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Amyloid-� (A�) and human islet amyloid polypeptide
(hIAPP) aggregate to form amyloid fibrils that deposit in tissues
and are associated with Alzheimer’s disease (AD) and type II
diabetes (T2D), respectively. Individuals with T2D have an
increased risk of developing AD, and conversely, AD patients
have an increased risk of developing T2D. Evidence suggests
that this link between AD and T2D might originate from a struc-
tural similarity between aggregates of A� and hIAPP. Using the
cryoEM method microelectron diffraction, we determined the
atomic structures of 11-residue segments from both A� and
hIAPP, termed A�(24 –34) WT and hIAPP(19 –29) S20G, with
64% sequence similarity. We observed a high degree of struc-
tural similarity between their backbone atoms (0.96-Å root
mean square deviation). Moreover, fibrils of these segments
induced amyloid formation through self- and cross-seeding.
Furthermore, inhibitors designed for one segment showed
cross-efficacy for full-length A� and hIAPP and reduced cyto-
toxicity of both proteins, although by apparently blocking dif-
ferent cytotoxic mechanisms. The similarity of the atomic struc-
tures of A�(24 –34) WT and hIAPP(19 –29) S20G offers a
molecular model for cross-seeding between A� and hIAPP.

Amyloid fibrils are protein aggregates associated with patho-
genesis in a variety of incurable, and largely untreatable, dis-

eases. These fibrils all appear morphologically similar and share
�-sheet–rich structures, which stack along the fibril axis. Such
fibrils give a cross-� diffraction pattern when they are aligned
and analyzed in an X-ray or electron beam (1–3). Two of the
most prevalent of these amyloid diseases are Alzheimer’s dis-
ease (AD)3 and type II diabetes (T2D). In AD, extracellular
amyloid fibrils that form senile plaques are composed of amy-
loid-� (A�), a peptide of 39 – 42 amino acids. In T2D, amyloid
fibrils are composed of human islet amyloid polypeptide
(hIAPP), a 37-amino acid peptide hormone (4, 5).

Although, as far as is known, each fibril is composed of a
single protein, the deposits can contain fibrils of more than one
protein, which has led to the hypothesis that amyloid proteins
may make cross-sequence interactions as well as self-assemble
(6). For example, in AD, A� has been reported to form soluble
complexes with tau (7) as well as codeposit with �-synuclein (8)
and transthyretin (9), whereas hIAPP aggregation is inhibited
by binding to insulin (10, 11). Recently, hIAPP has been found
to codeposit with A� in senile plaques in AD patient– derived
samples (12).

The codeposition of A� and hIAPP might arise from cross-
seeding events where fibrils of one sequence lower the energy
barrier to fibrilization of the other sequence. The molecular
mechanism of cross-seeding is unknown but likely depends on
structural similarity between aggregates of the two proteins. In
the native state, both proteins are unfolded but contain hydro-
phobic regions that are highly aggregation-prone. Their
sequences are 50% similar and 25% identical (Fig. 1A) with
sequence segments important for self-aggregation displaying
the greatest similarity (13). Protein segments of hIAPP and A�
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with the highest similarity bind to one another with high affin-
ity (14, 15) and appear to catalyze heteroassembly. A� and
hIAPP appear to interact not only in their native unfolded states
but also can interact once aggregated. A� fibrils cross-seed
hIAPP fibril formation, suggesting that the 3D fibril structure of
A� is able to template hIAPP aggregation, possibly by confer-
ring a similar structural motif (16). Supporting the idea that the
underlying structures of the fibrils are similar, a recent study
describes a peptide-based fibril blocker that mitigates fibril for-
mation and cytotoxicity of both A� and hIAPP (17).

Cross-seeding is further evident in in vivo studies. One study
showed that islet amyloid formed in hIAPP transgenic mice
upon injection with fibril seeds of either A� or hIAPP (12).
Moreover, a recent study observed a similar cross-seeding
effect when A� transgenic mice were injected with hIAPP seeds
(18). Beyond model systems, clinical studies have reported
increased risk for AD in T2D patients and vice versa (19 –21).
Some studies suggest AD and T2D are connected by heightened
stress and cholesterol levels, whereas others propose that cross-
amyloid interactions, or cross-seeding, connect the diseases
(22). This has led some to hypothesize that drugs used to treat
T2D may be effective treatments for AD (23).

In an effort to uncover a molecular basis for interaction of A�
with hIAPP, we focused on two 11-residue, fibril-forming pro-
tein segments with 64% sequence identity; we call these seg-
ments A�(24 –34) WT and hIAPP(19 –29) S20G, which har-
bors a familial mutation implicated in early-onset T2D (Fig. 1B)
(24 –26). In addition to high identity, these sequences appear to
be important for aggregation and accompanying toxicity of
their respective full-length proteins. The A�(24 –34) WT seg-
ment is integral to the core in structures of full-length A� fibrils
as determined from solid-state NMR (27–30). Additionally,
short peptides spanning from residues 27 to 32 and 29 to 34 of
A� crystallize in steric zipper arrangements (31). A�(24 –34)
WT contains residues necessary for oligomerization and for-
mation of toxic species (32–34). Previously, we demonstrated
that fibrils formed from the hIAPP(19 –29) S20G segment are
structurally related to those of full-length hIAPP and comprise
the spine of the mature fibrils (35). Thus, A�(24 –34) WT and
hIAPP(19 –29) S20G are candidates for self- and cross-interact-
ing segments of their two parent proteins.

Results

Atomic structure of A�(24 –34) WT determined using
microelectron diffraction (microED)

A�(24 –34) WT crystallized as nanocrystals only a few hun-
dred nanometers thick (Fig. 2A), similar to the 11-residue seg-

ments of previously determined amyloid structures (3, 35). This
crystal size is ideal for microED, a diffraction mode of cryoEM
(36 –39).

The structure of A�(24 –34) WT reveals a class I steric zipper
with pairs of parallel in-register �-sheets antiparallel to each
other (Fig. 2B and Table 1). The side chains interdigitate to
form two dry interfaces (Fig. S1). Interface A buries 210 Å2 of
solvent-accessible surface area per strand with a shape comple-
mentarity (Sc) of 0.62 with Ala30, Ile32, and Leu34 lining the
zipper interface. Additionally, this interface is capped by hydro-
gen bonding of Lys28 to the carboxyl terminus of the opposing
sheet. Interface B is somewhat larger; it buries 256 Å2 of sol-
vent-accessible surface area and has an Sc of 0.85 with Asn27,
Gly29, and Ile31 lining the center of the interface. Flanking this
interface, Val24 packs into the space provided by the lack of side
chain at Gly33, and salt bridges form between terminal amine
and carboxylates from opposing sheets as previously seen in the
non-amyloid-� component core (NACore) of �-synuclein (3).
These latter two interactions are introduced by a kink at Gly25.

There are similarities in the fibril diffraction patterns of
A�(1– 42) and our crystallized segment. Both display meridio-
nal reflections at spacings of 4.7 and 2.4 Å, indicative of the
strand-strand spacing within �-sheets, and a set of reflections
around 3.7 Å (Fig. 2C). The diffraction pattern of A�(24 –34)
WT has two strong equatorial reflections at 8.6 and 7.4 Å,
which match the average separations of the �-sheets in Inter-
faces A and B, respectively. The closest corresponding reflec-
tions in the A�(1– 42) diffraction pattern are centered around
10 Å, which matches more closely with Interface A rather than
B. We hypothesize that Interface A contributes to the strength
and spacing of this reflection and therefore is part of the spine of
A�(1– 42) fibrils.

Segment A�(24 –34) WT is cytotoxic

Full-length A� is known to be cytotoxic (40), and we won-
dered whether the segment A�(24 –34) WT could be the source
of this cytotoxicity. To investigate the cytotoxicity of A�(24 –
34) WT, we assessed the effects of the soluble and fibrillar forms
of the protein segment on Neuro-2a (N2a) cells, a mouse neu-
roblastoma cell line (41). We measured cytotoxicity using
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) dye reduction (42, 43), and we measured proapoptotic
caspase activation using a fluorescent marker for caspase
activity.

MTT dye reduction assays revealed that soluble A�(24 –34)
WT is mildly cytotoxic at high concentrations, but its fibrillar
form is significantly more cytotoxic (Fig. 3A). A�(24 –34) WT is

Figure 1. Sequence alignment of A�(1– 42) and hIAPP. Identical residues are highlighted in bold font and similar residues are highlighted in gray. A,
alignment of A�(1– 42) and hIAPP sequences reveals that hIAPP is 51% similar and 27% identical to A�(1– 42). The early-onset type II diabetes mutation in
hIAPP, S20G, is shown below the hIAPP sequence. The amyloid spines of A�(1– 42) and hIAPP are boxed with dotted lines. hIAPP S20G was used to calculate
sequence similarity to A�(1– 42). B, alignment of the spine segments A�(24 –34) WT and hIAPP(19 –29) S20G reveals that they are 64% similar and 45% identical.
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not as cytotoxic as full-length A�(1– 42), possibly because
A�(24 –34) WT lacks other residues that are important for
cytotoxicity, particularly Met35, which is an important contrib-
utor to the potent cytotoxicity of A�(25–35) (44, 45). Addition-
ally, we observed that fibrillar A�(24 –34) WT activates proapo-
ptotic caspases but to a lesser degree than full-length A�(1– 42)
at similar concentrations (Fig. 3B and Fig. S2). Fibrils of the
toxic spine from hIAPP, hIAPP(19 –29) S20G, are slightly more
cytotoxic than A�(24 –34) WT to the same cell line (Fig. S2).

The insoluble fraction of the A�(24 –34) WT fibrillar sample
is cytotoxic, whereas the soluble fractions are not, thus suggest-
ing that fibrils are the cytotoxic species (Fig. 3B). However, it is
plausible that some undetectable population of highly toxic olig-
omers that associate with fibrils causes the cytotoxicity of the
fibrillar sample.

The spines of A� and hIAPP are structurally similar

The similarity in sequence between segments A�(24 –34)
WT and hIAPP(19 –29) S20G motivated us to compare their
atomic structures. We had previously applied microED to
determine the atomic structure of hIAPP(19 –29) S20G (35), a
spine segment of hIAPP 64% similar in sequence to A�(24 –34)
WT (Fig. 1B).

For both segments, the crystal reveals two sheet-to-sheet
interfaces termed Interface A and Interface B, described previ-
ously for the structure of A�(24 –34) WT (Fig. 4A). In the crys-
tal structure of hIAPP(19 –29) S20G, Interface A is lined by
Asn21, Phe23, Ala25, and Leu27, whereas residues Asn22, Gly24,
Ile26, and Ser28 line Interface B. Interface A of hIAPP(19 –29)

S20G is likely the primary interface because it excludes
waters, and fibril diffraction calculated from this interface
best matches diffraction collected from full-length hIAPP
fibrils. Its Interface B contains waters and has lower shape
complementarity. The primary interface of A�(24 –34) WT
is less clear; both its A and B interfaces are dry and large.
Either could exist in A�(1– 42); although interface B appears
somewhat stronger, interface A is closer to observed diffrac-
tion of the full-length fibers.

Our structures reveal a similarity that is not accurately
reflected by their sequence similarity. We observed that the two
A interfaces are more structurally similar to each other than
the two Interfaces B. Superimposing A�(24 –34) WT onto
hIAPP(19 –29) S20G using LSQKAB, we found that backbone
atoms of the A interfaces superimpose with 0.96-Å root mean
square deviation (r.m.s.d.) (Fig. 4A), and the backbones of the B
interfaces superimpose with a higher r.m.s.d. of 2.11 Å. Surpris-
ingly, the structural alignment with lower r.m.s.d. (Interfaces A)
has fewer sequence equivalences than structural alignment
with higher r.m.s.d. (Interfaces B). That is, residues expected to
align by sequence identity are shifted by two residues in the
structural alignment of Interfaces A (Fig. 4B). Although Ala30 in
A�(24 –34) WT would be expected to align with Ala25 in
hIAPP(19 –29) S20G, the structural alignment instead super-
imposes these alanines with Phe23 in hIAPP and Ile32 in A�,
respectively. Moreover, the leucines in the cores of each of the
two interfaces, which are not paired in the sequence alignment,
almost perfectly superimpose. This startling result makes one

Figure 2. MicroED structure of segment A�(24 –34) WT from microcrystals. A, electron micrograph of 3D crystals used for data collection. B, the crystal
structure reveals tightly mated pairs of �-sheets. The side chains interdigitate to form two extensive dry interfaces, termed Interface A and Interface B. Top, one
layer viewed down the fibril axes with the 2Fo � Fc electron density at 1� displayed as black mesh. Bottom, six layers viewed nearly perpendicular to the fibril
axis. The �-sheets are related by a 21 axis parallel to the fibril axis. C, comparison of the fibril diffraction of aligned A�(24 –34) WT microcrystals and A�(1– 42).
Both display a strong reflection at a spacing of 4.7 Å and a weaker reflection at 2.4 Å. Additionally, the two have a broad reflection around 3.7 Å. A�(24 –34) WT
has two distinct reflections at 8.6 and 7.4 Å, reflecting the separation of �-sheets in each interface, whereas A�(1– 42) has a broad reflection around 10 Å.
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wonder how often sequence alignments do not accurately
reflect structural alignments.

Additionally, the mated sheets in each of the two atomic
structures differ in the number of residues that stabilize Inter-
face A. Ten of the 11 residues of hIAPP(19 –29) S20G form
Interface A, whereas the same interface of the A�(24 –34) WT
structure is composed of only six of the 11 residues (Fig. 4B).
The main reason for the reduced overlap between sheets in the
A�(24 –34) WT atomic structure is that the symmetry axes
between sheets lie further from the center of the peptide than in
the hIAPP segment structure. The length of this offset is sup-
ported by Lys28, which hydrogen bonds to the carboxyl termi-
nus of its adjacent strand in the mated sheet.

As these atomic structures form the spines of their parent
full-length proteins and are so similar, we hypothesized that
they could facilitate cross-seeding of amyloid fibril formation.
In fact, both A�(24 –34) WT and hIAPP(19 –29) S20G fibrils
seeded full-length A�(1– 42) fibril formation nearly to the effi-
ciency of their cognate full-length protein as seen by thiofla-
vin-T (ThT) fluorescence (Fig. 4C and Fig. S3, A and C). Like-
wise, both A�(24 –34) WT and hIAPP(19 –29) S20G fibrils
seeded full-length hIAPP at similar efficiencies as fibrillar
A�(1– 42), whereas addition of full-length hIAPP seeds is so
efficient that initiation of fibrillization occurs immediately (Fig.
4D, Fig. S3, B and D, and supporting methods. These results

suggest that perhaps peptide-based inhibitors of fibril forma-
tion, developed for hIAPP using the hIAPP(19 –29) S20G
atomic structure, may likewise target A�.

Development of inhibitors using structure-based design
against hIAPP(19 –29) S20G

We sought to develop structure-based peptide inhibitors of
hIAPP fibril formation using Interface A of the hIAPP(19 –29)
S20G atomic structure as a scaffold. We used a Rosetta-based
design strategy and workflow similar to Sievers et al. (47) (Fig.
5A). Our laboratory has used similar strategies to develop pep-
tide-based inhibitors that reduce fibril formation of amyloid
proteins tau, p53, and transthyretin, which are implicated in
tauopathies, various cancers, and familial amyloid polyneurop-
athy, respectively (46 –48). We performed multiple rounds of
design that produced �50 peptide sequences, about a dozen of
which were effective at reducing hIAPP(19 –29) S20G fibril for-
mation and cytotoxicity (Table S1 and Figs. S4 and S5).

We chose to focus on two all D-conformation peptide
sequences because of their potential for longer in vivo stability
(49), which may be important during downstream clinical test-
ing (Fig. 5, B and C). These designs, abbreviated p14 and p15,
reduced fibril formation of the design target, hIAPP(19 –29)
S20G (Fig. 5D), at equimolar concentrations, whereas their cog-
nate negative control sequences did not. Consistent with previ-
ous findings, reducing fibril formation likewise reduced the
cytotoxicity of hIAPP(19 –29) S20G to HEK293 cells (Fig. 5E).
The peptide-based fibril blockers are specific for the design
target; they do not reduce aggregation of three other amyloid
proteins, transthyretin, tau, and �-synuclein (Fig. S6 and sup-
porting methods).

Cross-amyloid efficiency of inhibitors

Given the structural and sequence similarity between the two
atomic structures and their ability to cross-seed, we aimed
to determine whether the inhibitors, developed using the
hIAPP(19 –29) S20G atomic structure, are effective against
both full-length hIAPP and full-length A�. Using ThT fluores-
cence, we observed that p14 and p15 reduced fibril formation of
full-length hIAPP, but their cognate negative control peptides
(p16 and p17, respectively) did not (Fig. 6A). 48 h into the ThT
fluorescence assay in Fig. 6A, the experiment was paused, and
aliquots were taken for negative-stain TEM. Negative-stain
TEM analysis confirmed the reduction of fibrils in hIAPP sam-
ples incubated with p14 and p15. Instead, these samples con-
tained small fibrillar aggregates and amorphous aggregates (Fig.
6B). As expected, hIAPP samples incubated with negative con-
trol peptides contained abundant fibrils. Consistent with our
observation of reduced fibrils, we observed that p14 and p15
reduced cytotoxicity of full-length hIAPP, but their cognate
negative control peptides did not (Fig. 6C). We tested the cyto-
toxicity of the samples to Rin5F cells, a rat pancreatic �-cell line,
and we quantified cytotoxicity using MTT dye reduction. Next,
we tested whether the same inhibitors, designed against
hIAPP(19 –29) S20G, reduce fibril formation and cytotoxicity
of full-length A�(1– 42). We observed that p14 and p15
reduced cytotoxicity of A�(1– 42) to N2a cells (Fig. 6D), but
neither p14 nor p15 appeared to reduce A�(1– 42) fibril forma-

Table 1
Statistics of microED data collection and atomic refinement
r.m.s., root mean square; Avg., average.

VGSNKGAIIGL

Data collection
Excitation voltage (kV) 200
Electron source Field emission gun
Wavelength (Å) 0.0251
Total dose per crystal (e�/Å2) 2.7
Frame rate (frame/s) 0.3–0.5
Rotation rate (°/s) 0.3
No. crystals used 5
Total angular rotation collected (°) 383

Merging statistics
Space group P21
Cell dimensions

a, b, c (Å) 18.78, 4.73, 33.47
�, �, � (°) 90, 100.02, 90

Resolution (Å) 20–1.5 (1.58–1.50)a

Rmerge (%) 22.0 (30.6)
No. reflections 5586 (555)
Unique reflections 1032 (133)
Completeness (%) 91.8 (76.4 )
Multiplicity 5.4 (4.2)
I/� 5.19 (3.11)
CC1/2 (%) 98.7 (90.8)

Refinement statistics
No. reflections 1031
Reflections in test set 103
Rwork (%) 22.7
Rfree (%) 29.5
r.m.s. deviations

Bond lengths (Å) 0.015
Bond angles (°) 1.879

Avg. B factor (Å2)
Protein 11.56
Water 14.60

Wilson B factor (Å2) 7.24
Ramachandran (%)

Favored 88.9
Allowed 11.1
Outliers 0

a Highest resolution shell shown in parentheses.
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tion (Fig. 6F). To investigate whether the peptide inhibitors
reduce the formation of some other cytotoxic A�(1– 42) assem-
blies, we probed samples with 31 different conformational anti-
bodies. Three monoclonal antibodies, mOC 88, mOC 3, and
mOC 22, showed markedly reduced binding to A�(1– 42) incu-
bated with either p14 or p15 (Fig. 6E and Fig. S7). We observed
no reduction in binding to A�(1– 42) incubated with negative
control peptides. Although not much is known about the con-
formations of A� that these antibodies recognize, one previous
study showed that mOC 3 and mOC 22 bind to A� plaques in
AD patient– derived brain tissue and bind to hIAPP fibrils
formed in vitro (50).

In our identification of effective inhibitors, we screened 11
other peptides to test reduction of the cytotoxicity of full-length
hIAPP to Rin5F cells (Fig. 7, A and B). Interestingly, all but one
of the peptide inhibitors effective against hIAPP also reduced
toxicity of A�(1– 42) to N2a cells (Fig. 7, C and D). These seven
inhibitors encompass a range of sequences and chemical prop-
erties (Fig. 7C and Table S1), so we postulate that shape com-
plementarity to the target interface is the primary factor
involved in blocking hIAPP or A� toxic assembly.

Discussion

As detailed in the Introduction, a variety of biochemical and
animal studies have linked A� and hIAPP, associated with AD
and T2D, respectively, but the underlying cause of the link has
not been clear. Previous studies point to their similar sequences
and their cross-seeding property in vivo and in vitro as the

underlying cause (12, 14, 18, 51). Here, through atomic struc-
tures determined using microED and designed inhibitors with
cross-amyloid efficacy, we provide evidence for a molecular
mechanism based on fibril spines having similar structures.

Although the spines of A� and hIAPP are similar in sequence
and structure, their structural similarity is not fully reflected by
their sequence similarity. This is particularly true for the A
interfaces of the two segments. This observation that sequence
similarity is not a sure determinant of cross-seeding efficiency
has been described previously for immunoglobulin (Ig) light
chains, polyglutamine tracts, and �2-microglobulin, all of
which seed A�(1– 40) fibril formation in vitro (16), and this is
especially true for the amyloid-like prion proteins Sup35p,
Ure2p, and Rnq1p (52). The efficiency with which A�(24 –34)
WT and hIAPP(19 –29) S20G fibrils seed both A�(1– 42) and
hIAPP fibril formation suggests that their common structures
are important for cross-seeding.

Our experiments further support the hypothesis that the
linked effects of A�(1– 42) and hIAPP are based on their similar
fibrillar structures; the peptide inhibitors, designed against
Interface A of the atomic structure of hIAPP(19 –29) S20G, are
potent in reducing cytotoxicity of both full-length hIAPP and
A�(1– 42). The mechanism for reducing cytotoxicity of hIAPP
in rat pancreatic �-cells appears to involve primarily fibril inhi-
bition. In contrast, the mechanism for reducing A�(1– 42)
cytotoxicity to neuroblastoma cells might involve interference
with oligomerization or a relatively small population of fibril

Figure 3. A�(24 –34) WT is cytotoxic to N2a cells, a mouse neuroblastoma cell line. A, the cytotoxicity of A�(24 –34) WT mainly resides in its fibrillar form,
but its soluble form is also mildly cytotoxic. Samples were diluted to 10� from 1 mM stocks and then further diluted 1:10 in medium containing preplated cells
to the concentration specified. Concentrations represent monomer equivalents for both preparations. B, the insoluble fraction of the 25 �M fibrillar sample,
which contains fibrils, is cytotoxic, further confirming that fibrils or some type of oligomer that tightly associates with fibrils is the cytotoxic species. The
insoluble fraction was isolated by centrifuging the fibrillar sample for 1 h using a tabletop centrifuge and then aspirating off the soluble fraction. Then the
insoluble fraction was resuspended in fresh buffer at its original volume. The “soluble filtered” fraction was filtered with a 0.1-�m spin filter, whereas
the “soluble-unfiltered” fraction was not. For A and B, cytotoxicity was quantified using MTT dye reduction. Points and bars show median with individual
technical replicates (n � 6 –12; ns, not significant; *, p � 0.05; **, p � 0.01; ***, p � 0.001; ****, p � 0.0001 using an unpaired t test with equal standard deviations
(in A, relative to vehicle; in B, relative as indicated by brackets). C, the fibrillar form of A�(24 –34) WT is associated with increased proapoptotic caspase-3/7
activation. Cells were treated as described in A, and then caspase-3/7 activity was visualized using a fluorescence-based probe for caspase activity. Cells were
imaged using a Zeiss fluorescence microscope. Scale bars, 50 �m.
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polymorphs with an interface similar to Interface A observed in
the A�(24 –34) WT structure. The persistence of A� fibrils in
the presence of inhibitor could be explained by dominance of a
less toxic but more prevalent polymorph such as one driven by
A� 16KLVFFA21 (53), which we presume would not interact
with our inhibitor.

To determine how A�(24 –34) WT and hIAPP(19 –29) S20G
may cross-seed, we generated models of all 12 possible het-
eroassemblies using the structures of these two segments and

an ideal �-strand as templates. Next, we applied Rosetta to
assess their propensities to form. Heteroassemblies con-
structed using the B interfaces provided several usable models,
whereas all heteroassemblies of Interface A failed to converge
due to significant steric clashes. The heteroassembly modeled
onto the backbone of Interface B of the hIAPP(19 –29) S20G
atomic structure possesses the highest Sc of all the models at
0.66 (Fig. 8). Its Sc score and Rosetta energy score are compa-
rable with those of the homoassemblies containing Interface B

Figure 4. The spines of A�(24 –34) WT and hIAPP(19 –29) S20G are structurally similar. A, the crystal packing reveals two interfaces, Interface A and
Interface B. The backbone atoms of Interface A (left) differ from each other by 0.96-Å r.m.s.d., whereas the backbones of Interface B (right) differ from each other
by 2.11 Å. r.m.s.d. values were calculated using LSQKAB. B, schematic of how superpositions of atomic structures reveal that mated sheets composing Interface
A are shifted by two residues and display different degrees of overlap. C, seeds of A�(24 –34) WT and hIAPP(19 –29) S20G seed full-length A�(1– 42) fibril
formation at nearly the efficiency of their parent full-length proteins, suggesting that the segments have structures similar to full-length A�(1– 42) fibrils. D,
seeds of A�(1– 42), A�(24 –34) WT, and hIAPP(19 –29) S20G seed full-length hIAPP fibril formation at similar efficacies, whereas hIAPP(1–37) seeds initiate
fibrillization immediately. For C and D, 10 �M A�(1– 42) or hIAPP was seeded with a 10% (v/v) monomer equivalent of preformed seed of each protein or protein
segment. Fluorescence of buffer alone is show in gray. Lines show the average of three technical replicates with one standard deviation. AU, absorbance units.
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(Table S2), suggesting that this heteroassembly model may rep-
resent an actual interface between A� and hIAPP.

This heteroassembly model, taken together with the effects
of the inhibitors on hIAPP and A�(1– 42) fibril formation and
cytotoxicity, leads us to suggest that different fibrillar interfaces
may be important for cytotoxicity and cross-seeding. Recall

that the inhibitors were designed to target Interface A of the
hIAPP(19 –29) S20G atomic structure. Indeed, these inhibitors
reduced fibril formation and cytotoxicity of full-length hIAPP,
likely by targeting a similar interface in the full-length protein
and preventing it from forming. In contrast, these inhibitors did
not reduce fibril formation of A�(1– 42), but they did reduce its
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cytotoxicity. As A�(24 –34) WT contains a structurally similar
Interface A, it seems plausible that these inhibitors target and
reduce the formation of interfaces similar to Interface A in both
full-length proteins and that Interface A may be important for
cytotoxicity of both proteins. Conformation-specific antibod-
ies mOC 88, mOC 3, and mOC 22, all of which show a marked
reduction in binding to A�(1– 42) incubated with inhibitors,
may recognize a structural motif, or epitope, similar to Inter-
face A. Indeed, a previous study showed that mOC 3 and mOC
22 recognize epitopes shared between A� and hIAPP fibrils
(50). The acceptable fit of the heteroassembly model in Fig. 7
suggests that the Interface B of both proteins is important for
cross-seeding.

The fibrillar atomic structures of the segments studied here
possess structural motifs important for cytotoxicity and cross-
seeding, and they may also support the same properties in their
parent full-length proteins. Going forward, these structures
may serve as templates for the development of pharmaceutical
therapeutics that may have dual efficacy.

Experimental procedures

Peptide preparation

Candidate inhibitors were custom-made and purchased
from Innopep (San Diego, CA). For studies with the design
target, hIAPP(19 –29) S20G, lyophilized candidate inhibitors
were dissolved at 1 mM in PBS and 1% DMSO. For studies with
full-length hIAPP and A�(1– 42), lyophilized candidate inhibi-
tors were dissolved at 10 mM in 100% DMSO. 10 mM stocks
were diluted as necessary. All stocks were stored frozen at
�20 °C.

hIAPP(1–37)-NH2 (hIAPP) was purchased from Innopep.
Mouse (m) IAPP(1–37)NH2 was purchased from CSBio (Menlo
Park, CA). Peptides were prepared by dissolving lyophilized
peptide in 100% 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) at
250 �M for 2 h. Next, the sample was spin-filtered, and then
HFIP was removed with a CentriVap concentrator (Labconco,
Kansas City, MO). After removal of the HFIP, the peptides were
dissolved at 1 or 10 mM in 100% DMSO (IAPP alone) or 100%
DMSO solutions containing 1 or 10 mM inhibitor. The DMSO
peptide stocks were diluted 100-fold in filter-sterilized Dulbec-
co’s PBS (catalog number 14200-075, Life Technologies).

Recombinant amyloid-� peptide cloning and expression

A� was cloned and purified similarly to the methods
described in Laganowsky et al. (69). A� was cloned into p15-
maltose-binding protein (MBP) as described previously and
expressed with the following exceptions. An overnight starter
culture was grown in 100 ml instead of 50 ml, 15 ml (instead of

7 ml) of which was used to inoculate 1 liter. After induction,
cells were allowed to grow for 3– 4 h at 37 °C (instead of 34 °C).
Cells were then harvested by centrifuging at 5,000 � g. The cell
pellet was frozen and stored at �80 °C.

The cell pellet was thawed on ice and resuspended in buffer A
(50 mM sodium phosphate, 0.3 M sodium chloride, 20 mM im-
idazole, pH 8.0) at 120 ml per 3 liters of culture volume and
lysed by sonication. Crude cell lysate was clarified by centrifu-
gation at 15,000 � g for 30 min at 4 °C. The clarified cell lysate
was filtered through a 0.45-�m syringe filtration device (HPF
Millex-HV, Millipore, Billerica, MA) before loading onto two
5-ml HisTrap-HP columns (GE Healthcare). The HisTrap-HP
column was washed with 5 column volumes of buffer A and
then washed in 5 column volumes of 10% buffer B (50 mM

sodium phosphate, 0.3 M sodium chloride, 500 mM imidazole,
pH 8.0). Protein was eluted in 3 column volumes of 100% buffer
B. The pooled sample was diluted to less than 10 mg/ml, loaded
into 6,000 – 8,000 molecular weight– cutoff tubing (Fisher Sci-
entific), and dialyzed against buffer C (25 mM Tris, pH 8.0, 20
mM imidazole, 100 mM sodium chloride) at 4 °C for 4 h, chang-
ing buffer after 2 h. The dialyzed sample was pooled, and 1⁄50

volume of tobacco etch virus protease stock was added. The
tobacco etch virus protease reaction was incubated overnight at
4 °C before loading over a 5-ml HisTrap-HP column equili-
brated in buffer A. The flow-through, containing the recombi-
nant A� peptide, was collected. Pooled recombinant A� pep-
tide was filtered through a 0.22-�m filter unit (Steriflip,
Millipore) and further purified by reverse-phase high-perfor-
mance liquid chromatography (HPLC) on a 21.2 � 250-mm
Agilent 897250 –106 Zorbax StableBond 300 C8 PrepHT car-
tridge with 7-�m beads at 80 °C equilibrated in buffer RA (0.1%
trifluoroacetic acid (TFA), water) and eluted over a linear gra-
dient from 15 to 50% buffer RB (acetonitrile, 0.1% TFA) in 59
min at a flow rate of 10 ml/min. Absorbances at 220 and 280 nm
were recorded using a Waters 2487 dual � absorbance detector.
Peak fractions containing peptide were assessed for purity by
MALDI-TOF mass spectrometry (Voyager-DE-STR, Applied
Biosystems, Carlsbad, CA). Pooled fractions were frozen in liq-
uid nitrogen and lyophilized. Dried peptide powders were
stored in desiccant jars at �20 °C.

Crystallization
24VGSNKGAIIGL34 (A�(24 –34) WT) was dissolved at 7.5

mg/ml in 25 mM citric acid, pH 4.0, 5% DMSO. Microcrystals
were grown in batch at 37 °C with shaking. Crystals grew within
2 days to a maximum of 1 week.

Figure 5. Development of inhibitors using structure-based design against hIAPP(19 –29) S20G. A, schematic of structure-based design process using
RosettaDesign (47). Segment hIAPP(19 –29) S20G, which forms the toxic spine of hIAPP, was used as the design target. B, overview of peptide inhibitors used
in this study and their sequences. Peptides p16 and p17 are the negative controls for peptide inhibitors p14 and p15, respectively. C, models of peptide
inhibitors p14 and p15 (dark teal) bound to the design target, hIAPP(19 –29) S20G (ivory). The side chains of the peptide inhibitors form hydrophobic interac-
tions with the core of hIAPP(19 –29) S20G. Additionally, the peptide inhibitors form hydrogen bonds along the peptide backbone (left panel). D, designed
peptide inhibitors p14 and p15 reduce fibril formation of the design target, hIAPP(19 –29) S20G, but negative control peptides do not. 1 mM hIAPP(19 –29) S20G
was incubated with equimolar concentrations of each inhibitor overnight under quiescent conditions. Fibril abundance was evaluated using TEM. Images were
captured at 3,200�. Scale bars, 1 �m. E, peptide inhibitors reduce cytotoxicity of the design target, hIAPP(19 –29) S20G, but negative control (neg ctrl) peptides
do not. Samples were prepared as described in D and then applied to HEK293 cells at 10 �M final concentration for 24 h. Cytotoxicity was quantified using MTT
dye reduction. Columns show median with individual technical replicates (n � 3– 6; ns, not significant; **, p � 0.0014; *, p � 0.0118 using an ordinary one-way
ANOVA relative to the leftmost column).
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MicroED data collection

The procedures for microED data collection and processing
largely followed published procedures (36, 54). Briefly, a 2–3-�l
drop of crystals in suspension was deposited onto a Quantifoil
holey-carbon EM grid, then blotted, and vitrified by plunging

into liquid ethane using a Vitrobot Mark IV (FEI, Hillsboro,
OR). Blotting times and forces were optimized to keep a desired
concentration of crystals on the grid and to avoid damaging the
crystals. Frozen grids were then either immediately transferred
to liquid nitrogen for storage or placed into a Gatan 626 cryo-

Figure 6. Cross-amyloid efficacy of inhibitors developed with structure-based design against hIAPP(19 –29) S20G. A, peptide inhibitors p14 and p15
reduce fibril formation of full-length hIAPP, whereas negative control peptides p16 and p17 do not. 10 �M hIAPP was incubated with a 1:1 or 1:10 molar ratio
of each inhibitor under quiescent conditions. Fibril formation was monitored using ThT fluorescence. Lines show the average of three technical replicates. B,
negative-stain TEM analysis confirms the results of the ThT assays in A. 45 h into the ThT assay, the experiment was paused, and samples were extracted for TEM
analysis. After samples were extracted, the assay was resumed for 3 more days. C, peptide inhibitors reduce cytotoxicity of full-length hIAPP. 10 �M hIAPP was
incubated alone or with the designated concentration of peptide inhibitor overnight under quiescent conditions and then diluted 1:10 with preplated Rin5F
cells, a rat pancreatic �-cell line. Cytotoxicity was quantified using MTT dye reduction. Bars show median with individual technical replicates (n � 3–9; ns, not
significant; ****, p � 0.0001 using an ordinary one-way ANOVA relative to the leftmost column). D, peptide inhibitors reduce the cytotoxicity of A�(1– 42),
whereas negative control peptides do not. 10 �M A�(1– 42) was incubated alone or with 1:1 or 1:10 molar ratio of each peptide for 6 h and then diluted 1:10 with
preplated N2a cells. Cytotoxicity was quantified using MTT dye reduction. Bars represent median with individual technical replicates (n � 3–9; ns, not
significant; ****, p � 0.0001 using an ordinary one-way ANOVA relative to the leftmost column). E, peptide inhibitors reduce the formation of A�(1– 42)
assemblies recognized by conformational monoclonal antibodies, whereas negative control peptides do not. 10 �M A�(1– 42) was incubated alone
(leftmost column) or with a 10-fold molar excess of each peptide-based inhibitor. Aliquots of the reaction were tested for antibody binding at 6 and 24 h.
Binding to 4G8, a monoclonal antibody specific for residues 17–24 in the linearized A� sequence, was used to confirm equal loading of sample onto
membranes. Membranes were spliced as indicated for clarity. F, peptide inhibitors do not reduce A�(1– 42) fibril formation as assessed with ThT
fluorescence. AU, absorbance units.
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holder for imaging. Images and diffraction patterns were col-
lected from crystals using FEI Tecnai 20 TEM with field emis-
sion gun operating at 200 kV and fitted with a bottom mount
Tietz Video and Image Processing Systems TemCam-F416
complementary metal oxide semiconductor– based camera.
Diffraction patterns were recorded by operating the detector in
a video mode using electronic rolling shutter with 2 � 2 pixel
binning (38). Exposure times for these images were either 2 or 3
s/frame. During each exposure, crystals were continuously uni-
directionally rotated within the electron beam at a fixed rate of
0.3°/s, corresponding to a fixed angular wedge of 0.6 or
0.9°/frame.

Crystals that appeared visually undistorted produced the
best diffraction. Data sets from individual crystals were merged
to improve completeness and redundancy. Each crystal data set
spanned a wedge of reciprocal space ranging from 40 to 80°. We

used a selected area aperture with an illuminating spot size of
�1 �m. The geometry detailed above equates to an electron
dose rate of less than 0.01 e�/Å2/s deposited onto our crystals.

Measured diffraction images were converted from TIFF for-
mat into SMV crystallographic format using publicly available
software (available for download at http://cryoem.janelia.org/
downloads).4 We used XDS to index the diffraction images and
XSCALE (55) for merging and scaling together data sets origi-
nating from five different crystals.

Structure determination

We determined the structure of A�(24 –34) WT using
molecular replacement. An idealized 10-residue peptide strand

4 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party-hosted site.

Figure 7. Other peptide inhibitors developed against hIAPP(19 –29) S20G reduce cytotoxicity. A and B, 10 �M hIAPP was incubated alone or with a 1:1 or
1:10 molar ratio of peptide inhibitor overnight under quiescent conditions and then diluted 1:10 with preplated Rin5F cells, a rat pancreatic �-cell line.
Cytotoxicity was quantified using MTT dye reduction. Bars show mean with one standard deviation (n � 3–9; ns, not significant; *, p � 0.05; **, p � 0.01; ***, p �
0.001; ****, p � 0.0001 using an ordinary one-way ANOVA relative to the leftmost column). C and D, 10 �M A�(1– 42) was incubated alone or with a 1:1 or 1:10
molar ratio of each peptide for 6 h and then diluted 1:10 with preplated N2a cells. Cytotoxicity was quantified using MTT dye reduction. Bars represent median
with individual technical replicates (n � 3–9; ns, not significant; *, p � 0.05; **, p � 0.01; ***, p � 0.001; ****, p � 0.0001 using an ordinary one-way ANOVA
relative to the leftmost column). E, summary of peptide inhibitors and efficacies on reduction of cytotoxicity described in this study.
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with the sequence GAAGAIIGA led us to our atomic model.
The solution was identified using Phaser (56). Subsequent
rounds of model building and refinement were carried out
using Coot and Phenix, respectively (57, 58). Electron scatter-
ing factors were used for refinement. Some reflections
extended to 1.42-Å resolution. Although the outer shell was
incomplete (48% complete), we retained this data as being
potentially helpful in the refinement. Statistics are reported to
1.5-Å resolution where completeness reaches 75% (59). Calcu-
lations of the buried area and shape complementarity were per-
formed with AREAIMOL (60, 61) and Sc (62–64), respectively.

Fibril diffraction

Fibrils of A�(1– 42) or microcrystals of A�(24 –34) WT were
spun down and washed with water three times to remove any
salt using a tabletop microcentrifuge. The samples were con-
centrated 20� in water and applied between two capillary ends,
and then the samples were left to dry overnight. Fibrils were
analyzed with a Rigaku R-AXIS HTC imaging plate detector
using CuK� radiation from a FRE� rotating anode generator
with VARIMAX HR confocal optics (Rigaku, Tokyo, Japan).
Radial profiles were calculated using a program written in-
house. The program calculates the average intensity as a func-
tion of distance from the beam center.

Atomic structure overlay

A structural superposition of A�(24–34) WT and hIAPP(19–
29) S20G was performed using LSQKAB from the CCP4 suite
(65). We calculated r.m.s.d. of main chains.

Computational structure-based design

Computational designs were carried out using the Rosetta-
Design software as described previously (47). The atomic struc-
ture of the 19SGNNFGAILSS29 hIAPP segment was used as a
starting template for computational design. An extended
L-peptide (or D-peptide; seven to nine residues) was first placed
at either the top or bottom of the starting template of the
hIAPP(19 –29) S20G atomic structure. The design procedure
then built side-chain rotamers of all residues onto the nine-
residue peptide backbone placed at the growing end of the
fibril. The optimal set of rotamers was identified as those that
minimize an energy function containing a Lennard-Jones
potential, an orientation-dependent hydrogen bond potential, a
solvation term, amino acid– dependent reference energies, and
a statistical torsional potential that depends on the backbone
and side-chain dihedral angles. Buried area and shape comple-
mentarity calculations were performed with AREAIMOL and
Sc, respectively, from the CCP4 suite of crystallographic pro-
grams (60). The solubility of each peptide was evaluated by
hydropathy index (66), and its aggregation propensity was cal-
culated by self-stacking score.5 The designed peptides were
selected based on calculated binding energy of top or bottom
binding mode, shape complementarity, and peptide solubility.
Each structural model of selected peptides went through
human inspection using PyMOL where those peptides with
sequence redundancy and fewer binding interactions were
omitted. Finally, selected peptides were synthesized and tested
experimentally.

Testing of candidate inhibitors with design target

To test whether the candidate inhibitors prevent fibril for-
mation of the design target, hIAPP(19 –29) S20G, we dissolved
the lyophilized hIAPP(19 –29) S20G peptide at 1 mM in PBS and
1% DMSO or in an equimolar solution of candidate inhibitor in
PBS and 1% DMSO. Samples were incubated for 6 –15 h at
room temperature under quiescent conditions. Fibril abun-
dance was checked using electron microscopy. Next, the sam-
ples were applied to preplated HEK293 cells for 24 h, and then
cell viability was measured using MTT dye reduction.

Transmission electron microscopy

Samples were spotted onto non-holey grids and left for
160 –180 s. Remaining liquid was wicked off and then left to
dry before analyzing. Samples for negative-stain TEM were
treated with 2% uranyl acetate after the sample was wicked
off the grid. After 1 min, the uranyl acetate was wicked off.
The grids were analyzed using a T12 electron microscope
(FEI). Images were collected at 3,200� or 15,000� magnifi-
cation and recorded using a Gatan 2,000 � 2,000 charge-
coupled device camera.

ThT kinetic assays

ThT assays with hIAPP were performed in black 384-well
plates (Nunc, Rochester, NY) sealed with UV optical tape.
hIAPP(1–37)-NH2 and mIAPP(1–37)-NH2 were prepared as

5 L. Jiang et al., unpublished data.

Figure 8. Model of an A�(24 –34) WT and hIAPP(19 –29) S20G heteroas-
sembly, which may explain how full-length A� and hIAPP cross-seed. The
interface of the heteroassembly model is highlighted with transparent
spheres representing van der Waals radii. The model was generated from the
backbone of Interface B of the hIAPP(19 –29) S20G atomic structure using
Rosetta. Its Rosetta energy and shape complementarity scores are shown to
its right. These scores are comparable with the Interface B homoassemblies
(A�(24 –34) WT: �19.4 Rosetta energy units (REU); Sc, 0.85; hIAPP(19 –29)
S20G: �35.09 Rosetta energy units; Sc, 0.72). Our results with the peptide
inhibitors suggest that Interface A may be important for cytotoxicity.
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described. The total reaction volume was 50 �l/well. ThT fluo-
rescence was recorded with excitation and emission of 444 and
482 nm, respectively, using a Varioskan Flash (Thermo Fisher
Scientific, Grand Island, NY). Experiments were performed at
25 °C without shaking in triplicate, and readings were recorded
every 5 min.

For the seeding assays in Fig. 4, 1 mM hIAPP(1–37)-NH2 in
100% DMSO was diluted 1:100 in 0.1 M NaOAc, pH 6.5, con-
taining 10% monomer-equivalent seed and 10 �M ThT. Seeds of
A�, A�(24 –34) WT, and hIAPP(19 –29) S20G were sonicated
for 5 min prior to addition; seeds of hIAPP were not sonicated.

For the inhibition assays in Fig. 6, 1 mM hIAPP(1–37)-NH2 in
100% DMSO was diluted 1:100 in PBS buffer containing 10 �M

ThT. Stocks of each inhibitor were diluted 1:100 in the same
manner.

ThT assays with A� were performed as above with the fol-
lowing exceptions. Experiments were performed in black
96-well plates (Nunc) sealed with UV optical tape. The total
reaction volume was 180 �l/well. Experiments were performed
at 37 °C without shaking in triplicate, and readings were
recorded every 5 min.

For seeding experiments, 1 mM A� in 100% DMSO was
diluted 1:100 in PBS containing 10% monomer-equivalent seed
and 10 �M ThT. Seeds of A�, A�(24 –34) WT, and hIAPP(19 –
29) S20G were sonicated for 5 min prior to addition; seeds of
hIAPP were not sonicated.

For inhibition experiments, 1 mM A� in 100% DMSO was
diluted 1:100 in PBS containing 25 �M ThT. Stocks of each
inhibitor were diluted 1:100 in the same manner.

Cell culture

HEK293 cells were a gift from Carol Eng in the laboratory of
Arnold J. Berk at UCLA. Cells were cultured in DMEM (catalog
number 11965-092, Life Technologies) plus 10% heat-inacti-
vated fetal bovine serum and 1% penicillin-streptomycin (Life
Technologies). Cells were cultured at 37 °C in a 5% CO2
incubator.

Rin5F cells were purchased from ATCC (catalog number
CRL-2058; Manassas, VA). Cells were cultured in RPMI 1640
medium (catalog number 30-2001, ATCC) plus 10% heat-inac-
tivated fetal bovine serum. Cells were cultured at 37 °C in a 5%
CO2 incubator.

N2a cells were a gift from Pop Wongpalee in the laboratory of
Douglas Black at UCLA. Cells were cultured in minimum
Eagle’s medium (catalog number 11095-080, Life Technolo-
gies) plus 10% heat-inactivated fetal bovine serum and 1% pen-
icillin-streptomycin. Cells were cultured at 37 °C in a 5% CO2
incubator.

MTT dye reduction assay for cell viability

HEK293 cells, Rin5F cells, and N2a cells were plated at
10,000, 27,000, and 15,000 cells/well in 90 �l, respectively, in
clear 96-well plates (catalog number 3596, Costar, Tewksbury,
MA). Cells were allowed to adhere to the plate for 20 –24 h. For
cell assays with A�(24 –34) WT, fibrillar samples were incu-
bated for at least 4 days, and soluble samples were freshly dis-
solved and then applied to N2a cells. For cell assays with the
design target, hIAPP(19 –29) S20G, samples were incubated

with or without inhibitors for 6 –15 h and then applied to
HEK293 cells. For cell assays with full-length hIAPP, samples
were incubated with or without inhibitors for 15 h to 1 week
and then applied to Rin5F cells. For cell assays with A�(1– 42),
samples were incubated with or without inhibitors for 6 h at
37 °C and then applied to N2a cells. 10 �l of sample was added
to cells. By doing this, samples were diluted 1:10 from in vitro
stocks. Experiments were done in triplicate.

After a 24-h incubation, 20 �l of MTT dye (Sigma) was added
to each well and incubated for 3.5 h at 37 °C under sterile con-
ditions. The MTT dye stock was 5 mg/ml in Dulbecco’s PBS.
Next, the plate was removed from the incubator, and the MTT
assay was stopped by carefully aspirating off the culture
medium and adding 100 �l of 100% DMSO to each well.
Absorbance was measured at 570 nm using a SpectraMax M5.
A background reading was recorded at 700 nm and subse-
quently subtracted from the 570 nm value. Cells treated with
vehicle alone (PBS � 0.1% DMSO) were designated at 100%
viable, and cell viability of all other treatments was calculated
accordingly.

We determined the appropriate statistical test for signifi-
cance by assessing whether 1) the sample sets had a Gaussian
distribution using a D’Agostino-Pearson omnibus normality
test and 2) the sample sets had equal variance using a Bartlett’s
test or F test. For samples with Gaussian distributions and equal
variances, we used an unpaired t test with equal standard devi-
ations. For samples with Gaussian distributions but unequal
variances, we used an unpaired t test with Welch’s correction.
For samples with non-Gaussian distributions and unequal vari-
ances, we used a Mann-Whitney U test.

Detection of caspase-3/7

N2a cells were plated at 7,200 cells/well in black-walled
96-well plates (catalog number 3603, Costar) and treated as
described in the previous section. After a 24-h treatment, cell
medium was aspirated, and then 100 �l of 2 �M Nexcelom
ViaStain Live Caspase 3/7 in PBS (catalog number CSK-
V0003-1, Nexcelom Bioscience LLC, Lawrence, MA) was
added to each well. The stain was incubated with cells at 37 °C
for 30 min, and then the cells were imaged using a Celigo Image
Cytometer (Nexcelom Bioscience) and a Zeiss fluorescence
microscope. Cells treated with 2 �M staurosporine were used as
a positive control for caspase activation.

Heteroassembly model

Energies and structures for the heteroassembly models were
calculated using the 3D profile method (67). Using Rosetta,
the sequences of A�(24 –34) WT and hIAPP(19 –29) S20G
were “threaded” onto three template backbone structures:
the A�(24 –34) WT backbone, the hIAPP(19 –29) S20G fiber
backbone, and an idealized �-sheet fiber backbone. The dis-
tance between the �-sheets of each of these threaded structures
was varied by 10 Å in increments of 0.25 Å, and the shift along
the stand axis was 20 Å, also by 0.25-Å increments. Each of the
structures was scored by Rosetta energy, buried surface area,
and shape complementarity (68).
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Dot blot assay

A�(1– 42) samples were incubated at 10 �M with or without
inhibitors for 6 and 24 h at 37 °C and spotted onto a nitrocellu-
lose membrane (catalog number 162-0146, Bio-Rad). 20 �l was
loaded for each condition; 2 �l was spotted at a time and
allowed to dry between applications. The membranes were
blotted as described previously (35) with the exception of the
primary antibodies used. The antibodies used in the assay were
generated and characterized previously (50).

Author contributions—P. K. and S. L. G. conceived and designed the
study, interpreted results, and cowrote the manuscript. S. L. G. crys-
tallized, solved, and analyzed A�(24 –34) WT; purified A�(1– 42);
performed the A� and �-synuclein aggregation assays; and prepared
A� samples for toxicity and dot blot assays. P. K. designed and
screened inhibitors, performed structural alignments, cultured cells,
executed and analyzed toxicity experiments, and performed hIAPP
aggregation assays. M. R. S. performed structural alignments, helped
solve and analyze the A�(24 –34) WT structure, and revised the
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