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Nonperturbative-transverse-momentum broadening in dihadron angular correlations
in
√
s
NN

= 200 GeV proton-nucleus collisions
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The PHENIX collaboration has measured high-pT dihadron correlations in p+p, p+Al, and p+Au
collisions at

√
sNN = 200 GeV. The correlations arise from inter- and intra-jet correlations and thus

have sensitivity to nonperturbative effects in both the initial and final states. The distributions of
pout, the transverse momentum component of the associated hadron perpendicular to the trigger
hadron, are sensitive to initial and final state transverse momenta. These distributions are measured
multi-differentially as a function of xE , the longitudinal momentum fraction of the associated hadron
with respect to the trigger hadron. The near-side pout widths, sensitive to fragmentation transverse
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momentum, show no significant broadening between p+Au, p+Al, and p+p. The away-side nonper-
turbative pout widths are found to be broadened in p+Au when compared to p+p; however, there
is no significant broadening in p+Al compared to p+p collisions. The data also suggest that the
away-side pout broadening is a function of Ncoll, the number of binary nucleon-nucleon collisions,
in the interaction. The potential implications of these results with regard to initial and final state
transverse momentum broadening and energy loss of partons in a nucleus, among other nuclear
effects, are discussed.

I. INTRODUCTION

High energy collisions of protons with nuclei provide
a testing ground for quantum chromodynamics (QCD).
In particular, when large transverse momentum scales
are involved, the collisions can probe the quark and
gluon, collectively referred to as partons, structure of
the nucleus. Proton-nucleus (p+A) collisions have tra-
ditionally been used as a control to identify final-state
nuclear effects in high energy nucleus-nucleus collisions
where a strongly interacting quark-gluon plasma (QGP)
is formed [1]. However, measurements in p+A collisions
have revealed many surprising results that have yet to
be completely reconciled with each other; these have
shown that understanding and explaining many differ-
ent “cold” nuclear matter effects is already a challenging
endeavor [2–5].

For example, in the initial-state, nuclei are known to be
more complex than just a simple linear superposition of
nucleons (see e.g. Ref. [2] for a review). Nuclear parton
distribution functions (PDFs) are known to have several
regions where they deviate from simple superpositions of
nucleon PDFs as a function of the longitudinal momen-
tum fraction x that the parton carries of the nucleon.
Understanding how the partonic degrees of freedom lead
to nuclear structure will be a major achievement of QCD;
however, there is still significant effort required in under-
standing the physical origin of these measured nuclear
modifications. Final-state hadronization from a nucleus
can also be modified similarly to nuclear PDFs in the
initial state. In particular, semi-inclusive deep-inelastic
scattering (SIDIS) experiments have shown that high z
hadrons are suppressed in electron-nucleus relative to
electron-deuterium collisions [6], where z is the longitu-
dinal momentum fraction of the outgoing hadron with
respect to the fragmenting parton. This suppression was
found to be dependent on the nuclear target size [7].
In addition, a particle species dependence was observed,
which may reflect differences in the nuclear modification
of quark and/or antiquark fragmentation functions and
possible differences in meson versus baryon production
from nuclei [6, 7].

Several proposed signatures of the QGP have also
been measured in p+A collisions where the overall sys-
tem size created in the collision was once expected to

∗ PHENIX Spokesperson: akiba@rcf.rhic.bnl.gov
† Deceased

be too small. Collective behavior has been observed
across large pseudorapidity ranges in high multiplicity
p+A collisions [3, 8–12]. Additionally, the enhance-
ment of strangeness in hadron production in high mul-
tiplicity p+A collisions has recently been measured [13].
Surprisingly, both of these phenomena have also been
observed in high multiplicity p+p collisions at Large-
Hadron-Collider (LHC) energies [14, 15]. However, the
suppression of high pT inclusive hadrons or jets in p+A
collisions with respect to p+p collisions has not been mea-
sured [16, 17]. These results were first used to estab-
lish final-state QGP interactions as the cause of high pT
hadron suppression in nucleus-nucleus collisions [5, 18].
However, the recent addition of collective and strange
hadron measurements but lack of hadron suppression in
p+A collisions has complicated the idea that a QGP may
be formed in smaller collision systems.

Another unexpected physical effect in p+A collisions
is the so-called “Cronin” effect, which refers to an en-
hancement in the inclusive hadron pT spectrum with re-
spect to p+p collisions at moderate pT of approximately
2 < pT < 6 GeV/c which persists over a wide range of
center-of-mass energies [4, 16, 19]. This effect has also
been observed at moderate pT in electron-nucleus colli-
sions [6], where a significant dependence of the enhance-
ment on the longitudinal momentum fraction z of the
hadron was found [7]. While this was first proposed to be
due to multiple scattering effects in the nuclear medium,
more recent measurements have shown that hadroniza-
tion also plays a role [20]. Additional measurements that
go beyond single inclusive hadrons may be able to shed
further light on this phenomenon in p+A collisions. For
example, dijet measurements in the kinematic regime of
the Cronin effect have shown that the initial-state par-
tonic transverse momentum is a function of the nucleus
size [21], which has not been observed at large jet trans-
verse momentum [22].

The lack of understanding of the underlying physical
sources of these phenomena motivates measurements in
new kinematic regimes with different observables. Here
we present a measurement of dihadron angular correla-
tions in p+p, p+Al, and p+Au collisions at midrapidity
collected by the PHENIX experiment at the Relativistic
Heavy Ion Collider (RHIC). The unique capabilities of
RHIC allow for a nuclear size dependence to be studied
in
√
s
NN

= 200 GeV p+A collisions. High pT two-particle
angular correlations have been theoretically considered as
a probe for energy loss in p+A and A+A collisions via
their transverse momentum broadening [23–25]; however,
the various aforementioned effects should also be consid-

mailto:akiba@rcf.rhic.bnl.gov
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ered as they will play a role in both collision systems.
The present measurements will contribute to our under-
standing of the rich phenomena in hadronic interactions
involving nuclei.

II. METHODS

In 2015, the PHENIX experiment [26] at RHIC col-
lected data from p+p, p+Al, and p+Au collisions at√
s
NN

= 200 GeV. A total minimum bias integrated

luminosity of 60, 0.69, and 0.21 pb−1 for p+p, p+Al,
and p+Au, respectively, was used for the analysis of di-
hadron correlations. From these total integrated lumi-
nosities, data quality assurance and collision vertex posi-
tion |zvtx| < 30 cm cuts were applied. The PHENIX de-
tector measures two-particle angular correlations of neu-
tral pions and charged hadrons, π0-h±, with its electro-
magnetic calorimeter (EMCal) and drift chamber (DC)
and pad chamber (PC) tracking system. These cen-
tral arms cover an azimuthal range of ∆φ ≈ π radi-
ans and a pseudorapidity range of |η| < 0.35. De-
tailed descriptions of the PHENIX central arms can be
found in Refs. [27, 28]. In p+A collisions, the centrality
class is determined with the forward beam-beam counters
(BBCs) [29], where the centrality percentiles are defined
by the multiplicity measured in the nucleus-going BBC
following the procedure in Ref. [30].

The EMCal is used to identify high pT neutral pions
to construct the correlation functions. A high-energy-
photon trigger is used to identify events with a high pT
photon from a π0 → γγ decay. Photons are identified
using a shower shape cut that removes charged hadrons
as well as most high energy clusters that overlap with
another photon. The neutral pions are reconstructed via
their two photon decay, where the granularity of the EM-
Cal allows π0 reconstruction up to approximately 20 GeV
in this channel. In this analysis neutral pions are col-
lected in the pT range 5 < pT < 9 GeV/c.

The DC and PC tracking system measures noniden-
tified charged hadrons in the event with the triggered
high pT photon. Two PCs, located radially behind the
DC, are used to identify and match tracks in the DC
with hits in the PCs. This track matching condition re-
duces background from secondary tracks due to conver-
sions or decays. A ring-imaging Čerenkov system is also
used to reject electrons from the charged hadron sample.
With these conditions, the DC and PC tracking system
is also used to reject tracks in the EMCal that happen to
shower and are thus background for the π0 → γγ iden-
tification. Nonidentified charged hadrons are collected
between 0.5 < pT < 10 GeV/c in correlation with the
high pT π0 to study the correlations in as large a range
as allowed by the data.

The correlations are constructed similarly to previ-
ous PHENIX two-particle correlation analyses, see e.g.
Refs. [31–33]. Per-trigger yields are constructed for a
given observable, such as ∆φ, which show the yield of

charged hadrons per-trigger π0 and are defined by

1

Ntrig

dN

d∆φ
=

1

Ntrig

dN/d∆φraw
dN/d∆φmixedε(pT )

(1)

To account for the PHENIX acceptance, the raw cor-
relations are divided by a mixed-event background cor-
relation function, dN/d∆φmixed. The background cor-
relation is constructed with neutral pions and charged
hadrons from the same data taking period but different
event number; the events are required to have a simi-
lar centrality and z-vertex. To account for the efficiency
of the PHENIX detector, the correlation functions are
also corrected by a charged hadron efficiency defined as
ε(pT ) in Eq. 1, which is determined with a single particle
Monte Carlo generator as well as a full GEANT descrip-
tion of the PHENIX apparatus [34]. After these correc-
tions, the correlations are normalized by the total number
of trigger particles measured to construct the per-trigger
yield and correspond to full azimuthal acceptance within
|η| < 0.35.

FIG. 1. A schematic diagram showing a dihadron correlation
in the transverse plane. Vector quantities are shown in bold.
The red vectors are the two partons, which are acoplanar due
to initial-state partonic kT , while the two black vectors are
the measured trigger and associated hadron, slightly displaced
from the partons due to final-state transverse momentum jT
from fragmentation. The quantities pout and xE are shown as
blue and green vectors, respectively.

Correlation functions are typically constructed in
terms of the azimuthal angle ∆φ between the trigger and
associated particle. Here we choose to construct the cor-
relations as a function of the momentum space vector
component pout and xE , defined as

pout = |passoc
T | sin ∆φ (2)

and

xE = −
ptrig
T · passoc

T

|ptrig
T |2

= −|p
assoc
T |
|ptrig

T |
cos ∆φ. (3)

The quantities pout and xE give the transverse momen-
tum component and longitudinal momentum fraction,
respectively, of the associated hadron with respect to
the trigger π0. These quantities are schematically di-
agrammed in Fig. 1, where the Figure shows a two-
particle correlation in the transverse plane and quan-
tities in bold represent vectors. In this diagram, two
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hadrons (black vectors) fragment from two high pT par-
tons (red vectors) from a two-to-two partonic scatter-
ing. The partons are originally acoplanar due to their
initial-state transverse momenta (kT ); the two hadrons
may acquire additional acoplanarity due to final-state
transverse momentum (jT ) during the fragmentation pro-
cess. In the diagram the final-state transverse momen-
tum is perpendicular to the parton axis and denoted as
jT trig

y
and jT assoc

y
, which are assumed to be Gaussian such

that
√
〈j2T 〉 =

√
2〈j2

T trig
y

〉 =
√

2〈j2T assoc
y
〉. The quantity

jT could have a ptrigT or passocT dependence to it; how-
ever, measurements have shown that this dependence is
small [35]. The quantity pout can be nonzero because
of the kT and jT transverse momentum contributions,
while xE is a proxy for the momentum fraction z that the
final-state hadron carries with respect to the parton; see
Fig. 6 and the associated text. In the figure, xE is shown
multiplied by ptrigT to explicitly show the comparison be-
tween xE and z. When pout is small, the two-particle
correlation is nearly back-to-back and the acoplanarity
is generated by nonperturbative kT and jT [33, 36]. Ad-
ditional nonperturbative interactions within the nucleus,
as discussed and referenced in the Introduction, may con-
tribute to this quantity in p+A collisions.

Systematic uncertainties are assigned for the charged
hadron efficiency and for the underlying event back-
ground subtraction procedure. The systematic uncer-
tainty on the charged hadron yields is determined to
be an overall normalization uncertainty of 9% on the
per-trigger yields. The dominant contribution is due to
the uncertainty that arises from matching tracks in the
PHENIX drift chamber to the outermost pad chamber;
however, there are also contributions from the overall
tracking resolution of the detector and the Monte Carlo
determination of the nonidentified charged hadron effi-
ciency. The underlying event background is statistically
subtracted with fits to the away-side ∆φ correlation func-
tions as described in Ref. [36]; these fits determine the
percentage of underlying event background level with re-
spect to the jet yield. The systematic uncertainty is de-
termined by altering the underlying event region by ±1σ
based on the fit results. This uncertainty varies from
less than 1% at small pout to several percent at large
pout where the underlying event contribution, and thus
background-to-signal, is larger.

III. RESULTS

Examples of the away-side per-trigger yields as a func-
tion of pout are shown in several bins of xE in Fig. 2. The
per-trigger yields for p+Au and p+p collisions are shown
as open and filled points, respectively. A transition from
nonperturbative behavior in the nearly back-to-back pout
≈0 (∆φ ≈ π) region to perturbative next-to-leading or-
der behavior at larger pout can be seen at varying val-
ues of pout, depending on the xE bin. This change in

shape is highlighted by Gaussian fits to the small pout re-
gion, drawn in Fig. 2 as dotted and solid lines for p+Au
and p+p, respectively. The fit ranges vary depending on
the xE bin as the nonperturbative region is a function
of passocT and thus xE [33]. The fit ranges are chosen
to give the best χ2/NDF, and a systematic uncertainty
is assigned based on this choice as described later; this
is the dominant systematic uncertainty on the Gaussian
widths. Generally the fits have a χ2 per NDF of or-
der ∼10 on the pout distributions when fitting only the
statistical uncertainties. When fitting the systematic un-
certainties, the fits always have a χ2 per NDF less than
unity. The fit results are nearly identical when fitting
the statistical or systematic uncertainties; therefore, sys-
tematic uncertainties on the Gaussian widths are more
conservatively estimated by adjusting the fit range when
fitting to the statistical uncertainties. The fit ranges are
the same for both the p+p and p+A data, and range from
[−0.4, 0.4] GeV/c in the smallest xE bin to [−1.5, 1.5]
GeV/c in the largest xE bin. These fits clearly do not
describe the data at larger values of pout where the data
exhibit a more power-law like behavior. This transition
indicates a change from sensitivity to nonperturbative to
perturbative physics effects.
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FIG. 2. The away-side pout per-trigger yields are shown in
both p+Au and p+p collisions for several bins of xE . Gaussian
fits, shown as dotted lines for p+Au and solid lines for p+p,
are shown to the small pout distributions, highlighting the
nonperturbative to perturbative transition.

Examples of the near-side per-trigger yields as a func-
tion of pout are shown in several bins of xE in Fig. 3.
The near-side per-trigger yields show a much narrower
distribution than the away-side per-trigger yields due to
the differences between intra-jet correlations and inter-
jet correlations, respectively. In particular, the near-side
correlations are only sensitive to fragmentation trans-
verse momentum, because the π0 and hadron are frag-
mented from the same hard parton. However, the away-
side correlations are sensitive to both initial and final
state transverse momentum. Because the initial-state kT
is much larger than final-state jT (see e.g. [31, 32]), this
leads to a broader pout distribution on the away-side than
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FIG. 3. The near-side pout per-trigger yields are shown in
both p+Au and p+p collisions for several bins of xE . Gaussian
fits, shown as dotted lines for p+Au and solid lines for p+p,
are performed at small pout where nonperturbative behavior
is dominant in the ∆φ ≈0 region.

the near-side. Nonetheless, a nonperturbative Gaussian
region can still be identified on the near side as shown
in Fig. 3, similarly to the away side, with a power law
spectrum at larger pout that is not well described by the
Gaussian fit.

To measure the nonperturbative momentum widths,
the Gaussian widths are extracted from the fits to both
the near and away side pout distributions. Systematic un-
certainties on the Gaussian widths are estimated by in-
creasing the fit range by 0.2 GeV/c in pout and taking the
absolute value of the difference of the resulting Gaussian
width. To study any modification in p+A compared to
p+p collisions the squared width difference is determined
between the p+A and p+p Gaussian widths. These dif-
ferences are shown in Fig. 4 as a function of xE for the
near and away side correlation functions, for both p+Al
and p+Au collisions. The near-side width differences in
the left column of Fig. 4 show no significant modification
within uncertainties between both p+Al or p+Au and
p+p collisions at all values of xE . Similar results have
been seen in dihadron correlations [35] and fragmenta-
tion function studies with full jet reconstruction [37] in
p+Pb collisions. However, the away-side width differ-
ences in p+Au and p+p collisions show modification as
seen in the bottom-right panel of Fig. 4. There is no
significant away-side broadening between p+Al and p+p
collisions as seen in the top right panel of Fig. 4 within
the assigned systematic uncertainties.

There is an indication that the away-side squared
Gaussian width differences depend on the nucleus size
as indicated in the right column of Fig. 4. To study this
further, the pout per-trigger yields were split into two cen-
trality bins in the p+Au data and the same analysis was
performed. The centrality in p+A collisions is converted
to values ofNcoll with the method in Ref. [30], whereNcoll

is defined as the average number of nucleon-nucleon col-
lisions in a given event class. Figure 5 shows the squared
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FIG. 4. The Gaussian width differences are shown for the
near-side (a) and away-side (b) between p+Al and p+p col-
lisions and for the near-side (c) and away-side (d) between
p+Au and p+p collisions as a function of xE .

width differences in p+A and p+p collisions as a func-
tion of Ncoll in the two xE bins where a nonzero Gaus-
sian width difference is observed. The values of these
squared width differences are shown in Tab. I. The data
are fit with linear functions which are shown on the fig-
ure and indicate that the squared width differences ex-
hibit a positive correlation with Ncoll. The slopes of the
fits were found to be 0.005 ± 0.001 (stat) ±0.003 (sys)
and 0.015 ± 0.005 (stat) ± 0.004 (sys) for the smaller
and larger xE bins, respectively. When the data is fit
to a constant of 0, the χ2 per number of degree of free-
dom becomes approximately 5 for 0.15 < xE < 0.25 and
approximately 8 for 0.25 < xE < 0.5. The measured
slopes differ from a slope of 0 with p values of approxi-
mately 0.055 and 0.01, for the smaller and larger xE bin
respectively, where the statistical and systematic uncer-
tainties on the slopes were added in quadrature. This
suggests that the interpretation of no transverse momen-
tum broadening in p+A compared to p+p is inconsistent
with the data.

IV. DISCUSSION

There are a number of different physical processes that
could be contributing to the apparent broadening of the
away-side nonperturbative momentum widths in p+A
compared to p+p collisions, as discussed in the Intro-
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TABLE I. The values of the Gaussian width differences between p+A and p+p and their statistical and systematic uncertainties
are shown, corresponding to Fig. 5. Units are [GeV/c]2 for the width differences and their uncertainties.

System Ncoll σNcoll
xE Squared Gaussian width p+A−p+p (stat) (syst)

p+Al 2.1 0.1 0.15–0.25 0.017 0.004 0.013

p+Au 4.4 0.6 0.15–0.25 0.016 0.004 0.034

p+Au 7.7 0.6 0.15–0.25 0.045 0.005 0.013

p+Al 2.1 0.1 0.25–0.50 0.020 0.017 0.022

p+Au 4.4 0.6 0.25–0.50 0.039 0.018 0.023

p+Au 7.7 0.6 0.25–0.50 0.105 0.022 0.016
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FIG. 5. The Gaussian width differences between p+A and
p+p are shown in two xE bins as a function of Ncoll. Lin-
ear fits are shown for each xE bin, which exhibit a positive
dependence with Ncoll.

duction. The apparent lack of broadening on the near-
side indicates that additional nonperturbative radiation
during fragmentation in p+A is small. This may sug-
gest that the fragmentation of the hard scattered parton
into hadrons occurs outside any nuclear medium that is
present; therefore, this fragmentation is similar between
p+A and p+p collisions and is independent of the pres-
ence of a nucleus in the kinematic region probed by this
data.

In the last decade, significant emphasis has been placed
on the observation of collective effects in p+A collisions.
The effects of contributions from v2 and v3 Fourier har-
monics were studied and found to be negligible in the
present analysis; this is because the Gaussian widths are
almost entirely constrained by correlations in the range of
∆φ±0.2 radians around ∆φ = π. In this small ∆φ range,
any modulation from collective dynamics was found to
contribute on average less than 1% to the normalization
of the pout correlation functions. Additionally, the corre-
lations are collected in the midrapidity |η| < 0.35 region
where the ∆η between the high pT trigger and associated
particle is small and thus the jet dynamics will be dom-
inant. For this reason, any contribution from collective

dynamics can be neglected in these results.
The modification observed in this analysis is found in a

similar kinematic region to where the so-called “Cronin”
peak has been observed. In the xE bins where the
broadened widths are observed, associated hadrons corre-
sponding to trigger neutral pions in the range 5 < ptrigT <
9 GeV/c are approximately in the range 1 < passocT < 2.5
GeV/c. The Cronin effect was once attributed to multi-
ple scattering of partons within a nuclear medium; how-
ever, recent measurements revealed a particle ID depen-
dence and have shown that additional final-state effects
must also be present [20]. Additional nonperturbative
initial-state partonic kT can also contribute to the Cronin
peak, to which this measurement is sensitive. Nonethe-
less, multiple scattering interactions within the nucleus
could manifest themselves as collisional energy loss or
elastic scatterings leading to an angular broadening, both
of which could lead to the observed away-side momen-
tum width broadening in p+A collisions. Two-particle
correlations may provide additional constraints on the
underlying physical mechanism which leads to this phe-
nomenon. Future measurements with particle identifica-
tion will play an important role in identifying the cause
of the Cronin peak, as a particle species dependence has
been measured in d+Au [20] collisions.

In Ref. [7] a strong dependence on z to the inclu-
sive charged hadron enhancement in e+A collisions was
found. In particular, the largest enhancement was found
for 0.2 < z < 0.4 hadrons. Figure 6 shows the correlation
between xE and z for π0-hadron correlations in

√
s = 200

GeV p+p collisions as determined in a PYTHIA6 [38]
simulation with the default tune. The correlations are
determined in the Monte Carlo simulation in the same
kinematic regime as the data to draw a better compar-
ison between z and xE to this analysis. Figure 6 shows
that 0.25 < xE < 0.5, where the transverse momentum
broadening is observed to be the largest, corresponds ap-
proximately to a range of z covering 0.07 < z < 0.2. This
is in a similar region to where Ref. [7] sees the largest in-
clusive hadron enhancement in e+A collisions. However,
it should also be considered that the two measurements
cover a much different Q2 range, which may also be rel-
evant in this comparison.

Nuclear PDFs can also play a role; in particular the
nuclear PDFs are known to vary with the longitudinal
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mined in a PYTHIA simulation for π0-hadron correlations in
the same kinematic regime as measured in the data. The cor-
relation may provide insight into the origins of the inclusive
hadron enhancement at moderate pT in p+A collisions.

momentum fraction of the parton probed [2, 39]. These
measurements are in a kinematic region that may be sen-
sitive to the anti-shadowing region around x ≈0.1. The
pout correlation functions are also sensitive to a small
transverse momentum scale, and thus can also probe
the transverse-momentum-dependent parton distribution
functions of the nucleus. Dijet measurements, where the
jets have an average pT > 4 GeV/c, have shown that
there is a larger ∆φ acoplanarity in p+A compared to
p+p collisions [21], indicating that there is a nuclear size
dependence to initial-state partonic transverse momen-
tum in the kinematic regime where Cronin effects may
be expected to be relevant. However, the observation
from the present measurement that the broadening de-
pends on Ncoll could indicate that the broadening is not
simply due to additional transverse momentum from the
nucleus size.

The transverse momentum broadening may also be due
to soft radiative energy loss within the nucleus. Energy
loss in cold nuclear matter has been previously stud-
ied with the Drell-Yan process [40]. Transverse momen-
tum broadening has also been measured to be nonzero
in SIDIS interactions [41]. While the Drell-Yan measure-
ment is only sensitive to initial-state partonic energy loss,
the SIDIS measurement and the measurement presented
here are sensitive to both initial and final state energy
loss. Global analyses which utilize all of these data may
provide further insight into the origins of the measured
transverse momentum broadening in nuclear Drell-Yan,
SIDIS, and p+A → dihadrons processes. The difference
in pout between A+A and p+p collisions has been used
to estimate the energy loss per unit length within the
QGP in Au+Au collisions [25]. Given that there is an
observed difference in the pout widths between p+A and
p+p collisions this indicates that small energy losses have

been measured in these dihadron correlations. Calcula-
tions for energy loss in a nucleus have been performed
for both RHIC and LHC energies in the dijet and direct
photon-hadron channel as well as in e+A collisions [42].

V. CONCLUSION

In summary, high pT dihadron correlations have been
measured in

√
s
NN

= 200 GeV p+p, p+Al, and p+Au
collisions. The pout distributions are measured on the
near and away side of the trigger hadron and the distribu-
tions are fit with Gaussian functions to extract the non-
perturbative transverse momentum width in each system.
The widths are compared across the various collision sys-
tems to search for modifications present in the nuclear
collisions. No near-side modification is observed within
uncertainties in the p+A collisions, indicating that intra-
jet radiation effects from nuclei are small in these sys-
tems. In contrast, the away-side widths are broadened in
p+Au compared to p+p at moderate values of xE , while
no significant modification was observed in p+Al com-
pared to p+p. This was observed to be a function of the
centrality or Ncoll of the p+A collision, which suggests
a path length dependence to the transverse momentum
broadening.

A number of different physical effects may contribute
to the measured transverse momentum broadening in
p+A collisions. In particular, contributions from long
range correlations were systematically studied and found
to be small. The correlations are constructed in a kine-
matic regime where “Cronin” effects are known to be
large; therefore, multiple initial-state scatterings or par-
ton recombination effects in the final state may be con-
tributing to the broadening. The correlations are also
sensitive to the partonic initial-state transverse momen-
tum, and thus may indicate additional primordial par-
tonic kT in nuclei when compared to a free nucleon. How-
ever, the dependence of the broadening on Ncoll suggests
a path length dependence to hard scattered partonic en-
ergy loss, which may be due to radiative or elastic inter-
actions with the nuclear remnants. Considering these dif-
ferent qualitative physics mechanisms, and the many dif-
ferent processes and/or observables with which they have
been measured, will be an important endeavor in under-
standing hadronic interactions involving nuclei. Future
measurements, especially at an electron-ion collider, will
continue to shed light on the many physical phenomena
that occur in proton-nucleus collisions.
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