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Optimal estimation with missing observations
via balanced time-symmetric stochastic models

Tryphon T. Georgiou, Fellow, IEEE and Anders Lindquist, Life Fellow, IEEE

Abstract—We consider data fusion for the purpose of smooth-
ing and interpolation based on observation records with missing
data. Stochastic processes are generated by linear stochastic
models. The paper begins by drawing a connection between
time reversal in stochastic systems and all-pass extensions. A
particular normalization (choice of basis) between the two time-
directions allows the two to share the same orthonormalized
state process and simplifies the mathematics of data fusion.
In this framework we derive symmetric and balanced Mayne-
Fraser-like formulas that apply simultaneously to smoothing and
interpolation.

I. INTRODUCTION

Data fusion is the process of integrating different data sets,
or statistics, into a more accurate representation for a quantity
of interest. A case in point in the context of systems and
control is provided by the Mayne-Fraser two-filter formula
[1], [2] in which the estimates generated by two different
filters are merged into a combined more reliable estimate
in fixed-interval smoothing. The purpose of this paper is to
develop such a two-filter formula that is universally applicable
to smoothing and interpolation based on general records with
missing observations.

In [3], [4] the Mayne-Fraser formula was analyzed in the
context of stochastic realization theory and was shown that
it can be formulated in terms a forward and a backward
Kalman filter. In a subsequent series of papers, Pavon [5],
[6] addressed in a similar manner the hitherto challenging
problem of interpolation [7], [8], [9], [10]. This latter prob-
lem consists of reconstructing missing values of a stochastic
process over a given interval. In departure from the earlier
statistical literature, [5], [6] considered a stationary process
with rational spectral density and, therefore, reliazable as the
output of a linear stochastic system. Interpolation was then
cast as seeking an estimate of the state process based on an
incomplete observation record. A basic tool in these works
is the concept of time-reversal in stochastic systems which
has been central in stochastic realization theory (see, e.g.,
[11], [12], [13], [14], [5], [6], [15], [16], [17]). For a recent
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overview of smoothing and interpolation theory in the context
of stochastic realization theory see [18, Chapter 15].

In the present paper we are taking this program several
steps further. Given intermittent observations of the output
of a linear stochastic system over a finite interval, we want
to determine the linear least-squares estimate of the state
of the system in an arbitrary point in the interior of the
interval, which may either be in a subinterval of missing
data or in one where observations are available. Hence, this
combines smoothing and interpolation over general patterns of
available observations. Our main interest is in continuous-time
(possibly time-varying) systems. However, the absence of data
over subintervals, depending on the information pattern, may
necessitate a hybrid approach involving discrete-time filtering
steps.

In studying the statistics of a process over an interval, it is
natural to decompose the interface between past and future in
a time-symmetric manner. This gives rise to systems represen-
tations of the process running in either time direction, forward
or backward in time. This point was fundamental in early work
in stochastic realization; see [18] and references therein. In a
different context [19] a certain duality between the two time-
directions in modeling a stochastic process was introduced in
order to characterize solutions to moment problems. In this
new setting the noise-process was general (not necessarily
white), and the correspondence between the driving inputs to
the two time-opposite models was shown to be captured by
suitable dual all-pass dynamics.

Here, we begin by combining these two sets of ideas
to develop a general framework where two time-opposite
stochastic systems model a given stochastic process. We study
the relationship between these systems and the corresponding
processes. In particular, we recover as a special case certain
results of stochastic realization theory [11], [5], [6], [4] from
the 1970’s using a novel procedure. This theory provides a
normalized and balanced version of the forward-backward
duality which is essential for our new formulation of the
two-filter Mayne-Fraser-like formula uniformly applicable to
intervals with or without observations.

The paper is structured as follows. In Section II we
explain how a lifting of state-dynamics into an all-pass system
allows direct correspondence between sample-paths of driving
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generating processes, in opposite time-directions, via causal
and anti-causal mappings, respectively. This is most easily
understood and explained in discrete-time and hence we begin
with that. In Section III we utilize this mechanism in the
context of general output processes and, similarly, introduce a
pair of time-opposite models. These two introductory sections,
II and III, deal with stationary models for simplicity and
are largely based on [20]. The corresponding generalizations
to time-varying systems are given in Section IV and in the
appendix, in continuous and discrete-time, respectively. In
Section V we explain Kalman filtering for problems with
missing information in the continuous-time setting. In this,
we first consider the case where increments of the output
process across intervals of no information are unavailable as
a simplified preliminary, after which we focus on the central
problem where the output process is the object of observation.
Section VI deals with the geometry of information fusion.
In Section VII we present a generalized balanced two-filter
formula that applies uniformly over intervals where data is or
is not available. We summarize the computational steps of this
approach in Section VIII. Finally, we highlight the use of the
two-filter formula with a numerical example given in Section
IX and provide concluding remarks in Section X.

II. STATE DYNAMICS AND ALL-PASS EXTENSION

In this paper we consider discrete-time as well as
continuous-time stochastic linear state-dynamics. We begin by
explaining basic ideas in a stationary setting. In discrete-time
systems take the form of a set of difference equations

x(t+ 1) = Ax(t) +Bw(t) (1)

where t ∈ Z, A ∈ Rn×n, B ∈ Rn×p, A has all eigenvalues
in the open unit disc D = {z | |z| < 1}, and w(t), x(t) are
(centered) stationary vector-valued stochastic processes with
w(t) normalized white noise; i.e.,

E{w(t)w(s)′} = Ipδts, (2)

where E denotes mathematical expectation. The system of
equations is assumed to be reachable, i.e.,

rank
[
B, AB, . . . An−1B

]
= n. (3)

In continuous-time, state-dynamics take the form of a
system of stochastic differential equations

dx(t) = Ax(t)dt+Bdw(t) (4)

where, here, x(t) is a stationary continuous-time vector-valued
stochastic process and w(t) is a vector-valued process with
orthogonal increments with the property

E{dwdw′} = Ipdt, (5)

where Ip is the p × p identity matrix. Reachability of the
pair (A,B) is also assumed throughout and the condition for

this is identical to the one for discrete-time given above (as
is well known). In continuous time, stability of the system
of equations is equivalent to A having only eigenvalues with
negative real part.

In either case, discrete-time or continuous-time, it is pos-
sible to define an output equation so that the overall system
is all-pass. This is done next.

A. All-pass extension in discrete-time

Consider the discrete-time Lyapunov equation

P = APA′ +BB′. (6)

Since A has all eigenvalues inside the unit disc of the complex
plane and (3) holds, (6) has as solution a matrix P which is
positive definite. The state transformation

ξ = P−
1
2x, (7)

and

F = P−
1
2AP

1
2 , G = P−

1
2B, (8)

brings (1) into

ξ(t+ 1) = Fξ(t) +Gw(t). (9)

For this new system, the corresponding Lyapunov equation
X = FXF ′ +GG′ has In as solution, where In denotes the
(n× n) identity matrix. This fact, namely, that

In = FF ′ +GG′ (10)

implies that this [F,G] can be embedded as part of an
orthogonal matrix

U =

[
F G

H J

]
, (11)

i.e., a matrix such that UU ′ = U ′U = In+p.

Define the transfer function

U(z) := H(zIn − F )−1G+ J (12)

corresponding to

ξ(t+ 1) = Fξ(t) +Gw(t) (13a)

w̄(t) = Hξ(t) + Jw(t). (13b)

This is also the transfer function of

x(t+ 1) = Ax(t) +Bw(t) (14a)

w̄(t) = B̄′x(t) + Jw(t), (14b)

where B̄ := P−
1
2H ′, since the two systems are related by a

similarity transformation. Hence,

U(z) = B̄′(zIn −A)−1B + J. (15)
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We claim that U(z) is a stable all-pass transfer function (with
respect to the unit disc), i.e., that U(z) is a transfer function
of a stable system and that

U(z)U(z−1)′ = U(z−1)′U(z) = Ip. (16)

The latter claim is immediate after we observe that, since
U ′U = In+p,

U ′
[
ξ(t+ 1)

w̄(t)

]
=

[
ξ(t)

w(t)

]
,

and hence,

ξ(t) = F ′ξ(t+ 1) +H ′w̄(t) (17a)

w(t) = G′ξ(t+ 1) + J ′w̄(t) (17b)

or, equivalently,

x(t) = PA′P−1x(t+ 1) + P
1
2H ′w̄(t) (18a)

w(t) = B′P−1x(t+ 1) + J ′w̄(t). (18b)

Setting
x̄(t) := P−1x(t+ 1), (19)

(18) can be written

x̄(t− 1) = A′x̄(t) + B̄w̄(t) (20a)

w(t) = B′x̄(t) + J ′w̄(t) (20b)

with transfer function

U(z)∗ = B′(z−1In −A′)−1B̄ + J ′. (21)

Either of the above systems inverts the dynamical relation
w → w̄ (in (14) or (13)).

w(t)
- U

w̄(t)
-

Fig. 1: Realization (14) in the forward time-direction.

w(t)
� U∗

w̄(t)
�

Fig. 2: Realization (20) in the backward time-direction.

An algebraic proof of (16) is also quite immediate. In fact,

U(z)U(z−1)′

=
[
H(zIn − F )−1G+ J

] [
H(z−1In − F )−1G+ J

]′
=H(zIn − F )−1GG′(z−1In − F ′)−1H ′ + JJ ′

+H(zIn − F )−1GJ ′ + JG′(z−1In − F ′)−1H

Now, using the identity

In − FF ′ = (zIn − F )(z−1In − F ′)
+ (zIn − F )F ′ + F (z−1In − F ′),

(10) and GJ ′ = −FH ′, obtained from UU ′ = In+p, this
yields

U(z)U(z−1)′ = HH ′ + JJ ′ = In+p,

as claimed.

B. All-pass extension in continuous-time

Consider the continuous-time Lyapunov equation

AP + PA′ +BB′ = 0. (22)

Since A has all its eigenvalues in the left half of the complex
plane and since (3) holds, (22) has as solution a positive
definite matrix P . Once again, applying (7-8), the system in
(4) becomes

dξ(t) = Fξ(t)dt+Gdw(t). (23a)

We now seek a completion by adding an output equation

dw̄(t) = Hξ(t)dt+ Jdw(t) (23b)

so that the transfer function

U(s) := H(sIn − F )−1G+ J (24)

is all-pass (with respect to the imaginary axis), i.e.,

U(s)U(−s)′ = U(−s)′U(s) = Ip. (25)

For this new system, the corresponding Lyapunov equation
has as solution the identity matrix and hence,

F + F ′ +GG′ = 0. (26)

Utilizing this relationship we note that

(sIn − F )−1GG′(−sIn − F ′)−1

= (sIn − F )−1(sIn − F − sIn − F ′)(−sIn − F ′)−1

= (sIn − F )−1 + (−sIn − F ′)−1,

and we calculate that

U(s)U(−s)′

= (H(sIn − F )−1G+ J)(G′(−sIn − F ′)−1H ′ + J ′)

= JJ ′ +H(sIn − F )−1(GJ ′ +H ′)

(JG′ +H)(−sIn − F ′)−1H ′.

For the product to equal the identity,

JJ ′ = Ip

H = −JG′.
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Thus, we may take

J = Ip

H = −G′,

and the forward dynamics

dξ(t) = Fξ(t)dt+Gdw(t) (27a)

dw̄(t) = −G′ξ(t)dt+ dw(t). (27b)

Substituting F = −F ′ −GG′ from (26) into (27a) we obtain
the reverse-time dynamics

dξ(t) = −F ′ξ(t)dt+Gdw̄(t) (28a)

dw(t) = G′ξ(t)dt+ dw̄(t). (28b)

Now defining

x̄(t) := P−1x(t) (29)

and using (7) and (8), (28) becomes

dx̄(t) = −A′x̄(t)dt+ B̄dw̄(t) (30a)

dw(t) = B′x̄(t)dt+ dw̄(t), (30b)

with transfer function

U(s)∗ = Ip +B′(sIn +A′)−1B̄, (31)

where

B̄ := P−1B. (32)

Furthermore, the forward dynamics (27) can be expressed in
the form

dx(t) = Ax(t)dt+Bdw(t) (33a)

dw̄(t) = B̄′x(t)dt+ dw(t) (33b)

with transfer function

U(s) = Ip − B̄′(sIn −A)−1B. (34)

III. TIME-REVERSAL OF STATIONARY LINEAR

STOCHASTIC SYSTEMS

The development so far allows us to draw a connection
between two linear stochastic systems having the same output
and driven by a pair of arbitrary, but dual, stationary processes
w(t) and w̄(t), one evolving forward in time and one evolving
backward in time. When one of these two processes is white
noise (or, orthogonal increment process, in continuous-time),
then so is the other. For this special case we recover results
of [11] and [5], [6] in stochastic realization theory.

A. Time-reversal of discrete-time stochastic systems

Consider a stochastic linear system

x(t+ 1) = Ax(t) +Bw(t) (35a)

y(t) = Cx(t) +Dw(t) (35b)

with an m-dimensional output process y, and x, u,A,B are
defined as in Section II-A. All processes are stationary and
the system can be thought as evolving forward in time from
the remote past (t = −∞).

To formalize this, we introduce some notation. Let H be
the Hilbert space spanned by {wk(t); t ∈ Z, k = 1, 2, . . . , n},
endowed with the inner product 〈λ, µ〉 = E{λµ}, and let
H−t (w) and H+

t (w) be the (closed) subspaces spanned by
{wk(s); s ≤ t − 1, k = 1, . . . ,m} and {wk(s); s ≥ t, k =

1, . . . ,m}, respectively. Define H−t (y) and H+
t (y) accord-

ingly in terms of the output process process y. Then the
stochastic system (35) evolves forward in time in the sense
that

H−t (z) ⊂ H−t (w) ⊥ H+
t (w), (36)

where A ⊥ B means that elements of the subspaces A and
B are mutually orthogonal, and where H−t (z) is formed as
above in terms of

z(t) =

[
x(t+ 1)

y(t)

]
;

see [18, Chapter 6] for more details.

Next we construct a stochastic system

x̄(t− 1) = A′x̄(t) + B̄w̄(t) (37a)

y(t) = C̄x̄(t) + D̄w̄(t), (37b)

which evolves backward in time from the remote future
(t =∞) in the sense that the processes x̄, x, w̄, w relate as in
the previous section. More specifically, as shown in Section
II-A, H−(w̄) ⊂ H−(w) and H+(w) ⊂ H+(w̄) for all t, as
examplified in Figures 1 and 2.

In fact, the all-pass extension (14) of (35a) yields

w̄(t) = B̄′x(t) + Jw(t) (38)

It follows from (20b) that (38) can be inverted to yield

w(t) = B′x̄(t) + J ′w̄(t), (39)

where x̄(t) = P−1x(t+ 1), and that we have the reverse-time
recursion

x̄(t− 1) = A′x̄(t) + B̄w̄(t). (40a)

Then inserting (39) and

x(t) = Px̄(t− 1) = PA′x̄(t) + PB̄w̄(t)

into (35b), we obtain

y(t) = C̄x̄(t) + D̄w̄(t), (40b)
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where D̄ := CPB̄ +DJ ′ and

C̄ := CPA′ +DB′. (41)

Then, (40) is precisely what we wanted to establish.

The white noise w is normalized in the sense of (2). Since
U, given by (15), is all-pass, w̄ is also a normalized white
noise process, i.e.,

E{w̄(t)w̄(s)′} = Ipδt−s.

From the reverse-time recursion (37a)

x̄(t) =

∞∑
k=t+1

(A′)k−(t+1)B̄w̄(k).

Since, w̄ is a white noise process, E{x̄(t)w̄(s)′} = 0 for all
s ≤ t. Consequently, (37) is a backward stochastic realization
in the sense defined above.

Moreover, the transfer functions

W(z) = C(zIn −A)−1B +D (42)

of (35) and

W̄(z) = C̄(z−1In −A′)−1B̄ + D̄ (43)

of (37) satisfy

W(z) = W̄(z)U(z). (44)

In the context of stochastic realization theory, U(z) is called
structural function ([13], [14]).

w(t)
- W

y(t)
-

Fig. 3: The forward stochastic system (35).

y(t)
� W̄

w̄(t)
�

Fig. 4: The backward stochastic system (37)

B. Time-reversal of continuous-time stochastic systems

We now turn to the continuous-time case. Let

dx = Axdt+Bdw (45a)

dy = Cxdt+Ddw (45b)

be a stochastic system with x,w,A,B as in Section II-B,
evolving forward in time from the remote past (t = −∞).
Now let H be the Hilbert space spanned by the increments
of the components of w on the real line R, endowed with the

same inner product as above, and let H−t (du) and H+
t (du)

be the (closed) subspaces spanned by the increments of the
components of U on (−∞, t] and [t,∞), respectively. Define
H−t (dy) and H+

t (dy) accordingly in terms of the output
process y. All processes have stationary increments and the
stochastic system (45) evolves forward in time in the sense
that

H−t (dz) ⊂ H−t (dw) ⊥ H+
t (dw), (46)

where H−t (dz) is formed in terms of

z(t) =

[
x(t)

y(t)

]
. (47)

The all-pass extension of Section II-B yields

dw̄ = dw − B̄′xdt (48)

as well as the reverse-time relation

dx̄ = −A′x̄dt+ B̄dw̄ (49a)

dw = B′x̄dt+ dw̄, (49b)

where x̄(t) = P−1x(t). Inserting (49b) into

dy = CPx̄dt+Ddw

yields
dy = C̄x̄dt+Ddw̄,

where
C̄ = CP +DB′. (50)

Thus, the reverse-time system is

dx̄ = −A′x̄dt+ B̄dw̄ (51a)

dy = C̄x̄dt+Ddw̄. (51b)

From this, we deduce that the system (45) has the backward
property

H+
t (dz̄) ⊂ H+

t (dw̄) ⊥ H−t (dw̄), (52)

where H+
t (dz̄) is formed as above in terms of

z̄(t) =

[
x̄(t)

y(t)

]
.

We also note that the transfer function

W(s) = C(sIn −A)−1B +D

of (45) and the transfer function

W̄(s) = C̄(sIn +A′)−1B̄ +D

of (51) also satisfy

W(s) = W̄(s)U(s)

as in discrete-time.

Note that the orthogonal-increment process w is normal-
ized in the sense of (5). Since U(s) is all-pass,

dw̄ = du− B̄′xdt (53)
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also defines a stationary orthogonal-increment process w̄ such
that

{dw̄(t)dw̄(t)′} = Ipdt.

It remains to show that (51) is a backward stochastic real-
ization, that is, at each time t the past increments of w̄ are
orthogonal to x̄(t). But this follows from the fact that

x̄(t) =

∫ ∞
t

e−A
′(t−s)B̄dw̄(s)

and w̄ has orthogonal increments.

IV. TIME REVERSAL OF NON-STATIONARY STOCHASTIC

SYSTEMS

In a similar manner non-stationary stochastic systems
admit unitary extensions which in turn allows us to construct
dual time-reversed stochastic models that share the same state
process. The case of discrete-time dynamics is documented
in the appendix, whereas the continuous-time counterpart is
explained next as prelude to smoothing and interpolation that
will follow.

A. Unitary extension

The covariance matrix function P (t) := E{x(t)x(t)′} of
the time-varying state representation

dx = A(t)x(t)dt+B(t)dw, x(0) = x0 (54)

with x0 a zero-mean stochastic vector with covariance matrix
P0 = E{x0x′0}, satisfies the matrix-valued differential equa-
tion

Ṗ (t) = A(t)P (t) + P (t)A(t)′ +B(t)B(t)′ (55)

with P (0) = P0. Throughout we assume total reachability [18,
Section 15.2], and therefore P (t) > 0 for all t > 0.

A unitary extension of (54) is somewhat more complicated
than in the discrete time case. In fact, differentiating

ξ(t) = P (t)−
1
2x(t) (56)

we obtain
dξ = F (t)ξ(t)dt+G(t)dw, (57)

where

F (t) = P (t)−
1
2A(t)P (t)

1
2 +R(t), (58a)

G(t) = P (t)−
1
2B(t) (58b)

with

R(t) =

[
d

dt
P (t)−

1
2

]
P (t)

1
2 . (59)

In fact,
dξ = P (t)−

1
2 dx+R(t)ξ(t)dt. (60)

Differentiating P (t)−
1
2P (t)P (t)−

1
2 = In, we obtain

P (t)−
1
2 ṖP (t)−

1
2 = −R(t)−R(t)′,

and hence the (55) yields

F (t) + F (t)′ +G(t)G(t)′ = 0. (61)

Using (61) to eliminate F in (57), we obtain

dξ = −F (t)′ξ(t)dt+G(t)dw̄, (62)

where
dw̄ = dw −G(t)′ξ(t)dt, (63)

which can also be written

dw̄ = dw − B̄(t)′x(t)dt, (64)

where B̄(t) := P (t)−1B(t).

Proposition 1: A process w̄ satisfying (63) has orthogonal
increments with the normalized property (5). Moreover,

E{[w̄(t)− w̄(s)]ξ(t)′} = 0 (65)

for all s ≤ t.

Proof: As is well-known, the solution of (57) can be
written in the form

ξ(t) = Φ(t, s)ξ(s) +

∫ t

s

Φ(t, τ)G(τ)dw, (66)

where Φ(t, s) is the transition matrix with the property

∂Φ

∂t
(t, s) = F (t)Φ(t, s), Φ(s, s) = In (67a)

∂Φ

∂s
(t, s) = −Φ(t, s)F (s), Φ(t, t) = In (67b)

Let s ≤ t. Then, in view of (63), a straight-forward calculation
yields

w̄(t)− w̄(s) = w(t)− w(s)

−M(t, s)ξ(s)−
∫ t

s

M(t, τ)G(τ)dw, (68)

where

M(t, s) =

∫ t

s

G(τ)′Φ(τ, s)dτ. (69)

Therefore,

E{[w̄(t)− w̄(s)][w̄(t)− w̄(s))′} = Ip(t− s) + ∆(t, s),

where

∆(t, s) = M(t, s)M(t, s)′ +

∫ t

s

M(t, τ)G(τ)G(τ)′M(t, τ)′dτ

−
∫ t

s

[M(t, τ)G(τ) +G(τ)′M(t, τ)′] dτ.

However, ∆(t, s) is identically zero. To see this, first note that

∂M

∂s
(t, s) = −M(t, s)F (s)−G(s)′. (70)
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Then, in view of (61), a simple calculation shows that
∂∆

∂s
(t, s) ≡ 0.

Since ∆(t, t) = 0, the assertion follows. Hence the incremental
covariance is normalized.

Next, we show that w̄(t) has orthogonal increments. To
this end, choose arbitrary times s ≤ t ≤ a ≤ b on the interval
[0, T ], where we choose a and b fixed, and show that

Q(t, s) := E{[w̄(b)− w̄(a)][w̄(t)− w̄(s))′}

is identically zero for all s ≤ t. Using (68) and

w̄(b)− w̄(a) = w(b)− w(s)−M(b, a)Φ(a, s)ξ(s)

−M(b, a)

∫ b

s

Φ(a, τ)G(τ)dw −
∫ b

a

M(b, τ)dw

computed analogously, we obtain

Q(t, s) = M(b, a)

[
Φ(a, s)M(t, s)′ −

∫ b

s

Φ(a, τ)G(τ)dτ

+

∫ b

s

Φ(a, τ)G(τ)G(τ)′M(t, τ)dτ

]
.

Then, again using (61), we see that
∂M

∂s
(t, s) ≡ 0,

so, since Q(t, t) = 0, we see that Q(t, s) is identically zero,
establishing that w̄(t) has orthogonal increments.

Finally, we use the same trick to show (65). In fact, for
s ≤ t, (66) and (68) yield

E{[w̄(t)− w̄(s))ξ(t)′} = −M(t, s)Φ(t, s)′

+

∫ t

s

G(τ)′Φ(t, τ)′dτ −
∫ t

s

M(t, τ)G(τ)G(τ)′)Φ(t, τ)′dτ,

the partial derivative of which with respect to s is identical
zero; this is seen by again using (61). Therefore, since (65) is
zero for s = t, it is identical zero for all s ≤ t, as claimed.
This concludes the proof of Proposition 1.

Consequently, (57) and (64) form a forward unitary system

dx = A(t)x(t)dt+B(t)dw (71a)

dw̄ = dw − B̄(t)′x(t)dt, (71b)

The corresponding backward unitary system is obtained
through the transformation

x̄(t) = P (t)
1
2 ξ(t), (72)

which yields

dx̄ = P (t)−
1
2 dξ +R(t)ξ(t)dt. (73)

This together with (62) and (63) yields

dx̄ = −A(t)′x̄(t)dt+ B̄(t)dw̄ (74a)

dw = B(t)′x̄(t)dt+ dw̄, (74b)

B. Time reversal in continuous-time systems

Next we derive the backward stochastic system corre-
sponding to the non-stationary forward stochastic system

dx = A(t)x(t)dt+B(t)dw, x(0) = x0 (75a)

dy = C(t)x(t)dt+D(t)dw, y(0) = 0 (75b)

defined on the finite interval [0, T ], where x0 (with covariance
P0) and the normalized Wiener process w are uncorrelated.
To this end, apply the transformation

x̄(t) = P (t)−1x(t) (76)

together with (74b) to (75b) to obtain

dy = C̄(t)x̄(t) +D(t)dw̄,

where
C̄(t) = C(t)P (t) +D(t)B(t). (77)

This together with (74a) yields the the backward system
corresponding to (75), namely

dx̄ = −A(t)′x̄(t)dt+ B̄(t)dw̄ (78a)

dy = C̄(t)x̄(t)dt+D(t)dw̄. (78b)

with end-point condition x̄(T ) = P (T )−1x(T ) uncorelated to
the Wiener process w̄.

The backward realization (78) was derived in [3], but in
cumbersome way, requiring the proof that w̄(t) is a normalized
process with orthogonal increments to be suppressed. What
is new here is imposing the unitary map between w and w̄,
making the analysis much simpler and more natural.

V. KALMAN FILTERING WITH MISSING OBSERVATIONS

We consider the linear stochastic system (75) which does
not have a purely deterministic component that enables exact
estimation of components of x from y, an assumption that we
retain in the rest of the paper. In the engineering literature is
often the case that the stochastic system (75) represented as

ẋ(t) = A(t)x(t) +B(t)ẇ(t), x(0) = x0 (79a)

ẏ(t) = C(t)x(t) +D(t)ẇ(t) (79b)

where the formal “derivative” ẇ is white noise, i.e.,
E{ẇ(t)ẇ(s)′} = Iδ(t − s) with δ(t − s) being the Dirac
“function”. Of course ẋ, ẏ and ẇ are to be interpreted
as generalized stochastic processes. From a mathematically
rigorous point of view, observing ẏ makes little sense since,
for any fixed t, ẏ(t) has infinite variance and contains no
information about the state process x. However, observations
of ẏ could be interpreted as observations of the increments dy
of y in a precise meaning to be defined next. On the other
hand, one can think of (75) as a system of type

dz = M(t)z(t)dt+N(t)dw(t), where z(t) =

[
x(t)

y(t)

]
,
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and one would like to determine the optimal linear least-
squares estimate of x(t) given past observed values of y.

Generally this distinction between observing y or dy is
not important. However, when there is loss of information
over an interval (t1, t2), there are two different information
patterns depending on whether dy or y is observed. The
difference consists in whether ∆y := y(t2) − y(t1) is part
of the observation record or not. These two cases will be
dealt with separately in subsections below. In fact, the former,
which is common in engineering applications, is provided as
a simplified preliminary, whereas our main interest is in the
latter. To this end, we first introduce some notation.

Consider the stochastic system (75) on a finite interval
[0, T ]. As before, let H be the Hilbert space spanned by
{wk(t) − wk(s); s, t ∈ [0, T ], k = 1, 2, . . . ,m}, endowed
with the inner product 〈λ, µ〉 = E{λµ}. For any λ ∈ H

and any subspace A, let EA denote the orthogonal projection
of λ onto A. We denote by H[t1,t2](dy) the (closed) sub-
space generated by the components of the increments of the
observation process y over the window [t1, t2]. In particular,
we shall also use the notations H−t (dy) := H[0,t](dy) and
H+

t (dy) := H[t,T ](dy).

Suppose that the output process or its increments are
available for observation only on some subintervals of [0, T ],
namely Ik, k = 1, 2, . . . , ν. Next we want to define

◦
H as the

proper subspace of H[0,T ](dy) spanned by the observed data.
In the case that only the increments dy or, equivalently, the
“derivative” ẏ is observed, we simply define

◦
H := HI1(dy) ∨HI2(dy) ∨ · · · ∨HIν (dy),

In the case that the process y is observed, we need to expand
◦
H by adding the subspaces spanned by the increments ∆y over
the complementary intervals without observation. In either
case, we define

◦
Ht
− :=

◦
H ∩H−t (dy) and

◦
Ht

+ :=
◦
H ∩H+

t (dy). (80)

Then Kalman filtering with missing observations amounts to
determining a recursion for x− where

a′x−(t) = E
◦
Ht
−
a′x(t), for all a ∈ Rn. (81)

A. Observing dy only

When observations are available on the interval [0, t1], the
Kalman filter on that interval is given by

dx− = A(t)x−(t)dt+K−(t)(dy(t)− C(t)x−(t)dt)

(82a)

K− = (Q−C
′ +BD′)R−1 (82b)

Q̇−(t) = AQ− +Q−A
′ −K−RK ′− +BB′ (82c)

with R(t) = D(t)D(t)′ and initial conditions x−(0) = 0 and
Q(0) = P0. Here Q−(t) is the error covariance

Q−(t) := E{[x(t)− x−(t)](x(t)− x−(t)]′}, (83)

which, by the nondeterministic assumption, is positive definite
for all t.

Next suppose the observation process becomes unavailable
over the interval [t1, t2) ⊂ [0, T ]. Then the Kalman filter needs
to be modified accordingly. In fact, for any t ∈ [t1, t2), (81)

holds with the space of observations
◦
Ht
− := H−t1(dy), and

consequently

a′x−(t) = EH−t1
(dy) a′x(t) = a′Φ(t, t1)x−(t1).

This corresponds to setting K−(t) = 0 in (82) on the interval
[t1, t) so that

dx− = A(t)x−(t)dt (84a)

with initial condition x−(t1) given by (82a). The error covari-
ance Q− is then given by the Lyapunov equation

Q̇−(t) = AQ− +Q−A
′ +BB′ (84b)

with initial the condition Q−(t1) given by the value produced
in the previous interval.

Then suppose observations of dy become available again
on the interval [t2, t3). Then, for any t ∈ [t2, t3), we have

◦
Ht

+ = H[0,t1] ∨H[t2,t],

so the Kalman estimate is generated by (82) but now with
initial conditions x−(t2) and Q−(t2) being those computed
in the previous step without observation. In the case there are
more intervals, one proceeds similarly by alternating between
filters (82) and (84) depending on whether increments dy are
available or not.

In an identical manner, a cascade of backward Kalman
filters generates a process x̄+(t) based on the backward
stochastic realization (78) and the observation windows [t, T ].
Assuming that there are observations in a final interval ending
at t = T , on that interval the Kalman estimate

a′x̄+(t) = E
◦
Ht

+

a′x̄(t), (85)

with initial observation space
◦
Ht

+ := H[t,T ], is generated by
the backward Kalman filter

dx̄+ = −A(t)′x̄+(t)dt

+ K̄+(t)(dy(t)− C̄(t)x̄+(t)dt) (86a)

K̄+ = −(Q̄+C̄
′ − B̄D′)R−1 (86b)

˙̄Q+ = −A′Q̄+ − Q̄+A+ K̄+R(t)K̄+(t)′ − B̄B̄′ (86c)

and initial conditions x̄+(T ) = 0 and Q̄+(T ) = P̄ (T ) for x̄+
and the error covariance

Q̄+(t) := E{[x̄(t)− x̄+(t)][x̄(t)− x̄+(t)]′}, (87)
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which like Q−(t) is positive definite for all t. During periods
of no observations of dy, we then set the gain K̄+ = 0. This
update is obtained from the backward time stochastic model
(74) in an identical manner to that of (84).

Consequently, both the underlying process as well as the
filter can run in either time-direction. This duality becomes
essential in subsequent sections where we will be concerned
with smoothing and interpolation.

B. Observing y

Now consider the case that y, and note merely dy, is
available for observation on all intervals Ik, k = 1, 2, . . . , ν.
Under this scenario and with a continuous-time process the
dynamics of Kalman filtering become hybrid, requiring both
continuous-time filtering when data is available as well as a
discrete-time update across intervals where measurements are
not available.

Then on the first interval [0, t1] the Kalman estimate (82)
will still be valid. However, when t reaches the endpoint t2
of the interval of no information and an observation of y is
obtained again, the subspace of observed data becomes

◦
Ht2
− = H−t1 ∨H(∆y),

where ∆y := y(t2)− y(t1). Computing x(t2) across the win-
dow (t1, t2] as a function of x(t1) and the noise components
we have that

x(t2) = Φ(t2, t1)︸ ︷︷ ︸
Ad

x(t1) +

∫ t2

t1

Φ(t2, s)Bdw(s)︸ ︷︷ ︸
u1(t1)

while

y(t2) = y(t1) +

∫ t2

t1

C(t)x(t)dt+

∫ t2

t1

D(t)dw(t).

Therefore,

∆y =

∫ t2

t1

C(t)Φ(t, t1)dt)︸ ︷︷ ︸
Cd

x(t1) + u2(t1)

where

u2(t1) =

∫ t2

t1

C(t)

∫ t1

t

Φ(t, s)B(s)dw(s)dt

+

∫ t2

t1

D(s)dw(s)

=

∫ t2

t1

(∫ t2

t

C(t)Φ(t, s)dtB(s) +D(s)

)
︸ ︷︷ ︸

M(s)

dw(s).

Thus, we obtain the discrete-time update

x(t2) = Adx(t1) +Bdv(t1) (88a)

∆y = Cdx(t1) +Ddv(t1) (88b)

where

u(t1) =

(
u1(t1)

u2(t1)

)
=

(
Bd

Dd

)
v(t1)

and Bd and Dd are chosen so that(
Bd

Dd

)(
B′

d, D′
d

)
=

∫ t2

t1

(
Φ(t2, s)BB′Φ(t, s) Φ(t2, s)BM(s)′

M(s)B′Φ(t2, s)′ M(s)M(s)′

)
ds

while E{v(t1)v(t1)′} = I .

Hence, across the window of missing data the Kalman state
estimate x− is now generated by a discrete-time Kalman-filter
step

x−(t2) = Adx−(t1) +Kd(∆y − Cdx−(t1)) (89a)

Kd = (AdQ(t1)C ′d +BdD
′
d)

× (CdQ(t1)C ′d +DdD
′
d)−1 (89b)

with initial conditions x−(t1) and Q(t1) given by (82) and
the error covariance at t2 by

Q(t2) = AdQ(t1)A′d −Kd(CdQ(t1)C ′d

+DdD
′
d)K ′d +BdB

′
d. (89c)

In the next interval [t2, t3], where observations of y are
available, the new Kalman estimate (81) with

◦
Ht

+ = H[0,t1] ∨H(∆y) ∨H[t2,t]

is again generated by the continuous-time Kalman filter (82)
starting from x−(t2) and Q(t2) given by (89).

Again given an observation pattern, where intermittently
y becomes unavailable for observation, the Kalman estimate
(81) can be generated in precisely this manner by a cascade
of continuous and discrete-time Kalman filters.

Remark 2: The observation pattern of a continuous-time
stochastic model, where y becomes unavailable over particular
time-windows, is closely related to hybrid stochastic models
where continuous-time diffusion is punctuated by discrete-time
transitions. Indeed, unless interpolation of the statistics within
windows of unavailable data is the goal, the end points of such
intervals can be identified and the same hybrid model utilized
to capture the dynamics.

Remark 3: A common engineering scenario is the case
where the signal is lost while the observation noise is still
present. This amounts to having C ≡ 0 over the corresponding
window, and the Kalman estimates are obtained by merely
running the filters (82) and (86) in the two time directions with
the modified condition on C. This situation does not cover
the information patterns discussed above since, whenever
BD′ 6= 0, the Kalman gains do not vanish and information
about the state process is available even when C is zero.
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C. Smoothing

Given these intermittent forward and backward Kalman
estimates, we shall derive a formula for the smoothing estimate

a′x̂(t) := E
◦
H a′x(t), a ∈ Rn, (90)

valid for both the cases discussed above, where
◦
H :=

◦
H
−
t ∨

◦
H

+
t ⊂ H[0,T ](dy) (91)

is the complete subspace of observations. This is discussed
next.

VI. GEOMETRY OF FUSION

Consider the system (75), and let X(t) be the (finite-
dimensional) subspace in H spanned by the components of the
stochastic state vector x(t). Then it can be shown [18, Chapter
7] that H[0,t](dy) ⊥ H[t,T ](dy) | Xt, where A ⊥ B | X
denotes the conditional orthogonality

〈α− EX α, β − EX β〉 = 0 for all α ∈ A, β ∈ B. (92)

Next, let X−(t) and X+(t) be the subspaces spanned by the
components of the (intermittent) Kalman estimates x−(t) and
x̄+(t), respectively. Then since X−(t) ⊂

◦
H
−
t ⊂ H[0,t](dy)

and X+(t) ⊂
◦
H

+
t ⊂ H[t,T ](dy), we have

X−(t) ⊥ X+(t) | X(t),

which is equivalent to

EX+(t) a′x−(t) = EX+(t) EX(t) a′x−(t), a ∈ Rn (93a)

[18, Proposition 2.4.2]. Therefore the diagram

X−
EX+ |X−−→ X+

EX |X−
↘ ↗EX+ |X

X

(93b)

commutes, where the argument t has been suppressed.

Lemma 4: Let x(t), x̄(t), x−(t) and x̄+(t) be defined as
above. Then, for each t ∈ [0, T ],

(i) E{x(t)x−(t)′} = P−(t)

(ii) E{x̄(t)x̄+(t)′} = P̄+(t)

(iii) E{x̄+(t)x−(t)′} = P̄+(t)P−(t),

where P−(t) := E{x−(t)x−(t)′} is the state covariance of the
Kalman estimate x−(t) and P+(t) := E{x̄+(t)x̄+(t)′} is the
covariance of the backward Kalman estimate x̄+(t).

Proof: By the definition of the Kalman filter, (81) holds,
and consequently the components of the estimation error
x(t) − x−(t) are orthogonal to H−t and hence to the com-
ponents of x−(t). Therefore,

E{x(t)x−(t)′} = E{x−(t)x−(t)′} = P−(t),

proving condition (i). Condition (ii) follows from a symmetric
argument. To prove (iii) we use condition (93). To this end,
first note that, by the usual projection formula,

EX+(t) a′x−(t) = E{a′x−(t)x̄+(t)}P̄+(t)−1x̄+(t)

= a′ E{x−(t)x̄+(t)′}x+(t),
(94)

where x+(t) := P̄+(t)−1x̄+(t) is the dual basis in X+(t) such
that E{x+(t)x̄+(t)′} = I . Moreover,

EX(t) a′x−(t) = E{a′x−(t)x(t)′}P (t)−1x(t)

= a′ E{x−(t)x(t)′}x̄(t) = a′P−(t)x̄(t),

where we have used condition (i) and (76). Next, set b := P−a

and form

EX+(t) b′x̄(t) = E{b′x̄(t)x̄+(t)}P̄+(t)−1x̄+(t)

= b′ E{x̄(t)x̄+(t)}x+(t)

= b′P̄+(t)x+(t),

by condition (ii), and consequently

EX+(t)EX(t)a′x−(t) = a′P−(t)P̄+(t)x+(t). (95)

Then condition (iii) follows from (93a), (94) and (95).

Remark 5: The proof of condition (iii) in Lemma 4 could
be simplified if x̄+ were a regular backward Kalman estimate
without intermittent loss of information. In this case, x+ =

P̄−1+ x̄+ would be generated by a forward stochastic realization
belonging to the same class as (75) and E{x̄+(t)x−(t)′} =

P̄+(t) E{x+(t)x−(t)} = P̄+(t) E{x−(t)x−(t)}.

Lemma 6: For each t ∈ [0, T ], the smoothing estimate
x̂(t), defined by (90), is given by

a′x̂(t) = EH�
t a′x(t), a ∈ Rn, (96)

where H�
t is the subspace

H�
t = X−(t) ∨X+(t). (97)

Proof: Following [14], [3], [18], define N−(t) :=
◦
H
−
t 	

X−(t) and N+(t) :=
◦
H

+
t 	X+(t). Then

◦
H = N−(t)⊕H�

t ⊕N+(t).

Now, a′(x(t) − x−(t)) is orthogonal to
◦
H
−
t and hence to

N−(t). Also a′x−(t) ⊥ N−(t). Hence a′x(t) ⊥ N−(t) as
well. In the same way we see that a′x(t) ⊥ N+(t). Therefore
(96) follows.

Consequently, the information from the two Kalman filters
can be fused into the smoothing estimate

x̂(t) = L−(t)x−(t) + L̄+(t)x̄+(t) (98)

for some matrix functions L− and L̄+.



11

VII. UNIVERSAL TWO-FILTER FORMULA

To obtain a robust and particularly simple smoothing for-
mula that works also with an intermittent observation pattern,
we assume that the stochastic system (75) has already been
transformed via (58) so that, for all t ∈ [0, T ],

x(t) = x̄(t) (99)

and therefore

P (t) = E{x(t)x(t)′} = I = P̄ (t). (100)

Then the error covariances in the filtering formulas of Sec-
tion V are

Q− = I − P− and Q̄+ = I − P̄+. (101)

Consequently, x(t), x̄(t), P−(t) and P̄+(t) are all bounded in
norm by one for all t ∈ [0, T ].

Theorem 7: Suppose that (99) holds. For every t ∈ [0, T ],
we have the formula

x̂(t) = Q(t)
(
Q−(t)−1x−(t) + Q̄+(t)−1x̄+(t)

)
(102)

for the smoothing estimate (90), where the estimation error

Q(t) := E
{

(x(t)− x̂(t)) (x(t)− x̂(t))
′} (103)

is given by

Q(t)−1 = Q−(t)−1 + Q̄+(t)−1 − I, (104)

and where x−, x̄+, Q− and Q+ are given by (82) and (86)
with boundary conditions x−(0) = x̄+(T ) = 0 and Q−(0) =

Q+(T ) = I .

Proof: Clearly the matrix functions L− and L̄+ in (98)
can be determined from the orthogonality relations

E{[x(t)− x̂(t)]x−(t)′} = 0 (105a)

and
E{[x(t)− x̂(t)]x̄+(t)′} = 0. (105b)

By Lemma 4, (105) yields

P− − L−P− − L̄+P̄+P− = 0

P̄+ − L−P−P̄+ − L̄+P̄+ = 0,

which, in view of the fact that P− and P̄+ are positive definite,
yields

L− + L̄+P̄+ = I (106a)

L−P− + L̄+ = I (106b)

Again by orthogonality and Lemma 4,

Q = E {(x− x̂)x′} = I − L−P− − L̄+P̄+,

which, in view of (106) and the relations (101), yields

L− = QQ−1− and L̄+ = QQ̄−1+ . (107)

Then (102) follows from (98) and (107). To prove (104)
eliminate L̄+ in (106) to obtain

L−(I − P−P̄+) = Q̄+,

which together with (107) yields

Q−1 = Q−1− (I − P−P̄+)Q̄−1+ .

However,

I − P−P̄+ = Q̄+ +Q− −Q−Q̄+,

and hence (104) follows.

In the special case with no loss of observation this is a
normalized version of the Mayne-Frazer two-filter formula [1],
[2], which however in [1], [2] was formulated in terms of
x− and x+ rather than x̄+, where x+ is the state process of
the forward stochastic system of the backward Kalman filter.
(For the corresponding formula in terms of x− and x̄+, see
[3], [18]; also cf. [21], where an independent derivation was
given.) With a single interval of loss of observation the formula
(102) reduces to a version of the interpolation formulas in
[6]. The remarkable fact, discovered here, is that the same
formula (102) holds for any intermittent observations structure
and by a cascade of continuous and discrete-time forward and
backward Kalman filters, as needed depending on the assumed
information pattern.

VIII. RECAP OF COMPUTATIONAL STEPS

Given a system (75) with state covariance (55), make the
normalizing substitution

A(t)← P (t)−
1
2A(t)P (t)

1
2 +R(t)

B(t)← P (t)−
1
2B(t)

C(t)← C(t)P (t)
1
2

(108)

with R(t) =
[
d
dtP (t)−

1
2

]
P (t)

1
2 . Next, we compute the

intermittent forward and backward Kalman filter estimates x−
and x̄+, respectively, along the lines of Section V, where,
due to the normalization, Q−(0) = Q̄+(T ) = In. Then the
smoothing estimate is given by

x̂(t) = Q(t)
(
Q−(t)−1x−(t) + Q̄+(t)−1x̄+(t)

)
,

where
Q(t) =

(
Q−(t)−1 + Q̄+(t)−1 − I

)−1
.

IX. AN EXAMPLE

We now illustrate the results of the paper on a specific
numerical example. We consider the continuous-time diffusion
process

dx1(t) = x2(t)dt

dx2(t) = −0.3x1(t)dt− 0.7x2(t)dt+ dw(t)

dy(t) = x1(t)dt+ dv(t)
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where w and v are thought to be independent standard Wiener
processes. Here, x1 is thought of as position and x2 as velocity
of a particle that is steered by stochastic excitation in dw, in the
presence of a restoring force 0.3x1 and frictional force 0.7x2.
Then dy/dt represents measurement of the position and dv/dt
represents measurement noise (white).
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Fig. 5: Sample paths of output process, increment, and state
processes
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Fig. 6: Kalman estimates in the forward time direction

Numerical simulation over [0, T ] with T = 45 (units of
time) produces a time-function y(t) which is sampled with
integer multiples of ∆t = 0.01 (units). The interval [0, T ] is
partitioned into

[0, T ] = ∪9i=1[ti−1, ti]

where t0 = 0 and ti − ti−1 = i (units). Measurements of y
are made available for purposes of state estimation over the
intervals [ti−1, ti] for i = 1, 3, 5, 9. Over the complement set

of intervals, data are not made available for state estimation;
these intervals where data are not to be used are marked by
a thick blue baseline in the figures. In Figure 5 we display
sample paths of the output process y, increments dy, and state-
processes x1 and x2.
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Fig. 7: Kalman estimates in the backward time direction
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Fig. 8: Interpolation/smoothed estimates by fusion of Kalman
forward and backward estimates

The process increments dy over [ti−1, ti] for i = 1, 3, 5, 9

as well as the increments ∆y across the [ti−1, ti] for i =

2, 4, 6, 8 are used in the two-filter formula for the purpose
of smoothing. The Kalman estimates for the states in the
forward and backwards in time directions, x−(t) and x̄+(t)

are shown in Figures 6 and 7, respectively. The fusion of the
two using (102) is shown in Figure 8. It is worth observing the
nature and fidelity of the estimates. In the forward direction,
across intervals where data is not available, x− becomes



13

increasing more unreliable whereas the opposite is true for
x̄+, as expected. The smoothing estimate is generally an
improvement to those of the two Kalman filters as seen in
Figure 8. In particular, it is worth noting x2 (in subplot 2),
where, over windows of available observations, estimates have
considerably less variance in the middle of the interval where
the weights (Q(t)Q−(t)−1 and Q(t)Q̄+(t)−1) in (102) are
equalized, whereas sample paths become increasing rugged
at the two ends where one of the two Kalman estimates has
significantly higher variance, and the corresponding mixing
coefficient becomes relatively smaller.

X. CONCLUDING REMARKS

Historically the problem of interpolation has been consid-
ered from the beginning of the study of stochastic processes
[22], [23]. Early accounts and treatments were cumbersome
and non-explicit as the problem was considered difficult [7],
[8], [9], [10]. In a manner that echoes the development of
Kalman filtering, the problem became transparent and com-
putable for ouput processes of linear stochastic systems [5],
[6], [18].

This paper builds on developments in stochastic realization
theory [11], [24] and presents a unified and generalized two-
filter formula for smoothing and interpolation in continuous
time for the case of intermittent availability of data over
an operating window. The analysis considers two alternative
information patterns where increments of the output process or
the output process itself is recorded when information becomes
available. The second information pattern appears most natural
to us in this continuous-time setting, and this is our main
problem. Nevertheless, in either case, two Kalman filters run in
opposite time-directions, designed on the basis of a forward
and a backward model for the process, respectively. Fusion
of the respective estimates is effected via linear mixing in
a manner similar to the Mayne-Fraser formula and applies to
both smoothing and interpolation intermixed. In earlier works,
smoothing and interpolation have been considered separate
problems [18, Chapter 15]. The balancing normalization also
simplifies the mixing formula and makes it completely time
symmetric.

The theory relies on time-reversal of stochastic models.
We provide a new derivation of such a reversal which has the
convenient property of being balanced. It is based on lossless
imbedding of linear systems and effects the time reversal
through a unitary transformation. Interestingly, time symmetry
in statistical and physical laws have occupied some of the most
prominent minds in science and mathematics. In particular,
closer to our immediate interests, dual time-reversed models
have been employed to model, in different time-directions,
Brownian or Schrödinger bridges [25], [26], a subject which is
related to reciprocal processes [27], [28], [29], [30]. A natural

extension of the present work in fact is in the direction of
general reciprocal dynamics [28], [29] and the question of
whether similar two-filter formula are possible.

APPENDIX: TIME REVERSAL OF NON-STATIONARY

DISCRETE-TIME SYSTEMS

Next, instead of (1), consider the non-stationary state
dynamics

x(t+ 1) = A(t)x(t) +B(t)w(t), x(0) = x0, (109)

on a finite time-window [0, T ], where, for simplicity we
now assume that the covariance matrix P0 := P (0) of
the zero-mean stochastic vector x0 is positive definite, i.e.,
P0 = E{x0x′0} > 0. Then the state covariance matrix
P (t) := E{x(t)x(t)′} will satisfy the Lyapunov difference
equation

P (t+ 1) = A(t)P (t)A(t)′ +B(t)B(t)′. (110)

The state transformation

ξ(t) = P (t)−
1
2x(t) (111)

brings the system (109) into the form

ξ(t+ 1) = F (t)ξ(t) +G(t)w(t), (112)

where now E{ξ(t)ξ(t)′} = In for all t and

F (t) = P (t+ 1)−
1
2A(t)P (t)

1
2 , (113a)

G(t) = P (t+ 1)−
1
2B. (113b)

The Lyapunov difference equation then reduces to

In = F (t)F (t)′ +G(t)G(t)′ (114)

allowing us to embed [F,G] as part of a time-varying orthog-
onal matrix

U(t) =

[
F (t) G(t)

H(t) J(t)

]
. (115)

This amounts to extending (112) to

ξ(t+ 1) = F (t)ξ(t) +G(t)w(t) (116a)

w̄(t) = H(t)ξ(t) + J(t)w(t), (116b)

or, in the equivalent form[
ξ(t+ 1)

w̄(t)

]
= U(t)

[
ξ(t)

w(t)

]
. (117)

Hence, since E{ξ(t)ξ(t)′} = In and E{w(t)w(t)′} = Ip, and
assuming that E {ξ(t)w(t)′} = 0,

E

{[
ξ(t+ 1)

w̄(t)

] [
ξ(t+ 1)

w̄(t)

]′}
= U(t)U(t)′ = In+p, (118)

which yields

E{ξ(t+ 1)w̄(t)′} = 0, (119a)

E{w̄(t)ū(t)′} = Ip. (119b)
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Moreover, from (116) we have

ū(t+ k) = H(t+ k)Φ(t+ k, t)ξ(t)

+

t+k−1∑
j=t

H(t+ k)Φ(t+ k, j + 1)G(j)w(j) + J(t)w(t)

for k > 0, where

Φ(s, t) =

{
F (s− 1)F (s− 2) · · ·F (t) for s > t

In for s = t.

Therefore, since F (t)H(t)′ + G(t)J(t)′ = 0 by the unitarity
of U(t),

E{ū(t+ k)ū(t)′}
= H(t+ k)Φ(t+ k, t+ 1)[F (t)H(t)′ +G(t)J(t)′] = 0.

Consequently, ū is a white noise process. Finally, premulti-
plying (117) by U(t)′, we then obtain

ξ(t) = F (t)′ξ(t+ 1) +H(t)′w̄(t) (120a)

w(t) = G(t)′ξ(t+ 1) + J(t)′w̄(t), (120b)

which, in view of (119), is a backward stochastic system.

Using the transformation (111), (116) yields the forward
representation

x(t+ 1) = A(t)x(t) +B(t)w(t) (121a)

w̄(t) = B̄(t)′x(t) + J(t)w(t), (121b)

where B̄(t) := P (t)−
1
2H(t)′. Likewise (120) and

x̄(t) = P (t+ 1)−1x(t+ 1), (122)

yields the backward representation

x̄(t− 1) = A(t)′x̄(t) + B̄(t)w̄(t) (123a)

w(t) = B(t)′x̄(t) + J(t)′w̄(t). (123b)

Remark 8: When considered on the doubly infinite time
axis, equation (117) defines an isometry. Indeed, assuming that
the input is squarely summable, the fact that U(t) is unitary
for all t directly implies that

N∑
−∞
‖w̄‖2 + ‖ξ(t+ 1)‖2 =

N∑
−∞
‖w(t)‖2.

Then, ξ(t)→ 0 as t→∞, provided Φ(t, s)→ 0 as s→ −∞.
It follows that

∞∑
t=−∞

‖w̄(t)‖2 =

∞∑
t=−∞

‖w(t)‖2.

We are now in a position to derive a backward version of
a non-stationary stochastic system

x(t+ 1) = A(t)x(t) +B(t)w(t), x(0) = x0 (124a)

y(t) = C(t)x(t) +D(t)w(t) (124b)

where x0 and the normalized white-noise process w are
uncorrelated and E{x0x′0} = P0. In fact, inserting the trans-
formations (122) and (123a) into (124b) yields

y(t) = C̄x̄(t) + D̄w̄(t),

where

C̄ = C(t)P (t)A(t)′ +D(t)B(t)′ (125)

D̄ = C(t)P (t)B̄(t) +D(t)J(t)′ (126)

From that we have the backward system

x̄(t− 1) = A(t)′x̄(t) + B̄(t)w̄(t) (127a)

y(t) = C̄(t)x̄(t) + D̄(t)w̄(t) (127b)

with the boundary condition x̄(T − 1) = P (T )−1x(T ) being
uncorrelated to the white-noise process w̄.
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[17] G. Michaletzky and A. Ferrante, “Splitting subspaces and acausal
spectral factors,” J. Math. Systems Estim. Control, vol. 5, no. 3, pp.
1–26, 1995.

[18] A. Lindquist and G. Picci, Linear Stochastic Systems: A Geometric
Approach to Modeling, Estimation and Identification. Springer-Verlag,
Berlin Heidelberg, 2015.
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