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Abstract

In epigenome-wide association studies (EWAS), different methylation profiles of distinct cell-

types may lead to false discoveries. We introduce ReFACTor, a method based on principal 

component analysis (PCA) for the correction of cell-type heterogeneity in EWAS. ReFACTor does 

not require knowledge of the cell counts, and it obtains improved estimates of the cell-type 

composition, resulting in improved power and control for false positives in EWAS. Corresponding 

software is available from http://www.cs.tau.ac.il/~heran/cozygene/software.shtml

Main Text

Recent work applying EWAS suggests an important role for DNA methylation as a 

mechanism involved with disease. In a standard EWAS of primary tissue such as whole-
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blood, methylation data represent the epigenetic states of a heterogeneous mixture of cell-

types. Since the epigenome is highly variable across different cell-types, correlations 

between the phenotype of interest and the cell-type composition lead to a large number of 

false discoveries1,2.

The standard statistical analysis applied in EWAS uses a univariate test for correlation 

between the phenotype and each of the probed CpG sites. Thus, false discoveries due to cell-

type heterogeneity can be addressed by adding the cell proportions as covariates. However, 

cell-type compositions are typically not measured and therefore a computational method has 

been proposed for the estimation of cell-type composition using a reference dataset which 

includes methylation measurements for sorted cells3. Unfortunately, reference data of 

whole-genome methylation levels from sorted cells are available for a small subset of 

different blood cells, and are not available for other tissues. Furthermore, the existing 

datasets are small3,4, and the individuals in the reference data are not matched for 

methylation altering factors such as age and sex, which may lead to inaccuracies in the cell-

type estimates. Due to the above limitations, reference-free methods, which do not rely on 

external reference data have been proposed2,5.

We show that none of the current methods adequately controls for false positives and we 

present a new method, Reference-Free Adjustment for Cell-Type composition (ReFACTor), 

to address the shortcomings of current methods. ReFACTor is based on a variant of PCA, 

and it does not require a reference dataset, thus it can be applied to any tissue. PCA is a 

natural candidate for correction of cell-type heterogeneity, since the first several principal 

components (PCs) are correlated with cell-type composition6. However, only a small 

number of sites are significantly different between cell-types (known as differentially 

methylated regions, or DMRs), therefore using all the sites in PCA potentially reduces the 

correlation. Motivated by this observation, ReFACTor performs PCA on a subset of the sites 

that are differentially methylated across the different cell-types rather than a PCA on the 

entire set of CpG methylation sites. Specifically, ReFACTor selects the sites that can be 

reconstructed with low error using a low rank approximation of the original methylation 

matrix. Thus, in contrast to other methods in which unsupervised site selection is performed 

(e.g., FaST-LMM-EWASher2), ReFACTor does not use the phenotype in the selection 

process, making it useful as part of a quality control step in EWAS.

We evaluated the ability of ReFACTor to capture cell-type composition by simulations and 

real data. We first simulated mixture of cell-types and measured the correlation of the PCs of 

ReFACTor (ReFACTor components) with the cell proportions. We observe that the 

correlation between each of the cell-types and the linear predictor of the cell-type using the 

first several ReFACTor components is substantially improved compared to the first several 

PCs of a standard PCA. These results were robust to the simulation parameters (see Online 

Methods and Supplementary Fig. 1–3).

Next, we measured the performance of ReFACTor on real data from the GALA II dataset7 

(n=489). The GALA II cohort contains whole-blood methylation data as well as cell count 

measurements for 78 of the samples, allowing us to evaluate the correlation between the 

measured cell-type proportions and the inferred ReFACTor components. We compared the 
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results of ReFACTor to PCA, and to the available reference-based method3 (Fig. 1). Overall, 

ReFACTor’s correlation with the cell-type proportions is higher than PCA’s, and it 

outperforms the reference-based method with six components, the number of cell-types it 

estimates, even though the reference-based method leverages external data not available to 

ReFACTor. Although cell counts can potentially be used to adjust for tissue heterogeneity in 

EWAS, we observe that false discoveries can arise in the common case where cell counts are 

measured or estimated only for a small number of preselected cell-types (see Supplementary 

Note). False discoveries particularly arise in the absence of cell counts for cell-types that are 

correlated with the phenotype. In contrast, we find that ReFACTor’s PCs provide a good 

correction in such settings (Supplementary Tables 1–2 and Supplementary Fig. 4–5).

We further evaluated the control for false positives of ReFACTor using simulations. For each 

simulated dataset we generated a phenotype using a linear model of the cell-type proportions 

and a randomly chosen causal methylation site (Online Methods). We compared five 

approaches for EWAS analysis: uncorrected linear regression, linear regression with PCA, 

linear regression using ReFACTor components, FaST-LMM-EWASher2, and 

RefFreeEWAS5. We found that none of the methods adequately controls for false positives, 

however, ReFACTor obtains a significantly reduced level of false discoveries 

(Supplementary Fig. 6).

We compared the fraction of simulated datasets in which the truly associated methylation 

site obtained the best p-value (the detection power). We observe that the detection power 

was significantly higher using ReFACTor compared to other methods (Supplementary Fig. 

7). We further considered the scenario in which the methylation differences in the causal site 

between the various levels of the phenotype are cell-specific, and where multiple sites are 

causal (Online Methods). In both scenarios ReFACTor outperforms all other methods 

(Supplementary Fig. 8–9).

The correlation between the cell-type composition and ReFACTor’s PCs potentially allows 

for an improved correction of EWAS. We performed an EWAS using whole-blood 

methylation data from a recent study with rheumatoid arthritis (RA)8. Since the cell 

composition in blood of RA patients typically differs from the general population9, there is a 

risk for false discoveries that stem from unaccounted cell-type heterogeneity. We performed 

different approaches for correction of false discoveries (Fig. 2). As a baseline, we performed 

a logistic regression without adjusting the data for cell composition, resulting in a severe 

inflation of the test statistic, consistent with the results reported in previous studies2,5,8. We 

then adjusted the data using the estimates of the cell-type proportions obtained by the 

reference based method3. This correction removed the inflation by eliminating the cell 

composition confounder. We then proceeded with unsupervised methods for cell-type 

correction, namely using the first several PCs of a standard PCA, FaST-LMM-EWASher2 

and RefFreeEWAS5. None of these unsupervised approaches were able to reconstruct the 

results obtained using the reference-based approach. In contrast, adjusting the data with only 

one ReFACTor component eliminated the inflation and revealed the three significant 

associations that were found by the reference-based approach (Supplementary Table 3).
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In conclusion, we observe that both ReFACTor and the reference based method resulted in a 

small number of significant sites in comparison to the uncorrected analysis. Theoretically, 

both of these methods might have over-corrected true signals. In order to exclude this 

possibility, we repeated the analysis where the set of sites chosen for the PCA step of 

ReFACTor were selected by considering only the controls and discarding the cases. This 

procedure also resulted with the same three associated sites (Supplementary Fig. 10). Since 

the PCA was performed on a small number of sites selected using a group of healthy 

samples, an over-correction is not likely in this case.

Similar to PCA, ReFACTor allows the flexibility to efficiently perform any desired 

downstream analysis once regressing out the ReFACTor components, such as association 

test for a large number of phenotypes, or logistic regression for dichotomous phenotypes. 

For example, this allows running permutation tests efficiently since the permutation needs to 

be performed on the residuals of the methylation data after regressing out the ReFACTor 

components. We note that in principle modifications of other existing methods2,5 could lead 

to similar utility in those methods.

The underlying assumption of ReFACTor is that the confounders are affected by a sparse set 

of methylation sites. Future work may further improve the performance of ReFACTor by 

using other feature-selection algorithms, as well as by optimizing the selection of the 

dimension parameters used in the algorithm.

Although our experiments focused on cell-type composition, we believe that ReFACTor is 

likely to perform well on other unknown confounders in EWAS. Other known confounders 

such as sex and age are also affected by a sparse set of CpGs10,11. However, as in any other 

unsupervised method, it is important to consider the possibility that an unknown confounder 

was not captured by the method due to deviations from the assumptions. Moreover, since 

ReFACTor corrects principal components of a set of DMRs, if by chance many of these 

DMRs are causal, ReFACTor will result in over-correction and loss of power. Our suggested 

approach in which the DMRs are chosen based on the controls alone should alleviate this 

potential risk.

Online Methods

The ReFACTor Algorithm

We assume that methylation levels have been measured at m methylation sites across n 

individuals. Let Oi be an m×1 vector of observed beta normalized methylation levels in an 

individual i, and let Ri be a k×1 vector corresponding to the individual’s specific cell-type 

composition. That is, Rhi is the fraction of cell-type h in individual i. Furthermore, let M be 

an m×k matrix corresponding to the mean value of each site for each cell-type, i.e., Mjh is 

the mean methylation value of cell-type h at CpG site j. The following generative model 

motivates the approach taken in ReFACTor. We assume the methylation level at site j cell-

type h to be normally distributed with mean Mjh, and that the methylation measurement 

error is also normally distributed with mean 0. Thus, the model we assume can now be 

summarized as
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where εi is normally distributed. Effects known to be correlated with methylation (e.g., 

age10, sex11, smoking12 and DNA sequence variation13,14) can be added to the model as 

fixed linear effects and can be regressed out.

In theory the variance of εji should depend on both i and j, or more precisely on j and on 

. However, we found that empirically reconstructing R is more robust when we make 

the relaxing assumption that εji~N(0,σj
2). If we relax the non-negativity assumption of the 

entries of M and R, we obtain a formulation that is equivalent to factor analysis, and when σj 

is equal for all j the formulation is equivalent to PCA. We make the additional assumption 

that only a small subset of the sites are highly affected by R. Put differently, most rows of M 

are constant or near-constant, and only t rows of M are highly informative with respect to R, 

corresponding to the DMRs. This assumption is based on previous studies that considered 

only a small subset of sites for capturing the tissue composition1,3,6.

The ReFACTor algorithm gets as an input an observed m×n methylation matrix O, after 

centering and standardization of each site, the number of assumed cell-types k in the data, 

and the number of DMRs t, and its goal is to find R̂ that is correlated with the real cell-type 

proportions R. The algorithm proceeds as follows.

1. Find a matrix V of dimensions m×k, consisting of the top k left-singular vectors 

of O (i.e., the top k eigenvectors of OtO).

2. Compute Õ=VVtO, which is the k-rank approximation to O.

3. For each site j, let d(j) be the distance between the jth row of O and the jth row of 

Õ.

4. Construct O′ from O by taking a subset of the t rows with the lowest distances.

5. Run PCA on O′, and return R ̂, an estimate of R given by the solution (the scores 

of the first k principal components).

Intuitively, d(j) is low when the k-rank approximation of O approximates the jth row of O 

well. Therefore, sites with a low value of d(j) are more likely to be DMRs, assuming the first 

k PCs correspond to cell-type composition. Sites with high distances are more likely to be 

uncorrelated with the cell-type composition, and therefore removing them from the analysis 

results in a better correlation with the true cell-type composition. We note that the suggested 

approach captures the cell-type composition better than both common methods used in 

deconvolution of RNA expression data and an alternative approach in which we select the 

top t most variable sites (Supplementary Fig. 11 and 12).

The algorithm will scale to any sample size achievable by a PCA implementation, as the 

running time is dominated by the calculation of the k top left-singular vectors of O. The 

runtime of singular value decomposition is quadratic in the number of samples, however 

more efficient methods such as the power method or sampling techniques15,16 may result in 

considerably reduced runtime. Empirically, under a standard implementation of PCA, 
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ReFACTor required no more than several minutes of execution time on all the datasets 

described here.

In principle, in the above procedure, one would want to use factor analysis instead of PCA, 

i.e., assume that different sites have different values of σj. Factor analysis is performed in 

iterations, where in each iteration the values of each site are scaled. The first iteration of 

factor analysis is equivalent to PCA after standardization of each of the sites, which is the 

step taken in ReFACTor. Empirically, applying more iterations of the factor analysis did not 

improve the performance, and the value of σj was close to the value inferred in the first 

iteration (data not shown).

The ReFACTor components can be added as covariates to an EWAS. In case of an inflated 

test-statistic due to cell-type composition, ReFACTor components can be added one by one 

until the desired decrease in inflation is achieved, similar to the approach suggested by Zou 

et al.2.

Parameters selection

Throughout the analysis we applied ReFACTor on the data with the top t=500 most 

informative methylation sites, consistent with a line of previous work that used subsets of 

500–600 informative sites for capturing the cell-type composition1,3,6. We set k=6 to align 

with the number of cell-types estimated in whole blood by the reference-based approach, 

and throughout the paper, unless mentioned otherwise, we used the first six ReFACTor 

components in the analysis of real data and the first five components in the analysis of 

simulated data (simulated with k=5). The performance of ReFACTor was robust to a wide 

range of choices of t and to the choice of k (Supplementary Fig. 13–16).

Datasets and quality control

In order to evaluate the performance of ReFACTor, we used whole-genome methylation data 

from the GALA II dataset7, a pediatric Latino populations study. The study protocol was 

approved by the UCSF Human Research Protection Program and IRB approved informed 

consent was obtained from all participants prior to any study procedure. Blood samples were 

collected from 573 participants and assayed on an Illumina 450K DNA methylation chip. 

Additional blood samples were collected for 95 of the samples four months later, for 

obtaining cell counts. A complete blood count with automated white blood cell differential 

was performed by automated flow cytometry at CLIA certified laboratories (UCSF Medical 

Center, San Francisco, CA and Quest Diagnostics, Madison, NJ). Note that the results 

showing the correlation of ReFACTor to the cell counts (Fig. 1) demonstrate that 

methylation levels can predict cell-type composition in the future, which is most likely due 

to the fact that cell-type composition is stable over time. Out of the total 573 samples, 525 

samples were available at the time of analysis (a subset of the individuals for which 

genotypes were collected as well as part of the GALA II study). Samples with 

inconsistencies in the available identifiers conversion file (between genotypes and 

methylation data) were dropped. In addition, samples that demonstrated extreme values in 

the first two principal components on the methylation levels were removed (more than 2 

standard deviations). A total of 489 samples remained for the analysis (245 males and 244 
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females), and for 78 of them cell count measurements were available for five different cell-

types: lymphocytes, monocytes, and three granulocytes subtypes - neutrophils, eosinophils, 

and basophils. Probes from sex chromosomes were discarded, as well as consistently 

methylated probes and consistently unmethylated probes (mean value higher than 0.8 or 

lower than 0.2, respectively), as was previously suggested for EWAS8, resulting in 102,503 

probes that were included in the analysis. The data were SWAN17 normalized and corrected 

for batch using COMBAT18. For the analysis, we estimated cell proportion levels of CD8T, 

CD4T, NK cells, B cells, monocytes and granulocyte cells, using an existing reference-based 

approach3. In order to compare between the cell proportion estimates and the available cell 

counts, we collapsed the four estimates of lymphocyte cell-types (CD8T, CD4T, NK cells 

and B cells) into a single combined lymphocytes levels. For both the COMBAT 

normalization and the estimation of cell proportions we used the minfi package19. The 

GALA II methylation data is now publicly available in the Gene Expression Omnibus 

(GEO) database (accession number GSE77716).

We also measured the performance of ReFACTor on a dataset that was first studied in a 

recent association study of DNA methylation with rheumatoid arthritis (RA), including 354 

cases and 332 controls8 (193 males and 493 females). Blood samples were collected from 

the participants and assayed on an Illumina 450K DNA methylation chip. The data are 

publicly available and were downloaded from the GEO database (accession number 

GSE42861). We repeated the quality control procedure for the data applied in a recently 

published work2 on the same data - filtered out consistently methylated probes and 

consistently unmethylated probes (mean value higher than 0.8 or lower than 0.2, 

respectively), as previously suggested8, resulting in 103,638 probes that were included in the 

analysis. The probe values were corrected for age, sex, smoking and batch using linear 

regression. For these data, we estimated cell proportion levels of T cells, NK cells, B cells, 

monocytes and granulocyte cells, similarly as was done for the GALA II dataset.

ReFACTor’s site selection

Informally, the sites selected by ReFACTor are chosen so that they are well approximated by 

Õ, the low rank approximation of the original methylation matrix O. Put differently, in Õ the 

jth row corresponds to an approximation of the jth methylation site (the jth row of O). Since 

the low rank approximation uses the eigenvectors of OtO, similarly to PCA, it maximizes the 

variance of the resulting low dimensional space defined by the k top eigenvectors. Thus, 

methylation sites that are highly variable across different cell-types (or generally across 

different values of a the main confounders) are expected to contribute substantially to the 

low rank approximation, and they will therefore be well approximated by the ReFACTor 

procedure. For a comparison between the feature selection and algorithmic details 

underlying ReFACTor and those of other methods see Supplementary Table 4.

Indeed, we found 90 methylation sites in the intersection of the 500 sites determined as the 

most informative by ReFACTor on the GALA II data, and the list of top DMRs previously 

reported in leukocyte cells1 based on sorted leukocytes4 (p-value<10−50, hypergeometric 

test). We also found 100 methylation sites in the intersection between the 500 sites 

determined as the most informative by ReFACTor on the RA data, and the list of DMRs 
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previously reported in leukocyte cells1 based on sorted leukocytes4 (p-value<10−50, 

hypergeometric test). Remarkably, we found most of the sites selected by ReFACTor for the 

RA data to be the same sites selected for the GALA II data (270 sites in the intersection; p-

value<10−50, hypergeometric test).

Data simulation

The methylation data were generated using a generative model in which a fraction p of the 

sites are DMRs; for each DMR we assume a normal distribution per cell-type (with a 

potentially unique mean for each cell-type). In non-DMR sites the mean methylation values 

of all cell-types are equal. Each site was assumed to have a unique variance. The parameters 

of the model were set according to a methylation reference of sorted white blood cells 

(assayed on an Illumina 450K platform)4. The reference data are publicly available and were 

downloaded from the GEO database (accession number GSE35069). Since the reference 

includes only six individuals, we assume that the mean values of the cell-types in DMRs are 

generated from a normal distribution with a standard deviation τ (shared across all DMRs). 

Thus, τ controls the level of cell composition information in DMRs. DNA methylation data 

were generated from a normal distribution (conditional on the range [0,1]) for five cell-types 

per individual i and per site j, and cell-type proportions were generated from a Dirichlet 

distribution. Finally, observed DNA methylation levels were composed for each individual 

by its simulated methylation levels and cell proportions. A random normal noise was added 

to every site to simulate technical noise (σ=0.01).

DNA methylation levels were simulated for the same set of 103,638 sites used in the RA 

analysis, and the Dirichlet parameters were estimated from the cell-type proportion 

estimates of the same data. Every simulated dataset included 500 individuals. We estimated 

τ from the reference of sorted cells using maximum likelihood and found that τ=0.07 fits the 

data best. The parameters of the normal distributions for generating the methylation levels 

were estimated from the reference as well. The proportion of DMRs was set to be p=0.07, 

following a previous report, in which the authors used the same reference of sorted cells in 

order to detect DMRs1. Applying a Bonferroni correction for multiple hypotheses correction 

results in about 15% of the sites crossing the significance threshold.

We simulated three scenarios in order to evaluate the detection power of the methods. First, 

we generated continuous phenotypes using a linear model of the cell composition, a causal 

methylation effect and a randomly distributed noise. The causal methylation site was 

randomly chosen, as well as one of the cell-types which was used in the linear model. The 

effect size of the cell-type was sampled from a standard normal distribution. We used several 

different levels for the effect size of the causal site. In the second set of simulations the 

phenotypes were simulated by a linear model of the cell composition, the methylation levels 

of a randomly chosen site in a randomly chosen cell type (as opposed to total methylation 

level at the causal site), and random noise. Finally, in a third set of simulations we simulated 

ten causal sites; we simulated the phenotype as a linear function of a randomly chosen cell-

type, and then we randomly picked 10 sites and added to their methylation levels a linear 

dependency in the phenotype, with varying effect sizes. In these simulations methylation 

levels were simulated only for the 10,686 sites from chromosome 1 that were available in the 
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RA data. The restriction to a small number of sites was done to reduce runtime - a few of the 

methods we assessed are computationally intensive and running hundreds of simulations 

becomes computationally prohibitive.

Estimating white blood cell proportions

Estimates were obtained using the default sites implemented in the minfi package19, defined 

and assembled for the 450K array1 based on the approach described by Houseman et al.3 

and 450K reference data4.

FaST-LMM-EWASher and RefFreeEWAS

We executed FaST-LMM-EWASher2 and Ref-FreeEWAS5 using the default parameters. For 

the latter, we used 250 bootstraps in each execution and applied the methodology proposed 

by the author for determining the dimension parameter d (determined d=46 for the GALA II 

dataset and d=43 for the RA dataset).

Code availability

Python and R software associated with our method is available online (http://

www.cs.tau.ac.il/~heran/cozygene/software.shtml), accompanied by a complete set of 

documentation and instructions. Additional tools for guiding the parameters selection for the 

ReFACTor algorithm are provided as well.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The fraction of variance explained in each of the cell-types for which cell counts were 

available in the GALA II dataset (78 samples). The ReFACTor components are in blue, the 

PCs of standard PCA are in red, and the available estimates of the reference-based method 

are in black. (a) Correlation with lymphocytes cell count as a function of the number of 

components used in the linear predictor (squared linear correlation). (b) Correlation with 

monocytes cell count. (c) Correlation with neutrophil granulocytes cell count. (d) 

Correlation with eosinophil granulocytes cell count. (e) Correlation with basophil 

granulocytes cell count.
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Figure 2. 
Results of the RA methylation analysis, presented by quantile-quantile plots of the –log10 p-

values for the association tests. Significant deviation from the red line indicates an inflation 

arising from a confounder in the data. (a) No correction. (b) Correction using the reference-

based estimates of the cell-type proportions. (c) Correction using the first couple of PCs of a 

standard PCA. (d) Correction using RefFreeEWAS. (e) Correction using FaST-LMM-

EWASher. (f) Correction using the first ReFACTor component.
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