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Abstract

Generation of amyloid-β peptides (Aβs) by proteolytic cleavage of the amyloid-β protein 

precursor (AβPP), especially increased production of Aβ42/Aβ43 over Aβ40, and their aggregation 

as oligomers and plaques, represent a characteristic feature of Alzheimer’s disease (AD). In 

familial AD (FAD), altered Aβ production originates from specific mutations of AβPP or 

presenilins 1/2 (PS1/PS2), the catalytic subunits of γ-secretase. In sporadic AD, the origin of 
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altered production of Aβs remains unknown. We hypothesize that the ‘human chemical exposome’ 

contains products able to favor the production of Aβ42/Aβ43 over and shorter Aβs. To detect such 

products, we screened a library of 3500 + compounds in a cell-based assay for enhanced Aβ42/

Aβ43 production. Nine pyrazole insecticides were found to induce a β- and γ-secretase-dependent, 

3–10-fold increase in the production of extracellular Aβ42 in various cell lines and neurons 

differentiated from induced pluripotent stem cells derived from healthy and FAD patients. 

Immunoprecipitation/mass spectrometry analyses showed increased production of Aβs cleaved at 

positions 42/43, and reduced production of peptides cleaved at positions 38 and shorter. Strongly 

supporting a direct effect on γ-secretase activity, pyrazoles shifted the cleavage pattern of another 

γ-secretase substrate, alcadeinα, and shifted the cleavage of AβPP by highly purified γ-secretase 

toward Aβ42/Aβ43. Focusing on fipronil, we showed that some of its metabolites, in particular the 

persistent fipronil sulfone, also favor the production of Aβ42/Aβ43 in both cell-based and cell-free 

systems. Fipronil administered orally to mice and rats is known to be metabolized rapidly, mostly 

to fipronil sulfone, which stably accumulates in adipose tissue and brain. In conclusion, several 

widely used pyrazole insecticides enhance the production of toxic, aggregation prone Aβ42/Aβ43 

peptides, suggesting the possible existence of environmental “Alzheimerogens” which may 

contribute to the initiation and propagation of the amyloidogenic process in sporadic AD.
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β; amyloid-β protein precursor; fipronil; γ-secretase; human chemical exposome; pesticides; 
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INTRODUCTION

Alzheimer’s disease (AD) is a major disease in countries with aging populations. Despite 

unresolved questions on the initial causes of AD and numerous clinical trial failures in 

recent years, the lack of satisfactory treatments and the extremely high prevalence of AD 

calls for fundamental research to determine its underlying molecular and cellular causes and 

mechanisms and for applied research to identify options for prevention, therapeutic targets 

and disease-modifying drug candidates (reviews in [1–4]).

Although the aggregation of specific forms of amyloid-β peptides (Aβs) into soluble 

oligomers is undoubtedly associated with the onset of AD, the upstream etiological events 

underlying this pathological process remain unclear, including whether there is an absolute, 

or relative, increase in the production of longer, aggregation-prone Aβ species. Aβs are 

derived from the successive action of two proteases, β-secretase and γ-secretase, on one of 

their numerous substrates, the transmembrane amyloid-β protein precursor (AβPP). 

According to its cleavage site, γ-secretase liberates Aβs of different sizes. While Aβ40 is 

considered as the main physiological product, the appearance of Aβ42 and Aβ43, or increase 

of the Aβ42-Aβ43/Aβ40 ratio is clearly associated with the onset of AD [5–7]. These longer 

Aβs show an increased propensity to form oligomers, which can assemble into large 

extracellular deposits, the amyloid plaques, a characteristic feature of AD. Aβ42/Aβ43 

oligomers are now considered as the toxic, AD initiating elements rather than the more 
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prominent plaques initially discovered by Aloïs Alzheimer. This ‘amyloid cascade theory’ is 

further supported by the identification of the genetic causes of early onset familial AD 

(FAD). These rare forms of AD (less than 1% of all AD cases) are indeed all associated with 

specific mutations of either AβPP or PS1 or PS2 (Presenilins) genes (the latter encode the 

catalytic subunits of the γ-secretase complex) (review in [8, 9]). In addition, a specific, 

protective mutation of AβPP was recently found to be associated with reduced risk for 

developing AD [10]. Furthermore, animal models that express mutated forms of AβPP 

and/or PS1, or human Aβ42/Aβ43, develop molecular, cellular and cognitive deficits 

reminiscent of AD ([6], review in [11, 12]). Yet, the level of the different forms of Aβs is not 

well correlated with cognitive deficits in mice, suggesting that Aβs may represent markers 

rather than inducers of AD in these models [13]. An altered processing of γ-secretase 

substrates other than AβPP might also be important in the pathogenesis of AD. Although 

FAD is clearly a consequence of genetic mutations of genes encoding the proteins 

responsible for the production of Aβs, the initial trigger(s) of late-onset, sporadic AD (>99% 

of AD cases) remain unknown, despite extensive genome-wide association studies (GWAS) 

and the identification of various risk factors (review in [14]).

Environmental neurotoxic agents including pesticides, organic solvents, metals and some 

natural toxins (cyanobacteria) are likely sources of AD-inducing factors (reviews in [15–

25]). According to the US Environmental Protection Agency (EPA) Toxic Substances 

Control Act, over 84,000 chemicals are manufactured or imported at levels >10 tons per 

year, not including pesticides, cosmetics, food stuffs, and food additives which are covered 

by other legislations (http://www.epa.gov). It is estimated that we are exposed to over 85,000 

substances which, along with all natural substances to which we are exposed from 

conception to death, constitute the ‘human chemical exposome’ (HCE) [26–34]. In search 

for potential “Alzheimerogens” (named by analogy with carcinogens), and encouraged by 

the discovery of Aftins (Amyloid β Forty-Two Inducers) [35–37], a class of synthetic 

compounds which specifically induce the production of Aβ42, we have started to assemble 

and screen a library of compounds, belonging to the HCE, for Aβ42-inducing products. Our 

first study identified some triazine herbicides as products stimulating the production of 

Aβ42/Aβ43 in numerous cell lines [38].

In this new study, we show that several members of the pyrazole class of insecticides, 

exemplified by fipronil, also increase the γ-secretase-dependent production of Aβ42/Aβ43 

peptides in various cell lines and in a cell-free system with highly purified γ-secretase. 

Interestingly fipronil is metabolized to fipronil sulfone, a very persistent product that 

accumulates in adipose tissue and brain. These results show that the HCE contains various 

brain permeable products able to induce the production of pathogenic Aβs. If long exposures 

occur in real life and if accumulation of Aβ42/Aβ43 is sufficient to trigger 

neurodegeneration/neuroinflammation, such products may contribute to the initiation, 

development and acceleration of sporadic AD and might thus be collectively qualified as 

potential “Alzheimerogens”. Some of them might also be used to develop useful chemically-

induced animal models of AD.
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MATERIAL AND METHODS

Material and methods are described in full in the Supplementary Material They include: 1) 

Pyrazoles and other reagents; 2) Cell cultures: cell lines, iPSCs-derived neurons and 

HEK293-alcadeinα cells; 3) Purified β-secretase preparation; 4) Aβ cell-based and cell-free 

assays; 5) Cell viability assay; 6) Pharmacokinetics studies; 7) Proteomics study.

RESULTS

Screening HCE compounds reveals pyrazole insecticides as Aβ42 inducers

We first screened a library of over 3,500 low molecular weight compounds representative of 

the HCE for their ability to induce the production and secretion of Aβ42 by N2a cells stably 

expressing AβPP695 (N2a-AβPP695). An MTS-based cell viability assay was run in parallel 

to assess cell survival. Although the vast majority of compounds were unable to induce Aβ42 

production, a few active products including several triazine herbicides [38] and pyrazole 

insecticides (this article) were identified. We next assembled a small library of 18 pyrazoles 

(1–18, Supplementary Tables 1 and 2) that we further tested, along with aftin-5 (19) as a 

positive control, for their ability to trigger Aβ42 production at 5, 10, 25, or 50 μM, in both 

N2a and CHO cells stably expressing AβPP695 and AβPP751, respectively (Supplementary 

Table 2 and Fig. 1). Nine pyrazoles were found to induce more than a 3-fold change in Aβ42 

levels, showing that Aβ42 induction is an intrinsic property of some, but not all, pyrazoles: 

fenpyroximate (2), tebufenpyrad (3), bixafen (4), fluxapyroxad (5), isopyrazam (6), 
penthiopyrad (8), chlorantraniliprole (14), tolfenpyrad (16) and fipronil (18) (Figs. 1 and 2). 

We next focused on fipronil (18)2, a widely produced insecticide used to treat crops and pet 

parasites (reviews in [39–44]), and we assembled a small library of fipronil analogues and 

metabolites (Fig. 3) which were tested for their Aβ42 production ability in N2a-AβPP695 

cells (Supplementary Table 3). The two fipronil enantiomers (18a, 18b) were separated by 

SFC chiral chromatography (Regis Whelk O1 SS column) and found to be roughly 

equipotent. Interestingly the main metabolites of fipronil (18) [45], fipronil sulfone (20), 

fipronil desulfinyl (21) and fipronil sulfide (22) displayed Aβ42 inducing activity equivalent 

or close to that of the parent compound. In contrast, a few other environmental metabolites 

such as fipronil chloramine (24) [46] and hydroxy-fipronil (25) [47] were found to be 

inactive (Supplementary Table 3).

Aβ42 production triggered by pyrazoles in N2a-APP695 cells requires β- and γ-secretase 

activity as demonstrated by the fact that it was strongly inhibited by β- (inhibitor IV) and γ-

secretases (BMS 299897, DAPT) inhibitors and by a γ-secretase modulator (‘Torrey Pines’ 

compound, inducing an increase in Aβ38 and a decrease in Aβ42 and Aβ40) [48,49] (Fig. 4). 

Aβ38 production was also strongly reduced following pyrazole treatment, while Aβ40 levels 

2Although fipronil is not the most potent Aβ42 inducer, it was selected for more detailed studies, among other pyrazoles, for several 
reasons: 1) its very wide use all over the world (despite its ban in Europe in America for food plant cultures), 2) its wide use against 
fleas and ticks in domestic animals, 3) its wide presence in urban and rural environment, 4) its chemical stability and environmental 
persistence (especially that of its metabolite, fipronil sulfone), 5) the biological activity of the main metabolite, 6) the fact fipronil 
sulfone accumulates in adipose tissue, crosses the blood-brain barrier and accumulates in the brain, and 8) its availability in large 
quantities for very cheap prices (in preparation of our current long term exposure experiments the supply issue needed to be solved). 
Incidentally, fipronil was selected before the public health scandal of summer 2017 in Europe (contamination of eggs by fipronil, 
presumably even more by fipronil sulfone)!
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were only modestly affected, as measured by ELISA (data not shown) and by mass 

spectrometry (Fig. 5). Increased Aβ42 production triggered by pyrazoles was farther 

confirmed in HEK293 cells stably expressing AβPPsw (data not shown) and neurons derived 

from human iPSCs (see below).

Mass spectrometric quantification and profile analysis of pyrazole-induced Aβs

Aβ38, Aβ40, and Aβ42 were quantified in N2a-AβPP695 cell culture supernatants using LC-

MS/MS [50,51]. Like aftins [35, 36] and triazines [38], pyrazoles induced a reduction in 

Aβ38 levels, a slight increase in Aβ40 levels and a strong increase in Aβ42 levels (Fig. 5).

We next analyzed, by IP-MS [52], the profile of Afis produced by N2a-AβPP695 exposed to 

fipronil (18), fipronil sulfone (20) and fipronil desulfinyl (21) (Fig. 6). Cell supernatants 

were collected and Aβs were immunoprecipitated and analyzed using MALDI-TOF/TOF 

[52] (Fig. 6). Exposure to pyrazoles decreased the production of Aβ1–18, Aβ1–19, Aβ1–33, 

Aβ1–37, and Aβ1–38. Aβ1–40 levels showed a modest increase. In contrast, the two highly 

neurotoxic [6, 7, 53–55] amyloid peptides Aβ1–42 and Aβ1–43, which were undetectable in 

supernatants of control cells, were strongly induced in cells treated with fipronil (18) and its 

two metabolites.

Neurons differentiated from human iPSCs of AD patient and healthy control

We next tested the effects of the active pyrazoles and aftin-5 on neurons differentiated for 4 

weeks from human iPSCs derived from a healthy individual (AβPP WT, wild-type) or from 

a patient with familial AD (AβPP K724N mutation) [56–58] (Fig. 7). AβPP K724N neurons 

produced more Aβ42 versus Aβ40 compared to AβPP WT neurons. As observed with 

triazines [38], addition of any of the active pyrazoles or aftin-5 resulted in further increase in 

Aβ42 production, in both AβPP WT and AβPP K724N neurons (Fig. 7).

Pyrazoles affect the specificity of APP-C99 cleavage and Aβ production in a cell-free γ-
secretase activity assay

In order to assess whether the pyrazole-based compounds modulate Aβ production through a 

direct effect on the specific processing of APP-C99 by the γ-secretase complex, we tested 

fipronil (18), fipronil sulfone (20), and fipronil desulfinyl (21) in a previously described cell-

free activity assay performed with highly purified γ-secretase protease and APP-C99 

substrate (a recombinant APP C-terminal fragment expressed in Escherichia coli as a fusion 

protein consisting of a N-terminal Met for translation initiation, amino acids 597–695 of the 

695-amino acid human isoform of APP, and a C-terminal Flag tag sequence) [59,60]. More 

specifically, Aβs generated by purified γ-secretase in the presence of 100 μM of the 

pyrazole compounds were analyzed by immunoprecipitation and MALDI-TOF (IP/MS), as 

previously described [60]. We found that all three pyrazole compounds increased the Aβ42/

Aβ40 ratio when compared to the DMSO control (Fig. 8). Importantly, our analysis further 

revealed that fipronil sulfone (20), but not fipronil (18) or fipronil desulfinyl (21), drastically 

increased the Aβ43/Aβ40 ratio by ~2-fold when compared to the DMSO control (Fig. 8). 

These results strongly support the increased Aβ43 production seen exclusively with fipronil 

sulfone (20) in N2a-AβPP695 cells (Fig. 6). Altogether, we found that pyrazoles favor the 
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production of the toxic Aβ42 and/or Aβ43 peptides, both of which contribute to the 

formation of amyloid plaques and the development of AD.

Pyrazoles shift the cleavage pattern of another γ-secretase substrate, alcadeinα

Like AβPP, alcadeins (Ales) are sequentially cleaved by secretases, first by α-secretase, 

leading to N- and C-terminal fragments, the latter being then cleaved by γ-secretase to an 

intracellular domain and the p3-Alcs peptide, in a way similar to AβPP [61, 62] (see Fig. 6A 

in [38]). HEK293 cells stably expressing full length alcadeinα were used to investigate the 

effects of pyrazoles on alcadein cleavage. Alcadeinα is first cleaved on the N-terminal side 

(two possible sites) followed by cleavage by γ-secretase leading to p3-Alcα35 and p3-Alcα 
2N+35, the latter representing the major peptide in cultured cells. HEK293-alcadeinα cells 

were grown till 70% confluence and treated with 100 μM pyrazoles for 48 h. The secreted 

p3-Alcα peptides were recovered by immunoprecipitation and analyzed by MALDITOF/MS 

(Fig. 9A). Quantification of p3-Alcα peptides showed that, compared to the p3-Alcα 
peptide profile in vehicle treated cells, concentrations of the main alcadeinα peptide (p3-

Alcα2N+35) and p3-Alcα2N+37 peptide remained stable. In contrast, both p3-Alcα2N+34 

and p3-Alcα2N+36 concentrations dropped significantly while the level of p p3-Alcα2N+38 

peptide concentration strongly increased (Fig. 9B). These results show that, like for AβPP, 

pyrazoles induce a shift in the cleavage pattern of Alcadeinα, another γ-secretase substrate. 

Similar effects were seen previously with aftin-5 and triazines [38]. These observations 

further suggest that pyrazoles are more likely to interact with γ-secretase than with their 

substrates.

Proteomics study offipmnil’s effects

In order to understand the molecular mechanisms of action of pyrazoles, we decided to 

analyze protein expression of cells exposed to fipronil sulfone (20) and dipropetryn, two 

structurally unrelated products which, despite their unidentified targets, share the property of 

inducing Aβ42 production. N2a-AβPP cells were exposed for 18 h to 20 μM fipronil sulfone 

(20), 100 μM dipropetryn or 0.1% DMSO (control) and were processed for proteomics 

analysis. Cell supernatant Aβ42 levels were increased as expected (data not shown). A total 

of 8,027 proteins were identified in the multiplex experiment (data not shown). The 

expression of 1,634 and 1,638 proteins was modified, respectively, in fipronil sulfone (20)- 

and dipropetryn-treated cells compared to control, DMSO-treated cells (Fig. 10A). Among 

these, 261 proteins were shared by cells treated with both products, out of which 178 were 

upregulated or downregulated in the same direction for both products (Supplementary Table 

4). DAVID analysis of these 178 proteins showed that they gather in mitochondrial 

pathways, cell cycle control, AD (Fig. 10B).

Fipronil is metabolized to fipronil sulfone, a stable metabolite which accumulates in 
adipose tissue and brain

We next investigated the pharmacokinetics and biodistribution of fipronil (18) and its 

metabolites in mice (Fig. 11) and rats (Supplementary Figure 2). Mice first received a single 

oral dose of fipronil (18) and blood, brain and adipose tissue were collected at various times 

during 72 h (Fig. 11). Plasma pharmacokinetics showed rapid elimination of fipronil (18) 
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and parallel appearance of fipronil sulfone (20) which remained stable during the 72 h time-

course (Supplementary Figure 1). No fipronil desulfinyl (21) was detected. Similarly, 

fipronil (18) transiently appeared in brain and adipose tissues, while fipronil sulfone (20) 

accumulated to a stable level in both tissues (Fig. 11 A, B). Fipronil sulfone (20) reached a 

5–6-fold higher concentration in adipose tissue compared to brain. Given the metabolic 

stability of fipronil sulfone (20), we next ran a two months duration study following a single 

oral administration of fipronil (18) (Fig. 12A). Fipronil sulfone (20) levels were determined 

at various times up to 56 days after the single administration. The half-life of fipronil sulfone 

(20) was found to be 14 ± 3 days, 17 ± 2 days, and 26 ± 3 days in plasma, brain, and adipose 

tissue, respectively (Fig. 11 A). We next administered fipronil (18) daily, 5 days/week, for 3 

weeks and measured fipronil sulfone (20) in plasma, brain and adipose tissue (Fig. 12B). 

This repeated oral dosing allowed the maintenance of a stable level of fipronil sulfone (20) 

in plasma, brain and adipose tissue (Fig. 12B). Pharmacokinetics and biodistribution of 

fipronil (18) and fipronil sulfone (20) were next studied in rats during a 14 days period, 

following a single oral administration. Results confirmed rapid metabolism of fipronil (18) 
to fipronil sulfone (20) (Supplementary Figure 2A). Fipronil sulfone (20) was much more 

stable and showed extensive accumulation in adipose tissue (peak concentration 48 h after 

oral administration of fipronil (18)) followed by slow release and/or metabolism 

(Supplementary Figure 2B).

DISCUSSION

This study reports on the induction of Aβ42/Aβ43 production, and the increased ratio of long 

versus short Aβs, in various cell cultures and by highly purified γ-secretase following 

exposure to several pyrazole insecticides. These results support previous results obtained 

with various drugs (fenofibrate, celecoxib, indomethacin, isoprenoids) [63], DAPT under 

certain conditions [64, 65], steroids [66], ceramide analogs [67], the peroxynitrite donor 

SIN-1 [68], Zinc [60], aftins [35–37] and several triazine herbicides [38]. Altogether these 

results have two main implications:

1. They support the idea that the HCE contains several compounds able to shift the 

cleavage of AβPP toward the production of long, toxic, aggregation-prone Aβs, 

such as Aβ42/Aβ43, those which are classically associated with AD in humans 

and numerous animal models of AD. These compounds, if proven to modify this 

balance in animals (as suggested by the first preliminary results obtained with 

aftin-4 [28] and celecoxib or FT-1 [63]) and in human, may contribute to the 

onset, development and/or acceleration of AD. We suggest that they be 

collectively named “Alzheimerogens”, by analogy with cancer-inducing 

carcinogens. Identification of such compounds in our environment appears to be 

a priority to develop a prevention strategy.

2. Some of these compounds, particularly the metabolically stable, brain-permeable 

molecules, constitute new pharmacological research tools to investigate the role 

of γ-secretase, its substrates and products, in the onset of AD, in cell lines and 

animal models. In this context, one of our objectives is, by analogy with MPTP 

(1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine)-induced Parkinsonism, to develop 
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a pesticide-induced animal model of AD, which would allow the study of AD 

onset in wild-type (WT) animals. This is exemplified by the orally available 

fipronil (18) which is rapidly metabolized to fipronil sulfone (20), a very stable 

compound which accumulates in adipose tissue, crosses the blood-brain barrier 

and reaches stable levels in the brain (Figs. 11 and 12; Supplementary Figure 2). 

We are currently running long-term exposure experiments with fipronil (18) 

administered orally in WT mice and Tg2576 mice (overexpressing isoform 695 

of human AβPP with the Swedish mutation (KM670/671NL)).

Mechanism of action of fipronil and other pyrazoles

As also observed with aftins [36] andtriazines [38], pyrazoles insecticides, including fipronil 

derivatives, show a structure/activity relationship (Supplementary Table 1) in their effects on 

Aβ production - some are active, others are inactive-, showing that pyrazole insecticides 

devoid of Aβ42 induction properties can be developed. The limited number of pyrazoles and 

their wide structural diversity precludes a clear identification of key structural features 

interacting with the unknown target leading to Aβ42 production. Unspecific, detergent, 

hydrophobic, membrane, or protein structure disrupting actions are unlikely to account for 

the effects of pyrazoles. Several arguments support an effect on γ-secretase and/or its micro-

environment: 1) induction of Aβ production by pyrazoles is inhibited by γ-secretase 

inhibitors or modulators (Fig. 4); 2) pyrazoles also affect the cleavage of another substrate of 

γ-secretase, alcadeins (Fig. 9); and 3) pyrazoles modify the cleavage pattern of AβPP by 

highly purified γ-secretase.

Our cell-free γ-secretase activity assays performed with highly purified enzyme and 

substrate (Fig. 8) show that fipronil (18), Fipronil sulfone (20), and fipronil desulfinyl (21) 

clearly increased the Aβ42/Aβ40 ratio. Remarkably, Fipronil sulfone (20) additionally 

increased by ~2-fold the Aβ43/Aβ40 ratio. At the molecular level, the γ-secretase complex 

cleaves the APP-C99 substrate within the transmembrane domain (TMD), first at the e-site 

located at the intracellular interface, to generate two different C-terminal APP intracellular 

domains (AICDs) of 50 or 51 aa length [69]. To generate Aβs of different lengths, γ-

secretase next cleaves the N-terminus of the TMD every α-helical turn (corresponding to 3–

4 amino acids), starting from e-sites, following two production lines: the AICD5I/Aβ48 

pathway (Aβ48⇒Aβ45⇒Aβ42⇒Aβ38) and the AICD50/Aβ49 pathway 

(Aβ49=>Aβ46⇒Aβ43⇒Aβ40) [69]. Consistent with a direct effect of pyrazoles on APP-C99 

processing, our results support an altered Aβ48 pathway leading to an increased Aβ42 

production. Surprisingly, our study further revealed that fipronil sulfone (20) unambiguously 

and drastically increases the Aβ43/Aβ40 ratio (Fig. 8). This observation is important since 

Aβ43 is known to be highly amyloidogenic and a main species involved in the formation of 

senile plaques [6, 7, 70]. As of today, Aβ43 is known to be a direct precursor of Aβ40 [69]. 

Therefore, the increased Aβ43 production in the cell-free assay suggests that fipronil sulfone 

(20) blocks the processing of APP-C99 at position 43 in the Aβ49 pathway, an event which 

is likely associated with reduced Aβ40 production.

Further quantitative experiments are required to explain the increased Aβ42/Aβ40 or Aβ43/

Aβ40 ratios, caused either by increased Aβ42 or Aβ43 production, a reduced Aβ40 production 
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or both. In any case, an altered Aft profile in the presence of pyrazole insecticides strongly 

suggests that the compounds directly affect the positioning of the AβPP substrate in the 

lipid-bilayer, as previously observed for compounds known as inverse γ-secretase 

modulators (iGSM) [64], Similarly to what we observed with fipronil (18) and fipronil 

desulfinyl (21), the iGSM nonsteroidal anti-inflammatory drugs (NSAIDs) Fenofibrate and 

Celecoxib have indeed been reported to be Aβ42-raising and Aβ38-lowering compounds 

[63]. Interestingly, Celecoxib is a pyrazole. The pyrazole scaffold has in fact been used 

extensively in therapeutic drug development (review in [71]). In contrast to iGSMs, some 

NSAID-based γ-secretase modulators (GSM), including sulindacsulfide, lower Aβ42 and 

increase Aβ38 productions [63]. GSMs are of great pharmaceutical interest and are currently 

under clinical evaluation for their ability to reduce the production of the amyloidogenic 

Aβ42 and Aβ43 peptides. At the same time the potential risk from Aβ42 and Aβ43 producing 

iGSMs needs careful evaluation since some of these compounds are FDA-approved and 

widely used as NSAIDs. At the molecular level, it has further been shown that residues 29–

36 (GAHGLMV) of the Aβ motif in APP-C99 located at the TMD N-terminus represent the 

binding site of both Aβ42-lowering GSMs and Aβ42-raising iGSMs [63]. This raises the 

question whether the same binding site could be involved in the pyrazole-induced Aβ42/

Aβ40 and Aβ43/Aβ40 ratio increase. Interestingly, we recently found that zinc can drastically 

raise the Aβ43/Aβ40 ratio by influencing the positioning of the APP-C99 TMD through 

binding to Lysine 28, which is located at the surface of the membrane and is involved in 

anchoring APP-C99 in the lipid bilayer [69]. This observation further supports the 

possibility that Lys28 and more globally residues 29–36 in APP-C99 are involved in the 

pyrazole-induced Aβ43/Aβ40 increase. Finally, novel GSMs have recently been reported that 

directly bind on PS1 [72], Binding of these compounds to PS 1 induced a conformational 

change in the enzyme-substrate interaction that modulated the protease activity and 

consequently the Aβ profile. Thus, one cannot exclude that fipronil (18), fipronil sulfone 

(20), or fipronil desulfinyl (21) also modulate AβPP-processing by directly binding to the γ-

secretase complex. Further experiments are needed to decipher the mode of action of these 

compounds (see Supplementary Figure 3 for working model).

Fipronil exposure and consequences

Fipronil has been developed a selective inhibitor of insect GABA-gated chloride channels 

(review in [44]). It is one of the most widely used pyrazole insecticides in agriculture (seed, 

culture, and crop treatment), in urban pest control (coackroaches, termites, wasps, flies, and 

ants management in and around buildings), and in veterinary applications (fleas and ticks 

control for pets and cattle). Fipronil and its metabolites are therefore widely found [73] in 

urban soil, dust, wastewater, and residential runoff [74], in rural soil, rivers, and atmosphere 

[46, 73, 75, 76], but also in various tissues of pet, farmland, and wild-life animals [75, 

77,78] (only a very small number of references are cited). Although fipronil (18) is relatively 

resistant to degradation, it is mostly oxidized to fipronil sulfone (20), reduced to fipronil 

sulfide (22), photodegradated to fipronil desulfinyl (21), hydrolyzed to fipronil amide (23, 
28). Many other metabolites have been described ([45–47, 73], review in [39]). Although 

fipronil shows low affinity for mammalian GABA-gated chloride channels compared to 

those of insects, toxicity studies carried out with fipronil and its metabolites in various 

vertebrates [39,40,43,44,77] as well as studies performed with mammalian cells studies [79–
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83] cast some doubts about the safety of fipronil to humans (see Supplementary Table 5). 

This concern is amplified by 1) the existence of numerous metabolites which are poorly 

characterized in terms of toxicity, 2) their long persistence in the environment (soil, water, 

sediment, and atmosphere), 3) their accumulation in tissues, especially adipose tissue (Figs. 

11 and 12), 4) the potency of fipronil sulfone on mammalian GABA-receptor [84], and 5) 

the fact that fipronil and its metabolites essentially meet all draggability criteria of Lipinski’s 

rule of Five (Supplementary Table 6). In addition, fipronil (along with neonicotinoids) is a 

major worldwide concern for the survival of pollinators [85–89]. In mammals, fipronil 

shows oxidative stress, neurotoxic, thyroid, endocrine, lung inflammation, blood pressure, 

and reproductive effects (review in [44]) at high doses. In humans, fipronil triggers mild 

nervous troubles as seen in acute intoxication cases [90, 91] and apparently impacted thyroid 

functions of workers following occupational exposure [92].

As shown in Figs. 11 and 12, fipronil (18) is rapidly metabolized to a very stable product, 

fipronil sulfone (20), which readily accumulates in fat tissue. Table 1 reviews plasma and 

tissue levels of fipronil sulfone (20) reached experimentally in mice and rat or accidentally 

in humans (our data + literature data). The highest plasma levels reached experimentally 

during these relatively short exposures (3.7 μ/mL, i.e., 8.2 (μM) are not very far from those 

which induce Aβ42 and Aβ43 production. Adipose tissue and brain levels reached 

experimentally are probably higher. 72 h after a single oral administration of 14C-fipronil to 

rats, about 50% and 2% of the radioactivity (essentially fipronil sulfone) were found in 

adipose tissue and brain, respectively [93]. Fipronil sulfone is also the primary metabolite 

produced in human via hepatocyte cytochrome P-450 oxydation [90, 92–95]. Fipronil 

sulfone was detected in about 25% of 96 human serum samples (0.1–39ng/mL which 

corresponds to 0.22–86 nM) [45]. These samples were obtained from individuals with no 

known fipronil exposure. However, fipronil applied to the fur of pets is easily and rapidly 

transferred to humans [96, 97], Fipronil and fipronil sulfone levels were measured in urine 

and blood samples of 159 workers in a factory manufacturing fipronil-containing veterinary 

products [92]: 33 and 155 workers had detectable serum fipronil and fipronil sulfone (0.37–

42.45 ng/mL, i.e., 0.82–9.32 nM), respectively. Incidentally, fipronil has recently been 

shown to promote adipogenesis [98] and adiposity/obesity has been suggested as a risk 

factor for AD [99, 100]. Adipose tissue may thus act as a trap and storage tissue for 

lipophilic, Aβ42/Aβ43 inducers like fipronil, other pyrazoles, other pesticides. The 

persistence of fipronil sulfone, its accumulation in adipose tissue, and its ability to enter the 

brain raises concerns on its possible long-term effects on the central nervous system, in 

particular on its possible effects on the production of toxic, aggregation-prone 

amyloidogenic Aβ42 and Aβ43; as shown in this article.

In conclusion, we have added some pyrazole insecticides, especially the main metabolite of 

fipronil, in the growing list of HCE products which are able to alter the specificity of Aβ 
production. Our hypothesis is that these products may, on a long-term, cumulative and 

additive basis, possibly in parallel with microorganisms [101] and microorganisms-derived 

products, alter the Aβ production pattern sufficiently to lead to AD pathogenesis, and thus 

qualify as potential “Alzheimerogens”. Gradual accumulation in and chronic release from 
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adipose tissue and transfer to the brain may contribute to the onset, development, and 

acceleration of sporadic AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Some pyrazoles trigger the production of extracellular amyloid Aβ42. Effect of 18 pyrazoles 

on extracellular amyloid Aβ42 production by N2a-APP695 and CHO-7PA2-APPsw cells. 

Cells were treated with 100 μM of each compound for 18 h and cell supernatants were 

collected for extracellular Aβ42 levels measurement by an ELISA assay. Aftin-5 was used as 

a positive control and the corresponding volume of vehicle (DMSO) was used as a negative 

control. Levels are expressed as fold change, ± SE, of Aβ42 levels over the Aβ42 level of 

control, vehicle-treated cells. Average of five experiments performed in triplicate. Horizontal 

dotted lines indicate levels for 1- and 3- fold increases in Aβ42 concentration.

Cam et al. Page 19

J Alzheimers Dis. Author manuscript; available in PMC 2020 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Molecular structure of the nine active pyrazoles.
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Fig. 3. 
Molecular structure of fipronil and some of its metabolites and derivatives.
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Fig. 4. 
Extracellular Aβ42 production induced by pyrazoles is inhibited by β-secretase inhibitor IV, 

γ-secretase inhibitors DAPT and BMS 299897, and γ-secretase modulator ‘Torrey Pines’. 

N2a-APP695 cells were exposed to 10 μM β-secretase inhibitor IV, 2 μM BMS 299897, 2 

μM DAPT or 10 μM ‘Torrey Pines’ compound. 1.5 h later cells were exposed to 50 μM 

(2,5,8,14,16,18) or 25 μM (3, 4, 6) pyrazoles or 50 μM aftin-5. Extracellular Aβ42 levels 

were measured after 18 h and are expressed as fold change, ± SE, of Aβ42 level in pyrazole-

treated cells over the Aβ42 level of control, vehicle-treated cells. Representative of two 

independent experiments performed in triplicates. Errors bars represent SE of all six values.
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Fig. 5. 
Absolute quantification of Aβ38, Aβ40, and Aβ42 using LC-MS/MS. Levels of the three Aβs 

were determined by mass spectrometry in supernatants of N2a-APP695 cells following 18 h 

treatment with DMSO, 100 μM of pyrazoles 18,20, or 21. Amyloid levels are expressed as 

percentage of levels in vehicle-treated cells (average ± SE of quadriplicate values; absolute 

values in control cell supernatants are indicated) and Aβ42/Aβ40 ratios are indicated in 

parentheses. Horizontal dotted line indicates basal Aβ levels versus the values in DMSO-

treated cells.
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Fig. 6. 
Pattern of Aβs produced by N2a-APP695 cells exposed to pyrazoles 18, 20, or 21. Cells 

were treated for 18 h with DMSO or 20 μM of each pyrazole. Cell supernatants were 

collected and analyzed as described. Quantification of all Aβs in N2a-APP695 cells 

supernatants are presented as percentage of total amyloids. Note the decrease in peptides 

Aβ1–19, Aβ1–37, Aβ1–38, the increase in Aβ1–40 and the appearance of Aβ1–42 and Aβ1–43 in 

the supernatants of pyrazole-treated cells (these two peptides are undetectable in the 

supernatant of DMSO-treated cells).
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Fig. 7. 
Pyrazoles trigger enhanced production of Aβ42 versus Aβ40 in neurons differentiated from 

human induced pluripotent stem cells. Neurons were derived from iPSCs obtained from 

healthy donor (APP WT, white bars) or from an AD patient with APP K724N mutation 

(grey bars). They were exposed for 24 h to DMSO (control), 100 μM aftin-5 or the nine 

pyrazoles. Cell supernatants were collected for extracellular Aβ40 and Aβ42 levels 

measurement by an ELISA assay. Levels are expressed as Aβ42/Aβ40 ratios ± SE of 

triplicate values. Horizontal dotted line indicates level for basal Aβ42/Aβ40 ratios.
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Fig. 8. 
Mass spectrometric analysis of the Aβs generated in cell-free γ-secretase assays, in the 

presence of DMSO or fipronils 18, 20, or 21. A) The Aβs generated by highly purified γ-

secretase in the presence of 100 μM of fipronil (18), fipronil sulfone (20) or fipronil 

desulfinyl (21) or DMSO (vehicle) were pooled from triplicates of the activity assays, 

immunoprecipitated overnight with the anti-Aβ antibody 4G8 and protein G and analyzed by 

MALDI-TOF in a reflectron mode. The Aβs generated from the recombinant APP-C99 

contain an N-terminal methionine, which results in a mass shift of +149m/z when compared 

to endogenous Aβ peptides. B) Note the increased Aβ42/Aβ40 ratio for fipronils 18, 20, and 

21, and the increased Aβ43/Aβ40 ratio for fipronil sulfone (20).
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Fig. 9. 
Pyrazoles alter the cleavage pattern of Alcadeinα, leading to increased p3-Alcα38 

production. A) Immunoprecipitation/mass spectrometry spectra of p3-Alcα peptides 

produced by HEK cells expressing full length Alcadeinα exposed to various pyrazoles or 

DMSO (control). Cells were treated for 48 h with 100 μM of each reagent and p3-Alc 

peptides were analyzed by MALDI-TOF/MS. A) Representative profile for each product 

showing the the p3-Alcα2N+34, p3-Alcα2N+35, p3-Alcα2N+36, p3-Alcα2N+37 and p3-

Alcα2N+38 peaks. B) Relative quantification of p3-Alcα peptides produced by cells 

exposed to DMSO (control), fipronil (18), fipronil sulfone (20) or fipronil desulfinyl (21). 

Levels of each peptide are presented as ratios of p3-Alcα2N+38 versus p3-Alcα2N+35 

(average ± SE of triplicate values).
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Fig. 10. 
Proteomics and phosphoproteomics analysis of N2a-APP695 cells exposed to fipronil 

sulfone (20) and dipropetryn. A) N2a-APP695 cells were exposed for 18 h to 20 μM fipronil 

sulfone (20), 100 μM dipropetryn or DMSO. This led to increased extracellular Aβ42 

expression (3.58 ± 0.05 and 7.87 ± 0.81 fold change for fipronil sulfone (20) and 

dipropetryn, respectively, compared to DMSO-treated cells). Up/downregulated proteins in 

fipronil sulfone- (1634) and dipropetryn- (1638) treated cells versus DMSO-treated cells 

were identified and compared. Among the 261 common proteins, 178 proteins (listed in 

Supplementary Table 1) were either upregulated by both treatments or downregulated by 

both treatments. B) DAVID analysis of the 178 proteins common to fipronil sulfone (20) and 

dipropetryn treatments. Data are selected with p-value < 0.01 and FDR < 0.05. FDR, False 

Discovery Rate.
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Fig. 11. 
Short-term (72 hrs) time-course of fipronil (18) and fipronil sulfone (20) bioaccumulation in 

brain (A) and epididymal adipose tissue (B) following a single oral administration of fipronil 

(18) to mice. Fipronil (18) (10 mg/kg) was administrated by oral gavage at time 0. Animals 

were sacrificed at various times and plasma, epididymal adipose tissue and brain were 

collected. Fipronil (18) and fipronil sulfone (20) levels were quantified by LC-MS/MS. 

Concentrations are expressed as μg/brain or (μg/epididymal adipose tissue.
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Fig. 12. 
Long-term (56 days) time-course of fipronil sulfone (20) production and accumulation 

following single (A) or repeated (B) oral administrations of fipronil (18) to mice. A) Fipronil 

(18) (10 mg/kg) was administrated by oral gavage on day 0. Animals were sacrificed at 

various times and plasma, epididymal adipose tissue and brain were collected. Fipronil 

sulfone (20) levels were quantified by LC-MS/MS. B) Fipronil (18) (10 mg/kg) was 

administrated by oral gavage 5 days/week for 3 weeks (times of administration are indicated 

by black dots). Animals were sacrificed at various times and plasma, epididymal adipose 

tissue and brain were collected. Fipronil sulfone (20) levels were quantified by LC-MS/MS. 

Concentrations are expressed as μg/brain, μg/epididymal adipose tissue or μg/mL plasma.
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