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Abstract: Chronic Human Immunodeficiency Virus (HIV) infection remains a significant challenge to
global public health. Despite advances in antiretroviral therapy (ART), which has transformed HIV
infection from a fatal disease into a manageable chronic condition, a definitive cure remains elusive.
One of the key features of HIV infection is chronic immune activation and inflammation, which are
strongly associated with, and predictive of, HIV disease progression, even in patients successfully
treated with suppressive ART. Chronic inflammation is characterized by persistent inflammation,
immune cell metabolic dysregulation, and cellular exhaustion and dysfunction. This review aims to
summarize current knowledge of the interplay between chronic inflammation, immune metabolism,
and T cell dysfunction in HIV infection, and also discusses the use of humanized mice models to
study HIV immune pathogenesis and develop novel therapeutic strategies.
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1. Introduction

Chronic human immunodeficiency virus (HIV) infection continues to pose a formidable
threat to global health. HIV primarily infects CD4+ T cells, which are crucial for defending
the body against various infections and diseases. As the disease progresses in people living
with HIV (PLWH), HIV infection is, when compared to uninfected individuals [1–3], seen
to drive the persistence of higher levels of immune activation and inflammation, which are
both a hallmark of the body’s continuous battle against the virus. Despite the success of
antiretroviral therapy in controlling viral replication [4,5], there is a growing appreciation
that many PLWH, despite successful ART, continue to exhibit signs of chronic, low-grade
inflammation [6,7], which is believed to contribute to a range of non-AIDS-related co-
morbidities [8–14]. One of the consequences of chronic inflammation is T cell exhaustion,
in which these critical immune cells become less effective, with diminishing capacity to
eliminate infected cells effectively [15–17]. In addition, the imbalance of metabolic pro-
cesses, whether directly caused by HIV infection or indirectly by HIV-driven inflammatory
responses within immune cells, further contributes to immune activation and dysfunction
(summarized in Figure 1) [18–21]. The combined impact of inflammation, metabolic al-
terations, and T cell exhaustion underscores the complexities inherent in managing HIV
and other HIV-associated disorders [6,22,23]. In this review, we focus on the current un-
derstanding of chronic inflammation, immune metabolism, and T cell exhaustion in the
wider context of HIV infection in PLWH. We summarize various model system used in HIV
research and emphasize the unique advantages of using humanized mice to understand
HIV pathogenesis, by using humanized mouse models to investigate the pathogenesis of
HIV infection, and especially its relation to immune activation, metabolism, and T cell
dysfunction in these novel experimental systems. Understanding these processes is crucial
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for the development of novel therapeutic strategies that improve the health outcomes
of PLWH.
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Figure 1. Chronic HIV infection leads to T cells metabolic stress, immune activation and T cell
dysfunction. Despite ART, HIV infection induces persistent immune activation and metabolic
alterations in T cells, marked by increased Type I IFN, heightened Reactive Oxygen Species (ROS),
mitochondrial dysfunction, etc. Both persistent immune activation and metabolic stress eventually
contribute to T cell exhaustion.

2. Chronic Inflammation and Immune Activation Are Hallmarks of HIV Infection

Persistent inflammation in PLWH is characterized by the continuous activation of
various immune cells, including T cells [24–27], B cells [28–30], and monocytes [11,31–33];
and elevated levels of pro-inflammatory cytokines [34–36], including tumor necrosis factor-
alpha (TNF-α), interleukin-6 (IL-6), and C-reactive protein (CRP), which contribute to
increased morbidity and mortality in PLWH [3,34,37]. Several factors contribute to immune
activation/inflammation during chronic HIV infection, including persistent viral replica-
tion, microbial translocation, and co-infections with other pathogens [3]. Despite effective,
highly suppressive ART, latently infected cells can reactivate and produce new virions,
contributing to persistent viral replication [38–40]. Certain anatomical locations, such as
the lymph nodes [41] and the central nervous system [42], serve as persistent reservoirs,
due to limited ART access and ineffective immune surveillance [43], which leads to contin-
uous activation of the immune system and production of inflammatory mediators [44,45].
Additionally, the products of HIV expression induce inflammation by activating various
signaling pathways. For example, the HIV protein gp120 has been shown to activate the
NF-κB pathway, leading to the production of proinflammatory cytokines [46]. Residual
viral particles, as well as Tat and Nef proteins, can also induce cellular activation and the
production of inflammatory cytokines [47–50].

Type I interferons (IFN-Is), including IFN-α and IFN-β, are central components of
the innate immune response. IFN-Is are rapidly induced by viral infection through pat-
tern recognition receptors (PRRs) and intracellular proteins that recognize direct cellular
infection [51]. HIV infection is rapidly sensed by PRRs and cytosolic sensors that de-
tect viral cDNA or RNAs, which leads to the production of IFN-Is and the expression
of IFN-simulated genes (ISGs), which are key effector molecules that exhibit anti-viral
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activities [52–54]. Type I interferon is also critical for the induction of functionally optimal
antigen- specific CD8 T cells in HIV infection [55]. However, HIV interferes with the IFN-I
responses by impairing functions of ISGs and viral isolates shown to have heightened
IFN-I resistance at transmission and ART interruption [56,57]. In addition to their antiviral
functions, particularly during acute infections, IFN-Is also have critical immune modulating
capacities, and are associated with chronic inflammation in many disease states [51,58,59].
IFN-Is can play a dichotomous role and drive an immunosuppressive and exhausted im-
mune state during chronic infection [59]. Elevated IFN-I-stimulated gene (termed ISG)
expression is upregulated in HIV infection, remains elevated despite suppressive ART,
and is correlated with disease progression [22,60]. As a result, chronic IFN-I signaling
has emerged as a prime suspect in the driving of immune activation and HIV disease
progression [59,61–63]. Animal study research has shown that blocking type I interferon
signaling during chronic infection leads to the restoration of T cell functions and a reduced
reservoir [62,64,65]. Additional studies are needed to evaluate if IFN blockade can act as a
supplement to ART and improve immune function [66].

Microbial translocation is another major contributor to chronic inflammation [67,68].
Damage to the gut mucosal barrier during acute HIV infection allows the translocation
of microbial products, such as lipopolysaccharide (LPS), from the gut lumen into the
systemic circulation. This microbial translocation further stimulates the immune system and
contributes to systemic inflammation [69]. Lastly, coinfections with other pathogens, such
as the hepatitis C virus (HCV), cytomegalovirus (CMV), and mycobacterium tuberculosis,
are common in PLWH [70–72]. These coinfections activate the immune system, exacerbating
chronic inflammation and leading to the increased production of inflammatory cytokines
and chemokines, which further drives HIV infection and pathogenesis that can also impact
the effectiveness of ART [72].

3. Metabolic Stress during HIV Infection

Uncontrolled HIV infection results in progressive CD4 T cell depletion, impairment of
both B cell and cytotoxic T cell responses, and ultimately leads to system immune failure
and acquired immunodeficiency (AIDS) [73]. Despite the effect of ART, the virus cannot be
completely eradicated, and its persistence supports a chronic status of immune activation
and immune system dysfunction [22]. As a result, PLWH experience various systemic
challenges, including metabolic stress. One of the highly prevalent metabolic dysregu-
lations occurs with lipid metabolism, such as lower levels of high-density lipoprotein
(HDL) cholesterol, increased low-density (LDL) lipoprotein, total (TC) cholesterol and
triglycerides, leading to dyslipidemia being observed in many PLWH [74–76]. Several viral
proteins are implicated in dyslipidemia. For example, HIV accessory protein Nef down
regulates the adenosine-triphosphate-binding cassette transporter A1 (ABCA1), resulting in
reduced efflux of cholesterol to HDL and lipid accumulation in infected macrophages [77].
Moreover, HIV replication is associated with the increase of fatty acid synthase activity,
which leads to increased levels of free fatty acids and LDLs [78]. In addition, HIV-mediated
immune activation alters lipid processing and transportation, and can lead to production
of lipid species that are more ‘inflammatory’, such as oxidized forms of LDL (oxLDL)
and HDL (HDLox) [79], forming a vicious cycle of inflammation. Glucose metabolism
irregularities, such as insulin resistance [80], which is correlated with coronary artery
stenosis [81], are another abnormality associated with HIV infection. Insulin resistance is
associated with elevated proinflammatory cytokines and the activation of innate responses,
such as toll-like receptors (TLRs), inducible nitric oxide synthase (iNOS), protein kinase R
(PKR), c-Jun N-terminal kinase (JNK), and NF-κB, which are connected to insulin receptor
and its downstream signaling pathway IRS/PI3k/Akt [82]. Interestingly, a recent study
reported that increased monocyte inflammatory responses to oxLDL are associated with
insulin resistance in PLWH [83], and noted defects in cholesterol homeostasis and lipid raft
impairment are connected to insulin resistance [84,85]. Both findings suggest that factors of
metabolic stress are interconnected and exacerbated by systemic inflammation.
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Effective ART can, in general, improve the metabolic profile by reducing heightened
inflammation and mitigating the inherent effects of HIV replication on metabolism. Nev-
ertheless, patients on ART exhibit significant metabolic stress and antiretroviral drugs
can themselves cause metabolic disorders [86]. Classes of ART include nucleoside-analog
reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors
(NNRTIs), protease inhibitors (PIs), integrase inhibitors (INIs), fusion inhibitors, and core-
ceptor antagonists, which each interfere with critical steps in the viral replication lifecycle.
NRTIs inhibit DNA polymerase gamma (Pol-γ), which functions in mitochondria DNA
(mtDNA) replication and maintenance, and have therefore been implicated in mitochon-
dria toxicity [87]. NRTI may be incorporated into mtDNA via Pol-γ by competing with
natural thymidine triphosphate, leading to the mutation or termination of mtDNA. In
addition, NRTIs have been shown to impair ATP synthesis, increase oxidative stress, and
decrease mitochondria membrane potential Ψm [88] and have, as a result, been linked
to long-term metabolic and cardiovascular complications, such as mitochondria toxicity,
lactic acidosis, and lipodystrophy [89–93]. NNRTIs inhibit viral replication by binding to a
hydrophobic pocket adjacent to the active site of HIV reverse transcriptase. Efavirenz (EFV),
a common NNRTI, has been shown to increase oxidative stress, decrease Ψm and induce
apoptosis [94]. Protease Inhibitors (PIs), another common class of ART, interfere with the
cleavage of essential viral maturation polyprotein precursors by inhibiting HIV protease.
PIs, such as ritonavir, have been shown to induce oxidative stress, decrease Ψm and ATP
production, and inhibit cholesterol efflux, leading to side effects associated with metabolic
disturbances, including dyslipidemia, lipodystrophy, and insulin resistance [89–91,93].
Mitochondria toxicity is particularly pronounced in older drugs such as didanosine (ddI)
and stavudine (d4T), but is less common in the newer drugs such as lamivudine (3TC),
emtricitabine (FTC) and tenofovir (TDF) [95,96]. Nonetheless, 3TC, FTC and TDF were still
shown to decrease fat mtDNA content and affect complex I and IV activity levels [97]. The
mechanisms of metabolic altercation by HIV infection and ART are complex, multifactorial
and not fully understood, and further studies are required to improve clinical management
and the healthy lifespan of PLWH.

Metabolic stress driven by HIV infection has a direct impact on immune cell
functions [98,99]. Serum and plasma derived from PLWH revealed altered metabolites of
lipid and fatty acids, which may play an important role in driving immune
dysfunction [100–102]. HIV infection-mediated chronic inflammation also leads to in-
creased lipolysis and altered lipid trafficking [103,104], which can lead to the accumulation
of lipid droplets in immune cells, and in turn have various effects on their function [105,106].
For example, lipid metabolite long-chain fatty acid inhibits IFN-γ production by stimulating
intraepithelial lymphocytes [107], and inhibits T-cell responses by increasing mitochondrial
reactive oxygen species (ROS) [100]. Lipid metabolism plays a key role in macrophage
function and IFN-I antiviral responses [108,109]. The excessive accumulation of lipid
in monocytes can lead to macrophage foam cell formation, which produces high levels
of proinflammatory cytokines and promotes atherosclerotic plaque formation [110]. In
addition, monocytes and macrophages with excessive lipid also display altered type I
IFN responses [111]. Lastly, viral infection and the proinflammatory cytokines TNF and
IL-1beta can induce mitochondria stress, resulting in the release of mtDNA and activation
of cGAS-MITA/STING, which in turn activates IFN-I and inflammasome signaling [112].
Moreover, damaged mitochondria can also release mtRNA, ROS, and other mitochondria
damage-associated molecular patterns (mtDAMPs), triggering innate signaling, leading to
further exacerbation of chronic immune activation during HIV infection [113].

Growing evidence indicates that cellular metabolism plays a key role in support-
ing immune cell maintenance and development, and also guides immune activation
and differentiation [114]. Due to these metabolic perturbations observed in PLWH, it
is therefore critical to study immune metabolism and its role in HIV pathogenesis and
immune exhaustion [115].
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4. Immune Activation and Metabolic Dysfunction Contribute to T Cell Exhaustion
during Chronic HIV Infection

T cell exhaustion is a state of T cell dysfunction characterized by the progressive loss
of effector activities, the sustained expression of inhibitory receptors, and metabolic alter-
ations [116]. This phenomenon is observed in cancers and various chronic viral infections,
including HIV, and is closely associated with the inability of the immune response to ade-
quately control these conditions [116–118]. Exhausted T cells exhibit impaired proliferative
ability, cytokine production, and cytotoxic activity, which results in ineffective cellular
immune responses [15,116,119]. T-cell exhaustion in chronic viral infections is mainly
triggered by the persistent activation of TCR signaling, leading to the increased expression
of inhibitory and co-inhibitory receptors, such as PD-1, CTLA-4, TIM-3, 2B4, LAG-3, and
CD160 [116,120]. While these molecules have important roles in normal immune functions
in acute conditions, their upregulation in chronic conditions, such as HIV infection, are
highly associated with immune dysfunction. During chronic HIV infection, the upregu-
lation of inhibitory receptors (or called checkpoint inhibitors) in T cells and engagement
with their ligands suppresses T cell activation and function. This persistent inhibitory
signaling, combined with altered gene expression patterns, leads to T cell exhaustion and
compromised antiviral responses [15,121].

Emerging evidence suggests that metabolic distress also contributes to T cell exhaus-
tion and dysfunction. Healthy immune cells maintain a balanced metabolic state, and
primarily rely on oxidative phosphorylation (OXPHOS) in mitochondria for energy produc-
tion in resting conditions. This metabolic pathway is oxygen-dependent and generates more
ATP, compared to glycolysis [114,122,123], and this process supports the basic functions of
immune cells without promoting excessive proliferation or activation. When immune cells
are activated in response to pathogens or other stimuli, they undergo the “Warburg effect”,
a metabolic shift to aerobic glycolysis [124,125]. The intensification of aerobic glycolysis
allows cells to rapidly generate energy by converting glucose-derived pyruvate into lactate
under normoxic conditions, rather than entering the TCA cycle in mitochondria [126]. This
metabolic shift plays a crucial role in supporting biosynthetic demands for the activation
and proliferation of T cells [103,127]. Chronic immune activation means that immune cells,
including T cells and macrophages, are continuously activated and proliferating, which
increases their energy and nutrient demands [124,125]. Interestingly, during acute infection,
HIV-1 induces the association of NLRX1 with the mitochondria protein FASKD5 to promote
OXPHOS and viral replication in CD4 T cells, and viral load setpoint is positively correlated
with the OXPHOS pathway [128]. In contrast, during chronic HIV infection, the metabolic
demands can lead to nutrient deprivation and the accumulation of metabolic waste prod-
ucts, which in turn affects T cell functions [21,129]. For example, Loisel-Meyer et al. found
that HIV-infected macrophages produce higher levels of lactate, which can accumulate in
the tissue microenvironment and contribute to T cell dysfunction [130]. Additionally, ROS
production is increased in T cells during HIV infection, contributing to oxidative stress and
subsequent T cell dysfunction [131,132]. ART, particularly NRTI-mediated mitochondria
toxicity, as described above, can also contribute to decreased mitochondrial OXPHOS
activity. Therefore, in chronic HIV infection, OXPHOS is decreased in the peripheral blood
monocular cells (PBMCs) of PLWH, and is associated with immune dysregulation [133].

During HIV infection, glucose and glutamine metabolism undergoes significant alter-
ation, in both HIV-infected cells and activated immune cells responding to
infection [134–137]. Compared to uninfected cells, there is increased glucose and glu-
tamine metabolic activity in HIV-infected CD4+ T cells and macrophages [138,139]. Activa-
tion of CD4 T cells also leads to increased glucose uptake and the expression of glucose
transporters [135,140,141]. Increased glycolytic flux is required for viral production and in-
creases the propensity of CD4 T cells to show apoptosis [130]. As a result, increased glucose
metabolic activity and increased Glut1 expression are associated with CD4 T cell activation
and depletion during chronic HIV infection in PLWHs, and are not completely normalized
by ART [141]. Dysregulation of glutamine metabolism in HIV infection can lead to immune
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cell dysfunction, as evidenced by a negative correlation between glutamine levels and the
production of cytokines and chemokines by CD8+ T cells [142,143]; meanwhile, CD4 cell
count is inversely correlated with both glutamine and glucose concentrations [144]. In
addition, the metabolism of amino acids such as tryptophan and arginine, which are crucial
for immune cell function [145,146], are also impaired during HIV infection. Persistent
inflammation and immune activation can lead to the depletion of these amino acids. For
example, Indoleamine 2,3-dioxygenase (IDO) is an enzyme that is upregulated during
inflammation and degrades tryptophan [147]. Increased IDO activity during HIV infection
leads to tryptophan depletion, which can have immunosuppressive effects and contribute
to T cell dysfunction [148,149].

Early-stage exhausted T cells exhibit a unique metabolic profile, characterized by
reduced glycolysis and increased fatty acid oxidation (FAO); however, these cells exhibited
impaired mitochondrial function [21,129]. This metabolic shift from aerobic glycolysis is
triggered by continuous antigen exposure, which upregulates the PD-1/PD-L1 pathway,
resulting in inhibition of TCR/CD28-mediated PI3K signaling and reduced glycolysis
and glutamine utilization in effector T cells [19,150]. In contrast, the terminal stage of
exhausted T cells mainly relies on glycolytic metabolism with impaired glycolysis and
OXPHOS [151–153]. Notably, the decline in glycolysis and the mitochondrial respiration
of T cells is observed before the onset of T cell dysfunction in early chronic infection,
suggesting that metabolic abnormalities set in before, and not as a result of, T cell ex-
haustion [19,154]. Therefore, modulating metabolism may provide a feasible and efficient
strategy to prevent T cell exhaustion in chronic viral infections.

In summary, immune activation, immune cell metabolic dysfunction and exhaustion
are intricately linked in a complex, bidirectional relationship rather than a straightforward
cause-and-effect sequence. Immune activation and metabolic dysfunction are direct contrib-
utors to T cell exhaustion, while metabolic dysfunction and immune cell dysfunction can
further exacerbate immune activation/chronic inflammation. For example, mitochondrial
dysfunction can lead to the production of ROS and the release of mitochondrial DNA, which
can activate innate immune pathways and contribute to chronic inflammation [113,155].
Understanding the interactions between immune activation, metabolism dysfunction and
immune exhaustion during HIV infection is important, and will contribute to research
that seeks to generate new therapeutic approaches to HIV infection. Achieving a better
understanding of the molecular mechanisms that underlie T cell exhaustion will ultimately
help to address current barriers that inhibit the development of more effective therapies.
This will however only be achieved by applying various representative models to analyze
these interactions.

5. Current Approaches to Modeling Pathogenesis and Studying the Antiviral Immunity
of HIV Infection

Exploring the interplay between immune exhaustion and metabolic dysfunction in
HIV pathogenesis requires a multidisciplinary approach. Various models have a distinct
role to play in studying immune activation and metabolic dysfunction that can lead to T
cell exhaustion.

In vitro studies that examine primary cells and cell lines exposed to HIV-1 or HIV-1 pro-
teins have provided crucial insights into the mechanisms that drive immune
dysfunction [15,156,157], and are essential for understanding the molecular and signaling
pathways that are involved in immune activation [15,158,159] and metabolic stress [134,160].
Ex vivo studies, on the other hand, can bridge the gap between in vitro studies and in vivo
clinical observations, offering a controlled environment to study the HIV-induced alter-
ations in T cell function and metabolism that contribute to the disease pathology [161–165].
However, both in vitro and ex vivo studies lack the complexity of living organisms and
cannot replicate systemic responses. The ultimate source of direct evidence is clinical trials,
which provide invaluable data for advancing our understanding of HIV pathogenesis
and anti-viral immunity, and grasping clinical implications [166,167], however, clinical
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research faces practical and ethical challenges, as well as constraints related to the limited
availability of tissue sampling.

Alternatively, animal models provide unique opportunities to explore therapeutic
and prevention approaches, advance HIV-1 management, and gain insight into the mech-
anism of HIV-1 pathogenesis. Current animal models for the study of HIV-1 infection
include non-human primates and humanized mice. Primate models, owing to a genetic and
physiological similarity to humans, are critical for understanding the systemic aspects of
immune activation [168–170] and viral pathogenesis [171–175]. They have been crucial for
observing the progression of T cell dysfunction and realistically depict immune exhaustion
in HIV-1 infection [176–182]. However, the use of nonhuman primate models is constrained
by ethical considerations, high maintenance cost, and the limited availability of suitable
species, and these constraints have restricted experimental group sizes and limited the
assessment of various conditions and parameters. In addition, interactions specific to
HIV and human host cells cannot be fully assessed in nonhuman primates, since they are
typically infected with simian immunodeficiency virus (SIV) or simian-human immunode-
ficiency virus (SHIV) [183–186]. Humanized mice models offer a complementary approach
by addressing these limitations and opening up the possibility of investigating interactions
specific to HIV-1.

Humanized mice are immunodeficient mice engrafted with human cells and/or tissue
that have become increasingly valuable as small animal models, both for the close examina-
tion of various human diseases and the development of therapeutic strategies [187–189].

When compared to primate models of SIV or SHIV, as well as human clinical trials,
humanized mouse models of HIV infection are found to possess all the benefits of small
animal models: they raise fewer ethical concerns; are less costly; recapitulate in vivo
complexity; permit sampling and intervention that are not feasible in clinical trials; and
allow a larger sample size, enabling statistically robust studies, which may not be feasible
with primate models. In particular, humanized mouse models reconstituted with human
immune cells have achieved significant breakthroughs in improved immune reconstitution
and have, in recent years, been increasingly widely used in studies of human immunology,
infectious diseases, and tumor therapies [187–189]. Humanized mice reconstituted with
human T cells and other immune cells can support robust HIV infection and HIV latency;
have been widely used to study the biology of HIV infection, pathogenesis and anti-
HIV immunity; and have also played a critical role in the testing and development of
ART and gene- and cell-based therapeutics [190–193]. Importantly, the model allows the
examination of novel therapies that involve the manipulation of human genetics (such
as CCR5 knockdown/gene editing), human cell-based immunotherapy (such as CAR-T
cell and NK cell therapy), and human biologics (such as the anti-HIV broad neutralizing
antibody (bNAb), checkpoint inhibitor therapy, and cytokine treatment, etc.). As a result,
the humanized mouse model has emerged as a popular pre-clinical model. Although the
murine drug metabolism is different from the human counterpart, the humanized mouse
model still provides a versatile model that can be used to explore immune metabolism,
and this is because it more closely approximates to human responses than traditional
mouse models.

There are many various types of humanized mouse models, which primarily differ in
the background mouse strain and humanization procedure. The humanized mouse models
most frequently used for HIV research include:

1. Hu-PBL-SCID mice: This model involves transplanting severe combined immunode-
ficient (SCID) mice with human periphery blood mononuclear cells (PBMCs) [194].
The hu-PBL-SCID models are susceptible to rapid, potent HIV infection and are
therefore good models for studying CD4+ T cell depletion and testing anti-viral com-
pounds [189]. However, the hu-PBL-SCID model’s high susceptibility to developing
Graft versus host disease (GVHD) in a relatively short period of time makes it a less
than ideal candidate for long-term studies [195].
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2. Hu-CD34 mice: hu-CD34 mice are generated by engrafting human CD34+ hematopoi-
etic stem/progenitor cells (HSPCs), isolated from adult bone marrow tissue, adult
mobilized peripheral blood, umbilical cord blood, or fetal liver, into immunodeficient
mice, such as NOD-PrkdcscidIl2rgtmiwjl/Sz (NSG) mice. These mice can support the
establishment of a robust human immune system (consisting of T cells, B cells, and
myeloid cells, with limited GVHD), and are capable of modeling HIV replication
in vivo [189,194]. Although this model supports sustained HIV infection and the
establishment of latent/persistently infected cellular reservoirs, the mouse thymus
does not support the development of fully functional T cells, resulting in lower levels
of T cell reconstitution than the BLT mouse (see below) and non-fully functional T
cells. This makes it difficult to study the impact of HIV infection on thymic T cell
differentiation and T cell functions [196,197].

3. BLT (humanized bone marrow-liver-thymus) mice: BLT-humanized mice are gen-
erated by implanting human fetal liver and thymus tissues into conditioned NSG
mice, and simultaneously injecting autologous CD34 HSPCs from a fetal liver [189].
This model allows the development of a robust human immune system, including
T cells, B cells, NK cells, and myeloid cells. The humanized BLT mouse model is a
powerful small animal model that enables robust human immune reconstitution and
robust, natural T cell thymic development, allowing for the comprehensive study of
HIV immunity. The model is key to seminal studies of cell and gene therapy and,
ultimately, to the discovery of a HIV cure [196,198–211]. It has also contributed to
studies of HIV latency [200,212–214], and mechanistic studies of HIV immunopatho-
genesis [64,65,196,215–218]. Despite its notable advantages, this model presents a
number of challenges, including expense, the difficulties of surgical procedures, the
procurement of fetal tissues, and the inconsistency between the graft and host disease
development [189].

In addition to the aforementioned ways of generating humanized mouse models, the
development of new strains of immunodeficient mice has further improved multi-lineage
immune reconstitution and the versatility of the humanized mice model [219]. These
include but are not limited to, the TKO (C57BL/6 Rag2−/−γc−/−CD47−/−) strain,
with deleted CD47 to induce tolerance and reduce GVHD development [220]; MISTRG
(C;129S4-Rag2tm1.1Flv Csf1tm1(CSF1)Flv Csf2/Il3tm1.1(CSF2,IL3)Flv Thpotm1.1(TPO)Flv.

Il2rgtm1.1Flv Tg(SIRPA), harbors humanized knock-in alleles M-CSF, IL-3/GM-CSF
and TPO, and supports improved innate responses and myeloid differentiation [221];
NSG-SGM3 (NOD-scid IL2Rgnull-3/GM/SF), carries human IL-3, GM-SF and CSF and
allows stable myeloid lineage engraftment [222–224]; NSG-Tg(hIL34) carries humanized
IL-34 and allows the improved engrafting of microglial cells [225]; NSG-Tg (hIL15) carries
humanized IL-15 and allows improved Treg and natural killer cell development [226,227];
NSG-A2 expresses human HLA class I A2 molecule supports development of A2 restricted
human T cells [228]; and DRAG, which are NOD.Rag1KO.IL2RccKO mice that express
HLA-DR4 (0401), shows improved B cell and IgG reconstitution [229].

Each of these models has its own advantages and limitations, and the choice of model
depends on the specific research questions being addressed. Among them, hu-CD34 and
BLT humanized mice can sustain a chronic HIV infection, which allows researchers to
study the long-term interactions between HIV and the human immune system in vivo.
Several studies that use humanized mice models have shed light on the mechanisms under-
lying chronic inflammation and immune exhaustion during HIV infection, with particular
emphasis on type I interferon signaling, checkpoint inhibitor expression, inflammasome ac-
tivation, and cellular metabolic processes. By using the humanized NSG-BLT mouse model,
we [65], and others [61,64,230], showed that the chronic immune activation and T cell
dysfunction seen in BLT mice after HIV infection resemble the patterns observed in HIV+
patients [231,232]. Importantly, we and others [61,64,65,230] also showed that blocking
persistent IFN-I signaling in vivo restored dysfunctional anti-HIV specific T cells, lowered
viral loads, and reduced the HIV reservoir. Moreover, our recent study demonstrated
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that modulating type I IFN signaling with autophagy inducer rapamycin in HIV- infected
humanized mice led to decreased immune activation, improved anti-HIV T cell function,
produced faster viral suppression during ART, and significantly reduced viral rebound
after ART withdrawal [233], further suggesting the pathogenic role of type I interferon
during chronic HIV infection.

In addition to chronic type I IFN signaling and T cell exhaustion, HIV-infected
humanized mice have also been demonstrated to have elevated soluble inflammatory
markers [234,235], increased inflammasome activation [236] and high levels of immune
check point inhibitor PD-1 expression in T cells [237], reiterating what has already been
seen in PLWH. This has enabled numerous studies that closely examine many different
aspects of HIV-induced inflammation in vivo. Studies have shown that blocking PD-1 with
an anti-PD-1 antibody in HIV-infected humanized mice led to enhanced T cell responses
and reduced viral loads [208,238]. Studies investigating the role of inflammasome showed
that a caspase 1 inhibitor can mitigate inflammasome activation and CD4 T cell depletion,
and reduce viral load in HIV-infected huCD34 humanized mice [236].

Growing evidence indicates that humanized mice can also be used to study immune
metabolism and related therapeutics. For example, induced high cholesterol levels con-
tribute to the proliferation of T cells and T cell–mediated inflammatory diseases in BLT
humanized mice [239]. Guo et al. have, in studies using human CD4 T cell-reconstituted
mice, investigated the role of OXPHOS in HIV infection. The study demonstrated that
metformin treatment inhibits OXPHOS, which targets mitochondrial respiratory chain
complex-I, and suppresses HIV-1 replication in both human CD4+ T cells and HIV-infected
humanized mice [128,240]. HIV infection also leads to lipid accumulation and increased
OXPHOS in HIV-infected macrophages that use humanized mouse model [241]. HIV-
infected humanized mice also showed gut barrier dysfunction, and elevated plasma and
gut tissue oxidized lipoproteins [234]. Our collaborative studies demonstrated that a treat-
ment (apolipoprotein A-I mimetic synthetic peptides designed to mimic apolipoprotein;
and A-1 to remove excess cholesterol) could attenuate macrophage activation, and reduce
systemic and gut inflammation in chronically treated HIV in humanized mice [234,235].
With the recent development of the germ-free humanized mice model, additional studies
are now seeking to investigate the contribution of resident microbiota to human specific
pathogen infection, including HIV [242]. In summary, humanized mouse models have
emerged as a versatile animal model that can be used to support mechanistic and preclinical
studies of HIV infection and ART-related metabolic stress and T cell dysfunction, including
studies of drug treatment, supplement treatment and genetic manipulation.

6. Using the Humanized Mice Model to Study the Function and Exhaustion
of Engineered CAR T Cell Immunity against HIV

Humanized mouse models provide an ideal platform to evaluate the therapeutic effi-
cacy of engineered immunity and have been widely used to test immunotherapies for HIV
and cancer [243–246]. They include, but are not limited to, bNAbs treatment, checkpoint
inhibitor blockade, cytokine treatment, NK cell, and T cell-based therapies that seek to
improve anti-HIV immunity and clear infected cells. The humanized BLT mouse model is
a particularly good model for the study of T cell-based therapies because it has a human
thymus organoid, enabling natural T cell selection and development within the model. The
development of chimeric antigen receptor (CAR T) cell therapies, which have emerged as a
promising therapy in recent years because of tremendous success as a cancer treatment, was
critically influenced by the humanized mice model. Anti-HIV CAR-T cells are genetically
engineered T cells that specifically target antigens on the surface of HIV-infected cells [245].
Unlike cytotoxic T lymphocytes (CTLs), CAR T cells do not rely on the endogenous T cell
receptor (TCR) for antigen recognition and can bypass some of the limitations of natural
CTLs, such as major histocompatibility complex (MHC) restriction and downregulation by
HIV; they also directly target conserved regions of the virus, making it harder for the virus
to escape [245], and can be engineered to resist HIV infection [245]. The CARs best-suited
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to HIV are CD4-based CARs, whose antigen recognition domain is the extracellular domain
of CD4, which enables the recognition of HIV gp120 on infected cells [247–252]. Others
have also reported the effective anti-HIV activity of T cells engineered with CAR designs
based on broad neutralizing antibodies [203,253–255].

We have used the BLT mouse model of HIV infection to evaluate the efficacy of
HSPC-derived CAR-T therapy and closely examine engineered antigen-specific T cell
responses. We demonstrated that HSPC-based CD4CAR therapy allowed long-term en-
graftment and development of functional anti-HIV CAR-T cells, which suppressed viral
replication [199,256]. We also found that the HSC-derived CAR-T cells persisted for an ex-
tended period in both humanized mice and non-human primates (NHPs) (>2 years) [257],
indicating the potential for long-term viral control. Studies of humanized mice have
allowed the extensive selection and optimization of CAR designs, which has in turn demon-
strated the potential for anti-HIV CAR-T cells to contribute to a HIV cure. These critical
findings have in turn paved the way for multiple ongoing clinical trials of anti-HIV CAR
therapy (ClinicalTrials.gov Identifier: NCT04648046, NCT05077527, NCT03240328).

Interestingly, in both the humanized mouse and NHP models, CAR T cells also develop
exhaustion and lose their ability to control the viral replication [256,258]. Humanized mouse
models are ideal model to test various strategies to boost the functions of CAR T cells and
prevent immune exhaustion. For example, PD-1 checkpoint blockade may enhance the
CTL activity of HIV-CAR T cells [259]. Research of cancer immunology has also provided
many potential strategies that could be used to improve CAR-T cell function and T cell
mediated control [260]. The most widely studied approach is the blocking of inhibitory
receptors or the genetic reduction of the expression of inhibitory receptors, with the aim of
enhancing CAR-T cell function [261].

Metabolic remodeling is emerging as a promising method to improve the metabolic
fitness of T cells and prevent/restore CAR-T cells from exhaustion. The use of 4-1BB
costimulatory receptors has been shown to promote mitochondria biogenesis and OXPHOS
of T cells [262], and studies, both by us and other researchers, have shown that anti-HIV
CAR T cells with 4-1BB costimulatory domain have superior persistence and anti-viral
functions [200,256]. New studies of cancer immunotherapy also indicate that manipulating
glucose metabolism may result in beneficial metabolic adaptations. For example, glucose-
starved T cells upregulate AMPK activity, which enhances mitochondria respiration and
fatty acid usage, resulting in these T cells demonstrating better functions and delaying
tumor growth [165,263–265].

Additionally, the optimization of amino acid nutritional support, enhancement of
mitochondrial function, and modulation of both immune and metabolic checkpoints have
emerged as novel ways to boost CAR T therapy [263,266–268]. For instance, a recent study
has shown that the mitochondrial enzyme isocitrate dehydrogenase 2 (IDH2) reduces
carboxylate glutamine in CD8 T cells. Inhibiting IDH2 in CAR T cells does not impair
proliferation nor affect the effector function of the T cells, but does promote memory T cell
formation and enhance antitumor responses [269]. This is especially relevant to HIV CAR-T
cell research because of the chronic nature of HIV infection, and the associated importance
of long-term immune cell function and persistence in maintaining immune surveillance.
Engineering approaches to overcome the exhaustion of CAR T cell therapy will therefore
most likely involve a combination of strategies that target immune and metabolic pathways.

7. Conclusions

Much of the complex interplay between HIV infection, inflammation, immune cell
metabolism, and immune exhaustion remains a mystery to researchers and, it is in this
context that humanized mouse models have a particular value, as a powerful and versatile
tool that can be used to model HIV pathogenesis and test potential therapeutics. Further
research is needed to explore the impact of metabolic remodeling in helping to alleviate
chronic inflammation, prevent exhaustion, and improve endogenous and engineered T
cells responses. It is however critical to understand the limitation of humanized mouse
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models, as the choice of mouse strain and method of construction may impact the level
of human immune reconstitution, development of cellular and humoral responses, basal
metabolic rate, and GVHD. Additional studies are needed to further improve the model so
that it better recapitulates human conditions; this will in turn enable the investigation of
the multiple factors that impact HIV immune pathogenesis, such as genetics, co-infections,
gut microbiota, and immune metabolism.
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