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ARTICLE

Profiling immunoglobulin repertoires across
multiple human tissues using RNA sequencing
Igor Mandric1, Jeremy Rotman1,2, Harry Taegyun Yang 1,3, Nicolas Strauli4, Dennis J. Montoya5,

William Van Der Wey1, Jiem R. Ronas6, Benjamin Statz1, Douglas Yao5,7, Velislava Petrova8,

Alex Zelikovsky 9,10, Roberto Spreafico11, Sagiv Shifman 12,19, Noah Zaitlen 13,19, Maura Rossetti14,19,

K. Mark Ansel 15,19, Eleazar Eskin1,16,17,19 & Serghei Mangul 1,2,11,18,19✉

Profiling immunoglobulin (Ig) receptor repertoires with specialized assays can be cost-

ineffective and time-consuming. Here we report ImReP, a computational method for rapid

and accurate profiling of the Ig repertoire, including the complementary-determining region 3

(CDR3), using regular RNA sequencing data such as those from 8,555 samples across 53

tissues types from 544 individuals in the Genotype-Tissue Expression (GTEx v6) project.

Using ImReP and GTEx v6 data, we generate a collection of 3.6 million Ig sequences, termed

the atlas of immunoglobulin repertoires (TAIR), across a broad range of tissue types that

often do not have reported Ig repertoires information. Moreover, the flow of Ig clonotypes

and inter-tissue repertoire similarities across immune-related tissues are also evaluated. In

summary, TAIR is one of the largest collections of CDR3 sequences and tissue types, and

should serve as an important resource for studying immunological diseases.
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A key function of the adaptive immune system is to mount
protective memory responses to a given antigen. B cells
recognize their specific antigens through immunoglobu-

lins (Ig), surface antigen receptors, which are unique to each cell
and its progeny. A typical Ig repertoire is composed of one
immunoglobulin heavy chain (IGH) and two light chains, κ
(IGK) and λ (IGL). Igs are diversified through somatic recom-
bination, a process that randomly combines variable (V), diversity
(D), and joining (J) gene segments, and inserts or deletes non-
templated bases at the recombination junctions1 (Fig. 1a). The
resulting DNA sequences are then translated into antigen
receptor proteins. This process enables the Ig repertoire to
develop astonishing diversity of antigen receptors from any given
individual, with >1013 theoretically possible distinct Ig receptors1.
Ig repertoire diversity is key for an individual’s immune system to
confer protection against a wide variety of potential pathogens2.
In addition, upon activation of a B cell, somatic hypermutation
further diversifies Ig in their variable region. These changes are
mostly single-base substitutions occurring at extremely high rates
—somatic hypermutation can undergo 10−5 to 10−3 mutations
per base pair per generation3. Isotype switching is another
mechanism that contributes to B-cell functional diversity. Here,
antigen specificity remains unchanged, while the heavy chain VDJ
regions join with different constant (C) regions, such as IgG, IgA,
or IgE isotypes, and alter the immunological properties of Igs.
The pairing of heavy and light chains that occurs in polyclonally
activated B cells chains is another mechanism that increases Ig
diversity.

High-throughput technologies enable remarkable levels of
accuracy when profiling the Ig repertoires. Commonly used
assay-based approaches to RNA sequencing (RNA-Seq) provide a
detailed view of the adaptive immune system by leveraging the
deep sequencing of amplified DNA or RNA from the variable
region of the Ig locus (BCR-Seq)4–6. Those technologies are
usually restricted to one chain, with the majority of studies
focusing on the heavy chain of the Ig repertoire. Recent studies2

have successfully applied assay-based approaches to characterize
the immune repertoire of peripheral blood. However, little is
known about the immunological repertoires of other human
tissues, including barrier tissues such as skin and mucosae. Stu-
dies involving assay-based protocols usually have small sample
sizes, thus limiting analysis of intra-individual variation of
immunological receptors across diverse human tissues.

RNA-Seq traditionally uses the reads mapped onto human
genome references to study the transcriptional landscape of both
single cells and entire cellular populations. In contrast to assay-
based protocols that produce reads from the amplified variable
region of the Ig locus, RNA-Seq is able to capture the entire
cellular population of the sample, including B cells. However, due
to the repetitive nature of the Ig locus and the extremely high
level of diversity in Ig transcripts, most mapping tools are ill-
equipped to handle Ig sequences. RNA-Seq was successfully used
for analysis of highly clonal leukemic repertoires with high rela-
tive quantities of Ig transcripts5. Despite this, Ig transcripts often
occur in sufficient numbers within the transcriptome of many
tissues to characterize their respective Ig repertoires7. A number
of methods8–10 were designed to assemble Ig and T-cell receptor
repertoires and have been applied across various public RNA-Seq
datasets. Existing methods that are capable of assembling Ig
repertoires from bulk RNA-Seq data typically produce low-
accuracy results (F-score < 0.2).

In this study, we develop ImReP, an alignment-free compu-
tational method for rapid and accurate profiling of the Ig reper-
toire from regular RNA-Seq data. ImReP is capable of efficiently
extracting receptor-derived reads from RNA-Seq data and accu-
rately assembling Ig clonotypes, defined as distinct amino acid

sequences of complementarity-determining region 3 (CDR3). We
demonstrate that bulk RNA-Seq is a suitable technology for
measuring the individual adaptive immune repertoire. In our
validation experiments, ImRep is able to capture 69% of the
immune repertoire obtained by BCR-Seq. Using ImReP, we create
a systematic atlas of Ig sequences across a broad range of tissue
types, most of which were previously unstudied for Ig repertoires.
We also examine the compositional similarities of clonal popu-
lations between the tissues to track the flow of Ig clonotypes
across immune-related tissues, including secondary lymphoid
and organs that encompass mucosal, exocrine, and endocrine
sites. Our proposed approach lacks advantages in comparison
with performing targeted BCR-Seq; rather, it provides a useful
tool for mining large-scale RNA-Seq datasets for the study of Ig
receptor repertoires.

Results
Existing tools for profiling the Ig receptor repertoire. A num-
ber of tools have previously been developed to reconstruct the Ig
receptor repertoire. Repertoire analysis from RNA-Seq data
typically starts with mapping the reads to the germline V, D, and
J genes that can be obtained from the International ImMuno-
GeneTics (IMGT) database11. There are three possible read
mapping scenarios as follows: (1) the read is entirely mapped to
the V gene; (2) the read is entirely mapped to the J gene; (3) the
read is partially mapped to the V and J genes simultaneously.
Existing methods consider only reads from category (3). These
methods use different underlying algorithms to map reads to
germline genes. For example, MiXCR8 relies on an in-house
alignment procedure, IgBlast12 utilizes BLAST with an optimized
set of parameters, and IMSEQ13 uses in-house pairwise alignment
between the read sequence and the germline V and J segment
sequences.

Following the alignment, MiXCR performs overlapping of
previously aligned reads into contigs. The resulting contigs are re-
aligned to the V, D, and J genes to verify that the significant
portion of non-template N insertions is covered. In contrast to
MiXCR, which simultaneously aligns reads to both V, D, and J
genes, IgBlast separately aligns the query read to databases
composed of V, D, and J genes. IgBlast uses a specific sequence to
separately perform alignment; first, the program finds the best V
gene hit. Next, IgBlast masks the aligned read region and performs
an alignment to the J gene database. In the event of a heavy chain,
IgBlast also queries the D gene database for the best hit. Lastly, the
software checks that each component in the obtained V(D)J
rearrangement originates from the same locus and reports
CDR3 sequences and corresponding V(D)J recombinations.

All methods use the definition of CDR3 to determine the
boundaries of the CDR3 sequence in each of the reads. The final
step in repertoire analysis is to correct the assembled clones for
PCR and sequencing errors. To correct these errors, which are
introduced during data preparation, MiXCR and IMSEQ cluster
the assembled clones and report a consensus sequence for each
cluster. IgBlast skips the error correction step and directly outputs
inferred CDR3 sequences.

Most methods use alignment or assembly to infer CDR3s and
align reads to V and J genes. In contrast, the ImReP procedure
provides a match between the read prefix and the read suffix to
the prefix of J genes and suffix of V genes, respectively, without a
need for alignment. In avoiding alignment, ImReP is able to
significantly decrease running time and minimize required
computational resources. Average CPU (central processing
unit) time reported for ImReP is 44 minutes, a runtime
substantially shorter than the average 10 hours required for
MiXCR. At peak usage, across all samples, ImReP consumes 3 GB
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Fig. 1 Overview of ImReP. a Schematic representation of human Ig receptor repertoire. Ig repertoire consists of three Ig loci: immunoglobulin heavy locus
(IGH), immunoglobulin κ locus (IGK), and immunoglobulin λ locus (IGL). Ig receptors contain multiple variables (V, green color), diversity (D, which is present
only in IGH, violet color), joining (J, yellow color), and constant (C, blue color) gene segments. V(D)J gene segments are randomly joined and non-templated
bases (N, dark red color) are inserted at the recombination junctions. Reads entirely aligned to Ig genes are inferred from mapped reads (black color). Reads
with extensive somatic hypermutations and reads spanning the V(D)J recombination are inferred from the unmapped reads (gray color). Complementarity-
determining region 3 (CDR3) is used to identify Ig receptor clonotypes—a group of clones with identical CDR3 amino acid sequences. b Alignment-free
detection of reads containing full-length CDR3s and simultaneously overlapping V and J genes. Receptor-derived reads spanning V(D)J recombinations are
identified from unmapped reads and assembled into the CDR3 sequences. We first scan the amino acid sequences of the read to determine putative
CDR3 sequences that are fully contained inside the read. Reads with putative CDR3s are further examined to simultaneously overlap V and J gene segments.
The alignment between the read and V and J genes is found by matching the prefix and suffix of the read to match the suffix of V and prefix of J genes,
respectively. cMatch reads containing partial CDR3s and overlapping only V or J genes. In cases where a read contains a partial CDR3 sequence and overlaps
with only the V or J gene, we perform the second stage of ImReP. During this stage, we match reads originated from the same CDR3 based on 15 nucleotides
overlap. e Correcting PCR and sequencing errors via CAST clustering. We further correct PCR and sequencing errors in the assembled CDR3s. ImReP clusters
assemble CDR3 into a set of clusters via CAST algorithm. The consensus sequence of each cluster is reported as the correct CDR3 sequence.
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of RAM (random access memory), whereas MiXCR requires 10
GB of RAM.

ImReP is a method for profiling of Ig repertoire. We apply
ImReP to 0.6 trillion RNA-Seq reads (92 Tbp) from 8555 samples
to assemble CDR3 sequences of Ig receptors (Supplementary
Data 1). The RNA-Seq data were generated by the Genotype-
Tissue Expression Consortium (GTEx v6). First, we map RNA-
Seq reads to the human reference genome using a short-read
aligner (performed by GTEx consortium14) (Fig. 1). Next, we
identify reads spanning the V(D)J junction of the Ig receptors and
assembled clonotypes (a group of clones with identical CDR3
amino acid sequences). We define the CDR3 as the sequence of
amino acids, starting with cysteine, which is located on the left
side of the junction, and ending with phenylalanine (for IGK or
IGL) or tryptophan (for IGH), which is located on the right side
of the junction. In this case, ImReP uses 0.02 trillion high-quality
reads that had been successfully mapped to Ig genes or were
unmapped reads that had failed to map to the human reference
genome (Fig. 1a and Supplementary Fig. 1).

ImReP is a two-stage alignment-free approach to assembling
CDR3 sequences and detecting corresponding V(D)J recombina-
tions (Fig. 1b). In the first stage, we prepare the candidate
receptor reads from mapped and unmapped RNA-Seq reads
(Supplementary Fig. 1). We then merge partially mapped reads
from Ig loci and unmapped reads into a set of candidate receptor
reads, which serve as an input for ImReP. We scan the amino acid
sequences of the read and determine the putative CDR3 as a
substring of the read starting from cysteine (C) and ending with
phenylalanine (F) (or tryptophan(W) for IGH). A read is
separated into three parts as follows: read prefix, CDR3, and
read suffix. The CDR3 sequence is a sequence starting with
cysteine (C) and ending with, for IGK and IGL, phenylalanine
(F), and, for IGH, tryptophan (W). Reads with putative CDR3s
are further examined to assess the overlap of V and J genes.
Variable Ig receptor genes are imported from IMGT version:
3.1.17. We use C from the beginning of the read and C from the
V gene as an anchor to match the read prefix and the V gene.
Similarly, we use F (or W) from the end of the read and F (or W)
from the J gene as an anchor to match the read suffix and the J
gene.

In the second stage, ImReP utilizes reads that contain a partial
CDR3 sequence and overlap a single gene segment (V or J). We
use an alignment-free procedure to determine the alignment
between the V or J gene and the read prefix or suffix, respectively.
ImReP performs matching with a suffix tree technique; matched
reads with an overlap of at least 15 nucleotides are used to
assemble full-length CDR3s. We further correct PCR and
sequencing errors in the assembled CDR3s. ImReP clusters
assemble CDR3 into a set of clusters using the CAST algorithm10.
The clustering procedure is iteratively repeated until the average
inverse edit distance (Levenshtein) inside each cluster is less than
the user-defined threshold (ImReP default is .2). The consensus
sequence of each cluster is reported as the correct
CDR3 sequence. A detailed description of the methodology
implemented with ImReP is provided in the Methods section.
ImReP is freely available at https://github.com/Mangul-Lab-USC/
imrep. Currently, ImReP supports human and mouse Ig receptor
repertoires.

Feasibility of using RNA-Seq to study the Ig repertoire. To
validate the feasibility of using RNA-Seq to study the Ig receptor
repertoire, we simulate RNA-Seq data as a mixture of tran-
scriptomic reads and reads derived from Ig transcripts (ratio
between Ig-derived reads and transcriptomic reads was on

average 1 : 3600) (Supplementary Fig. 2). Ig transcripts are
simulated based on random recombination of V, D, and J gene
segments (obtained from IMGT database11) with non-template
insertion at the recombination junctions (Supplementary Fig. 3).
We assess the ability of ImReP to extract CDR3-derived reads
from the RNA-Seq mixture by applying ImReP to a simulated
RNA-Seq mixture. While our simulation approach may not
completely summarize the various nuances and eccentricities of
actual immune repertoires, it allows us to assess the accuracy of
our tool. ImReP is able to identify 99% of CDR3-derived reads
from the RNA-Seq mixture, suggesting it is a powerful tool for
profiling RNA-Seq samples of immune-related tissues.

Next, we compare ImReP with other methods designed to
assemble Ig receptor repertoires. We also investigate the
sequencing depth and read length required to reliably assemble
Ig sequences from RNA-Seq data. Our simulations suggest that
both read length and sequencing depth have a major impact on
precision-recall rates of CDR3 sequence assembly. ImReP is able
to maintain an 80% precision rate for the majority of simulated
scenarios. Average CDR3 coverage that is higher than eight allows
ImReP to archive a recall rate close to 90% for a read length above
75 bp (Fig. 2a). Increasing coverage has a positive effect on the
number of assembled clonotypes achieved by ImReP.

We compare the performance of ImReP with that of MiXCR
(RNA-Seq mode)8, 13, IgBlast-based pipeline15, and IMSEQ13.
Except for IMSEQ, these tools were developed to assemble the
hypervariable sequences from Ig receptors directly from RNA-Seq
data. Another tool, iSSAKE16, is no longer supported and was not
recommended for use. Unfortunately, we obtained empty output
after running V’DJer17 and we could not solve the problem by
increasing coverage in the simulated data. We exclude TRUST9

and TraCeR10, as those methods are solely designed for T-cell
receptors. We supplied each of those tools with the original RNA-
Seq reads as raw or mapped reads, depending on the software
developers’ recommendations. IMSEQ13 cannot be applied
directly to RNA-Seq reads because it was originally designed
for targeted sequencing of Ig receptor loci. Thus, to independently
assess and compare accuracy with ImReP, we only ran IMSEQ
with the simulated reads derived from Ig transcripts (Supple-
mentary Fig. 2).

ImReP consistently outperforms existing methods in both
recall and precision rates. The recall is defined as TP/(TP+ FN).
Precision is defined as TP/(TP+ FP). We define TP as the
number of correctly assembled CDR3 sequences (based on
the exact match), FN is defined as the number of true
CDR3 sequences not assembled by the method and FP is defined
as the number of incorrectly assembled CDR3 sequences. On
average, ImReP offers three-time superior accuracy (average F-
score of ImRep is .78, for other methods average F-score is < 0.2).
F-score is defined as the harmonic mean of precision and recall.
Notably, ImReP is the only method with acceptable performance
for 50 bp read length, reconstructing with a higher precision rate
significantly more CDR3 clonotypes than other methods.

To further demonstrate the feasibility of applying nonspecific
RNA-Seq techniques to profile Ig receptor repertoires, we use 18
tumor biopsies sequenced by BCR-Seq and RNA-Seq. We acquired
biopsies from patients with histologically confirmed Burkitt
lymphoma18. We first mapped the reads onto the reference
human genome and transcriptome, then we extracted unmapped
reads, which we provided to ImReP for assembly of IGH
clonotypes. Based on the recommendation of MiXCR, we provide
raw paired-end reads to the tool. BCR-Seq data were generated by
Adaptive Biosystems (https://www.adaptivebiotech.com/) and was
analyzed by Adaptive Biosystems’s Immune Analyzer package.
One difficulty inherent to using BCR-Seq as a gold standard for
estimating the efficiency of the RNA-Seq method is that BCR-Seq
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captures DNA clonotypes, whereas RNA-Seq only captures the
expressed clonotypes. To account for the possible discrepancies,
we first map RNA-Seq reads onto the major clonotypes with
relative frequency at least 90% detected by BCR-Seq. In 5 out of
18 BCR-Seq samples, no RNA-Seq reads map to BCR-seq-
confirmed major clonotypes. We exclude those samples from the

analysis. In remaining samples, we consider the set of CDR3s
obtained by BCR-Seq to be the total IGH repertoire.

We investigate which portion of the total immune repertoire
that RNA-Seq is capable of capturing. Using RNA-Seq, ImReP is
able to capture on average 53.3% of the IGH repertoire, estimated
as the sum of detected BCR-seq-confirmed clonotypes; MiXCR is
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able to capture 40.1% (Fig. 2b). In all cases, ImRep is capable of
detecting BCR-seq-confirmed clonotypes with a relative fre-
quency exceeding 90%. In comparison, MiXCR detects these
clonotypes in only 83.3% of cases. When the frequency of the
major clonotype drops below 10%, ImReP is able to detect the
major clonotype in 60% of the cases, while MiXCR only detects a
clonotype in 20% of the cases. Remarkably, both methods are able
to detect major clonotypes with a frequency below 1% in one of
the samples (Supplementary Data 2).

We also investigate the ability of each method to detect BCR-
seq-confirmed minor clonotypes. The average frequency of the
minor clonotypes across all samples is 0.37%. ImReP is able to
detect a minor clonotype in 38% of the samples (Fig. 2e). Despite
the ability of ImReP and MiXCR to capture the majority of BCR-
seq-confirmed repertoire, both methods often miss the rare
clonotypes due to the limited number of Ig-derived reads in
RNA-Seq data. ImReP is able to detect 50% of all BCR-Seq-
confirmed clonotypes with the relative frequency higher than
0.24%. MiXCR is able to detect 50% of all BCR-Seq-confirmed
clonotypes with the relative frequency higher than 0.29%
(Supplementary Fig. 4). Both methods are able to accurately
estimate the relative frequencies of assembled clonotypes (ImRep:
r= 0.97, p-value= 4.4 × 10−40; MiXCR r= 0.87, p-value= 5.1 ×
10−15) (Fig. 2c, d). Scripts and commands utilized to process the
data and run all the tools used in this study are available online at
https://github.com/Mangul-Lab-USC/ImReP_publication.

We also investigate the possibility of fusing a V and J read
based on the partial CDR3 overlap that was not actually derived
from the same read. We obtained 3129 BCR-Seq-based IGH
transcripts from a healthy, naive B-cell repertoire sequenced
using error-corrected B-cell receptor (BCR) sequencing19. We use
those transcripts as the reference to simulate reads covering the
BCR-Seq-based IGH transcripts with 16× coverage. The second
stage of ImReP increases sensitivity by 16% for 50 bp reads and
4% for 75 bp reads. No improvement is observed for 100 bp reads
(Supplementary Table 1). The decrease of precision in case of 75
bp reads results in an overall decrease of the F-score. Based on the
simulated reads, we recommend applying the second stage of
ImRep for 50 bp reads (implemented as default settings in
ImReP).

We further validate the ability of ImReP to accurately infer the
proportion of immune cells in sampled tissue. We hypothesize
that the fraction of B cells in a sample will be proportional with
the fraction of receptor-derived reads in our RNA-Seq data. We
use a transcriptome-based computational method, SaVant20,

which uses cell-specific gene signatures (independent of Ig
transcripts) to infer the relative abundance of B cells within each
tissue sample (Supplementary Table 2). The B-cell signatures used
by SaVant are derived from CD19+ cells and might not represent
every B-cell subset21. However, CD19+ cells likely represent the
largest populations of B-cell subsets and many of the CD19-
negative B-cell subsets may carry a gene signature similar to the
CD19 signatures. We find that B-cell signatures inferred by
SaVant show a positive correlation with the size of IGH repertoire
(r= 0.77, P= 1.8 × 10−10) (Fig. 2f). An exception to this
correlation is found for tissues that contain the highest density
of B cells: spleen, whole blood, small intestine (terminal ileum),
lung, and Epstein–Barr virus (EBV)-transformed lymphocytes
(LCLs).

Characterizing the Ig repertoire across 53 GTEx tissues. ImReP
identifies over 8826 million reads overlapping 3.6 million distinct
CDR3 sequences that originated from diverse human tissues. The
majority of assembled CDR3 sequences were derived from IGH
chain (1.7 million), 0.9 million were derived from the IGK chain,
and 1.0 million were derived from the IGL chain. Ninety-eight
percent of CDR3 sequences have a count of less than ten reads
and the median CDR3 sequence count is 1.4. CDR3 sequences
derived from IGK are the most abundant across all tissues,
accounting on average for 54% of the entire B-cell population
(Supplementary Fig. 5).

We compare the length and amino acid composition22 of the
assembled CDR3 sequences of Ig receptor chains (Supplementary
Fig. 6). Consistent with previous studies, we observe that Ig light
chains have notably shorter and less variable CDR3 lengths when
compared with heavy chains23. The tissue type appears to have no
effect on the length distribution of CDR3 sequences (Supplemen-
tary Fig. 7). In line with other studies23, 24, both light chains
exhibit a reduced amount of sequencing diversity (Supplementary
Fig. 6).

We observe an average of 1331 distinct Ig clonotypes per
sample. To account for various sequencing depths, we further
normalized the detected number of clonotypes by the total
number of RNA-Seq reads. We refer to this measure as
clonotypes per one million raw RNA-Seq reads (CPM). As the
number of distinct clonotypes does not increase linearly with the
sequencing depth, a CPM metric should not be used in studies
comparing clonotype diversity across various phenotypes.
Instead, CPM is intended to be an informative measure of clonal
diversity that is adjusted for sequencing depth.

Fig. 2 Evaluation of ImReP. a Evaluation of ImReP based on the number of assembled CDR3 sequences and comparison with the existing methods.
Precision, recall, and F-score rates for ImReP (orange), MiXCR (RNA-Seq mode) (blue), IMSEQ (green), and IgBlast (yellow) on simulated data for IGH
transcripts are reported for various reads length (separate plots) and per transcript coverages (1;2;4;8;16;32;64;128) (x-axis). The recall was defined as in
Eq. 3. Precision is defined as in Eq. 4. TP was defined as the number of correctly assembled CDR3 sequences (based on the exact match), FN as the number
of true CDR3 sequences not assembled by the method, and FP as the number of incorrectly assembled CDR3 sequences. F-score was defined as the
harmonic mean of precision and recall. b–e Concordance of targeted BCR-Seq and nonspecific RNA-Seq performed on 13 tumor biopsies from Burkitt
lymphoma. b Area chart shows the proportion of the total IGH repertoire captured by ImRep (orange) and MiXCR (RNA-Seq mode) (blue), depending on
the minimum BCR-seq-confirmed clonotypes frequency considered. The x-axis corresponds to BCR-seq-confirmed clonotypes frequency Z. The y-axis
corresponds to the fraction of assembled IGH repertoire with clonotype abundances greater than Z. The total repertoire was defined as the sum of the
BCR-seq-confirmed clonotypes abundances. c Pearson correlation of IGH clonotype frequencies estimated based on the BCR-Seq data (y-axis) and the
RNA-seq data (x-axis) across all the samples for ImReP (n= 63, r= 0.97, p-value= 4.4 × 10−40). d Pearson correlation of IGH clonotype frequencies
estimated based on the BCR-Seq data (y-axis) and the RNA-seq data (x-axis) across all the samples for MiXCR (n= 45, r= 0.87, p-value= 5.1 × 10−15).
Only clonotypes assembled from RNA-Seq data are presented. e ImReP (orange) is able to detect major and minor clonotypes in a larger proportion of the
samples compared with MiXCR (RNA-Seq mode) (blue). Major and minor clonotypes were defined based on BCR-Seq data as the clonotype with the
largest frequency or smallest frequency, respectively. f Correspondence of ImReP-derived reads from Ig receptors to the relative abundance of B cells
inferred across 53 GTEx tissues. Scatterplot of the number of all Ig-derived reads per 1 million RNA-Seq reads (y-axis) and B-cell signature score inferred by
SaVant based on the gene expression profiles (x-axis). Pearson correlation (n= 48, r= 0.77, p-value= 1.8 × 10−10) is calculated excluding the five outliers
labeled in the plot (Lung, Small Intestine, Whole Blood, Spleen, and EBV Cells). Source data are provided as a Source Data file.
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We use per sample α-diversity (Shannon entropy) to
incorporate into a single diversity metric the total number of
distinct clonotypes and their relative frequencies. Among all
tissues, spleen has the largest B-cell population, with a median of
1301 Ig-derived reads per one million RNA-Seq reads. Spleen also
has the most diverse population of B cells with median per sample
α-diversity rate of 7.6, corresponding to 1025 CPM (Fig. 3 and

Supplementary Data 1). Organs that possess mucosal, exocrine,
and endocrine sites (n= 24) harbor a rich clonotype population
with a median of 87 CPM per sample. Minor salivary glands have
the highest Ig diversity rates in the group (α= 7.1) and surpass
the diversity rates of the terminal Ileum containing Peyer’s
Patches, which are secondary lymphoid organs (Supplementary
Data 1).
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Tissues not related to the immune system, including adipose,
muscle, and organs from the central nervous system, contain a
median of six CPM per sample, which are most likely due to the
blood content of the tissues25. The highest number of distinct
CDR3 sequences among non-lymphoid organs is present in the
omentum, a membranous double layer of adipose tissue contain-
ing fat-associated lymphoid clusters. As expected26, EBV-
transformed lymphocytes (LCLs) harbor a large homogeneous
population of Ig clonotypes (Supplementary Data 1 and
Supplementary Fig. 8). The number of reported clonotypes is
normalized by the proportion of B cells within each tissue sample
(Supplementary Data 3). We have used SaVant to infer the
relative abundance of B cells within each tissue sample based on
cell-specific gene signatures (independent of Ig transcripts).

Ig clonotypes specific to an individual or a tissue type. Amino
acid sequences of clonotypes exhibit extreme inter-individual
dissimilarity, with 88% of clonotypes unique to a single individual
(private) (Fig. 4a). The remaining ~400,000 clonotypes are shared
by at least two individuals (public). The small fraction of B cells
present in many tissues limits our ability to capture the entire Ig
repertoire in those tissues and leads to mis-classification of some
public clonotypes as private. The number of individuals sharing
clonotypes varies across Ig chains, with Ig light chains having the
highest number of public clonotypes. Twenty-five percent of all
IGK clonotypes are public, and the number of individuals sharing
the IGK clonotype sequences can be as high as 471 (Fig. 4b). The
limited capacity of RNA-Seq to cover low-abundant clonotypes
may misclassify public clonotypes as private. Consistent with
previous studies9, 27, we observe that public clonotypes are sig-
nificantly shorter in length than private clonotypes (two-sided
two-sample t-test: p-value < 2 × 10−16). For example, IGH chain
public clonotypes have an average length of 13 amino acids and
private clonotypes have an average length of 16 amino acids.

We also examine whether public clonotypes are more often
shared across tissues than across individuals. We observe a strong
correlation between the number of times receptor sequences are
shared across individuals and across tissues of the same
individual for both IGK (r= 0.78, p-value < 2 × 10−16) and IGL
chains (r= 0.77, p-value < 2 × 10−16) (Supplementary Fig. 9). In
contrast, public receptors of IGH chain are unlikely to be shared
across tissues (r= 0.15, p-value < 2 × 10−16) (Supplementary
Fig. 9). Overall, 14% of the ~240,000 clonotypes from both light
and heavy chains shared across tissues are public (Fig. 4c). The
full list of public clonotypes is distributed with the Atlas of
Immunoglobulin Repertoires, which is publically available at
https://github.com/Mangul-Lab-USC/TAIR.

The flow of Ig clonotypes across human GTEx tissues. A large
number of samples available through this study allow us to
establish a pairwise relationship between tissues and to track the
flow of Ig clonotypes across various human tissues.

Fig. 3 Adaptive immune repertoires across multiple human tissues. Adaptive immune repertoires of 8555 samples across 544 individuals from 53 tissue
types obtained from the Genotype-Tissue Expression study (GTEx v6). We grouped the tissues by their relationship to the immune system. The first group
includes the lymphoid tissues (n= 2, yellow color). The second group includes blood associated sites including whole blood and blood vessels (n= 4, red
color). The third group are the organs that encompass mucosal, exocrine, and endocrine sites (n= 21, magenta color). The fourth group are cell lines (n=
3, gray color). The fifth group are adipose or muscle tissues and the gastroesophageal junction (n= 7, blue color). The sixth group are organs from the
central nervous system (n= 14, green color). Brain encompasses the following tissues: spinal cord (cervical c-1), amygdala, cortex, hypothalamus, caudate
(basal ganglia), anterior cingulate cortex, nucleus accumbens (basal ganglia), cerebellum, frontal cortex (BA9), and cerebellar hemisphere. The histogram
reports Ig clonotype richness, calculated as the number of distinct amino acid sequences of CDR3 per one million RNA-Seq reads (CPM). The median
number of distinct amino acid sequences of CDR3 are presented individually for immunoglobulin heavy chain (IGH), immunoglobulin κ chain (IGK), and
immunoglobulin λ chain (IGL). Source data are provided as a Source Data file.
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Fig. 4 Private and public Ig clonotypes. a Distribution of frequencies of
private (n= 1) and public (n > 1) clonotypes across 544 individuals. We
collect clonotypes from all tissues of the same individual and combine
clonotypes into a single set corresponding to that individual. b The most
public clonotypes (shared across the maximum number of individuals) and
corresponding VJ recombination are presented for IGH, IGK, and IGL.
c Clonotypes’ sequences are classified into public (shared across
individuals) clonotypes, private (individual-specific) clonotypes, tissue-
specific clonotypes, and clonotypes shared across multiple tissues. The
number of clonotypes falling into each pair of categories is reported. Source
data for a and c are provided as a Source Data file.
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Fig. 5 The flow of Ig clonotypes across diverse human tissues. Results are based on pairs of tissues that are represented by at least 10 individual donors.
a Box plots depicting the Sørensen–Dice similarity indexes for Ig clonotype sequences shared across samples from the same individual (orange color), IGH
(n= 1542, min= 0.0006, Q1= 0.0080, median= 0.0158, Q3= 0.0317, max= 0.2731), IGK (n= 30498, min= 0.0005, Q1= 0.0131, median= 0.0297,
Q3= 0.0597, max= 0.4545), and IGL (n= 5124, min= 0.0006, Q1= 0.0142, median= 0.0299, Q3= 0.0548, max= 0.3871); shared across samples
from different individuals (blue color), IGH (n= 2988, min= 0.0004, Q1= 0.0016, median= 0.0025, Q3= 0.0041 max= 0.1463), IGK (n= 10213560,
min= 0.0002, Q1= 0.0091, median= 0.0208, Q3= 0.0424, max= 0.4615), and IGL (n= 1484735, min= 0.0004, Q1= 0.0090, median= 0.0188, Q3=
0.0336, max= 0.2500). Only samples with at least ten reported clonotype sequences were used to compute Sørensen–Dice similarity indexes. Each
boxplot represents the median and interquartile range, with whiskers extending to 1.5 times the interquartile range. The p-values were generated using a
two-sided Mann–Whitney U-test for each chain (IGH: U= 417655.0, p-value= 0.0, IGK: U= 184067549896.0, p-value= 0.0, IGL: U= 4864609217.7,
p-value= 5.03 × 10−261). b The flow of IGH clonotype across diverse human tissues is presented as a network. Each node represents a tissue; node size is
proportional to the median number of clonotypes of the tissue. The color of the node corresponds to a type of the tissue: secondary lymphoid organs
(yellow colors), blood associated sites (red color), and organs that encompass mucosal, exocrine, and endocrine sites (lavender color). Compositional
similarities between the tissues in terms of gain or loss of CDR3 sequences are measured across valid pairs of tissues using a β-diversity (Sørensen–Dice
similarity) index. Edges are weighted according to the β-diversity index. Edges with β-diversity scores > 0.001 are presented. Source data are provided as a
Source Data file.
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We observe a significant increase in the number of
CDR3 sequences shared across pairs of tissues obtained from
the same individual. Further, we consistently observe this pattern
for all chains of Ig receptors (two-sided Mann–Whitney U-test:
p-value < 2 × 10−16 for each chain) (Fig. 5a). We observe a
different amount of shared CDR3 sequences across different types
of Ig chains, with an increase in Ig light chains when compared to
Ig heavy chains. The largest difference occurs between Ig heavy
chains shared between samples taken from the same individuals
(median Sørensen–Dice similarity index of 0.0158), and samples
taken from different individuals (median Sørensen–Dice similar-
ity index of 0.0025) (Fig. 5a).

To establish the flow of Ig clonotypes across various tissues, we
compare clonotype populations between and within the same
individuals. We limit this analysis to pairs of tissues for which we
had at least 10 individuals (870 pairs of tissues out of 1378
possible pairs). We use β-diversity (Sørensen–Dice similarity
index) to measure compositional similarities between the tissues
in terms of gain or loss of CDR3 sequences (Fig. 5b). For the
majority of the 870 available tissue pairs, we observe no
commonality between IGH sequences, which corresponds to a
β-diversity score of 0.0.

We examine the flow of IGH clonotypes across tissues and
present it as a network (Fig. 5b). Among 870 available tissue
pairs, we identify 56 tissue pairs with a β-diversity score above
0.001. The spleen has the most highly connected tissue (17
connections), followed by lung (16 connections). Clonotypes
represent one connected component, meaning that every two
nodes are connected either directly or via other nodes.
Clonotype populations of spleen and lung are the most similar
(0.02 β-diversity score). Other highly similar pairs are minor
salivary gland and esophagus mucosa, as well as terminal ileum
(small intestine) and transverse colon. We observe more than
200 pairs of tissues with a β-diversity score for Ig light chains
above 0.001 (Supplementary Figs. 10 and 11). The most similar
tissue pairs for the IGK chain are spleen and transverse colon
(0.15 β-diversity score).

ImReP identifies tissue samples with lymphocyte infiltration.
Histological images of tissue cross-sections and pathologists’ notes
are used to validate ImReP’s ability to identify samples with a high
lymphocyte content, which often correlates with a disease state.
We examine the IGH clonotype populations from thyroid tissue
across individuals. The median number of inferred, distinct
CDR3 sequences per sample is 20, although 14.5% of the samples
had more than 500 distinct CDR3 sequences. We observe the
highest number of CDR3 sequences among all thyroid samples in
an individual with Hashimoto’s thyroiditis, an autoimmune dis-
ease characterized by lymphocyte infiltration and T-cell-mediated
cytotoxicity. A text-based analysis of pathologists’ notes corre-
sponding with biological samples indicates that Hashimoto’s dis-
ease was present, with varying degrees of severity, in 12.6% of
examined thyroid samples. First, we use pathologists’ notes to
annotate samples as derived from individuals who lack a Hashi-
moto’s disease diagnosis (n= 180) or were assigned a Hashimoto’s
disease diagnosis (n= 26), then we compare the adaptive reper-
toire diversity between the two groups. We observe a significant
increase in the number of distinct IGH clonotypes in samples
from individuals with Hashimoto’s thyroiditis (Mann–Whitney
U-test: U= 83, p-value= 2.1 × 10−14) (Supplementary Fig. 12).
We also observe a significant increase in the number of distinct
IGH clonotypes in positive correlation with the noted severity
of Hashimoto’s thyroiditis (Fig. 6a). In addition, a larger number
of clonotypes in kidney samples correlates with the presence of
glomerulosclerosis, and, in lung samples, a larger number of

clonotypes correlates with the presence of inflammatory diseases
such as sarcoidosis and bronchopneumonia.

We observe no difference in clonal diversity in males and
females across the tissue types, except in breast tissues (two-sided
Mann–Whitney U-test: U= 376, p-value= 4.14 × 10−15). Higher
clonotype diversity scores of breast tissue in male individuals
corresponds to gynecomastia, a common disorder marked by
non-cancerous enlargement of male breast tissue (Fig. 6b).

Discussion
We develop ImReP, a computational approach capable of accu-
rately reconstructing Ig immune repertoires using RNA-Seq data.
Our initial study demonstrates the ability of ImReP to efficiently
extract Ig-derived reads from RNA-Seq data and accurately
assemble the corresponding hypervariable region sequences. The
proposed algorithm can accurately assemble CDR3 sequences of
Ig receptors, despite the presence of sequencing errors and short
read length. Simulations generated using various read lengths and
coverage depth show that ImReP consistently outperforms
existing methods in terms of precision and recall rates.

We demonstrate the feasibility of applying RNA-Seq to study
the adaptive immune repertoire. Although RNA-Seq lacks the
sequencing depth of targeted sequencing (i.e., BCR-Seq), the
approach compensates for these analytical restraints by examin-
ing a larger sample size. Using ImReP, we create the first sys-
tematic atlas of immune sequences for Ig receptor repertories
across diverse human tissues. This atlas provides a rich resource
for comparative analysis of a range of tissue types, most of which
are currently unstudied. The atlas of immune repertoires, avail-
able with the paper, is one of the largest collections of
CDR3 sequences and tissue types. We anticipate that this data-
base will enhance future studies in areas such as immunology and
will contribute to the development of diagnostic tools and
therapies for human disease.

Using RNA-Seq to study immune repertoires is advantageous
when compared to Rep-Seq; RNA-Seq has the ability to simul-
taneously capture clonotype populations from all chains during a
single run. RNA-Seq also allows simultaneous detection of overall
transcriptional responses of the adaptive immune system, which
it produces by comparing changes in the number of Ig transcripts
to the much larger transcriptome. Given the increasing number of
large-scale RNA-Seq datasets available, we look forward to scaling
up the atlas of immune receptors in order to provide valuable
insights into immune responses across various autoimmune dis-
eases, allergies, and cancers.

Methods
RNA-Seq data. We used RNA-Seq data from the Genotype-Tissue Expression
study (GTEx Consortium v.6) that corresponds to 8,555 samples collected from 53
tissues that were obtained from 544 individuals. RNA-Seq data is generated using
Illumina HiSeq sequencing of 75 bp paired-end reads. The data were derived from
38 solid organ tissues, 11 brain subregions, whole blood, and 3 cell lines of post-
mortem donors. The samples were collected from adults matched for age across
male and female individuals. Metadata for the GTEx samples used in this paper can
be found in Supplementary Data 4.

RNA-Seq data preprocessing. We downloaded the mapped and unmapped reads
in BAM format from dbGap (http://www.ncbi.nlm.nih.gov/gap). For each sample,
we prepared the candidate receptor-derived reads as the input for the ImReP tool.
First, we extracted reads mapped to the Ig genes. Some high-throughput aligners
allow partial mapping (i.e., soft clipping), which trims one or two ends of the reads
and maps the remaining read. Reads containing CDR3 sequences may be found
among these reads and can be extracted using ImReP.

Second, we filter out low quality, low complexity reads and reads that match
rRNA repeats. We then merged the reads mapped to the Ig loci and the prepared
unmapped reads; ImReP use this data to assemble CDR3 sequences and
corresponding V(D)J recombinations.
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ImReP algorithm. ImReP is a computational approach to assembling
CDR3 sequences and detecting corresponding V(D)J recombinations from B- and
T-cell receptors. ImReP consists of two stages. In the first stage, ImReP infers the
CDR3 sequences from reads that simultaneously overlap V and J gene segments.
We defined the CDR3 as the sequence of amino acids between the cysteine on the
right of the junction and phenylalanine (for IGK or IGL) or tryptophan (for IGH)
on the left of the junction. We first converted the read sequences from nucleotides
to amino acids. We scanned the amino acid sequences of the read and determined
the putative CDR3 as a sub-sequence of the read, starting from cysteine (C) and
ending with phenylalanine (F) (and tryptophan [W] for IGH). The reads con-
taining the described substring were considered candidate CDR3 reads. We
denoted n to be the length of the read. We denoted the coordinates of the putative
CDR3 string to be x and y, corresponding with the start and the end of the
CDR3 sequence, respectively, in the read coordinates. This way each candidate
CDR3 read is composed of three parts. The first part of the CDR3 read contains a
prefix of the read, which potentially overlaps with the suffix of V gene. The prefix

contains the amino acids from the read, from position 0 to x− 1. The second part
of the CDR3 read is a substring of the read containing the putative CDR3 sequence.
It contains the amino acids from the read, from position x to y. The third part of
the CDR3 is a suffix of the read that potentially overlaps with the prefix of J gene.
The suffix contains the amino acids of the read, from position y+ 1 to n.

The amino acid sequences of the V and J genes of BCRs were imported from
IMGT information system (http://www.imgt.org/vquest/refseqh.html#V-D-J-C-sets).
For each V gene, we identified the last conserved cysteine (C) and recorded the
position pC of the read. For each J gene, we identified the first conserved
phenylalanine (for IGK or IGL) or tryptophan (for IGH) and recorded its position
pF. (We identified the position of phenylalanine or tryptophan in the J gene
sequence. Such positions are referred to as pF.) For each V gene, we extracted two
substrings:

Vx ¼ V½0; pC � 1� andVy ¼ V ½pC þ 1; nV� ð1Þ
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Fig. 6 ImReP is able to identify samples with high activity of lymphocytes. Histological images of tissue cross-sections and pathologists’ notes are used
to validate the ability of ImReP to detect samples with a high activity of lymphocytes. a Samples were ordered by the individual’s severity of Hashimoto’s
thyroiditis, as reported by pathologists’ notes: None (n= 180), Patchy (n= 6), Early (n= 7), and Hashimoto’s (n= 11). Histological images are provided to
illustrate each disease state. Bar plot reports clonotypic richness of IGH, calculated as the number of distinct amino acid sequences of CDR3 per one million
RNA-seq reads (CPM). The p-values were generated using a two-sided, two-sample t-test for each pair of severities (None vs. Patchy: t=−4.06 and
p-value= 7.25 × 10−5; None vs. Early: t=−13.44 and p-value= 3.60 × 10−29; None vs. Hashimoto’s: t=−16.31 and p-value= 6.62 × 10−38; Patchy vs.
Early: t=−2.34 and p-value= 3.93 × 10−2; Patchy vs. Hashimoto’s: t=−2.65 and p-value= 1.81 × 10−2; Early vs. Hashimoto’s: t=−0.92 and p-value=
0.37). Error bars represent the 95% confidence interval around the mean. b Boxplot reporting clonotypic richness of IGH, calculated as the number of
distinct amino acid sequences of CDR3 per one million RNA-seq reads (CPM), in the breast tissues for males (n= 73, min= 0.01, Q1= 0.09, median=
0.19, Q3= 0.63, max= 25.93) and females (n= 55, min= 0.04, Q1= 2.50, median= 9.56, Q3= 16.05, max= 63.80). The extreme outlier among the
male samples is illustrated with the histological image. Each boxplot represents the median and interquartile range, with whiskers extending to 1.5 times the
interquartile range. We detect a significant difference between the clonotypic richness of IGH in the breast tissue of males and females (two-sided
Mann–Whitney U-test: U= 376, p-value= 4.14 × 10−15). Source data are provided as a Source Data file.
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For each J gene, we recorded two substrings:

Jx ¼ J½0; pF � 1� and Jy ¼ J½pF þ 1; nJ� ð2Þ
Here, nV and nJ are the lengths of V and J genes, respectively. Given a set of

candidate CDR3 reads, we attempted to find the corresponding V and J genes. We
matched a substring of the read r[0, x− 1] with the corresponding suffix of Vx for
V genes. We also matched the read r[y+ 1, n] with the corresponding prefix of Jx
for J genes. We considered a read to match the V gene if the length of r[0, x− 1] is
greater than four and the edit distance between r[0, x− 1] and Vx is <2. We
considered a read to match the J gene if the length of r[y+ 1, n] is >4, and the edit
distance between r[y+ 1, n] and Jx is <2. In cases where a read overlaps equally (in
terms of edit distance) among multiple V genes and J genes, all matching V genes
are reported.

In the second stage, ImReP utilizes the reads overlapping only with the V or J
gene. Such reads contain a partial CDR3 sequence. ImReP builds a suffix tree S on
the reads overlapping any of the V genes. Then, for each read j overlapping a J gene
a V-gene overlapping read, v from S is determined (in cases where any exists).
Reads v and j are concatenated (based on the overlap) and the CDR3 region is
extracted.

Further, ImReP uses a CAST clustering technique to correctly assemble CDR3s
for PCR and sequencing errors. The output of the algorithm is the set of CDR3
partitions, and each of the partitions corresponds to a clonotype. Specifically,
ImReP builds a complete graph G= (V, E, w), where the set of vertices V is
represented by the set of assembled CDR3 sequences. The weight of the edge is
determined by the inverse of the edit distance, computed between the two
CDR3 sequences x and y. The CAST algorithm is executed with the following
procedure. A new partition P is initialized with the max-degree node. Then, the set
of “close” vertices is iteratively added to the partition, and the set of “distant”
vertices are removed from the partition. A vertex v is deemed to be “close”
(“distant”), if the average distance from v to the vertices from P is greater (smaller)
than a user-defined threshold. The procedure is repeated until either the set of
“close” or the set of “distant” vertices is empty. In such a way, the partition P is
based on a max-degree node and extended with the “close” vertices. Vertices
belonging to P are then removed from the graph G and the clustering procedure is
repeated until all of the vertices are assigned to a partition. Let {v1, v2,…,vi,…,vn} be
a partition output by the CAST algorithm. Each vi has an associated weight equal to
the count of CDR3’s vi, which was assembled during the first two stages of ImReP.
We computed the weighted consensus sequence of P and output the sequence as a
final clonotype. Finally, we mapped D genes (for IGH) onto assembled
CDR3 sequences and infer corresponding V(D)J recombination. Starting with
release v0.8, ImReP reports the out-of-frame CDR3 sequences.

Validation based on simulated RNA-Seq data. We performed in-silico simula-
tions to investigate the feasibility of using RNA-Seq to study the adaptive immune
repertoire. We first checked the ability of ImReP to extract the receptor-derived
reads from raw RNA-Seq reads. First, we simulated the Ig transcripts, which are
composed of recombined VDJ segments containing non-template insertion at the
V(D)J junction (Supplementary Fig. 2). We used the IMGT database (http://www.
imgt.org/vquest/refseqh.html) of V and J gene segments. We randomly selected V,
D, and J segments, and we inserted a sequence of random nucleotides between V
and D, and between D and J. The length of the inserted sequence was sampled from
the Gaussian-like distribution with a mean value of 15. We also excluded the
simulated transcripts that contain random insertions leading to out-of-frame
proteins. We used LymAnalizer (version 1.2.2) (https://sourceforge.net/projects/
lymanalyzer/) to validate CDR3 sequences of the transcript. We used SimNGS
(version 1.6) (https://www.ebi.ac.uk/goldman-srv/simNGS/) to simulate paired-end
reads, referred as receptor-derived reads, from Ig transcripts. Next, we simulated 50
million transcriptomic reads from a human transcriptome reference (GRCh37).
We mixed receptor-derived reads with transcriptomic reads into an RNA-Seq
mixture (Supplementary Fig. 3). We then applied ImReP to a simulated RNA-Seq
mixture in order to check the ability of ImReP to extract CDR3-derived reads from
the RNA-Seq mixture.

Next, we studied the effects of the coverage and read length on the ability to
reconstruct CDR3 sequences. In total, we simulated 1,000 Ig transcripts. We
simulated paired-end reads of various read lengths (l= 50,75,100). We have also
simulated different numbers of reads that correspond to different coverage rates of
Ig transcripts (c= 1, 2, 4, 8, 16, 32, 64, 128). We used the power law distribution to
assign frequencies to simulated Ig transcripts28. The CDR3 amino acid sequences
assembled by ImReP were compared to simulated transcripts in order to evaluate
the recall and precision for various read lengths and coverage rates.

We define recall and precision in the following way:

Recall ¼ TP= TPþ FNð Þ ð3Þ

Precision ¼ TP= TPþ FPð Þ ð4Þ
Where TP is the number of correctly assembled CDR3 sequence features (i.e., an
exact match to the simulated CDR3), FN is the number of simulated
CDR3 sequence features not assembled by the method, and FP is the number of
incorrectly assembled CDR3 sequences. Scripts that simulate the reads and Ig

transcripts are available online at: https://github.com/Mangul-Lab-USC/
ImReP_publication.

Validation based on BCR-Seq-based IGH transcripts. Additionally, we used Ig
sequences assembled from targeted BCR-Seq data, which was derived from the
IGH locus spanning the region between the FR1 to the IGHJ gene. Error-corrected
BCR sequencing was used to generate sequences from peripheral blood mono-
nuclear cells that were sampled from a healthy individual using19. Targeted BCR
amplification was performed using a two-step RT-PCR protocol with multiplex
IGHV gene primers and a barcoded IGHJ primer. Amplicons were sequenced
using MiSeq 300 bp paired-end libraries and following Illumina protocols. Raw
sequence reads are available under the EGAN00001419382 accession number in
the European Genome-Phenome Archive. BCR-Seq was approved by the Wellcome
Sanger Institute review boards and ethics committees (07/MRE05/44). As the Ig
sequences constitute human data, they are stored under managed data access
according to the Wellcome Trust data release policy. Access to these samples must
be requested from the Data Access Committee (DAC), whose contact details can be
found on the EGA study page. Data hosted on DAC have an accession number;
more information can be obtained by sending an email to datasharing@sanger.ac.
uk. The requester will be required to sign a data access agreement, which is in place
to protect the identity of the sample donor via a managed access system.

We ran the online version of IgBLAST using the default alignment options
(https://www.ncbi.nlm.nih.gov/igblast/igblast.cgi) to extract the CDR3 sequence
from each Ig transcript. The resulting 3129 sequences fall into 435 distinct
CDR3 sequences. Next, we used simLibrary (version 1.3) and simNGS (version 1.6)
software packages to simulate three Illumina single-end read datasets at 16x
coverage with read lengths of 50 bp, 75 bp, and 100 bp. The commands for this
process used can be found on Github: https://github.com/Mangul-Lab-USC/
ImReP_publication.

On each of the datasets, we ran ImReP with the default options and the
“–noOverlap” option.

Determine parameters for clustering using the CAST algorithm. To cluster the
assembled clones with a good balance between sensitivity and precision, we
determined the threshold for inverse edit distance used by CAST. The inverse edit
distance is iteratively used by CAST inside each cluster until the average inverse
edit distance (Levenshtein) inside each cluster is less than the user-defined
threshold. In general, the decrease of sensitivity shows that many true positive
clones are collapsed by CAST. he increase in precision shows the advantage of
CAST application, where false positive clones are collapsed. The CAST’s threshold
for edit distance was set to maximize F-score across different coverages and read
lengths. Using the simulated data, we set up the defaults of CAST’s threshold for an
edit distance to 0.25 (Supplementary Fig. 13). We simulated paired-end reads of
length 2 × 75 bp, covering the Ig transcript with an average coverage rate of 8×.
After the CAST threshold was determined, we applied ImRep with and without
CAST on simulated datasets with various read lengths and coverages (Supple-
mentary Fig. 14). Across the vast majority of read lengths and coverages, CAST
provides an improved clonotype reconstruction accuracy (measured by F-score).
Lower edit distance threshold (<0.1) results in drop of sensitivity, suggesting that
closely related but bona fide distinct mutants are collapsed by the algorithm. The
default edit distance threshold chosen by ImRep balances both precision and
sensitivity; the default setting avoids collapsing closely related-yet-bona-fide dis-
tinct clonotypes.

Comparison with other methods. We used simulated and real datasets to com-
pare ImReP to existing methods. We note that IMSEQ cannot be applied to RNA-
Seq reads, because it was originally designed for BCR-Seq. Scripts and commands
utilized to repertoire assembly tools are available online at: https://github.com/
Mangul-Lab-USC/ImReP_publication.

Cell-type composition. B-cell signature values per sample were derived using
SaVant20. Cell-specific signature genes are first defined from a set of cells/tissues
obtained from the Human Body Atlas29 by using the proportional median values.
We calculate these values by dividing the intensity of a probe in a particular cell
type by its median value across all cells/tissues. The top 25 genes with the highest
proportional median value for CD19+ B cells were defined as the specific signature
for that cell type (Supplementary Table 2). All Ig genes were removed from the
signature. The signature score is then generated from the average of the log2-
transformed values of the signature genes within each sample.

Definition of clonotype. Clonotypes are defined as clones with identical CDR3
amino acid sequences.

Histological images and pathologist notes. We used histological images and
pathologists’ notes (available from the GTEx portal, http://www.gtexportal.org/
home/histologyPage#data) to validate the adaptive immune profile of the samples.
Although samples were derived from primary tissues, they often have a mixed cell
type composition. For example, samples from stomach tissues have various
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proportions of lymphocytes as, according to pathologists’ notes, they were derived
from mucosal or muscularis areas of the tissue. GTEx samples with inflammation
and/or subject to various diseases are separately investigated. Pathologists’ notes
report the percentage of mucosa, and the disease or inflammation status, of the
biopsied tissue.

Statistics and reproducibility. All statistics have been derived where appropriate
sample size dictated that a statistical test could be performed.

Data representation. We used WebLogo3 (http://weblogo.threeplusone.com/
manual.html) to visualize the amino acid composition of assembled
CDR3 sequences, and Gephi (https://gephi.org/users/) to visualize the flow of
clonotypes across diverse human tissues.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All RNA-Seq data discussed in this paper is available as part of the Genotype-Tissue
Expression (GTEx) Project under the phs000424.v8.p2 accession number in the database
of Genotypes and Phenotypes (dbGaP). The targeted BCR-Seq assemblies used for
validation of the ImReP method are available at the adaptive biosystems webpage
(https://clients.adaptivebiotech.com/pub/lombardo-2017-bloodadvances). RNA-Seq
samples used for validation of ImReP are available under the SRP099346 accession
number in the Sequence Read Archive. Raw sequence reads of targeted BCR-Seq data are
available under the EGAN00001419382 accession number in the European Genome-
Phenome Archive. All data required to produce the figures and analysis performed in this
paper are freely available at https://github.com/Mangul-Lab-USC/ImReP_publication
and are available in the Source Data zip file, including the data used to produce
Figs. 2a–f, 3, 4a, c, 5a, b, and 6a, b, and Supplementary Figs. 4, 5, 6d, 7, 8, 9a–c, 10–12,
13a–c, and 14a–c.

Code availability
ImReP is freely available at https://github.com/Mangul-Lab-USC/imrep. ImReP is
distributed under the terms of the General Public License version 3.0 (GPLv3). All code
required to produce the figures and analysis performed in this paper are freely available
at https://github.com/Mangul-Lab-USC/ImReP_publication. Source data are provided
with this paper.
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