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ABSTRACT: Recently, predicting the native structures of proteins has become possible
using computational molecular physics (CMP)—physics-based force fields sampled with
proper statistics—but only for small proteins. Algorithms with better scaling are needed. We
describe ML x MELD x MD, a molecular dynamics (MD) method that inputs residue
contacts derived from machine learning (ML) servers into MELD, a Bayesian accelerator
that preserves detailed-balance statistics. Contacts are derived from trRosetta-predicted
distance histograms (distograms) and are integrated into MELD’s atomistic MD as spatial
restraints through parametrized potential functions. In the CASP14 blind prediction event,
ML x MELD x MD predicted 13 native structures to better than 4.5 A error, including for 10

proteins in the range of 115—250 amino acids long. Also, the scaling of simulation time vs 3
protein length is much better than unguided MD: t;,, ~ ¢****N for ML x MELD x MD vs t;,
~ "N for MD alone. This shows how machine learning information can be leveraged to

advance physics-based modeling of proteins.

Bl INTRODUCTION a physical force field that has added nonphysical potentials

A key approach for studying the physical equilibria and (informational springs) will not correctly sample the underlying

dynamical actions of protein molecules is computational physical f%‘:lesf ffld' Th? %)VIELD acce.leration.method that we
molecular physics (CMP). CMP captures the physics and use here, 16me_lds in ex’fernal information into replica-
dynamics through semiclassical force fields that are sampled by exchange MD " using a Bayesian scheme. The MELD method

molecular dynamics (MD) or Monte Carlo (MC) methods."” does preserve proper DB because at convergence all the
It is a major tool for protein storytelling. Over the years, CMP informational springs become unstretched and contribute
modeling has advanced at roughly Moore’s Law rates, keeping approximately zero energy to the physical force field.
pace with advances in computer hardware.” For example, Here, we describe ML x MELD x MD, a novel extension to
within the past decade, CMP methods have achieved excellent MELD, formulated to utilize residue distance information
results in folding proteins from their unfolded states*® and predicted by a machine learning (ML) web server'” previously
computing binding affinities to small-molecule ligands.7 trained on native structure databases. Specifically, we first
But, huge challenges remain.® Protein conformational derive spatial contacts from the ML distograms and use a set of
searching and sampling times increase exponentially with the known structures to parametrize restraining potentials to
size of the molecule.” To date, the proteins folded by CMP augment the force field during MD simulations. We observe a
from unfolded states are mostly shorter than 100-mers. 010-14 significant acceleration in the conformational search for single
Hence, new computer hardware alone, even at Moore’s Law domain proteins. We show that the designed algorithm
rates, gives only a few amino acid length gains each generation. populates native states in the lowest free energy basin of its
To date, CMP folding simulations using atomic level folding landscape. We finally validate all the components
resolution have been limited to relatively small proteins and together—the MD potential function, MELD accelerator, and
short time scales. Reaching the sizes of biologically relevant ML data focusing—by predicting protein native structures of

proteins (at least 100—300 amino acids long) and their larger
actions will require new search strategies that have much better
scaling.

In principle, conformational search efficiencies can be
increased by using some targeted knowledge of the state(s)
of interest. However, to ensure correct physical free energies,
CMP modeling must give correctly detailed balanced (DB)
conformational populations. Incorporating informational re-
straints, such as springs, in any simple way, breaks DB and will
not give proper physical populations. This is because sampling

novel sequences in the CASP14 blind prediction competition,
which is currently the highest community-wide standard of
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Figure 1. ML x MELD x MD gives good native structures on some targets in CASP14. Panels A—P show the Topl ensemble representative
(purple) superimposed onto the true native structure (green). Target length N (in amino acids) is given in parentheses. The backbone rmsd value
from the native structure is also given for each protein. Target IDs assigned by CASP are A (T1034-D1), B (T1046s1-D1), C (T1046s2-D1), D
(T1074-D1), E (T1055-D1), F (T1045s2-D1), G (T1065s2-D1), H (T1049-D1),1(T1078-D1),J (T1065s1-D1), K (T1035-D1), L (T1057-D1),
M (T1060s3-D1), N (T1054-D1), O (T1041-D1), and P (T1090-D1).

validation for native structure modeling, and has largely been
beyond the capabilities of CMP methods in the past.

B RESULTS

Here, we show tests of ML x MELD x MD on some CASP 14
targets. On the one hand, protein structure prediction per se is
not a principal objective of MD modeling. MD is a very general
tool for broad aspects of protein storytelling—conformational
populations, free energies and fluctuations, interpreting
experiments, determining dynamical sequences of actions,
computing binding affinities, rates and allostery, and more. So,
why test the present method in CASP? We do so because
CASP is currently the most challenging, detailed, compre-
hensive, blind, and comparative venue for testing one of the
most important properties of proteins, namely, its average
static native structure. If an MD model does not correctly
encode a native structure, how can we trust it to accurately
represent other states? But, finding native states in the short
time frame of CASP events has previously been outside the
computational reach of most MD simulations. Here, we use
the CASP event as a way to test whether MD, accelerated by
MELD and ML, can come close to finding native states by
physical force field potentials. The larger aspiration, for which
the present work is a first step, is to see if advanced MD tools
can harness the vast and granular structural knowledge in the
PDB to accelerate physics-based protein modeling. We show
below that this method often finds fairly accurate native
structures, and it does so with much better scaling as a function
of chain length than MD alone.

MELD x MD Often Gives Good Native Structures. The
critical assessment of protein structure predictionlg (CASP)
event is a time-limited communal blind comparative test of
protein structure prediction methods. Figures 1 and 2 show
that ML x MELD x MD was capable of determining native
states of targets presented in the CASP14 event. The results
show that when MELD’s assumptions are met (hydrophobic
core, good secondary structures, accurate enough ML data) the
most populated macrostate in the simulation indeed
corresponds to the native basin (RMSD < 4.5 A) for most
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Figure 2. MELD x MD obtains accurate structures for 13 out of 16
targets in CASP14. Most targets are much longer than 100 amino
acids. Protein lengths (in number of amino acids) are shown in
parentheses. Targets are A (T1034-D1), B (T1046s1-D1), C
(T1046s2-D1), D (T1074-D1), E (T1055-D1), F (T1045s2-D1), G
(T1065s2-D1), H (T1049-D1), I (T1078-D1), J (T1065s1-D1), K
(T1035-D1), L (T1057-D1), M (T1060s3-D1), N (T1054-D1), O
(T1041-D1), and P (T1090-D1).

targets (13 out of 16). These include targets with a, /3, and
mixed aff topologies. The three largest proteins are longer than
190 amino acids (aa) (panels O, L, and P in Figures 1 and 2).
Our simulations populated the native basin for T1057 (246
aa), but the most favored (Topl) models for the other two
targets (T1090 191 aa and T1041 242 aa) were less accurate
according to the backbone RMSD metric. Nonetheless, the
overall topology of the Topl model for all three largest targets
was in fact correct with TM-score > 0.5 as calculated by the
CASP14 organizers (Figure S6). The template modeling
score’” (TM-score) is a global metric that compares two
structures and is less sensitive to local deviations and protein
size than the widely used RMSD value. A TM-score ranges
from 0 denoting very different folds to 1 denoting identical
structures, with a score greater than 0.5 indicating that the two
structures have a similar fold.”” The size range of proteins
sought after here is important because functionally relevant
protein domains in prokaryotes and eukaryotes are typically
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100—150 amino acids long.u’22 Overall, the results here show

that MELD x MD can leverage high quality data from
elaborate ML servers to model atomistic native states of
proteins.

Combining ML with MELD Gives Good Acceleration
and Scaling with Protein Size. Conformational searching
and sampling of large proteins starting from the completely
unfolded state is challenging and grows exponentially with
protein size. Figure 3 shows that MELD x MD uses the ML

T T

T T
| @ Unrestrained MD
| © MLxMELD x MD

Simulation time (s)

100
Protein Size (aa)

150

Figure 3. ML x MELD x MD efficiently scales up physics-based
folding simulations. Pre-CASP14 simulations (green points) handle
10 large single-domain proteins of sizes 100—150 aa while
maintaining practical us simulation time. These simulations start
from the completely unfolded linear chain and give orders of
magnitude acceleration over unguided MD (blue points).

data effectively to generate native states from the extended
linear chain of proteins up to 150 aa. This indicates that ML x
MELD x MD can converge quickly onto native basins that are
compatible with the ML input and with the force field. The
efficiency in folding with ML x MELD x MD stems from its
rapid assembly of helices and strands, followed by the protein
core (Figures S10 and S11). The simulation time as a function
of protein size N for conventional MD is estimated from Figure
3 to scale as t &~ 0.5¢*'°N, whereas the MELD-accelerated
simulation time goes as t = 803N (see the Supporting
Information for details). This indicates that the present
method accelerates native finding for 100-mers by about 5
orders of magnitude and 200-mers by about 11 orders of
magnitude. Most importantly, because native finding with
CMP requires exponential searching, it means that an
approximately 100-mer protein was a fairly hard limit for
brute-force atomistic MD, but that for the present method the
limit on chain length is no longer so hard. Our folding
simulations only span the few microsecond time range (Figure
3 and Table S1), which is quite attainable on current lab-scale
GPU clusters.

Figure 3 shows a comparison of MELD sampling vs vanilla
MD with the same atomic resolution and solvent model. But,
another form of speedup is coarse-grained modeling.”’

ML x MELD x MD Predetermines Its Success by
Lowest Free Energies and Highest Populations. The
CASP event allows a team to submit five predicted structures
for a protein target. A perpetual challenge has been to know in
advance which of a team’s five submissions is the best one, i.e.,
which predicted model is most likely to be the true native
structure. For prediction methods that do give confidence
estimates, they are statistical, based on estimates of past
successes. However, much better, in principle, would be a
physical potential that predicts the native structure as being the
conformation of lowest free energy. Here, we show that the
conformations of lowest free energy in the force field correctly

1931

predict the experimental native structure. We compare these
native (experimental) snapshots with a centroid representative
of the Topl macrostate (lowest free-energy ensemble) from
our MELD simulation.

The RMSD values in Figure 2 and Figure 4B show that in
such a blind setting (as in CASP), where no experimental data

A 100 - B
= 00T oprecase] - 190 ToOtAsP1z
& 800 ® 84 O
S 601® ¢ o s 6010 ©
B 40 - s 44 o
> =3 (e}
g 204 © g 68° "o
a o

0 T T T T

0246810
RMSD (4)

c D
—. 100 5@ 451z
& 809 © <
s 604 ©© a
B 40 2
= (6} 8 =
5 201 Bo =
o

T T
100 200
Protein Size (AA)

100
Protein Size (AA)

200

Figure 4. MELD x MD orders macrostates of proteins by free energy
as inferred through their Boltzmann populations. (A, B) Boltzmann
populations of the most favored macrostate for each protein in the
training (Pre-CASP14) and the CASP14 simulations. The most
populated macrostate is the lowest free energy minimum on the
landscape and accurately resembles the experimental structure
(RMSD < 4.0 A) in most cases. (C, D) Boltzmann populations
and RMSD as a function of protein size for the CASP14 targets.

are known about the protein structure, the Topl (most
populated) macrostate of ML x MELD x MD was indeed a
native state for 13 out of 16 targets. A similar result was
observed in proofs of concept simulations (Pre-CASP14) for
nine out of 10 proteins (Figure 4A) where RMSD < 4 A for the
Topl state was obtained. When the population of its Topl
macrostate is high (>50%), ML x MELD x MD is more certain
that its conformational sampling using the input data has
converged onto a deep energy minimum corresponding to the
native basin. Interestingly, the simulation can still find the
native basin even if the observed populations are less dominant
(Figure 4B), but MELD x MD cannot be as assertive about its
Topl success in these cases. The present method also gives
conformational distributions. The RMSD distribution of the
microstates constituting the Topl macrostate for each protein
is shown in Figure S4 of the Supporting Information.

B COMMENTS, LIMITATIONS, AND CAVEATS

First, in the Supporting Information, we look at the source of
the computational efficiency of ML x MELD x MD folding.
Summarizing, we find that it quickly achieves concerted
assembly of helices and strands, followed by beta sheets and
protein cores (Figure S10). The native state is often reached
early and remains stable until the end of the simulation (Figure
S11). This indicates that when secondary structures pack
correctly into a protein core, the high quality ML restraints can
stabilize the thermodynamically favorable native at the
physiological temperatures of the ensemble. Figure S12
shows misfolded proteins trapped in alternative conformations,
mostly due to incorrect tertiary packing even when most
strands and helices individually assume a native-like arrange-
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ment, suggesting that when the conformations derange from
the native state it is likely due to misfolded protein cores that
get stabilized by a certain subset of the data.

Second, we note that ML x MELD x MD is not the best way
to predict the single optimal native structure of a protein. It is
computationally expensive, and several deep-learning methods
are generally more accurate across a larger set of proteins.”**
Also, there remain inaccuracies in implicit solvent and force
field models.”*® Convergence onto the native state becomes
more difficult for proteins in the range of 200 aa or longer
(Figure 4C, D). Further work is required for targeting
multidomain proteins.

MELD x MD relies on distance predictions from the ML
algorithm, so successful predictions usually depend on the
amount and precision of the input (contacts) information.
Intuitively, the number of contact hubs (clusters) is a better
measure of the quantity of information provided. We
investigate a possible correlation between the folding accuracy
and the number of medium- and long-range contact hubs per
amino acid. This analysis indeed reveals that protein domains
with more available nonlocal data from machine learning are
folded to better structures than those with less such data
(Figure S). Interestingly, some proteins with few contact hubs
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Figure S. Better models are obtained for proteins with a larger set of
predicted nonlocal contact hubs. The number shown on the plot is
that of medium- and long-range contact hubs for the 33 CASP14
targets attempted by MELD x MD. The number of hubs was
normalized by the domain sequence length for comparison.

are still folded to good native structures, indicating that MELD
x MD can sometimes compensate for insufficient ML
information through reliance on its force field, secondary
structure predictions, and hydrophobic interactions.

Different algorithms used as source of ML input restraints
require different setpoints of confidence intervals for usage in
MELD; we study these differences in Figure S13 and Table S3
and show their effect on folding performance.

B CONCLUSIONS AND PERSPECTIVE

Ultimately, the telling of protein stories requires physics—the
distribution of conformational populations, dynamics, and
motions and binding affinities of a protein’s various states.
Computational molecular physical modeling is increasingly
successful at this but is limited today to small proteins. New
methods are needed that scale better for searching and
sampling physical force fields to larger proteins and larger
dynamics. Here, we use machine-learning (ML) native-
structure contact predictions to accelerate replica-exchange
molecular dynamics through a Bayesian method called MELD
that preserves the proper sampling physics.

Here are our main results: (1) ML x MELD x MD correctly
predicted 13 native structures to better than 4.5 A accuracy in
CASP14; ten of those (115—250 amino acids long) are

1932

considerably larger than what atomistic MD folding has done
before. (2) The simulation time scaling exponent in going from
unfolded to folded states with protein size (t ~ ¢****V) is much
better (smaller) than MD alone (t ~ ¢*'%*N), giving an 8 order
of magnitude speed advantage for 150 amino acid proteins, for
example. (3) In 13 of the CASP14 proteins, convergence of the
force field predicts the correct basin of the lowest free energy
state in this blind test. Also, while our tests here focus only on
native structure predictions—since that is where the most
granular and definitive data are—nevertheless, the real
potential is in having a CMP modeling method with better
scaling for the ultimate purpose of protein storytelling.

B METHODS

MELD (modeling employing limited data) is an enhanced
sampling technique for reducing the vast conformational
spaces of proteins.'”'® It aims to accelerate the MD sampling
to quickly produce low energy states on the folding landscape.
Here, low energy states are those favored by some input data
and by the MD force field. MELD uses a Bayesian framework
where it combines two probability distributions: a prior,
corresponding to the unbiased distribution of states given by
the MD force field energy, and a likelihood, corresponding to
states compatible with the provided external information. The
external data are converted into restraints, which penalize the
energy of states that do not fit the guiding external
information. During the MELD x MD simulation, many
possible mixes of the restraints are thoroughly searched, and
the states are ultimately ranked based on their relative
populations which, in the limit of converged populations, is a
good proxy for their relative free energies.

I. Conversion of Data into MELD Restraints. MELD
can utilize various different sources of information as input to
its Bayesian inference engine, including that which is noisy,
imperfect, ambiguous, or combinatorically challenging (details
in the Supporting Information and in MacCallum et al."*> and
Perez et al.'). In the present work, we utilize the output from
the public ML server trRosetta,'” which predicts distances
between the amino acids, as input to MELD x MD. Such
information has given good insights about static native
structures””” but not yet applied to guide detailed-balance
preserving physical simulations, as far as we know. Here, we
calculate the (cumulative) probability of each pair of
noncovalently interacting residues to be within an interaction
distance d; < 8.0 A directly from the trRosetta predicted
distogram matrix. Pairs with probability p > 0.5 (high
probability) are kept as possible contacts to be converted
into distance restraints between C4—Cj atoms. We configure
this new class of ML distance restraints in MELD by
parametrizing (flat-bottom) potentials using a training set of
known structures from the PDB. The potentials consist of a
spatial region where the contacts are satisfied (zero restraint
energy) and other regions with positive energy penalty to be
added to the force field when the contacts are not satisfied.

A distinguishing feature of MELD, compared to other
methods that use restraints to model proteins, is its ability to
intelligently enforce only a subset of the entire input data in
order to account for imperfections and noise from the data
source. Briefly, at each cycle during the MD, MELD computes
the energy of each restraint based on the current structure, and
ranks all the input restraints according to their energies. It then
automatically enforces the lowest-energy restraints up until a
specified number to be set a priori by the user, which
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corresponds to the user’s trust level of the data source. Here,
the activation fraction of the ML-derived restraints was tuned
to 80% during the training stage by empirically checking the
accuracy of the derived restraints on a set of 24 globular
proteins with known structures in the PDB. More details on
how the MELD potentials were parametrized for this type of
data are provided in the Supporting Information methods.

Independently, restraints correspondin% to secondary
structure elements predicted by PSIPRED®® and to hydro-
phobic associations obtained from the sequence'’ were also
built and used in the simulations. We emphasize, however, that
data supplied by the machine learning are the primary driver of
search-focusing here, as the other sources are derived from
general protein properties”'® which are too combinatorically
numerous (and nonspecific) to scale to larger systems despite
their previous success on small domains (see the Supporting
Information methods for full details of the restraint types and
their implementation).

Il. Maximizing the Information Content of ML-
Derived Restraints. As explained earlier, MELD ranks the
restraints at each iteration according to their computed
restraint energy, and the ones closest to zero energy get
activated until the next reassessment. This design allows the
tightening of conformations around subsets of the input data,
but it also means that MELD always takes the “easy way out”
in restraint energy space by enforcing the least-stretched
springs. A data set of predicted contacts derived from ML
predictions usually contains local and nonlocal contacts.
Nonlocal contacts are more informative because they are
most restrictive of conformational space. If all contacts were
grouped together and MELD was asked to enforce a desired
fraction from the group, then it will activate, on average, more
of the local (“easy”) restraints, leaving many useful nonlocal
restraints unexploited. Therefore, in order to distribute the
information during the MD more evenly across the predicted
2D contact map, the contacts were grouped into three
categories based on their sequence contact order: short-
range, medium-range and long-range contacts. The restraints
in each group were enforced separately from the other two
groups.

Naturally, a similar scenario would also arise within each of
these groups. Therefore, a second layer of restraints was built
to maximize data utility without enforcing all of it. This second
layer is constructed by clustering the predicted contacts into
contact hubs, where each hub includes all nearby contacts on
the 2D contacts map (see Figure S2 and the Supporting
Information methods for how this was done). In a similar
fashion to the direct contacts, we parametrize potentials for the
contact hubs, but here, we instruct MELD to enforce one
contact as a representative of each hub. Both collections,
short/medium/long contacts and their hubs, are enforced
simultaneously but in separate groups in order to maximize the
true contacts in the simulations.

lll. Simulation Details. In all the simulations presented
here, MELD x MD sampling creates system conformations
(microstates) using the Amber’s ff14SBside®" force field and
gbNeck2’” implicit solvent model. MELD x MD traverses the
complex folding landscape by relying on a one-dimensional
Hamiltonian and temperature replica exchange molecular
dynamics (H,T-REMD) with coupled temperatures and
restraint force constants along the replica ladder.'”"> Low
temperature replicas are associated with high restraint force
constants in order to refine the search in an energy minimum
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that is tightly compatible with the input data. The high
temperature replicas have vanishing restraints and are able to
unfold the protein and allow for fast exploration of chain
dynamics. The temperature range is set to 300—500 K, with
temperatures in the middle replicas automatically varying to
improve exchanges. The REMD ladder contains 28—32
replicas in the simulations presented here. Macrostates, defined
as ensembles of similar structures, are then built from the
trajectories by clustering microstates in the low temperature
replicas. The most populated macrostates correspond to low
free-energy basins on the MELD x MD landscape. We focus on
the single most populated macrostate (Topl) and compare its
representative (centroid) conformation to the true (exper-
imental) native structure.

Since CASP14 targets comprise the biggest challenge for
folding methods, we focus on those proteins in the Results
section. Because of computational expense and the CASP14
timeline for submitting models, we restricted our attempted
targets to lengths less than 250 amino acids. In the main
analysis, we focus our assessment on the 16 submitted targets
whose native structures have no violations (i.e., zero restraint
energy) to any of MELD’s assumptions: the protein native
state has a hydrophobic core, good secondary structure
predictions by PSIPRED, and 80% accuracy in the input ML
data (see the Supporting Information for a full analysis of all 33
submitted targets). We also note that the RMSD values
reported correspond to deviations of the predicted model from
the native one based on ordered secondary structure elements
present in the experimental structure.
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