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Abstract 

 

Schizophrenia (SCZ) is a neurodevelopmental disorder characterized by positive 

symptoms (hallucinations and delusions), negative symptoms (anhedonia, social 

withdrawal) and marked cognitive deficits (memory, executive function, and attention). 

Current mainstays of treatment, including medications and psychotherapy, do not 

adequately address cognitive symptoms, which are essential for everyday functioning. 

However, recent advances in computational neurobiology have rekindled interest in 

neurofeedback (NF), a form of self-regulation or neuromodulation, in potentially 

alleviating cognitive symptoms in patients with SCZ. Therefore, we conducted a 

systematic review of the literature for NF studies in SCZ to identify lessons learned and 

to identify steps to move the field forward. Our findings reveal that NF studies to date 

consist mostly of case studies and small sample, single-group studies. Despite few 

randomized clinical trials, the results suggest that NF is feasible and that it leads to 

measurable changes in brain function.  These findings indicate early proof-of-concept 

data that needs to be followed up by larger, randomized clinical trials, testing the efficacy 

of NF compared to well thought out placebos. We hope that such an undertaking by the 

field will lead to innovative solutions that address refractory symptoms and improve 

everyday functioning in patients with SCZ. 

 

 

Keywords: neurofeedback, schizophrenia, treatment refractory, EEG, rt-fMRI, self-

regulation 
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1. Introduction 

 

Schizophrenia (SCZ) is a mental illness that affects approximately 1% of the population1, 

2, 3. The disorder is characterized by positive symptoms, such as hallucinations and 

delusions, negative symptoms such as social withdrawal and anhedonia, and cognitive 

deficits. Recent research has focused much attention on the neurological changes 

responsible for the symptoms of SCZ, including decreases in both grey and white matter3, 

4, 5, 6 . For example, the presence of auditory hallucinations has been associated with 

anatomical changes in the superior temporal gyrus (STG) as well as structural and 

functional abnormalities in other areas involved in auditory perception, such as the 

primary and secondary auditory cortex7-9. Hypofrontality, or decreased function of the 

prefrontal cortex, and dysfunctional brain networks have been associated with both 

negative symptoms 10 and cognitive deficits 11. Cognitive deficits have been found in 

memory, slow processing speed, and executive function12, 13, that negatively affect social 

functioning6. While cognitive deficits can greatly impair everyday function and affect the 

majority of patients with SCZ14, there is currently no successful treatment13, 15, 16. 

Likewise, up to 30% of patients suffering from auditory verbal hallucinations do not 

respond to medication 17, 18, prompting the need for additional treatments for refractory 

symptoms.   

 

Neurofeedback (NF) has emerged as a possible novel treatment option.  In brief, by 

allowing patients to directly perceive specific neural events (e.g., by using visual or 

auditory representations of a patient’s own brain activity as targets), NF, through operant 

conditioning, allows patients to practice modulating their own neural activity19. Collura 

described NF as “…an art, and [that] there can be very different ways to apply general 

principles, in the form of a clinical intervention 20.” 

 

There are several different methods of recording brain activity during NF, each with its 

own advantages and weaknesses. Electroencephalography NF (EEG NF) is a non-

invasive technique. Electrodes are placed on a subject’s scalp to detect electrical activity 

generated by the brain, which is recorded and displayed on a computer screen in the form 

of a visual metaphor, such as a flying airplane. Positive feedback (the plane flying 

successfully) is given when the subject maintains brain activity within pre-specified 

parameters. The parameters are made incrementally more difficult on each successive 

training session and brain activity is modified over time. Feedback is sometimes provided 

during quantitative EEG (qEEG), which measures brain electrical activity and compares 

it to recordings from healthy individual normative data. It then provides a signal to up- or 

down-regulate the activity in the direction of the population mean. Some advantages of 

EEG-NF include a well-established safety profile that is portable and uses relatively 

inexpensive equipment 21. However, EEG’s spatial resolution is less than ideal and can be 

affected by muscle-artifacts 21 

 

Real-time functional magnetic resonance imaging NF (rt-fMRI NF) reflects brain activity 

by measuring blood oxygen-level dependent (BOLD) responses in the brain, where 

BOLD increases in areas of brain activity 22. Similar to EEG NF, visual metaphors are 

used to display areas of activity to subjects, which they are asked to either up- or down-
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regulate. Although rt-fMRI NF provides higher spatial resolution and fidelity than EEG 

NF 23, its utility is limited by high cost, patient discomfort at being in an enclosed scanner 

and low temporal resolution 24. In addition, the BOLD signal can also be influenced by 

non-neuronal artifacts, such as breathing or heart rate 22.  

 

While EEG and rt-fMRI are the most common NF techniques, other techniques have 

been used in a few studies.  For instance, functional near infrared spectroscopy (fNIRS) is 

similar to fMRI and measures the metabolic activity of neurons by assessing differences 

in oxygenated and deoxygenated hemoglobin 25. fNIRS is limited to the outer cortex and 

as such has lower spatial resolution than rt-fMRI 25. In comparison to EEG, fNIRS has 

higher spatial resolution and is less prone to motion artifacts. However, its temporal 

resolution is lower 25. Hemoencephalography (HEG) is another technique where infrared 

light is used to measure local blood flow through the skull 26. The equipment used is a 

headband with a light source and a light receiver, making this technique both cost-

effective and easy to use 26 (at least in the single study that was available for inclusion in 

our review). 

 

Regardless of the technique utilized, the principle of NF is the same; A subject’s brain 

activity is represented on a computer screen and feedback like music or a visual metaphor 

is provided depending on whether the subject achieves the desired change in brainwave 

activity27. NF is advantageous in that during training the subject becomes aware of 

his/her brain activity and is therefore able to knowingly alter it 27 28, 29. As a treatment 

protocol, NF has been used successfully to address a variety of neuropsychiatric 

disorders, including attention-deficit hyperactivity disorder (ADHD) 19, 30, depression 19, 

posttraumatic stress disorder (PTSD), 19 31, Alzheimer’s disease 19, and anorexia 19. 

Furthermore, NF treatment has been associated with structural changes in brain 

composition in healthy subjects, including an increase in grey matter volume of the target 

area 32. 

 

These findings support the use of NF as a promising adjunct method for treatment-

resistant and difficult to treat symptoms of SCZ 16, 33. NF, however, can be administered 

in a large variety of protocols varying in length and targets. We conducted a systematic 

review of the literature on the topic of NF in SCZ to identify successful protocols, dose 

response effects, and other training parameters that can then be used to design the next 

generation of NF studies.  

 

For non-specialists or clinicians new to the field, NF may appear chaotic, disorganized, 

and atheoretical. There seems to be little agreement as to what protocol or electrode site 

to use, or what theoretical underpinning motivates one approach versus another. 

Undertaking a systematic review of this field, even with the focus narrowed to NF 

approaches to SCZ, may appear unfruitful for the same reasons. However, understanding 

its historical trajectory and effectiveness in the context of clinical and therapeutic 

approaches can help make more sense of the chaos 34. It may even be possible to draw 

useful conclusions with an understanding of the foundations for the methodology 35, 23 

(ISNR website. In defense of neurofeedback). 
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2. Methods 

 

We used the search terms “(neurofeedback OR biofeedback)” AND schizophrenia in 

PubMed. This produced 95 articles published from 1964 to 2019. Of these 95 articles, 67 

were excluded for either being review articles, non-neuronal biofeedback, or if the 

intervention consisted of a combination of treatments (one case study with cognitive 

remediation, NF and family therapy). Another 8 studies were excluded where NF was 

performed on healthy subjects, or subjects with ADHD, thereby not investigating the 

treatment of SCZ. Lastly, six articles were excluded because they were written in a 

language other than English (Russian, Spanish, Japanese, and German) (Figure 1: 

PRISMA flowchart).  Although only 14 studies met inclusion criteria, many of the 

studies assessed changes in brain function as a primary outcome, an objective measure 

that significantly increased the strength of these studies. The patients, intervention, 

comparator, outcomes, study design (PICOS) criteria for inclusion and exclusion of 

studies is presented in Table 1.  

 

3. Results 

 

3.1 EEG NF in treatment of SCZ 

 

Of the 14 articles included in this systematic review, 7 studies used EEG NF to treat 

symptoms of SCZ (Table 2). Three of these studies included a control group. One control 

group consisted of healthy subjects, another used SCZ patients continuing treatment as 

usual, and the last was SCZ patients that received sham NF. Of the seven EEG NF 

studies, two were case studies. Only one of the studies (14%), conducted by Rieger et al., 

met the standards of a randomized controlled trial. EEG NF treatment dose ranged from 

3.75 hours to 58.5 training hours.  

 

Balconi et al. (2018) aimed to improve emotion regulation in patients with SCZ by means 

of EEG NF 36. Patients were divided into two groups; The treatment group consisted of 

nine subjects who received NF (n=9), versus the control group (n=9) where SCZ patients 

received treatment as usual (TAU). Only subjects on stable doses of medications for a 

minimum of 4 weeks were included. The NF group received 10 sessions of 25-minutes of 

feedback (total of 3 hours and 45 minutes). For the experimental group, increased power 

in the delta range (0.5-5.5 Hz) at electrode sites F3 and F4 was rewarded. The rationale 

for this was that reductions in frontal delta activity in SCZ have been previously reported 
37, and therefore, the authors aimed to 1) increase frontal delta activity and 2) reduce 

frontal delta asymmetry. Pre-post testing included 1) emotion recognition of 40 negative, 

40 positive, and 20 neutral International Affective Picture System (IAPS) images;  

Subjects were asked to rate each picture for valence and arousal while EEG and fNIRS 

were recorded, and 2) Self-Assessment Manikin (SAM) rating of emotional experience. 

At post-treatment, EEG and fNIRS collected during IAPS revealed significant reduction 

in frontal delta asymmetry in the NF group. Subjects in the treatment group also rated 

negative IAPS images as more positive at post-treatment, a change that was not observed 

in the control group. 
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Rieger et al. (2018) investigated the use of EEG NF to treat auditory verbal hallucinations 

(AVH) in patients with SCZ 38. Subjects were randomized to receive feedback to either 

increase N100 (treatment group, n=4) or increase P200, presumably, an unrelated event 

related potential (ERP) in the control group (n=6). The N100 ERP reflects an essential 

component in the neural processing of auditory stimuli and has been shown to be reduced 

in SCZ. Therefore, it was chosen as a target in subjects experiencing AVH. Subjects 

performed sixteen sessions of EEG NF for a total of 5.9 hours over 2 weeks.  No 

significant change was detected between the groups on any ERP component. The authors 

did note that subjects with a learning pattern, one that reflected within session 

improvements, showed overall improvements in AVH. However, this change was noted 

in both groups. Such results must be interpreted with caution given the small sample size. 

But, they point to the potential impact of learning style and motivation on NF’s efficacy. 

 

Surmeli et al. (2012) used quantitative electroencephalography NF (qEEG NF) on 51 

patients with SCZ to normalize brain activity in deviating regions 39. Prior to recording 

baseline qEEG, patients discontinued medications, which were washed out for seven 

half-lives. On average, patients performed 58.5 one-hour qEEG-NF sessions over the 

course of 24-91 days. qEEG NF training resulted in significant improvement on the 

Positive and Negative Syndrome Scale (PANSS). The authors did not comment on the 

relationship between treatment dose and response.  For 19 participants, brain activity was 

no longer classified as abnormal after qEEG-NF treatment, and 27 participants remained 

medication-free at follow up. Brain changes continued to be present in the subset of 

subjects that were followed for as long as 22 months following treatment.  

 

Schneider et al. (1992) 40 used EEG NF to target slow cortical potentials (SCP), which 

are thought to reflect regulation of the brain’s attentional resources and cortical 

excitability41 42. Attentional deficits are well described in SCZ 41, and hence, the authors 

hypothesized that improved self-regulation of SCPs would lead to symptom reduction. 

Male patients with SCZ (n=12) and HC (n=12) were enrolled in the study. Patients were 

maintained on antipsychotic medications throughout the study. Scalp electrical recordings 

from Cz electrode site were used to monitor SCPs. Subjects were required to either 

increase or decrease SCP during 20 EEG-NF sessions, each consisting of 110 NFB trials 

(approximately 4.89 hours of NF). Trials required subjects to either increase or decrease 

SCPs randomly by the appearance of the letter A or B to indicate what was required. On 

some trials, success was shown as a rocket moving on the screen (NF trials). Additional 

trials showed a letter to indicate whether increase or decrease was required, but 

subsequent feedback was not provided in the form of a moving rocket. These trials 

(transfer trials) were meant to assess whether subjects had learned strategies that they 

could evoke and utilize without the presence of NF. The results indicated that compared 

to HC, subjects in the SCZ group learned to control SCPs at a much slower rate. 

Furthermore, those with greater symptom severity showed reduced learning.   

 

Schneider and Pope (1982) performed a qEEG NF to investigate if treatment with NF 

could achieve EEG changes comparable to those induced by antipsychotic medication in 

patients with SCZ 43.  Previous studies had shown diminished power in higher alpha (11-
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14 Hz) but greater power in theta (3-6 Hz) and beta (24-33 Hz) in SCZ compared to 

healthy controls44, 45. Neuroleptics tend to normalize these responses, showing increases 

in alpha while decreasing theta and beta power. This study used auditory and visual 

stroboscopic flashes as the NF signal. It compared the EEG power spectrum 

characteristics of SCZ patients with patients showing neuroleptic-induced clinical 

improvement. It also included 9 patients with chronic SCZ who continued with treatment 

as usual. Patients performed five 33-minute EEG NF sessions to increase alpha (12 Hz 

activity) at O2 electrode site. EEG was recorded and analyzed during the last seven 

minutes of each session, as well as during a baseline seven-minute period before each 

session began. There was a significant increase in power densities at lower frequencies 

(8, 9, 10, 12 Hz), and a significant decrease in power densities at higher frequencies (16 

and 27-35 Hz) for within-session analysis. However, no change in EEG was detected in 

the between-session analysis. These results indicate that EEG deviations characteristic of 

SCZ can be changed to look like the EEG associated with neuroleptic induced clinical 

improvement. However, this effect was detected during NF training and not between 

consecutive sessions suggesting short-term improvement, compared to the longer-term 

effects of neuroleptics.  

 

In a case study of two patients, Pazooki and colleagues (2019) explored the utility of 

EEG NF to treat negative symptoms associated with SCZ 10. Since negative symptoms 

can be partially attributed to decreased attention, the NF protocol targeted increasing 

sensorimotor rhythm (SMR, 12-15 Hz) 46, and inhibiting theta (4-8 Hz) 47 both of which 

are associated with attention in SCZ. Both subjects continued to receive treatment as 

usual and no medication changes were made. The subjects received a total of 10 hours of 

NF administered in 20, 30-minute sessions. In the first phase, both patients received two 

weeks of NF to increase SMR and decrease theta in the contralateral hemisphere to their 

handedness at C3/C4. During this phase, the patients received instructions for how to 

succeed at NF before each session. A second phase used the same protocol for two weeks 

but without instructions and added augmentation of beta-I (13-18 Hz)48, which is thought 

to reduce impulsivity. Both participants showed the ability to regulate alpha, beta, theta, 

and SMR activity after NF training, regardless of whether they received instructions 

before the session. Neuropsychological testing (Go/No-go, GAF, and PANSS) further 

revealed a significant improvement in negative symptoms in both subjects. 

 

In a case study, Nan and colleagues (2017) performed intensive EEG NF on a 51-year-

old woman with chronic SCZ with AVH 49. The treatment targeted the right parietal 

cortex (P4 electrode site) and aimed to increase the alpha/beta2 50-52 ratio, which has been 

implicated in AVH in SCZ.  During four consecutive days, the patient completed 13.5 

hours of EEG-NF along with medications. Post-treatment testing showed improved 

working memory. Additionally, both negative and positive symptom severity were 

significantly improved at 22 months post completion of NF.  

 

 

3.2 rt-fMRI NF in treatment of SCZ 
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Five of the studies included in this systematic review utilized rt-fMRI NF (Table 2). Two 

of these studies included a control group, both consisting of healthy controls receiving the 

same NF, whereas one of the five studies was a case report. One study, conducted by 

Zweerings et al.51 qualified as a randomized controlled trial. The average number of rt-

fMRI NF sessions was 7.2 (ranging from 3-12), and the average length of each session 

was 15.2 minutes (ranging from 4-54 minutes). All of the rt-fMRI NF trials found a 

significant improvement in treatment target as a result of NF training in much shorter 

time frames compared to EEG-NF studies.  

 

Zweerings et al. (2019) used rt-fMRI NF to target left-hemispheric language nodes in 21 

patients with SCZ with AVH and 35 healthy controls. Subjects in the SCZ group 

continued with medications without any changes. The study design was a double blind, 

randomized, cross-over intervention. All subjects received feedback to up- or down-

regulate in two regions of interest (ROIs) for approximately 0.5 hours. Two nodes in the 

left-hemispheric language network, the inferior frontal gyrus (IFG) and posterior superior 

temporal gyrus (pSTG), were chosen as seed areas. The rationale being that improved 

self-regulation in these areas would lead to reductions in AVH. Results revealed 

increased coupling between language nodes and the default mode network (DMN) post 

NF, with greater functional connectivity in the SCZ group compared to HC.  

Additionally, post-treatment behavioral improvement was associated with increased 

functional coupling in SCZ patients between the left IFG and left IPL. 

 

Orlov et al. (2018) performed rtfMRI NF training in patients with SCZ to down-regulate 

activity in the left superior temporal gyrus (STG), a node in the left-hemispheric language 

network 53.  The rationale was similar to Zweerings et al., that is, to reduce AVH in 

treatment refractory patients with SCZ (n=12). Subjects were maintained on stable 

antipsychotic regimens. They received 4 sessions of rtfMRI NF over 2 weeks 

(approximately 2 hours total NF) to down-regulate left STG activity. During the fourth 

visit, a transfer run was performed without visual feedback, to assess generalization of 

the training. The results showed that rtfMRI NF significantly improved the subjects’ 

ability to 1) down regulate left STG activity, even when feedback was not given, and 2) 

increase functional connectivity between IFG, STG, and inferior parietal cortex; This 

indicated increased connectivity in the speech motor and speech perception regions of the 

language network. 

 

Cordes et al. (2015) designed a NF study to target up-regulation of anterior cingulate 

cortex (ACC) activity using rtfMRI NF54. The ACC was chosen as a ROI given its central 

role in cognitive processing, with the goal of treating cognitive deficits 55. Eleven patients 

with SCZ and 11 HC participated. Both groups received three sessions of rt-fMRI NF 

over the course of a week (approximately 1.28 hours) to upregulate ACC activity. Both 

groups were successful in up-regulating ACC activity post-treatment, although by using 

different strategies. The study was limited in that the authors did not provide any data on 

behavior pre/post NF. 

 

Ruiz et al. (2013) designed a study to influence activation of bilateral insula cortex (BIC) 

in individuals with SCZ 56. The insula was chosen given its role in emotion recognition57 
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and because in a previous study, HC individuals were able to up-regulate insular activity 

using rt-fMRI58. Nine individuals with SCZ were trained to up-regulate bilateral insular 

hemodynamic response during a 2-week NF protocol (approximately 1.3 hours of NF), 

while being maintained on their usual medications. A pre-post emotion recognition task 

was administered to assess behavioral response in addition to connectivity analyses. After 

NF training, subjects showed increased activation of BIC. They also showed increased 

identification of “disgust” faces, and decreased identification of “happy” faces on the 

emotion recognition task. Negative correlation between insular activation and negative 

symptoms was also noted indicating that more severe negative symptoms are associated 

with difficulties to learn self-regulation. The fact that identification of “disgust” faces 

was heightened, whereas identification of “happy” faces was reduced, highlights the need 

for careful protocols. SCZ patients are more attuned to negative emotions at baseline and 

so increasing this sensitivity would not be clinically indicated. Nonetheless, the study 

provided early proof-of-concept data that individuals with SCZ can modulate BOLD 

responses with associated changes in behavior. 

 

Dyck and colleagues (2016) performed rt-fMRI to up-regulate ACC activity (1.28 hours, 

9 sessions) in three patients with SCZ and AVH17. In addition to NF, the patients also 

performed transfer runs without feedback on the last day of testing. Significant up-

regulation of the ACC was observed in all three subjects during NF, but only one subject 

was able to up-regulate ACC during the transfer run. Self-reported questionnaires of 

subjective distress due to AVH indicated improvement. Effects on mood were mixed, 

suggesting that rt-fMRI NF effects on behavior may be sporadic. 

 

3.3 fNIRS and HEG NF in treatment of SCZ 

Two of the studies included used additional methods of NF (Table 2). In a case study, 

Storchak et al. (2019) explored the use of functional near-infrared spectroscopy (fNIRS) 

NF to treat severe AVH in a woman with paranoid SCZ 59. The subject performed 47 

fNIRS NF sessions targeting activity in the bilateral posterior STG, a speech-activated 

region previously implicated in AVH in SCZ. The total length of training could not be 

quantified as this information was not provided in the publication. Antipsychotic 

medication doses were stable for the duration of the study. During NF trials without AVH 

and during trials in which the subject experienced AVH, subject was instructed to down-

regulate activity in the STG (measured by O2Hb). During NF trials when the subject felt 

she was about to experience AVH, she was instructed to increase activity in the STG. The 

subject was able to significantly increase activity in the STG before AVH began, but not 

during trials where she was actively experiencing AVH. After 27 NF sessions, the subject 

experienced a significant reduction in AVH. 

 

Gomes et al. (2018) investigated the use of near infrared hemoencephalography NF 

(HEG NF) training to improve cognitive deficits in patients with SCZ  (n = 8) compared 

to HC (n = 12) 60. Subjects received HEG NF twice a week at the four frontal electrode 

sites F7, Fp1, Fp2, and F8 to improve prefrontal cortical function previously shown to be 

impaired in SCZ61. After ten HEG NF sessions (1 hour of NF), the left-hemispheric sites 

(F7 and Fp1) showed significantly increased activation in both groups, and the right F8 

site showed a near-significant change. Both groups showed post treatment improvement 
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in most domains of cognitive functioning (speed of processing, working memory, verbal 

memory, visual learning and executive function). The authors did not explore whether 

there were differences in length of training required to affect change in one group vs. the 

other.  

 

   

4. Discussion 

 

A recent review by Zamanpoor (2020)62 argues that “There is no central pathophysiology 

mechanism, diagnostic neuropathology, or biological markers (that) have been defined 

for schizophrenia.” The lack of answers makes it clear that the complex interactions of 

genetics and environmental factors implicated in the neuroetiology of schizophrenia need 

to be clarified. There is a growing need for clinicians and scientists to move beyond 

genomic-centric answers to an adoption of developmental, neurochemical, and 

biophysical perspectives in clinical practice and research. This expanded perspective 

must also overlap with an understanding of the environmental risk factors, such as 

pregnancy and birth complications, childhood trauma, migration, social isolation, and 

substance abuse that influence the individual's likelihood to develop the disorder.  

 

Thapar and Riglin (2020)63 argue, in support of this integrative perspective, that 

“schizophrenia typically onsets after adolescence. However, it is commonly preceded by 

childhood antecedents that do not resemble schizophrenia itself but do appear to 

index schizophrenia genetic liability.” These researchers see the necessity for considering 

age-at-onset, changes over time, and different developmental periods when interpreting 

clinical symptoms. It is precisely because NF approaches are quite flexible and 

customizable to the varieties of schizophrenia symptoms that makes them a valuable 

therapeutic tools and need to be studied. 

 

The last decade has seen renewed interest in direct brain training, or neuro modulation as 

the disciplines of computer science and engineering have made computational advances. 

Neuromodulation generally refers to the concept of direct brain-based treatment with the 

goal of targeting psychiatric disorders. Inherently, the field uses a research domain 

criteria (RDoCs) approach, in that treatment targets are biologically defined and systems 

based. For instance, rt-FMRI NF or EEG NF requires the identification of a brain region 

or electrical activity that is associated with a particular set of behaviors and uses it as a 

target of treatment. Additionally, the target is part of a neural circuit whose workings are 

known in healthy populations to some extent, and impaired in diseased states. Unlike 

other treatments, these treatments do not aim to treat syndromes or collections of 

symptoms, but rather, a constellation of behaviors arising from a neural network 

impairment. Therefore, neuromodulation treatments provide opportunities not just for 

treatment, but also to advance mechanistic understanding of disorders. In this context, NF 

strengthens an individual’s ability to gain mastery over his or her neural processing in a 

particular neural network. In this model, understanding factors that lead to failure may be 

as valuable as those that lead to success. In addition, different individuals may use 

different strategies to accomplish the same goals, allowing investigators to perhaps find 

novel treatment strategies, and/or factors that could be used to customize treatment.  
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As evidenced by the reviewed studies, although the principles of NF are uniform, they 

have been applied in SCZ in a wide variety of protocols. Additionally, despite large 

numbers of publications associated with the term “NF”, at present, there are few studies 

with empirical data in the published literature. Despite these limitations, NF treatment 

appears to influence neural processing, connectivity and metabolism in the brain, as 

shown by changes in pre/post scalp electrical activity and neuro imaging studies. 

Furthermore, many of the changes are noted during periods when feedback is not being 

provided (transfer runs), indicating that brain change has generalized and is no longer 

dependent on external cues (NF). Some studies with longer follow-up periods have found 

evidence of continued brain change even months after the training ended. 

 

Overall, rt-fMRI NF protocols appear to reach efficacy in a shorter period of time 

compared to EEG NF, however, rt-fMRI’s cost, discomfort and expensive equipment 

may preclude its use as a clinical intervention with wide use. In addition, the pre/post 

measures in rt-fMRI and EEG NF studies could benefit from standardization. For 

instance, it may be useful to the field to include both brain oscillatory and connectivity 

measures pre/post in all NF studies so comparisons can be made across modalities. The 

single HEG study reviewed here showed promising results in just 1 hour of NF. Given 

HEG NF’s ease of use and potential efficacy in a shorter protocol, this modality could 

benefit from further testing in larger samples. In general, given the flexibility and variety 

of neurofeedback treatment protocols (alpha, beta, alpha/beta, delta, gamma, and theta), 

different EEG electrode placements (frontal, temporal, central, occipital, unipolar, 

bipolar), and types of neurofeedback (frequency, power, slow cortical potential, fMRI, 

etc.), it can easily fit into a more customized or personalized therapeutic intervention for 

disorders that are themselves complex and varied in their symptoms. 

 

The promise of neurofeedback as a therapeutic tool 23, 35, 48, 64 (ISNR website. In Defense 

of Neurofeedback, https://www.isnr.org/in-defense-of-neurofeedback) must be balanced 

with certain caveats. To date, most clinical trials that have tested its efficacy are small in 

number and scale or case studies, do not randomize the subjects into treatment groups, do 

not all have proper blinded controls, and rarely compare NF to the gold standard of 

treatment, which is typically medication and other forms of therapy. Additionally, there is 

still much to uncover about what the patterns and dynamics of brain activity mean as they 

change or are changed through self-regulation. Clearly, future studies must address these 

problems. 

 

Despite these growing concerns, a chorus of support for the safety and efficacy of 

neurofeedback training has been developing, including meta-analyses showing its 

effectiveness for epilepsy 65, ADHD 66 and other disorders. This progress gives 

confidence of its application in schizophrenia treatment. Thus, given the availability of a 

large amount of proof-of-concept studies in the literature, a logical next step would be to 

conduct studies with larger sample sizes and placebo arms, with uniform well thought out 

study designs. It is important to focus on suitable target regions, identification of 

parameters including duration of treatment, dose response effects, etc. in successful 

protocols. Equally important would be translating rtfMRI NF findings to EEG NF studies 
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and combining these approaches when feasible. The recent article by Ros et al. (Brain, in 

press) titled “Consensus on The Reporting and Experimental Design of Clinical and 

Cognitive-behavioural Neurofeedback Studies (CRED-nf checklist)” does just that. It 

provides an excellent framework for future studies to unify efforts in the field. This 

consensus is not necessarily exclusive of smaller mechanistic or parametric studies that 

may still be useful. Empowering individuals with SCZ with the tools to improve their 

brain function and functioning in everyday lives will have great benefits not just for those 

affected with the illness but also for society in general. 
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Table 1. Inclusion and Exclusion Criteria 

 

Parameter Inclusion criteria Exclusion criteria 

Population 

 

 

 

SCZ  

 

Healthy individuals only 

Intervention 

 

 

 

Neurofeedback Multiple interventions*, 

Biofeedback 

Comparator 

 

 

 

Patients with SCZ, 

Healthy subjects, 

No control 

N/A 

Outcomes 

 

 

 

Neurophysiological changes, 

Improvement in symptoms 

 

Not adequately described 

outcomes 

Study design 

 

Randomized Clinical Trials, 

Single Blinded, 

Proof of Concept Studies, 

Case Studies 

Review articles 

 

SCZ = Schizophrenia 

* = One case study included simultaneous neurofeedback, cognitive retraining, and 

family intervention 
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Table 2. Neurofeedback Treatment Studies in Patients with Schizophrenia, 1964 - 2019 

 

Authors Year N NF Modality Protocol Treatment 

Dose 

(Hours) 

Control Outcomes 

Zweerings 

J et al 

2019 n = 56 rt-fMRI 8 NF sessions,  left anterior 

IFG and left posterior STG 

activity 

0.56 hrs.* HC Successful  regulation, improved 

functional connectivity, decreased 

perceived illness severity, and 

decreased symptom severity 

Balconi M 

et al 

2018 n = 18 EEG 10 NF sessions,  power in .5-5.5 

Hz (Delta/low Theta) to treat 

hemispheric imbalance 

3.75 hrs. 

 

SCZ, 

TAU 
Experimental group experienced  

hemispheric balance in delta power 

after NF 

Storchak 

H et al 

2018 n = 1 fNIRS 47 NF sessions,  activity in STG 

during AVH, and  activity in 

STG before AVH  

- - Able to regulate activity in STG 

before AVH occurred, but not 

during AVH. Significant decrease 

in AVHs 

Pazooki K 

et al 

2018 n = 2  EEG 20 NF sessions,  SMR and  4-8 

Hz Theta at C4/C3 (contralateral 

side to handedness). Followed by 

2 weeks NF to  13-18 Hz at F3 

10 hrs. - Both participants were able to 

regulate their alpha, beta, theta, and 

SMR activity, accompanied by 

significant improvements of 

negative symptoms 

 

Rieger K 

et al 

2018 n =10 EEG 16 NF sessions,  amplitude of 

N100 ERP component 

5.9 hrs. 

 

Sham 

NF 

No significant improvement in 

AVH in regards to NF or sham NF 

Orlov ND 

et al 

2018 n = 12 rt-fMRI 4 NF sessions,  regulate voice-

sensitive regions in left STG 

1.93 hrs.* 

 

- Patients learned to  STG 

activation and increased functional 

connectivity 

Gomes JS 

et al 

2018 n = 20 HEG 10 NF sessions,  activity at F7, 

Fp1, Fp2, and F8  

1 hr. 

 

HC Both groups were able to regulate 

brain activity, improved cognitive 
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function in multiple domains in 

both SCZ and HC 

Nan W et 

al 

2017 n = 1 EEG 12.5 hours of NF, to  alpha and 

 beta2 at P4 

12.5 hrs. 

 

- Alpha/beta2 ratio increased over 

sessions. Significant improvement 

in + and - symptoms after 22 

months 

 Dyck MS 

et al 

2016 n = 3 rt-fMRI 9 NF sessions,   ACC activation 1.28 hrs.* - Significant  activation of ACC 

and improvements in AVH 

Cordes JS 

et al 

2015 n = 22 rt-fMRI 3 NF sessions,   ACC activation 1.28 hrs.* HC Experimental group  activity in 

dorsal ACC, healthy subjects  

activity in rostral ACC 

No description of effects on 

cognition 

Ruiz S et 

al 

2013 n = 9 rt-fMRI 12 NF sessions,  activation of 

bilateral insular cortex 

1.30 hrs.* - Improved control of anterior insula 

cortex: better control of negative 

symptoms 

Surmeli T 

et al 

2012 n = 51 EEG Average of 58.5 hours of NF, 

targeting deviations in individual 

qEEG 

Ave. 58.5 

hrs. 

- Significant improvements in qEEG 

deviations and symptoms 

Schneider 

F et al 

1992 n = 24 EEG 20 NF sessions, regulate activity 

of SCP (recorded from Cz) 

4.89 hrs. 

  

HC Experimental group required more 

NF training to achieve similar 

control of SCP compared to healthy 

controls 

Schneider 

SJ et al 

1982 n = 9 EEG 5 NF sessions,  8-13 Hz and  

power densities over 15 Hz at O2 

2.75 hrs. 

 

- Successful within session 

regulation of brain activity, no 

change between sessions 

 

 

ACC = anterior cingulate cortex 

AVH = auditory verbal hallucinations 
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EEG = Electroencephalogram  

ERP = event-related potential  

fNIRS = functional near-infrared spectroscopy 

IFG = inferior frontal gyrus 

NF = neurofeedback 

rt-fMRI = real time functional magnetic resonance imaging 

SCP = slow cortical potentials 

SMR = sensorimotor rhythm  

STG = superior temporal gyrus 

TAU = treatment as usual 

 = increase 

 = decrease 

* rt-fMRI alternates rest blocks with NF. Estimated NF dose includes both training and rest time 
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