP server. Shown are the results for the top chain A cluster of each 
simulation. These results suggest thatTbGalE contains no allosteric sites; the observed agonism likely 
results from ligand-induced dimerization and/or cooperativity between the two monomers. 
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While the possibility of allosteric binding at an uncharacterized secondary site 

could not be ruled out, the fact that FT-MAP revealed no such site suggests 

cooperative agonism mediated by binding to the principal site. It may be that agonist 

binding to one TbGalE monomer alters the affinity of the binding site on the other 

dimeric monomer, thus facilitating additional binding. The steep Hill coefficients 

associated with several of the inhibitors, even in the presence of a detergent that 

disrupts colloidal aggregates, support this theory (61, 62). Hemoglobin is the classic 

example of cooperative binding, but many other examples exist in nature as well. As 

an alternate explanation, agonist binding to the principal site of one TbGalE monomer 

might drive dimerization by stabilizing the four-helix bundle at the dimer interface. 

This theory is supported by previous evidence in related proteins suggesting that, 

while the monomer is functional, full functionality is achieved only through 

dimerization (63, 64). 

Unfortunately, when the identified TbGalE agonists were tested 

against HsGalE, no agonism was noted (Figure S2.1, Tables S2.1 and S2.2). However, 

it is possible that the lack of activity arose from differences in the human 

and T. brucei versions of the GalE protein rather than fundamental differences in the 

agonistic mechanism. For example, the NAD+ adenine-binding pocket is more closed 

in TbGalE, andHsGalE G237 in the UDP-sugar binding domain is replaced by C266 

in TbGalE, a potentially reactive residue that may prove useful in future drug design 

efforts (43). Further efforts to identify HsGalE agonists may therefore be justified. 
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Conclusions: 

In this work, we have used molecular simulations to probe the dynamics 

of TbGalE and to specifically analyze the mechanisms governing ligand-binding and 

enzymatic conversion. Our MD simulations suggest that the conformations sampled 

by TbGalE are highly dependent on the composition of the ligand, as even the chirality 

of the UDP-sugar C4 atom greatly affected the conformations explored. 

Additionally, we have identified an active site residue, L102, that may be 

important in the stabilization of the UDP-ketose intermediate. While this residue has 

been previously identified in crystallographic studies as a potential mediator of UDP-

galactose binding (53), to our knowledge, its possible role in stabilizing the UDP-

ketose intermediate has not been previously recognized. 

Finally, as none of our simulations revealed any TbGalE allosteric sites, we 

anticipate that dimeric agonism likely results from either cooperative binding or 

dimeric stabilization. We hope that the results presented here will not only provide 

insight into the function of this and related enzymes, but also assist future computer-

aided drug discovery efforts targeting TbGalE and HsGalE. 

Materials and Methods: 

System preparation 

A crystal structure of TbGalE homodimer [PDB ID: 2CNB (53)] was obtained 

from the Protein Data Bank (65). To generate missing loops, the structure was aligned 

to a model of TbGalE that had been created previously (44) based on the 

1GY8 TbGalE structure (43). Following alignment, the coordinates of the missing 
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loop atoms were copied from the 1GY8 model. All cocrystallized waters were 

retained; PDB2PQR (66) and PROPKA (67, 68) were used to assign residue 

protonation states at pH 7.0. Histidine protonation states were visually inspected in 

VMD (69) to ensure optimal hydrogen bonding. The NAD(H) and Y173 protonation 

states were manually assigned to properly mimic the active site configuration needed 

for catalysis (43). 

NAD+/NADH parameters were obtained from Walker et al. (70, 71). Accelrys 

Discovery Studio 2.5 was used to model the structure of UDP-galactose by changing 

the fluorine atom of the 2CNB UDP-4-deoxy-4-fluoro-alpha-D-galactose ligand to a 

hydroxyl group. UDP-glucose and the UDP-ketose intermediate were built by altering 

the stereochemistry and hybridization of the UDP-galactose C4 carbon atom. 

Hydrogen atoms were added to the three UDP-sugars using Discovery Studio. All 

ligand partial charges were generated using GAUSSIAN03, and ligand atoms were 

parameterized according to the GAFF force field (72). 

Receptor atomic parameters and partial charges were assigned according to the 

Amber ff99SB force field (73) using the AMBER 10 xleap module. Sodium ions were 

subsequently added to bring the system to electric neutrality. The protein was then 

solvated in a TIP3P (74) water box that extended 10 Å beyond the protein in each 

direction, and additional sodium and chloride ions were added to bring the total salt 

concentration to 20 mM. 
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Molecular dynamics simulations 

NAMD 2.6 (75, 76) was used for all minimizations, equilibrations, and free-

dynamics runs. Minimization and equilibration steps were performed as described 

previously by Wang et al. (72). In brief, each system was minimized in four phases 

totaling 45 000 minimization steps. Hydrogen atoms were relaxed in the first 5000 

steps; hydrogen atoms and water molecules were relaxed in the next 5000 

minimization steps; hydrogen atoms, water molecules, and the atoms of the protein 

backbone were relaxed in the next 10 000 minimization steps; and all atoms were 

relaxed for the last 25 000 minimization steps. 

For equilibration, 1-ns simulations were performed at 310K using the final 

minimized structures as the initial coordinates. Harmonic constraints were placed on 

the atoms of the protein backbones and relaxed in a series of four 250-ps steps. The 

harmonic restraining force was weakened from 4.0 kcal/mol/Å2 in the first 250-ps 

segment to 3.0, 2.0, and 1.0 kcal/mol/Å2 in the following steps, respectively. Before 

beginning the productive dynamics simulations, each system was checked to ensure 

that the root-mean-square deviation (RMSD) between the equilibrated and pre-

minimization structures was <1 Å. 

For each of the four systems, a 59-ns MD simulation was then performed with 

a 2-fs time step. Bonds with hydrogen atoms were constrained using the RATTLE 

algorithm (77), and water geometries were maintained using SETTLE (78), with a 

bond length error of 0.0005 Å. The temperature bath was kept at 310K with Langevin 

dynamics. The pressure was maintained at 1 atm using the Nose–Hoover–Langevin 

piston method (79) with period and decay times set at 100 and 50 fs, respectively. 
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Long-range electrostatics were calculated using Particle mesh Ewald (80). The free-

dynamics runs were performed on the TACC Ranger supercomputer. A typical 

benchmark on the 102 911 and 102 884 atom systems was 4.35 ns/day of simulation 

on 96 processors. The system was sampled every 1 ps, generating a total of 59 000 

coordinate snapshots. For analysis, every 5th frame was used. Each frame was aligned 

to the first frame of the trajectory by minimizing the alpha carbon root-mean-square 

(RMS) deviation using the RMSD Trajectory Tool in VMD (69). 

Trajectory clustering 

The monomers of each homodimer simulation were isolated, and the two 

resulting trajectories were concatenated to form a single monomeric trajectory. These 

monomeric trajectories were subsequently clustered using the gromos algorithm as 

implemented in the GROMOS++ analysis software (81). The alpha carbon atoms in the 

active site, defined as all alpha carbon atoms belonging to a residue that was within 

5 Å of the NAD or UDP-sugar in the first frame of the trajectory, were used for the 

mass-weighted RMSD clustering. The RMSD cutoff was increased by 0.05 Å until the 

trajectory clustering yielded fewer than 30 clusters, with over 90% of all frames 

contained in the seven largest clusters. 

Hydrogen bond analysis 

Frames extracted from the simulation every 50 ps were used for hydrogen 

bond analysis. The program HBonanza (82) was set to identify all persistent hydrogen 

bonds present in at least 75% of the frames. Angle and distance cutoffs of 30° and 

3.5 Å were used, respectively. 
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Principal component analysis 

Principal component analysis (PCA) was performed using the ptraj module in 

AMBER 10b. Normalizing each eigenvalue of the covariance matrix to its total sum 

yields the percent of all TbGalE movements attributable to the corresponding 

eigenvector. That is, the largest eigenvalues correspond to the PC modes that best 

explain the molecular motions sampled by the system trajectories. The principal 

component projections were visualized using a modified version of the Interactive 

Essential Dynamics module in VMD (52). 

Identifying highly conserved active site residues 

UniProt (83) was used to identify 7142 members of the sugar epimerase 

family. Only reviewed sequences were considered for subsequent analysis. These 

sequences were loaded into the MultiSeq (84) module of the VMD molecular graphics 

computer program (69). MultiSeq was used to generate a non-redundant set of four 

representative sequences from this input. ClustalW (85) was then used to align these 

four sequences to the sequence of TbGalE obtained from the PDB structure 2CNB 

(53). A set of active site residues was obtained by identifying all receptor residues 

from the 2CNB structure (chain A) that came within 3.5 Å of the cocrystallized 

NAD+ cofactor and the UDP-sugar substrate. 

HsGalE inhibition and thermal scanning fluorimetry assay 

Recombinant wild-type HsGalE and human UDP-glucose dehydrogenase 

(HsUGDH) proteins were expressed in E. coli and purified as described previously 
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(86, 87). DTP compounds were obtained from the NCI/DTP Open Chemical 

Repository (http://dtp.cancer.gov). 

The rate of the HsGalE-catalyzed reaction was determined by coupling it to the 

oxidation of UDP-glucose by the action of HsUGDH, essentially as previously 

described (86). Reaction mixtures (20 nM HsGalE, 1.2 µM HsUGDH, 100 µM UDP-

Gal, 10 mM NAD+, 10 mM HEPES-NaOH, pH 8.8, 1% (v/v) DMSO) were set up in 

triplicate with and without DTP compounds (100 µM) in a total volume of 150 µL. 

The rate of NADH formation was measured at 340 nm for 20 min at 37 °C using a 

Multiskan Spectrum plate-reader spectrophotometer (Thermo Scientific, Hemel 

Hempstead, UK) and was used to calculate the rate of production of UDP-glucose 

by HsGalE. Initial rates were calculated from the linear section of each progress curve 

and the activity expressed as a percentage of the activity in the absence of the 

compound. 

The binding of the DTP compounds was measured using a thermal scanning 

fluorimetry assay (88). This assay has been used previously to identify small 

molecular chaperones for the treatment of phenylketonuria (89), to identify stabilizing 

additives that facilitate crystallization (90), and to measure the binding affinities of 

carbonic-anhydrase inhibitors (91). Sypro orange (Sigma, Poole, UK), a fluorescent 

dye, was diluted from a 5000× solution (manufacturer’s concentration definition) into 

a 50x solution with 10 mM HEPES, pH 8.8. This stock solution was mixed well prior 

to each use. Reactions were carried out in a total volume of 20 µL and contained 5 µM 

HsGalE, 100 µM DTP compound, 10 mM HEPES, pH 8.8, 1% (v/v) DMSO, 5x Sypro 

orange. Melting curves were determined using a Rotor-Gene Q cycler (Qiagen, 
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Crawley, UK) with the following protocol: high-resolution melt run (460-nm source, 

510-nm detector), 25–95 °C ramp with a 1 °C rise for each step, and no gain 

optimization. The melting temperatures (Tm) were calculated using the inbuilt analysis 

software. 
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Supporting Information 

Table S2.1. TbGalE Agonists. Specific methods can be found in Durrant et al. (2010) J Med Chem 53, 
5025-5032. 

NSC ID Structure % inhib. @ 
100 mM 

91395 

 

-167 

61610 

 

-169 

7524 

 

-191 

91396 

 

-194 
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Table S2.1 (continued). TbGalE Agonists. Specific methods can be found in Durrant et al. (2010) J 
Med Chem 53, 5025-5032. 

NSC ID Structure % inhib. @ 
100 mM 

260594 

 

-223 

146771 

 

-242 

202386 

 

-283 
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Table S2.2. Percentage activity of 20 nM HsGalE in the presence of different DTP compounds. The 
reactions contained 100 µM DTP compound, 100 µM UDP-Galactose, 10 mM NAD+, 1.2 µM 
HsUGDH, 10 mM HEPES-NaOH, pH 8.8, 1% (v/v) DMSO. Data are reported as the mean ± SD 
determined from three separate experiments.  No compound resulted in a statistically significant 
(Student’s t-test) change in activity. 

DTP Compound % Activity 
No compound 100 ± 17 
91395 102 ± 32 
61610 89 ± 27 
7524 112 ± 3 
91396 124 ± 30 
260594a 30 ± 190 
146771a 104 ± 57 
202386a 41 ± 59 

 
 
Table S2.3. Melting temperatures of HsGalE in the presence of different DTP compounds. The 
reactions contained 5 µM HsGalE, 100 µM DTP compound, 10 mM HEPES, pH 8.8, 1% (v/v) DMSO, 
5× Sypro orange.  The change of melting temperature, ∆Tm, due to ligand binding was calculated 
according to:∆Tm = (Tm of protein without compound) - (Tm of protein with compound). Data are 
reported as mean ± SD determined from three experiments.  If a compound bound to the enzyme, it 
would be expected to stabilize the protein’s structure resulting in an increase in Tm.  However, none of 
the compounds tested here resulted in a statistically significant (Student’s t-test) change in Tm. 
aCompounds 260594, 146771 and 202386 formed a colored precipitate, preventing determination of the 
melting temperature. 

DTP Compound Tm (°C) ΔTm (K) 
No compound 51.5 ± 0.3 N/A 
91395 51.3 ± 0.3 − 0.2 ± 0.6 
61610 51.4 ± 0.1 − 0.1 ± 0.4 
7524 51.3 ± 0.4 − 0.2 ± 0.7 
91396 51.3 ± 0.3 − 0.2 ± 0.6 
260594a N/D N/D 
146771a N/D N/D 
202386a N/D N/D 
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Figure S2.1. Thermal scanning fluorimetry of HsGalE.  5 µM HsGalE in 10 mM HEPES-NaOH, pH 
8.8, 1% (v/v) DMSO, 5× Sypro orange  showed a clear melting curve resulting in a Tm of 51.5±0.3 °C. 
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Chapter 3: CrystalDock: Leveraging Known 

Structural Information for Fragment-Based Drug 

Design 

Abstract 

We present a novel algorithm called CrystalDock that analyzes a molecular 

pocket of interest and identifies potential binding fragments. The program first 

identifies groups of pocket-lining receptor residues (i.e., microenvironments) and 

then searches for geometrically similar microenvironments present in publically 

available databases of ligand-bound experimental structures. Germane fragments 

from the crystallographic or NMR ligands are subsequently placed within the novel 

binding pocket. These positioned fragments can be linked together to produce ligands 

that are likely to be potent; alternatively, they can be joined to an inhibitor with a 

known or suspected binding pose to potentially improve binding affinity. 

To demonstrate the utility of the algorithm, CrystalDock is used to analyze 

the principal binding pockets of influenza neuraminidase and Trypanosoma 

brucei RNA editing ligase 1, validated drug targets in the fight against pandemic 

influenza and African sleeping sickness, respectively. In both cases, CrystalDock 

suggests modifications to known inhibitors that may improve binding affinity. 
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Introduction 

The computational prediction of molecular recognition is important in modern 

drug discovery. Computational medicinal chemists seek to answer two classes of 

questions. First, given an NMR, crystallographic, or homology-modeled receptor 

structure, can novel ligands be identified in silico? Second, given a ligand with a 

known or suspected receptor-binding pose, what chemical modifications can improve 

potency? 

Several techniques have been developed to answer these questions. When a 

project requires that thousands of potential ligands be evaluated, techniques that favor 

speed over accuracy, such as computational docking, are often employed. These 

programs typically sample multiple ligand conformations and attempt to fit, or dock, 

each conformation into a known binding-pocket structure. Receptor–ligand 

interactions are subsequently evaluated using a fast scoring function to estimate 

binding affinity. Unfortunately, because these algorithms are optimized for speed, they 

are far less accurate than most experimental techniques (92). Any single docking 

prediction is untrustworthy; the objective of a docking study is rather to produce an 

enriched pool of potential binders by docking many ligands (e.g., compounds with 

diverse scaffolds or analogues of a known inhibitor) and considering only the top 

predicted binders for subsequent experimental or computational evaluation. 

Other computational techniques that are similarly designed to confirm or refute 

molecular recognition have been optimized for accuracy rather than speed. These 

techniques utilize molecular dynamics (MD) simulations to probe not only the 
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possible conformations of the ligand, but also the conformations of the protein, water 

molecules, and other molecular elements that may contribute to binding (93-

97). Because an accurate prediction of the binding free energy depends on adequate 

sampling of these many possible conformations, MD-based techniques can easily 

require thousands or even tens of thousands of computer hours. If sampling is 

adequate, however, these methods are often more accurate than the scoring functions 

used by computer-docking programs. 

Here, we present a computer program called CrystalDock that takes a different 

approach to the computational identification of molecular recognition. Our technique 

is somewhat unique (98) in that it makes direct use of crystallographic and NMR 

structures from the Protein Data Bank (PDB) (65) to generate a molecular-recognition 

database that is used to place molecular fragments into binding pockets of interest. In 

this paper, we describe the CrystalDock algorithm and use the program to generate 

novel potential inhibitors of influenza neuraminidase and Trypanosoma brucei RNA 

editing ligase 1 (TbREL1), enzymes critical to the etiological agents of pandemic 

influenza and African sleeping sickness, respectively. 

CrystalDock is open source and Python implemented, making it easily 

editable, customizable, and platform independent. The program has been tested on 

Ubuntu Linux 10.04.1 LTS, Mac OS X 10.6.6, and Windows XP using Python 

versions 2.6.5, 2.6.1, and 2.6, respectively, together with NumPy/SciPy versions 

1.3.0/0.7.0, 2.0.0.dev-3071eab/0.10.0.dev, and 1.6.1rc1/0.9.0, respectively. A copy can 

be obtained free of charge from http://www.nbcr.net/crystaldock. 
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Materials and Methods: 

Creating a Database of Molecular Fragments and Microenvironments 

A search of the PDB in February 2011 revealed 50  424 structures with bound 

ligands. To generate a database of molecular fragments, models of all these receptor–

ligand complexes were downloaded. Several classes of undesirable ligands were 

subsequently identified: ligands that contained multiple rotamers; ligands that were 

ribonucleic, deoxyribonucleic, or amino acids; and small molecules that were not 

sufficiently close to any potential receptor. After the receptor–ligand complexes 

containing only these undesirable ligands were removed, 43  327 complexes containing 

202  584 ligands remained for subsequent analysis. A representative example of such a 

ligand positioned in a receptor binding pocket is shown in Figure 3.1A. 

Each of these 202  584 ligands was subsequently fragmented into its constituent 

molecular parts. All bonds between heavy atoms not belonging to the same ring were 

identified; “cutting” along these bonds produced multiple molecular fragments from 

each ligand model (Figure 3.1B). Any fragment with fewer than three heavy atoms 

was merged with the neighboring fragment that had the fewest atoms. 

While long-range electrostatic interactions certainly can influence fragment 

binding, for many fragments, the predominant interactions required for molecular 

recognition are with receptor atoms that immediately line the fragment-binding 

pocket. Consequently, receptor microenvironments (i.e., groups of adjacent, pocket-

lining receptor residues) were identified by extending geometric rays, separated by 10° 

in all directions, from each fragment atom out into space (Figure 3.1C). Whenever a 
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ray encountered a receptor residue, ray extension was terminated, and the residue was 

recorded. In addition, if a ray grew to 4 Å without encountering any receptor residue, 

it was similarly terminated. Testing confirmed that this process could effectively 

identify the receptor residues that line a fragment-binding pocket (Figure 3.1D). 

 

Figure 3.1. Schematic of the algorithms used to generate a database of microenvironments from 
available Protein Data Bank (PDB) structures: (A) 43  327 receptor–ligand complexes were identified 
with 202  584 total ligands; (B) each ligand was fragmented into its constituent molecular parts; (C) 
geometric rays, separated by 10° in all directions, were extended from each fragment atom out into 
space; (D) these rays were used to identify microenvironment receptor residues; and (E) a ligand–
receptor distance cutoff was implemented. The cutoff was gradually scaled back from 4 Å to 0 Å, and 
receptor residues beyond the cutoff were discarded at every step. In this way, multiple 
microenvironments were identified for each molecular fragment. Subsequently, only those 
microenvironments with 3, 4, and 5 receptor residues (823  460 in total) were considered. 

Often, the number of residues lining a binding pocket was too large. To make 

the number of microenvironments more manageable for future search, a ligand–
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receptor distance cutoff was implemented. The cutoff was gradually scaled back from 

4 Å to 0 Å, and receptor residues beyond the cutoff were discarded at every step. In 

this way, multiple microenvironments were identified for each molecular fragment. 

Subsequently, only those microenvironments with 3, 4, and 5 receptor residues 

(823,460 in total) were considered (Figure 3.1E). 

Characterizing a New Binding Pocket 

Characterization of a new binding pocket begins when the user provides three-

dimensional coordinates identifying the pocket location. CrystalDock then sends out 

rays as described above to identify the pocket-lining receptor residues. All 

combinations of 3, 4, and 5 active-site residues are subsequently considered 

(Figure 3.2A). 

CrystalDock then searches through the database of predefined 

microenvironments in an attempt to find geometric matches (Figure 3.2B). A root-

mean-square deviation (rmsd) alignment is used to judge microenvironment similarity. 

Those aligned microenvironments from the database that are judged to be 

geometrically similar to the identified microenvironments of the binding pocket are 

saved for further analysis. Rather than requiring exact amino-acid matches, the user 

can also instruct the program to consider chemically similar amino acids to be 

equivalent, according to a predefined similarity matrix (see Table S3.1 in the 

Supporting Information), based on BLOSUM62 (2). (See the Supporting 

Information for more details.) 
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Figure 3.2. Schematic of the algorithm used to position binding fragments into a pocket of interest: (A) 
CrystalDock sends out rays to identify the receptor residues that line the binding pocket, and, 
subsequently, all combinations of 3, 4, and 5 lining residues are considered (a representative 
combination of 3 residues is shown); (B) CrystalDock searches through the database of predefined 
microenvironments in an attempt to find geometric matches; (C) Although the root-mean-square 
deviation (RMSD) alignment considers only receptor residues (i.e., the residues of the 
microenvironments), the structures include models of the original ligand fragments as well; rmsd 
alignment positions these molecular fragments within the binding pocket of interest. 

Although the RMSD alignment considers only receptor residues (i.e., the 

residues of the microenvironment), the structures also include models of the original 

ligand fragments; RMSD alignment positions these molecular fragments within the 

binding pocket of interest. Once those positioned fragments that have steric clashes 
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with receptor residues have been discarded, a final set of molecular fragments ideally 

positioned within the pocket of interest remains (Figure 3.2C). 

Independent-Trajectories Thermodynamic Integration Calculations 

Independent-trajectories thermodynamic integration (IT-TI) (99) was used to 

predict the binding energies of both a known and a predicted Trypanosoma 

brucei RNA editing ligase 1 (TbREL1) inhibitor. The initial model creation, 

minimization, and equilibration steps of the receptor-bound V2 (100) simulation have 

been described previously (82). An identical protocol also was used to set up the 

simulation of a receptor-bound CrystalDock inhibitor. 

For the solvated-ligand simulations, the same ligand parameters were used. 

The ligands were immersed in a TIP3 (74) water box extending 10 Å beyond the 

ligand atoms in all three dimensions. Na+ counterions were added as needed to ensure 

the electrical neutrality of the system. NAMD 2.7b1 (75) was used to subject the 

system to 15,000 steps of conjugate-gradient energy minimization. 

Following this initial preparation, six independent thermodynamic-integration 

(TI) runs (101)—three with bound-ligand annihilation and three with solvated-ligand 

annihilation—were performed for each ligand. Twenty-one (21) lambda (λ) points 

were used for both the receptor-bound and solvated simulations; as λ decreased from 

1.00 to 0.00, in decrements of 0.05, the electrostatic and van der Waals interactions 

between the ligand and protein were slowly turned off (tiVdwLambdaEnd = 

tiElecLambdaStart = 0.5). Each simulation ran for 2 ns. Average dE/dλ values over the 

last 1 ns of each simulation were plotted against λ; the area under the curve, calculated 
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using the composite trapezoidal rule, as implemented in SciPy (102), was taken to be 

the free energy of the alchemical transformation. The free energies of the 

transformations in which the protein-bound and solvated ligands vanish are denoted 

ΔGproteinand ΔGwater, respectively. 

When necessary, a restraint was applied to the protein and ligand to maintain 

the correct positional orientation. This was especially necessary at low λ values, where 

the interactions between the ligand and protein were almost absent. Since the protein-

bound ligand was often confined to an artificially limited volume by these imposed 

constraints, it was necessary to correct the free energy accordingly. This was done 

using the formula employed by Lawrenz et al. (103). Specifically,  

𝛥𝐺!"##$!%$& = 𝛥𝐺!"#$%&' + 𝑅𝑇𝑙𝑛
𝑉!"#$%&
1600  Å!

 

where ΔGcorrected is the corrected free energy, ΔGprotein the free energy prior to 

correction, R the gas constant, T the temperature, and Vpocket the volume sampled by 

the ligand during the simulations. The free energy of binding (ΔGbind) was ultimately 

calculated by simply subtracting ΔGcorrected from ΔGwater. 

Since each TI run was performed in triplicate, there were three ΔGcorrected and 

three ΔGwatervalues, yielding nine possible estimates of ΔGbind. Histograms of these 

nine values were generated by simple binning; average predicted binding energies are 

also reported. 
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Results and Discussion 

Here, we present a novel algorithm called CrystalDock that identifies 

molecular fragments likely to bind pockets of interest. First, CrystalDock identifies 

relevant microenvironments (i.e., groups of adjacent pocket-lining amino-acid 

residues) within the user-specified binding pocket (Figure 3.2A). The program then 

searches through a database of microenvironments derived from ligand-bound 

crystallographic and NMR structures deposited in the PDB (Figure 3.2B) for similar 

microenvironments, and positions the associated small-molecule fragments from the 

database within the binding pocket of interest (Figure 3.2C). The identified fragments 

can be joined to create novel ligands or can be fused to ligands with known binding 

poses to enhance potency. 

CrystalDock-Suggested Oseltamivir Modifications 

To demonstrate the utility of CrystalDock, we first used the program to analyze 

the principal binding pocket of influenza neuraminidase (Figure 3.3). Neuraminidase 

is a useful initial validation system because it is thoroughly represented among PDB 

structures; a search of the PDB for the terms “neuraminidase” and “sialidase” returned 

222 structures with ~70 unique ligands that bind in the sialic acid pocket. 

Neuraminidase is an important drug target in the fight against influenza, including 

virulent strains such as those that have recently caused the H1N1 and H5N1 

pandemics. Many neuraminidase inhibitors have been approved by the FDA or are 

otherwise progressing through clinical trials (104). 

 



 

 

48 

 

Figure 3.3. The results of an influenza neuraminidase CrystalDock run, shown together with the 
crystallographic pose of oseltamivir, a known inhibitor. In panel (A), CrystalDock identified many 
ringed fragments derived from several known neuraminidase inhibitors; interestingly, the program also 
placed a sulfate ion near the location of the charged oseltamivir carboxylate group. Panel (B) is the 
same as panel (A), but with only selected positioned fragments shown for the sake of simplicity. 

CrystalDock-identified binding fragments came from 95 distinct PDB 

structures representing 39 unique ligands. As expected, most of the identified ringed 

fragments were derived from known neuraminidase ligands, including peramivir (e.g., 

PDB ID 3K37) (105), oseltamivir (e.g., PDB ID 3K3A) (105), zanamivir (e.g., PDB 

ID 3B7E) (106), sialic acid (e.g., PDB ID 2C4A), DANA (e.g., PDB ID 2F25), and 

other experimental inhibitors. However, positioned fragments were not derived 

exclusively from neuraminidase structures; a single fragment was also obtained from 

pentaethylene glycol bound to D-lactate dehydrogenase (PDB ID 3KB6) 

(107), confirming that CrystalDock is able to identify binding fragments from even 

distantly related proteins. 

Interestingly, CrystalDock placed a sulfate ion near the location of the charged 

oseltamivir carboxylate group (Figure 3.3B). The Figuridea of substituting this 
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carboxylate group with a sulfonate is interesting because at least one known 

neuraminidase inhibitor has a sulfonate group so positioned (2-[N-

cyclohexylamino]ethane sulfonic acid, PDB ID 2VW2) (108), and the binding pose of 

another inhibitor is also thought to position a sulfonate at this same location (109). In 

addition, many researchers have demonstrated that inhibitors with comparable 

phosphonate groups are also potent (110-113). 

CrystalDock-Suggested Modifications of a TbREL1 Naphthalene-Based Inhibitor 

Because many neuraminidase structures with bound ligands have been 

deposited in the PDB, the example above, while useful as a proof of concept and for 

method validation, does not demonstrate the full utility of CrystalDock. Ideally, the 

program should be able to extract molecular fragments from multiple structurally and 

even functionally diverse receptors. As a further demonstration, we used CrystalDock 

to analyze the binding pocket of the adenylation domain of Trypanosoma brucei RNA 

editing ligase 1 (TbREL1), a protein with only one PDB-deposited crystal structure 

bound to a single ligand (ATP) (114). 

The results of the TbREL1 CrystalDock run are shown in Figure 3.4, together 

with V2, a known low-µM naphthalene-based inhibitor (100)  docked into the TbREL1 

crystal structure using AutoDock Vina (115). When only the lower, buried portion of 

the TbREL1 active site was targeted, predicted binding fragments from 55 structures 

representing 45 unique ligands were identified. Interestingly, the CrystalDock-

positioned fragments can be generally clustered into three groups. The first group 

contains a single sulfate that CrystalDock positioned near the predicted pose of 
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a V2 sulfonate group, explaining, in part, the potency of the naphthalene-based 

inhibitor. The second group is comprised principally of aromatic fragments that are 

generally in the same region and plane as the V2 naphthalene group. The third group, 

which is represented by several mostly hydrophobic fragments, does not correspond to 

any V2 substructure, suggesting a possible route for improving potency. 

 

Figure 3.4. Results of a TbREL1 CrystalDock run, shown together with V2 (faintly outlined), a low-µM 
inhibitor docked into the crystallographic TbREL1 active site. In panel (A), the CrystalDock-positioned 
fragments can be generally clustered into three groups: a single sulfate positioned near the predicted 
pose of a V2 sulfonate group, aromatic fragments that are generally in the same region and plane as the 
V2 naphthalene group, and hydrophobic fragments not corresponding to any V2 substructure. Panel (B) 
is the same as panel (A), but with only selected positioned fragments shown for the sake of simplicity. 
Panel (C) shows that, serendipitously, the position of a toluene fragment was ideal for chemical linking 
to the Vina-docked V2. 
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Serendipitously, the CrystalDock poses of two of these group-three 

hydrophobic fragments, toluene fragments derived from two unique inhibitors of P38 

mitogen-activated protein kinases (PDB IDs 2ZB1 (116) and 3LHJ (117)), were ideal 

for fragment addition to the Vina-dockedV2 via an intermediary methyl linker 

(Figure 3.4C). These toluene fragments occupied a small pocket at the buried end of 

the TbREL1 active site that, to our knowledge, has not been previously exploited for 

drug design. 

To test if a CrystalDock-inspired V2 + toluene composite compound would 

have improved binding affinity over V2, we employed a computational technique 

known as independent-trajectories thermodynamic integration (IT-TI) (99) to predict 

ligand binding energies (101). IT-TI is far more computationally demanding than 

high-throughput methods for estimating binding affinity (e.g., computer docking 

programs); using the protocol described in the Materials and Methods section, 

calculating the binding energy of a single TbREL1 ligand required ~25  000 CPU 

hours. In contrast, a simple docking run using AutoDock Vina (115) takes only a few 

minutes on a single processor, a speed up of ~5 orders of magnitude. However, if 

conformational sampling is adequate, IT-TI is often more accurate than docking 

scoring functions. 

Six TI runs were executed for each system: three in which the protein-bound 

ligand was annihilated, and three in which the solvated ligand was annihilated. From 

these six TI runs, nine binding-energy estimates were calculated. Histograms of these 

nine values were generated by simple binning and are shown in Figure 3.5. The 
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predicted binding affinity of V2was −8.4 ± 0.5 kcal/mol, which correlates well with 

the experimentally measured IC50 value of 1.53 µM (100). The predicted binding 

energy of the new composite compound was −10.7 ± 0.9 kcal/mol, representing a 2.3 

kcal/mol improvement. 

 

Figure 3.5. Histograms of the predicted binding energies generated using IT-TI: (A) the predicted 
binding energies derived from the V2 simulation and (B) the predicted binding energies derived from 
the V2 + toluene composite compound. Bin sizes of 0.5 kcal/mol were used, and the x-axis in each is 
ordered by increasing potency (i.e., decreasing predicted binding energy). 

A one-tailed, homoscedastic t-test was subsequently used to determine if the 

difference in the average predicted binding energies of V2 and the composite 

compound was statistically significant. The associated p value was 2.7 × 10–6, 

suggesting that the CrystalDock-inspired ligand represents a genuine improvement, 

possibly potent in the nanomolar (nM) range. 
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If these predictions are confirmed experimentally, this optimized compound 

may represent a significant contribution in the fight against African sleeping sickness, 

a deadly parasitic infection that currently afflicts as many as 70  000 sub-Saharan 

Africans and threatens an additional 50 million (37). In a previous study, we 

demonstrated that V2 fails to kill whole-cell parasites, despite its confirmed TbREL1 

inhibition (100), perhaps because the compound is too negatively charged to easily 

cross biological membranes. However, the hydrophobic toluene group may make 

membrane crossing more feasible. The calculated logarithmic P (LogP) values of the 

electrically neutral forms of V2 and the new composite compound are 0.305 and 

2.940, respectively, supporting this theory. 

The new composite compound is also a promising lead for other reasons. It is 

only one hydrogen-bond acceptor away from satisfying Lipinski’s Rule of Five (118), 

a common measurement of druglikeness; the hydroxyl group connected to the 

aminonaphthalene forms an important hydrogen bond with the receptor, but the other 

hydroxyl group may be a good candidate for elimination. The CrystalDock-predicted 

toluene pose is also ideally positioned to react with the V2 amine, assuming that the 

Vina-docked pose of V2 is correct; we expect that the composite compound can be 

easily synthesized by reacting V2 with 1-(bromomethyl)-2-methylbenzene via an 

amino-dehalogenation reaction (119).  
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Supporting Information 

Aligning Microenvironments from the Database to an Active-Site of Interest 

In order to identify microenvironments from the database that are similar to 

those of the active site, a computationally efficient, multi-tiered filtering process is 

employed. First, all database microenvironments containing the same protein residues 

as the active-site microenvironment are identified. If desired, similar amino acids, as 

judged by the similarity matrix shown in Table S1, can be considered equivalent.  
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Next, the potential matches from the database must be evaluated for geometric 

similarity. For both the active-site microenvironment and the potential matches, the 

maximum distance between any two atoms (i.e., the span of the microenvironment) is 

calculated. Geometrically similar microenvironments should have similar spans; any 

potential match whose span differs by more than a user-specified number of angstroms 

(2.0 Å by default) is discarded.  

For the remaining potential matches, a more sophisticated geometric 

comparison is subsequently employed. A unique "fingerprint" of each 

microenvironment is generated by creating a sorted list of all the pairwise distances 

between all alpha carbons. Two fingerprints can be compared by comparing each of 

the nth entries in the corresponding lists. If the nth entry of any of the database-

microenvironment fingerprints differs substantially from the corresponding entry in 

the active-site fingerprint, the database microenvironment is discarded. By default, 

differences of up to 2.0 Å are permitted.  

Next, a more computationally demanding geometric comparison is employed. 

An RMSD alignment is performed on the alpha carbons of the active-site 

microenvironment and each of the potential matches from the database. Alpha carbons 

are considered equivalent for alignment purposes if they belong to similar protein 

residues, as judged by the similarity matrix shown in Table S1. Where multiple 

equivalent alpha carbons exist, the ones in closest proximity at each step of the 

minimization are selected. Any database microenvironment with an RMSD greater 

than 2.5 Å (by default) following alignment is subsequently discarded.  
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It is possible for microenvironments to have similar alpha-carbon 

configurations but markedly different side-chain configurations. The next step in the 

filter seeks to verify that the side chains of equivalent microenvironment protein 

residues point in the same general direction. For each pair of aligned, equivalent 

microenvironment protein residues, an alpha-carbon coordinate is calculated by 

averaging the coordinates of the alpha carbons of the two residues. Additionally, the 

coordinates of selected side-chain atoms (see Table S2) are used to represent the 

location of each side chain. If the (sidechain)-(alpha-carbon)-(side-chain) angle is 

greater than a user-specified value (100° by default), the side-chain orientation of the 

database and active-site residues is judged to be different, and the database 

microenvironment is discarded.  

As a final check of geometric similarity, a second RMSD alignment is 

performed, using the coordinates of the first alignment as a starting point. This time, 

however, all heavy atoms are considered rather than just the alpha carbons. As 

equivalent but nonidentical protein residues do not necessarily have the same number 

of side-chain atoms, atoms with equivalent names are aligned, and all other atoms are 

ignored. Any database microenvironment that differs by more than 1.5 Å RMSD (by 

default) from the activesite microenvironment following alignment is subsequently 

discarded.  

The remaining database microenvironments are judged to be geometrically 

similar to that of the active site. As a final check, the atoms of the molecular fragment 

present in the aligned database microenvironment, which up to this point have been 
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ignored, are now compared to the atoms of the active site. If any of these atoms come 

within 2.0 Å (by default) of each other, the database microenvironment is discarded 

due to steric clashes. 

Ranking the Aligned Microenvironments 

A crude ranking algorithm seeks to prioritize which matches are most reliable. 

While we recommend rescoring with more advanced scoring functions for better 

results, the default ranking may still prove helpful. First, database microenvironments 

with the same protein residues as the active-site microenvironment take precedence 

over those that contain only similar residues, as judged by Table S1. If two matching 

database residues are equivalent under this criterion, the database microenvironments 

containing a greater number of protein residues are given precedence. Finally, all other 

things being equal, database microenvironments with lower RMSD to the active-site 

microenvironment are given priority. 
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Table S3.1. Rather than requiring exact amino-acid matches, the user can also instruct CrystalDock to 
consider chemically similar amino acids to be equivalent. Amino acids (in bold) that are chemically 
similar are marked with X’s. 

 C S T A V Q N D E H R K M I L F Y W 
C X X X                
S X X X                
T X X X                
A    X X              
V    X X        X X X    
Q      X X            
N      X X            
D        X X          
E        X X          
H          X X X    X X X 
R          X X X       
K          X X X       
M     X        X X X    
I     X        X X X    
L     X        X X X    
F          X      X X X 
Y          X      X X X 
W          X      X X X 
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Table S3.2. To determine the orientation of protein side chains, representative coordinates are chosen 
corresponding to the side-chain atoms indicated. The atom name is given across the top, and the residue 
name is given on the left. 

 CB CZ CG SG CD NZ CE OG 
ALA X        
ARG  X       
ASN   X      
ASP   X      
CYS    X     
GLU     X    
GLN     X    
HIS   X      
ILE X        
LEU   X      
LYS      X   
MET       X  
PHE   X      
SER        X 
THR X        
TRP   X      
TYR   X      
VAL X        
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Chapter 4: The Marine Cyanobacterial Metabolite  

Gallinamide A is a Potent and Selective Inhibitor of 

Human Cathepsin L 

Abstract 

A number of marine natural products are potent inhibitors of proteases, an 

important drug target class in human diseases. Hence, marine cyanobacterial extracts 

were assessed for inhibitory activity to human cathepsin L, a cysteine protease 

involved in several disease conditions. Herein, we have shown that gallinamide A 

potently and selectively inhibits the human cysteine protease, cathepsin L. With 30 

minutes of preincubation, gallinamide A displayed an IC50 of 5.0 nM, and kinetic 

analysis demonstrated an inhibition constant of ki = 9009 ± 262 M-1 s-1. Preincubation-

dilution and activity-probe experiments revealed an irreversible mode of inhibition, 

and comparative IC50 values display a 28- to 331- fold greater selectivity toward 

cathepsin L than closely related human cysteine cathepsins V or B. Molecular docking 

and molecular dynamics simulations were used to determine the pose of gallinamide 

in the active site of cathepsin L. These data resulted in the identification of a pose 

characterized by high stability, a consistent hydrogen bond network, and the reactive 

Michael acceptor enone functional group of gallinamide A positioned near the active 

site cysteine of the protease, leading to a proposed mechanism of covalent inhibition. 

These data reveal and characterize the novel activity of gallinamide A as a potent 
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inhibitor of human cathepsin L. 

Introduction 

Marine cyanobacteria are exceptionally rich in biologically active natural 

products (120). From a biochemical perspective, their metabolites are highly diverse, 

often deriving from mixtures of nonribosomal peptide synthetase (NRPS), polyketide 

synthase (PKS), terpene, and sugar biosynthetic pathways, and are commonly further 

decorated with halogen atoms, methyl groups, and interesting oxidations. As a result, 

they have been actively investigated for their therapeutic potential for a number of 

years, especially for anticancer activity. One such recently approved agent for 

anaplastic large cell lymphoma and Hodgkin’s lymphoma, brentuximab vendroitin, 

was inspired by the marine cyanobacterial metabolite dolastatin 10 (121, 122). In 

recent years, the biological evaluation of marine-derived natural products has 

broadened to include inflammation, infectious and parasitic diseases, and neurological 

diseases (123).  

In this latter regard, an emergent trend in the pharmacological mechanism of 

action of cyanobacterial natural products is that many are potent inhibitors of various 

classes of proteases (124, 125). Proteases have been implicated in the pathogenesis of 

many human diseases, including cancer (28, 126), neurological disorders such as 

Alzheimer’s Disease (127, 128), and parasitic diseases (129); thus the therapeutic 

modulation of proteolytic activity offers an attractive potential treatment modality. 

However, with myriad proteases and many potential therapeutic applications, 
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discovery of agents with selectivity for specific proteases is crucial to the development 

of truly useful pharmaceuticals in this class. 

Whereas freshwater cyanobacteria have yielded a number of protease 

inhibitors (130), their marine relatives represent an under-explored resource for 

modulators of this enzyme class. Hence, we have initiated a program to survey marine 

cyanobacterial extracts, fractions and newly isolated pure compounds for interesting 

profiles of protease inhibition, with a special focus on enzymes in the cysteine 

cathepsin and proteasome classes. We have recently reported the structures of the 

carmaphycins, low nanomolar epoxyketone proteasome inhibitors from the Curaçao 

cyanobacterium Symploca sp., and previously had identified the depsipeptide 

symplocamide A as a potent serine protease inhibitor (125, 131).  

Our recent efforts in this regard have focused on the human cysteine cathepsin 

L protease, an important lysosomal endopeptidase with exceptionally high proteinase 

activity. Aside from its traditional role in protein degradation, cathepsin L is 

responsible for many specialized roles that make it an interesting target for drug 

discovery. It is upregulated in multiple cancer cell types, and has been strongly 

implicated in bone resorption, bone pit formation, and invasion of bone tissue by 

osteoclasts due to its high level of secretion and efficient hydrolysis of bone matrix 

proteins (132). Multiple studies have shown significant reduction in tumor 

invasiveness and metastasis with treatment of pan cysteine protease or selective 

cathepsin L inhibitors (28). Furthermore, related cysteine proteases have been 

identified and targeted in various infectious diseases, including malaria, leishmaniasis, 
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trypanosomiasis and others (133). Finally, recent evidence has mounted to elucidate 

murine cathepsin L’s role in proneuropeptide processing, with knockout (KO) and 

siRNA studies indicating a particularly important role in the production of the 

dynorphins and neuropeptide Y (134, 135). 

Despite the multitude of disease implications associated with cathepsin L, few 

selective inhibitors have been described, and even fewer have appropriate 

pharmaceutical properties for potential clinical application. Herein, we report that 

evaluation of cyanobacterial extracts led to the identification of gallinamide A (1) as a 

potent and selective inhibitor of human cathepsin L, and thus provides a lead structure 

for developing agents with highly desired subtype selectivity within the cysteine 

proteases. Thus, this study describes the re-isolation and identification of gallinamide 

A, inhibitory potency to cathepsin L and related cysteine proteases, kinetic inhibition 

properties, and analyses of molecular docking to cathepsin L that indicates a Michael 

addition-based inhibition as supported by biochemical data. The molecular features of 

gallinamide A will assist future structure-based optimization efforts for effective 

inhibitors of human cathepsin L and members of the cysteine cathepsin protease 

family. 
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Scheme 4.1. Gallinamide Structures 

Results and Discussion 

Gallinamide A isolation and structure determination. 

Screening efforts of fractionated extracts from marine cyanobacteria for 

modulation of human cathepsin L activity identified fractions active for inhibition of 

the enzyme. A fraction eluting with 4:6 hexanes/EtOAc from the collection of a red-

tipped Schizothrix sp. described by Linington et al. (136) showed 97% inhibition of 

cathepsin L at 3 µg/mL, and was subsequently fractionated by solid phase extraction 

(SPE) to produce eight subfractions. The subfractions eluting with 4:6 hexanes/EtOAc 

and 2:8 hexanes/EtOAc showed 99% and 99% inhibition, respectively, of cathepsin L 

at 3 µg/mL and were further fractionated by RP-HPLC to give five compounds, E45A-

E45E. Compound E45A was inactive against cathepsin L, while compounds E45B, 

E45C, E45D and E45E displayed 97-99% inhibition of cathepsin L at 3 µg/mL. The 

major component, E45C, yielded a mass of 0.7 mg (0.14% of the crude extract), while 
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the minor constituents E45B, E45D, and E45E yielded 0.33 mg, 0.4 mg, and 0.38 mg, 

respectively (0.059%, 0.072%, and 0.068% of crude extract). 

The HR-ESITOFMS spectrum of the major compound E45C gave an [M+H]+ 

ion at m/z 593.3908, which was consistent with a molecular formula of C31H53N4O7 

(calculated for C31H53N4O7, 593.3914). This psuedomolecular formula matched that of 

gallinamide A (1), a compound previously isolated from an adjacent fraction of the 

same collection with a reported [M+H]+ ion at m/z 593.3907 (136). 1H NMR analysis 

was used to elucidate partial structural features, which matched the previously 

reported subunits of gallinamide A. Furthermore, tandem LC-MS/MS analysis 

provided structural data consistent with the planar structure of gallinamide A (Figure 

4.1A). While the mass and NMR data were consistent with the identification of 

compound 1 as gallinamide A, these data were insufficient for complete 

stereochemical assignment. However, that this material derived from a fraction 

adjacent to that yielding the original source of gallinamide A (1), it is virtually certain 

to be of the same absolute configuration, thus completing the structure identification 

of this active cathepsin L inhibitor. 
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Figure 4.1. Fragmentation patterns for (A) gallinamide A (1) and (B) gallinamide B (2) by ESI-MS/MS. 

Two minor compounds showed similar mass fragmentation patterns and NMR 

spectra to compound 1, although they varied in their retention times from HPLC 

analysis. As they were not obtained in sufficient yield to allow detailed spectroscopic 

analysis, we predict that they represent stereo- or geometric isomers of gallinamide A. 

A third minor constituent, however, displayed a HR-ESITOFMS spectra with an 

[M+H]+ ion at m/z 579.3756, representing a mass difference of 14 amu less than 1. 

MS/MS fragmentation analysis showed that this mass loss was isolated to the N-

terminal subunit. In gallinamide A this is an N,N-dimethyl isoleucine residue (Figure 

1B). Previous reports of similar cyanobacterial depsipeptides, for example dolastatin 

10 and symplostatin 1 (121), have been shown to occur as natural analogs containing 

either a terminal N,N-dimethyl isoleucine or N,N-dimethyl valine subunit. While NMR 
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analysis was not sufficiently robust to definitively assign this structure, the literature 

precedence and likely biosynthetic inclusion of a valine residue at this position 

strongly suggests the structure of gallinamide B (2) as shown (Scheme 4.1B). Due to 

the low yields of gallinamide B, and the remaining minor compounds, biochemical 

characterization of the inhibitory properties towards cathepsin L was limited to 

compound 1. 

Gallinamide A potently and selectively inhibits cathepsin L 

Next, we demonstrated that gallinamide A (1) blocks the binding of the activity 

based probe (ABP) DCG-04, a biotin labeled derivative of the potent cysteine 

cathepsin inhibitor E64c (137). Unlike experiments measuring enzyme inhibition, 

ABP studies investigate the ability of a compound to compete with and block binding 

of a potent active site-directed probe. Human recombinant cathepsin L was 

preincubated with compound 1 for 30 minutes, followed by visualization of residual 

active enzyme by the labeled probe. Samples were subsequently run on gel 

electrophoresis and transferred to a Hybond Nitrocell membrane for detection with 

avidin-HRP and chemiluminescent substrate. Cathepsin L is a known target of DCG-

04, and thus a reduction in band optical density revealed blockade of the active site. 

Compound 1 displayed a concentration-dependent inhibition of ABP labeling (Figure 

4.2), with decreased labeling at 111 nM and complete loss of probe labeling at 333 

nM. Interestingly, the concentration of enzyme in this assay was 100 nM; thus 

gallinamide A shows a high degree of efficiency in its inhibition, reducing binding at a 

1:1 molar ratio of inhibitor and enzyme. 
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Figure 4.2. Representative blot of competitive activity-based probe labeling of cathepsin L. Gallinamide 
A showed reduced labeling at 111 nM and complete inhibition at 333 nM. 

The potency of enzyme activity inhibition, commonly reported as an IC50 

(inhibitory concentration for 50% activity), was found to be time-dependent in 

preincubation dose-response experiments. With immediate mixing of enzyme, 

substrate, and inhibitor, compound 1 inhibited human cathepsin L with an IC50 of 46.5 

nM (95% CI = 40.4 nM to 53.5 nM). Following a preincubation of enzyme and 

inhibitor for 30 minutes prior to addition of substrate, compound 1 displayed increased 

potency, with an IC50 of 5.01 nM (95% CI = 4.18 nM to 6.02 nM) (Figure 3). Time-

dependent inhibition is a hallmark of slow-binding inhibitors (138), a finding that 

directed the subsequent characterization of the mode of inhibition and binding affinity 

of gallinamide A. 
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Figure 4.3. Dose response curves following gallinamide A preincubation with cathepsin L for 0 min 
(▲) and 30 min (●). The measured IC50 following immediate mixing is 46.5 nM (95%CI = 40.4 nM to 
53.5 nM), while 30 min preincubation results in an IC50 of 5.01 nM (95%CI = 4.18 nM to 6.02 nM). 
IC50 data are significantly different (p<0.0001). 

To assess enzyme selectivity, compound 1 was tested for inhibitory activity 

against the highly homologous cysteine proteases cathepsin V (human) and cathepsin 

B (human). IC50 values were obtained with and without preincubation of inhibitor and 

enzyme, as described for cathepsin L. A selectivity index was calculated as a ratio of 

the IC50 of the assayed protease to that of cathepsin L for each incubation condition, 

summarized in Table 4.1. Interestingly, gallinamide A displays a 10-fold increase in 

potency for cathepsin L relative to cathepsin V without preincubation, and this metric 

increases to 28-fold after allowing the inhibitor to associate with the protease for 30 

minutes. Cathepsin V is the most closely related human cysteine protease, sharing 

77% sequence identity by BLAST analysis, and inhibitors capable of distinguishing 

between these two enzymes are currently limited. Selectivity is exaggerated for the 

more distantly related cathepsin B, sharing 30% sequence identity by BLAST, which 

shows a 331-fold higher IC50 following 30 minutes of preincubation. While previous 
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studies have demonstrated moderate inhibition of murine cathepsin L as well as potent 

inhibition of the P. falciparum falcipain proteases (139), a full panel of related 

cysteine proteases was not able to be evaluated due to insufficient material in the 

current study. To fully appreciate the selectivity of this inhibitor, additional enzymes 

in this family should be evaluated.  

Table 4.1. IC50 values and selectivity indices of gallinamide A (1) for cathepsins L, V and B.  A95% 
confidence intervals: L(0)=0.0042-0.0060; L(30)=0.040-0.053; V(0)=0.416-0.500; V(30)=0.119-0.170; 
B(0)=3.69-4.71; B(30)=1.34-2.04 

Enzyme 

IC50
A   Selectivity Index 

0 Min 30 Min 
 

0 Min 30 Min 

  
µM 

   Human Cathepsin L 0.046 0.005 
 

1 1 
Human Cathepsin V 0.456 0.142 

 
10 28 

Human Cathepsin B 4.167 1.653   91 331 
 

Taken together, these experiments reveal human cathepsin L as a major target 

of gallinamide A based on potency and selectivity. With increased focus on the 

discovery of these inhibitors, gallinamide A represents an interesting lead compound 

containing easily modifiable structural features. With two total syntheses now 

published and a limited initial SAR study completed (139, 140), the gallinamide 

structural class has great potential to yield analogs with improved potency, selectivity 

and pharmaceutical properties. 

Gallinamide A is an irreversible inhibitor of cathepsin L 

As many slow-binding inhibitors work through covalent or tight-binding 

interactions (138), the reversibility of the enzyme-inhibitor complex was subsequently 
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assessed. Irreversibility of gallinamide A (1) inhibition was determined using a 

preincubation-dilution experiment adapted from Copeland et al. (138), in which a 

concentrated sample of cathepsin L was incubated with concentrated compound 1 

before a rapid dilution of the combined solution (Figure 4.4A). A preincubation of 30 

minutes was used, and approximate levels of expected enzyme activity were obtained 

from the 30-minute preincubation dose-response experiment (Figure 4.4B). Following 

rapid dilution, a shift in inhibitor concentration from 10-fold IC50 to 0.1-fold IC50 

value should cause a fully reversible inhibitor to immediately disassociate from the 

enzyme, resulting in activity levels equivalent to 90% of control. Alternatively, a 

slowly-reversible inhibitor will display a reduced reaction rate initially but with a 

gradual increase over time, whereas an irreversible inhibitor will show an initial rate 

of approximately 10% of the control condition, which persists over time. Immediately 

following the dilution, cathepsin L activity was measured at 12% of the vehicle 

control. The reaction rate remained linear and was unchanged for 2 hours following 

the dilution (Figure 4.4C). These data indicate that gallinamide is an irreversible 

inhibitor of the cathepsin L protease. This is congruent with previous studies showing 

that gallinamide A was a covalent, irreversible inhibitor of the related Plasmodium 

falciparum falcipain proteases based on kinetic model fitting (139). 
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Figure 4.4. (A) A concentrated solution of enzyme and gallinamide A was incubated for 30 min and 
then then diluted. (B) The resulting shift in the enzymatic activity is based on the dose response curve. 
(C) The subsequent rate of the reaction was monitored for 2 hr, and comparison of initial reaction rates 
showed 12% of the activity with preincubation of gallinamide A (○) as compared to the control (●). The 
reaction rate was constant over the course of the two hour monitoring period, demonstrating an 
irreversible mode of inhibition. 

To more accurately characterize the inhibitory potency of gallinamide A, the 

substrate turnover kinetics of recombinant human cathepsin L were determined in the 
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presence of various concentrations of inhibitor (Figure 4.5). Progress curves were 

fitted to a model of irreversible enzyme inactivation, and the calculated first order rate 

constants kobs were plotted against [I] (141, 142). The resulting relationship was linear, 

and the second order rate constant represented by kobs/[I] was determined to be 9009 ± 

262 M-1 s-1. A kobs value was not determined for the [I] = 1000 nM condition, as the 

level of inhibition did not produce a progress curve capable of regression by the model. 

These data are consistent with two key aspects of this study: 1) gallinamide A is a 

potent and efficient inhibitor of human cathepsin L, and 2) the inactivation is 

irreversible. 

 

Figure 4.5. (A) Product formation from the turnover of substrate by cathepsin L in the presence of 
various concentrations of gallinamide A was monitored over time. The resulting plots were fitted to a 
model of irreversible inhibition, and the obtained kobs values were plotted against [I]. (B) This produced 
a linear relationship, the slope of which represents the second order inhibition constant, ki = 9009 ± 
135.6 s-1 M-1. (C) These data fit a simple model of irreversible enzyme inhibition. 
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Gallinamide A inhibits cathepsin L via Michael addition.  

Leveraging the knowledge that gallinamide A binds irreversibly to cysteine 

cathepsins, a hypothesis that the reaction occurs via a Michael addition to the reactive 

gallinamide A enone was generated. In previous studies, it has been shown that the top 

scoring pose in silico is not necessarily the correct pose in vitro (143). With this in 

mind, docked poses in which the enone was positioned acceptably close (<4 Å) to the 

catalytic cysteine were selected. The induced fit docking protocol produced two 

different poses with similar predicted binding affinities, referred henceforth as ‘top’ 

(XPGscore -8.539) and ‘bottom’ (XPGScore -7.359) orientations (Figure 4.6A-B, 

respectively). In no circumstance did Glide position other potential reactive groups, 

specifically the two gallinamide A esters, near the catalytic cysteine.  

Both of these poses possessed structurally desirable qualities for a reaction to 

occur. The ‘top’ orientation, in which the cyclic head group interacted with the S1’ 

pocket, was positioned such that the enone carbonyl, which is negatively charged in 

the predicted reaction intermediate, is stabilized in an oxyanion hole by the Gln19 and 

positively charged His163 sidechains, as well as the backbone NH of Cys25. 

Additionally, intermolecular hydrogen bonds are evident throughout the ligand-

enzyme interface, which may help stabilize the reactive complex. In the ‘bottom’ 

orientation, the enone carbonyl is stabilized by a hydrogen bond to Gly164. 

Additionally, the cyclic head group appears to be sterically accommodated very nicely 

into the S2 pocket of cathepsin L. Although the predicted hydrogen bond network was 
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found to be less extensive in this orientation, the pose remained a viable option and 

was not discarded. 

Due to the importance of identifying the correct pose for structure-guided lead 

optimization, molecular dynamic simulations were employed to elucidate the most 

probable ligand orientation. We hypothesized that a noncovalent complex must persist 

for a chemical reaction to occur between the enzyme and inhibitor. Specifically, a 

complex must exist where the ligand position does not significantly fluctuate and the 

catalytic thiol on Cys25 is continually well positioned to react with the gallinamide A 

enone. The use of multiple simulations enabled a more robust assessment of stability 

than using a single trajectory, which might become trapped in a local minimum. As 

binding between gallinamide A and cysteine cathepsins does not occur 100% of the 

time, it is reasonable to expect that not every simulation would result in a stable 

binding pose. Consequently, it became our goal to assess whether one pose 

consistently provided a more stable, reaction-ready configuration. The first 10 ns of 

each trajectory were discarded for equilibration, which left 120 ns of usable simulation 

time for pose analysis. All trajectories were aligned by Cα RMSD to their average 

structure, and these aligned structures were used in the analysis. Stability of 

complexes were assessed using three metrics: RMSD of gallinamide A in the binding 

pocket (Figure 4.6C), distance between the Cys25-SH and the reactive Michael 

addition carbon, hence forward referred to as C* (Figure 4.6D), and hydrogen bond 

persistence (Figure 4.6E). In all three metrics, the orientation where the head group 
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was oriented near the S1’ pocket appeared to be better suited for covalent reaction to 

occur between the enzyme and inhibitor.  

 

Figure 4.6. (A-B) Induced fit docked poses of representative structures for two gallinamide A (1) 
conformations docked into cathepsin L resulted in ‘top’ and ‘bottom’ poses, respectively. In C-E, the 
scores for the ‘top’ pose are represented by green and the ‘bottom’ pose blue. (C) RMSD values were 
obtained for each pose, corresponding to differences between the structure at a given time and the 
original pose, and thus are inversely correlated with stability. (D) The distance between Cys25-SH and 
C* for gallinamide A bound to cathepsin L. (E) A histogram of hydrogen bond count for both 
orientations of gallinamide A docked into the cathepsin L active site. 

To first assess stability of the complexes, the movement of gallinamide A 

within the binding pocket was analyzed. Theoretically, ligands that have more stable 

interactions with their corresponding receptors move less within a pocket. The RMSD, 

a metric computing similarity of two structures, of gallinamide A complexed to 

cathepsin L was used to compare stability of each pose (Figure 4.6C). All three 

simulations of gallinamide A in the ‘top’ orientation proved to be more stable than in 

the ‘bottom’ orientation based on lower RMSD values. 
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The most important reaction criterion is that the catalytic Cys25 must be 

positioned adjacent to a reactive center on gallinamide A. Gallinamide A has three 

potentially reactive centers: two enones and an ester. In all of the computationally 

docked poses, only the reactive carbon on the enone was positioned adjacent to 

Cys25-SH, likely due to the geometric requirements of the cathepsin binding pocket. 

To assess stability of the bound complexes, we first looked at the percentage of time 

Cys25-SH was within 4 Å of the enone carbon (Figure 4.6D). While this distance 

cutoff is not enough to ensure reactivity, it is close enough that slight changes in the 

conformation of the bound complex could lead to a productive reaction. Distances 

were measured for each frame in the trajectories (12 000 per complex). For the 

‘bottom’ pose, the enone was positioned within 4 Å of Cys25-SH only 0.28% of the 

time, as opposed to 65.80% for the ‘top’ pose. It should be noted that these results 

were not the result of the initial bias toward the first frame of the analysis, as the latter 

half of all trajectories were not statistically different from the first half. 

Additionally, hydrogen bond interactions contribute significantly to the 

binding free energy of a complex, and can heavily dictate selectivity. In this regard, 

the two distinct poses of a protein-ligand complex could result in similar contributions 

from other contributing forces (e.g. van der Waals), yet a protein should have a more 

persistent hydrogen bond network with the correctly oriented ligand than one 

incorrectly oriented. For all trajectories, hydrogen bonds between cathepsin L and 

gallinamide A were counted and a histogram was generated of hydrogen bond count 

(Figure 4.6E). Hydrogen bonds were more persistent in the ‘top’ orientation compared 
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to the ‘bottom’ orientation (p <<< 0.001, T-test), further supporting the ‘top’ 

orientation. 

Favorable attributes of a correct docking pose are also consistent with the ‘top’ 

orientation. Most importantly, the utilization of the oxyanion hole to stabilize the 

reaction is consistent with what is observed with the natural proneuropeptide 

substrates. In our simulations, the enone carbonyl of gallinamide A was observed to 

hydrogen bond with the oxyanion hole 55.4% of the time in the ‘top’ orientation, as 

compared to 17.06% in the ‘bottom’ orientation. The positively charged His163 is an 

especially good stabilizing residue for the transition state compared to Gly24 in the 

‘bottom’ orientation, as individual electrostatic interactions are stronger than 

individual hydrogen bonds. Additionally, the positively charged tertiary amine in 

gallinamide A is positioned relatively close to the S2 pocket, which accommodates a 

basic residue in many of its natural proneuropeptide substrates. This positive charge 

may also help confer selectivity toward cathepsin L over cathepsin V, as the S2 pocket 

in cathepsin V is not as negatively charged. 

Other atomistic interactions between gallinamide A and cathepsin L lend 

support to the head group ‘top’ pose being the correct orientation. Stolze et al.21 

conducted a limited SAR of gallinamide A inhibition of a Plasmodium falciparum 

cysteine protease and found that the cyclic head group was essential for gallinamide 

A-based inhibition. In the ‘top’ orientation, the carbonyl in the cyclic head group was 

found to hydrogen bond to either Gln19 or His189 for 83.55% of the simulation. The 

high persistence of this hydrogen bond suggests that removal would significantly 
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reduce the inhibitory potential of gallinamide A with cathepsin L. In contrast, 

hydrogen bonds with the cyclic head group were absent in the ‘bottom’ orientation, 

which would not support the aforementioned SAR. In other structural studies of 

cathepsin L inhibitors, Gly68 has been shown to hydrogen bond with inhibitors (144). 

In our simulations, a hydrogen bond between Gly68 and the carbonyl of the leucine 

residue appears 82.75% of the time in the ‘top’ pose, consistent with these findings.  

  The identification of the correct pose and proposed reaction mechanism 

between gallinamide A (1) and cathepsin L will serve as a platform on which to base 

the development of therapeutically relevant agents. The potential applications of 

gallinamide A as an antimalarial agent have been investigated since its discovery, 

though the potency and selectivity of this compound make it a valuable structural class 

in other fields. Inhibitors with selectivity between various human cysteine cathepsin 

proteases are lacking, and compounds with such a property may prove valuable in the 

elucidation of the relative roles of these enzymes in proneuropeptide processing (145). 

Furthermore, inhibitors of cathepsin L are under investigation for the reduction of 

tumor metastasis.14 In this capacity, compounds do not need to enter cells to work as 

effective agents, as cathepsin L promotes metastasis through its degradation of matrix 

proteins in the extracellular space (132). Due to the easily modifiable carbon skeleton 

of 1, this structure could serve as a starting place for the development of compounds 

with such favorable pharmaceutical properties. Lastly, this study identifies potential 

off-target binding sites for this marine natural product, an important consideration in 
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its development as a potential antimalarial agent, and thus will help guide the 

development of more selective and potent therapeutic agents. 

Materials and Methods 

General Experimental Procedures 

Ultraviolet/visual-light spectra were measured on a Beckman Coulter DU 800 

Spectrophotometer. NMR spectra were collected on a Varian Unity 500 MHz (500 

MHz and 125 MHz for 1H and 13C NMR respectively) using CDCl3 from Cambridge 

Isotope Laboratories, Inc. 99.8% D containing 0.03% v/v trimethylsilane (δH 0.0 and 

δC 77.16 as internal standards using trimethylsilane and CDCl3, respectively). LCMS 

data were obtained with a Phenomenex Kinetex 5 µm C18(2) 100Å column (4.6 x 250 

mm) with a Thermo Finnigan Surveyor Autosampler-Plus/LC-Pump-Plus/PDA-Plus 

system and a Thermo Finnigan LCQ Advantage Max mass spectrometer. HPLC 

purification was carried out with a Waters 515 HPLC Pump with a Waters 996 

Photoiode Array Detector using Empower Pro software. All solvents were HPLC 

grade except for 99.8% acetone from Fisher which was distilled before use, and H2O 

which was purified by a Millipore Milli-Q system before use. 

Collection, Extraction and Isolation 

The collection, extraction and VLC fractionation information can be found in 

the original isolation report (136). The fraction eluting with 4:6 hexanes/EtOAc (12.3 

mg) showed the strongest inhibition (3% activity remaining) of cathepsin L at 3 µg/ml. 

LC-MS and 1H- NMR spectra were obtained, and then the sample was further 
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fractionated using 200 mg Si NP solid phase extraction (SPE), producing 8 

subfractions. These eluted with 3 mL washes of: 9:1 hexanes/EtOAc; 8:2 

hexanes/EtOAc; 6:4 hexanes/EtOAc; 4:6 hexanes/EtOAc; 2:8 hexanes/EtOAc; 100% 

EtOAc; 1:1 EtOAc/MeOH; 100% MeOH. LC-MS and 1H NMR traces were again 

obtained for each sub-fraction. Sub-fractions 6 through 8 were combined based on 

similarities in their LC-MS and NMR data, and all sub-fractions were subjected to the 

cathepsin L inhibition assay. The fourth and fifth fractions, eluting with 4:6 

hexanes/EtOAc (1.64 mg) and 2:8 hexanes/EtOAc (0.52 mg), respectively, 

demonstrated the greatest inhibition of cathepsin L (99% and 99%, respectively), and 

were thus selected for additional purification. These two fractions were separately 

subjected to C18 RP-HPLC (Phenomenex Luna C18 4.6 x 250 mm RP-HPLC column, 

5 µm ACN/H2O 40:60, 1 mL/min) under both neutral and acidic (0.01% TFA) 

conditions. Separation was more robust under acidic conditions, and collections were 

tested in the cathepsin L inhibition assay to ensure protonation did not affect 

bioactivity. Collections from both neutral and acidic conditions demonstrated 

inhibition of cathepsin L (data not shown). Analytical RP-HPLC was used to profile 

each subfraction, and preparatory HPLC was performed to isolate and collect the 

major components (Phenomenex Luna C18 4.6 x 250 mm, 5 µm, 35% ACN/65% 

H2O/0.01%TFA, 1 mL/min).  

Gallinamide A (1): colorless amorphous solid; UV, 1H NMR, and high 

resolution ESITOFMS matched reported values within experimental error and are 

available in the Supporting Information. 
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Gallinamide B (2): colorless amorphous solid; [α]25D = 54.5 (c 0.15, MeOH); 

UV (MeOH) λmax (log ε) 201 (3.97), 248 (3.36) nm; HR-ESITOFMS m/z [M+H]+ 

579.3756 (calcd for C30H50N4O7, 579.3758 ). 

Cathepsin L assay 

Z-Phe-Arg-AMC substrate and E-64c were purchased from Bachem Americas 

(Torrance, CA). Human recombinant cathepsin L was purchased from R&D Systems 

(Minneapolis, MN). Assays were carried out using 20 µM Z-Phe-Arg-AMC and 3.0 

ng/mL human recombinant cathepsin L. Assay buffer consisted of 50 mM sodium 

acetate, 100 mM NaCl, 1.0 mM EDTA and 4 mM dithiotreitol, pH 5.5. The enzymatic 

reaction (25˚C) was monitored on a SpecraMax Gemini or SpectraMax microplate 

reader (PerkinElmer Life Sciences, Waltham, MA) and the fluorescent signal was 

measured at the excitation and emission wavelengths of 365 and 450 nm, respectively. 

Inhibitor potency determination 

An 8-point, 3-fold serial dilution dose-response assay was performed in 

triplicate. Each well of a 96-well assay plate contained 50 µL of 2X concentrated 

assay buffer, 20 µL of water, and 10 µL of inhibitor in 10% DMSO. Positive and 

negative controls of 10 µL of 10 µM E64c or 10% DMSO, respectively, replaced 

inhibitor as internal controls. A 10 µL aliquot of a 30 ng/mL cathepsin L solution and 

10 µL of 200 µM Z-Phe-Arg-AMC in assay buffer were added sequentially to initiate 

the protease reaction. Assay buffer (10 µL) was added in place of cathepsin L as a 

substrate blank for baseline correction. The resultant dose response concentration 

range was 333 nM to 0.46 nM inhibitor in a 100 µL final reaction volume. Data were 
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scaled to internal controls and a four-parameter logistic model (GraphPad vs. 5.0, 

Prism) was used to fit the measured data and determine IC50 values. 

Selectivity 

Gallinamide was tested for inhibition of human cathepsin V (100 ng/ml; R&D 

Systems) and human cathepsin B (100 ng/mL; R&D Systems). Reactions were 

performed in 50 mM sodium acetate buffer containing 100 mM NaCl, 4 mM DTT, 

and 1 mM EDTA, pH 5.5, using 10 µM Z-Phe-Arg-AMC substrate. IC50 scores were 

determined for both 0 min and 30 min preincubations, and selectivity index values 

were calculated relative to cathepsin L. All values were obtained in technical 

triplicate, as compound supply was insufficient to perform replicate plates. 

Reversibility 

A preincubation-dilution experiment was adapted from Copeland et al. (138) 

Cathepsin L at 100-fold its final assay concentration was incubated with gallinamide 

A at 10-fold its IC50 value for 30 min in a volume of 2 µL in a 96-well plate. This 

mixture was diluted 100-fold with assay buffer containing 10 µM Z-FR-AMC 

substrate to a final volume of 200 µL, resulting in a standard concentration of enzyme 

and 0.1-times the IC50 value of gallinamide A. A rapidly reversible inhibitor will 

dissociate from the enzyme to restore approximately 90% of enzymatic activity 

following the dilution event, while an irreversible inhibitor will maintain 

approximately 10% of enzymatic activity. Fluorescence intensities of the 200-µL 

wells were monitored continuously for AMC hydrolysis on a Spectramax plate reader 

in kinetic mode for 2 hr. 
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Active-site directed probe competition binding assay 

Gallinamide A was prepared in a 6-point, 3-fold serial dilution in 10% DMSO. 

Assay buffer consisted of 100 mM sodium acetate, 1.0 mM EDTA, and 4 mM DTT, 

pH 5.5. One µL of 40 ng/µL cathepsin L solution was added to 8.5 µL of assay buffer 

and preincubated with 1.5 µL of inhibitor for 30 min at room temperature. Positive 

and negative controls of 1.5 µL of 100 µM CLIK-148 or 10% DMSO were included. 

After preincubation, 4 µL of 10 µM Biotin-Lys-C5 alkyl linker-Tyr-Leu-epoxide 

(DCG-04) was added and incubated for 30 min at room temperature. The incubated 

sample was mixed with 4X NuPAGE sample buffer and 50 mM DTT and denatured at 

70 ˚C for 5 min. SDS-polyacrylamide gel separation was performed with Xcell 

SureLock system (Invitrogen) on 12% Bis-Tris gel (Invitrogen) at 200 V for 50 min. 

After transfer to a Hybond Nitrocell membrane (Amersham) at 30 V (1 hr), the 

membrane was blocked in 5% milk in TBS + 0.05% Tween for 1 h and then incubated 

with avidin and biotinylated horse-radish peroxidase, followed by washing (4X) and 

detection with ECL+ chemiluminescent substrate (Amersham). 

Kinetic Analysis 

Kinetic characterization of the interaction between gallinamide A and 

cathepsin L was performed to obtain an accurate second order inhibition constant 

corresponding to kobs/[I]. Continuous monitoring of substrate hydrolysis in the 

presence of the inhibitor was used to measure the decrease in enzyme activity over 

time. Gallinamide A was tested in concentrations ranging from 12.3-1000 nM with 
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simultaneous mixing of enzyme, substrate and inhibitor. Progression curves of product 

formation were fitted to a simple model of irreversible inhibition: 

𝑃 =
𝑣!
𝑘!"#

(1− 𝑒!!!"#∗!)                         Equation 1 

in which [P] is concentration of product, 𝑣! is the initial reaction rate, kobs is the 

observed first order rate constant, and t is time in seconds. The observed first order 

inhibition constant Kobs was plotted against [I] to obtain a linear relationship, the slope 

of which represents the second order rate constant kinact/KI, a measure of affinity for 

the slow binding inhibitor. Kinetic analysis was performed in technical quadruplicate. 

Receptor and ligand preparation 

A cathepsin L structure (PDB ID: 2XU3) (144) was downloaded from the 

Protein Data Bank (65). All ligands and water molecules were removed and hydrogens 

were subsequently added to the protein structure using PROPKA (67, 68, 146, 147) 

and PDB2PQR (66) at pH 5.5. The proteins were then processed using Schrödinger 

Maestro’s Protein Preparation Wizard (www.schrodinger.com). Grids were generated 

using the catalytic cysteine as the center. The inner box, which imposes restrictions on 

the location of the center of the ligand, was set to a 10 Å cube and the outer box, 

which restricts the possible locations of all ligand atoms, was set to a 30 Å cube. 

Gallinamide A was built using Schrödinger Maestro’s 2D builder and processed using 

LigPrep at pH 5.5 +/- 2.0 to mimic assay conditions. 
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Docking protocol 

Gallinamide A was positioned into cathepsin L active site using the Induced 

Fit Docking module of Schrödinger’s glide (148). The center of the catalytic residues 

Cys25 and His163 was used as the box center. No hydrogen bond constraints were 

applied. Side chains within 5.0 Å of docked ligands were refined with Prime. XP 

Precision was used to score poses in the final re-docking step. 

Molecular dynamics simulations 

Selected complexes were extracted from the docking runs. In all poses, Na+ 

counter-ions were added to neutralize the solution, and the complex was solvated in a 

TIP4PEW water box extending 10 Å in all x,y,z directions beyond the complex (149). 

Minimization and equilibration were done similarly to previous MD studies (150). In 

brief, the system was first minimized to remove any steric issues. Harmonic restraints 

of 2.0 kcal/mol/Å2 were applied to the protein as the system was heated to 300K. A 1 

ns simulation to equilibrate the system was then run with restraints removed. The 

SHAKE algorithm was used to constrain bonds involving hydrogens (151), and 

Particle Mesh Ewald was used to treat long-range electrostatics (80). Simulations of 

50 ns duration were run in triplicate from the minimized structure. For each 

simulation, the first 10 ns were discarded for equilibration of the docked pose, 

resulting in 120 ns of simulation per system that was analyzed. 

Simulation snapshots were taken every 10 ps. All analysis was performed 

using either the ptraj module of AMBER12 (152) or analysis tools in VMD (69). 

Trajectories were aligned by Ca RMSD to their average structure. Hydrogen bonds 
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were determined for polar hydrogen acceptor atoms (O, N, S) with 3.0 Å and 120° 

cutoffs. 
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Scheme S4.1. Fractionation and isolation scheme 
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Figure S4.1. Cathepsin L activity assay for HPLC collections 

 
Figure S4.2. ESI-MS/MS and MS3 spectra of Gallinamide A (1) 
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Figure S4.3. ESI-MS/MS and MS3 spectra of Gallinamide B (2) 
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Figure S4.4. 1H NMR spectrum of gallinamide A (1) in CDCl3 (500 MHz) 

 

Figure S4.5. 1H-1H COSY spectrum of gallinamide A (1) in CDCl3 (500 MHz).1H NMR (CDCl3, 500 
MHz) δ 7.42 (1H, d, J = 15.8 Hz, H-8), 7.14 (1H, brs, 13-NH), 6.94 (1H, dd, J = 15.8, 4.3 Hz, H-9), 
6.21 (1H, brd, 10-NH), 5.16 (1H, dd, J = 9.3, 4.0 Hz, H-19), 5.05 (1H, s, H-2), 4.69 (1H, m, H-10), 4.61 
(1H, q, J = 6.5 Hz, H-4), 4.45 (1H, brdd, H-13), 3.88 (3H, s, O-Me), 3.83 (1H, d, J = 5.9 Hz, H-25), 
2.98 (6H, brs, H-30), 2.04 (1H, m, H-26), 1.84 (2H, m, H-20a), 1.67 ( 2H, m, H-14), 1.66 (1H, m, H-
15), 1.63 (2H, m, H-20b), 1.62 (1H, m, H-21), 1.5 (3H, d, J = 6.5 Hz, H-5), 1.4 (2H, brm, H-27), 1.32 
(3H, d, J = 6.5 Hz, H-11), 1.08 (3H, d, J = 6.5 Hz, H-29), 0.99 (3H, t, J = 7.3 Hz, H-28), 0.96 (3H, d, H-
22), 0.96 (3H, d, J = 6.2 Hz, H-16), 0.93 (3H, d, J = 6.2 Hz, H-17), 0.92 (3H, d, J = 6.2 Hz, H-23) 
 



 

92 

Chapter 5: Conclusions 

Two fundamental challenges in modern day drug discovery are reducing off-

target effects and overcoming resistance. Both of these problems are rooted in 

evolution and pose significant challenges to the design of effective drugs. Many 

methods have been employed to overcome this problem, to limited success. Recent 

advances in computational power have increased the potential for such analyses. 

Combinations of system-specific analysis and algorithmic development have the 

potential to improve such efforts. Two fields that will benefit the most from merging 

evolution and drug discovery are infectious disease and oncology. In both, the 

development of resistance poses a significant problem. Consequently, either new 

targets need to be identified, or compounds that leverage and/or work around these 

genetic perturbations need to be designed. 

In this work, we described several efforts to understand drug discovery under 

the context of evolution. Specifically, disease targets for both infectious disease and 

cancer were analyzed using both developed and existing methods. In studying the 

dynamics of TbGalE, we found that targeting evolutionarily conserved residues, as 

well as those that make important ligand interactions with their backbone will increase 

the likelihood of evading resistance mechanisms. Selecting for compounds that 

preferentially bind a recently evolved negatively charged pocket, such as in cathepsin 

L, can help increase specificity over highly related proteins, such as cathepsin V. 

To analyze the protein-ligand coevolution as it pertains to drug discovery, we 

developed a novel algorithm, CrystalDock, which eschews traditional binding free-
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energy calculations, instead leveraging existing structural information to “dock” 

molecular fragments. We hypothesized that much of a ligand’s overall binding affinity 

can be attributed to the localized enthalpic interactions between functional moieties on 

a ligand and the receptor microenvironments they interact with. By mining a structural 

database of known ligand-fragment/receptor-microenvironment pairs for matches, we 

demonstrated that ligand modifications suggested by our approach can improve the 

potency of known inhibitors. While not yet demonstrated, it is our anticipation that 

linking together these fragments, which individually are weak binders, can also form 

high affinity compounds. 

Further integration of evolutionary information, particularly resistance 

information, with drug discovery will increase the efficacy of prescribed treatments. 

Currently, the development of resistance to a treatment is often discovered after the 

fact, a suboptimal process. Efficiently translating from genomic variation to structural 

perturbation to drug response represents a significant unmet need in the treatment of 

many diseases. 

 As the cost of genomic sequencing continues to drop, the long-awaited goal of 

personalized medicine is rapidly becoming a reality. Ideally, one would sequence 

diseased cells or organisms, identify variations driving both the disease and treatment, 

and subsequently administer drugs best suited to combat that genomic profile. The 

development of automated tools to account for such perturbations is still in its infancy, 

and has the potential to transform the way in which treatments are administered. In 

certain diseases such as cancer, leveraging genomic profiles to identify driving and 

resistant mutations to inform drug discovery will likely increase the efficacy of 
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treatment. Specifically, the creation of a database that pairs genetic profiles and drug-

response data will allow for real-time analysis of patients’ tumors leading to the 

recommendation of better therapies. 

Often, resistant mutations disrupt binding by creating steric clashes in ligands, 

eliminating a key interaction, or creating a disruptive interaction. Currently, it is 

infeasible to computationally or experimentally screen compounds against all models 

of resistant targets. Alternatively, one may screen high-affinity compounds against 

wild type structures and subsequently map resistant mutations onto the structure. 

Newly generated protein-ligand pairs would be evaluated by several scoring functions 

(153-155) to assess the effect of the mutations on binding. It is important to note that 

such approaches would work best with chemical series, as initial docked structures 

could be validated for convergence. After the generation of the initial database, new 

compounds could be docked using ligand-based approaches to accurately position 

themselves in binding pockets already containing ligands of relative similarity. 

Eventually, the development of automated pipelines will allow for the rapid 

identification of genomic variants that cause disease. In order to maximize the 

therapeutic potential of such pipelines, concurrent approaches need to be developed to 

combat resistance and minimize drug off target effects. Understanding how evolution 

impacts these challenges will become increasingly important future drug discovery 

efforts.
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