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Abstract

Vorticity-based modeling of stratified flows

by

Mohammad Amin Khodkar

Within the present investigation, the broad span of applications of the vorticity-based

modeling concept for stratified flows, based on the simultaneous use of horizontal and

vertical momenta equations in the form of vorticity balance principle, is studied in detail.

Towards this objective, this approach, originally introduced by Borden and Meiburg [Z.

Borden and E. Meiburg, Phys. Fluids 25 (10), 101301 (2013); Z. Borden and E. Meiburg,

J. Fluid Mech. 726, R1 (2013)], for gravity currents propagating into unstratified am-

bients and internal bores traveling at the interface of two-layer fluids, respectively, is

extended to various well known stratified flow problems, in the following. These flows

normally involve several fronts which can be analyzed according to the quasisteady con-

servation laws of mass and momentum by appropriate shift in the reference frame, or

possibly unsteady sections for which the flow cannot be rendered quasisteady by any fi-

nite number of changes in the reference frames. The analyses of various flow components

are then superimposed and matched to obtain the whole flow field. It is also demon-

strated that under certain conditions the propagation of gravity currents (or intrusions)

can lead to the formation of interfacial perturbations in the form of rarefaction waves or

internal bores, which are a source of unsteadiness, and can substantially impact the flow

dynamics as well as its energy budget.

Enforcing the conservation laws for horizontal and vertical momenta concurrently,

enables us to avoid employing energy-based closure assumptions invoked by previous peer

models. Consequently, the assessment of flow energetics becomes plausible, which can be

vii



utilized to investigate the validity of the energy-related arguments made by other authors.

Furthermore, the predictions of the current study obtained by detailed parametric studies

are compared to the results of our two-dimensional direct numerical simulations as well

as the theoretical and experimental findings of earlier investigations, where very good

agreement is observed with regard to all flow properties.
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Chapter 1

Introduction

Gravity currents represent a special class of predominantly horizontal flows that form

due to hydrostatic pressure differences resulted by density gradients in a gravitational

field [1–4]. They comprise a broad range of atmospheric and oceanic phenomena, such

as turbidity currents, powder snow avalanches and thunderstorm outflows [3–7]. Grav-

ity currents can be heavier or lighter than the ambient fluids, and respectively, travel

along the bottom or top boundaries, or they can propagate horizontally at intermediate

depths, when their densities fall in between the minimum and maximum density of the

ambient. The latter cases, namely, intrusions or intrusive gravity currents, occur in a

variety of atmospheric and oceanic situations, and have been vastly studied theoretically,

experimentally and numerically by previous investigators [8–16].

The development of simplified models for predicting the front velocity of such currents

has a long history, dating back to the pioneering work of von Kármán three quarters of a

century ago [17], as well as subsequent investigations by [1, 8, 14, 15, 18]. As a common

feature, all of the above models are based on the integral laws for the conservation of mass

of the different fluids, and typically the conservation of overall horizontal momentum. An

energy-related empirical argument is then employed along a certain streamline in order

to quantify the head loss across the gravity current front, so that a closed system of

algebraic equations is obtained. The key difference among the individual models lies in
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Introduction Chapter 1

Figure 1.1: Schematic of a gravity current of thickness h propagating with velocity U
into a channel of depth H, in a reference frame moving with the current front.

where this energy argument is invoked.

More recently, an alternative approach for modeling Boussinesq gravity currents was

proposed by [19], cf. Fig. 1.1. Starting from the Euler equations for the conservation of

horizontal and vertical momenta, the authors eliminate the pressure variable by focusing

on the vorticity form of the Euler equation, thereby avoiding the need for a head loss

closure assumption. They furthermore assume that the flow is steady in the reference

frame moving with the current front, and that the gravity current fluid is at rest in this

reference frame. In integral form, the authors thus obtain for the control volume BCDE

∮
ωu · n dS =

x
−g′∂ρ

∗

∂x
dA , (1.1)

where ω and u represent the vorticity normal to the plane and the velocity vector,

respectively, and g′ is the reduced gravity defined as g(ρg − ρa)/ρa. ρ∗ denotes the

dimensionless density (ρ−ρa)/(ρg−ρa). dA, dS and n indicate a differential area within

the control volume, a differential length along the boundaries of the control volume, and

the unit outer normal vector to the control volume boundaries. The equation hence

states that for a steady solution to exist, the rate at which vorticity is being convected

2



Introduction Chapter 1

out of the control volume across boundary BE has to equal the rate at which it is being

generated within the control volume by baroclinic production. The vorticity outflux can

be evaluated as the vortex sheet strength U2 times its principal velocity U2/2 [20]. Thus

the integral form of the inviscid vorticity conservation equation immediately leads to

1

2
U2

2 = g′h . (1.2)

When combined with the mass conservation equation for the ambient stream

UH = U2(H − h) , (1.3)

we thus obtain the gravity current velocity as

U√
g′H

=
√

2α(1− α) , (1.4)

where α = h/H. This vorticity-based approach yields results that are different from, but

quantitatively similar to those obtained with the model of [1]

U√
g′H

=

√
2− α
1 + α

(1− α)α . (1.5)

In spite of their quantitatively similar predictions, there exist a few subtle differences

between the models of [1] and [19], on which we briefly comment in the following.

3



Introduction Chapter 1

1.1 Remarks on the commonalities and differences

of Benjamin’s and the vorticity model

Both [1] and [19] aim to establish relationships between the flow properties far up-

and downstream of the gravity current front, by invoking integral conservation laws.

Towards this end, both models make certain assumptions such as steady, uniform parallel

flow far up- and downstream, slip top and bottom walls, a current that is at rest in the

moving reference frame, and a sharp interface. These are, of course, simplifications

of the true experimental situation, which is typically unsteady, dissipative and with a

diffusive interface. Both models satisfy the integral form of the continuity equation for the

ambient fluid, and both models satisfy the integral conservation equation for horizontal

momentum, without viscous forces along the top and bottom walls. Up to this point,

the models are identical.

The difference arises in how a third equation is obtained. [1] accomplishes this by

employing Bernoulli’s equation along the streamline upstream of the stagnation point,

meaning that a local form of the inviscid horizontal momentum equation is employed si-

multaneously with the integral form of the horizontal momentum equation. By evaluating

Bernoulli’s equation along the upper wall, it is then shown that a head loss exists, unless

h/H = 0.5. While the model assumes hydrostatic pressure profiles far up- and down-

stream of the gravity current front, it makes no attempt to incorporate the conservation

of vertical momentum across the gravity current front, where the flow is nonhydrostatic

as the ambient fluid is accelerated upwards near the front and subsequently turned back

into the horizontal direction by the upper wall, with implications for the pressure profile

along this wall.

The vorticity model takes a different approach in order to obtain a third equation.

It incorporates the principle of vertical momentum conservation by writing the integral

4



Introduction Chapter 1

form of the inviscid vorticity conservation equation between the up- and downstream

boundaries, as discussed above. By combining this integral vorticity equation with the

integral continuity equation we are able to determine the front velocity of the gravity

current without any knowledge of the pressure field. This finding is consistent with the well

known fact that in two-dimensional numerical simulations, the gravity current velocity

can be determined from the streamfunction-vorticity form of the Navier-Stokes equations,

without solving for the pressure [21]. The observation that the front velocity is solely

a function of the conservation of mass and vorticity demonstrates the importance of

incorporating vertical momentum conservation into the derivation. Once the front and

ambient velocities have been determined from the integral conservation laws for mass

and vorticity alone, the vorticity model evaluates the pressure variable directly from

the integral conservation relation for horizontal momentum, without invoking Bernoulli’s

equation anywhere in the flow. We note that by employing the integral form of the inviscid

vorticity equation, the vorticity model neglects the diffusive spreading of the interfacial

vortex sheet, as well as any diffusive flux of vorticity across the top and bottom walls. For

gravity currents propagating into shear, [22] compared DNS results for the traditional

slip condition along the walls ∂u
∂y

= 0 with those for a no-flux condition ∂2u
∂y2 = 0, and

found the differences to be negligible.

An interesting observation was made by an anonymous referee: If one were to in-

tegrate Bernoulli’s equation around the closed curve BOCDEB, assuming hydrostatic

pressure along the in- and out flow boundaries, one recovers equation (1.2). However,

this does not imply that the vorticity model effectively employs Bernoulli’s equation.

Rather, it merely reflects the fact that the front and ambient velocities can be evaluated

without any knowledge of the pressure field, and that they do not uniquely determine

the pressure field, so that different pressure fields can be constructed that are compatible

with these given front and ambient velocities. For example, if identical headlosses exist

5



Introduction Chapter 1

along the upper and lower walls, one still recovers equation (1.2). Hence, the correct way

of evaluating the pressure is not from Bernoulli’s law, but from the integral horizontal

momentum equation for the entire control volume. It is easily shown by substitution

that the pressure values obtained from integrating Bernoulli’s law violate the integral

conservation equation for horizontal momentum, except for the case of h/H = 0.5.

We can hence summarize the key commonalities and differences between the models

by [1] and [19] as follows: The vorticity model is based on the three integral conservation

laws for (i) mass of the ambient fluid, (ii) horizontal momentum, and (iii) vorticity. It

does not apply Bernoulli’s law anywhere, either explicitly or implicitly. The model of

[1], on the other hand, is based on (i) the integral form of the continuity equation for

the ambient fluid, (ii) the integral conservation law for horizontal momentum, and (iii)

Bernoulli’s equation along the stagnation point streamline. As mentioned above, despite

these subtle differences, the quantitative predictions by the two models are quite close

to each other, and they can be viewed as somewhat different approximations to the true

experimental situation.

In the following, we extend the vorticity-based modeling approach introduced by

[19] and [25] to the gravity currents and intrusions propagating into various background

ambients, each of which may include different steady and unsteady sections. Chapter

2 studies intrusions traveling into two-layer statified ambients, while it investigates the

possibility of formation of internal bores, which can substantially influence the dynamics

of the flow. It also analyzes the energy budget of the flow, and evaluates the rate of

conversion of energy between different flow compartments. Chapter 3 applies the vorticity

modeling concept to flows which cannot be rendered quasisteady by any appropriate shift

of the reference frame, owing to the existence of rarefaction waves. In chapter 4, the

propagation of gravity currents into two-layer fluids is investigated, whereas the presence

of stratification adds to the complexity of the flow, as it can lead to the emergence
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of upstream disturbances in the form of expansion wave or internal bore leading an

expansion wave. In chapter 5, we develop a vorticity model for intrusive gravity currents

propagating into linear stratifications. This model relies on a second-order PDE suggested

by [48] for the vertical displacement of the streamline between the up- and downstream

flows, as a function of its vertical inflow location. In all the chapters, the predictions of the

present study are compared to the corresponding DNS results as well as the theoretical

and experimental data of previous works. Finally, chapter 6 presents the summary of all

the findings, gives some concluding remarks, and describes the outlook of this model.

7



Chapter 2

Intrusive gravity currents into
two-layer stratified ambients

Intrusions are conventionally produced in the laboratoy via a lock-release or lock-exchange

procedure. The simplified configuration of such procedure is shown in Fig. 2.1. Here, ρc

denotes the intermediate density of the intrusion fluid, while the densities of the lower

and upper ambient layers are given by ρl and ρu, respectively. Upon removal of the

gate, the intrusion develops and propagates to the right along the horizontal interface.

Simultaneously, return flows evolve along the top and bottom walls in the form of left-

propagating gravity currents.

The rich history of research into the dynamics of intrusions dates back at least to

the investigations by [8] and [9], who studied intrusions propagating along sharp, thin

interfaces. [8] explore both bottom and interfacial currents propagating into two-layer

stratified ambients. In a reference frame moving with the intrusion front, they consider

the intrusion fluid to be at rest, consistent with the pioneering work of [1] who analyzed

gravity currents moving into a uniform fluid. Furthermore, they assume that the inter-

face ahead of the intrusion remains undisturbed. The authors enforce the conservation of

mass in each of the two ambient layers, as well as the conservation of overall horizontal

momentum. In addition, they assume that energy is conserved, so that Bernoulli’s equa-

8



Intrusive gravity currents into two-layer stratified ambients Chapter 2

Figure 2.1: Schematic of an intrusion current generated by a lock-release process: Upon
removal of the gate, an intrusion of intermediate density ρc forms and propagates to the
right along the horizontal interface separating heavy fluid of density ρl from light fluid of
density ρu. Concurrently, left-propagating light and dense gravity currents emerge along
the upper and lower walls, respectively. The dotted lines indicate the control volumes
for which mass and vorticity conservation equations will be formulated below.
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tion holds along each of the three interface segments. When solving the resulting system

of equations for the ambient layer depths, the authors find that for a range of initial layer

depths and fluid densities, the solution is nonunique, so that an additional criterion is

required to determine which solution will be seen in the experiment. Based on earlier

studies of dissipative currents, the authors hypothesize that the energy-conserving theo-

retical solution that maximizes the volumetric flow rate is the one that will be observed

experimentally. In this way, they obtain good agreement with corresponding experiments

in terms of the intrusion front velocity. We note, however, that these experiments con-

sider only symmetric intrusions, for which the interface ahead of the intrusion remains

undisturbed. Interestingly, the theoretical arguments developed by [8] are not limited to

Boussinesq flows, but hold for arbitrary density ratios.

[9] carry out experiments for the doubly symmetric configuration, in which the am-

bient layers have equal depths and the intrusion density is the average of the ambient

densities. They focus especially on the influence of the thickness of the interface ahead

of the intrusion. [10] extend this line of research to particle-driven intrusions, for which

they compare experimental observations with predictions by theoretical models that ac-

count for the effect of sedimentation. Further experiments on intrusive gravity currents

by [11] provide information on the detailed structure of the flow. The authors find that

an approximately energy-conserving intrusion head is followed by a wake region, which

is characterized by large billows that result in significant mixing and dissipation. In the

tail region, by contrast, little mixing occurs and the velocity is approximately uniform.

The issues of mixing and entrainment are studied further by [23] for situations in which

successive intrusions propagate into a stratified ambient, so that the interfacial region

gradually widens. The formation of internal and solitary waves in such configurations is

investigated by [12]. A first highly resolved computational investigation into the dynam-

ics of intrusions by [24] reproduces many of the experimentally observed features and

10
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allows for a detailed evaluation of the various components of the energy budget.

[13] simplify the theoretical approach of [8] for situations in which the density con-

trasts among the various fluids are small, so that the Boussinesq assumption can be

invoked. They define the dimensionless parameters ∆

∆ =
du − dl
H

, (2.1)

which represents the relative difference in the ambient layer thicknesses, cf. Fig. 2.1, as

well as ε

ε =
ρc − ρ̄
ρl − ρu

, (2.2)

which indicates the deviation of the intrusion density from the so-called equilibrium

density ρ̄ = ρlhl+ρuhu
H

. The case of ε = 0 corresponds to the situation in which the

intrusion density equals the depth-weighted mean density of the two ambient layers. The

authors point out that for both the doubly symmetric case with ∆ = ε = 0 and the

simple symmetric case, also referred to as the equilibrium case, with ∆ 6= 0 and ε = 0

the interface ahead of the intrusion remains flat. On the other hand, when ε 6= 0, a

leading wave forms along the interface ahead of the intrusion front. This leading wave

affects the energy budget of the flow, so that the discrepancy between predictions by

the original, energy-conserving theory and experimental observations widens. For small,

nonvanishing values of ε, [13] conduct a perturbation analysis which results in improved

agreement with experimental data.

[14] further investigate both symmetric and nonsymmetric intrusions. They confirm

the finding by [13] that the interface ahead of the intrusion remains undisturbed for ε = 0.

In addition, based on the assumption that all of the initially available potential energy

is converted into kinetic energy, they find that for ε = 0 the intrusion velocity has a

11
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minimum, and that for ∆ = 0 the speed of the intrusion does not depend on its density.

The leading wave traveling ahead of the intrusion extracts relatively little energy from

the flow, as will also be discussed in section 2.5. Consequently, [14] still yields acceptable

results even far from the equilibrium condition.

[15] develop a theoretical model that accounts for the influence of the upstream leading

wave in nonequilibrium intrusion flows. They accomplish this by coupling the mass and

streamwise momentum conservation equations for the steady-state flow in the vicinity of

the intrusion front to the two-layer shallow water equations for the propagating upstream

interfacial wave. This approach, which requires an empirical assumption regarding the

wave amplitude, allows them to predict the velocity of nonequilibrium intrusions and to

obtain good agreement with experimental observations.

A common theme in the above investigations is the central role of energy consid-

erations. In addition to imposing the conservation of mass and horizontal momentum,

existing theoretical models commonly assume either the validity of Bernoulli’s equation

along certain streamlines, or the conversion of the entire initially available potential

energy into kinetic energy. As described in chapter 1, the alternative vorticity-based

approach of [19] and [25] for modeling stratified flows, is based on enforcing the con-

servation of vertical momentum in addition to mass and horizontal momentum, rather

than an energy argument. In this way, energy is free to dissipate at a rate dictated by

the conservation of mass, horizontal and vertical momenta, consistent with the principles

governing incompressible flow. For many models of stratified flows the conservation of

vertical momentum can be enforced via the vorticity equation, which typically gives rise

to algebraic relationships along individual interfaces between fluids of different densities.

In this way, [19] and [25] are able to develop a new class of models for gravity currents

and internal bores that yield better agreement with high-resolution, Direct Numerical

Simulations (DNS) than earlier models. As pointed out by the authors, these vorticity-

12
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based models enable us to analyze the energy budget of the flows a posteriori, after the

flow configuration has been determined, so that the rate of energy dissipation can be

evaluated explicitly, rather than be assumed a priori.

Within the present investigation, we will apply the inviscid vorticity-based model-

ing approach to both equilibrium and nonequilibrium intrusions in the Boussinesq limit,

while the leading wave propagating ahead of the intrusion is treated as a bore. This will

allow us to obtain predictions for the intrusion velocity, for the amplitude and propaga-

tion velocity of the bore, as well as for the thicknesses and propagation velocities of the

ambient counterflows, without the need for empirical, energy-based closure assumptions.

We will compare these predictions both to earlier models by other authors, as well as

to new, two-dimensional direct numerical simulation Navier-Stokes results, and we will

analyze the energetics of the flow fields. This chapter is organized as follows: In sec-

tions 2.1 and 2.2, we develop closed theoretical models for symmetric and nonsymmetric

intrusions, based on the conservation of mass and vorticity only and without invoking

any energy-related arguments. Section 2.3 describes the setup of the corresponding DNS

simulations. Section 2.4 discusses the model predictions for various flow properties, in-

cluding the velocities and thicknesses of all currents and the height and speed of the

leading bore. It also compares these predictions to DNS results, and to earlier theoret-

ical and experimental findings by other authors. In section 2.5 we analyze the energy

budget of the flow, in order to assess the assumptions underlying earlier models. The

influence of the Re and Pe-values in the DNS simulations is discussed in section 2.6.

Section 2.7 summarizes the findings and presents the main conclusions.

13
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2.1 Symmetric intrusions

We return to Fig. 2.1 for a full description of the physical problem under considera-

tion. A tank of length L and height H is divided into two compartments by means of a

vertical gate. The right compartment is initially filled up to height dl with heavy fluid of

density ρl. A lighter fluid layer of density ρu and thickness du is placed above this dense

fluid. The left compartment (the ‘lock’) of length Llock contains fluid of intermediate

density ρc, so that ρu < ρc < ρl.

Upon removal of the gate, the intermediate density fluid forms a right-propagating

intrusion of velocity Uc. Simultaneously, two left-propagating gravity currents emerge

along the top and bottom walls: a light one of density ρu and height hu, and a heavy

one of density ρl and height hl. If these two left-propagating currents have identical

front velocities Ul = Uu, we refer to the intrusion as symmetric or equilibrium, other-

wise it is called nonequilibrium or nonsymmetric [[13–15]]. For symmetric intrusions, no

fluid crosses the line y = dl, which represents a streamline for all times. [13] observe

experimentally that symmetric intrusions form when

ρc =
ρldl + ρudu

H
. (2.3)

[15] demonstrate that this relation is equivalent to what they term the ‘neutral buoyancy

condition’

g′udu = g′ldl , (2.4)

where g′l = g(ρl − ρc)/ρc and g′u = g(ρc − ρu)/ρc. They relate this neutral bouyancy

condition to the formation of two left-propagating gravity currents with identical front

velocities. For the special situation of dl = H/2 and ρc = (ρl + ρu)/2, the flow is geo-

metrically symmetric with regard to y = H/2, and the top and bottom gravity currents
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have thicknesses of H/4 [9, 10, 12, 13].

The symmetric intrusion case is characterized by the five unknowns Uc, Ul, Uu, hl

and hu. Since y = dl represents a streamline, we can solve separately for the flows below

and above this line. For the lower part of the tank, the three unknowns Uc, Ul and hl

are governed by the mass conservation equation within the control volume BCDE (Fig.

2.1) in the reference frame moving with the front of the interfacial current

Ucdl = (Ul + Uc)hl , (2.5)

as well as two vorticity conservation equations for the two fronts, while we assume the flow

is inviscid, Boussinesq and quasisteady [19, 25]. In the reference frame of the interfacial

gravity current, we obtain for the control volume BCDE

g′l(dl − hl) =
1

2

(
Ul + Uc)

2 , (2.6)

and in the reference frame of the bottom current, the conservation of vorticity in control

volume ABEF yields

g′lhl =
1

2

(
Ul + Uc)

2 . (2.7)

Solving these three equations results in

hl =
dl
2
, (2.8)

Uc = Ul =
1

2

√
g′ldl . (2.9)
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Corresponding considerations for the region above y = dl yield

hu =
du
2
, (2.10)

Uc = Uu =
1

2

√
g′udu . (2.11)

This demonstrates that the condition (2.4) formulated by [15] for the formation of sym-

metric intrusions can be derived from the conservation of mass and momentum alone.

At this point, it is useful to introduce characteristic scales for length (xref = H),

velocity (Uref =
√
g′H) and density difference (ρl − ρu), where g′ = (ρl − ρu)/ρc, so that

we can define dimensionless variables of the form

x∗ =
x

H
, (2.12)

U∗ =
U√
g′H

, (2.13)

ρ∗ =
ρ− ρu
ρl − ρu

. (2.14)

In this way, the dimensionless solution for the case of a symmetric intrusion takes the

form

h∗l =
d∗l
2
, (2.15)

h∗u =
d∗u
2
, (2.16)

U∗c = U∗l = U∗u =
1

2

√
(1− ρ∗c)d∗l . (2.17)

Furthermore, equation (2.3) in dimensionless form yields ρ∗c = d∗l . Hence, for symmetric

intrusions the dimensionless interface height equals the dimensionless intrusion density.
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Consequently, we can rewrite equation (2.17) equivalently as

U∗c = U∗l = U∗u =
1

2

√
ρ∗cd
∗
u =

1

2

√
d∗l d
∗
u . (2.18)

Since for the symmetric case the left-propagating gravity currents as well as the intrusion

are effectively half-depth currents in the sense of [1], it follows that they conserve energy.

Hence it is not surprising that for symmetric intrusions the present results agree with

those of earlier investigations by [8], [13], [14] and [15], all of whom had invoked energy

conservation arguments. These theoretical solutions will be compared to experimental

and DNS simulation data in section 2.4.

2.2 Nonsymmetric intrusions with upstream leading

bore

When the symmetry condition (2.4) is not satisfied, the left-propagating gravity cur-

rents along the upper and lower walls will exhibit different front velocities. In the follow-

ing, we will discuss and compare two different models for the resulting nonequilibrium

intrusion. Model 1, depicted in Fig. 2.2, is inspired by the experiments of [13], which

demonstrate the presence of a leading wave propagating ahead of the interfacial gravity

current. In the following, we will model this leading wave as a bore. The alternative

model 2, shown in Fig. 2.3, is based on simulation results from the present study to

be discussed below. It differs from model 1 in that it also allows for the existence of

an internal bore on the faster of the two left-propagating gravity currents, at the same

streamwise location as the front of the slower gravity current. We will discuss the signif-

icance of including this left-propagating bore, later in section 2.4.

In contrast to the five unknowns that fully describe the symmetric problem, nonsym-
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Figure 2.2: Schematic of a nonsymmetric or nonequilibrium intrusion with (ρc−ρu)/(ρl−
ρu) > dl/H. A leading bore travels along the interface ahead of the intrusion, with a
larger velocity than the intrusion itself. The dotted lines indicate the control volumes for
which mass and vorticity conservation equations will be formulated below. We refer to
this model as ‘model 1’ in the text.

metric intrusions give rise to several additional unknown variables. For the leading bore,

these involve the wave speed Ub and the interface height hb downstream of the wave,

as well as the downstream upper and lower layer velocities Ulb and Uub. In addition,

we need to solve for the intrusion velocity Ubc in the region between the gravity current

fronts, so that model 1 is characterized by a total of ten unknown quantities. Hence, ten

independent conservation equations are required for a full description. Model 2 results

in two additional unknowns, viz. U ′u and h′u, compared to model 1.

Corresponding to our earlier analysis of the symmetric case, we can formulate the

equations for the nonsymmetric case by considering the conservation of mass and vorticity

in various control volumes. We begin by focusing on control volume DEFG, in the

reference frame moving with the leading bore. It is worth-mentioning that however we

model this interfacial disturbance propagating ahead of the intrusive gravity current as

a bore, some previous studies such as [15] have treated that as a nonlinear wave. Our

assumption means, we suppose this instability travels with a constant speed and the

ambient interface after it will find a constant height. This is also another simplification,

because some undulations will emerge along the interface, right after this instability.
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Figure 2.3: Alternative model for a nonequilibrium intrusion with (ρc − ρu)/(ρl − ρu) >
dl/H. Here, in addition to leading bore ahead of interfacial gravity current, the faster
propagating gravity current along the upper wall exhibits a bore at the same streamwise
location as the front of the slower gravity current along the lower wall. The dotted lines
indicate the control volumes for which mass and vorticity conservation equations will be
formulated below. We refer to this model as ‘model 2’ in the text.

Regardless, these assumptions look reasonable and yield acceptable results as shown in

sections 2.3 and 2.4. Mass conservation for the upper and lower layers, and vorticity

conservation along the interface, give

Ubdl = (Ub − Ulb)hb , (2.19)

Ubdu = (Ub + Uub)(H − hb) , (2.20)

g′(hb − dl) =
(
Ub +

Uub − Ulb
2

)
(Ulb + Uub) . (2.21)

Equations (2.19) to (2.21) can be applied to both models 1 and 2, without any modifi-

cations. Next, we focus on control volume CDGI for model 1 shown in Fig. 2.2, in the

reference frame moving with the intrusion. The two continuity equations for the upper

and lower layer can be written in straightforward fashion as

(Uc − Ulb)hb = (Uc + Ul)hl , (2.22)

(Uc + Uub)(H − hb) = (Uc + Uu)hu . (2.23)
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Formulating separate vorticity conservation equations along the upper and lower interface

branches requires some additional thought, as we need to determine how the vorticity

inflow from the upstream of cross-sectionGD in Fig. 2.2 and 2.3,
(
Uc+

Uub−Ulb
2

)
(Uub+Ulb),

is divided up among these two interface branches separating ambient fluids. In this

context, a thought experiment is instructive: Imagine that in the initial configuration the

upper and lower fluid layers in the right compartment are separated by an infinitesimally

thin layer of fluid with density ρc, so that there are effectively two separate interfaces

connecting the left-propagating gravity current fronts to the upstream of leading bore. It

is straightforward to write down the individual vorticity conservation equations for these

two separate interfaces. By letting the thickness of this initial, intermediate fluid layer

in the right compartment go to zero, we obtain

−g′l(hb − hl) +
g′l
g′

(
Uc +

Uub − Ulb
2

)
(Uub + Ulb) = −1

2
(Ul + Uc)

2 , (2.24)

g′u(H − hb − hu) +
g′u
g′

(
Uc +

Uub − Ulb
2

)
(Uub + Ulb) =

1

2
(Uu + Uc)

2 . (2.25)

The corresponding equations for model 2 take the form

(Uc − Ulb)hb = (Uc + Ul)hl , (2.26)

(Uc + Uub)(H − hb) = (Uc + U ′u)h
′
u , (2.27)

−g′l(hb − hl) +
g′l
g′

(
Uc +

Uub − Ulb
2

)
(Uub + Ulb) = −1

2
(Ul + Uc)

2 , (2.28)

g′u(H − hb − h′u) +
g′u
g′

(
Uc +

Uub − Ulb
2

)
(Uub + Ulb) =

1

2
(U ′u + Uc)

2 . (2.29)

Control volume BCIJ , in the reference frame moving with the lower gravity current
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front, provides the vorticity equation

g′lhl =
1

2
(Ul + Uc)

2 . (2.30)

For model 2, it gives rise to the additional equations for the conservation of mass and

vorticity for the internal bore of the faster current

(Ubc + Ul)(H − hu) = (Uc + Ul)(H − hl − h′u) , (2.31)

g′u(h
′
u − hu) +

(
Ul +

Ubc − Uu
2

)
(Uu + Ubc) =

(
Ul +

Uc − U ′u
2

)
(U ′u + Uc) . (2.32)

The simulation results to be discussed below indicate that the internal bore of the faster

gravity current is located at the same streamwise location as the front of the slower

current, so that

Ul = Uw . (2.33)

The final two equations are obtained for control volume ABJK, by formulating the

conservation of mass and vorticity in the reference frame of the upper gravity current

front

UuH = (Ubc + Uu)(H − hu) , (2.34)

g′uhu =
1

2
(Uu + Ubc)

2 . (2.35)

Model 1 is completely described by equations (2.19) to (2.25), in addition to (2.30), (2.34)

and (2.35). Model 2, on the other hand, is governed by equations (2.19) to (2.21), along

with (2.26) to (2.35). Note that these respective systems of algebraic equations are closed,

so that they do not require any closure assumptions. Specifically, they were derived

without any considerations of energy arguments. While analytical solutions for these
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systems of nonlinear algebraic equations cannot be obtained under general conditions,

they can be solved numerically in straightforward fashion via using a bisection root solver.

The solutions, rendered dimensionless according to (2.12) to (2.14), will be discussed in

the following. We remark that the numerical solution procedure gave no indication of

multiple solutions anywhere in the parameter regime for models 1 and 2. This is in

contrast to the models employed in the earlier investigations by [8] and [13], which had

obtained nonunique solutions for a range of interface heights and intrusion densities.

2.3 DNS simulations

In order to assess the validity and predictive capability of the above models, we

will present comparisons with earlier models of [8], [14] and [15], as well as with direct

numerical simulations of the unsteady two-dimensional Navier-Stokes equations in the

Boussinesq limit. These simulations were conducted with our code TURBINS, which has

been described and validated in detail by [26] and [27]. TURBINS is a finite-difference

solver based on a fractional step projection method, along with TVD-RK3 time inte-

gration. It solves the dimensionless conservation equations for mass, momentum and

density

∇·u∗ = 0 , (2.36)

∂u∗

∂t∗
+ u∗·∇u∗ = −∇p∗ +

1

Re
∇2u∗ + ρ∗eg , (2.37)

∂ρ∗

∂t∗
+ u∗·∇ρ∗ =

1

Pe
∇2ρ∗ , (2.38)

where eg represents the unit vector in the direction of gravity and t∗ is defined as t/tref ,

where tref = H/
√
g′H. The dimensionless parameters in the form of a Reynolds number

22



Intrusive gravity currents into two-layer stratified ambients Chapter 2

Re and a Péclet number Pe are defined as

Re =
ubH

ν
, (2.39)

Pe =
ubH

D
. (2.40)

As stated earlier, the buoyancy velocity ub is given by
√
g′H, with the channel height

H representing the characteristic length scale. ν and D indicate the kinematic viscosity

and the diffusivity of the density field, respectively. We apply free slip conditions for

the velocity, along with vanishing normal flux conditions for the density field, along all

solid boundaries. The Reynolds and Péclet numbers are set to 12,000 and 30,000 in the

simulations, unless stated otherwise. These fairly high Re and Pe numbers result in a

relatively minor influence of viscosity and diffusion on the current velocities and heights.

The fluid is at rest initially, with the density field specified according to Fig. 2.1 as

ρ∗ =



ρ∗c if x∗ ≤ Llock ,

1 if x∗ > Llock and y∗ ≤ d∗l ,

0 otherwise .

(2.41)

The computational domain has a dimensionless length of 60 and a height of 1, and the

lock length is set to 30. The computational grid has a uniform spacing of ∆x∗ = 0.01

and ∆y∗ = 0.005, which is sufficiently fine not to influence the simulation results.

Figure 2.4 shows the evolution of the doubly symmetric case with dl = H/2 and ρc =

(ρl + ρu)/2. The left-propagating gravity currents along the upper and lower walls and

the right-propagating intrusion all have identical front velocities. For comparison, Fig.

2.5 presents the case of an equilibrium intrusion with ρ∗c = d∗l = 0.3. The slightly different

23



Intrusive gravity currents into two-layer stratified ambients Chapter 2

6040302010 50

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

Figure 2.4: Evolution of the density field for a doubly symmetric intrusion starting from
rest. In dimensionless form, the initial conditions of the problem are ρ∗c = d∗l = 0.5. The
density field varies from ρ∗ = 0 (light gray) to ρ∗ = 1 (black).
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Figure 2.5: Evolution of an equilibrium intrusion for ρ∗c = d∗l = 0.3. While the inviscid
model predicts that the left-propagating gravity currents should have identical front
velocities, the viscous simulation yields slightly different front speeds. For increasing
Reynolds numbers, however, these front velocities are increasingly close to each other.
As predicted by the model, the interface ahead of the intrusion remains undisturbed.
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front velocities of the two left-propagating gravity currents are a consequence of the finite

Reynolds number in the simulation, which implies that the top and bottom currents

effectively have different Reynolds numbers based on their individual heights. This is

confirmed by the simulation results for Re = 3,000, 8,000 and 12,000 shown in frames

c, d and e of Fig. 2.5, which indicate that the front velocities of the left-propagating

currents approach each other as the Reynolds number is increased. Frame f demonstrates

an extreme case with Re = 35,000 and Pe = 100,000, for which the difference in the front

velocities of the left-propagating currents has become quite small. This simulation was

carried out with a resolution two times finer in the horizontal direction and three times

finer in the vertical direction. In spite of the symmetry-breaking due to these slightly

different front velocities, we recognize that the right-propagating intrusion does not give

rise to a leading bore along the horizontal interface.

Figure 2.6 illustrates the case of a nonequilibrium intrusion for ρ∗c = 0.5 and d∗l = 0.3.

In this case, the front velocities of the left-propagating gravity currents along the top and

bottom walls differ substantially. Along the horizontal interface separating the dense from

the light fluid, the advancing intrusion causes the formation of an undular bore that

propagates significantly faster than the intrusion itself. In addition, closer inspection

of the upper gravity current at time t∗ = 50 reveals the existence of a bore near the

streamwise location of the lower current front, consistent with the sketch of model 2 in

Fig. 2.3 above. Additional simulations for a broad range of ρ∗c and d∗l (not shown) confirm

this observation. These DNS results are fully consistent with the earlier experimental

observations of [9], [10], [12], [13] and [14].

In order to obtain accurate values for the front velocities of all currents, we mark

the fluid corresponding to each current by means of a passive scalar (‘dye’), which is

tracked in the simulation as a separate concentration field, with the same Pe-value as

the density field. We can then define the front position x∗f as the location where the local
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Figure 2.6: Evolution of a nonsymmetric intrusion for ρ∗c = 0.5 and d∗l = 0.3. For this
nonequilibrium case, the left-propagating currents have different front velocities, and two
internal waves form: one propagates to the right ahead of the interfacial gravity current,
and the other one travels along the interface of the faster left-propagating gravity current,
at the same streamwise location as the front of the slower current. The locations of these
internal waves are indicated by arrows in the figure.
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Figure 2.7: By marking the fluid of each current with dye, we can evaluate the current
heights and velocities, as described in detail in the text.

dimensionless current height computed as

η∗(x∗, t∗) =

∫ 1

0

c∗d(x
∗, y∗, t∗) dy∗ . (2.42)

first exceeds a value of 0.01. Here c∗d denotes the dimensionless dye concentration, and

η∗ indicates the local height of a current. Figure 2.7 provides examples for tracking the

intrusion and lower gravity current fluids, respectively.

Figure 2.8 shows the front locations as functions of time, for the symmetric and

nonsymmetric intrusions of Figs. 2.4 to 2.6. After an initial transient, each current

propagates with a quasisteady velocity, in spite of continuously evolving interfacial insta-

bilities and mixing. The straight line segments indicate the respective quasisteady front

velocities, obtained by linear fits of the DNS results.

The quasisteady heights of the left-propagating currents are obtained as follows. For

the slower one, we determine the effective height h∗ by evaluating

h∗ =

∫ L∗lock
x∗f

η∗(x∗, t∗s) dx∗

L∗lock − x∗f
. (2.43)
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Figure 2.8: Simulation results for the front locations as functions of time, for the flows
shown in Figs. 2.4 to 2.6. Here, IGC stands for Interfacial Gravity Current, while UGC
and LGC denote Upper Gravity Current and Lower Gravity Current, respectively. The
straight line segments represent the quasisteady front velocities, obtained by linear fits
of the DNS results.
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Figure 2.9: Effective current heights h∗l and h∗u as functions of time, for the flows shown
in Figs. 2.4 to 2.6. The solid and dash-dotted lines indicate the instantaneous heights of
the lower and upper gravity currents, respectively. The dotted horizontal lines indicate
the quasisteady values evaluated at t∗ = 50.
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Figure 2.10: Variation of the (a) front location, and (b) height of the right-propagating
internal bore as a function of time, for the nonsymmetric intrusion shown in Fig. 2.6.

where x∗f indicates the front location of slower left-propagating current and t∗s is chosen

sufficiently large to ensure that the solution is quasisteady. For the faster moving gravity

current, we determine the effective height correspondingly by integrating over the x-

interval from the front of the faster moving current to the front of the slower moving

current, and finally, the interfacial gravity current height can be computed by taking

the integration over the x-interval from L∗lock to the front of this current. Figure 2.9

demonstrates that these effective current heights indeed approach quasisteady values. In

order to compare the DNS simulation results with predictions by the vorticity model, we

employ the current heights at time t∗s = 50, when they have reached quasisteady values.

The velocity U∗b and height h∗b of the right-propagating bore are evaluated as follows.

As the bore propagates along the interface, it deflects this interface upward or downward,

thereby causing a rapid change in ∂ρ∗/∂x∗ along y∗ = d∗l . By starting at the right wall

and sweeping leftward along y∗ = d∗l , we identify the x-location where ∂ρ∗/∂x∗ first

exceeds 0.01, and take this as the location of the bore. Figure 2.10a shows the front
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location of the bore as a function of time, for the nonsymmetric case of Fig. 2.6. After

a brief initial transient, we observe that the bore propagates with a constant velocity. It

also validates that assuming a constant velocity for this instability and treating it like a

bore, is in accordance with the simulations.

From equation (2.42) we can evaluate the local interface height η∗b as function of time.

We can then define the effective bore height h∗b as the average height of the interface over

the x-interval from the bore front location x∗f,c to the interfacial gravity current nose x∗f,b

h∗b =

∫ x∗f,b
x∗f,c

η∗b (x
∗, t∗s) dx∗

x∗f,b − x∗f,c
. (2.44)

where we take t∗s = 50 to ensure a quasisteady result, as indicated by Fig. 2.10b. Re-

gardless of the undular nature of this bore, the average height of the interface behind the

bore reaches a constant value. The deflection in the interface height can be evaluated as

d∗ = |h∗b − d∗l | . (2.45)

2.4 Discussion of results

In the following, we will discuss DNS simulation results and compare them with

predictions by the vorticity model and by earlier models of other authors, as well as with

earlier experimental observations. For the equilibrium intrusion case, where ρ∗c = d∗l , the

vorticity model predictions are based on the symmetric configuration of Fig. 2.1, while

for nonequilibrium cases we employ the model 2 configuration, depicted by Fig. 2.3.

We will also compare model 2 with model 1 at the end of this section. We note that

in the limit of d∗l → ρ∗c , the predictions for the nonsymmetric case smoothly approach

those of the symmetric case for all physical variables. To discuss the physical results,
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Figure 2.11: Phase-space diagram for (a) the intrusion velocity U∗c , and (b) the intrusion
thickness h∗c . Equilibrium intrusions form along the diagonal d∗l = ρ∗c . For a given ρ∗c , the
minimum velocity is seen to occur for the equilibrium intrusion, located on the dashed
diagonal line.

we employ phase-space plots in the ρ∗c , d
∗
l ,-plane. Figure 2.11a shows vorticity model

predictions for the intrusion velocity U∗c . For the case of a doubly symmetric intrusion

with ρ∗c = d∗l = 0.5, the model predicts U∗c = 0.25, which is consistent with the earlier

results of [1] and [19] for energy-conserving currents, when rescaled for half the tank

height. For the limiting cases of (ρ∗c = 0, d∗l = 1) and (ρ∗c = 1, d∗l = 0) the model

predicts front velocities near one half, but not exactly equal to one half. As we will

see below, this reflects the fact that as d∗l → 0 or 1, the bore height does not approach

zero. In other words, the limits of d∗l → 0 and 1 are singular, in the sense that the flow

does not reduce to the case of a full-depth lock-release gravity in a smooth fashion. We

remark that the doubly symmetric case represents a point of symmetry for the figure,

so that an intrusion with (ρ∗c , d
∗
l ) has the same velocity as one with (1 − ρ∗c , 1 − d∗l ).

Recall that [14] found that for a fixed value of d∗l the intrusion speed does not depend

on the intrusion density. The vorticity model shows that in the range 0.2 < ρ∗c < 0.8 the
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Figure 2.12: (a) Phase-space diagram for the ratio of the leading bore speed to the
intrusion speed U∗b /U

∗
c . For equilibrium intrusions U∗b /U

∗
c = 2, consistent with the value

for linear long waves. (b) Phase-space diagram for the interfacial deflection d∗ due to
the leading bore. d∗, defined by equation (2.45), varies linearly with the magnitude of
difference between ρ∗c and d∗l .

intrusion velocity indeed varies only weakly with the density. However, for very small or

large intrusion densities, the intrusion speed depends more strongly on its density. [14]

had furthermore observed that for a fixed intrusion density, the equilibrium configuration

has the minimum propagation velocity. This is confirmed by the contours of Fig. 2.11a,

which have their extrema along the main diagonal. Figure 2.11b shows corresponding

results for the intrusion thickness h∗c . Along the main diagonal ρ∗c = d∗l , we find that h∗c

has a constant value of 0.5, which is consistent with the observation that for ρ∗c = d∗l we

obtain energy-conserving equilibrium intrusions. Away from the diagonal the intrusion

thickness increases, which suggests that it is gaining energy. We will return to this point

in section 2.5.

Figure 2.12a shows the phase-plane diagram for the ratio U∗b /U
∗
c of the bore velocity to

the intrusion velocity, while 2.12b presents corresponding results for the bore height. The
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bore height is seen to vanish along the diagonal ρ∗c = d∗l , consistent with the formation of

equilibrium intrusions. As mentioned above, in the limits of d∗l → 0 or 1, the bore height

does not approach zero, so that the flow does not reduce to a full-depth lock-exchange

gravity current in a smooth fashion.

As pointed out by [13] and [15], in the limit of vanishing height bores travel with the

speed of long waves, so that U∗b /U
∗
c → 2. This is confirmed by Fig. 2.12a. Furthermore,

in the limits of d∗l → 0 or 1, U∗b /U
∗
c barely exceeds one, so that the intrusion moves almost

as fast as the leading bore. We note that all contours in Fig. 2.12b are parallel to the

main diagonal and equidistant, which suggests that the bore height depends only on the

difference between ρ∗c and d∗l , and this dependence is linear, as will be demonstrated more

clearly, later in Fig. 2.17. This is consistent with earlier observations by [14] and [15].

We note that for the relation d∗ = Λ(ρ∗c − d∗l ) the current model predicts approximately

the same value of Λ as those of the two earlier investigations, which corroborates the

assumptions made in those studies.

Figure 2.13 displays phase-plane results for the velocities and thicknesses of the left-

propagating upper and lower gravity currents. For increasing ρ∗c and decreasing d∗l the

bottom-propagating gravity current slows down, due to a decrease in its available po-

tential energy. In fact, for large values of ρ∗c and small values of d∗l the bottom current

can have a negative front velocity, so that it travels to the right. Corresponding results

are obtained for the top current. Note that for d∗l ≈ 1 and small ρ∗c the vorticity model

predicts values of the lower gravity current velocity U∗l > 0.8. This is much larger than

the value of one half for a full-depth lock-exchange gravity current, which again indicates

that the limits of d∗l → 0 and 1 are singular. This singularity may be a consequence

of treating the interfacial disturbance as a bore, which may no longer be valid as we

approach these limits. It furthermore suggests that in this limit the lower gravity current

in the intrusion configuration is gaining energy. We will return to this issue below.
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Figure 2.13: Phase-space diagram for the the velocities (U∗l , U
∗
u) and heights (h∗l , h

∗
u) of

the lower and upper gravity currents. A discussion of the results is provided in the text.
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The behavior of the gravity current height contours is interesting as well. As demon-

strated by Figs. 2.13c and 2.13d, for a constant intrusion density, the isolines are ap-

proximately equidistant over a large range of d∗l which suggests a nearly linear variation

of h∗l and h∗u with d∗l . Again, the limit of d∗l → 1 is informative. For ρ∗c-values near one,

the flow is near equilibrium, so that no sizeable bore forms and the upper ambient layer

becomes dynamically unimportant. Hence the flow becomes similar to a traditional full-

depth lock-exchange problem with current depths near one half, although much smaller

front velocities. On the other hand, for d∗l → 1 but ρ∗c near zero, a large bore forms in the

upper ambient layer and the lower gravity current thickness is reduced to about 0.35. We

note that this problem has an inherent symmetry as a result of the Boussinesq approxi-

mation, in that there is an equivalence between intrusions with ρ∗c and d∗l on one hand,

and those with 1 − ρ∗c and 1 − d∗l on the other. Consequently, the following expressions

hold

U∗c (ρ∗c , d
∗
l ) = U∗c (1− ρ∗c , 1− d∗l ) , (2.46)

U∗l (ρ∗c , d
∗
l ) = U∗u(1− ρ∗c , 1− d∗l ) , (2.47)

h∗l (ρ
∗
c , d
∗
l ) = h∗u(1− ρ∗c , 1− d∗l ) . (2.48)

For the intrusion velocity, Fig. 2.14 compares vorticity model predictions with current

DNS simulation results, as well as with earlier experimental data and model predictions

by other authors. Within the present investigation, we conducted simulations for d∗l =

0.1, 0.2...0.9, as well as for the ρ∗c-values of 0.25, 0.5 and 0.61, in order to be able to

compare with the earlier theoretical and experimental investigations of [14] and [15]. The

figure shows that the vorticity model predictions are close to those of the earlier models by

[14] and [15], and over a substantial range of d∗l fall in between these two models. Within
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Figure 2.14: The interfacial gravity current speed U∗c as a function of the interface height
d∗l , for (a) ρ∗c = 0.25, (b) ρ∗c = 0.50, and (c) ρ∗c = 0.61. Solid lines represent the present
vorticity model predictions, dotted lines show the results of global energy-conserving
model proposed by [14], dash-dot lines indicate the intrusion speed given by [15], and
discrete circles and crosses represent the present DNS results and the experimental data
of [14], respectively. The vertical dotted lines demonstrate the range of validity of the
investigation by [8]. Within this range, their results (not shown here) agree closely with
all other theoretical, numerical and experimental data.
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its narrow range of validity between the vertical dotted lines, the model of [8] yields

predictions in very close agreement with those of the other models, so that we do not

show them in this figure. All four models predict that the minimum propagation velocity

occurs at equilibrium conditions, which is consistent with the experimental observations

of [14] and the present simulation results. Due to the finite Re-values employed in the

DNS simulations, the DNS front velocity data generally fall slightly below the vorticity

model predictions, as will be discussed in further detail below.

Figure 2.15 compares vorticity model predictions with DNS results for the intrusion

thickness as a function of the interface height. For all three ρ∗c-values, h∗c reaches a

minimum value of 0.5 for the equilibrium case. Away from the equilibrium point, the

intrusion thickens. We will discuss this observation from an energy perspective in section

2.5.

The DNS simulations show that the bore propagates with an approximately constant

velocity. Figure 2.16 presents vorticity model predictions and simulation data for the

ratio of the bore velocity to the intrusion velocity U∗b /U
∗
c , as a function of d∗l and ρ∗c .

As explained by [15], in the limiting case where the bore height d∗ → 0, U∗b approaches

the linear long wave speed
√
d∗l d
∗
u. Hence, for near-equilibrium intrusions we expect that

U∗b /U
∗
c → 2, which is confirmed by the vorticity model predictions and DNS results.

Figure 2.17 shows the dimensionless bore amplitude d∗ as a function of the interface

height d∗l for the same three ρ∗c-values. Due to the undular nature of this leading bore,

d∗ is evaluated as a spatial average of the interface height. The present vorticity model

predictions are seen to be in close agreement with the results of [15]. Specifically, both

models exhibit a linear dependence of the bore height on |ρ∗c − d∗l |. Hence the vorticity

model provides theoretical support for the empirical assumptions underlying equation

(4.16) of [15]. Figure 2.18 demonstrates that both model predictions are consistent with

corresponding DNS results.
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Figure 2.15: The interfacial gravity current thickness h∗c as a function of the interface
height d∗l , for (a) ρ∗c = 0.25, (b) ρ∗c = 0.50, and (c) ρ∗c = 0.61. Solid lines indicate
predictions by the present vorticity model, while discrete circles represent the present
DNS results.
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Figure 2.16: Variation of the ratio of leading bore speed to intrusion speed U∗b /U
∗
c with

interface height d∗l , for (a) ρ∗c = 0.25, (b) ρ∗c = 0.50, and (c) ρ∗c = 0.61. Solid lines rep-
resent the present vorticity model predictions, while discrete circles indicate the present
DNS results. The dotted lines show that for d∗l = ρ∗c the model predicts U∗b /U

∗
c = 2, as

expected for linear waves.
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Figure 2.17: Variation of the amplitude d∗ of the right-propagating internal bore with
the interface height d∗l , for (a) ρ∗c = 0.25, (b) ρ∗c = 0.50, and (c) ρ∗c = 0.61. The solid
lines represent the present vorticity model predictions, the dotted lines show results of
[15], and the discrete circles indicate the present DNS results.
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Figure 2.18: Comparison between the present DNS results and model predictions for the
bore height, i.e., the height of the interface between the intrusion front and the leading
bore. The dashed and dotted horizontal lines, which are nearly identical, indicate the
predictions by the present vorticity model and that of [15] for h∗b , respectively. The DNS
results (solid line) represent the interface location from the nonequilibrium simulation in
Fig. 2.6 at t∗ = 50, for ρ∗c = 0.5 and d∗l = 0.3. The bore is undular in nature, and the
DNS interface height fluctuates around an average value that is closely approximated by
the dashed and dotted horizontal lines. We take this as indication of good agreement
between the model predictions and the simulation results.

For the propagation velocities of the upper and lower gravity currents, Fig. 2.19 com-

pares the vorticity model predictions to the DNS results. Again, good overall agreement

is observed. The velocity of each gravity current is a function of its available potential

energy, which scales with the square of the layer height multiplied by its density dif-

ference relative to the intrusion fluid. Both the model predictions and the DNS results

confirm that under equilibrium conditions (ρ∗c = d∗l ) the gravity currents have identical

front velocities. When d∗l < ρ∗c , the lower gravity current has less available energy than

the upper one, so that it travels more slowly. As d∗l increases, the lower gravity current

speeds up while the upper one slows down, until for d∗l = ρ∗c the two velocities become

equal to each other. Beyond this point, the lower gravity current propagates faster than

the upper one.

We now proceed to discuss results for the quasisteady current heights. Figure 2.20
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Figure 2.19: Front velocities U∗l and U∗u of the left-propagating lower and upper gravity
currents, as functions of the interface height d∗l , for (a) ρ∗c = 0.25, (b) ρ∗c = 0.50, and
(c) ρ∗c = 0.61. In this figure, solid and dotted lines represent model-predicted values of
lower and upper gravity currents, respectively, while discrete circles and squares are the
respective simulation speeds of these two gravity currents.
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compares the DNS values for the lower and upper current heights with the corresponding

vorticity model predictions. Again, good agreement between the model predictions and

the simulation results is observed over the entire range of d∗l , for all three values of ρ∗c .

Moreover, as demonstrated by this figure, h∗l and h∗u vary nearly linearly with the interface

height, especially far from d∗l = 0 or d∗l = 1. The slopes of the curves are close to 0.5

(and -0.5 for h∗u), for all values of ρ∗c . Recall that for equilibrium intrusions we had found

h∗l = d∗l /2 and h∗u = d∗u/2.

For ρ∗c = 0.5 and the entire range of d∗l , Fig. 2.21 compares predictions by the

simplified model 1 (Fig. 2.2) with those of the more complete model 2 (Fig. 2.3),

which accounts for the bore in the faster moving gravity current. We observe that the

predictions by the two different models are close to each other, and to the simulation

results, for the intrusion velocity, the gravity current heights, and the ratio of the right-

propagating bore velocity to the intrusion velocity. On the other hand, for the velocity

of the faster left-propagating current, which accounts for the key difference between the

two models, the two model predictions deviate substantially from each other, and the

more comprehensive model 2 yields closer agreement with the DNS simulation results.

2.5 Energy discussion

All of the above information about the flow was gained without any consideration

of energy arguments. This is in contrast to all earlier analyses of intrusion current

models, which had invoked energy-related assumptions in certain parts of the flow field.

Consequently, we can now investigate the energy balance along certain streamlines and

in specific control volumes a posteriori, in order to obtain insight into the validity of the

assumptions underlying earlier models. Toward this objective, we analyze the headloss

along the bottom and top of the tank, denoted by ∆l and ∆u, from D to C and G to I,
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Figure 2.20: Thicknesses h∗l and h∗u of the lower and upper and gravity currents, as
functions of the interface height d∗l , for (a) ρ∗c = 0.25, (b) ρ∗c = 0.50, and (c) ρ∗c =
0.61. Solid and dotted lines represent the present vorticity model predictions for the
lower and upper gravity currents, respectively. Discrete circles and squares indicate the
corresponding DNS results. All of the DNS results were evaluated at t∗s = 50.
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Figure 2.21: Comparison of the predictions by the two nonsymmetric intrusion models
proposed in section 2.2 for the intrusion speed U∗c , the lower and upper gravity currents

speeds U∗l and U∗u , the ratio of leading bore speed to intrusion speed
U∗b
U∗c

, and the lower
and upper gravity currents heights h∗l and h∗u. Solid lines indicate the results predicted
by model 2, while dotted lines represent the results obtained by the simplified model 1.
Discrete circles and squares show the numerical results. For all graphs, ρ∗c = 0.5.
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in the control volume CDGI and in the reference frame of the interfacial gravity current,

shown in Fig. 2.3. We furthermore calculate the headloss inside the intrusion, indicated

by ∆c, from B′ to C ′, along the streamline passing through these two points in the control

volume of BCIJ . We consider the following modified Bernoulli equations in which we

allow for an energy loss or gain to occur

pG +
1

2
ρref (Uc + Uub)

2 = pI +
1

2
ρref (Uc + U ′u)

2 + ∆u , (2.49)

pD +
1

2
ρref (Uc − Ulb)2 = pC +

1

2
ρref (Uc + Ul)

2 + ∆l , (2.50)

pB′ +
1

2
ρref (Ul + Ubc)

2 = pC′ +
1

2
ρref (Ul + Uc)

2 + ∆c . (2.51)

Here p() denotes the pressure at the corresponding location. In equations (2.49) - (2.51),

the velocities are known from the earlier analysis presented in sections 2.1 and 2.2. The

required pressure differences, in the absence of viscous forces along the top and bot-

tom boundaries, can readily be obtained from the horizontal momentum conservation

equations for the respective control volumes, which have the general form

∫
(pi + ρrefU

2
i ) dy =

∫
(po + ρrefU

2
o ) dy , (2.52)

where ρref = ρc, consistent with the Boussinesq approximation, and i and o indicate

inlet and outlet, respectively. By assuming that the pressure is hydrostatic at the in- and

outflow boundaries of the respective control volumes, i.e., far from any front so that the

flow is locally unidirectional, we obtain the following dimensionless expressions for the

corresponding pressure drops
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p∗G − p∗I =

(
U∗c + U ′u

∗)2
h′u
∗ −

(
U∗c + U∗ub

)2(
1− h∗b

)
+ 1

2
ρ∗c
(
1− h∗b − h′u

∗)2

1− h∗b
,(2.53)

p∗D − p∗C =

(
U∗c + Ul

∗)2
h∗l −

(
U∗c − U∗lb

)2
h∗b + 1

2
(1− ρ∗c)

(
h∗b − h∗l

)2

h∗b
, (2.54)

p∗B′ − p∗C′ =

(
U∗c + Ul

∗)2(
h∗b − h∗l

)
−
(
U∗bc + U∗l

)2
h∗b + 1

2
(1− ρ∗c)h∗l

2

h∗b
. (2.55)

We note that pressure and headloss are nondimensionalized by pref = ∆ref = ρcg
′H.

All other variables are scaled according to equations (2.12) - (2.14). By substituting

equations (2.53) - (2.55) into equations (2.49) - (2.51), we obtain the desired headlosses,

as shown in the phase space diagrams of Fig. 2.22. The figure confirms that all headlosses

vanish for ρ∗c = d∗l , i.e. for equilibrium intrusions. For all other situations, the headloss

terms are nonzero for all three currents. Furthermore, the headloss contours again reflect

the symmetry properties observed in the earlier analysis, so that

∆∗c(ρ
∗
c , d
∗
l ) = ∆∗c(1− ρ∗c , 1− d∗l ) , (2.56)

∆∗l (ρ
∗
c , d
∗
l ) = ∆∗u(1− ρ∗c , 1− d∗l ) . (2.57)

Interestingly, we find that all nonequilibrium intrusions experience an energy gain. This

is consistent with our ealier findings, shown in Figs. 2.15 and 2.11b, that h∗c > 0.5 for

all nonequilibrium intrusions. Furthermore the figure indicates that the left-propagating

gravity currents can also gain energy for certain parameter ranges. The lower gravity

current gains energy when d∗l > ρ∗c , while the upper gravity current experiences an energy

gain when d∗l < ρ∗c . We expect that an energy gain of the lower current should result

in an effective thickness of this current larger than one half, i.e., h∗l /h
∗
b > 0.5. This is
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Figure 2.22: Phase-space diagram for headloss along the bottom (∆∗l ), top (∆∗u) and the
centerline of intrusion (∆∗c), computed as functions of ρ∗c and d∗l .
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Figure 2.23: Phase-space diagram for the ratio of the lower gravity current thickness h∗l
to the lower ambient current thickness h∗b upstream of the intrusion. In the region where
d∗l > ρ∗c , i.e., where the lower gravity current gains energy, this ratio exceeds one half.

confirmed by Fig. 2.23.

We now focus on the conversion of potential energy (PE) to kinetic energy (KE).

Initially, when the fluid is at rest, all of the mechanical energy is in the form of PE.

In the absence of any mixing, the theoretically lowest level of PE that can be achieved

by the system corresponds to the state in which the dense, intermediate and light fluids

are arranged on top of each other in horizontal layers of thicknesses (1 − α)dl, αH and

(1 − α)(H − dl), respectively, where α denotes the geometric ratio of Llock/L. We can

compute the PE per unit width of the intial state, and of the final state of lowest energy,
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with respect to the bottom wall as

Ep,i =
1

2
gL
[
αρcH

2 + (1− α)
(
(ρl − ρu)d2

l + ρuH
2
)]
, (2.58)

Ep,f =
1

2
gL
[
(ρl − ρc)

(
(1− α)dl

)2
+ (ρc − ρu)

(
(1− α)dl + αH

)2
+ ρuH

2
]
.(2.59)

The Available Potential Energy (APE) per unit width represents the difference between

these two states

APE =
1

2
gLlock(1− α)

[
d2
l ρl + (H2 − 2dlH)ρc + (−H2 + 2dlH − d2

l )ρu
]
, (2.60)

We nondimensionalize the energy per unit width by ρrefU
3
refxref tref , which can be sim-

plified to ρcg
′H3. We thus obtain

APE∗ =
1

2
β(1− α)(d∗l

2 − 2d∗l ρ
∗
c + ρ∗c) , (2.61)

where β indicates the ratio of the lock length to the tank height. As expected, APE∗

has a minimum with respect to d∗l when d∗l = ρ∗c , which is consistent with our earlier

observation that for a given value of ρ∗c symmetric intrusions have the lowest propagation

speed.

Once the gate is removed, PE is converted into KE. We can now employ the quasis-

teady front velocities calculated above from arguments of mass and momentum conserva-

tion, in order to calculate the rates at which the PE and KE of the overall flow, or of the

various control volumes within the flow, change with time. For the symmetric intrusion

case shown in Fig. 2.1, we can consider the entire tank as our control volume and evalu-

ate the rate of change in KE and PE of the whole flow field, caused by the propagation

of gravity currents. By multiplying the rate at which the area of each current grows with
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the kinetic energy per area, we obtain the respective rates at which KE of the individual

currents grow

Ėk,c =
1

2
ρc(Ul + Uc)hcUc

2 , (2.62)

Ėk,u =
1

2
ρc(Uu + Uc)huUu

2 , (2.63)

Ėk,l =
1

2
ρc(Ul + Uc)hlUl

2 . (2.64)

Here, Ėk,c, Ėk,u and Ėk,l refer to the kinetic energies of the interfacial gravity current,

and of the left-propagating upper and lower currents, respectively. Note that as a result

of the Boussinesq approximation, the density is taken as ρc for all currents. Nondimen-

sionalizing the energy transfer rates by ρrefU
3
refxref yields

Ė∗k,c =
1

2
(U∗l + U∗c )h∗cU

∗
c

2 , (2.65)

Ė∗k,u =
1

2
(U∗u + U∗c )h∗uU

∗
u

2 , (2.66)

Ė∗k,l =
1

2
(U∗l + U∗c )h∗lU

∗
l

2 . (2.67)

By summing up the above expressions, we obtain that the rate of growth of KE in the

entire flow field equals U∗c
3.

The rate at which PE of the entire tank changes can similarly be obtained by evalu-

ating the rates at which fluid of one density is replaced by fluid of another density, via

the motion of the individual currents. We obtain

Ėp,c =
1

2
(ρc − ρl)g(d2

l − h2
l )Uc +

1

2
(ρc − ρu)g

[
(hc + hl)

2 − d2
l

]
Uc , (2.68)

Ėp,u =
1

2
(ρu − ρc)g

[
H2 − (H − hu)2

]
Uu , (2.69)

Ėp,l =
1

2
(ρl − ρc)gh2

lUl . (2.70)
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Rendering these results dimensionless gives

Ė∗p,c = −1

2
(1− ρ∗c)(d∗l

2 − h∗l
2)U∗c +

1

2
ρ∗c
[
(h∗c + h∗l )

2 − d∗l
2
]
U∗c , (2.71)

Ė∗p,u = −1

2
ρ∗c
[
1− (1− h∗u)2

]
U∗u , (2.72)

Ė∗p,l =
1

2
(1− ρ∗c)h∗l

2U∗l . (2.73)

Summing up expressions (2.71) to (2.73) yields that the flow field loses PE at the rate

−U∗c 3, so that for symmetric intrusions indeed all of the lost potential energy is converted

into kinetic energy. Alternatively, we can consider separately the control volumes above

and below y∗ = d∗l , along the entire length of the tank. It is straightforward to show that

the total energies inside each of these control volumes do not vary with time, which is

consistent with our earlier observation that ∆∗c = ∆∗l = ∆∗u = 0 for symmetric intrusions.

In the following, we extend the analysis to nonsymmetric intrusions. We evaluate

the rates at which PE and KE change for the intrusion and the lower and upper gravity

currents, by focusing on the control volumes BDGJ , B′D′GJ and BDD′B′ in the lab-

oratory reference frame, as shown in Fig. 2.3. We obtain the rates of change of KE for

the intrusion and the upper and lower currents as

Ėk,c =
1

2
ρc(Ul + Uc)hcU

2
c −

1

2
ρcUl(H − hu)U2

bc , (2.74)

Ėk,u =
1

2
ρc(Ul + Uc)h

′
uU
′
u

2 − 1

2
ρcUlhuU

2
u −

1

2
ρcUcU

2
ub(H − hb) , (2.75)

Ėk,l =
1

2
ρc(Ul + Uc)hlU

2
l −

1

2
ρcUchbU

2
lb . (2.76)
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Rendering the above equations nondimensional yields

Ė∗k,c =
1

2
(U∗l + U∗c )h∗cU

∗
c

2 − 1

2
U∗l (1− h∗u)U∗bc

2 , (2.77)

Ė∗k,u =
1

2
(U∗l + U∗c )h′u

∗
U ′u
∗2 − 1

2
U∗l h

∗
uU
∗
u

2 − 1

2
U∗cU

∗
ub

2(1− h∗b) , (2.78)

Ė∗k,l =
1

2
(U∗l + U∗c )h∗lU

∗
l

2 − 1

2
U∗c h

∗
bU
∗
lb

2 . (2.79)

By following the same approach as for symmetric intrusions, we find the rates of change

of PE as a result of the current motion

Ėp,c =
1

2
(ρc − ρu)g

[
(hl + hc)

2 − h2
b

]
Uc +

1

2
(ρc − ρl)g(h2

b − h2
l )Uc , (2.80)

Ėp,u =
1

2
(ρu − ρc)g

[
(H − hu)2 − (H − h′u)2

]
Ul , (2.81)

Ėp,l =
1

2
(ρl − ρc)gh2

lUl . (2.82)

In dimensionless form, equations (2.80) to (2.82) result in

Ė∗p,c =
1

2
ρ∗c
[
(h∗l + h∗c)

2 − h∗b
2
]
U∗c −

1

2
(1− ρ∗c)(h∗b

2 − h∗l
2)U∗c , (2.83)

Ė∗p,u = −1

2
ρ∗c
[
(1− h∗u)2 − (1− h′u

∗
)2
]
U∗l , (2.84)

Ė∗p,l =
1

2
(1− ρ∗c)h∗l

2U∗l . (2.85)

By summing up the rates at which KE and PE of the various currents change within the

control volume BDGJ , we obtain an expression for the net rate of change of mechanical

energy within BDGJ , Ė∗BDGJ . Interestingly, Ė∗BDGJ is always positive for any nonequal

combimation of (ρ∗c , d
∗
l ), cf. Fig. 2.24. Aditionally, we can analyze the energy fluxes
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across the right and left boundaries into BDGJ as

Ė∗rs =
1

2
(1− h∗b)U∗ub

3 − 1

2
h∗bU

∗
lb

3 , (2.86)

Ė∗ls =
1

2
(1− h∗u)U∗bc

3 − 1

2
h∗uU

∗
u

3 . (2.87)

Here, Ė∗rs and Ė∗ls represent the energy fluxes into BDGJ from the right and left bound-

aries. The energy budgets for the control volumes BDD′B′ and B′D′GJ can be evaluated

correspondingly, and provide separate insight into the energetics of the control volumes

encompassing the lower and upper gravity currents, cf. Fig. 2.24b and c.

We can assess the energetics associated with the leading bore by analyzing the rates

of change of KE and PE in the control volume DEFG. In this way, we obtain

Ėk,b =
1

2
ρcUb

[
U2
lbhb + U2

ub(H − hb)
]
, (2.88)

Ėp,b =
1

2
(ρl − ρu)g

(
h2
b − d2

l

)
Ub . (2.89)

Nondimensionalizing equations (2.88) and (2.89) results in

Ė∗k,b =
1

2
U∗b
[
U∗lb

2h∗b + U∗ub
2(1− h∗b)

]
, (2.90)

Ė∗p,b =
1

2

(
h∗b

2 − d∗l
2
)
U∗b . (2.91)

Adding these two expressions yields the rate Ė∗b at which the total mechanical energy

within control volume DEFG increases, as the propagating bore sets both fluid layers in

motion and also raises the center of gravity of the dense fluid. By subtracting Ė∗b from

the entering energy flux, we obtain the portion of this energy influx that is dissipated

by the bore, ∆Ė∗b , cf. Fig. 2.25a. We find that for the intrusions in the vicinity of the

equilibrium condition, a small fraction of 0.01% of the entering energy flux is dissipated.
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Far away from equilibrium, on the other hand, this fraction can exceed 2%.

A corresponding evaluation of the energy within control volume ABJK yields

Ėk,lw =
1

2
ρcUl

[
U2
uhu + U2

bc(H − hu)
]
, (2.92)

Ėp,lw =
1

2
(ρu − ρc)g

[
H2 − (H − hu)2

]
Ul , (2.93)

which in dimensionless form reads

Ė∗k,lw =
1

2
U∗l
[
U∗u

2h∗u + U∗bc
2(1− h∗u)

]
, (2.94)

Ė∗p,lw = −1

2
ρ∗c
[
1− (1− h∗u)2

]
U∗l . (2.95)

The rate Ė∗p,ADGK at which PE is released in control volume ADGK can be obtained

by summing up equations (2.83) - (2.85) and (2.95). The rate ∆Ė∗t at which mechanical

energy inside ADGK is dissipated is found by substracting from Ė∗p,ADGK the rate at

which KE of the various currents grows, as well as the rate at which energy is being

transferred to the leading bore across the boundary DG

∆Ė∗t = Ė∗p,ADGK − Ė∗k,c − Ė∗k,u − Ė∗k,l + Ė∗rs . (2.96)

Figure 2.25b displays the fraction of the released potential energy that is dissipated,

|∆Ė∗t /Ė∗p,ADGK |. We find this fraction to be small for the entire range of ρ∗c and d∗l .

A further interesting question concerns the fraction of the potential energy released

in ADGK that is used to support the leading bore, i.e., the ratio |Ė∗b /Ė∗p,ADGK |. Figure

2.24 shows that for nearly symmetric conditions, the fraction of PE exctracted by the

leading bore is on the order of a few percent. However, for strongly nonsymmetric cases it

can reach up to 20%. This confirms that the assumption by [14], who neglected the effect
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Figure 2.24: Phase-space diagrams for the rates at which the mechanical energy changes
with time inside the various control volumes: a) Ė∗BDD′B′ , b) Ė∗B′D′GJ , and c) Ė∗BDGJ .
Frame d) indicates the fraction of the potential energy released in control volume ADGK
that goes into the leading bore.
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Figure 2.25: Phase-space diagrams for the dissipated fraction of (a) the convective energy
flux into DEFG, −Ė∗rs, and (b) the released potential energy within control volume
ADGK.

of the bore on the overall energetics of the flow, is most accurate for nearly symmetric

intrusions.

2.6 Influence of Re and Pe

As described earlier, our DNS simulations employed finite values of the Reynolds and

Péclet numbers. In light of the fact that earlier studies such as [21] had observed a certain

dependence of the gravity current velocity on Re, it is hence of interest to investigate how

the comparison between the DNS results and the inviscid vorticity model predictions is

affected by changes in Re and Pe. Figure 2.26 provides information on this issue, for

ρ∗c = 0.5 and 0 < d∗l < 1. For the left graph, where we investigate the effect of the

Reynolds number, Pe is held constant at 30,000 in all the simulations. For all parameter

values, the intrusion velocity is seen to increase with Re, yielding closer agreement with

the model predictions. For the right graph, where we focus on the influence of the Péclet
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Figure 2.26: Influence of the Reynolds (left) and Péclet (right) numbers on the intrusion
velocity. In the left graph Pe = 30, 000, and in the right one Re = 12, 000. The DNS
results are seen to approach the vorticity model predictions as Re and Pe increase.

number, Re is held fixed at 12,000. The numerical intrusion speed uniformly approaches

the vorticity model prediction as Pe is increased. When Re and Pe are above 4,000 and

30,000, respectively, the intrusion velocity no longer depends strongly on Re or Pe for

intermediate values of d∗l . However, for d∗l ≈ 0 or 1, the gravity currents developing along

the upper or lower walls are quite thin, so that the DNS results remain more sensitive to

changes in Re or Pe.

2.7 Summary

We have employed the laws of mass and momentum conservation to develop a closed

model for intrusive gravity currents propagating along the interface of a two-layer strat-

ified ambient. Based on the vorticity form of the momentum conservation principle, the

model does not require any empirical closure assumptions. Using this model, we conduct

a detailed parametric study in terms of the dimensionless intrusion density and the lower
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layer height of the ambient, which reproduces the correct behavior for all known limits

and confirms many previous experimental observations. Specifically, the present model

demonstrates that the conservation of mass and momentum dictates the formation of

equilibrium flows when the intrusion density equals the depth-weighted mean density

of the two ambient layers, consistent with the obervations by [13]. These equilibrium

intrusions are seen to correspond to classical energy-conserving gravity currents with a

thickness of half the channel height.

The parametric study confirms that for a fixed intrusion density, the equilibrium

configuration corresponds to the minimum propagation velocity, in agreement with the

experimental observations of [14]. The model furthermore demonstrates that the limits

of (ρ∗c = 0, d∗l = 1) and (ρ∗c = 1, d∗l = 0) are not smooth, in the sense that the height of

the leading bore does not uniformly go to zero, so that the solution does not smoothly

approach the case of a classical lock-exchange gravity current. The bore height smoothly

approaches zero and its velocity reduces to that of a linear wave as the intrusion nears

equilibrium conditions. In addition, the bore height is seen to vary linearly with |ρ∗c−d∗l |,

consistent with earlier observations by [14] and [15]. An a posteriori energy analysis

demonstrates that under nonequilibrium conditions the intrusion gains energy.

The predictions by the parametric study are furthermore compared to two-dimensional

DNS results, and very good agreement is found with regard to all flow properties, includ-

ing the propagation velocities of the intrusion and the gravity currents, their thickness,

as well as the height and velocity of the leading bore.
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Partial-depth lock-release flows

As described in chapter 1, the work by [19] introduced the vorticity modeling approach

for a gravity current front in an integral form, for a flow fields that can be rendered

steady by shifting to a reference frame moving with the front. [16] subsequently extended

this approach to unsteady flow fields composed of several fronts propagating at different

velocities. They accomplished this by analyzing each front separately in a reference frame

that renders it steady, and by then matching the solutions in the different reference

frames.

Within the current chapter, we will extend the vorticity modeling approach to fully

unsteady flows, i.e., to flow fields that cannot be constructed by superimposing and then

matching a finite number of quasisteady components. In order to develop the modeling

framework, we will focus on the canonical lock-release configuration, cf. Fig. 3.1. A

tank of length L and height H is divided into two compartments: a rectangular lock

with length Llock and height Hlock initially contains the heavy fluid of density ρg, while

the remainder of the space is occupied by the light ambient fluid of density ρa. Initially,

these two immiscible fluids are separated by a gate. Upon removal of the gate, the heavy

fluid forms a gravity current with velocity ug,r and height hg,r that travels towards the

right along the bottom wall. This gravity current is connected to the lock fluid by a

rarefaction or expansion wave of height h(x, t), either directly, as in Fig. 3.1b or via a
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bore, as in Fig. 3.1c. The left and right edges of this expansion wave travel with speeds

ul and ur, respectively. Note that positive velocity values correspond to the directions of

the arrows in Fig. 3.1. We aim to analyze the flow before the left edge of the rarefaction

wave or the bore interact with the left wall. Within the rarefaction wave, the dense fluid

has a velocity ug(h). Concurrently, the ambient forms a left-propagating return flow

with velocity ua,r above the gravity current, and ua(h) above the rarefaction wave. The

velocity u(h) with which the interface location of height h moves horizontally, varies from

−ul to ur within the rarefaction wave. If the lock height Hlock equals the tank height H,

we refer to the flow as a full-depth lock-release current, while for Hlock 6= H we obtain a

partial-depth lock-release flow.

Based on the two-layer shallow-water equations, [28] proposed a model for partial-

depth lock-release flows that includes the rarefaction wave behind the gravity current.

Since the shallow water equations cannot directly model the gravity current front, its

effect is accounted for by an empirically modified front condition. For Hlock/H ≤ 0.5,

predictions by this model agree closely with experimental observations. While the shallow

water model correctly predicts that a left-propagating bore forms for Hlock/H > 0.5,

this bore is not accounted for in the model, so that the agreement between model and

experiments deteriorates in this parameter range.

[18] propose a model that accounts for the entire flow fields, i.e., both for the rarefac-

tion wave as well as for the right- and left-propagating fronts. They employ a control

volume approach that conserves mass and horizontal momentum, and also enforces the

unsteady Bernoulli equation along the top boundary. The authors furthermore assume

the interface height to be uniform along the rarefaction wave, and to change abruptly

from hg,r to Hlock at the left edge. In this way, they obtain for the gravity current speed
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Figure 3.1: Schematic of a partial-depth lock-release flow. (a) Initially, the dense fluid is
confined to a lock of length Llock and heightHlock. (b) Upon removal of the gate, the heavy
fluid of density ρg forms a gravity current with quasisteady propagation velocity ug,r and
height hg,r. The light ambient fluid of density ρa forms a return flow. For Hlock < H/2,
the quasisteady gravity current is connected to the lock fluid by an unsteady expansion
fan. (c) For Hlock > H/2, a quasisteady bore of height hl and velocity ub forms at the left
edge of the expansion fan. The thin gray rectangles in (b) and (c) indicate the differential
control volumes employed to derive the conservation laws.
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in the Boussinesq limit

ug,r√
g′H

=
1

2

√
Hlock(2H −Hlock)

H2
. (3.1)

The experiments by [18] furthermore confirm that it is possible for gravity currents with

hg,r/H > 0.347 to form, whereas [1] had suspected that such currents “would be difficult,

if not impossible, to produce experimentally.” The authors attribute this observation to

the momentum and energy transfer between the rarefaction wave and the current front,

which is not accounted for in Benjamin’s model.

The present chapter proposes a differential vorticity-based approach for analyzing the

entire unsteady flow field, including the gravity current, the rarefaction wave, and the

internal bore. Section 3.1 constructs the vorticty-based model and obtains predictions

for the speed and height of the gravity current, as well as for the velocities of the left and

right edges of the expansion fan. Section 3.2 presents DNS simulations and compares

them to the model predictions, as well as to theoretical and experimental findings of

earlier studies. Section 3.3 describes an a posteriori analysis of the flow energetics, while

section 3.4 summarizes the findings and gives some concluding remarks.

3.1 Theory

Within the region of the rarefaction wave, the flow is unsteady and varies spatially,

so that it cannot be rendered quasisteady by a change of reference frame. Hence we

need to establish the governing equations for a differential control volume in this region,

as shown by the thin gray rectangles in Figs. 3.1b and 3.1c, rather than for an integral

control volume as in the work of [19] and [25]. In order to formulate the governing system

of equations for this differential control volume, we represent the rarefaction wave as a
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Figure 3.2: Magnified form of the differential control volume in Fig. 3.1. The entire
control volume DCEF moves with the velocity u(h) of the step-like variation in interface
height at location O, so that the flow within the control volume is quasisteady. We
assume locally uniform flow within each layer at the in- and outflow boundaries. Note
that dh < 0.

series of infinitesimal step-like variations in interface height of size dh. A detailed view

of this differential control volume is shown in Fig. 3.2. It contains the section over which

the interface height varies from (h − dh/2) at the left boundary to (h + dh/2) at the

right boundary, by means of a jump dh < 0 at the center of the control volume. The

entire control volume moves with the velocity u(h) of the jump. We assume the fluids

to be inviscid, and their density difference to be sufficiently small for the Boussinesq

approximation to be valid. Furthermore, we consider the flow in each layer at the control

volume boundaries to be purely horizontal, and independent of the vertical coordinate.

With this assumption of locally unidirectional flow, we can write the mass conservation

equations for the lower and upper layers, i.e. for the control volumes ABCD and ABEF,

as

[(
ug −

dug
2

)
− u

](
h− dh

2

)
=

[(
ug +

dug
2

)
− u

](
h+

dh

2

)
, (3.2)[(

ua +
dua
2

)
+ u

](
H − h− dh

2

)
=

[(
ua −

dua
2

)
+ u

](
H − h+

dh

2

)
. (3.3)
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By neglecting higher order terms, equations (3.2) and (3.3) simplify to

(ug − u)dh+ hdug = 0 , (3.4)

(ua + u)dh− (H − h)dua = 0 . (3.5)

We now derive the conservation equation for the vorticity along the interfacial segment

AB within the differential control volume DCEF in Fig. 3.2. Towards that end, we start

from the integral form of the vorticity conservation law for inviscid, variable-density flow

d

dt

x

DCEF(t)

ω dA+

∮
CS(t)

ωVr · n dS = −
x

DCEF(t)

g′
∂ρ∗

∂x
dA . (3.6)

Here CS(t) denotes the surface of the control volume DCEF, and Vr represents the

velocity of the fluid relative to the moving control volume boundary.

The temporal rate of change of the circulation inside the control volume vanishes,

because the control volume size and the interface shape within do not change over time

d

dt

x

DCEF(t)

ω dA = 0 . (3.7)

Next, the flux of vorticity crossing the surface of the control volume can be formulated

as

∮
CS(t)

ωVr · n dS =

−
[(
ua −

dua
2

)
+

(
ug −

dug
2

)]
× 1

2

[(
ug −

dug
2

)
−
(
ua −

dua
2

)
− 2u

]
+

[(
ua +

dua
2

)
+

(
ug +

dug
2

)]
︸ ︷︷ ︸

vortex sheet strength

× 1

2

[(
ug +

dug
2

)
−
(
ua +

dua
2

)
− 2u

]
︸ ︷︷ ︸

vortex sheet principal velocity

.

(3.8)
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Simplifying equation (3.8) gives

∮
CS(t)

ωVr · n dS = dug (ug − u)− dua (ua + u) . (3.9)

To evaluate the baroclinic vorticity generation term on the right hand side of equation

(3.6), we remind ourselves that the interface is sharp, and that the dimensionless density

ρ∗ = 1 everwhere below the interface, and ρ∗ = 0 everywhere above. Within the control

volume DCEF, the interface consists of the two horizontal segments to the left and

the right, and the vertical segment of length dh at the center. Consequently, the only

location within the control volume where ∂ρ∗/∂x 6= 0 is along this vertical interface

segment of length dh adjacent to point O. Integration along any horizontal line that

crosses this vertical interface segment gives
∫
∂ρ∗/∂x dx = −1. Consequently, we obtain

s
∂ρ∗/∂x dA = −dh, which results in

x

DCEF(t)

g′
∂ρ∗

∂x
dA = −g′dh , (3.10)

where dh < 0. Since ∂ρ∗/∂x 6= 0 only along the vertical segment of the step, the

horizontal interface segments do not contribute to the area integral, so that its value is

independent of the horizontal extent of the interval xr − xl. By substituting equations

(3.7), (3.9) and (3.10) into (3.6), we obtain

dug (u− ug)− dua (u+ ua) = −g′dh . (3.11)

By combining the continuity equations (3.4) and (3.5) with the vorticity equation (3.11),
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we obtain the system

dug
dh

= −1

h
(ug − u) , (3.12)

dua
dh

=
1

H − h
(ua + u) , (3.13)

1

h/H
(u− ug)2 +

1

1− h/H
(u+ ua)

2 = g′H . (3.14)

Note that while the dense and light fluid velocities are governed by first order ODEs,

the vorticity equation reduces to an algebraic relationship. We now choose the channel

height H and buoyancy velocity
√
g′H as reference scales to render equations (3.12) to

(3.14) dimensionless

du∗g
dh∗

= − 1

h∗
(
u∗g − u∗

)
, (3.15)

du∗a
dh∗

=
1

1− h∗
(u∗a + u∗) , (3.16)

1 =
1

h∗
(
u∗ − u∗g

)2
+

1

1− h∗
(u∗ + u∗a)

2 , (3.17)

where the ∗-symbol refers to the dimensionless variables.

When the rarefaction wave is directly connected to the lock fluid, as shown in Fig.

3.1b, both fluids are at rest at the left edge of the rarefaction wave, so that

u∗g(H
∗
lock) = u∗a(H

∗
lock) = 0 . (3.18)

This provides the two required conditions at the left boundary for ODEs (3.15) and (3.16).

Corresponding boundary conditions for the configuration with the left-propagating bore,

shown in Fig. 3.1c, will be discussed in section 3.1.1. Equation (3.17) then gives for the

69



Partial-depth lock-release flows Chapter 3

propagation velocity of the left edge of the expansion wave

u∗l = −u∗(H∗lock) =
√
H∗lock(1−H∗lock) . (3.19)

At the right edge O′ of the expansion wave, the expansion fan flow has to match the

gravity current, so that it needs to satisfy

u∗g(h
∗
g,r) = u∗g,r , (3.20)

u∗a(h
∗
g,r) = u∗a,r . (3.21)

The gravity current height h∗g,r is determined by the condition

h∗g,r =
1

2
(u∗g,r + u∗a,r)

2 , (3.22)

which arises from the vorticity conservation principle for the gravity current front, cf. [19]

and section 1.1 of the present work. Combining (3.20)-(3.22) yields the front condition

h∗g,r =
1

2

[
u∗g(h

∗
g,r) + u∗a(h

∗
g,r)
]2
. (3.23)

u∗r can be evaluated by sustituting the gravity current properties into the vortcity balance

equation (3.17), which gives

u∗r = (1− h∗g,r)u∗g(h∗g,r)− h∗g,ru∗a(h∗g,r)−
√
h∗g,r(1− h∗g,r)

{
1−

[
u∗g(h

∗
g,r) + u∗a(h

∗
g,r)
]2}

,

(3.24)

where h∗g,r can be calculated from equation (3.23).

The above system of equations (3.15)-(3.17), together with the boundary conditions
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(3.18) and the front condition (3.23), thus completely determines the combined expansion

fan and gravity current flow. This system can be solved numerically by integrating

equations (3.15) and (3.16) from H∗lock to the h∗-value that satisfies condition (3.23). We

also update the interfacial velocity u∗ from equation (3.17) in each integration step. The

interface height at which we terminate the integration process is then the gravity current

height. In this study, we employ the standard fourth-order Runge-Kutta scheme to carry

out the integration.

Equations (3.15) to (3.17) can be recast in terms of a single ODE for u∗g(h
∗). Towards

this end, equations (3.15) and (3.16) are combined and integrated with respect to h∗,

which results in

u∗gh
∗ = u∗a(1− h∗) , (3.25)

which simply states that the volume flux to the left above the interface has to equal the

volume flux to the right below the interface. We can hence eliminate u∗a from equation

(3.17), so that we obtain for u∗ as a function of h∗ and u∗g

u∗ =
1− 2h∗

1− h∗
u∗g ±

√
h∗

1− h∗
[
(1− h∗)2 − u∗g2

]
. (3.26)

Substituting equation (3.26) into (3.15) then yields

h∗
du∗g
dh∗

+
h∗

1− h∗
u∗g ±

√
h∗

1− h∗
[
(1− h∗)2 − u∗g2

]
= 0 . (3.27)

for the velocity of the dense fluid within the expansion fan as a function of the local

interface height h∗. Interestingly, equation (3.27) is identical to the one obtained by [28]

via a two-layer shallow-water analysis, as will be discussed below in further detail.

71



Partial-depth lock-release flows Chapter 3

3.1.1 Formation of the left-propagating bore

The earlier investigations by [28] and [18] demonstrated that the expansion fan is not

always directly connected to the lock fluid, as sketched in Fig. 3.1b. Rather, beyond a

critical value of the lock height Hlock a bore or hydraulic drop forms that connects the

left edge of the rarefaction wave to the stationary fluid in the lock, as shown in Fig. 3.1c.

This is also confirmed by the DNS simulations to be discussed below. We now proceed to

analyze the formation of the bore, and its interaction with the left edge of the expansion

wave, based on the vorticity approach.

As long as the interfacial wave speed u∗ varies monotonically with h∗ throughout the

expansion fan region, the slope of the fan’s interface will decrease everywhere with time,

so that a bore does not form. If, on the other hand, u∗ reaches an extremum u∗min for

an intermediate value of h∗, the interfacial segment with this minimum velocity travels

leftward faster than the left edge of the wave, and catches up with it. The interface

hence steepens locally and a bore forms where the expansion fan meets the lock fluid,

as sketched in Fig. 3.1c. This situation corresponds to the observation by [28] of a

multivalued solution for the interfacial height when H∗lock > 0.5. Now the boundary

conditions at the left edge of the expansion fan take the form

u∗g(h
′
l
∗
) = u∗g,l , (3.28)

u∗a(h
′
l
∗
) = u∗a,l . (3.29)

In order to determine the value of H∗lock at which the bore first appears, we need to

determine the value of H∗lock for which the u∗-profile first exhibits an extremum. Taking

72



Partial-depth lock-release flows Chapter 3

Figure 3.3: Schematic of the control volume around the hydraulic drop of configuration
3.1c.

the derivative of equation (3.17) with respect to h∗ yields

[
2(u∗ − u∗g)

h∗
+

2(u∗ + u∗a)

1− h∗

]
du∗

dh∗
−

3(u∗ − u∗g)2

h∗2
+

3(u∗ + u∗a)
2

(1− h∗)2
= 0 , (3.30)

where du∗g/dh
∗ and du∗a/dh

∗ have been replaced based on equations (3.15) and (3.16). A

local minimum for the interfacial velocity (du∗/dh∗ = 0) exists when

u∗ − u∗g
h∗

=
u∗ + u∗a
1− h∗

. (3.31)

As we will see in section 3.1.2, a u∗-minimum first appears for the largest value of h∗,

i.e., at the left edge of the rarefaction wave (location O in Fig. 3.1b) where u∗g = u∗a = 0.

For these conditions, equation (3.31) gives H∗lock = 0.5, which agrees with the findings of

[28].

For flows with bores we have to match the left edge of the expansion fan to the bore at

the interface height h′l, cf. Fig. 3.1c. To obtain the velocities of the upper and lower fluid

layers between the bore and the expansion fan, we first investigate the left-propagating

bore in isolation from the rest of the flow, as sketched in Fig. 3.3. In the reference
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frame moving with the bore, the continuity equations for both layers and the vorticity

conservation equation for the control volume ABCD in Fig. 3.3 read

u∗bH
∗
lock = (u∗b + u∗g,l)h

′
l
∗
, (3.32)

u∗b(1−H∗lock) = (u∗b − u∗a,l)(1− h′l
∗
) , (3.33)

1

2
(u∗g,l + u∗a,l)(2u

∗
b + u∗a,l − u∗g,l) = h∗l , (3.34)

cf. [25]. If the interface height h′l to the right of the bore is known, these equations fully

determine the fluid and bore velocities. In order to understand how the flow selects this

interface height, it is instructive to analyze the energetics of the bore region. Towards this

end, we determine the pressure difference along the top wall pA− pB from the horizontal

momentum conservation equation for ABCD

∫ A

D

[
ρrefui(y)2 + pi(y)

]
dy =

∫ B

C

[
ρrefuo(y)2 + po(y)

]
dy , (3.35)

where pi(y) and po(y) indicate the pressure functions from A to D and B to C, respectively.

ui(y) and uo(y) represent the piecewise constant fluid velocities across the in- and outflow

boundaries. The reference density is also ρref = ρa. The pressure can be considered

hydrostatic far up- and downstream of the bore, so that pi(y) and po(y) take the form

pi(y) =


pA + ρag(H − y) y ≥ Hlock ,

pA + ρag(H −Hlock) + ρgg(Hlock − y) y < Hlock .

(3.36)
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po(y) =


pB + ρag(H − y) y ≥ h′l ,

pB + ρag(H − h′l) + ρgg(h′l − y) y < h′l .

(3.37)

Nondimensionalizing these relations and substituting them into equation (3.35) yields

p∗A − p∗B = h′l
∗
(u∗b + u∗g,l)

2 + (1− h′l
∗
)(u∗b − u∗a,l)2 − u∗b

2 − 1

2

(
H∗lock

2 − h′l
∗2)

, (3.38)

where the dimensional pressures have been divided by ρag
′H to obtain the dimensionless

ones. The rate of dissipation of energy ∆Ė for the entire control volume, in the reference

frame of the bore, can be calculated as

∆Ė =

∫ A

D

(1

2
ρau

2
i + pi + ρigy

)
ui dy −

∫ B

C

(1

2
ρau

2
i + po + ρogy

)
uo dy , (3.39)

where ρi and ρo denote the fluid densities at the in- and outlet of ABCD. After nondi-

mensionalization and simplification, equation (3.39) reads

∆Ė∗ = (p∗A − p∗B)u∗b +H∗lock(H
∗
lock − h′l

∗
)u∗b +

1

2
u∗b

3

− 1

2
h′l
∗
(u∗b + u∗g,l)

3 − 1

2
(1− h′l

∗
)(u∗b − u∗a,l)3 . (3.40)

Note that ∆Ė has been scaled by ρag
′ 3
2H

5
2 to be rendered dimensionless.

Figure 3.4 displays the net rate of energy loss ∆Ė∗ for the bore sketched in Fig. 3.3,

as a function of h′l
∗ and for several values of H∗lock. The results show that, independent

of the lock height, the interface height h′l
∗ = 0.5 corresponds to energy-conserving flow.

An interface height of less than half the channel height would require an energy gain,

so that it cannot be physically realized. As we will see in the DNS simulations to be

discussed below, for all lock heights the flow develops a nearly energy-conserving bore
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Figure 3.4: Variation of the rate of dissipation of energy ∆Ė∗ as a function of the interface
height after the hydraulic drop h′l

∗, computed for an isolated bore traveling along the
interface of a two-layer flow for various lock heights H∗lock. For all lock heights, an interface
height h′l

∗ = 0.5 after the bore corresponds to energy-conserving flow.

with an interface height h′l
∗ ≈ 0.5, corresponding to the familiar observation of an energy-

conserving half-depth current for a full-depth lock-release [1, 19].

Substituting h′l
∗ = 0.5 into equations (3.32)-(3.34) then gives u∗b = 0.5 and u∗g,l =

u∗a,l = H∗lock − 0.5. In section 3.2.1 we will compare these results to DNS simulations.

These flow velocities u∗g,l and u∗a,l to the right of the bore can now serve as boundary

conditions at the left edge of the expansion fan. Substitution into equation (3.17) yields

the propagation velocity of the left edge of the rarefaction wave

u∗l =
√
H∗lock(1−H∗lock) . (3.41)

This result is identical to equation (3.19), which represents the velocity of left edge of

the expansion fan for configuration 3.1b without a bore. For any lock height H∗lock > 0.5,

we can now solve equations (3.15)-(3.17) in the interval h∗g,r ≤ h∗ ≤ h′l
∗ = 0.5, subject to
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these boundary conditions and the front condition (3.23).

3.1.2 Predictions by the vorticity-based model

We employ a standard fourth-order Runge-Kutta method to solve equations (3.15)

and (3.16), along with the algebraic equation (3.17), for the configuration sketched in

Fig. 3.1b. For now, we apply boundary conditions (3.18) at h∗ = H∗lock, and condition

(3.23) at the front. The validity of the conditions (3.18) will then have to be established a

posteriori, based on whether or not they result in a multivalued solution, as discussed in

section 3.1.1. Figure 3.5a displays the dense and light fluid velocities as functions of the

local interface height, for the specific lock height value H∗lock = 0.5. The lower layer fluid

continually speeds up from the lock towards the gravity current, while the upper layer

velocity is seen to reach a local maximum close to where the expansion fan transitions

to the gravity current.

Figure 3.5b shows the interfacial velocity u∗ as a function of the interface height h∗,

for several different lock heights. As we anticipated based on the analysis in section 3.1.1,

for H∗lock = 0.4 and 0.5 the interfacial velocity u∗ increases monotonically from negative

values at the lock to positive values in the vicinity of the gravity current, which indicates

that the left edge of the expansion fan travels to the left, while its right edge travels to

the right. For H∗lock = 0.6, 0.8 and 0.9, on the other hand, we find that solutions based on

the configuration shown in 3.1b, with boundary conditions (3.18), yield a local minimum

for an intermediate interface height near the lock, which indicates that a left-propagating

bore will form, so that boundary conditions (3.18) are invalid, and interfacial velocities

below -0.5 will not emerge in the flow. Figure 3.5b confirms that a bore first appears for

H∗lock = 0.5, since for this value the slope of u∗(h∗) first vanishes at the left edge of the

expansion fan. These results are consistent with the analysis of section 3.1.1, and with
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Figure 3.5: (a) Variation of the lower layer velocity u∗g (solid line) and the upper layer
velocity u∗a (dotted line), as function of the local interface height h∗, for H∗lock = 0.5. (b)
Interfacial velocity u∗ as function of h∗ along the rarefaction wave, for various values of
the lock height H∗lock. These solutions were obtained based on the configuration of Fig.
3.1b, with boundary conditions (3.18).

the findings of [28].

The analysis in section 3.1.1, along with the observations of multivalued solutions for

the interfacial velocity when H∗lock > 0.5, suggests that in this regime boundary conditions

(3.28) and (3.29) need to be enforced, which result in the interfacial velocities shown in

Fig. 3.6. u∗ now decreases monotonically with h∗, and the expansion fan is confined to

the range h∗g,r ≤ h∗ ≤ 0.5.

3.1.3 A note on the relationship between the vorticity-based

model and the two-layer shallow-water equations

[28] derive equation (3.27) from the two-layer shallow-water equations, after employ-

ing the method of characteristics. In the following, we will show that in the limit of

locally unidirectional flow, and when the velocity does not vary across the thickness of
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Figure 3.6: Variation of the interfacial velocity u∗ as a function of h∗ along the expansion
fan, for various values of H∗lock > 0.5. These solutions were obtained based on configura-
tion 3.1c and boundary conditions (3.28) and (3.29). As discussed in the text, in these
cases the left edge of the rarefaction wave is located at h∗ = h′l

∗ = 0.5 and the solution
for u∗ exists only for the range h∗g,r ≤ h∗ ≤ 0.5.

each layer, the vorticity model is consistent with the shallow-water equations. This dis-

cussion is merely intended to clarify the relationship between the two approaches, and to

establish under what conditions they are equivalent to each other. The two-layer shallow

water equations have clearly proved to be highly useful, and we do not mean to imply

any shortcomings of this approach.

Figure 3.7 displays an arbitrary two-layer stratified flow, with the gray rectangular

area indicating a fixed control volume of length ∆x. For a two-dimensional inviscid flow

in the Boussinesq approximation, the vorticity equation reads

∂ω

∂t
+ u·∇ω = −g′∂ρ

∗

∂x
. (3.42)
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Figure 3.7: Control volume employed for the purpose of discussing the relationship be-
tween the vorticity-based model and the shallow water equations, cf. the discussion in
the text.

Integration over control volume ABCD yields

x

ABCD

∂ω

∂t
dA︸ ︷︷ ︸

I1

+

∮
CS

ωu · n dS︸ ︷︷ ︸
I2

=
x

ABCD

−g′∂ρ
∗

∂x
dA︸ ︷︷ ︸

I3

, (3.43)

where CS denotes the surface of the control volume ABCD. We now consider the flow

to be locally unidirectional at the in- and outflow boundaries, and assume that u1 and u2

do not vary with y. The integrals in equation (3.44) can then be evaluated individually.

Integral I1, which accounts for the temporal rate of change of vorticity within ABCD,

yields

I1 =
∂

∂t

∫ x+∆x

x

dx

∫ H

0

−∂u
∂y

dy =
∂

∂t

∫ x+∆x

x

−(u2 − u1)dx . (3.44)

I2 accounts for the convective flux of vorticity into and out of the control volume, which

can be obtained by multiplying the strength of the vortex sheet with its principal velocity.
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Consequently,

I2 =
u2

1(x+ ∆x)− u2
1(x)

2
− u2

2(x+ ∆x)− u2
2(x)

2
. (3.45)

Finally, the baroclinic vorticity generation can be evaluated as

I3 =

∫ H

0

dy

∫ x+∆x

x

−g′∂ρ
∗

∂x
dx =

∫ H

0

−g′
[
ρ∗(x+ ∆x)− ρ∗(x)

]
dy

= −g′
[
h(x+ ∆x)− h(x)

]
. (3.46)

In the limit of ∆x→ 0, we thus obtain

∂u2

∂t
− ∂u1

∂t
+ u2

∂u2

∂x
− u1

∂u1

∂x
= g′

∂h

∂x
. (3.47)

This is identical to what one obtains in the Boussinesq limit from the shallow water

equations when subtracting the lower layer momentum equation (3.3) from the upper

layer one (3.4) in [28]. We thus conclude that, perhaps not unexpectedly, for locally

unidirectional flow with constant velocity across the height of each layer, the vorticity-

based model and shallow water theory are equivalent to each other. When the velocity

is not approximately unidirectional, such as in the vicinity of a gravity current front or

an internal bore, shallow water theory is no longer applicable, whereas vorticity-based

models are still able to capture the physics correctly.

3.2 DNS results and comparisons

In the following, we compare predictions by the vorticity model with direct numerical

simulation results, as well as with earlier experimental data and model predictions by

other authors. The DNS data were obtained with our code TURBINS. As discussed in
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chapter 2, TURBINS is a finite-difference solver based on a fractional step projection

method, along with TVD-RK3 time integration. It solves the unsteady, incompressible

Navier-Stokes equations in the Boussinesq limit

∇·V∗ = 0 , (3.48)

∂V∗

∂t∗
+ V∗·∇V∗ = −∇p∗ +

1

Re
∇2V∗ + ρ∗eg , (3.49)

∂ρ∗

∂t∗
+ V∗·∇ρ∗ =

1

Pe
∇2ρ∗ , (3.50)

where V∗ and eg represent the velocity vector and unit vector in the direction of grav-

ity, respectively. The dimensionless time is defined as t∗ = t/
√
H/g′. The governing

dimensionless parameters have the form of a Reynolds number Re =
√
g′HlockHlock/ν

and a Péclet number Pe =
√
g′HlockHlock/D. Here, ν indicates the kinematic viscosity

and D denotes the diffusivity of the density field. We apply free-slip conditions for the

velocity, along with vanishing normal flux conditions for the density field, along all solid

boundaries. Re and Pe are set to 8,000 and 40,000 in the simulations, respectively, to

minimize the effects of diffusion. Initially the fluids are at rest, and the density field is

as sketched in Fig. 3.1a. The computational domain has the dimensionless size 70 × 1,

and the lock length is set to 35. The domain is discretized uniformly with ∆x∗ = 0.01

and ∆y∗ = 0.004, which is sufficiently fine to yield converged results.

Figure 3.8 shows the temporal evolution of a partial lock-release flow for various

values of the lock height H∗lock. All values of H∗lock give rise to a right-propagating gravity

current ahead of a rarefaction wave. On the other hand, the left-propagating flow varies

qualitatively with H∗lock. For small values of H∗lock, the rarefaction wave extends all the

way to the lock fluid. For increasing lock heights, the front propagating into the lock

fluid becomes steeper and bore-like, as seen in frames 3.8e and f. This observation is

consistent with the earlier investigations of [28] and [18]. [28] state that this bore begins
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Figure 3.8: (a-c): Temporal evolution of the density field for a partial-depth lock-release
flow with H∗lock = 0.5. (d-f): Density field at t∗ = 50 for H∗lock = 0.4 (d), H∗lock = 0.8 (e),
and H∗lock = 0.9 (f). The density field varies from ρ∗ = 0 (light gray) to ρ∗ = 1 (black).

83



Partial-depth lock-release flows Chapter 3

to form experimentally when H∗lock ≈ 0.7, while their model predicts bore formation for

H∗lock > 0.5, in agreement with our analysis in section 3.1. They attribute this discrepancy

to diffusive effects and interfacial mixing, both of which are neglected in their theory.

[18] argue that the formation of the left-propagating bore starts when infinitesimal long

waves travel faster than the left edge of the rarefaction wave, which is theoretically shown

to occur for H∗lock > 2/3.

To evaluate the front velocity of the gravity current in the DNS simulation, we track its

front location x∗g,r with time. We define the local dimensionless interface height η∗(x∗, t∗)

as

η∗(x∗, t∗) =

∫ 1

0

ρ∗(x∗, y∗, t∗) dy∗ , (3.51)

and determine x∗g,r as the rightmost location at which η∗ > 0.01. The solid lines in Figs.

3.9a and 3.10a show that for H∗lock = 0.5 and 0.8 the slope dx∗g,r/dt
∗ becomes constant

after a brief initial transient, which indicates a quasisteady gravity current velocity.

Finding the horizontal location of the right edge x∗r of the rarefaction wave as a

function of time is slightly more complicated. Figure 3.11 shows that behind the gravity

current head the interface height drops abruptly. For H∗lock ≤ 0.5, an extended interface

segment of nearly constant height follows that can easily be identified. For H∗lock > 0.5,

on the other hand, the gravity current exhibits significant turbulence, so that its interface

height fluctuates until it reaches the rarefaction wave. Within the rarefaction wave region,

the interface height fluctuations are much reduced. Consequently, in order to identify

x∗r coming from the left, we search for the end of an extended region of at least three

unit lengths over which ∂η∗/∂x∗ does not change its sign. The data shown by the dotted

lines in Fig. 3.9a and 3.10a indicate that this methodology is successful in identifying the

right edge of the expansion fan and finding its propagation velocity, which is constant to

a good approximation. We note that for H∗lock = 0.8 the velocity of the right edge u∗r is
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Figure 3.9: DNS results for the temporal evolution of (a) the front location of the gravity
current (solid line) and the location of the right edge of the rarefaction wave (dotted
line), and (b) the location of the left edge of the wave, for H∗lock = 0.5. The straight
line segments represent the corresponding quasisteady velocities, obtained by linear fits
of the DNS results.
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Figure 3.10: DNS results for the temporal evolution of (a) the front location of the
gravity current (solid line) and the location of the right edge of the rarefaction wave
(dotted line), and (b) the left edge of the bore (solid line) and of the rarefaction wave
(dotted line), for H∗lock = 0.8. The straight line segments represent the corresponding
quasisteady velocities, obtained by linear fits of the DNS results.

substantially smaller as compared to H∗lock = 0.5. These DNS data will be compared to

model predictions in section 3.2.1.

After determining the locations of the gravity current front x∗g,r and the right edge of

the rarefaction wave x∗r, the gravity current height h∗g,r, can be obtained as the average

of η∗ over the interval from x∗r to x∗g,r

h∗g,r =

∫ x∗g,r
x∗r

η∗(x∗, t∗s) dx∗

x∗g,r − x∗r
, (3.52)

where t∗s should be chosen sufficiently large, such that the gravity current height has

become time-independent. Here, we take t∗s = 50.

The left edge of the rarefaction wave is the location at which the interface height

begins to decrease from its lock value H∗lock. Hence, its location x∗l can be obtained as
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Figure 3.11: DNS results for the local interface height at t∗ = 50, for H∗lock = 0.5 (solid
line) and 0.8 (dotted line). The circles, squares and the triangle represent the locations
of the right and left edges of the rarefaction wave, as well as the left edge of the bore.
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the leftmost point for which |η∗ − H∗lock| > 0.01. For H∗lock > 0.5, when the flow gives

rise to the left-propagating bore, this procedure yields the horizontal location of the left

edge of the bore, denoted by x∗b . In the presence of a bore, the left edge of the expansion

fan x∗l is found as follows. Coming from the bore, we look for the first location where

|∂η∗/∂x∗| < 0.01, to make sure we have exited the bore region. We refer to this point as

x∗e. We then identify the left edge of the rarefaction wave x∗l as the first location to the

right of x∗e at which |∂η∗/∂x∗| exceeds 0.01. The interface height right after the hydraulic

drop can then be calculated in the same fashion as the gravity current height, i.e. by

averaging the local interface height η∗ from x∗e to x∗l

h′l
∗

=

∫ x∗l
x∗e
η∗(x∗, t∗s) dx∗

x∗l − x∗e
. (3.53)

Again, we select t∗s = 50, which yields a quasisteady result.

Figures 3.9b and 3.10b represent the temporal variation of x∗l and x∗b for H∗lock = 0.5

and 0.8, respectively. Note that the case H∗lock = 0.5 is just at the limit of the regime

where a left-propagating bore begins to form. After a brief initial transient, x∗l and x∗b

vary linearly with time, indicating that the bore and the left edge of the expansion wave

travel with constant velocities. The bore velocity is seen to be very close to 0.5, which is

consistent with the analysis in section 3.1.1. Additionally, in agreement with the findings

of section 3.1.1, Fig. 3.10b confirms that the left edge of the rarefaction wave travels

more slowly than the bore, so that the distance between the bore and the expansion fan

grows with time.

3.2.1 Comparisons

Figure 3.12 compares the predictions by the differential vorticity model with DNS

results, as well as with earlier model predictions and experimental data by other authors
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Figure 3.12: Variation as function of the lock height H∗lock: (a) the height h∗g,r of the
gravity current and the interface height h′l

∗ after the hydraulic drop, (b) the velocity u∗g,r
of the gravity current, (c) the velocity u∗l of the left edge of the rarefaction wave and the
velocity u∗b of the bore, and (d) the velocity u∗r of the right edge of the rarefaction wave.
Here, VM refers to the current vorticity-based model, SDL to the results of [18], and RS
to the results of [28], respectively.
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where available. All existing models predict a continuous increase of the gravity current

height with the lock height. The experimental and DNS results generally fall in between

the various model predictions and indicate a gravity current height slightly less than half

the lock height. Both the results of [18] and the vorticity model recover the classical

full-depth lock-exchange result of [1] and [19]. Equations (3.19) and (3.24) of the present

model also correctly predict that u∗l = u∗r = 0 in this limit, indicating that no expansion

fan forms for a full-depth lock-release. The model of [28] does not converge to this

limit, as it does not account for the left-propagating bore. Regarding the gravity current

velocity, [18] predicts a continuous increase with lock height, whereas the vorticity model

yields a maximum value of u∗g,r for H∗lock = 0.789, which corresponds h∗g,r = 0.333. This

is consistent with the analysis of [19] and close to the results of [1], which display a

maximum at h∗g,r = 0.347. Although the gravity current speeds predicted by [18] agree

more closely to the DNS and experimental results compared to those of the current study

and [28], we should note that unlike other models, [18] cannot obtain u∗g,r for a gravity

current with a given height, unless the height of the lock from which this gravity current

has been produced is also prescribed, as can be realized from equation (3.1).

The DNS data for u∗b are consistent with the finding by the vorticity model that a

left-propagating bore emerges when the lock height exceeds half the tank depth, and that

this bore travels with a velocity of 0.5, independent of H∗lock. The current model also

predicts that the interface height after this hydraulic drop h′l
∗ is always equal to 0.5, in

very close agreement with DNS results. In addition the vorticity model predicts, and the

DNS results confirm, that the dependence of the expansion fan’s left edge velocity u∗l on

H∗lock is symmetric with regard to H∗lock = 0.5. The model of [18], on the other hand,

predicts that the propagation speed of the fastest leftward disturbance, as represented by

the left edge of the expansion fan before the formation of the bore and the bore otherwise,

is always opposite and equal to the gravity current velocity, which is not confirmed by the
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current DNS results. The vorticity model predictions for u∗r, which are in close agreement

with the DNS results, become negative beyond H∗lock = 0.789, so that the rarefaction wave

as a whole travels to the left.

3.3 Energy assessment

When deriving the set of governing equations, we did not invoke any assumptions

about energy conservation or energy losses in the flow. Consequently, we can now assess

the energetics of the flow a posteriori, by evaluating the headloss along the top wall of

the tank from B to A in Fig. 3.1b and 3.1c. The pressure difference along this streamline

can be calculated from the horizontal momentum balance for the control volume ABDE

in the laboratory reference frame. The flow is at rest at AE and BD, and the velocity

along the top wall is taken from the preceding analysis. Due to the unsteadiness of the

flow within ABDE, we need to employ the unsteady form of the streamwise momentum

conservation equation and account for the rate Ṁ at which momentum changes within

the control volume. Hence, we obtain

Ṁ =

∫ B

D

pdy −
∫ A

E

pdy = (pB − pA)H − (ρg − ρa)g
H2
lock

2
, (3.54)

where we assume that the pressure is hydrostatic at the boundaries. The rate at which

momentum inside ABDE changes with time is given by the sum of the rates at which

momentum changes inside the gravity current, expansion wave and left-propagating bore

regions

Ṁ = Ṁgc + Ṁw + Ṁlb . (3.55)

These individual rates can be calculated by multiplying the rate at which the area of

the flow region under consideration increases, with the momentum per unit area. Con-
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sequently

Ṁgc = ρa(ug,r − ur)
(
ug,rhg,r − ua,r(H − hg,r)

)
, (3.56)

Ṁw =

∫ Hlock

hg,r

ρa
du

dh

(
ugh− ua(H − h)

)
dh , (3.57)

Ṁlb = ρa(ub − ul)
(
ug,lh

′
l − ua,l(H − h′l)

)
. (3.58)

Mass conservation gives ug,rhg,r = ua,r(H−hg,r) for the gravity current, ugh = ua(H−h)

in the expansion wave, and ug,lh
′
l = ua,l(H−h′l) for the bore, so that the right-hand sides

of equations (3.56)-(3.58) vanish in the Boussinesq limit. Hence we obtain Ṁ = 0, so

that equation (3.54) yields

pB − pA = (ρg − ρa)g
H2
lock

2H
. (3.59)

Once we determine the pressure difference pB − pA along the top wall, the corresponding

headloss ∆ can then be obtained from the unsteady form of Bernoulli’s equation along

streamline BA

pB +
1

2
ρau

2
B + ρa

∂φ

∂t

∣∣∣∣
B

= pA +
1

2
ρau

2
A + ρa

∂φ

∂t

∣∣∣∣
A

+ ∆ . (3.60)

Here, φ denotes the velocity potential for the upper layer. uA and uB represent the flow

velocities at A and B, which vanish as the fluid is at rest at these locations. Clearly, φ

has to be continuous, and its x-derivative should recover the horizontal velocity in the
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ambient. These conditions can be satisfied for Hlock ≤ H/2 by

φ =



0 for xA ≤ x < xO ,

−
∫ x
xO
uads for xO ≤ x < xO′ ,

−ua,r(x− xO′)−
∫ xO′
xO

uads for xO′ ≤ x < xF ,

−ua,r(xF − xO′)−
∫ xO′
xO

uads for xF ≤ x ≤ xB ,

(3.61)

and for Hlock > H/2 by

φ =



0 for xA ≤ x < xC ,

−ua,l(x− xC) for xC ≤ x < xO ,

−ua,l(xO − xC)−
∫ x
xO
uads for xO ≤ x < xO′ ,

−ua,r(x− xO′)− ua,l(xO − xC)−
∫ xO′
xO

uads for xO′ ≤ x < xF ,

−ua,r(xF − xO′)− ua,l(xO − xC)−
∫ xO′
xO

uads for xF ≤ x ≤ xB .

(3.62)

Relations (3.61) or (3.62) can be substituted into equation (3.60) to obtain ∆. We

render the result dimensionless by scaling pressure and headloss with pref = ∆ref =

ρag
′H. The other variables are nondimensionalized as described in section 3.1. We thus

obtain for the dimensionless heaadloss ∆∗

∆∗ =

 H∗lock
2/2− u∗a,ru∗g,r +

∫ H∗lock
h∗g,r

du∗a
dh∗
u∗dh∗ for H∗lock ≤ 0.5 ,

H∗lock
2/2− u∗a,ru∗g,r − u∗a,lu∗b +

∫ h′l∗
h∗g,r

du∗a
dh∗
u∗dh∗ otherwise .

(3.63)

Figure 3.13 displays the headloss along the top wall for the entire range of H∗lock.

Consistent with the analyses of [1] and [19], the flow is energy-conserving only for H∗lock =

1, when the left- and right-propagating gravity currents occupy half the depth of the

tank. For other values of H∗lock, the flow dissipates energy in the region next to the

gravity current, since its height is less than 0.5, as well as in the rarefaction wave, and
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Figure 3.13: Headloss ∆∗ along the top wall of the tank, computed from B to A , as a
function of the lock height H∗lock.

in the the left-propagating bore when H∗lock > 0.5. Note that, on the other hand, the

analysis of [18] had assumed nondissipative flow along the top wall. The headloss ∆∗ has

a maximum for Hlock = H/2, when the left-propagating bore begins to form.

3.4 Summary

The vorticity-based modeling concept for stratified flows was initially introduced by

[19] and [25] for quasisteady conditions. In this chapter, we have further extended this

approach to flows that are fully unsteady at least in some regions, so that they cannot

be rendered quasisteady by a change of reference frames. In order to accomplish this, we

shifted from the integral control volume balance employed in those earlier investigations

to a differential control volume balance for the fully unsteady parts of the flow. Evalu-

ation of the conservation equations for mass and vorticity then required the additional

assumptions of locally uniform parallel flow within each layer. With these additional
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assumptions, we showed that the unsteady vorticity modeling approach reproduces the

two-layer shallow water equations for the unsteady sections of the flow.

In order to test this unsteady modeling approach, we applied it to the case of partial-

depth lock-release flows, for which we can compare with model-based predictions as well

as experimental data of other authors, and with DNS simulations conducted as part

of the present investigation. Consistent with the shallow water analysis of [28], the

vorticity model demonstrates the formation of a quasisteady gravity current front, a

fully unsteady expansion wave, and (for H∗lock > 0.5) a quasisteady propagating bore.

When a bore forms, it travels with velocity 0.5, and the interface behind it always is

at half the channel depth, independent of the lock height. We demonstrate analytically

that such bores are energy-conserving. The differential vorticity model furthermore gives

predictions for the height and velocity of the gravity current and the bore, as well as for

the propagation velocities of the edges of the expansion fan, as functions of the lock height.

All of these predictions are seen to be in good agreement with the DNS data and, where

available, with experimental results. Since it does not require any energy-based closure

assumptions, the vorticity model can be employed for an a posteriori analysis of the

energetics of the flow. Such an analysis shows lock-release flows to be energy-conserving

only for the case of a full lock, whereas they are always dissipative for partial-depth locks.

The current extension enables the vorticity-based approach to formulate simplified

models for a range of stratified flow fields with at least some fully unsteady regions.

95



Chapter 4

Gravity currents propagating into
two-layer stratified fluids

Frequently atmospheric or oceanic gravity currents propagate into stratified ambients,

rather than into constant density environments. Density stratification due to gradients in

temperature, moisture, salinity or sediment concentration, for example, may potentially

result in significantly more complex dynamics of the flow, due to the formation of internal

waves, with implications for the transport of nutrients or pollution [29–32]. Within the

current investigation, we will focus on the specific situation of a two-layer stratified

ambient, with a density jump ∆ρ between the lower and upper layers. For such flows

we will formulate a group of models based on vorticity conservation arguments. Two-

dimensional direct numerical simulation results will then be compared to predictions by

these models, as well as to previous models developed by other authors.

Figure 4.1 presents a schematic of gravity currents propagating into two-layer strat-

ified ambients. In the laboratory reference frame, the gravity current travels with a

constant velocity Ug from right to left, into quiescent fluid. For the sake of formulating

simplified theoretical models, we shift into the reference frame of the gravity current.

In this reference frame the gravity current is at rest, and the ambient fluid approaches

from the left inflow boundary with Ug. The gravity current density is denoted by ρ1,
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Figure 4.1: Schematic of a gravity current (shaded) propagating into a two-layer stratified
ambient: (a) an upstream propagating expansion wave does not form, (b) an upstream
wave is generated that travels faster than the gravity current (Ul > Ug), and, (c) a
hydraulic jump forms that propagates faster than both the upstream traveling wave and
the gravity current (Ub > Ul > Ug). The gravity current density ρ1, the average ambient
density ρ2, the density jump ∆ρ, the current height h, and the height h1i of the ambient
interface at the inflow boundary are prescribed. Hereafter, configurations a, b and c will
be referred to as C1, C2 and C3, respectively.
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while the two ambient layers have an average density of ρ2, so that the densities of the

upper and lower layers are ρ2 − ∆ρ/2 and ρ2 + ∆ρ/2, respectively. We consider only

bottom currents, so that ρ1 > ρ2 + ∆ρ/2 > ρ2 − ∆ρ/2. Other flow parameters include

the depths h1i and h2i of the ambient layers at the inlet, the gravity current height h,

and the channel height H.

The development of simplified theoretical models for configuration C1 in Fig. 4.1a

dates back to the classical work by [8], who considered inviscid non-Boussineq flows.

They solve for both the height and the velocity of the gravity current, as functions of

prescribed inflow layer depths and densities. The authors enforce mass conservation in

each ambient layer, as well as the conservation of horizontal momentum for the entire

channel. To obtain the pressure jump across the front, they assume hydrostatic pressure

distributions in the uniform parallel flow regions far up- and downstream. They sub-

sequently close their system of equations by employing Bernoulli’s equation along the

stagnation point streamline 1i−O in Fig. 4.1a, as well as along streamlines O− 2o and

2i− 3o. Consequently, their model does not allow for energy dissipation in the ambient

layers. As they observe multiple solutions for the gravity current height, the authors

argue that nature prefers the solution that maximizes the volumetric inflow rate, which

always corresponds to the largest gravity current height. The authors then extend their

analysis to dissipative flows, by allowing for headlosses in their respective Bernoulli equa-

tions. They proceed to calculate the rate of energy dissipation Ėd for the entire flow, and

accept the solution that maximizes Ėd for a constant volumetric inflow rate. This model

was subsequently modified by [33], who considers nondissipative flows in the Boussinesq

limit with an upstream propagating bore. The author assumes an infinitely deep channel,

so that the velocity in the upper ambient layer is the same everywhere.

Similar to [8], the modeling approach by [34] employs the continuity equation for

each ambient layer, along with the conservation of horizontal momentum for the entire
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control volume, and Bernoulli’s equation upstream of the stagnation point. The authors

allow for dissipative effects by enforcing energy-conserving flow in only one of the ambient

layers. Consequently, they suggest two different models: in the first model, they invoke

Bernoulli’s equation within the dense ambient fluid and along the gravity current interface

(O−2o in Fig. 4.1a), whereas in the second one, they employ Bernoulli’s principle within

the light ambient fluid and along the interface between the two ambient fluids (2i−3o in

Fig. 4.1a). In order to close both models, [34] assume that the change η in the ambient

interface height from far upstream to far downstream is related to the channel height H

and the ambient interface height h1i at the inflow boundary as

η =
1

2
(H − h1i) , (4.1)

which leads to h2o = h2i/2. They base this empirical assumption on the examination of

two limiting cases: (a) h1i → 0, for which [1] predicts h/H → 0.5, so that η/H → 0.5;

and (b) h1i → H, for which the upper layer vanishes, i.e. η → 0. Assuming that

η varies linearly between these two limits, they arrive at equation (4.1). The authors

compare their model predictions to experimental and numerical results, and observe

good agreement for various flow properties and moderate values of ∆ρ. For large values

of ∆ρ the agreement deteriorates, as will be discussed further in section 4.5.

[35] further extend the above modeling approaches by allowing for equal headlosses

in both layers. In order to incorporate potential upstream disturbances, they propose a

flow configuration that includes a left-propagating internal bore, as shown in Fig. 4.2.

In contrast to C2 or C3 in Fig. 4.1, they do not consider the formation of an expansion

wave. To calculate the properties of the upstream bore, they utilize the model of [36]

which conserves energy in the lower (expanding) layer. [35] find that the largest, fastest

propagating bore forms when hl = H/2, which is consistent with the observations of
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Figure 4.2: Schematic of the model by [35], adapted from their paper. An upstream bore
is assumed to exist, with hl = H/2.

[36] and [37]. An energy analysis of this bore in isolation shows the flow to be energy-

conserving under these conditions. Thus, in order to close their system of equations, they

either set the headloss along the gravity current interface to zero, or they assume the

formation of an energy-conserving bore.

The situation of two-layer stratified flows over topography is closely related to gravity

currents propagating into a two-layer stratified ambients. Pioneering experiments in this

field are described in [38], including the existence of sub- and supercritical flow regimes,

as well as upstream propagating expansion waves and internal bores. [38] furthermore

discusses an analytical model based on the shallow-water equations that captures the

dynamics of a subcritical-supercritical flow with an upstream wave, and he assesses the

energy dissipation of the flow. Related investigations were carried out by [39], who cate-

gorize all possible flow regimes by defining two dimensionless parameters in the form of

Do = h/h1i and the Froude number Fo = U/
√
h1ig∆ρ/ρ2, where U and h1i indicate the

obstacle velocity and the upstream ambient interface height, respectively. Note that the

obstacle velocity is related to the gravity current velocity in our study. Both [39] and [29]

identify four different flow regimes, viz. supercritical, subcritical, partially blocked and

completely blocked flows, shown as a, b, c and d in Fig. 4.3, respectively. Supercritical

flows, in which an upstream propagating wave does not appear, correspond to configu-

ration C1 in Fig. 4.1a. They can arise only for Fo > 1. Partially and completely blocked
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Figure 4.3: Flow regimes for two-layer stratified flows over a streamlined obstacle, with
the upper layer being infinitely deep, adapted from [29]. S1 to S4 denote direct numerical
simulations to be discussed in the next section.

flows give rise to waves that propagate upstream with velocity Ub, as shown in Fig. 4.3.

The dynamics of partially blocked flows is analogous to that of C2- and C3-type flows,

shown in Figs. 4.1b and c, respectively. Figure 4.3 illustrates the regions corresponding

to each of these regimes for two-layer stratified flows over solid obstacles, along with a

schematic of their behavior. The authors also compare their experimental results to the

analytical model of [33], as well as to the numerical investigations of [40] and [41], and

they observe good qualitative and quantitative agreement.

[35] employ a slightly different classification scheme for gravity currents entering two-

layer stratified ambients, by defining the two dimensionless parameters Fo = Ug/co, and

Do = h/h1i. Here co =
√
g∆ρ/ρ2h1i(1− h1i/H) represents the linear long wave speed,

so that the resulting Froude number is different from that defined by [29]. [35] identify

five different flow regimes, including subcritical gravity currents with a depression wave

propagating along the ambient interface, gravity currents leading to the formation of an
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internal bore traveling along the ambient interface that is followed by an expansion wave

(their flow regime III), as well as supercritical gravity currents without upstream propa-

gating disturbances. Their flow regime III corresponds to the partially blocked flows of

[29], and to configuration C3 sketched in Fig. 4.1c. Similarly, their sub- and supercritical

flow regimes correspond to those of [29]. [35] compare their model predictions to simu-

lation results based on the Euler equations in the Boussinesq limit. They observe good

agreement for sub- and supercritical gravity currents, while for flows with an upstream

internal bore and/or expansion wave the discrepancy becomes more substantial.

In the following, we extend the vorticity-based modeling approach originally intro-

duced by [19] and [25] for gravity currents and internal bores, to the flow configurations

shown in Fig. 4.1. This approach incorporates the momentum conservation principle in

its vorticity form along the individual interfaces, thereby reducing the need for empirical

closure assumptions based on energy considerations. The resulting models enable us to

predict the propagation velocities of the gravity current and any upstream propagating

disturbances, as well as the ambient layer velocities and depths at the outflow boundary.

Section 4.1 discusses DNS simulations for the different flow regimes. In section 4.2, we

present the development of vorticity-based models for these regimes, and we discuss their

energetics. Section 4.3 provides predictions based on the vorticity models, which are sub-

sequently compared to the DNS simulation results in section 4.4, and to earlier models

by other authors in section 4.5. Section 4.6 summarizes the findings of the current work

and gives some concluding remarks.

4.1 DNS simulations

To demonstrate the distinct features that characterize the different flow regimes,

and to obtain quantitative information that can subsequently be compared to model
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predictions, we now proceed to discuss representative two-dimensional DNS simulation

results for Boussinesq flows, based on the equations

∇·u∗ = 0 , (4.2)

∂ρ∗

∂t∗
+ u∗ ·∇ρ∗ =

1

Pe
∇2ρ∗ , (4.3)

∂u∗

∂t∗
+ u∗ ·∇u∗ = −∇p∗ +

1

Re
∇2u∗ + ρ∗eg . (4.4)

The above system has been rendered dimensionless by introducing the characteristic

scales

x∗ =
x

H
, u∗ =

u√
g′H

, (4.5)

t∗ =
t√
H/g′

, ρ∗ =
ρ− ρ2

ρ1 − ρ2

, (4.6)

∆ρ∗ =
∆ρ

ρ1 − ρ2

, p∗ =
p

ρ2g′H
, (4.7)

with the ∗-symbol indicating dimensionless quantities and eg representing the unit vector

in the direction of gravity. As dimensionless parameters we obtain Re =
√
g′HH/ν and

Pe =
√
g′HH/D, where g′ = g(ρ1 − ρ2)/ρ2. ν and D denote the kinematic viscosity

and the diffusivity of the density field, respectively. The simulations are conducted in

a reference frame that is moving with velocity U∗g , which is close to the gravity current

front velocity. We impose no-flux conditions for the density field along with free-slip

conditions for the velocity field at the upper and lower walls. At the inflow boundary

we specify Dirichlet conditions that prescribe the ambient layer heights, velocities and

densities. The outflow boundary is handled by a convective condition of the form

∂q∗

∂t∗
+ Ū∗

∂q∗

∂x∗
= 0 , (4.8)
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Table 4.1: Parameters of the DNS simulations to be discussed in this section.

Sim. Fig. Config. h∗1i h∗ ∆ρ∗ Re Pe Lx Ly
S1 Fig. 4.4 C1 0.5 0.474 0.6 5,000 20,000 4 1
S2 Fig. 4.6 C2 0.5 0.405 1.4 5,000 20,000 15 1
S3 Fig. 4.7 C3 0.35 0.371 1.4 5,000 20,000 15 1
S4 Fig. 4.9a C1 0.05 0.0049 1.89 6,000 60,000 4 1
S5 Fig. 4.9b C1 0.05 0.427 1.89 5,500 30,000 4 1

where q∗ can be any flow quantity, and Ū∗ is taken as the maximum velocity in the

domain. Initial conditions for the gravity current height and the ambient layer thicknesses

above the gravity current, as well as the velocity U∗g of the moving reference frame, are

specified based on the simplified models to be derived in section 4.2, as exemplified

by Fig. 4.4a. The domain size Lx × Ly is selected according to whether or not an

upstream propagating expansion wave is expected to form. The uniform grid spacing of

∆x∗ = 0.004 and ∆y∗ = 0.003 is identical for all simulations, and the time step ∆t∗ is

taken according to the CFL stability criterion. Table 4.1 summarizes the parameters of

five simulations that will be discussed in some detail.

4.1.1 Partially blocked flows

Figure 4.4 illustrates the temporal evolution of the density field for simulation S1.

Transient, convectively unstable Kelvin-Helmholtz waves along the gravity current in-

terface are soon washed out of the control volume, and a quasisteady state evolves. We

remark that for some simulations involving larger values of Re (not shown) the KH insta-

bilities remained within the computational domain, so that a strictly quasisteady state

did not emerge.

In order to compute the gravity current thickness, we mark the gravity current fluid

initially by a passive dye of concentration c∗d = 1. This dye has the same diffusivity as the

density field. The local dimensionless height d∗ of the gravity current is then obtained
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Figure 4.4: Temporal evolution of the density field for simulation S1, at t∗ = 0 (a), 3 (b),
10 (c), and 20 (d). The simulation parameters are h∗1i = 0.5, ∆ρ∗ = 0.6, Re = 5, 000 and
Pe = 20, 000. The initial conditions are prescribed according to the simplified model for
configuration C1 derived in section 4.2. The simulation shows the evolution of a steady
flow field without upstream propagating disturbances. The transient Kelvin-Helmholtz
vortices forming at the interface are swept outside the computational domain, reflecting
their convectively unstable nature. The white horizontal solid and dashed lines represent
the quasisteady gravity current height and the interface location between the ambient
layers at the outflow, respectively. The white circle, square and cross indicate x∗f , x

∗
l and

x∗r, cf. the discussion in the text.
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as

d∗(x∗, t∗) =

∫ 1

0

c∗d(x
∗, y∗, t∗) dy∗ . (4.9)

The gravity current front location x∗f is defined as the leftmost point at which d∗ exceeds

0.01. The local thicknesses d∗1 and d∗2 of the ambient layers can be obtained analogously

from corresponding passive dye fields. We furthermore identify the right and left edges

of the ambient interfacial wave, x∗r and x∗l , in the following fashion: to obtain x∗r as a

function of time, we sweep the ambient interface from the current tip towards the outflow

boundary and evaluate x∗r as the first point at which |∂(d∗+ d∗1)/∂x∗| < 0.01. x∗l is taken

as the location of the leftmost point of the ambient interface where d∗1 − h∗1i > 0.01. For

those cases in which the flow gives rise to an internal bore propagating ahead of the

expansion fan, this procedure yields the front location x∗b of the bore. In the presence of

a bore, the location x∗l of the left edge of the expansion wave is then defined as the first

point to the right of the bore at which ∂d∗1/∂x
∗
∣∣
x∗
− ∂d∗1/∂x∗

∣∣
x∗−∆x∗

< 0. This definition

is based on the rapid fall of the ambient interface slope as it transitions from the bore

to the expansion fan region. In some cases this decrease occurs only very close to the

gravity current tip, so that the disturbance takes the form of an expansion fan without

a leading bore.

Within the moving reference frame of the simulation, Fig. 4.5a depicts the displace-

ment with time of the gravity current tip x∗f , relative to its initial location x∗f,i, for all

simulations of table 1. In all cases the front velocity dx∗f/dt
∗ initially varies with time,

but eventually settles down to a constant value u∗f . The front velocity in the laboratory

frame is then obtained as

U∗g,lab = U∗g − u∗f . (4.10)

Figure 4.5b displays the displacement of the left edge of the expansion wave x∗l with

respect to the gravity current front location x∗f as a function of time, for all simulations.
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Figure 4.5: DNS results for the temporal evolution of: (a) the displacement of the grav-
ity current tip x∗f with respect to its initial location x∗f,i, (b) the displacement of the
expansion wave’s left edge x∗l relative to the gravity current front location x∗f , and (c)
the distance of the right edge x∗r of the expansion fan from the current tip, evaluated for
the simulations of table 1. The straight line segments indicate the quasisteady velocities
of the corresponding features in the moving reference frame, which have been obtained
by linear fits of the DNS results between t∗ = 20 and t∗ = 40, when the flow properties
have become nearly independent of time. Note that the quasisteady velocities vanish for
simulations S1, S4 and S5 in frame (b), and for all simulations in frame (c).
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After a brief transitional phase, x∗l −x∗f remains nearly constant with time for S1, S4 and

S5, indicating that the left edge of the wave moves at the same speed as the current tip.

On the other hand, for cases S2 and S3 the left edge of the wave travels faster than the

current tip, so that a quasisteady flow configuration is not achieved, as will be discussed

in the context of Figs. 4.6 and 4.7. Here the relative velocity of the left edge of the wave

with respect to the front approaches a constant value u∗l for long times. In the laboratory

frame, the left edge of the wave thus travels with velocity

U∗l,lab = U∗g,lab + u∗l . (4.11)

If the flow gives rise to a bore, as will be discussed in the following, the bore speed u∗b

in the moving reference frame can be determined analogously, by tracking the temporal

evolution of x∗b − x∗f . The bore velocity in the laboratory frame is then obtained as

U∗b,lab = U∗g,lab + u∗b . (4.12)

The interface height h∗l at the left edge of the wave is evaluated as

h∗l = d∗1(x∗l , t
∗
s) , (4.13)

where we take t∗s = 35, which falls into the quasisteady range.

The distance of the expansion wave’s right edge from the gravity current tip x∗r − x∗f

is shown in Fig. 4.5c for all simulations. In all cases, this distance acquires a quasisteady

value for sufficiently large times, which indicates that the right edge of the wave is

anchored to the gravity current front.

In order to avoid any potential contamination from the outflow boundary, we evaluate

the downstream values of the layer thicknesses some distance upstream of this boundary
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as

h∗ = d∗(0.9Lx, t
∗
s) , (4.14)

h∗1o = d∗1(0.9Lx, t
∗
s) , (4.15)

h∗2o = d∗2(0.9Lx, t
∗
s) , (4.16)

at t∗s = 35. The downstream velocities of the ambient fluid layers are obtained as the

average horizontal velocity across the corresponding layer

U∗1o =

∫ h∗+h∗1o
h∗

u∗(0.9Lx, y
∗, t∗s) dy∗

h∗1o
, (4.17)

U∗2o =

∫ 1

h∗+h∗1o
u∗(0.9Lx, y

∗, t∗s) dy∗

h∗2o
, (4.18)

for t∗s = 35. The DNS results from this section will be compared to predictions by the

vorticity model in section 4.4.

We now proceed to discuss simulations S2, which gives rise to an expansion fan, and

S3, which results in the formation of an expansion fan and a bore. These observations

are consistent with the findings of [34] and [35]. As shown for simulation S2 in Fig. 4.6c,

in the absence of a bore the interfacial slope remains approximately constant over much

of the wave region. If a bore is present, on the other hand, the slope of this interface

undergoes a noticeable change at some intermediate location, as indicated by the white

square in Fig. 4.7. For h∗1i close to one half, the bore becomes weak and increasingly

difficult to observe. This is in line with the observations of [28], who noticed that the bore

emerging ahead of the expansion wave in their partial lock-release experiments becomes

difficult to identify when the ratio of the lock height to the tank depth is below 0.7.

Similarly, the simulations of [37] exhibit a more distinct bore when this ratio is 0.8 or
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Figure 4.6: Temporal evolution of the density field for simulation S2, at t∗ = 5 (a), 15
(b), and 35 (c). The simulation parameters are h∗1i = 0.5, ∆ρ∗ = 1.4, Re = 5, 000 and
Pe = 20, 000. The initial conditions are prescribed according to the simplified model
for configuration C2 derived in section 4.2. The simulation gives rise to an upstream
propagating disturbance in the form of an expansion wave. The white horizontal solid and
dashed lines represent the quasisteady gravity current height and the interface location
between the ambient layers at the outflow, respectively. The white solid line tangent
to the ambient interface shows that the interface height varies approximately linearly
along the expansion wave. The white circle, square and cross indicate x∗f , x

∗
l and x∗r,

respectively.
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Figure 4.7: Snapshot of the density field for simulation S3 at t∗ = 35. The simulation
parameters are h∗1i = 0.35, ∆ρ∗ = 1.4, Re = 5, 000 and Pe = 20, 000. The initial
conditions are prescribed according to the simplified model for configuration C3 derived
in section 4.2. The simulation gives rise to an upstream propagating disturbance in the
form of a bore, followed by an expansion wave. The white horizontal solid and dashed
lines represent the quasisteady gravity current height and the interface location between
the ambient layers at the outflow, respectively. The white solid line tangent to the
ambient interface is intended to show that the bore region has a larger slope than the
expansion fan region. The white circle, triangle, square and cross indicate x∗f , x

∗
b , x

∗
l and

x∗r, respectively.

greater.

We now analyze the variation of the ambient layer properties within the wave region,

in preparation for developing simplified models in section 4.2. Frames a to d of Fig.

4.8 display the ambient interface height d∗ + d∗1, the horizontal flow velocities within the

lower and upper ambient layers u∗1 and u∗2, and the vortex sheet strength γ∗ = u∗2 − u∗1,

within the expansion wave region as functions of the scaled horizontal location x∗s =

(x∗ − x∗l )/(x∗r − x∗l ), for simulation S2. Here, u∗1 and u∗2 are defined as

u∗1(x∗, t∗) =

∫ d∗+d∗1
d∗

u∗(x∗, y∗, t∗) dy∗

d∗1
, (4.19)

u∗2(x∗, t∗) =

∫ 1

d∗+d∗1
u∗(x∗, y∗, t∗) dy∗

d∗2
. (4.20)

The results are shown for the three times t∗ = 25, 30 and 35, when the Kelvin-Helmholtz

instabilities have left the domain and the flow variables far up- and downstream have

become time-independent. While the ambient interface height, as well as u∗1, u∗2 and γ∗,

111



Gravity currents propagating into two-layer stratified fluids Chapter 4

vary approximately linearly along much of the wave region, they experience more abrupt

changes in the vicinity of the gravity current front (vertical dotted lines in Fig. 4.8), due

to the strong upward acceleration of the ambient fluid caused by the current nose.

We note that in terms of their dimensionless parameters, all three of the above sim-

ulations fall into the partially blocked regime identified by [29] for two-layer stratified

flows over solid obstables, cf. Fig. 4.3. The fact that only S2 and S3, but not S1, give

rise to upstream propagating waves, reflects subtle differences between the solid obstacle

case studied by [29] and the present case of a gravity current. We will return to this

point later on.

4.1.2 Supercritical flow

In addition to the partially blocked flows with U∗g,lab > U∗l,lab (or u∗l = 0), there is

another flow regime that does not give rise to upstream waves and can be modelled by

C1. This supercritical region was introduced by [39] and is sketched in Fig. 4.3. Figure

4.9a, which corresponds to S4 in table 1, reflects this flow regime.

Consistent with Fig. 4.3, in order to achieve supercritical behaviour we take the ratio

Do = h∗/h∗1i ≈ 1, while the Froude number Fo = U∗g /
√
h∗1i∆ρ

∗ needs to be sufficiently

large. To increase Fo we select a small value for h∗1i and focus on cases that yield large

gravity current front velocities. According to the analytical model to be discussed in

section 4.2, and corresponding results of section 4.3, for very small values of h∗1i, U
∗
g

becomes largest when ∆ρ∗ ≈ 2. Additionally, because Do ≈ 1, the gravity current height

needs to be small as well. For these reasons, in case S4 we choose h∗1i = h∗ = 0.05.

Simulating flows of very thin gravity currents whose density is close to that of the lower

ambient fluid layer, requires large values of Re and Pe.

For moderate values of h∗1i & 0.15 the simulations typically yielded only a single
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Figure 4.8: Simulation S2: DNS results for the spatial variation of various flow properties
inside the wave region. (a) interface height d∗ + d∗1, (b) velocity u∗1 of the lower ambient
layer, (c) velocity u∗2 of the upper ambient layer, and (d) the interfacial vortex sheet
strength γ∗ = u∗2 − u∗1. The results have been obtained for t∗ = 25, 30 and 35, indicated
by the dash-dotted, dashed and solid lines, respectively. The vertical dotted lines denote
the location of the gravity current tip, with the leftmost line corresponding to t∗ = 25 and
the rightmost one corresponding to t∗ = 35. Over much of the expansion wave region,
the respective flow properties are seen to vary approximately linearly.
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Figure 4.9: Snapshots of the quasisteady density fields for simulations S4 (a) and S5
(b), at t∗ = 20. The simulation parameters are h∗1i = 0.05 and ∆ρ∗ = 1.89, and slightly
different values of Re and Pe, cf. table 1. S4 and S5, while both corresponding to
configuration C1, are classified as supercritical and partially blocked flows, respectively,
by [29]. The white horizontal solid and dashed lines represent the quasisteady gravity
current height and the ambient interface location at the outflow. The white circles,
squares and crosses indicate x∗f , x

∗
l and x∗r, respectively.
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possible gravity current thickness for each ∆ρ∗. On the other hand, for very small values

of h∗1i we observed that gravity currents with two different heights might form for the

same ambient density difference. Simulations S4 and S5, shown in Fig. 4.9a and b,

represent an example in this regard. These simulations have the same values for h∗1i

and ∆ρ∗, and slightly different values of Re and Pe, resulting in very different gravity

current heights. According to [29], S5 would fall into the completely blocked flow regime

for a two-layer flow over a solid obstacle. On the other hand, in our DNS simulations

for gravity currents propagating into two-layer stratified ambients we never observed a

completely blocked flow, i.e., a flow for which the ambient interface does not pass over

the gravity current, even for very small lower ambient inflow thicknesses. Again, this

indicates certain differences between the solid obstacle and gravity current cases.

4.2 Vorticity-based modeling

In the following we apply the vorticity-based modeling approach by [19] and [37] to

gravity currents propagating into two-layer stratified ambients, for each of the configu-

rations shown in Fig. 4.1.

4.2.1 Flows without upstream propagating disturbance

The most basic flow configuration C1, as sketched in Fig. 4.1a, is characterized by a

smooth, steady ambient interface without upstream wave propagation. For a given grav-

ity current height h∗, and prescribed ambient densities and upstream layer thicknesses,

we have five unkowns: the velocity U∗g of the gravity current, as well as the ambient

velocities (U∗1o, U
∗
2o) and layer thicknesses (h∗1o, h

∗
2o) at the outflow boundary. In the ref-

erence frame moving with the gravity current front, the dimensionless mass conservation
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equations for the ambient layers read

U∗gh
∗
1i = U∗1oh

∗
1o , (4.21)

U∗gh
∗
2i = U∗2oh

∗
2o . (4.22)

Vorticity conservation along the top of the gravity current O − 2o and the interface

between the ambient fluid layers 2i− 3o results in

1

2
U∗1o

2 =
g′1
g′
h∗ , (4.23)

U∗1o + U∗2o
2

(U∗2o − U∗1o) =
g′2
g′

(h∗1o + h∗ − h∗1i) , (4.24)

where

g′1
g′

=
ρ1 − (ρ2 + ∆ρ

2
)

ρ1 − ρ2

, (4.25)

g′2
g′

=
(ρ2 + ∆ρ

2
)− (ρ2 − ∆ρ

2
)

ρ1 − ρ2

=
∆ρ

ρ1 − ρ2

. (4.26)

A fifth equation is obtained from the geometrical constraint at the outflow boundary

h∗ + h∗1o + h∗2o = 1 . (4.27)

The above equations (4.21)-(4.24) and (4.27) represent a closed algebraic system for the

five unknowns U∗g , U∗1o, U
∗
2o, h

∗
1o and h∗2o, so that empirical closure assumptions are not

needed.

As an aside, we insert here a brief comment on the relationship between the headlosses

in the upper and lower layers, for the quasisteady flow of C1 in the moving reference frame.

Within each layer, the headloss is of course constant along all streamlines, since the flow
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is irrotational. We write Bernoulli’s equation with a headloss in dimensionless form, for

fluid elements immediately below and above the streamline 2i− 3o

p∗2i +
1

2
U∗g

2 +

(
ρ2 + ∆ρ

2

)
g

ρ2g′
h∗1i = p∗3o +

1

2
U∗1o

2 +

(
ρ2 + ∆ρ

2

)
g

ρ2g′
(h∗ + h∗1o) + ∆∗1 , (4.28)

p∗2i +
1

2
U∗g

2 +

(
ρ2 − ∆ρ

2

)
g

ρ2g′
h∗1i = p∗3o +

1

2
U∗2o

2 +

(
ρ2 − ∆ρ

2

)
g

ρ2g′
(h∗ + h∗1o) + ∆∗2 . (4.29)

Here ∆∗1 and ∆∗2 represent the dimensionless headlosses within the lower and upper am-

bient layers, respectively, scaled by ∆ref = ρ2g
′H. Subtracting equation (4.29) from

equation (4.28) yields

∆∗1 −∆∗2 =
1

2
(U∗2o

2 − U∗1o
2)− g′2

g′
(h∗ + h∗1o − h∗1i) . (4.30)

The right-hand side of this equation vanishes according to equation (4.24), and we con-

clude that vorticity conservation immediately implies that both ambient layers have the

same headloss. We will return to this point when discussing the assumptions underlying

previous models of earlier investigators in section 4.5.

4.2.2 Propagation of a rarefaction wave towards the inflow bound-

ary

Figure 4.1b displays configuration C2, a flow with a rarefaction wave traveling towards

the inflow boundary, which causes the steady state assumption to be invalid, even in the

reference frame moving with the gravity current tip. The DNS results of section 4.1 show

that the right edge R of the wave remains stationary in the reference frame of the gravity

current. The speed Ul of the left edge L of the wave is merely a function of the inflow
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conditions

U∗l =
√

∆ρ∗h∗1ih
∗
2i , (4.31)

cf. [37]. We then need five additional equations to determine the remaining unknowns

U∗g , U∗1o, U
∗
2o, h

∗
1o and h∗2o. These can again be obtained from the mass balances of the

two ambient layers, the vorticity balances along the two interfaces, and the geometrical

constraint provided by equation (4.27), although the unsteadiness renders the equations

slightly more complex. While the vorticity balance along the steady upper boundary

of the gravity current is still given by equation (4.23), the unsteady evolution of the

rarefaction wave modifies the other three equations.

In order to quantify the temporal changes of the ambient layer volumes, and of the

circulation along the boundary separating these layers, we assume that the ambient

interface height as well as the vortex sheet strength vary linearly within the wave region

from L to R. The DNS results of section 4.1 above showed that this approximation

holds to a good degree over much of the wave region, although it becomes questionable

in the region immediately above the gravity current front, cf. Fig. 4.8a. Hence it will

be interesting to compare the predictions obtained on the basis of this approximation

with the actual DNS results further below. Consequently, in the reference frame of the

gravity current the mass balance for the deforming upper layer within control volume

L− 3o− 4o− L′ yields

(U∗l − U∗g )
h∗2i + h∗2o

2
= U∗l h

∗
2i − U∗2oh∗2o . (4.32)

Mass conservation for the entire channel 1i− 1o− 4o− 3i results in

U∗g = U∗1oh
∗
1o + U∗2oh

∗
2o . (4.33)
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To obtain an equation for the vorticity along the ambient interface 2i−3o, we start from

the integral form of the inviscid vorticity conservation equation

d

dt∗

∫
CV (t∗)

ω∗ dA∗ +

∮
CS(t∗)

ωV∗r · n dS∗ = −
∫
CV (t∗)

g′2
g′
∂ρ∗

∂x∗
dA∗ , (4.34)

where ω∗ = ω/
√
g′/H, and CS denotes the boundary of the control volume that con-

tains the ambient interface. V∗r represents the relative flow velocity at this boundary.

The temporal rate of change of the circulation inside the control volume is due to the

elongation of the wave region resulting from the rarefaction wave propagation. The rate

at which the wave region lengthens is given by U∗l − U∗g . Based on the DNS results of

section 4.1, cf. Fig. 4.8d, we assume that the vortex sheet strength varies linearly from

L to R, so that its average value in the wave region is (U∗2o − U∗1o)/2. Hence we obtain

d

dt∗

∫
CV (t∗)

ω∗ dA∗ = −1

2
(U∗l − U∗g )(U∗2o − U∗1o) . (4.35)

There is no influx of vorticity into the control volume, and the shear at the outflow

boundary yields

∮
CS(t)

ω∗V∗r · n dS∗ = −1

2
(U∗2o − U∗1o)(U∗2o + U∗1o) . (4.36)

The baroclinic vorticity production term can be evaluated as

−
∫
CV (t∗)

g′2
g′
∂ρ∗

∂x∗
dA∗ = −∆ρ∗(h∗1o + h∗ − h∗1i) . (4.37)

By substituting equations (4.35)-(4.37) into equation (4.34), we obtain the vorticity equa-
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tion in the form

1

2
(U∗l − U∗g )(U∗2o − U∗1o) +

U∗2o
2 − U∗1o2

2
= ∆ρ∗(h∗ + h∗1o − h∗1i) . (4.38)

The system of equations (4.23), (4.32), (4.33) and (4.38) is then fully closed by the

geometrical constraint (4.27).

4.2.3 Rarefaction wave following an upstream bore

When the rarefaction wave gives rise to a leading internal bore, we model the flow

based on configuration C3, as sketched in Fig. 4.1c. As shown by [37], the mass and vor-

ticity conservation equations along the rarefaction wave and in the laboratory reference

frame can be written as

du∗1
dd∗1

= −
u∗ + u∗1 − U∗g

d∗1
, (4.39)

du∗2
dd∗1

=
u∗ + u∗2 − U∗g

d∗2
, (4.40)

(u∗ + u∗1 − U∗g )2

d∗1
+

(u∗ + u∗2 − U∗g )2

d∗2
= ∆ρ∗ . (4.41)

We recall from section 4.1 that u∗1 and u∗2 represent the dimensionless horizontal velocities

of the lower and upper layers, while d∗1 and d∗2 denote the local depths of the layers.

u∗ indicates the interfacial velocity along the wave in the laboratory frame, which is

positive towards the inflow boundary. Consequently, u∗(x∗r) = U∗g and u∗(x∗l ) = U∗l . The

above system of equations, which can be obtained by applying the mass and vorticity

conservation principles to an infinitesimal control volume along the expansion fan, yields

the flow field within the fan as a function of the interface height d∗1(x∗, t∗), without

invoking any assumptions regarding the interfacial shape, cf. [37].
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If |u∗(x∗)| decreases monotonically from left to right, only the expansion wave forms.

On the other hand, if |u∗(x∗)| has a maximum somewhere between L and R, the interface

steepens locally and a bore emerges as shown in Fig. 4.1c. To investigate the conditions

under which a maximum appears, we take the derivative of equation (4.39)

[
2(u∗ + u∗2 − U∗g )

1− d∗1
+

2(u∗ + u∗1 − U∗g )

d∗1

]
du∗

dd∗1

−
3(u∗ + u∗1 − U∗g )2

d∗1
2 +

3(u∗ + u∗2 − U∗g )2

(1− d∗1)2
= 0 , (4.42)

where du∗1/dd
∗
1 and du∗2/dd

∗
1 have been substituted from equations (4.39) and (4.40),

respectively. By letting du∗/dd∗1 be zero, we arrive at

u∗ + u∗1 − U∗g
d∗1

=
u∗ + u∗2 − U∗g

1− d∗1
. (4.43)

We expect that the local extremum first apears for the smallest interface height, i.e.

at the left edge of the expansion wave, where d∗1 = h∗1i and u∗1 − U∗g = u∗2 − U∗g = 0.

By substituting these values into equation (4.43), we find that a bore emerges only if

h∗1i < 0.5. [37] show that in the presence of a bore, the flow chooses h∗l = 0.5, which

results in a nondissipative flow across the bore. The equations for mass and vorticity

conservation around the internal bore, and in the reference frame moving with the bore,

yield

U∗b h
∗
1i = (U∗b − U∗1b)h∗l , (4.44)

U∗b h
∗
2i = (U∗b + U∗2b)(1− h∗l ) , (4.45)

1

2
(U∗2b + U∗1b)(U

∗
2b − U∗1b + 2U∗b ) = ∆ρ∗(h∗l − h∗1i) , (4.46)

where U∗b is the bore propagation speed, and U∗1b and U∗2b represent the velocities of
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the lower and upper layers downstream of the bore in the laboratory reference frame.

Equations (4.44)-(4.46) can be solved to obtain

U∗b = 0.5
√

∆ρ∗ , (4.47)

U∗1b = U∗2b =
√

∆ρ∗(0.5− h∗1i) . (4.48)

U∗1b and U∗2b can then be substituted into the vorticity balance equation (4.41) to arrive

at a relationship for the propagation velocity of the left edge of the rarefaction wave

U∗l =
√

∆ρ∗h∗1ih
∗
2i , (4.49)

which is identical to that found for C2 in equation (4.31).

After finding the bore speed as well as the velocities of the ambient layers downstream

of the bore, the gravity current velocity and the heights and velocities of the ambient

layers at the outflow boundary can then be obtained by an analysis corresponding to

those of sections 4.2.1 and 4.2.2. We thus obtain

(U∗l − U∗g )
1− h∗l + h∗2o

2
= (U∗2b + U∗l )(1− h∗l )− U∗2oh∗2o , (4.50)

1

2
(U∗l − U∗g )(U∗2o − U∗1o + U∗1b + U∗2b) +

U∗2o
2 − U∗1o2

2
−

1

2
(U∗1b + U∗2b)(U

∗
2b − U∗1b + 2U∗l ) = ∆ρ∗(h∗ + h∗1o − h∗l ) , (4.51)

where the vortex sheet strength again has been assumed to vary linearly. Equations

(4.23), (4.27), (4.33), (4.50) and (4.51) can then be solved to obtain the flow quantities

for configuration C3.
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4.2.4 Physically possible solutions

Since no energy-based closure assumptions were employed while deriving the above

analytical models, the energetics of the flow can be assessed a posteriori, i.e. after

determining the flow field. Towards this end, we will now analyze the rate of energy loss

for the entire flow in the reference frame of the gravity current. The most general form

of the energy equation is

Ė∗i − Ė∗o − Ė∗d − Ė∗s = 0 . (4.52)

Here Ė∗d and Ė∗s represent the dimensionless rates of dissipation and storage of energy

inside the control volume, while Ė∗i and Ė∗o indicate the rates at which energy is convected

into and out of the control volume. These rates have been rendered dimensionless by

ρ2g
′3/2H5/2.

We begin by discussing the steady configuration C1, for which the storage term

vanishes. Ė∗i and Ė∗o can be calculated as

Ė∗i =

∫ 1

0

(
p∗(y∗) +

1

2
U∗i

2 +
ρg

ρ2g′
y∗
)
U∗i dy∗ , (4.53)

Ė∗o =

∫ 1

0

(
p∗(y∗) +

1

2
U∗o

2 +
ρg

ρ2g′
y∗
)
U∗o dy∗ . (4.54)

Since the flow direction at the in- and outflow boundaries is horizontal, we can assume

the local pressure distribution to be hydrostatic

p∗i (y
∗) =


p∗3i +

(ρ2−∆ρ
2

)g

ρ2g′
(1− y∗) y∗ ≥ h∗1i ,

p∗3i +
(ρ2−∆ρ

2
)g

ρ2g′
h∗2i +

(ρ2+ ∆ρ
2

)g

ρ2g′
(h∗1i − y∗) y∗ < h∗1i .

(4.55)
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p∗o(y
∗) =



p∗4o +
(ρ2−∆ρ

2
)g

ρ2g′
(1− y∗) y ≥ h∗ + h∗1o ,

p∗4o +
(ρ2−∆ρ

2
)g

ρ2g′
h∗2o +

(ρ2+ ∆ρ
2

)g

ρ2g′
(h∗ + h∗1o − y∗) h∗ ≤ y∗ < h∗ + h∗1o ,

p∗4o +
(ρ2−∆ρ

2
)g

ρ2g′
h∗2o +

(ρ2+ ∆ρ
2

)g

ρ2g′
h∗1o + ρ1g

ρ2g′
(h∗ − y∗) y∗ < h∗ .

(4.56)

Here, p∗i (y
∗) and p∗o(y

∗) denote the dimensionless pressure at the in- and outflow bound-

aries, respectively. The pressure drop p∗3i − p∗4o along the top wall of the channel can be

computed in a straightforward fashion, by applying the integral horizontal momentum

balance for the entire channel in the reference frame moving with the gravity current

Ṁ∗ =

∫ 1

0

(p∗i + U∗i
2) dy∗ −

∫ 1

0

(p∗o + U∗o
2) dy∗ . (4.57)

Here Ṁ∗ has been rendered dimensionless by ρ2g
′H2. We note that for C1, Ṁ∗ = 0,

due to the steady nature of the flow. By substituting the velocities evaluated in sections

4.2.1-4.2.3, and the pressure functions of equations (4.55) and (4.56) into equation (4.57),

we obtain the following expression for the pressure drop along the top wall

p∗3i − p∗4o =
∆ρ∗

2

(
h∗1o

2 − h∗2o2

2

)
− ∆ρ∗

2
h∗1oh

∗
2o −

∆ρ∗

2
h∗h∗2o

+
∆ρ∗

2
h∗h∗1o +

∆ρ∗

2

(
h∗2i

2 − h∗1i2

2

)
+

∆ρ∗

2
h∗1ih

∗
2i

+
h∗2

2
+ U∗1o

2h∗1o + U∗2o
2h∗2o − U∗g

2 + Ṁ∗ . (4.58)

For C2 and C3 the unsteady rarefaction wave results in Ṁ = Ṁ∗
1 + Ṁ∗

2 6= 0, where

Ṁ∗
1 and Ṁ∗

2 indicate the rates at which momentum accumulates in the lower and upper
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layers, respectively. These rates can be obtained as

Ṁ∗
1 =

[
d

dt∗

∫ x∗r

x∗l

u∗1(x∗)d∗1(x∗) dx∗

]
− (U∗l − U∗g )U∗gh

∗
1i , (4.59)

Ṁ∗
2 =

[
d

dt∗

∫ x∗r

x∗l

u∗2(x∗)d∗2(x∗) dx∗

]
− (U∗l − U∗g )U∗gh

∗
2i , (4.60)

where x∗l and x∗r denote the horizontal locations of the left and right edges of the wave, as

defined in section 4.1. In order to be able to evaluate the above integrals analytically, we

assume that the horizontal velocities of the individual layers vary linearly as a function

of x∗ along the wave, which is supported by the DNS data of the previous section. The

validity of this assumption in the context of evaluating the energy budget of the flow,

will be further investigated in section 4.4. The summation of Ṁ∗
1 and Ṁ∗

2 then gives the

net accumulation rate Ṁ∗ of momentum within the entire channel. The pressure drop

along the top wall can be evaluated by substituting Ṁ∗ into equation (4.58).

Ė∗s is the rate at which the energy within the channel changes with time, as the

rarefaction wave travels to the left. To assess the rate at which the kinetic energy of the

flow changes, it is again convenient to analyze each layer separately. The rate of change

of the kinetic energy of the lower and upper layers can be calculated as

Ė∗k,1 =

[
d

dt∗

∫ x∗r

x∗l

1

2
u∗1

2(x∗)d∗1(x∗) dx∗

]
− 1

2
(U∗l − U∗g )U∗g

2h∗1i , (4.61)

Ė∗k,2 =

[
d

dt∗

∫ x∗r

x∗l

1

2
u∗2

2(x∗)d∗2(x∗) dx∗

]
− 1

2
(U∗l − U∗g )U∗g

2h∗2i . (4.62)

Ė∗k,1 and Ė∗k,2 can then be added to calculate the net rate of change of kinetic energy Ė∗k

within the channel.

The propagation of the expansion wave furthermore lifts up the denser fluid of the

lower layer, thereby increasing the potential energy. To quantify the rate of growth of
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Figure 4.10: Sketch in support of evaluating the unsteady potential energy term, in the
reference frame moving with the gravity current. Over a small time interval ∆t, the left
edge of the expansion wave travels from L to Ln with the constant velocity Ul−Ug, while
the right edge R remains stationary. Within the expansion wave region, the interface is
assumed to have a constant slope that changes with time. The shaded region indicates
the volume of dense fluid of the lower layer that has replaced the light fluid of the upper
layer during ∆t.

potential energy, we analyze the evolution of the constant-slope interface over a small

time interval ∆t, due to the propagation of the rarefaction wave, as shown in Fig. 4.10.

The shaded region indicates the volume of light, upper layer fluid replaced by dense,

lower layer fluid during ∆t. The rate at which the potential energy increases is then

proportional to the rate at which the area of this triangle grows times the height of its

center of gravity, which results in

Ė∗p =
1

2
∆ρ∗(U∗l − U∗g )(h∗ + h∗1o − h∗1i)

(h∗ + h∗1o + 2h∗1i
3

)
. (4.63)

The potential energy rate of growth can be added to the kinetic energy rate of growth

to obtain Ė∗s . We then substitute Ė∗s into equation (4.52) to compute the rate of energy

dissipation Ė∗d .

A corresponding analysis can be conducted for configuration C3 in order to obtain

the rate of energy dissipation. Towards this end, we first compute the pressure drop

along the top wall from equation (4.58), where the rate of accumulation of momentum
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Ṁ∗ is now evaluated according to

Ṁ∗
1 =

[
d

dt∗

∫ x∗r

x∗l

u∗1(x∗)d∗1(x∗) dx∗

]
+ (U∗b − U∗l )(U∗g − U∗1b)h∗l

− (U∗b − U∗g )U∗gh
∗
1i , (4.64)

Ṁ∗
2 =

[
d

dt∗

∫ x∗r

x∗l

u∗2(x∗)d∗2(x∗) dx∗

]
+ (U∗b − U∗l )(U∗g + U∗2b)(1− h∗l )

− (U∗b − U∗g )U∗gh
∗
2i , (4.65)

The results of the above integrals can then be added up to obtain Ṁ∗ for C3, which then

enables us to compute p∗3i − p∗4o from equation (4.58). In a corresponding fashion, we

obtain

Ė∗k,1 =

[
d

dt∗

∫ x∗r

x∗l

1

2
u∗1

2(x∗)d∗1(x∗) dx∗

]
+

1

2
(U∗b − U∗l )(U∗g − U∗1b)2h∗l

− 1

2
(U∗b − U∗g )U∗g

2h∗1i , (4.66)

Ė∗k,2 =

[
d

dt∗

∫ x∗r

x∗l

1

2
u∗2

2(x∗)d∗2(x∗) dx∗

]
+

1

2
(U∗b − U∗l )(U∗g + U∗2b)

2(1− h∗l )

− 1

2
(U∗b − U∗g )U∗g

2h∗2i , (4.67)

and

Ė∗p =
1

2
∆ρ∗

[
(U∗l − U∗g )(h∗ + h∗1o − h∗l )

h∗ + h∗1o + 2h∗l
3

+ (U∗b − U∗g )
h∗l

2 − h∗1i2

2

]
, (4.68)

so that we can evaluate the rate of energy dissipation Ė∗d from equation (4.52).
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4.3 Model predictions

In the following, we will discuss model predictions for the three configurations C1, C2

and C3. Towards this end, we solve the equations derived in section 4.2 via a MatLab-

based bisection root finding technique.

Figure 4.11 displays contours of the gravity current velocity U∗g for four different

values of h∗1i, in the ∆ρ∗, h∗-plane. The shaded areas indicate the physically viable

regions where the energy analysis of section 4.2.4 gives a positive energy dissipation rate

Ėd
∗ ≥ 0. The outer boundary of the shaded region, marked by a dashed line, corresponds

to energy-conserving solutions. The dash-dotted lines separate steady C1-type solutions

to the left (U∗g ≥ U∗l ), from unsteady C2- and C3-type flows with upstream propagating

waves (U∗g < U∗l ) to the right. The latter are based on the models of sections 4.2.2 or

4.2.3, depending on whether h∗1i ≥ 0.5 or h∗1i < 0.5. We find that without stratification

(∆ρ∗ = 0), all values of h∗1i recover the classical result that half-depth gravity currents

with h∗ = 0.5 are energy-conserving and propagate with a velocity of 0.5 [1, 18, 19, 37].

We furthermore observe that for all inflow layer heights and stratification strengths,

gravity currents with thickness greater than half the channel height cannot form without

energy input.

Figure 4.12 shows the outflow velocity U∗1o of the lower ambient layer, together with

the shear across the ambient interface, as functions of the stratification parameter ∆ρ∗,

for several gravity current heights h∗. In the limit of ∆ρ∗ → 2, the density difference

between the lower ambient layer and the gravity current vanishes, so that no vorticity is

being generated along their boundary, and the lower ambient outflow velocity tends to

zero. In this limit, the gravity current becomes indistinguishable from the lower ambient

layer, so that we effectively recover the situation of a bore propagating along the interface

between the ambient layers [25]. Interestingly, for all density differences the shear across
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Figure 4.11: Phase-space diagrams for the gravity current velocity U∗g as function of the
gravity current height h∗ and the stratification strength ∆ρ∗. The interface heights at
the inflow boundary are (a) h∗1i = 0.05, (b) h∗1i = 0.35, (c) h∗1i = 0.50, and (d) h∗1i = 0.65.
The shaded regions indicate solutions that are energetically possible. The dash-dotted
lines distinguish steady C1-type solutions to the left from unsteady C2- and C3-type
solutions to the right.
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Figure 4.12: The lower ambient outflow velocity U∗1o (a), and the outflow shear U∗2o−U∗1o
across the interface between the ambient layers (b), as functions of the stratification
parameter ∆ρ∗, for several gravity current heights h∗. In all cases h∗1i = h∗2i = 0.5. In the
limit ∆ρ∗ → 2 the flow reduces to a bore propagating along the interface between the
ambient layers.

the interface between the ambient layers is nearly independent of the gravity current

height.

Figure 4.13a demonstrates that h∗1o grows with decreasing gravity current height, and

that for a given gravity current height it increases monotonically with ∆ρ∗. Figure 4.13b

shows that the ratio h∗2o/h
∗
1o decays monotonically with ∆ρ∗. For small values of ∆ρ∗,

the dependence of h∗2o/h
∗
1o on h∗ is quite weak. For larger values of ∆ρ∗, when upstream

propagating disturbances emerge, the gravity current height has a substantial influence,

so that smaller values of h∗ result in considerably smaller h∗2o/h
∗
1o. We remark that in

the limit of ∆ρ∗ → 0, there will be no shear between the ambient layers at the outflow

boundary, cf. equation (4.24) and Fig. 4.12b. Hence, since the ambient layers are

equally thick at the inflow, continuity requires that they also have the same thickness at

the outflow. This is confirmed by the figure, which shows that h∗2o/h
∗
1o → 1 as ∆ρ∗ → 0.

It is informative to relate the flow regimes considered in the present investigation
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Figure 4.13: The outflow thickness h∗1o of the lower ambient layer (a), and the ambient
layer thickness ratio h∗2o/h

∗
1o (b), as functions of the stratification parameter ∆ρ∗, for

several gravity current heights h∗. In all cases h∗1i = h∗2i = 0.5.

of gravity currents propagating into two-layer stratified ambients, to those introduced

by [29] for two-layer flows over solid topography. For four different values of h∗1i, Fig.

4.14 indicates energetically feasible gravity current flows by shaded regions in the Do, Fo-

plane, based on the analysis of section 4.2.4. As stated at the beginning of this chapter,

[29] define the Froude number Fo = U∗g /
√
h∗1i∆ρ

∗, and the parameter Do = h∗/h∗1i.

Since gravity currents with thicknesses above half the channel depth would require an

external energy input, no physically possible solution exists to the right of Do = 0.5/h∗1i.

The horizontal dotted lines separate flows allowing for unsteady upstream disturbances

(below), from those which are quasisteady in the gravity current reference frame (above).

The figure suggests that for intermediate values of h∗1i partially blocked flows normally

emerge, except when Fo is relatively large. This situation can occur in two scenarios: 1)

the gravity current velocity becomes very large, which usually is not the case for these

values of h∗1i, since U∗g always remains below 0.55, or 2) ∆ρ∗ → 0. Alternatively, for small

values of h∗1i supercritical flows can also appear when ∆ρ∗ is large, e.g. ∆ρ∗ = 1.89 in S4,
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Figure 4.14: Relationship between the flow regimes considered here for gravity currents
propagating into two-layer stratified ambients, and those investigated by [29] in the con-
text of two-layer stratified flows over solid obstacles. Shaded areas indicate energetically
possible flows. The interface heights at the inflow boundary are (a) h∗1i = 0.05, (b)
h∗1i = 0.35, (c) h∗1i = 0.50, and (d) h∗1i = 0.65. Here, a, b, c and d represent supercritical,
partially blocked, completely blocked and subcritical flow regimes, respectively, accord-
ing to [29]. a/b indicates the region in which both supercritical and partially blocked
flows are plausible, depending on how the flow has been initiated. The dotted horizontal
lines distinguish gravity current flows with upstream interfacial waves (below) from those
without (above).

132



Gravity currents propagating into two-layer stratified fluids Chapter 4

since small values of h∗1i result in large Froude numbers. Consequently, the simulations

of section 4.1 with moderate values of h∗1i all correspond to partially blocked flow. We

note that partially blocked flows only result in upstream wave generation if the left edge

of the wave travels faster than the gravity current head in the laboratory frame. The

main distinction between supercritical and partially blocked flows is that the former never

allow for the formation of upstream disturbances, whereas the latter may (S2 or S3) or

may not (S1 and S5) lead to such disturbances, depending on whether U∗g < U∗l or not,

respectively. Those cases without upstream propagating waves are located above the

dotted lines along which U∗g = U∗l , while those with upstream propagating waves fall

below these lines.

4.4 Comparison of model predictions and DNS sim-

ulation results

Table 4.2 compares predictions by the vorticity models of section 4.2 to DNS sim-

ulation results, for the specific flows discussed in section 4.1. These comparisons were

carried out in the following fashion: For a given stratification parameter ∆ρ∗ and given

ambient inflow layer heights, the DNS simulation was run until a quasisteady gravity

current height h∗ was achieved. The values of Re and Pe in these simulations were cho-

sen sufficiently large so that viscous and diffusive effects can be assumed small. For these

values of ∆ρ∗ and h∗, the gravity current velocity U∗g , the propagation speed U∗l of the

expansion fan’s left edge (if applicable), and the outflow velocities and thicknesses of the

ambient layers were then evaluated from the respective vorticity model, and compared

to the corresponding DNS results. The subscript n in the table refers to the DNS results,

whereas the model predictions do not have subscripts. The model predictions and DNS
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results listed in the table are seen to agree with each other to within a few per cent.

For simulation S3, the model predictions h∗l = 0.5 and U∗b = 0.592 for the internal bore

properties (not listed in the table), while not quite as close, still agree reasonably well

with the corresponding DNS results h∗l,n = 0.448 and U∗b,n = 0.612.

The slight differences between the model predictions and DNS results can be partly

attributed to the assumption of inviscid flow without diffusion underlying the models.

The DNS simulations, on the other hand, have to employ finite values for Re and Pe, so

that all interfaces have finite thicknesses. Furthermore, the momentum transfer between

the flow layers as a result of viscosity causes an effective head gain in the ambient lower

layer and the gravity current, which reduces the gravity current velocity in the simulations

as compared to the model prediction. The presence of viscosity also leads to some

dissipation throughout the flow. The quantitative influence of Re and Pe on the flow

variables will be further discussed below. Finally, some of the discrepancy is due to the

assumption that the interface height and vortex sheet strength vary linearly within the

expansion wave region.

In all simulations, the gravity current height converged to a value near the boundary

of the shaded region in Fig. 4.11, indicating that the evolving flow field in the simulations

was always close to energy-conserving for the given value of ∆ρ∗ and the prescribed inflow

layer thicknesses. Hence, the specific vorticity model solution that conserves the overall

energy of the flow usually provides a good prediction of the flow properties observed in

the DNS. For this reason, we will refer to this energy-conserving model solution as ‘the

vorticity model prediction’ in the following.

As shown in Fig. 4.11, for a given value of ∆ρ∗ there are generally two energy-

conserving solutions for the gravity current height: one located on the upper branch, and

other located on the lower branch of the boundary between the shaded and unshaded

regions. Multiple energy-conserving solutions were also found by [8] and [35]. [8] state
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that the current chooses the solution maximizing its volumetric inflow rate U∗gh
∗, which

always corresponds to the one with the largest h∗-value. We observed a similar tendency

in our DNS simulations, in that for moderate values of h∗1i & 0.15 the gravity current

usually thickened and converged to the upper solution, even when initialized close to

the lower branch. For very small values of h∗1i, on the other hand, the DNS simulations

converged to two different gravity current heights, depending on the initialization, as

shown in Fig. 4.9.

4.4.1 Influence of dimensionless parameters

As stated earlier, in the analytical models presented in section 4.2, the fluids are

assumed to be inviscid and the interfaces are considered sharp, so that no diffusive

momentum or mass transfer can occur between the different flow layers. On the other

hand, the DNS simulations of section 4.1 employ finite Reynolds and Péclet numbers,

so that momentum and scalar interfaces have finite thicknesses. Here we investigate the

quantitative influence of the Re- and Pe-values on the DNS results.

For simulation S1, Figs. 4.15 and 4.16 display the vertical density and velocity profiles

far downstream of the gravity current front, at x∗ = 0.9Lx. Note that in all simulations of

Fig. 4.15, Pe = 20, 000, and in those of Fig. 4.16, Re = 5, 000. While the model assumes

that the velocity inside the gravity current vanishes in the reference frame moving with

the gravity current front, the DNS simulations show that the gravity current fluid moves

towards the front near the bottom wall, and away from it near the upper interface, as

a result of the finite Re- and Pe-values. The agreement between the model predictions

and DNS results improves for larger Re and Pe-values, as viscous and diffusive effects

diminish. Similarly, the velocity gradients in the interfacial regions approach the step-like

model profiles for larger Re and Pe. Corresponding observations can be made regarding
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Figure 4.15: Influence of the Reynolds number on the downstream density (a), and
velocity (b) profiles across the channel height, for simulation S1 shown in Fig. 4.4. Pe is
held fixed at 20,000. The straight dashed lines represent the model predictions of section
4.2. As Re increases, the agreement between model predictions and simulation results
generally improves.
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Figure 4.16: Influence of the Péclet number on the downstream density (a), and velocity
(b) profiles across the channel height, for simulation S1 shown in Fig. 4.4. Re is held fixed
at 5,000. The straight dashed lines represent the model predictions of section 4.2. As
Pe increases, the agreement between model predictions and simulation results generally
improves.
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the density profiles, in that they become more step-like and closer to the model predictions

as Re and Pe increase. The influence of Re on the density profiles is relatively small,

however. We note that as Re is increased beyond approximately 6,000, the agreement

between model predictions and DNS results will no longer improve, due to the appearance

of unsteady Kelvin-Helmholtz vortices.

4.5 Comparison with earlier models

We now proceed to compare predictions by the current vorticity-based models to those

of previous models by other authors. Figure 4.17 provides comparison data for the gravity

current height h∗ and velocity U∗g as functions of the density jump ∆ρ∗, for h∗1i = 0.5.

We note that the models of [8] and [34] solve for the gravity current height, while the

model by [35] solves for the other flow parameters as a function of the gravity current

height. Hence, for that models Fig. 4.17 shows the specific solution for which energy

is conserved. Similarly, as discussed above, we take as the vorticity model prediction

the energy-conserving solution. As shown in section 4.2.1, when the flow does not give

rise to upstream waves and configuration C1 applies, vorticity conservation implies that

the headloss in both ambient layers is identical, consistent with the assumption made

by [35]. On the other hand, when upstream propagating disturbances in the form of an

expansion wave or an internal bore followed by a rarefaction wave appear, overall energy

conservation implies that an energy gain in one layer corresponds to an energy loss in

the other one. According to Fig. 4.17, for h∗1i = 0.5 the model of [35] predicts that

no energy-conserving flows form for ∆ρ∗ > 1.16, while the corresponding value for the

vorticity model is 1.64.

Figure 4.17 shows that all models reproduce the classical solution h∗ = 0.5 and

U∗g = 0.5 of [1] for gavity currents without ambient stratification. Furthermore, for
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Figure 4.17: Comparison of current and previous model predictions for (a) the gravity
current height, and (b) the gravity current velocity, as function of ∆ρ∗ and for h∗1i = 0.5.
Here, those solutions from [35] and the current investigation are shown that conserve
energy. The vertical solid line indicates the transition from C1 to C2 according to the
vorticity model, while the vertical dash-dotted line represents the largest value of ∆ρ∗

for which the conjuagte flow theory of [35] predicts an energy-conserving solution. The
solution by [8] for configuration C1 is identical to the predictions of [35] and the vorticity
model. The corresponding DNS results are indicated by S1 and S2.
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Figure 4.18: Predictions by the model of [34] and by the vorticity model for the outflow
thickness of the upper ambient layer as a function of ∆ρ∗, for h∗1i = 0.5. The correspond-
ing DNS results are indicated by S1 and S2. Configuration C1 exists to the left of the
vertical dotted line.

configuration C1 the predictions by [8], [35] and the vorticity model are identical. When

upstream propagating disturbances arise for ∆ρ∗ > 0.83, the predictions of the vorticity

model devitate from those of [8] and [35], which do not account for this feature.

The two models of [34] invoke an empirical argument concerning the magnitude of

the ambient interface deflection, as expressed by equation (4.1), and as a result their

predictions for the height and velocity of the gravity current differ from the other models.

Figure 4.18 compares this empirical assumption by [34] for the outflow thickness of the

upper ambient layer with the corresponding prediction by the vorticity model, as well

as with DNS results. While the predictions of the two models are clearly distinct, the

quantitative difference is always less than ten per cent. The two DNS results are seen to

agree more closely with the vorticity model prediction.

Interestingly, the models of [8] and [34] break down for ∆ρ∗ > 1.2, independent of the

h∗1i−value. [34] suggest that this degeneration may be due to the formation of upstream
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Figure 4.19: Comparison of the vorticity model and the bore-inclusive model of [35]:
(a) gravity current velocity U∗g , and (b) usptream bore speed in the reference frame
moving with the gravity current U∗b − U∗g , as functions of ∆ρ∗, for the three values
h∗ = 0.30, 0.371 and 0.45. The inflow height of the ambient interface is kept constant
at h∗1i = 0.35. The arrow indicates the direction of increasing gravity current height.
According to the vorticity model, upstream propagating perturbations arise to the right
of the dotted vertical lines, with the gravity current height decreasing from left to right.
The corresponding DNS results for h∗ = 0.371 (simulation S3) are indicated as well.

waves, which are neglected in both studies. As a possible alternative, they speculate

that the headloss in the dissipative ambient layer becomes negative when ∆ρ∗ > 1.2.

[34] furthermore suggest that the transition from the internal bore to the expansion fan

occurs when h∗1i & 0.3. By comparison, the vorticity model predicts the transition from

C2 to C3 to occur when h∗1i < 0.5.

Figure 4.17 only shows the conjugate flow solution of [35], which does not account

for upstream propagating waves. As mentioned in the introduction, [35] also propose an

alternative model with an internal bore (but without an expansion fan), as sketched in

Fig. 4.2. For this model, [35] close their system of equations in two different ways. In the

first approach, they assume energy conservation downstream of the bore and within the

gravity current region (1b− 1o− 4o− 3b), and in the second one, they allow for positive
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headloss along 1b−O− 2o (or 2b− 3o), while they assume energy-conserving flow within

bore region (1i − 1b − 3b − 3i), which yields h∗l = 0.5 and U∗b = 0.5
√

∆ρ∗, consistent

with the vorticity model. Figure 4.19 compares the results obtained with the second

approach to those of the vorticity model. Both models obtain the same flow properties

immediately downstream of the internal bore. Due to the presence of the expansion fan

in the vorticity model, and its different treatment of the gravity current region, the two

models yield different predictions. Figure 4.19a compares the gravity current velocities

predicted by the vorticity model and the bore-inclusive model of [35] as a function of

∆ρ∗, for three different gravity current heights. Both models predict that the current

velocity increases with the decrease in current height. The discrepancies between the two

predictions become more pronounced in the presence of upstream propagating waves.

Figure 4.19b shows the difference between the bore and the gravity current velocities

U∗b −U∗g as a function of ∆ρ∗. Both models predict the formation of an internal bore for

smaller ∆ρ∗-values as h∗ increases. Furthermore, both models show a monotonic increase

of the velocity difference with the ambient stratification.

4.6 Summary

We have extended the vorticty-based modeling approach originally introduced by [19]

and [25] to gravity currents propagating into two-layer stratified ambients. Towards this

end, we have developed vorticity-based models for three different flow configurations,

viz. no upstream propagating wave (C1), an upstream propagating expansion wave only

(C2), an upstream propagating expansion wave and a bore (C3). Configuration C1

is quasisteady in the reference frame moving with the gravity current, and it does not

require any empirical closure assumptions. Configurations C2 and C3, on the other hand,

are unsteady even in the moving reference frame, and in order to obtain a closed system
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of equations we assume that certain flow properties vary linearly along the unsteady

expansion fan. If we prescribe the gravity current height and the stratification strength

along with the ambient inflow layer thicknesses and velocities, the models yield the gravity

current velocity, the bore and expansion wave properties, as well as the ambient outflow

layer thicknesses and velocities. Furthermore, the model equations provide information

as to which of the three configurations will occur in a given parameter regime.

Since we do not require energy-related closure assumptions for any of the configu-

rations, the energetics of the different flow fields can be analyzed a posteriori, after the

full flow field has been determined. In this way, we can determine the dissipation asso-

ciated with each gravity current height, for a given set of flow parameters. In order to

determine which gravity current height will be selected in Navier-Stokes flows, we then

conduct two-dimensional DNS simulations that can be compared to the model results.

These simulations yield gravity current heights in close agreement with the vorticity

model solutions for energy-conserving flows, so that we adopt this energy-conserving

solution as the vorticity model prediction. For the quasisteady C1 configuration, the

vorticity model predictions agree with the earlier models by [8] and [35], and with the

DNS simulations. In the presence of an expansion fan, however, only the vorticity model

predictions are close to the DNS results.

We furthermore discuss some of the differences between the present flow regimes

for gravity currents propagating into two-layer stratified ambients, and earlier analyses

of two-layer stratified flows over solid topography. Interestingly, the gravity current

simulations do not indicate the presence of a completely blocked flow regime, whose

existence is well established for flow over solid topography.
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Intrusive gravity currents in linearly
stratified ambients

Intrusions can also penetrate into continuously stratified ambients, where the linear strat-

ification has been frequently the interest of researchers [42–44]. The most typical way

to generate such flows in the laboratory is by a lock-release experiment, which has been

sketched in Fig. 5.1a. As can be seen, a large rectangular tank with the dimesnion L×H

has been divided into two compartments through a solid vertical gate, so that the left

compartment is filled by the intrusion fluid with the density ρc and the right one contains

a stratified fluid whose density varies linearly from ρu at the top to ρl at the base of the

stratification. The length of the left compartment Llock should be selected adequetely

large to capture the dynamics of the ambient return flow more precisely. Upon the in-

stantaneous removal of the vertical wall, the fluid within the left compartment forms the

right-propagating intrusion which travels at the velocity Uc. Concurrently, the ambient

fluid travels above and beneath the intrusion and towards the left, which gives rise to two

bottom- and top-propagating gravity currents with the respective front speeds Ul and

Uu. Experimental and numerical findings of all earlier studies exhibit that these two left-

propagating currents are fully symmetric with respect to the midplane of the tank, when

ρc = (ρl + ρu)/2. The interface ahead of the intrusion also stays flat and unperturbed,
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which indicates that no upstream disturbance emerges in these situations. Figure 5.1b

displays the simplified configuration of these flows, referred to as symmetric or equilib-

rium intrusions by previous works [42–44]. On the contrary, when the intrusion density is

not equal to the average of ambient fluid density, a nonsymmetric or nonequilibrium in-

trusion such that of configuration 5.1c will form in which left-propagating currents travel

with significantly different velocities. Furthermore, the flow generates internal gravity

waves traveling along all isopycnals and ahead of the intrusion, which can remarkably

affect the flow dynamics upstream of it. [43] and [44] observe that however the wave

amplitude varies across the tank height, so that the maximum amplitude appears near

the isopycnal with the same density as the intrusion fluid (neutral buoyancy isopycnal),

the waves of all isopycnals have the same propagation speed. Consistent with the obser-

vations of [16], the propagation of another internal wave is also expected located at the

same streamwise location as the slower left-propagating current head, as will be shown

in next sections.

Due to the complexity of analyzing the continuously stratified flows, only one previous

study has proposed a theoretical model for the problem under consideration. This model

developed by [42] is the extension of [14]’s model to the intrusions into linearly stratified

medium in which, the authors have assumed all the Available Potential Energy (APE)

prior to the removal of the gate can be converted to the kinetic energies of the gravity

currents nondissipatively. They have also considered a quadratic expression for the square

of intrusion front speed as a function of the level of asymmetry in the flow ε, given by

ε =

∣∣∣∣∣ρc − 0.5(ρu + ρl)

ρl − ρu

∣∣∣∣∣ . (5.1)

To obtain the coefficients of this expression, [42] investigate the limit of symmetric in-

trusion, while their energy analysis shows that the intrusion speed attains a minimum
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Figure 5.1: (a) Schematic of a lock-release process set up to examine the propagation
of the intrusion into linear stratification. (b) Upon the removal of the vertical gate
separating the intrusion fluid from the ambient, an equilibrium intrusion forms when
ε = 0. Concurrently, the return flow of the ambient produces two counterflowing gravity
currents along the horizontal walls. As can be noted, the interface ahead of the intrusion
remains flat, which indicates that internal gravity waves do no emerge in this case.
We remark that Uc, Ul and Uu represent the front velocities of the intrusion and left-
propagating currents in the lab-frame, whereas ui and uo are the flow velocities up-
and downstream of the intrusion, respectively, and in the reference frame moving with
its head. (c) On the other hand, when ε > 0, the flow gives rise to internal gravity
waves traveling ahead of the intrusion as well as a left-propagating internal bore always
located at the same streamwise location as the slower counterflowing gravity current tip.
In addition, the left-propagating currents travel with substantially different velocities
in these situations. The arbitrary density and velocity profiles in various flow regions,
compatible with general physical prerequisites such as the stability of the stratification,
are also shown for all configurations. The dotted lines demonstrate the control volumes
chosen for the derivation of conservation laws. As can be seen, y = 0 is shifted to the
neutral buoyancy level for both types of intrusion.
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in this limit. They furthermore argue that the speed of this case can be evaluated via

employing the existing symmetry and modeling the top (or bottom) half of the intrusion

as a gravity current with the thickness of half the tank depth which advances into a linear

stratification. Consequently, they arrive at the following relation for the intrusion speed

Uc
ĝH

=
F

2

√
12ε2 + 1 , (5.2)

where F equals 0.266 and 0.25, depending on whether they use the results of [30] or [45],

for the calibration. ĝ is also the reduced gravity defined as g(ρl − ρu)/ρc. The modified

version of this model has been further employed by [46] to obtain the intrusion speed for

when the intrusion fluid is also linearly stratified, rendering reasonably good predictions

as well.

However [42] observe that the intrusion head becomes subcrtical with respect to the

internal gravity waves of mode-1, as soon as the symmetry condition is broken, and with

respect to those of mode-2, when 0 < ε . 0.23, but they do not incorporate it into their

model, as they argue the energy associated with these waves is fairly small compared to

APE. The authors acknowledged that the more accurate evaluation of intrusion velocity

in these situations requires the in-depth assessment of the flow upstream of the intrusion,

which has been left for further studies.

The investigation on the properties of the internal gravity waves associated with

nonsymmetric intrusion as well as their contribution to the overall energy budget of the

flow has been carried out by [43] and [44]. First of all, both studies observe the existence

of two different modes for the internal waves which propagate with the speeds close to

those predicted by [47] as

cm
ĝH

=
1

mπ
, (5.3)
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where cm represents the speed of mode-m. The slight difference between the numerical or

experimental wave speeds and those predicted by equation (5.2) has been related to the

nonlinear interactions between the modes by both investigations. In agreement with [42],

[43] and [44] observe that the intrusion speed finds its minimum when ρc = (ρl + ρu)/2

and no internal wave arises in these case. In addition, they both demonstrate that the

amount of APE radiated into the gravity waves constantly grows, as we get farther from

the equilibrium condition, such that away from this condition a considerable fraction of

the initial APE can be transferred into the potential and kinetic energies of these waves.

The maximum of this fraction has been reported to be around 20% and 30%, by [43] and

[44], respectively. Both studies also note that in the vicinity of the equilibrium condition

most of the wave energy is extracted by the mode-2 structure, while away from that, it

is predominantly extracted by the mode-1. They however estimate the transition from

mode-2 to mode-1, which is seen when the energy budget of mode-1 exceeds that of

mode-2, occurs at fairly different values of ε. In fact [43] predicts this transition to begin

when ε ≈ 0.18, whereas [44] anticipates it somewhat later when ε ≈ 0.23.

Within the present chapter, we extend the vorticity-based modeling of [48], proposed

for the gravity currents enetering arbitrarily stratified and sheared ambients, to the in-

trusive gravity currents advancing into linearly stratified ambients. This enables us to

find the velocity and thickness of the intrusion head as well as those of the counterflowing

gravity currents. For the cases in which the internal gravity waves form, this approach

also allows us to predict the propagation speed and the maximum amplitude of these

waves. Thus, employing vorticity conservation principle in addition to the incorporation

of right- or left-propagating waves eliminates the need for any empirical assumptions with

regard to the energy budget of the flow, in contrast with the previous model. Section

5.1 discusses the analytical models for both equilibrium and nonequlibrium intrusions.

In section 5.2, we describe the DNS simulations, and compare the predictions of the
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vorticity model to the numerical predictions, as well as the theoretical and experimen-

tal findings, if available. Section 5.3 summarizes the findings and presents the main

concluding remarks.

5.1 Theory

We now proceed to develop analytical vorticity-based models for the various types of

intrusion, introduced previously in this chapter.

5.1.1 Symmetric intrusions

The simplified dynamics of an equilibrium intrusion is characterized by Fig. 5.1b.

The symmetry with respect to y = H/2 as well as the existence of undisturbed interfaces

enable us to calculate the intrusion front speed only via the assessment of the flow

dynamics within the upper (or lower) half. Consequently, we can consider the upper

half as a gravity current propagating into a linearly stratified ambient with the thickness

of half the channel depth. Note also that the gravity current height is equal to half the

intrusion thickness. To obtain a vorticity-based solution for the flow, we can then employ

the thoery developed by [48] for the gravity currents advancing into arbitrarily stratified

and sheared ambients, which suggests the following second-order ODE with respect to

the upstream height yi, in the reference frame moving with the gravity current

ξ′′u2
i + ξ′(1 + ξ′)(2 + ξ′)uiu

′
i − ξ(1 + ξ′)3g

ρ′i
ρc

= 0 , (5.4)

where ξ denotes the deflection of a certain streamline from upstream of the gravity

current towards downstream and ρc has been selected as the reference density. ui and

ρi also show the horizontal velocity and density distributions at the inflow boundary,
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respectively. Substituting the given upstream conditions into equation (5.4) leads to

ξ′′U2
c + ξ(1 + ξ′)3g

ρl − ρu
ρcH

= 0 . (5.5)

The boundary values for the problem under consideration is however slightly more com-

plicated than those suggested by [48], since the thickness hc of the intrusion is an unknown

as well. Using the vorticity balance equation along the upper interface of the intrusion

gives

uo(0)2

2
= g

ρi(0)− ρc
ρc

hc
2
, (5.6)

where uo is the horizontal velocity function at the outflow boundary of control volume

EDCB. Note that in the case under investigation yi varies from 0 to H/2, where yi = 0 is

located at the neutral buoyancy isopycnal (point D in Fig. 5.1b), which yields ρi(0) = ρc.

We can thus conclude uo(0) = 0. [48] arrives at the following relationship between

the horizontal velocity profiles at the in- and ouflow bundaries by applying the mass

conservation equation to a certain infinitesimal streamtube

uo(yi) =
ui(yi)

1 + ξ′
. (5.7)

Replacing uo(0) = 0 into the above equation then yields ξ′(0) =∞. It is also clear that

the top wall of the tank is an undeflected streamline, i.e. ξ(H/2) = 0, and the deflection

of the streamline at the neutral bouyancy level is given by ξ(0) = hc/2. We still need an

extra equation for the closure, since the intrusion thickness has to be found. To obtain

this additional equation, applying the integral form of the inviscid vorticity conservation

PDE to the flow within FEBA control volume and in the reference frame of the upper
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gravity current can be informative, which gives

∮
ωu · n dS = −

x g

ρc

∂ρ

∂x
dA , (5.8)

where ω and u represent the vorticity normal to the plane and the velocity vector,

respectively. dA, dS and n also indicate a differential area within the control volume, a

differential length along the boundaries of the control volume, and the unit outer normal

vector to the control volume boundaries. Equation (5.8) can be simplified to

1

2

{
(Uu + Uc)

2 −
[
Uu − (uo(H/2)− Uc)

]2}
=

∫ H/2

hc/2

g

ρc
[ρc − ρo(y)] dy , (5.9)

cf. [19] for the details. Note that Uu − [uo(H/2) − Uc] is the horizontal velocity along

the top wall, at the inflow of FEBA and in the reference frame moving with the upper

gravity current. Uu can also be calculated as the average of horizontal flow velocity

downstream of the intrusion and in the laboratory frame

Uu =

∫ H/2
hc/2

[uo(y)− Uc] dy

H/2− hc/2
. (5.10)

We can then solve the vorticity model equations as follows: After making initial

guesses for hc and Uc, we integrate equation (5.5) subject to the boundary conditions

ξ(0) = hc/2 and ξ′(0) =∞. The latter is implemented by setting ξ′(0) to a large number.

Tests show that for sufficiently large values ξ′(0) > 103, the numerical solution does not

depend on the exact value chosen. Then we perform an inner iteration loop by updating

our guess for hc via a bisection shooting procedure until the condition |ξ(H/2)| < 10−7

is satisfied. The final value for Uc is then found via an outer iteration loop, as follows:

Since the density remains constant along a streamline, we can evaluate the outflow density

ρo(y) from ρo(yi+ξ(yi)) = ρi(yi), and the outflow velocity uo(y) is obtained from equation
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(5.7). We then iterate on Uc until equation (5.9) is satisfied within the control volume

FEBA with an error less than 10−7.

5.1.2 Nonsymmetric intrusions

Once the symmetry condition is violated, a nonequilibrium intrusion such that sketched

in Fig. 5.1c forms, which also gives rise to right-propagating internal gravity waves.

However these waves travel at the same speed along all isopycnals ahead of the intrusion

[43, 44], their amplitude vary across the tank, so that it is zero along the bottom and top

walls and becomes maximum close to the neutral buoyancy isopycnal, as stated earlier

in this chapter. We notice that the linear stratification upstream of the intrusion gives

the following relation for neutral buoyancy level yN

yN = 1− ρc − ρu
ρl − ρu

. (5.11)

[43] suggests the following empirical expression for the maximum amplitude of the waves

dmax

dmax = α(0.5 + ε) , (5.12)

where α = 0.18±0.01. Having the same propagation speed for the waves of all isopycnals

as well as the existence of a maximum for their amplitude, incites us to treat these gravity

waves as a hydraulic bore traveling along the neutral buoyancy isopycnal, at the speed

Ub and with the amplitude d, as shown in Fig. 5.1b. The validity of this assumption

will be further examined in section 5.2.1. To solve for the speed and the amplitude of

this bore, we then employ a vorticity-based analysis similar to that of section 5.1.1, by

applying equation (5.4) to both upper and lower regions of control volume DEFG and
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in the reference frame moving with the leading bore, which results in

ξ′′U2
b + ξ(1 + ξ′)3g

ρl − ρu
ρcH

= 0 . (5.13)

Note that y−axis is directed downward within the lower region, which makes the gradient

of the density positive, but since the gravity is in the same direction as this vector,

equation (5.13) retains its shape. The origin of the coordinate system for both regions

is shifted to the neutral buoyancy isopycnal, in the same fashion as section 5.1.1. The

boundary values of this equation for the regions below and above the wave can be written

as

ξu1(0) = −ξl1(0) = d , (5.14)

ξu1(du) = ξl1(dl) = 0 . (5.15)

Furthermore, the solution will be smooth at the interface, so that

ξ′u1(0) = ξ′l1(0) . (5.16)

The procedure for solving the flow within the wave region is as follows: We make an

initial guess for d and Ub. We then solve (5.13) for the upper and lower regions based on

the boundary values of equations (5.14) and (5.15) and via a bisection shooting method,

which renders the slopes of the deflection at the neutral buoyancy isopycnal ξ′u1(0) and

ξ′l1(0). We then terminate the procedure and accept the solution if equation (5.16) holds,

otherwise, we update our guess for Ub until it happens and the solution converges. We

verify the validity of the initial guess for d later, and correct it, if needed.

The previous analysis of the leading bore also returns the density and velocity distri-

butions upstream of the intrusion. Due to the propagation of the internal gravity waves,
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the density stratifiction ahead of the intrusion will no longer be linear and the velocity

distribution exhibits shear, i.e. the more sophisticated and general equation for ξ shown

in (5.4) has to be employed to obtain the intrusion speed and thickness. Towards this

end, we first investigate the flow within the slower left-propagating current, which is the

lower one when ρc > (ρl + ρu)/2. Next, we guess a value for Uc and shift the reference

frame from the leading bore to the intrusion by replacing ui with ul1−Ub+Uc in equation

(5.4). We then find the thicknesses of the lower gravity current and lower branch of the

intrusion, hl and hlc, as well as the intrusion speed Uc by using the same numerical pro-

cedure as that described for a symmetric intrusion, except the closure equation should

be modified as we apply the vorticity conservation equation (5.8) to the region below the

stagnation point of the intrusion (O in Fig. 5.1c) and inside control volume BCIJ , while

traveling with the bottom-propapgating current, which leads to

1

2

{
(Ul + Uc)

2 −
[
Ul − (ul2(dl + d)− Uc)

]2}
=

∫ dl+d

hlc

g

ρc
(ρl2(y)− ρc) dy . (5.17)

Ul in above equation can be calculated in the same fashion as Uu in section 5.1.1

Ul =

∫ dl+d
hlc

[
ul2(y)− Uc

]
dy

hl
. (5.18)

Computing Uc enables us to solve for the flow properties within the upper branch

of the intrusion, when we substitute ui and ρi with uu1 − Ub + Uc and ρu1. We then

guess a value for huc and correct our guess until integrating from ODE (5.4) yields

|ξu2(du−d)| < 10−7. The thickness hc of the intrusion can then be computed as hlc+huc.

Evaluation of the flow variables downstream of the intrusion then allows to study

the left-propagating internal bore, which travels at the same speed as the slower left-

propagating current (here Ul), as discussed earlier. Thus, we only need to find its ampli-
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tude to obtain the flow condition downstream of the bore. Towards this end, we make

a guess for the amplitude δ and solve the equation (5.4) in an iterative fashion, while

we should also notice that the slope of deflection at the interface of the bore and the

intrusion fluid is not infinity, since the flow velocity downstream of the bore and right

above the interface is not zero in the reference frame moving with it. The slope ξ′u3(0)

can then be reevaluated as the following

ξ′u3(0) =
Uc + Ul
Ubc + Ul

− 1 . (5.19)

This equation is achieved, when (5.7) is used along the interface of the bore. Ubc can

also be calculated by using the continuity equation within the intrusion fluid and in the

reference frame moving with the internal bore

(Ubc + Ul)(H − hu) = (Uc + Ul)hc . (5.20)

As can be seen, the value of ξ′u3(0) is convoluted to the solution of ODE (5.5) for the left-

propagating bore, i.e. this ODE has to be solved concurrently along with equations (5.19)

and (5.20) to obtain the bore amplitude δ in addition to the flow properties downstream

of the bore.

The analysis described above evaluates the properties of all flow components, while

the amplitude d of the right-propagating bore was based on an initial guess. This guess

can however be corrected by investigating the vorticity balance within the entire control

volume ABJK and in the reference frame moving with the top-propagating current,

which yields

1

2

{
(Uu + Ubc)

2 −
[
Uu − (uu3(H) + Ul)

]2}
=

∫ H

H−hu

g

ρc

[
ρc − ρu3(y)

]
dy , (5.21)
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where hu = H−hc−hl−δ. We then accept the solution entirely, if equation (5.21) holds

with an error less than 10−7 or reiterate the whole procedure with an updated guess for

d, if it did not.

5.2 DNS results vs. model predictions

In the following, we assess the validity and the predictive capability of the vorticity-

based approach proposed in section 5.1, as we compare its findings with those of earlier in-

vestigations as well as the corresponding DNS results of our in-house software TURBINS,

which solves the following conservation equations for mass, momentum and density, all

in the dimensionless form

∇·u∗ = 0 , (5.22)

∂u∗

∂t∗
+ u∗ ·∇u∗ = −∇p∗ +

1

Re
∇2u∗ + ρ∗eg . (5.23)

∂ρ∗

∂t∗
+ u∗ ·∇ρ∗ =

1

Pe
∇2ρ∗ . (5.24)

Here, eg indicates the unit vector for the gravity, and Re and Pe are defined as
√
ĝHH/ν

and
√
ĝHH/D, respectively. Furthermore, H, ν and D denote the channel height, kine-

matic viscosity and the diffusivity of the density field, respectively. The reference values

for the lengths, velocities and the pressure have been chosen as H,
√
ĝH and ρcĝH,

respectively, for nondimensionalizing. Dimesnsionless density has also been defined as

ρ∗ = (ρ− ρu)/(ρl − ρu).

The free slip boundary conditions for the velocity, along with the vanishing normal

flux conditions for the density field, have been enforced along all the solid boundaries.

Figure 5.2a displays the initialization of the flow for an equilibrium intrusion, which can

also be simply extended to the nonequilibrium cases. As shown in this figure, the density
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Figure 5.2: Temporal evolution of the density field for the symmetric intrusion (ρ∗c = 0.5)
starting from rest: (a) t∗ = 0, (b) t∗ = 30, and (c) t∗ = 60. As can be seen, the streamlines
ahead of the intrusion and in its own reference frame have been evaluated and visualized.
Furthermore, the density field varies from ρ∗ = 0 (light gray) to ρ∗ = 1 (black), inside
the ambient. Note that the intrusion fluid has been dyed in light gray (corresponding to
ρ∗ = 0) by using the passive marker technique, which enables us to distinguish between
the intrusion and ambient more easily.
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Figure 5.3: Various snapshots from the evolution of the density field for a nonsymmetric
intrusion with ρ∗c = 0.7 at: (a) t∗ = 20, (b) t∗ = 30, and (c) t∗ = 60. As can be
seen, the streamlines ahead of the intrusion and in its own reference frame have been
evaluated and visualized. The arrows are also pointing towards the locations of the left-
propagating bore. Furthermore, the density field varies from ρ∗ = 0 (light gray) to ρ∗ = 1
(black), inside the ambient. Note that the intrusion fluid has been dyed in light gray
(corresponding to ρ∗ = 0) by using the passive marker technique, which enables us to
distinguish between the intrusion and ambient more easily.

has been set equal to ρ∗c (dimensionless density of the intrusion fluid), everywhere to the

left of the lock, while the density profile of ρ∗ = 1 − y∗ has been applied to its right.

The lock length has also been selected half the tank length, which avoids the intrusion

and left-propagating currents hitting the vertical walls, unless sufficiently long after the

flow variables have become time-independent. The fluids are also at rest at t∗ = 0. We

choose Re and Pe equal to 3 × 104 and 7.5 × 104, respectively, which are adequetely

large to attenuate the diffusive effects for momentum and mass. We furthermore set

the dimension of the computational grid equal to 70 × 1, and discretize it uniformly in

both x∗- and y∗-directions, with the spacing of ∆x∗ = 0.01 and ∆y∗ = 0.005, which are

sufficiently fine not to affect the simulation results.
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Figure 5.2 and 5.3 represent the characteristics of the symmetric and nonsymmetric

intrusions, respectively. The streamlines ahead of the intruison and its reference frame

have also been evaluated and visualized for both flows. As can be seen, the streamlines

remain flat and undisturbed, except in the vicinity of the intrusion head, for the sym-

metric intrusion, which indicates that no upstream wave emerges in this situation. On

the other hand, for the nonsymmetric intrusion, these streamlines experience significant

deflections, as the gravity waves arise ahead of the intrusion. Our numerical observations,

obtained from running more than 100 simulations, show that when ε . 0.2 the flow gives

rise to both mode-1 and mode-2 structures, while the mode-1 waves travel nearly twice as

fast as mode-2 waves. On the other hand, when ε & 0.2, only mode-1 waves can distincly

be recognized. These observations are in very good agreement with those of [43] and

[44]. In addition, all the studied simulations exhibit that the maximum deflection of the

isopycnals occurs relatively close to the neutral buoyancy isopycnal and the disturbances

(waves) of all isopycnals travel at exactly the same speed. Moreover, it is seen that all

the flow variables including the front velocities and the thicknesses of the intrusion and

the left-propagating graviy currents as well as the the propagation speed of the gravity

waves and their maximum amplitude acquire quasisteady values, in all the simulations,

fairly shortly after the release of the lock.

In order to obtain the accurate values for the front velocities of all currents, we

employ a passive marker technique, i.e. we mark the fluids of the intrusion and ambient

by separate dyes, implemented in the simulations by using different concentration fields

for the intrusion and ambient, with the same Pe-value as the density field. The front

location of the intrusive gravity current x∗f,c can then be defined as the rightmost point
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Figure 5.4: Marking the fluid of each current with dye enables us to calculate the current
heights and velocities, as described in detail in the text. Here, c∗d = 1 within the intrusion
fluid and zero everywhere else for frame a, and vice versa for frame b.

at which the local dimensionless height η∗ > 0.01, where η∗ has been calculated as

η∗(x∗, t∗) =

∫ 1

0

c∗d(x
∗, y∗, t∗) dy∗ . (5.25)

Here c∗d denotes the dimensionless dye concentration, and above integration has been

applied to the concentration field of Fig. 5.4a. In addition, we can apply the integral of

equation (5.25) to the density field shown in Fig. 5.4b to evaluate the front locations of

the lower and upper gravity currents, indicated by x∗f,l and x∗f,u, respectively, while for

the lower gravity current we take this integral for the lower half of the tank (y∗ = 0 to

0.5) and for the upper gravity current, we compute it for the upper half (y∗ = 0.5 to

1). Similarly, x∗f,l and x∗f,u are the first points from the left at which the respective η∗

exceeds 0.01.

Figure 5.5a demonstrates the front locations of various gravity currents as functions

of time, for the nonsymmetric intrusion of Fig. 5.3. As can be seen in Fig. 5.5a, after

a very short transient time, all the currents travel with quasisteady speeds, in spite of

the existence of nonvanishing mixing and turbulence along the interfaces. The straight

line segments indicate the respective quasisteady front velocities, obtained by linear fits
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Figure 5.5: Simulation results for the a) front locations, and b) heights of various gravity
currents, as functions of time, for the nonsymmetric case shown in Fig. 5.3. Here,
IGC stands for Intrusive Gravity Current, while UGC and LGC denote Upper Gravity
Current and Lower Gravity Current, respectively. The straight dotted line segments in
frame a represent the quasisteady front velocities, obtained by linear fits of DNS results,
and the horizontal dotted lines in frame b indicate the quasisteady heights, evaluated as
described in the text.

of DNS results.

Evaluation of the front locations of various gravity currents enables us to calculate

the effective gravity current heights as the following

h∗t,c(t
∗) =

∫ x∗f,c
L∗lock

η∗(x∗, t∗) dx∗

L∗lock − x∗f,c
, (5.26)

h∗t,l(t
∗) =

∫ L∗lock
x∗f,l

η∗(x∗, t∗) dx∗

L∗lock − x∗f,l
, (5.27)

h∗t,u(t
∗) =

∫ x∗f,l
x∗f,u

η∗(x∗, t∗) dx∗

x∗f,l − x∗f,u
, (5.28)

where h∗t,c, h
∗
t,l and h∗t,u denote the time-dependent heights for the intrusion and the

boundary-propagating gravity currents, respectively. These heights can then be tempo-
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Figure 5.6: Temporal evolution of the neutral buoyancy isopycnal shown for three suf-
ficiently large values of t∗ = 40 (dotted line), t∗ = 50 (dashed line) and t∗ = 60 (solid
line) at which the flow has become quasisteady. In addition, the black squares represent
the front locations of the right-propagating bore at corresponding t∗ and the horizontal
dotted line indicates the quasisteady value of the maximum height h∗b of the neutral
buoyancy isopycnal.

rally averaged between two sufficinetly large times, at those the flow can be considered

quasisteady, which yields the time-independent heights of the corresponding current

h∗ =

∫ t∗2
t∗1
h∗t (t

∗) dt∗

t∗2 − t∗1
. (5.29)

Here, we take t∗1 = 40 and t∗2 = 60. As can be noted in Fig. 5.5b, the gravity current

heights certainly converge to quasisteady values as their temporal variations become very

insignificant for the fairly large values of t∗. However, we could also define the quasisteady

heights as the effective heights at a relatively large time such as t∗ = 50, we believe that

the temporal average between two adequatly large times renders more accurate results,

due to the slight change in the effective heights with time.

To measure the velocity U∗b of the leading bore as well as its maximum height h∗b , it

is crucial to track the evolution of the neutral buoyancy isopycnal ahead of the intrusion

with time, while we know the density of all the fluid particles along this line is ρ∗c . Figure
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5.6 represents the snapshots of this isopycnal at three sufficiently large values of t∗, when

the flow can be considered quasisteady. We can thus define the front location x∗f,b of the

leading bore (black squares in Fig. 5.6) as the rightmost point along the neutral buoyancy

isopycnal at which |y∗ − y∗N | > 0.01, where y∗ is the height of a certain point along this

isopycnal. Figure 5.7a exhibits x∗f,b as a function of time, for the nonsymmetric intrusion

shown in Fig. 5.3. Similar to the gravity currents, we observe that the propagation speed

of the leading bore also achives a time-independent value, after a brief initial transition,

as dx∗f,b/dt
∗ becomes constant fairly rapidly. The maximum height h∗t,b of the neutral

buoyancy isopycnal can readily be evaluated as the maximum height y∗ of this isopycnal,

which can vary with time as well. h∗t,b can then be temporally averaged between t∗1 = 40

and t∗2 = 60 in the same fashion shown in equation 5.29 to obtain h∗b . The horizontal

dotted line in Fig. 5.6 indicates this value. Eventually, the amplitude d∗ of the right-

propagating bore can be calculated as

d∗ = |h∗b − y∗N | . (5.30)

Figure 5.7 demonstrates that both U∗b and h∗b (and thereby d∗) arrive at quasistady

values, validating the assumption of treating the internal gravity waves as a single bore

propagating with constant velocity and amplitude. By carrying out a corresponding

analysis for other isopycnals, we confirm that all of them propagate with the same velocity.

This procedure furthermore yields the displacement level as function of the isopycnal.

We find that the largest displacement value d∗max occurs close to the neutral buoyancy

level. We refer to d∗max as the maximum wave amplitude, consistent with [43] and [44].
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Figure 5.7: Variations of the a) front location of the leading bore, and b) the maximum
height of the neutral buoyancy isopycnal, for the nonsymmetric case shown in Fig. 5.3.
The straight dotted line segment in frame a represents the quasisteady propagation speed
of the bore, obtained by linear fit of DNS results, and the horziontal dotted line in frame b
indicates the quasisteady maximum height of the neutral bouyancy isopycnal, evaluated
as described in the text.
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5.2.1 Analytical results and comparisons

Figure 5.8 displays the propagation velocity U∗b in addition to the amplitude d∗ of

the bore and the maximum deflection d∗max of the isopycnals, as functions of the di-

mensionless intrusion density ρ∗c . Shown are DNS results, vorticity model predictions,

the estimates of [43], and the experimental data reported by [44]. The vorticity model

predicts a constant bore propagation velocity U∗b ≈ 1/π, which is the theoretical propa-

gation velocity of linear mode-1 waves [47]. Since nonsymmetric intrusions always give

rise to mode-1 waves, and since these travel faster than any higher order modes, it is

reasonable that the leading wave front travels with this velocity. The fact that mode-2

waves are symmetric with respect to the midplane of the tank, so that they result in

smaller net displacements of the isopycnals [42], further supports this observation. The

vorticity model predictions regarding U∗b generally agree with the DNS results to within

about 10%. Especially for near-symmetric intrusions, this is somewhat closer than the

empirical formula of [43]. For ε→ 0.5 (or ρ∗c → 0, 1) the vorticity model predictions agree

with this empirical formula. Figure 5.8b indicates that d∗ ≈ d∗max for near-equlibrium

intrusions, while they increasingly differ from each other as ε grows. Interestingly, for

strongly nonsymmetric intrusions the vorticity model predictions for d∗ are very close to

the d∗max-estimates of [43]. The vorticity model predictions for both d∗ and d∗max generally

agree well with corresponding DNS results; although there is a noticeable discrepancy

with the experimental data of [44].

Figure 5.9 shows model predictions, experimental data and DNS results for the prop-

agation velocities and thicknesses of all three fronts, as functions of ρ∗c . Figure 5.9a

demonstrates good agreement among all data sets regarding the intrusion velocity. Both

the vorticity model and the DNS data show that for intermediate intrusion densities the

intrusion thickness attains a local minimum at ρ∗c = 0.5, as seen in Fig. 5.9b. However,
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Figure 5.8: (a) Propagation speed of the internal gravity waves U∗b , and (b) the maximum
displacement d∗ of the neutral bouyancy isopycnal as well as the maximum amplitude
d∗max of the waves, as functions of the dimensionless intrusion density ρ∗c . In frame a, solid
line represents the prediction of vorticity-based model of section 5.1, dotted line exhibits
empirical approximation of [43], and discrete squares are DNS results. In frame b, the
solid and dashed lines demonstrate the theoretical findings of the present study for d∗

and d∗max, respectively, the dotted line and discrete crosses indictate the estimate of [43]
and experimental data of [44] with regard to d∗max, and discrete squares and circles are
the respective DNS results regarding d∗ and d∗max.

166



Intrusive gravity currents in linearly stratified ambients Chapter 5

Figure 5.9: Variation as function of the dimensionless intrusion density ρ∗c : (a) the intru-
sion front speed U∗c , (b) the intrusion thickness h∗c , (c) the front velocities of the bottom-
and top-propagating gravity currents, U∗l and U∗u , and (d) the thicknesses of the bottom-
and top-propagating gravity currents, h∗l and h∗u. Solid lines represent the predictions of
the vorticity-based model of section 5.1 with regard to the intrusion and lower gravirty
current properties and dotted lines show the properties of the upper gravity current ob-
tained by this model. Furthermore, dashed and dash-dotted lines demonstrate the results
of [42] for the intrusion speed, when F = 0.25 and 0.266, respectively. The discrete circles
and squares also indicate the present DNS results, while the discrete crosses exhibit the
experimental data of [42].
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in the limits of ρ∗c = 0 and 1 the DNS data indicate an even smaller intrusion thickness

than for the symmetric case. In this context, we note that the vorticity model breaks

down for ρ∗c > 0.95 and ρ∗c < 0.05, so that it does not yield meaningful predictions. This

degeneration of the model indicates that these limits are singular, which is also reflected

by the fact that the bore amplitude does not smoothly approach zero as ρ∗c → 0 or 1,

cf. Fig. 5.8b, so that the flow does not smoothly transition to the full-depth lock-release

case. The discussions provided by [15] and [16] provide additional insight into this issue.

Consistent with the findings of [16], the front speed and thickness of the lower gravity

current decrease monotonically with increasing ρ∗c , as shown in Figs. 5.9c and d. Beyond

a certain value of the intrusion density, U∗l becomes negative, so that the front of the

lower current travels towards the right. Vorticity model predictions and DNS results are

seen to be in close agreement.

5.3 Summary

We have extended the vorticity-based model of [48] developed for the gravity currents

in ambients with arbitrary shear and density stratification to the intrusive gravity cur-

rents advancing into linearly stratified media. Towards this objective, we have applied

ODE (5.4) to the several fronts in the flow field, by appropriate shifts in the reference

frame to render each flow quasisteady. This enables us to obtain the intrusion front

speed and other flow variables without invoking any energy-related arguments and assess

the energy budget of the flow a posteriori. The present model predicts the existence of

equilibrium intrusions when the density of the intrusion fluid equals the mean density of

the ambient and nonequilibrium intrusions, when otherwise. Consistent with all previ-

ously reported observations, our model also shows that the equilibrium intrusions have

the minimum propagation velocity. As confirmed by our DNS simulations, the main
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difference between the equilibrium and nonequilibrium intrusions is that in the latter

the intrusion head becomes subcritical to the leading gravity waves of mode-1 for all the

values of ε and to those of mode-2, when ε . 0.2, whereas in the former no right- or

left-traveling wave emerges. These findings are in very good agreement with those of [43]

and [44], as well. The formation of these two group speeds can substantially affect the

flow conditions ahead of the intrusion, even though their influence on the energetics of

the flow might be moderate. [30] and [49] demonstrate the significance of the internal

gravity waves, as they interact with the head of the gravity current or intrusion.

As can be noted in the results displayed in section 5.2.1, the analytical model of

the current investigation breaks down when ε > 0.45. This can be attributed to the

singularity of the limits ρ∗c → 0, 1, in the sense that the amplitude of the leading bore as

well as the maximum amplitude of isopycnals do not smoothly tend to zero in these limits,

as shown in Fig. 5.8b. As a result, the solution of the current model degenerates and does

not lead to that for the boundary-traveling gravity currents into linear stratifications. [15]

and [16] describe the behaviour of the leading wave in those limits in more detail.

Furthermore, we compared the analytical results of the current study to those of the

present two-dimensional DNS simulations as well as earlier theoretical and experimen-

tal predictions, if available, and very close agreement was seen with regard to all flow

variables, including the front speeds of the intrusion and the left-propagating gravity cur-

rents, their thicknesses, the propagation velocity and amplitude of the leading bore and

the maximum amplitude of the isopycnals. Specifically, near the equilibrium condition,

our model renders the intrusion speeds much closer to the experimental and numerical

data, compared to those given by [42].
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Conclusions and outlook

Within this investigation, we utilized the vorticity modeling concept initially introduced

by [19] and [25], to develop a set of analytical models for various stratified flows, viz.

intrusive gravity currents into two-layer stratified ambients, partial-depth lock-release

flows, gravity currents propagating into two-layer fluids and intusions into linear strat-

ifications. These models enable us to capture the dynamics of complex stratified flows

which consist of multiple fronts or interfacial disturbances such as internal bores and ex-

pansion waves, without relying on energy-related arguments made by previous authors.

This allows for a posteriori analysis of the flow energy budget and the continuous energy

transfer between different flow compartments. To assess the validity and the predictive

capabilities of the proposed vorticty-based models, we compared their findings to the

corresponding results of our DNS simulations, as well as the theoretical and experimen-

tal predictions of earlier investigations, while very good agreement was seen for all flow

properties.

While we demonstrated the advantage of vorticity-based models over already existing

models for several common stratified flows in this study, we believe that the capability of

this approach is not restrained to these examples. One possible future path is to apply

this model to intrusions and intrusion-generated waves with more complicated backround

ambients, e.g. when the ambient fluid has shear or nonlinear density profile. These
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waves can also be recognized independent from the intrusion, and might be undular (e.g.

undular bores) or may reveal a periodic nature (e.g. solitary waves). The corresponding

problems for boundary-propagating gravity currents have been investigated in detail by

[48], while they consider the propagation of currents in any arbitrarily sheared and/or

stratified ambients. Another area of exploration is to extend the planar models of [19]

and [25] to three-dimensional stratified flows, which requires the integration from the

three-dimensional vorticity conservation PDE. Such models have specific utility for the

spatially-evolving wakes behind 3D objects like wind turbines and spheres. Since the

more general form of the vorticity conservation law includes the term associated with

vortex stretching (ω ·∇u), the development of three-dimensional vorticity-based models

is expected to be more complex. Finally, vorticity models can be utilized to study flows

with entrainment and turbulent effects, while the vanishingly thin interfaces between the

fluids should be replaced by finite mixing (and shear) layers.
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