
UC Irvine
ICS Technical Reports

Title
RT level power analysis

Permalink
https://escholarship.org/uc/item/6328t516

Authors
Zhu, Jianwen
Agrawal, Poonam
Gajski, Daniel D.

Publication Date
1995

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6328t516
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protectecl
by Copyright Law
(Title 17 U.S.C.)

RT Level Power Analysis

Jianwen Zhu

Poonam Agrawal
Daniel D. Gajski

Technical Report #95-54
September, 1995

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717-3425
(714)856-8059

Abstract

SL

Elevating power estimation to architectural and behavioral level is essential for design exploration
beyond logic level. In contrast with purely statistical approach, an analytical model is presented to
estimate the power consumption in datapath and controller for a given RT level design. Experimental
result shows that order of magnitude speed-up over low level tools as well as satisfactory accuracy
can be achieved. This work can also serve as the basis for behavioral level estimation tool.

Contents

1 Introduction 2

2 Component Level Power Analysis 2

3 RT Level Power Analysis 4
3.1 Overview 4
3.2 Formal Definition of State Action Table 5
3.3 Power Estimation from State Trace ... 5

3.3.1 Cycles 5
3.3.2 Datapath 6
3.3.3 Controller 6

3.4 RT Level Power Estimation 7

4 Experimental Results

5 Conclusions

6 References

List of Figures

Parasitic Capacitances that Draw Power
Capacitances of Multiplexed Bus
Capacitances of Direct Connection Bus .
Datapath Model
Functional Unit with Enable Input . . .
The Activity Vectors
Controller
Block Diagram of the Experiment. . . .

RT Level Power Analysis f

Jianwen Zhu, Poonam Agrawal, Daniel D. Gajski

Department of Information and Computer Science

University of California, Irvine, CA 92717-3425

Abstract

Elevating power estimation to architectural and behav
ioral level is essential for design exploration beyond logic
level. In contrast with purely statistical approach, an ana
lytical model is presented to estimate the power consump
tion in datapath and controller for a given RT level design.
Experimental result shows that order of magnitude speed
up over low level tools as well as satisfactory accuracy can
be achieved. This work can also serve as the basis for be
havioral level estimation tool.

1 Introduction

With the increctsing demand of low power applications,
there is a growing interest in power estimation techniques.
It is essential for the power optimization tools in that

• it provides the evaluation of the cost function,

• it helps to identify the "hot-spots" - the candidates
for further optimization.

Power estimation tools can operate on different levels
of abstraction. A lot of interesting work has been done
on circuit and gate level [Na94]. While these tools can
often achieve very high accuracy, they are prohibitively
expensive in architecture exploration, which is believed to
be able to bring most of the power reduction. It is thus
desirable to have estimator operating on RT level in or
der to provide fast evaluation of the power metric without
sacrificing too much accuracy.

Some related work at this level include [La94] [Me94].
In contrast with those purely statistical approach, we
present in this paper a power analysis technique which is
analytical in nature.

The rest of the paper is organized in a bottom-up fash
ion. In Section 2, the power model of datapath components
as well as interconnections is discussed. Then we present
the power analysis techniques at the RT level in Section 3.
We conclude the paper with some experimental results.

tThis work is partially supported by Toshiba Inc.

2 Component Level Power Analysis

In this section, we try to identify the sources of power
consumption for the components in the datapath library as
well as the interconnections such as buses and clock trees.

Power Model of Static CMOS Gates

Figure 1: Parsisitic Capacitances that Draw Power

Three main sources of power dissipation in static CMOS
circuit are dynamic switching, leakage current and short
circuit current respectively. The dominant factor is the
first one due to the charging or discharging of circuit ca
pacitances. Figure 1 shows the parasitic capacitances of
an inverter chain which wUl draw power during the switch
of the output state. Generally speaking, the load capac
itance (Cl) of a gate consists of the input capacitance
of each gate connected (Cgp -|- Cg„), the wire capacitance
(Cu,), and the diffusion capacitance on the drain of the
transistors {Cdgp -b Cdgn -bCdbp -bCdbn). So we have

Cl = Cgp + Cgn-b Cw + Cdgp + Cdgn + Cdbp + Cdbn

and the energy consumed upon one switch of the gate is

Energy = Cl

Power Model of Datapath Components

Having identified the sources of power dissipation for
the gates, we need to investigate the power consumption
model at the component level. In other words, we need to
know the capacitance switched during each access of the
functional units, registers, and bus drivers.

Ideally, the energy consumed for each access of a compo
nent should be a function of its (1) bitwidth, (2) its previous
data, which determine the previous states of all the inter
nal circuit nodes, (3) the current data, which determine
the current states of all the circuit nodes and in turn their

switching activities. This is not practical since the data
is not available until run time. However, statistics mea
sures such as mean, variance, and correlation on the input
data are relatively easy to obtain through functional sim
ulation. It is reasonable to expect that the energy of the
component is a function of the statistics of the data and the
bitwidth. Based on this idea. Component characterization
techniques such as Dual Bit Model (DBT) are proposed
to model the power consumption of datapath components
[La94].

An alternative is to assume uniform white noise inputs
for each component. Based on this assumption, the power
consumption of a component depends solely on its size.
Statistical methods can be applied to obtain an average
value for each component in the library. We adopt this
approach because of its simplicity.

In the discussions that follow, we Jissume each com
ponent c in the datapath library is associated with a ca
pacitance C, the value of which is defined as the average
capacitance switched for each access of the component.

Power Model of Interconnections

Strictly speaking, the power model for the bus and clock
tree belongs to the subject of next section because they all
depends on the RT level netlist. However, we advance it
here for ease of discussion.

Input Bus

Output Bus

Register Register

Figure 2: Capacitances of Multiplexed Bus

There are two factors that contribute to the capacitance

of the bus:

• wire capacitance, as indicated by Cw in Figure 2.

The wire capacitance is determined by the length of
the wire and in turn the result of routing. Estimation
of wire length can be one of the following:

1. performing detailed placement and routing;

2. performing rough floorplaning, and then use the
square root of the resultant chip area as an ap
proximation of the wire length;

3. summing up the area of all the components as
an approximation of the chip area (assume the
floorplaner is perfect), and then use the square
root of the chip area.

While 1 is too expensive to be practical and 2 needs an
additional floorplaner, 3 is adopted for its simplicity.

• component load: the component load refers to the
capacitances contributed by the units attached to the
bus.

There are two types of buses:

1. Multiplexed Bus: As shown in Figure 2, bus
drivers are used for multiplexed bus. For every
data transfer bound to the bus, the capacitances
introduced are: (1) the output capacitance of
the bus driver {Co{Drv)), (2) the input capaci
tance of the functional units for input buses (like
Ci(-t-), Ci(*)), or the input capacitance of the
register for output buses (Ci{Reg)).

2. Direct Connection:

Co(reg) i^py, 3^5

Cp (+) ^ Output Bus

Cj(reg) ^ Cj(reg)^

Register

Figure 3: Capacitances of Direct Connection Bus

As shown in Figure 3, for direct connection bus,
there is no need for bus drivers. For every data
transfer bound to the bus, the capacitance in
troduced are: (1) the output capacitance of the
source functional unit or register (like Co{+) or
Co{Reg)), (2) the input capacitance of the sink
functional unit or register (Ci(-l-) and Ci{Reg)).

Similarly, the capacitance of the clock tree is the
wire capacitance plus the capacitance of the clock input
Ccik{R&g) of each register. Same technique can be applied:

C{Clock) = (Cvi + Ccik(.Reg)) • |fle£f|

where Reg is the set of registers in the design.

3 RT Level Power Analysis

3.1 Overview

Problem Statement

This section addresses the problem of estimating power
at the RT level, which implies that the following is known:

1. RT Level Description

A register transfer level design can be conveniently
specified by a state action table (SAT), each row of
which indicates that at a particular state, under a
particular condition, the system will evolve to another
given state, and the datpath wiU perform some given
computation. A formal definition of the state action
table wiU be given in Section 3.2.

2. Branching Probability:

Given a state action table, the execution sequence of
the system is stiU not known due to the unavailabil
ity of the conditions. We assume some profiling tech
niques are applied prior to the power analysis so that
for each pair of rows {i,j) in the state action table, a
branching probability Prob[i, j) is obtained. A more
detailed treatment wiU be presented in Section 3.4.

3. Component Capacitance:

Based on discussions in Section 2, for every compo
nent in the datapath library, we assume that the av
erage capacitance switched for each access is known.
In other words, the average capacitance of each bus
driver can be written as C{Dtv), each register can be
written as C{Reg), and each functional unit FUi can
be written as C{FUi). We also assume the input and
output capacitances of each component are known.

For interconnections such as bus and clock tree, al
though accurate information is not known until the
layout stage, we assume some area estimation tech
niques discussed in Section 2 are applied such that
for each bus Bust, we know the average capacitance
switched for each access, denoted as C(Busi). Simi
larly, the capacitance of the clock tree can be denoted
as C{Clocky

With the above information given, we need to estimate
the power consumption of the hardware, which is defined

Power =
Energy

Cycles X Clock Period

where Cycles is the total number of clock cycles.

Architectural Model

In general, digitcd hardware can be modeled as an
FSMD (Finite State Machine with a Datapath), where
the datapath is responsible for the computation, and the
controller determines when and what computation will be
performed [Ga92].

Datapath

Functional
lunit

Register

Figure 4: Datapath Model

A typical datapath is shown in Figure 4. The data
path consists of functional units, registers, and buses
(interconnections). The bus may or may not be at
tached with a bus driver depending upon whether it
has different sources. We omit the case of multiplex
ers since they can be treated as bus drivers.

Register

Functional Unit

Figure 5: Functional Unit with Enable Input

Because the applications concerned in this work are
often power critical, we assume another design style
called dynamic power management, which is fre
quently adopted by designers (Figure 5): we assume
each functional unit has an enable input in order to
shut down the unit during its inactivity. The en
able circuitry can be implemented simply as a switch

which separates the bus and the functionaJ unit. The
enable controls the on/ofF of the switch. Note that
in order for this technique to take effect, design care
has to be exercised to ensure that the enable signal is
asserted before the change of register output.

Controller

Controller implements a finite state machine. In gen
eral, it contains a state register, which stores the cur
rent. state, as well as some control logic to compute
the next state and output signcds.

Control logic can be implemented either as (a)ROM,
or (b)PLA, or (c)2-level random logic, or (d)multi-
level random logic.

While multi-level logic implementation is very diffi
cult to predict, the analysis of the rest is similar and
relatively simple. We take (c) as a representative of
(a), (b), (c) and an approximation of (d) in this paper.
A typical 2-level logic controller implementation is
shown in Figure 6.

As shown in Figure 6, A typical controller is composed
of four parts, namely, the state register, the decoder,
next state logic and output logic.

The decoder is implemented as a set of AND-gates.
It taJces as inputs each bit of the state register and
the status signals cis well as their complements.

The next state logic and output logic is implemented
eis a set of OR-gates. It take as input the output of
the state decoder. There are three types of control
lines in the output logic: (1) control lines for load
ing registers, (2) control lines for enabling (shutting
down) the functional units, (3) control lines for the
bus drivers.

Based on the structure of the hardware, computation
of the energy consumption can be decomposed into

Energy —E(Datapath) + E(ContTotler) + E(Clock)

E(Datapath) = E(FU) -t-E(Reg) -t-E{Bus)

E(Controller)=E(SR) + E{NS) + E(Decoder) +

E(OutputLogic)

3.2 Formal Definition of State Action Ta

ble

In this section we introduce some notations as well as a

formal definition of the state action table.

An activity vector V' —(vi,V2,...) is defined as a
boolean vector with Vi ® {0,1}.

At a particular state, the state of the hardware can
be characterized by a set of activity vectors, namely, the
current state vector S, the status vector C, the next state

vector NS, the function unit vector FV, the the register
vector Reg, the the bus vector Bus, the the bus driver vec
tor Dtv. While 5, C, NS indicates the value of the state

register, status signals and next state signals, the value of
FU, Reg, Bus, Drv indicates the activeness of correspond
ing datapath components.

The cardinality of the vector V is defined as the total
number of I's of the vector;

\V\ =^^

For V = (vi,V2, ...jVn) and W = (wi,W2, ...,w„), their
exclusive or is defined as

f e = (ui ®tUl , V2 ®U)2,...)
their concatenation is defined as

= (vi

The state tuple t can then be defined as the concate
nation of the above activity vectors.

r= S#5#;^5#Ff/#Re5#Bus#Drv

The behavior of a RT level design can be specified by
the state action table SAT, defined as a set of distinct
state tuples;

SAT = {fj

A state trace ST of SAT is defined as a sequence of
state tuples in SAT:

ST = [<'i,t'2, ...,r„]

such that the next state vector of t, equals to the current
state vector of <i+i.

Note that the state action table defines the behavior

of the hardware, whereas the state trace defines an actual
execution scenario of the hardware. In the next two sec

tions, we first discuss the computation of power consump
tion for an execution sequence in Section 3.3, based on
which we derive estimation techniques for power consump
tion directly from the state action table in Section 3.4.

3.3 Power Estimation from State Trace

This section presents the analysis of power if a state
trace ST = [ti, <2, ...,fn] of the state action table SAT is

3.3.1 Cycles

The number of cycles of the state trace ST is simply the
number of state tuples in ST:

Cycles = |5r| = n (2)

It follows that

E(Clock)=2 X C{Clock) X x Cycles

=2 X C(Clock) X X |5T| (3)

where the factor 2 accounts for the switches of both the

falling and rising edges of the clock.

3.3.2 Datapath

The activity of the datapath at state t, can be charac
terized by the corresponding activity vectors: FtJi, Regi,
Busi, and Drvi. We denote their concatenation as DPi:

D-P. = FViif:Regi*Blsiii:Drvi

The capacitances of all the functional units in

the datapath forms a capacitance vector Cfu =
(C(FUi),C(FU2), ...). Similarly, we can define the ca
pacitance vectors for registers, buses, and bus drivers as

CRegyCBus and Corv respectively. We denote their con
catenation as Cdp'-

dop = ^FuH'̂ Regif''̂ Busil=<3DTV

So the energy consumed at state ti is

E{ti) = {DPi-CDp)xVljj

where |.| stands for the dot product of two vectors.
It follows that the total energy consumed on the execu

tion sequence can be computed as

E(Datapath) = (D'Pi.(?i,p)x (4)

3.3.3 Controller

General Model

Figure 6 shows the controller implementation. The con
troller falls naturally into four parts, namely, the state reg
ister, the decoder, the next state logic, and the output logic.
The decoder is essentially a set of AND-gates, inputs of
which are connected to the output of the state register
and the status signals. Note that each input is indicated
as a dot in Figure 6 and introduces a capacitance load

(CAnd) for the state register output. The next state logic
and the output logic are essentially a set of OR-gates, in
puts of which are outputs of the decoder. Again, each
input is indicated as a dot in Figure 6 and will introduce a

capacitance load (Cor) for the AND-gates of the decoder.
The dots in next state logic and output logic forms two

matrices: next state matrix and output logic matrix. The
rows of the matrices correspond to the decoder outputs,
which in turn correspond to a state tuple in the state ac
tion table. The columns of the matrices correspond to the
next state signals and output signals respectively. The role
of the dots in power analysis of the controller is two-fold:
(1) Since each dot introduces a capacitance of size Cor, the
number of dots along each row gives the total load of cor
responding state decoder AND-gate. (2) The dots along
each column indicates a true value of the corresponding
signal. Note that distribution of the dots at each row cor
respond exactly to the value of the state tuple in the state
action table.

t _5 C NS D
fi 00 0 00 10000000

h 00 1 01 01000000

iz 01 0 10 00100000
u 01 1 10 00010000

fs 10 0 11 00001000
U 10 1 11 00000100

h 11 0 00 00000010

tg 11 1 01 00000001

o

110000000

100101001

001100101

010001001

001000010

000000010

000010000

000000001

Figure 7: The Activity Vectors

The activity of the controller at state ti can be char
acterized by a set of activity vectors, namely the current
state vector Si, the next state vector NSi; the decoder vec
tor Df, and the output vector Oi. Each activity vector cor
respond to the output of state register, status signals, next
state logic, decoder and output logic respectively. Figure 7
shows the values of these vectors at each state for the ex
ample shown in Figure 6. It is obvious that

O = FUi^Reg#Drv

Each bit of the activity vector (could be one of
S, NS, D, O) is associated with a capacitance. The ca
pacitances for all the bits also form a capacitance vector,
denoted as Cx, = (Clo, Gn,...). The energy consumed at
state i can then be measured as 0 Vi+i)-Cl XV3n
The total energy consumed for the entire state trace on
this vector can be computed as

(v.®v.+i)-Cixyg^
uesT

Based on this model, we wiU identify the capacitance
vector as well as activity vector for each part of the con
troller.

State Register and Next State Logic

Since for € ST, we always have NSi = 5i+i.
The switching activities of the state vector and next state
vector are the same, so we treat them together.

The capacitance of each bit of the state register consists
of its (1) internal capacitances and (2) the output loads due
to its fanout to the state decoder. The capacitance of each
bit of the next state logic is the input capacitance of the
state register. The capacitances mentioned above are the
same for each bit, so we denote their sum as Cneg, and
the corresponding capacitance vector becomes Chcj x I,
where I = (1,1, ...,1) is the unit vector.

the total energy consumption of the state register and
next state logic can then be computed as

E{SR) +E{NS)=CR^gXV3^x ^ ({SieNSi)-t)

Decoder Next State Logic

Si So So ^ ^ Q

Reoister > >

LoadRegs

Output Logic

^ Y \ Y >

EnableFUs EnabieDrivers

Figure 6: Controller

—Crcq X Vpjj \§i®N'Si\

Decoder

The switching activity of the decoder is elegantly sim
ple to analyze. At every state U € ST, only the output
of corresponding AND-gate is 1. In other words, at every
state, exactly two AND-gates will switch; The gate corre
sponds to previous state will switch from 1 to 0; the gate
corresponds to current state will switch from 0 to 1, and
the rest of the gates will remain unchanged.

The capacitance of each AND-gate in the state de
coder is determined by its fanout, that is, how many dots
along the row in Figure 6. If we assume each input of
the OR-gates introduces the same capacitances as Cor, the
ith bit of the capacitance vector Cl can be computed 2is
f^dots(rowi) X Cor, where #dots{rowi) can be computed
as |ASi#di|.

Due to the "one-hot" property of the activity vector D,
the energy consumed on the decoder can then be computed
by counting the number of dots along the rows.

E{Decoder) =2xCor XVgp x ^ |NSi#(5i| (6)

Output Logic

The activity vector of the output logic is O =
FUiff^Reg^ff^Drvi. If we denote the capacitance vector

as Co, then the energy consumed on the output logic is:

Energy(OutputLogic) = X (Oi©di+i) Co (7)

3.4 RT Level Power Estimation

Branching Probability and Execution Frequency

In the previous section, we develop a set of formula for
power estimation of a state trace. However, the state trace
information is not available in general. We resort to pro
filing techniques to obtain branching probability function
Prob{i,j) defined for every pair of tuples (ti,tj) in the
state action table SAT.

The execution frequency of a state tuple in SAT is de
fined as the expected number of times the state tuple will
be executed. The execution frequency can be obtained
either from the profiling tool or directly from the branch
ing probability function. Given the branching probability
function, the determination of execution frequency of each
state tuple can be formulated as solving a set of linear
equations with the form

Freq(t,)— Freq(ti) X Prob(i,j)

ViieSAT

for Vtj g SAT. Solution can then be obtained through
standard procedures such as Gaussian elimination or LU
factorization.

Formuda

The formula developed in the previous section can then
be rewritten by inspecting the state tuples in SAT one by
one. In other words, the power metrics can be measured
as the sum of the corresponding metrics of all the state
tuples weighted by their execution frequencies.

Cycles= ^ ^ Freg(ti) (8
t,eSAT

E(Clock)=2 X C(Clock) X X Cycles (9

E(Datapath)=V^j) X ^ ^ Freq{ti) X

{DPi-Cop)

EiSR) +E{NS)=Cn^g X x ^ Freq^U) x

Prob(iJ) X |5i © Sj\ (11)

tj€SAT

E{Decoder)=2 X Cor X ^dD ^

^ Freq(ti) X{N'Si^di] (12)
ti€SAT

E{OutputLogic)=V^jy x Freq^ti) x ^ ^ Prob{i,j) x
iteSAT tjSSAT

adi®d,)-Co) (13)

4 Experimental Results

In order to evaluate the estimation tool, we applied it to
a set of well known benchmarks [HW92]. Figure 8 shows
the block diagram of the experiment.

The component library was built by feeding functional
VHDL description of each component to COMPASS ASIC
Synthesizer. The synthesized components were then fed
into the component power profiler [Ag95] to obtain an av
erage power for each component. The average component
power was stored in the library. The RT level design of
each benchmark was manually synthesized from behav
ioral VHDL description. Assuming architectural model in
Section 3.1, the power estimation of each benchmark was
obtained by applying equations 8-13 in Section 3.4.

The RT level VHDL description of each benchmark in
stantiating the components in the same library w<is also
fed into the COMPASS chip compiler to obtain the lay
out. Netlists annotated with node capacitances were then
extracted from the layout. Logic simulation was invoked
to obtain the total switched capacitances.

We compare the estimated results of datapath and con
troller with the measured results obtained from the layout
in Table 1 and Table 2 respectively. The columns of the ta
bles show the estimated switched capacitance for different

Behavioral
(VHDL
^.^Description

Manual Design

VHDL Description ,
. of Components

Compass
Synthesizer

Componet
Power Profiler

power profile
Architectural
Power Analyzer

total power

Manual
Comparison

Chip Compiler

neflist annotated
with capacitances

Logic Simulator

total power

Figure 8: Block Diagram of the Experiment

classes of components (such as the functional units (FU),
registers (Reg), buses (Bus), bus drivers (Drv), clock (Clk),
state register (SR), next state logic (NS), decoder (Dec),
output logic (Output)), the total estimated switched ca
pacitance, the measured switched capacitance, and the er
ror computed as 'pjig rows of the ta
bles correspond to different benchmarks.

The complexity of each benchmark is indicated in Table
3. The HAL benchmark refers to the second order differ

ential equation solver. The controller of HAL has 5 states
and 26 output signals. The datapath contains 9 registers,
2 multipliers, 1 adder, 1 subtracter, and 1 comparator.
DOT, the discrete cosine transformer, includes 9 states
and 23 output signals as well as 1 multiplier, 1 adder, and
1 address generator. The SRA refers to the square root
approximator, which contains 8 states, 20 output signals,
2 ALUs which implement functions such as max, min, abs,
addition, and subtraction, and 2 shifters. The ELL refers
to the fifth order elliptic wave filter, which include 20 states
and 48 output signals as well as 2 multipliers and 2 adders
in the datapath.

5 Conclusions

The described power estimation technique which is sta
tistical in nature at the component level, and analytical

at the RT level, offers fast feedback for high level explo
ration tools. Experiments on standard benchmarks show
that the average error of the datapath is 5% and the con
troller is 7%. Our future work wiU extend this technique
to the behavioral level.

HAL 27.14

D<iT 49312
SRA 116.1

ELL 517.7

Table 1: Switched Capacitance of the Datapath

[Na95]

[We93]

HAL 3.86

DCT 6707.2

SRA 10.0

ELL 42.3

Meaaored Err

49.00 -6%

39273.2 -3%

76.0 -8%

384.2 -12%

Table 2: Switched Capacitance of the Controller

FUa
2*,1 + ,1-,1<
1',1+ .1AG

2 ALU,2 Shifter

2*,2-h

Table 3; Design Complexities of the Benchmarks

6 References

P. Agrawal, D. Gajski, F. Kurdahi, "Com
ponent Power Profiler (CPP)", TR-ICS-95-x,
UC, Irvine
D. Gajski, N. Dutt, A. Wu, S. Lin, High Level
Synthesis: Introduction to Chip and System
Design, Kluwer, 1992
D. Gajski, F. Vahid, S. Narayan, J. Gong,
Specification and Design of Embedded Sys
tems, Prentice Hall, 1994
J. Gong, D. Gajski, S. Narayan, "Software
Estimation from Executable Specifications",
TR-ICS-93-5, UC, Irvine
Benchmarks for the Sixth International
Workshop on High-Level Synthesis, 1992.
P. Landman, J. Rabaey, "Black-Box Capac
itance Models for Architectural Power Anal

ysis", International Workshop on Low Power
Design, Napa Valley, CA, April 1994
R. Mehra, J. Rabaey, "Behavioral Level
Power Estimation and Exploration", Interna
tional Workshop on Low Power Design, Napa
Valley, CA, April 1994
F. Najm, "A Survey of Power Estimation
Techniques in VLSI Circuits", IEEE Trans
action on VLSI Systems, pp.446-455, Dec.,
1994,

F. Najm, "Feedback, Correlation, and Delay
Concerns in the Power Estimation of VLSI

Circuits", Proceedings of the Design Automa
tion Conference, pp. 612-617, 1995
N. H.E. Weste, K. Eshraghian, Principles of
CMOS VLSI Design: A System Perspective,
Second Edition, Addison-Wesley, 1993

