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Heterogeneity in DNA Multiple Alignments: Modeling,

Inference, and Applications in Motif Finding ∗

Gong Chen and Qing Zhou†

Department of Statistics, University of California, Los Angeles

Abstract

Transcription factors bind sequence-specific sites in DNA to regulate gene transcription. Iden-
tifying transcription factor binding sites (TFBS’s) is an important step for understanding gene
regulation. Although sophisticated in modeling TFBS’s and their combinatorial patterns, com-
putational methods for TFBS detection and motif finding often make oversimplified homogeneous
model assumptions for background sequences. Since nucleotide base composition varies across ge-
nomic regions, it is expected to be helpful for motif finding to incorporate the heterogeneity into
background modeling. When sequences from multiple species are utilized, variation in evolutionary
conservation violates the common assumption of an identical conservation level in multiple align-
ments. To handle both types of heterogeneity, we propose a generative model in which a segmented
Markov chain is used to partition a multiple alignment into regions of homogeneous nucleotide base
composition and a hidden Markov model (HMM) is employed to account for different conservation
levels. Bayesian inference on the model is developed via Gibbs sampling with dynamic programming
recursions. Simulation studies and empirical evidence from biological data sets reveal the dramatic
effect of background modeling on motif finding, and demonstrate that the proposed approach is
able to achieve substantial improvements over commonly used background models.

Key Words: Background modeling; Evolutionary conservation; HMM; Motif finding; Nucleotide
base composition; Segmentation; Transcription factor binding site.

1 Introduction

Gene transcription is regulated by interactions between transcription factors (TFs) and their binding
sites on DNA sequences. Locating transcription factor binding sites (TFBS’s) is crucial for understand-
ing how the cell regulates its genes in response to developmental and environmental changes. Due to
the time-consuming nature of experimental identification, many computational approaches have been
developed to detect TFBS’s by utilizing sequence similarity among binding sites of the same TF. Such
sequence similarity is usually summarized as a motif, and the detection procedure is referred to as
motif finding. As a statistical model, a motif is defined as a sequence of w independent multinomial
∗UCLA Statistics Preprints (2009), to appear in Biometrics.
†Email: zhou@stat.ucla.edu (corresponding author).
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distributions on the four nucleotide bases (A, C, G, and T), where each distribution is defined for one
position of a motif. Such a model is known as the position-specific weight matrix (PWM) (Stormo and
Hartzell, 1989; Lawrence and Reilly, 1990). In what follows, we may call TFBS’s motif sites or sites
for simplicity. By treating motif sites as signals and surrounding DNA sequences as background, motif
finding can be understood as a problem of detecting signals from background. To detect motif sites on
a sequence with a given PWM, a null model, usually called the background model, is first estimated
from all the bases of the sequence; then a sequential scan is applied to calculate the probability ratio
of every word of width w under the PWM model over the background model.

Substantial efforts have been made recently to enhance probabilistic models for motifs and their
combinatorial patterns. Please see Ji and Wong (2006) for a review. On the contrary, less attention
has been paid to the modeling of background sequences and its potential effects on motif finding.
An i.i.d. multinomial distribution or a homogeneous first order Markov chain is commonly assumed
for modeling background (nucleotide) bases, such as in Lawrence et al. (1993), Bailey and Elkan
(1994), Liu, Neuwald, and Lawrence (1995), and many other methods reviewed in Ji and Wong (2006).
However, base content in a DNA sequence changes from region to region, which obviously violates the
homogenous assumption and may have a negative impact on motif finding. For example, in regions
of high GC content, base G or C (G/C) appears more frequently than in neutral or low GC regions.
Hence, G/C’s observed in such regions should be given less credit for being a part of a motif site.
A homogenous background model would mix GC rich regions with low GC content regions to give
a neutral estimation of GC content. Consequently, it would increase the chance of finding spurious
motifs, such as GGCCGGG which is likely to appear in a GC rich region. From a statistical point of view,
such an inaccurate background model is expected to lower the efficiency in motif finding, resulting in
more false positive predictions and a lower power for detecting motif sites.

One natural way to handle this problem is to segment a DNA sequence into homogeneous regions in
terms of base composition. There have been many statistical studies on DNA sequence segmentation.
We refer to Braun and Müller (1998) for a review. Churchill (1989) introduces a hidden Markov model
(HMM) in which each hidden state indicates a different base emission distribution (or segment type)
and bases are generated independently given the hidden state. Boys and Henderson (2004) model local
dependence between neighboring bases via a Markov chain of an unknown order. They further assume
that the number of hidden states is unknown and infer jointly the number of states and the order of
neighboring dependence. Liu and Lawrence (1999) propose to segment a sequence into consecutive
non-overlapping segments with multiple change points. The number and locations of change points
are inferred in a Bayesian setting. In a similar formulation, Braun, Braun, and Müller (2000) use
quasi-deviance to measure the model fitting quality and adapt the Schwarz criterion for selecting the
number of segments. More recently, it is observed that motif scores with a segmented background
model enhance the separation between TF binding sequences and random control sequences (Zhou
and Liu, 2008).

Providing another source of information for motif finding, comparative genomics have shown that
motif sites can be conserved across multiple species—these sites are bound by transcription factors, and
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thus evolve slowly in the evolution. Several recent studies, such as Moses, Chiang, and Eisen (2004),
Sinha, Blanchette, and Tompa (2004), Li and Wong (2005), Siddharthan, Siggia, and van Nimwegen
(2005), Zhou and Wong (2007), Ray et al. (2008), and Xie et al. (2008), were proposed to utilize
evolutionary conservation to facilitate motif finding, with the notion that motif sites tend to be more
conserved than background bases. However, when data change from sequences of a single species to
sequence alignments of multiple species, heterogeneity in background becomes even more complicated
due to evolutionary divergence. Regions under different selective pressures present different levels of
conservation. The common assumption of a single evolutionary rate in background modeling as in
many of the above studies deserves serious checking. Many conserved regions that contain no TFBS’s
exist in multiple alignments of regulatory sequences. False positives from such regions may be produced
in motif finding under the homogeneity assumption which pools regions of different conservation levels
to estimate a single evolutionary rate for background.

Thus, it is desirable to incorporate heterogeneity in both base composition and evolutionary con-
servation in multiple alignments into background modeling for motif finding applications. In this
study, we propose a generative model to capture these two aspects simultaneously. More specifically,
a segmented Markov chain is developed to account for heterogeneity in base composition of aligned
DNA sequences, and an HMM is used to model different conservation levels. Empirical evidence from
simulated and real world data sets demonstrates that with the proposed heterogeneous background
model the performance of motif detection methods improves considerably. The paper is organized
as follows. In Section 2 we define statistical models in our framework. The computing strategy and
Bayesian inference are developed in Section 3. We define a multiple species motif model for motif
detection applications and describe computational methods to be compared in Section 4. We present
results from a simulation study in Section 5 and from a case study on two biological data sets in
Section 6. We conclude this paper with a discussion in Section 7.

2 Statistical models

The input of our model is a (multiple) alignment, which is a set of aligned sequences, each from a
species (Figure 1(a)). In addition to the four bases D = {A, C, G, T}, there exists in an alignment
another symbol “-”, which is called a gap in biology. A gap, denoted by φ, indicates absence of a
base in an aligned position of a sequence (see Web Appendix A for more details on treatment of gaps).
We write an alignment S = (sij)n×L, sij ∈ D ∪ {φ}, as an n × L array of symbols, where n is the
number of species (sequences) and L is the length of the alignment (number of columns). Denote by
Sj = (s1j , . . . , snj) the jth column of S for j = 1, . . . , L. The symbols in an alignment column Sj
are not independent, and their dependence is captured by a binary tree Tj (Figure 1(b)), which is
referred to as an evolutionary/phylogenetic tree. The tree topology specifies how a common ancestor
evolves into its descendants over the course of evolution. The length of a branch is proportional to
the amount of evolutionary divergence between the parent node and the child node on the branch.
Statistically, an evolutionary tree can be viewed as a graphical model in which every node (vertex)
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state 1 state 2 state 3

human AAAAATTTAT CCACCAGCAC CAGTTGGAGC

chimp AAAGATTTAT CCACCAGCAC CAGTTGGAGC

rhesus ---------- CCAGGAGCAC CAGTTGGAGC

horse AAAGATCTAT TCCTGGGCCT CAGTTGGAGC

cow CAAGACA--T TCATGGGCCC CAGTTGGAGA

(a)
 cowhumanchimp

horse

rhesus
(b)

...
state 3

... ... ...
state 1

state 2... ...
... ...

...

...... ... ... ... ...

(c)

Figure 1: Input data and our model. (a) Alignment columns in three conservation states with a dash
indicating a gap. (b) An evolutionary tree of five species. (c) The model schema. The root sequence
is segmented into regions of homogeneous base composition, with segment boundaries indicated by
solid vertical bars. On the other hand, each alignment column (tree) is associated with a hidden
state for evolutionary conservation. The three hidden states are labeled by the symbols of triangle,
diamond, and square. Both segmentation and hidden conservation states are to be estimated. Note
that although tree topologies are the same, the parameters (β,θ) are segment-specific and (λD,λM )
are state-specific.

represents a random variable taking values on D∪{φ}. The leaf nodes of the tree Tj correspond to the
observed alignment column Sj with one leaf node matching the symbol from one of the n species. The
internal nodes are unobserved. To take into account local dependence in DNA sequences, root nodes
are modeled by a first order Markov chain. Under these assumptions, an alignment is augmented to
a sequence of trees correlated via their root nodes.

In our framework, a sequence of root nodes is partitioned into consecutive non-overlapping subse-
quences in terms of base composition as shown in Figure 1(c). Root nodes in the same subsequence or
segment share a common preference of the four letters A, C, G, and T. In parallel, a hidden Markov
model with three hidden states is used to model evolutionary events on the trees, where the hidden
states encode different levels of evolutionary conservation across species (Figure 1(c)). Specifically,
state 1 is intended to cover columns involving many gaps, state 2 is for columns with few gaps but
many distinct bases from the n species, and state 3 labels the most conserved columns having almost
identical bases. Figure 1(a) illustrates some potential alignment regions in the three states. We note
that a tree within one segment may be associated with any of the three conservation states.

In the following, we will first introduce the evolutionary model associated with a tree and then
describe the segmentation and the HMM components of our model. In this study, we assume that
tree topologies and branch lengths are given. For readers’ convenience, Table 1 summarizes notations
in the article.
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Table 1: Summary of notations
Notation Definition

φ Gap
D {A, C, G, T}
S Alignment
L Length of an alignment
K Number of segments
U Hidden conservation states
VD Deletion indicators
VM Mutation indicators
V (VD,VM )
W Segment start positions
R Root nodes
Z Internal nodes excluding root nodes
I (R,Z)
X (R,Z,S)
Zp Parent node
Zc Child node
α Transition probabilities of the HMM

for conservation levels
β Transition probabilities of a segmented

Markov chain for root sequence
θ Cell probabilities of segment-specific

multinomial distributions for mutated nodes
ψ (β,θ)
λD Deletion rates
λM Mutation rates
λ (λD,λM )

2.1 An evolutionary model

An evolutionary process is assumed to generate symbols for the nodes of a tree. Typical evolutionary
events during this process include deletion, insertion, and mutation. The three events correspond to,
respectively, three types of transitions from the parent node to the child node on a branch, namely,
the transition from d to φ, from φ to d, and from d to d′ for d, d′ ∈ D. In evolutionary biology,
deletion and insertion are often regarded as reversible processes. Thus, to simplify our model and to
avoid potential non-identifiability problems, we do not consider insertion in this work. Consequently,
we assume that there is always a base on a root node. Under this assumption, regions that contain
many gaps can be characterized by many deletion events, which gives good background contrast to
few deletion events in motif sites. In this sense, deletion alone seems sufficient for the purpose of
background modeling in motif finding, as confirmed in our real data analyses.

Let t be the length of a branch, and denote by Zp and Zc the parent and child nodes, respectively.
For the ease of understanding, we introduce two indicator variables, VD and VM , to indicate the
occurrence of deletion and mutation on a branch, respectively. If Zp ∈ D, either deletion (VD = 1)
or mutation (VM = 1) may happen. We assume that P (VD = 1 | Zp ∈ D) = 1 − e−λDt, where λD is
referred to as the deletion rate, and P (VM = 1 | VD = 0, Zp ∈ D) = 1 − e−λM t, where λM denotes
the mutation rate, i.e., the expected number of mutations per unit branch length (Felsenstein, 1981).
Intuitively, the larger the mutation/deletion rate and the longer the branch length, the more likely a
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mutation/deletion event will happen. Hereafter, mutation and deletion rates may be called collectively
as evolutionary rates. Please note that VD = 1 automatically implies VM = 0 since the two events
are mutually exclusive. When a mutation event happens, a mutated base is generated independently
from a multinomial distribution,

[Zc | Zp ∈ D, VM = 1] ∼MN (1,θ), (1)

with cell probabilities θ = (θA, θC , θG, θT ). If neither deletion nor mutation happens, Zc will be
identical to Zp. Finally, if Zp = φ then Zc = φ, which implies that the descendants of a gap node are
all gaps. In this case we define VD = VM = 0. Obviously, given a root base and the parameters λD,
λM , and θ, evolutionary events and all descendant nodes can be generated according to the above
evolutionary model.

2.2 A segmentation model

To model heterogeneity in base composition, we assume that distributions for generating bases change
along the root sequence. Specifically, a tree sequence is segmented at the root level into K consecutive
non-overlapping segments, where K is unknown, and each root segment corresponds to a subsequence
of trees (Figure 1(c)). Let W = (W1, . . . ,WK) denote the start positions of the segments, R the root
nodes, and Z the other unobserved internal nodes. We use R[Wp,Wp+1), Z[Wp,Wp+1), and S[Wp,Wp+1)

to denote the respective subsets of R, Z, and S in the pth segment. For each p, R[Wp,Wp+1) is
modeled as a homogeneous first order Markov chain with a transition probability matrix βp. The
multinomial distribution, with cell probabilities θp, for generating mutated bases (Equation (1)) in
the evolutionary model is also assumed to be segment-specific. In summary, the segment-specific
parameters β = (β1, . . . ,βK) and θ = (θ1, . . . ,θK) capture the base compositional heterogeneity.

2.3 An HMM for evolutionary conservation

Several studies have been proposed to model conservation variation in a multiple alignment (Yang,
1995; Felsenstein and Churchill, 1996; Siepel and Haussler, 2004). Felsenstein and Churchill (1996)
introduce an HMM to account for variation in mutation rates. Similarly, we utilize an HMM with three
hidden states as the underlying structure to model variation in conservation. Each hidden state has
its own evolutionary rates. The spatial dependence between states of neighboring trees is captured
by a first order Markov chain with a transition matrix α = (αq′q)3×3, where αq′q is the transition
probability from state q′ to state q for q′, q ∈ {1, 2, 3}. The deletion and mutation rates for the three
states are denoted by λD = (λ1D, λ2D, λ3D) and λM = (λ1M , λ2M , λ3M ), respectively. Let Ui denote
the hidden conservation state of the ith tree for i = 1, . . . , L. Given Ui = q, the evolutionary events
on the ith tree are generated by the evolutionary model defined in Section 2.1 with the rates λqD and
λqM .
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3 Bayesian inference

Let U denote conservation states, λ = (λD,λM ) evolutionary rates, and V = (VD,VM ) evolutionary
event indicators. Under the model assumptions, the complete data likelihood can be written as (see
Table 1 for summary of notations)

P (R,Z,S,V ,U |W ,β,θ,λ,α) = P (R |W ,β)P (U | α)P (Z,V ,S | R,U ,W ,θ,λ). (2)

To conduct Bayesian inference on the parameters of interest, we prescribe a prior distribution

π(W ,β,θ,λ,α) = π(W )π(β |W )π(θ |W )π(λ)π(α)

on the unknowns. A priori, we assume that the number of segments K = |W | is uniformly distributed
on {1, . . . , kmax}, where kmax is the maximum possible number of segments, and that the (K − 1)
segment start positions are uniformly placed on the (L − 1) tree-sequence positions. Note that the
start position of the first segment W1 ≡ 1. We pre-determine kmax as L/l, where l is an expected
lower-bound length of a segment (say l = 100 or 200). Further increase of kmax does not change the
results in this work but will cost more computation. The prior distribution of λqM is assumed to be the
Gamma distribution G(a, b) with a = b = 0.01 for q ∈ {1, 2, 3}. This prior is chosen to approximate a
non-informative prior. Such a prior setting has little influence on posterior inference when there is at
least one mutation event and a reasonable number of non-mutation events (when a child node retains
the same base from its parent node). In practice, these conditions are easily satisfied; otherwise,
the value 0.01 tends to give a small mutation rate, which may be reasonable given no evidence of
mutation from data. The same prior distribution is assumed for λqD. The prior distributions for other
parameters are flat Dirichlet or flat product Dirichlet distributions. We are interested in the joint
posterior distribution

P (W ,β,θ,λ,α | S) ∝
∑

R,Z,V ,U

π(W ,β,θ,λ,α)P (R,Z,S,V ,U |W ,β,θ,λ,α), (3)

where P (R,Z,S,V ,U |W ,β,θ,λ,α) is the complete data likelihood (Equation (2)).
Since the above summation has no analytical solution, we devise a Gibbs sampling strategy to

sample from the joint distribution P (R,Z,V ,U ,W ,β,θ,λ,α | S) for posterior inference. In one
sampling iteration, two threads proceed first, one thread sampling segments and segment-specific
parameters and the other sampling conservation states and related parameters, and then internal nodes
and evolutionary event indicators are sampled. Let ψ = (β,θ) denote segment-specific parameters
and I = (R,Z) denote internal nodes. The conditional sampling in one iteration consists of four steps:
(1) [W ,ψ | I,S,V ], (2) [U | I,V ,λ,α], (3) [λ,α | U , I,V ], (4) [I,V | S,W ,U ,ψ,λ].

We derive step 1 here. Steps 2 and 3 follow the classical HMM paradigm with modifications on
the emission model. Step 4 is based on bottom-up summation, introduced as the Pulley principle in
Felsenstein (1981), and top-down sampling along a tree. Since the adaptation of these steps to our
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framework is not trivial, we provide details in Web Appendix B.
In step 1 we first sample the number of segments K = |W |. Let X = (R,Z,S). With the uniform

prior π(K = k), the marginal posterior probability

P (K = k |X,V ) ∝ P (X | V ,K = k) =
∑

W :|W |=k

P (X,W | V ,K = k). (4)

To derive the recursion for summing over W to compute P (X | V ,K = k) for k = 1, . . . , kmax, we
write P (X | V ,K = k) = P (X[1,L] | V[1,L],Wk+1 = L+1), where Wk+1 is a dummy variable indicating
the end position of the kth segment is L, the index for the last tree. A recursive summation (Auger
and Lawrence, 1989; Liu and Lawrence, 1999) is employed to compute P (X[1,j] | V[1,j],Wp+1 = j + 1)
for p = 1, . . . , kmax and j = p, . . . , L:

P (X[1,j] | V[1,j],Wp+1 = j + 1)

=
j∑
i=p

P (X[1,i−1] | V[1,i−1],Wp = i)

×P (X[i,j] | V[i,j],Wp = i,Wp+1 = j + 1)

×π(Wp = i |Wp+1 = j + 1), (5)

where π(Wp = i | Wp+1 = j + 1) is the conditional prior probability of placing Wp on the ith tree-
sequence position given that the next segment starts at the (j+1)th position, and P (X[i,j] | V[i,j],Wp =
i,Wp+1 = j + 1) is the marginal likelihood of observing all the tree nodes in the pth segment, with
parameters (βp,θp) integrated out (Equation (1) in Web Appendix B).

With P (X | V ,K = k) computed by Equation (5) for k = 1, . . . , kmax, K can be sampled
according to the posterior probabilities in Equation (4). Given K, W is then sampled backwards
with probabilities computed in the forward summation. Specifically, given the (p+ 1)th segment start
position as j + 1, the pth segment start position is sampled with probability P (Wp = i | Wp+1 =
j + 1,X[1,j],V[1,j]) proportional to the summation terms in Equation (5) for i = p, . . . , j. Conditional
on the segments, the segment-specific parameters follow Dirichlet or product Dirichlet distributions.
Please note that there is no need to employ reversible jump MCMC (Green, 1995), since the parameters
are integrated out in the step of sampling segmentation.

We adopt column-wise averages to estimate parameters of interest based on posterior samples. Let
Ψ̂i = 1

N

∑N
t=1 Ψ(t)

i be the column-wise estimate of a generic parameter for the ith column (i = 1, . . . , L)
where Ψ(t)

i is the sampled parameter for the column in the tth iteration after burn-in. For example,
if the ith column is located in the second segment with the first hidden state, then Ψ(t)

i = β
(t)
2 for

calculating β̂i and Ψ(t)
i = λ

(t)
1 for λ̂i. The above estimates will be used in motif scoring comparisons

and later analyses.

8



4 Motif detection in a multiple alignment

To demonstrate the importance of modeling heterogeneity in background for motif detection applica-
tions, we will compare various methods with different background models in Sections 5 and 6. In this
section, we first define a motif model for multiple species, which will be used in scoring a candidate
alignment as a motif site; then we describe the motif detection methods to be compared.

Suppose a motif is of width w. A multiple species motif model defines a generative process for
w consecutive alignment columns Sm = (Sm

1 , . . . ,Sm
w ). For the w positions (columns) of a motif

site, let Rm = (Rm1 , . . . , R
m
w ) denote the corresponding root nodes, Zm = (Zm

1 , . . . ,Zm
w ) the other

internal nodes, and V m = (V m
1 , . . . ,V m

w ) the evolutionary event indicators. At the root level, a
product of independent multinomial distributions (a PWM) is used to modelRm: For the ith position,
Rmi ∼ MN (1,θm

i ), where θm
i = (θmiA, θ

m
iC , θ

m
iG, θ

m
iT ), and P (Rm | θm) =

∏w
i=1 θ

m
iRm

i
, with θm =

(θm
1 , . . . ,θm

w ). Given Rmi , the other nodes and the evolutionary event indicators on the ith tree, Zm
i ,

Sm
i , and V m

i , are assumed to be generated according to the evolutionary model in Section 2.1 with
a deletion rate λmD , a mutation rate λmM , and cell probabilities θm

i of the multinomial distribution for
generating mutated bases (Equation (1)), for i = 1, . . . , w. We assume that all the sites of a motif
share the same deletion rate λmD and the same mutation rate λmM . Let λm = (λmD , λ

m
M ). The complete

data likelihood for a motif site can be expressed as

P (Rm,Zm,V m,Sm | θm,λm) =
w∏
i=1

P (Rmi | θm
i )P (Zm

i ,V
m
i ,Sm

i | Rmi ,θm
i ,λ

m).

Suppose there are M (independent) sites for a motif. Let Rm,Zm,Vm, and Sm denote root nodes,
other internal nodes, evolutionary event indicators, and alignments (leave nodes), respectively, of these
sites. A Gibbs sampler that iterates between the conditional sampling of [Rm,Zm,Vm | θm,λm, Sm]
and that of [θm,λm | Rm,Zm,Vm,Sm] is employed for the Bayesian inference of the parameters θm

and λm with the same prior specification as in the background model. The sample averages are taken
as the estimates.

A motif score is computed for every candidate alignment (or sequence) of width w when we scan an
alignment (or sequence) of length L. The score is defined as the probability ratio of the observed data
under a motif model over a background model. We refer to such candidate alignments (or sequences)
as candidates for simplicity. In the single species case, it is straightforward to compute the probability
of observing a candidate under either model. In the multiple species case, the ratio is

P (Sc | Ψm)
P (Sc | Ψ)

=

∑
Rc,Zc,Vc

P (Rc,Zc,Vc,Sc | Ψm)∑
Rc,Zc,Vc

P (Rc,Zc,Vc,Sc | Ψ)
, (6)

where Sc denotes a candidate alignment (such as the alignments of width 10 in Figure 1(a)), Ψm

is the parameters of a motif model, and Ψ is the parameters of a background model. Under either
model, the summation over internal nodes (Rc,Zc) and evolutionary event indicators (Vc) can be
calculated exactly by dynamic programming recursions (Equations (2) and (3) in Web Appendix B).

9



Table 2: The inputs and assumptions of the compared methods
Methods Multiple species Segmentation HMM for conservation

HomoSingle N N N
HomoMulti Y N N
HeteMulti Y Y N

HeteMultiHMM Y Y Y

Candidates with a motif score greater than a given cutoff value are regarded as predicted sites, and
the corresponding false discovery rate can be estimated by scoring a large set of control alignments.
In practice, one may choose a cutoff that gives a reasonable false discovery rate, say < 40%.

We consider four methods for motif detection and assign them shorthand names for reference. For
scanning single species sequences, HomoSingle uses a homogeneous Markov chain background model
and a PWM as the motif model. The other three methods all take multiple alignments as input and
use the same multiple species motif model defined above, but their background models are different.
HomoMulti uses a homogeneous background model without segmentation, whereas HeteMulti employs
the segmentation model for handling heterogeneity in base composition. They both assume a single
set of evolutionary rates. HeteMultiHMM is the most comprehensive model that uses the segmented
background model for base composition and the three-state HMM for conservation levels. Table 2
summarizes the key features of these methods. To estimate parameters of the multiple species motif
model, we ran the Gibbs sampler described in this section for 1,000 iterations. For background
parameter estimation in HeteMultiHMM, we ran the Gibbs sampling procedure defined in Section 3
for 1,500 iterations. The same procedure was carried out for HeteMulti without sampling conservation
states and state-related parameters. A further reduced procedure was used for HomoMulti without
sampling segment start positions and segment-specific parameters. For all runs, the first 50% of
iterations were used as burn-in periods. The number of iterations and fraction of burn-in were chosen
based on empirical efficiency and convergence analysis, with details provided in Web Appendix C.

5 A simulation study

We simulated data sets to verify our parameter estimation for HeteMultiHMM and to compare scoring
performance of various motif detection methods. The simulation used an evolutionary tree of five
species estimated from a multiple alignment in the muscle data set to be introduced later.

An alignment was formed by three segments, each of length 1,000, with different base compositions:
A GC rich region, a uniform region, and an AT rich region. Motif sites were simulated from three
distinct motifs, a GC rich motif (MGC), a uniform motif (MUN), and an AT rich motif (MAT) (Web
Figure 1). Please see Web Tables 1 and 2 for the simulation parameters for background alignments
and motif sites. We generated 20 background alignments and 40 sites for each motif according to these
parameters. Two strategies were applied to insert motif sites in a background alignment. In strategy
A every motif site was uniformly inserted in a background alignment, while in strategy B motif sites
were only inserted in a GC rich segment. The first type of insertion should be fair for every method
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Table 3: Average false discovery rates (%) for the data sets DUN (top) and DGC (bottom)
Motif MGC MUN MAT

Sensitivity 25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100%
Number of sites 10 20 30 40 10 20 30 40 10 20 30 40

HomoSingle 0 4 19 37 0 6 20 35 0 3 16 35
HomoMulti 0 0 8 23 0 2 9 23 0 0 6 23
HeteMulti 0 0 4 17 0 0 6 19 0 0 3 16

HeteMultiHMM 0 0 1 14 0 0 0 12 0 0 0 7

Motif MGC MUN MAT
Sensitivity 25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100%

Number of sites 10 20 30 40 10 20 30 40 10 20 30 40

HomoSingle 0 6 22 39 0 6 20 35 0 3 15 33
HomoMulti 0 0 10 25 0 2 9 23 0 0 6 22
HeteMulti 5 13 20 33 0 1 6 18 0 0 0 5

HeteMultiHMM 0 2 8 21 0 0 1 11 0 0 0 2

without any prior knowledge about characteristics of regions surrounding motif sites. However, our
analyses of two real world data sets showed that motif sites tend to be located in GC rich regions
when more than one segment exists. Therefore, the second type of insertion was considered. These
two types of insertion gave rise to two data sets with 20 alignments in each. We refer to the data set
with the first type of insertion as DUN and the one with the second type as DGC.

We illustrate our posterior inference with the results of a simulated alignment. The posterior
probability P (K = 3 | S) = 1, estimated from posterior samples, shows that our method accurately
detected the number of segments. The column-wise estimates for typical segment-specific parameters
and evolutionary rates are seen to be close to the true parameters (Figure 2). In addition, as is
evident from the figure, the segments and the conservation states can be clearly recovered through
these estimates.

Cross-validation was performed to evaluate scoring results. Analogous to the scheme used in
Barash et al. (2003), the cross-validation treated candidates in one alignment as a test data set and
treated sites in the other alignments as a training data set. To compute the motif score of a candidate
in a particular alignment (test data), the parameters of the motif model Ψm were estimated from the
simulated sites in the other alignments (training data). The background parameters were learned from
individual alignments. This procedure was repeated to obtain the motif scores of candidates in every
alignment. For each motif, the scores of all candidates in an alignment were computed by Equation (6),
and the candidates were ranked in the descending order of their scores. To obtain a global evaluation
of motif identification, we calculated the averages of false discovery rates (AFDR) for four sensitivities,
25%, 50%, 75%, and 100% (Table 3). Specifically, for the sensitivity α, AFDRα = 1

Mα

∑Mα
i=1

FPi
FPi+i

,
where FPi is the number of false positives when i (simulated) motif sites are detected, and M is the
total number of motif sites. This measure is in essence similar to partial area under the curve (Pepe
et al., 2003) for comparing average performance of classification methods.

For the data set DUN, Table 3 (top) shows the progressive and substantial improvement of a
multiple species motif detection method with more proper background modeling of heterogeneity for
all the three motifs. For the data set DGC, the same situation holds for the uniform (MUN) and the
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Figure 2: Estimated parameters: (a) The transition probability βGC , (b) the emission probability θG,
(c) the deletion rate in the first segment, and (d) the mutation rate in the first segment. The dotted
and solid lines report the column-wise true parameters and the column-wise estimates, respectively.
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AT rich (MAT) motifs. However, when the GC rich motif (MGC) is inserted in GC rich segments,
HeteMulti gives more false positives than HomoMulti. In such cases, the background probability for
an MGC site is lower under the homogeneous background model than that under the heterogeneous
model. The lower background probability leads to a higher score of the MGC site given the same
motif model. Therefore, in practice, such behavior of HomoMulti may improve scoring results if it
only brings up a negligible amount of false positives whose scores are also increased inappropriately in
the same manner as motif sites. On the contrary, when AT rich motif sites are inserted into GC rich
regions, HeteMulti provides a much stronger contrast between the motif and the background models
than HomoMulti, and thus may improve the scoring results considerably. For example, AFDR100%’s
for both HeteMulti and HeteMultiHMM when scoring the MAT motif in DGC are much lower than
those in DUN.

6 A case study on two biological data sets

We applied the four motif detection methods in Table 2 to two biological data sets to further examine
the effects of background modeling. Evolutionary trees were estimated from the alignments in the
data sets by the PHYLIP package (version 3.67) (Felsenstein, 1989).

The first data set contains human DNA sequences of length between 2 kilobases (kb) and 3kb in
the upstream regions of 24 genes with skeletal muscle-specific expression, for which experimentally
validated sites of five motifs have been annotated (Thompson et al., 2004). The second data set is
composed of 23 human upstream sequences of length 3kb for known NFκB responsive genes collected
from TRANSFAC (Wingender et al., 2000) 9.1 release. For these two data sets, we extracted multiple
alignments of 27 vertebrates (Web Figure 2) that are aligned to the human genome (hg18) from
the UCSC genome browser database (Karolchik et al., 2008). In an alignment, the top five species
in terms of their percent of identity to the human sequence were kept. Then, only species with at
least 60 percent of identity were selected from the top five species. Such a stringent selection aims
at collecting alignments of relatively high quality so that we may reduce the uncertainty in multiple
alignment to a minimal level. Following the common practice of preprocessing data in motif finding
applications, we masked out repeat sequences.

6.1 Heterogeneity

In order to examine the heterogeneity in base composition and conservation levels in the two data
sets, we report some related statistics obtained from HeteMultiHMM, which employs the most com-
prehensive background model. As shown in Figure 3(a), about half of the alignments show strong
empirical evidence for the existence of more than one segment as quantified by the estimated poste-
rior probability P̂ (K ≥ 2 | S) > 0.9. Figure 3(b) displays the estimated evolutionary rates for the
three conservation states from the 47 alignments. A state-specific evolutionary rate was estimated by
its posterior sample average. The figure clearly illustrates the separation between the three sets of
evolutionary rates with their expected meanings: State 1 has the largest deletion rates; state 2 owns
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Figure 3: Heterogeneity in the two biological data sets: (a) The histogram of the estimated posterior
probability of more than one segment in an alignment and (b) the estimated state-specific evolutionary
rates. One case with λ̂1D = 11.15 and λ̂1M = 14.06 is excluded from (b).

smaller deletion rates than state 1 but higher mutation rates than state 3; and state 3 tends to have
the smallest deletion rates and the smallest mutation rates. The above results demonstrate that there
exists a large amount of heterogeneity in multiple alignment data, and thus, it is not reasonable to
simply make homogeneous assumptions for background modeling.

6.2 Motif scoring

Following Thompson et al. (2004), our motif analyses of the muscle data set focused on the well-
defined sites for the three TFs, MEF, MYF, and SRF. In summary, the two data sets contain a total
of 16, 25, 14, and 29 known binding sites for four transcription factors, MEF, MYF, SRF, and NFκB,
respectively. Please see Web Figure 3 for their logo plots. Based on these known binding sites, we
employed the same cross-validation scheme to evaluate performance of different methods as we did
in the simulation study. Overall, our proposed method HeteMultiHMM is much superior to both
HomoSingle, which uses the typical background model in single species motif finding methods, and
HomoMulti, whose background model is close to the one commonly used in multiple species methods.
The last two rows of Table 4 report the percentage reduction in AFDR from the results of HomoSingle
and HomoMulti to those of HeteMultiHMM. To provide another overall performance measure, we
highlighted in bold face the methods with the best performance for different sensitivities in Table 4.
For 50% sensitivity, HeteMultiHMM shows the best performance in the cases of MEF, MYF, and
NFκB. Such performance gain by the heterogeneous models demonstrates the advantage of modeling
heterogeneity in background for motif finding. In what follows, we discuss in detail the comparisons
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Table 4: Average false discovery rates (%) for the two biological data sets
Motif MEF MYF SRF NFκB

Sensitivity 25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%
Number of sites 4 8 12 7 13 19 4 7 11 8 15 22

HomoSingle(HoS) 0 5 16 17 37 48 68 68 72 22 40 47
HomoMulti(HoM) 8 20 30 5 19 32 25 42 57 37 40 51

HeteMulti(HeM) 5 17 29 15 25 36 38 49 62 31 38 49
HeteMultiHMM(HeMH) 0 1 12 4 12 30 42 54 61 25 37 51

(HoS-HeMH)/HoS% - 71 24 77 69 37 38 22 16 -11 6 -6
(HoM-HeMH)/HoM% 100 93 60 27 38 4 -69 -29 -6 33 7 1

Note: Bold face numbers indicate the methods with the best performance for a particular sensitivity.

between these methods.
First, we compare HomoMulti and HeteMulti to study the segmentation effect. We can see that

HeteMulti outperforms HomoMulti for all sensitivities in the cases of MEF and NFκB. For MYF and
SRF, however, HeteMulti is not as good as HomoMulti. As in the case of MGC in the simulated data
set DGC, some of their sites have a relatively high portion of G/C bases, and they are located in
GC rich regions. As we have explained, this may degrade motif scoring results with a heterogeneous
background model although segmentation is clearly supported by the data. Second, we compare
HeteMulti and HeteMultiHMM to investigate the effect of modeling conservation levels after the base
compositional heterogeneity has been taken into account. For all the sensitivities, HeteMultiHMM
gives smaller AFDRs than HeteMulti when scoring the motifs MEF and MYF, and the reduction in
false positives is mostly more than 50%. For the other two motifs, the two methods seem to have
comparable performance across different sensitivities. This confirms the importance of modeling the
variation in evolutionary conservation for multiple species motif detection. Finally, our results also
confirm the general notion that utilizing sequences from multiple species is helpful for motif detection.
However, an important message from this study is that, without proper modeling of background
heterogeneity, multiple species methods may be even worse than a single species method. For example,
in the case of MEF, whereas HeteMultiHMM shows improvements over HomoSingle, both HomoMulti
and HeteMulti show inferior performance. We note that all the multiple species methods give more
false positives for 25% and 75% sensitivities in the case of NFκB. The degraded performance is due to
the fact that the NFκB sites have very different conservation levels. A more sophisticated motif model
that accounts for this additional variation is needed to enhance the detection power of a statistical
method.

7 Discussion

With increasingly available genomic sequence data, evolutionary conservation across multiple species
provides valuable information for detecting TFBS’s. However, many existing methods for motif finding
ignore background heterogeneity in both base composition and evolutionary conservation present in
multiple alignments. In this article, we have proposed a generative model to capture these two types
of heterogeneity simultaneously. The empirical evidence from the simulation study and the case study
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showed that the model has a great potential to improve motif detection performance.
Although our framework performs segmentation on a first order Markov chain, it can be extended

to second or higher-order models because all the segment-specific parameters can be integrated out for
sampling segmentation. Despite the usefulness of second order models in some applications suggested
by Blaisdell (1985) and Hwang and Green (2004), a first order model seems proper for segmenting
background in motif finding applications, where a reasonably large segment of 100 root nucleotide
bases often observed in this study may not be sufficient for fitting a model with 64 parameters (as in
the case of second order Markov chain) or more. Also, the results in Huang et al. (2004) showed that
a Markov chain of a higher order as the background model was not very different from a first order
Markov chain for motif scan. Thus, we adopt the simpler model. However, independence assumption
on root nucleotide bases should be avoided since it often leads to many very short segments of a few
columns in our previous empirical study, which is clearly inappropriate for motif detection. While in
our model dependence between nodes of neighboring trees is implicitly taken into account through the
inheritance from their root nodes, more elaborate models for such dependence have been considered
explicitly by Hwang and Green (2004) and Baele, Van de Peer, and Vansteelandt (2008).

In the context of single species motif finding, several studies have discussed the issue of background
modeling. Liu, Brutlag, and Liu (2001) compared an i.i.d. background with a homogeneous third
order Markov chain and reported that the later may give more specific predictions. Huang et al.
(2004) confirmed the effect of background modeling via the development of a local Markov model. A
practical problem in de novo motif finding is that single base repeats (e.g., AAAA . . .) or dimer repeats
(e.g., CGCGCG . . .) are often detected as false positive motifs. To alleviate this problem, Gupta and Liu
(2003) proposed to treat low-complexity repeats as a series of adjacent words of the same pattern in
a stochastic dictionary model. When turning to multiple species methods, studies such as Thompson
et al. (2004), Sinha et al. (2004) and Siddharthan et al. (2005) restrict search space to highly conserved
alignment columns, which may reduce heterogeneity in conservation to a certain extend. Nevertheless,
it is unclear how much information including motif sites themselves is lost in this way. The approach
in this work is expected to utilize more potentially useful information from data by constructing a full
model to capture different levels of conservation.

8 Supplementary Materials

Web Appendices, Tables, and Figures referenced in Sections 2-6, and software for background modeling
and multiple species motif scan are available at http://www.stat.ucla.edu/∼zhou/htbgscan/.
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