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Task-set Selection in Probabilistic Environments: a Model of Task-set Inference

Ian W. Eisenberg (ieisenbe@stanford.edu)
Department of Psychology, Stanford University

Russell A. Poldrack (russpold@stanford.edu)
Department of Psychology, Stanford University

Abstract

To act effectively in a complicated, uncertain world, people
often rely on task-sets (TSs) that define action policies over a
range of stimuli. Effectively selecting amongst TSs requires
assessing their individual utility given the current world state.
However, the world state is, in general, latent, stochastic, and
time-varying, making TS selection a difficult inference for the
agent.  An  open  question  is  how observable  environmental
factors influence an actor's assessment of the world state and
thus the selection of TSs. In this work, we designed a novel
task in which probabilistic cues predict one of two TSs on a
trial-by-trial basis. With this task, we investigate how people
integrate  multiple sources of probabilistic information in the
service of TS selection. We show that when action feedback is
unavailable, TS selection can be modeled as “biased Bayesian
inference”,  such  that  individuals  participants  differentially
weight  immediate  cues  over  TS  priors  when  inferring  the
latent  world  state.  Additionally,  using the model’s  trial-by-
trial posteriors over TSs, we calculate a measure of decision
confidence  and  show  that  it  inversely  relates  to  reaction
times.  This  work  supports  the  hierarchical  organization  of
decision-making by demonstrating that probabilistic evidence
can be integrated in the service of higher-order decisions over
TSs, subsequently simplifying lower-order action selection.

Keywords:  task-sets; structure learning; Bayesian cognition;
model-based; decision making

Introduction
Humans face the daily challenge of making decisions in an
uncertain and open-ended world. In such a world, caching
independent  stimulus-response  mappings  is  impractically
slow  and  fails  to  capitalize  on  the  structure  inherent  in
natural  tasks.  Many  actions  learned  at  one  time  may
generalize  to  new  environments:  our  experiences  dealing
with  petulant  adults  may  help  us  placate  ill-tempered
children or  vice versa,  expertise  using our own computer
seamlessly translates to computer expertise in general, and
so  on.  In  general,  the  organized  structure  of  the  world
allows agents to fruitfully group learned actions into higher-
order  action  policies  which  can  be  retrieved  to  avoid
redundant learning. Such action policies are often referred to
as  task-sets  (TSs),  and  their  use  potentially  eases  the
learning problem by providing flexible representations that
can be leveraged across environments.

Much of the computational work on TSs relates to model-
based  decision  making  (Daw  et  al.,  2012;  Solway  &
Botvinick, 2012). In this framework, a person learns a goal-
sensitive action policy based  on an internal  model of  the

world,  which  consists  of  a  set  of  states,  transition
probabilities,  and  actions.  Through  exploration  and
feedback,  the  agent  gradually  develops  an  action  policy
which determines their behavior.  While this general concept
has been informative in outlining how TSs may be learned
given a model of the world, model-based decision making
has  largely  ignored  how  the  agent's  internal  models  are
developed and selected when multiple models may apply in
a particular environment (so-called “structure learning”).

Some  research  has  directly  addressed  the  problem  of
structure  learning,  proposing  that  agents  simultaneously
infer  the  latent  causal  structure  of  the  world  while
identifying the appropriate TS given that inferred structure
(Gershman  & Niv,  2010;  Redish  et  al,  2007).  From this
perspective,  structure  learning  is  intimately  tied  with
stimulus-response  learning,  leading  to  the  compelling
prediction that  people will  reuse TSs whenever they infer
that  the  latent  structure  of  the  world  conforms  to  the
structure in which the TS was first learned.

Inferring  the  latent  world  state  is  closely  related  to
categorization (Gershman et al. 2010), the cognitive process
by which people use an organizational framework to assign
discrete instances (objects, events, emotions, etc.) to groups
that  are  functionally  or  perceptually  equivalent  on  some
level  of  abstraction  (Anderson,  1991;  Shafto et  al.  2011).
The  central  idea  is  that  latent  categories  stochastically
generate  observable  features  conforming  to  some
characteristics  distribution.  If  people  represent,  on  some
level, a generative model of the environment that constitutes
a hypothesis space over possible categories,  then they can
infer the underlying category given uncertain evidence (Fei-
Fei et al.,  2007; Tenenbaum et  al.,  2006). Moreover,  they
can  categorize  novel  observations  by  appealing  to  these
generative models. For decision-making, useful categorical
boundaries  are  defined  by  states  which  call  for  different
action policies. To capture TS selection in such a scenario,
we use  a task where  the  agent  knows that  multiple  task-
relevant states exist, such that establishing the latent world
state  is equivalent to establishing the best TS. If the agent
can uncover the structure underlying state transitions, they
can greatly simplify the task and improve their performance.

Empirical  and  computational  support  for  probabilistic
inference  over  TSs  comes  from  work  by  Collins  and
colleagues,  who have  shown that  people  reuse  TSs in  an
approximately  optimal  way  based  on  contextual  support
(Collins & Koechlin, 2012; Collins & Frank, 2013). Collins
&  Koechlin  have  put  forward  a  model  where  a  small
number of TSs are held in a  working memory-like cache
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where  they  are  evaluated  to  assess  their  individual
“reliabilities.”  TSs are  selected  when  they  prove  reliable,
and otherwise discarded, replaced by new TS propositions
constructed  combinatorially  from  TSs  held  in  long  term
memory. In a similar vein, Frank & Badre (2012) propose a
Bayesian “mixture of experts” model of TS selection (see
Doya et  al.,  2012 for  a  similar  idea).  In  this  framework,
multiple competing TS hypotheses govern people’s behavior
as  they  search  for  higher-order  rules  in  a  hierarchically
structured decision making task (Badre et al. 2010). 

These experiments used deterministic cues to indicate the
appropriate TS, a simplification that potentially obscures the
factors underlying TS inference in general. In this project,
we aimed to resolve these problems and clarify the process
underlying  TS  inference.  We  introduce  a  novel  task-
switching paradigm that required participants to reason over
probabilistic environmental cues to select the appropriate TS
on a trial-by-trial basis. With this paradigm, we anticipated
that participants would use multiple sources of information
when selecting TSs such that their decisions related both to
contextual  cues  and  TS  transition  probabilities.  As  these
different sources contribute to behavior in subtle ways, we
develop  an  explicit  quantitative  model  to  assess  the
information participants access to infer TSs. We hypothesize
that while there will be substantial individual differences in
how  people  integrate  information,  TS  inference  can  be
characterized  by  Bayesian  inference  with  minimal  free
parameters  reflecting  individual  information-processing
biases.

Method 

Task Description
49 participants completed the Probabilistic Context Task, a
task-switching  experiment  (Figure  1)  composed  of  two
phases: training (832 trials: 45 min) and testing (800 trials:
30 min) On each trial, participants were required to select
one  of  four  keys  in  response  to  two-dimensional  stimuli
varying in color (red or blue) and shape (circle or square).
Each key was mapped to one of these feature (e.g. key 1 for
blue  stimuli,  key  2  for  circles),  which  were  randomized
across participants.  Participants had 1.5 s to respond. The
correct  response  was  determined  by  a  latent  TS  that
established the relevant feature, which changed from trial-
to-trial. There were two TSs: the shape TS (STS) and the
color TS (CTS). Correct  responses conformed to both the
stimulus and the TS (pressing the red key for a red circle
while the CTS was operating). Correct responses earned a
point which was presented for .5 s during the training phase
followed by a variable intertrial interval. During the testing
phase  participants  received  no  feedback.  Overall,  each
training trial lasted 3-3.5 s, and each test trial lasted 2-2.5 s.
   While  there  were  no  deterministic  cues  indicating  the
current TS, the task was designed to allow inference of the
trial-by-trial  TSs  using  probabilistic  information.  TSs
switched probabilistically on each trial such that P(TSt-1 =
TSt),  the  probability  of  the  TS remaining  the  same  from
trial-to trial, was 90%, referred to for the remainder of the 

Figure 1: (Left) On each trial, a shape appears at one of 12
vertical positions. The participant responds with one of four
keys corresponding to the two features of the stimuli (red,
blue, circle, square). During training they get deterministic
feedback after they respond. (Right) Schematic of the latent
trial  structure.  Stimulus  vertical  position  is  drawn one of
two distributions (shown in green and blue) corresponding
to the current TS (STS: green, CTS: blue). The current TS
has a 10% chance of changing from trial-to-trial, otherwise
it  remains  the  same.  The stimuli  are  randomly drawn  on
each trial and are observable while the current TS is latent.
Thus  to  correctly  respond  to  the  stimulus  the  participant
must infer the current TS based on the stimulus position and
task history.

paper as the recursion probability. Additionally, on each trial
the  stimulus’s  vertical  position  on  the  screen  was  drawn
from  a  truncated  Gaussian  distribution  (limits  1  and  -1,
corresponding  to  the  top  and  bottom  of  the  screen,
respectively)  parameterized  by  the  current  TS.  Stimulus
position Gaussians had the same standard deviation (σ=.37),
but had different means (μ = .3 or -.3) depending on the TS.
These Gaussians were discretized into 12 bins spanning the
screen. The TS that was primarily associated with the top of
the  screen  was  counterbalanced  across  participants.  For
simplicity, for the remainder of the paper we will assume the
STS was primarily associated with the top of the screen.

Before  training  participants  were  explicitly  told  about
both  color and shape TSs and were given an opportunity to
practice  using  a  separate  set  of  practice  stimuli  and  key
mappings. When training started, participants knew that one
key would correspond to each stimulus feature (red, blue,
circle square), and only one TS operated on each trial, but
did not know what the response mappings were or how the
TSs switched. They were told that their goal was to learn on
which trials they should respond based on color or shape.
They were  also told that  they should use the feedback  to
learn during training, but not to rely on it,  as it would be
removed during  the test.  Participants  were  encouraged  to
respond as quickly and accurately as possibly. Participants
also knew that  their  performance during training and test
determined their bonus payment,  which could range from
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$0-$5.  A  post-task  questionnaire  probed  participant’s
explicit understanding of the task, including their estimates
of TS transition probabilities.

In  summary,  during  the  training  phase,  participants
received  deterministic  feedback  which  they  could  use  to
learn  the  mapping  between  stimuli  features  and  response
keys as  well  as the determinants  underlying TS switches.
Because  feedback  was omitted during the subsequent  test
phase,  participants  had  to  respond  based  on  their
understanding of the TSs’ relationship with the probabilistic
cues in the environment (stimulus position and the previous
operating TS), or based on irrelevant factors fabricated by
the  participant  (e.g.  deterministic  switches  every  5  trials,
switch  after  a  red  square).  Above  chance  performance
during the test phase would indicate that the participant had
internalized some true aspects of the task structure.

Behavioral Analysis
Participants responses were assigned to either  the CTS or
STS based on whether one of the two colors keys or shapes
keys was pressed, respectively. Because we were interested
in  TS  selection,  it  was  necessary  that  participants  knew
which keys corresponded to which features by the beginning
of the test phase. To ensure this, we coded each response as
either  conforming  or  not  conforming  to  one  of  the  two
dimensions of the stimulus and excluded participants whose
average  stimulus conformance fell  below 75% during the
test phase. This exclusion criterion ensured that all analyzed
participants  knew the  two appropriate  responses  for  each
stimulus (e.g. either the red or circle keys for a red circle) 

Figure  2:  Summary  of  learners  (blue)  and  non-learners
(red).  (a) Output of regression predicting participant choice
by  current  context  and  context  history.  (b) Participant
accuracy as a function of trials since objective (latent) TS
switch. Each point is an individual participant's accuracy at
that delay.  (c) Clustering of participants using k-means on
participants  accuracy  with two centroids  initialized  at  .49
and .51.  (d) Sum of squared  errors  for  different  k values
with random initialization averaged over 1000 iterations. 

and only had to determine the operating TS to successfully
respond. Of our 49 participants, 4 were excluded based on
this criterion. All  remaining participants conformed to the
stimulus >90% of the time. For the remaining participants,
we collapsed their responses  from the four choices to the
two TSs resulting in a binary choice vector across trials.

Our analysis was principally concerned with how people
weighed the probabilistic information potentially relevant to
TS  selection.  Therefore  it  was  necessary  that  behavior
related  in  some  way to  task  variables.  We used  k-means
clustering  to  divide  the  participants  based  on  overall
accuracy, resulting in a clear separation between two groups
of participants: 24 “learners” and 21 “non-learners” (Figure
2c).  While  we  presume  that  there  is  structure  in  all
participant's  behavior,  this  paper  is  solely  exploring  the
correspondence between task structure and behavior, rather
than  a  complete  evaluation  of  participant  behavior.
Modeling work was therefore restricted to the learners.

Prior to modeling we fit mixed-effects logistic regressions
to  both  groups  to  assess  the  impact  of  context,  context
history and prior choice on TS selection.

Computational Modeling  Optimal TS inference during 
test can be formalized as Bayesian inference over 
probabilistic cues and task history. The optimal prior over 
TSs on trialt is proportional to the posterior over TSs after 
trialt-1. Specifically, the prior is the product of the transition 
probability matrix between TSs and the posterior vector 
over TSs. In other words, if the person was absolutely 
confident in the TS on trialt-1, then the prior conforms to the 
transition probabilities associated with that TS; if the person
was completely unsure on trialt-1, the prior over TSs is 
uniform. This prior information is then combined with the 
stimulus position’s likelihood under each TS’s positional      
distribution to arrive at a posterior over TSs on each trial.

Our  main  hypothesis  is  that  most  participants  will
integrate both transition probabilities and positional 
distributions to select TSs, but individuals may be biased in
their weighting such that their choices unequally favor the
probabilistic cue. This is a soft form of base-rate neglect,
where the prior is down-weighted in favor of the likelihood.
Our model (the bias-2 observer, below) instantiates this idea
by fitting two variables,  r1 and  r2, which together define a
participant's transition probability matrix. 

We  can  define  a  number  of  cases  corresponding  to
different inference strategies: if r1  and r2  equal .9 (the true
recursive probability) the participant is Bayes optimal; if r1

and  r2   are  less  than  .9  the  participant  overweights  the
probabilistic cue (with r1  = r2  = .5 being the special “base-
rate  neglect”  case);  if  r1  and  r2   are  greater  than  .9  the
participant  overestimates  the  transition  probabilities.  In

P(TS)t=
( r1 (1−r2)

(1−r1) r2
)⋅(P(TS1)t−1

P(TS2)t−1
)∗(P(context t|TS1)

P(context t|TS2))
N

aa

c

b

d
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reality,  the transition matrix should be symmetric,  but we
estimate the transitions associated with each TS separately
to allow for participant bias such that they prefer to choose
one TS over the other without any evidence.

Simpler  models  are  possible  by  fixing  some  of  the
parameters. We contrast the bias-2 observer to three related
models:  one  where  the  transition  matrix  is  forced  to  be
symmetric (bias-1), an optimal observer where the transition
matrix is fixed based on the training run (optimal),  and a
base-rate  neglect  model  with  a  fixed  transition  matrix  as
defined above (base-rate neglect). 

The likelihood on each trial was calculated based on TS
positional distributed, which were defined by the mean and
standard deviation for each TS observed during the training
phase. While this assumption is optimistic in regards to the
task statistics participants encoded during training, as long
the  participant's  estimation  errors  are  not  systematically
biased  away  from  the  true  statistics,  the  models  should
reflect participant performance in the aggregate.

Each  model  resulted  in  a  vector  of  trial-by-trial  TS
posteriors for the testing phase of each participant. While an
optimal decision maker would select the most likely TS, we
assume some noise  in  translating  posterior  estimates  into
action.  Thus we fit  an  ε  parameter  to  each  model  which
reflects  the  probability  of  randomly  choosing  a  TS.  This
lead to a final vector of trial-by-trial TS choice likelihoods,
which were used to fit each model. 

 Individual participant parameter estimates were fit using
python's  lmfit  module’s  L-BFGS  method,  with  the  cost
equal  to  the  -log  likelihood  of  that  participant’s  TS
selections.  Model  selection  was  accomplished  using
Bayesian information criterion (BIC: Schwartz, 1978), and
by fitting the models on either the first or last half of the
data  and  testing  on  the  left  out  half.  When  discrete  TS
choices were needed, they were defined by the maximum
likelihood on each trial across the posterior.

We  were  also  interested  in  whether  more  difficult
decisions were related to reaction times (RT), as predicted
by a number of studies relating choice confidence and RT
(e.g.  Henmon,  1911;   Roitman  &  Shadlen,  2002).  We
defined a trial-by-trial estimate of model choice confidence
based  on  the  average  distance  from  .5  across  the  TS
posteriors,  ranging  from 0  (indifference)  to  1  (certainty).
Because there were only two possible TSs, this is equivalent
to  calculating  the  distance  from  the  choice  boundary
between the two TSs. We assessed this relationship with a
mixed-effects linear regression, using the lme4 package.

Results
Context  and  aspects  of  context  history  significantly
predicted  TS  choice  for  learners  (p  <  .001),  but  not  for
nonlearners  (Figure  2a).  In  addition,  prior  choice  was
significantly  predictive  in  both groups.  When included  in
the same model, prior choice abolished the effect of context
history on participant choice in the learner group.
  Model comparison across the population showed that the
bias-2 observer was a significantly better fit than any of the 

Figure  3:  Percentage  of  trials  for  each  of  the  12  vertical
position bins where responses reflected STS selection. The
stimulus was never shown exactly at the midline. The purple
line  shows  the  average  percentage  chosen  across  all
participants.  The  teal  lines  show  the  bias-2  and  optimal
model  performance.  Though  not  shown  the  bias-1  lies
between these two curves. Individual participants curves are
shown in light gray. (Inset) 5 example participant fits.

comparison models (Table 1). Moreover, individual analysis
showed that both the  bias-2 and  bias-1 observers fit better
than  the  base-rate  neglect  or  optimal  models  for
participants.  Converting  the  bias-2  posteriors  into  TS
choices,  we found that  model  choices  matched  individual
participant's  choices  well  (μ=87.6%,  σ=4.5).  Competing
models  were  also  relatively  successful  at  capturing
participant  choices  (bias-1:  μ=86.1%,  σ=5.0;  optimal:
μ=82.7%, σ=5.3%). Each model's likelihood for individual
participants is shown in Figure 2.

Parameter  estimates  showed  no  systematic  preference
for  one  TS  over  another  as  measured  by  the  parameter
estimates of r1 (μ=88.9%, σ=13.8) and r2 (μ=86.8%, σ=16.9).
Overall,  the  population  average  transition  matrix  is  quite
similar  to  the  true  recursion  probability  of  90%,  though
there  is  a  slight  population-wide  bias  to  overvalue  the
stimulus's vertical position. However, while this population-
wide estimate is  close to the true statistics  (and therefore
close  to  optimality),  there  is  incredible  variability  across
participants  indicating  that  the  population  summary  may
mask consistent inferential biases that are distributed around
an optimal strategy. While we interpret these differences as
relation to biases in the TS inference process, it is possible
that  they  instead  stem  from  individual  differences  in
encoding the environmental  structure,  which would affect
TS inference. To address this we looked at the participant-
reported estimates of the task statistics during a post-task
questionnaire.  These  estimates were  less  accurate  (STS:
μ=68.2%,  σ=21.5;  CTS:  μ=70.6%,  σ=19.8)  than  the
parameter estimates and were not significantly related to the
bias-2 observer  parameter estimates (CTS:  r = -.13(24),  p
= .53; STS: r = .25(24), p = .23 ).  

2042



Table 1: Model BIC across participants, n = 18,906

Model BIC
Bias-2 11905
Bias-1 12841
Optimal 14470
Base-Rate Neglect 18167

To visualize the model fits, we calculated the proportion
of  times  participants  selected  the  STS  at  each  vertical
position (Figure 3). All models predict that the STS should
be  chosen  more  frequently  for  higher  contextual  values.
Also shown are individual traces (in gray) highlighting the
large  heterogeneity  in  individual  performance  as  well  as
example individual bias-2 fits (inset), which demonstrate the
flexibility  of  the  model  to  capture  these  large  individual
differences. 

Finally, decision confidence as estimated by bias-2 was
inversely  related  to  RT (β  =  -.35(.01),  t  =  -25.50).  The
regression predicts that when choice confidence equaled 1,
participants responded 254 ms faster than when it equaled 0.
Random effects analysis showed that this trend was true for
all  but  one  subject.  Five representative  participants  are
shown in Figure 4.

Figure  4:  Two  sample  participant  reaction  times  plotted
against the  bias-2 model confidence. 0 indicates that  both
CTS  and  STS  had  a  posterior  probability  of  .5,  while  1
indicates that either CTS or STS had a posterior probability
of 1. Individual regressions are also shown. 

Discussion
Using  a  novel  task-switching  task,  we  investigated  how
people  integrate  probabilistic  evidence  in  the  service  of
task-set  (TS)  selection.  We  found  that  of  the  people
classified as “learners”, most based their decisions on both
the probabilistic cues and transition probabilities, consistent
with  their  internalizing  the  latent  structure  of  the
environment. On the population level, participants appeared
to correctly identify the true statistics of the environment,
giving the impression that they behaved in accordance with
optimal  Bayesian  inference.  However,  individual
participants  differed  greatly  in  their  weighting of the two
sources  of  information,  such  that  some  overvalued  the
probabilistic cue when making their choice. 

The  importance  of  this  distinction  is  particularly  clear
when predicting RT from model estimates of trial-by-trial
choice  confidence.  As  choice  confidence  is  a  continuous

metric, it is particularly sensitive to specific trial sequences,
as well as parameter estimates. During test, each trial’s TS is
estimated based on the encoded transition probabilities, the
posteriors  over  TSs  on  the  previous  trial,  and  the
probabilistic  cue.  Thus  it  is  imperative  to  have  an
individual-specific  estimate  of  the  encoded  transition
probabilities  to  analyze  trial-by-trial  performance.  In  this
task, the estimate of model confidence inversely related to
RT.  This  parameter  was  defined  by  the  absolute  distance
from the choice boundary between the two TSs, suggesting
that  this  distance  may  relate  to  the  speed  of  evidence
accumulation  in  a  way  analogous  to  perceptual  decision
tasks (Roitman & Shadlen, 2012). Evidence accumulation in
higher-level decision making has been suggested before by
Shadlen & Kiani (2013), where they forward the idea that
accumulators may serve as a general algorithmic description
of many cognitive computations. The relationship between
RT and choice confidence would support this description.

A related  idea  is  that  RT relates  to  decision  conflict.
Difficult  decisions are,  by definition,  closer  to the choice
boundary indicating that the evidence does not clearly favor
a particular action. On a neural level this conflict may stem
from the concurrent representation of multiple TSs which 
must  compete  in  a  winner-take-all  fashion  before  gating
lower-level  actions  (Collins  &  Frank,  2013).  If  this
competition  is  probabilistically  resolved  in  proportion  to
each  TSs  representational  strength,  this  idea  is  just  a
restatement  of  evidence  accumulation  for  mutually
exclusive alternatives. 

The  best  fit  model  had  two  free  parameters,  which
together represent a bias towards the STS or CTS (reflected
in  an  asymmetrical  transition  matrix)  and  the  encoded
recursion  probability.  Differences  in  the  recursion
probabilities  may  either  reflect  individual  differences  in
encoding of  the task statistics  or  biased  weighting during
decision-making.  For instance,  if  participants  encoded the
true  transition  probabilities,  but  only  attended  to  the
stimulus position when making a choice, the model would
estimate an “encoded” recursion probability of .5. While it
is  impossible  to  completely  disentangle  these  two
alternatives,  the  lack  of  correspondence  between  the
parameter  estimates  and  the  participant  estimates  on  the
post-task questionnaire suggests a decision bias, rather than
an  encoding  bias.  However,  due  to  the  possibility  that
encoded task statistics are not directly available to semantic
retrieval during the questionnaire, we cannot rule out either
possibility. 

Regardless of whether variability is linked to encoding or
the  decision  process,  an  obvious  question  emerges:  what
underlies  these  individual  differences?  Participants
undoubtedly arrived at the experiment with different prior
expectation  for  the  kinds  of  rules  that  may  be  operating
within  a  psychology  experiment.  While  we  attempted  to
normalize their expectations by orienting them to the TSs of
interest  (shape or color),  the prior expectations for higher
order  rules  may  have  prevented  some  people  from
appropriately  integrating  certain  information.  This  may
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partially explain why some people were unable to learn any
rule at all - their prior beliefs constrained the search space,
preventing the encoding of the relevant variables.

Similarly, early identification of a particular pattern may
have stifled later learning - a type of confirmation bias that
may have attentional roots. Participants who identified the
relationship  between  TS  and  vertical  position  may  have
been  less  motivated  to  search  for  more  complicated
relationships. While we expect that the relationship between
transition  probabilities  and  TS  selection  relates  more  to
unconscious statistical reasoning than explicit rules, it may
be that explicit adherence to a particular rule overwhelmed
other  potential  factors.  In  addition,  lower  level  processes
like  perseverance  may  compete  with  these  cognitive
strategies,  as  suggested  by  the  significant  relationship
between  prior  choice  and  TS  choice  in  the  non-learner
group. Further work exploring their effects may refine our
understanding of TS selection and allow us to account for
the behavior of the substantial portion of non-learners.

In this work we compared model choices to participants
with the simple maximum likelihood linking function. Our
success in fitting participants without relying on a softmax
rule indicates that this decision behavior may deviate from
the probability  matching widely  reported  in  the  decision-
making  literature  (Erev  &  Barron,  2005).  From  the
perspective of hierarchical  reinforcement learning, there is
no particular  reason  to believe that  a  single decision rule
underlies decision-making at various levels of abstraction. It
is possible that TSs are selected by a qualitatively different
process  than  lower-level  action  selection,  as  proposed  by
Collins  & Koechlin  (2012).  One alternative  hypothesis  is
that higher-order action constructs like TSs are simply less
noisy than lower-order decisions. Conflict resolution would
consistently favor the stronger (more supported) TS, leading
to  the  appearance  of  maximization  behavior  without
appealing to fundamentally  different  computations.  Future
work could pursue this hypothesis by selectively degrading
the observable evidence that contributes to TS selection. 

Conclusion
We  have  shown  that  people  can  successfully  leverage
probabilistic information to infer a decision-relevant world
state. While the group results seem to indicate that people
act  in  accordance  with  Bayesian  optimality,  individual
analysis  reveals  large  heterogeneity  in   the  inference
strategy. The bias-2 model was able to capture much of this
variation, suggesting that TS inference can be viewed as a
biased integration over multiple information sources.
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