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Abstract

We have considered a simple word game called the word-
morph. After making our participants play a stipulated num-
ber of word-morph games, we have analysed the experimental
data. We have given a detailed analysis of the learning in-
volved in solving this word game. We propose that people are
inclined to learn landmarks when they are asked to navigate
from a source to a destination. We note that these landmarks
are nodes that have high closeness-centrality ranking.

Introduction
Human navigation has been a topic in spatial cognition
for quite some years now (Aginsky, Harris, Rensink, &
Beusmans, 1997; Hart & Moore, 1973; McDonald &
Pellegerino, 1993; Moore & Golledge, 1976). To un-
derstand how humans explore a complex environment,
Moeser (Moeser, 1988) conducted an experiment and ob-
served how nurses learned to traverse in a hospital build-
ing which had a very complex structure. Aginsky et. al.,
(Aginsky m. fl., 1997) proposed two strategies that humans
adopt in learning to navigate, they infer from their experi-
ments that humans follow either a visually dominated or a
spatially dominated strategy to solve a route-learning prob-
lem. Basakya et al., (Baskaya, Wilson, & zcan, 2004) explore
spatial orientation and wayfinding behavior of newcomers in
an unfamiliar environment. Passini (Passini, 1984) has pro-
posed that in wayfinding problem, one learns whatever is nec-
essary and sufficient to achieve a goal.

In recent years, another type of complex environment has
attracted scientific research, namely complex networks. It
has been known for a long time that most real-world net-
works belong to the type of so-called small worlds (Watts
& Strogatz, 1998), i.e., that they have a small average dis-
tance and that it is thus easy to reach each node within only
a few steps. This has first been demonstrated by a classic
experiment by Milgram (Milgram, 1967) in which he asked
the participants to send a letter via acquaintances to some
person unknown to them. Most of the letters reached their

target within only a few steps. This basic finding was also
reproduced by Watts et al., (Sheridan Dodds, Muhamad, &
Watts, 2003) using emails. Since the experimental results
were quite clear, only decades later Kleinberg finally asked
the question of how people are essentially able to find the
short paths in a small-world without any further information
(Kleinberg, 2000b, 2000a). Since there are potentially many
paths of short length, this is indeed not totally obvious. In his
model Kleinberg assumes that each target is associated with
a location, given by geometric coordinates. In this setting
he proves that only a restricted type of small-worlds enables
people to navigate within them efficiently. In a follow-up pa-
per, Simsek and Jensen (Simsek & Jensen, 2008) show that a
similarly efficient navigation can also be achieved in a model
based on degree and homophily. To our knowledge, none of
these models have been tested with real humans.

The word-morph game presents a well defined naviga-
tion problem in a complex network: given two words
w1,w2 of the same length, one is asked to find a sequence
of words from w1 to w2 such that each successor differs
in only one letter from the predecessor. Fig. 1 shows
some examples of feasible solutions for the word pairs
(BOY,PER),(CAR,SHY ),(AXE,NUT ), and (T RY,POT ).
Note that these are just one of the many possible solutions.

In this work, we combine the word-morph game problem
with a network analytic approach to understand how humans
navigate in these complex networks. In the given setting, a
navigator is neither equipped with geometric information as
in Kleinberg’s model, nor is there a notion of homophily be-
tween words that is meaningful for solving the puzzle. Thus,
the navigation strategy cannot be described by any of the
models sketched before. The simple setting allows to directly
identify the strategy by which people learn to navigate in a
complex network. We can show that they quickly identify
so-called landmark words which they use most frequently in
their navigation. We can also show that these landmark words
have a central position in the complex network, leading to a
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BOY −PER CAR−SHY AXE−NUT T RY −POT

BOY CAR AXE TRY
| | | |

BAY CAT APE TOY
BAT PAT ACE TON
CAT PET ACT T IN
CAR SET ANT SIN
PAR SEE AND SIT
| SHE AID PIT

PER | BID |
SHY BIT POT

BUT
|

NUT

Figure 1: Exemplary word-morph games.

direct correlation between the network’s structure and human
navigation in it. Once these landmark words have been de-
tected by a navigator, the time she needs to navigate from one
point to any other point decreases significantly. The approach
of our paper can be easily generalized to observe more spe-
cific questions about how humans navigate in complex net-
works as we will discuss in the summary. The paper is orga-
nized as follows: Sect. gives the necessary definition, before
the experimental setting is explained in detail in Sect. . The
results of the experiments are discussed in Sect. , followed
by a discussion of related work in Sect. . We finish with a
conclusion in Sect. , which discusses possible generalizations
of our network analytic approach to the human wayfinding
problem.

Definitions
A graph G = (V,E) is composed of a set of nodes V and a set
of edges E ⊆V×V , with |V |= n and |E|= m. A way between
two nodes u and v is any sequence of edges (e1,e2, . . . ,ek)
with e1 = (u,x1),e2 = (x1,x2), . . . ,ek = (xk−1,v). A path is a
way with no repeating nodes. The length of a way is defined
as the number of edges in it. A shortest path between two
nodes u and v is a path with length l, such that, every other
path between u and v is of length greater than or equal to
l. Two nodes are said to be connected if there exists a path
between them. The distance d(v1,v2) between any two nodes
is defined as the length of a shortest path between them, or
set to ∞ if there exists no path between them. Any maximal
set of pairwise connected nodes is called a component of the
graph. Let Σ be a set of letters, and Σ∗ be the set of all possible
concatenations. Let L ⊆ Σ∗ be some language and Lk denote
the set of all words with the same number of letters k. For a
given L and k, one instance of a word-morph game consists of
two words (start,end) ∈ Lk×Lk. A solution of this game is
any sequence of words start = w1,w2,w3, . . . ,wk = end such

that any two consecutive words differ in exactly one letter.
E.g., for the pair (CAR,SHY ), the following sequence is a
solution:

(CAR,CAT,PAT,PET,SET,SEE,SHE,SHY ).
The rules of the word-morph game defines a natural relation
'R on all words in Lk, i.e., regarding the rules, any two words
v,w in Lk are related if they differ by exactly one letter. Thus,
(Lk,'R) defines a graph on the words in Lk, which we call the
word-morph network G(Lk) on Lk. In the following, Lk will
be the set of all three-letter words in English, as defined by
the Oxford dictionary (Catherine & Angus, 2005), and G(L3)
is the respective graph. G(L3) is shown in Fig. 2(a), a part of
the full network is shown in Fig. 2(b).

(a)

(b)

Figure 2: (a) The word-morph network G(L3) composed of
all three-letter words in English. (b) A part of G(L3) together
with the ranking of the nodes, as defined by the closeness
centrality.

A centrality index is a real-valued function C : V → R on
the nodes (Brandes & Erlebach, 2005). The intuition is that
the higher the value of this function, the more central this
node is for the network. There are various indices; in this
article we use the so-called closeness centrality (Sabidussi,
1966) CC(v), which is defined as the reciprocal of sum of the
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distances of v to all other nodes w:

CC(v) = 1/ ∑
w∈V

d(v,w)

For any given graph, a centrality index can be used to define a
ranking on the nodes, by sorting the nodes non-decreasingly
by their centrality value. Fig. 2(b) shows the ranking of 15
nodes in a subgraph of G(L3).

To understand the exploration and navigation of humans
in a complex network, we conducted a series of word-morph
games with 20 different participants. The experimental set-
ting will be described in the following.

The Experiment
The experimental setting: The experiment was conducted
on 23 participants (16 men and 7 women ). 3 participants
(all men) gave up before playing the first ten games. The 20
participants whose data is presented in our analysis are all
those who completed exactly 65 games. The average time
that participants took to play all the games was 233 minutes.
Participants played the game without taking any break in be-
tween. All 20 participants were graduate students of the age
group 20−25 of the Indian Institute of Science. None of them
knew the game before hand. From the list of all 967 three-
letter words contained in the Oxford dictionary (Catherine &
Angus, 2005), each participant Pi first selected the words she
knew. This set is denoted by V (Pi) ⊆ L3, and the respective
graph is denoted by G(Pi). After that, the game was explained
to the participant and we asked her what her initial strategy
will be to solve the game (Question I). After the first 15 games
we asked whether any kind of difficulties arose while playing
the game (Question II). After playing another 50 games, the
participant was then asked whether their initial game solving
strategy was useful (Question III).

Creating the word-morph instances: Every participant’s
graph G(Pi) had a biggest component, which was almost the
same as the graph except for 5 to 10 words. Exact statistics
are provided in the results section (Sect. ). Smaller com-
ponents were either isolated nodes, or isolated edges. Only
the biggest component was retained and the rest were deleted
from G(Pi) - for every i. We shall henceforth mean, by G(Pi),
the biggest component of the graph.

All 65 word pairs were chosen to be distinct. For the
first 15 games, word pairs (wi,w j) were choosen such that
each of the word pair’s d(wi,w j) was 5. The distance be-
tween words was increased by 2 units every 10 games thereof.
This was easily possible, as the diameter which is defined as
max{d(u,v) : u,v∈V} of the graphs G(Pi) on an average was
12.3.

Information logging and post-processing of the data:
For each participant Pi her selected vocabulary V (Pi) was
saved and G(Pi) computed. For this graph, the closeness cen-
trality was computed for all nodes and their rank determined

by sorting the words accordingly. For each of the 65 game
instances, we stored the word pairs that was given to the par-
ticipant and her solution. Time was recorded for 10 partici-
pants. Participants entered their solutions via an interactive
computer program. They were not allowed to use any writing
aids.

Results
We will first discuss the properties of G(L3) together with the
graphs G(Pi). We will finally describe the results concerning
the actual game solving process.

General properties of G(L3)

Table 1: Properties of G(L3) and G(Pi)

Property G(L3) Max Min Avg
Nodes in graph 967 626 306 446.8
Nodes in Biggest component 967 619 297 438.3
Number of components 1 12 5 7.1
Diameter 9 14 10 12.3
Average path length 3.54 4.29 3.69 3.97
Average degree 16 11.8 7.6 9.6

In Table 1, the second column contains the properties of
G(L3), while the third fourth and fifth columns respectively
contains information on maximum, minimum and average
values of the G(Pi), for all 1≤ i≤ 20.

The first observation is already astonishing: while the first
10 games took our participants 10 to 18 minutes per game,
after around 15 games, they became reasonably faster. Their
solving time dropped to 2 minutes per game. It furthermore
dropped to a mere 1

2 a minute after 28 games. Fig shows the
time taken vs the game number. Time taken is averaged over
10 participants.

Participants found it very difficult to solve the first few
games. It can be easily seen from Fig. 3 that the time spent
to solve the instances were significantly higher on the first 10
games as compared to that of the successive games.

Analysis of the answers to the three questions
• Answer to QI: 100% of the participants answered that the

strategy which they thought will work, was to first find a
word which matches one letter of the final word, then start-
ing from that one to find a word which matches the final
word in two letters.

• Answer to QII: After 15 games, 95% of the participants
said that they were finding it extremely difficult to solve
the game.

• Answer to QIII: 100% of the participants felt that the strat-
egy which they answered in QI did not work and that they
found a new strategy: “Navigating through certain words
made the game very easy to solve.”
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Figure 3: Average time taken per game in seconds vs number
of games played.

The answers show that the subjective impression after 15
games is that the game is still difficult to solve. It is very in-
teresting to note that 100% of all participants chose the same
initial strategy and that all of them changed to a different one
finally. They also state that they used a subset of words as via
media to navigate through the network. In the following we
will show how to determine these words for each participant
by an analysis of the solutions. A deeper analysis regarding
the relationship of this set to the structure of the word-morph
network will then reveal that this set is an absolutely non-
random selection.

To illustrate, let us consider a few games played by one of
our participants, Ms. Hilda. In 46 out of the total 65 games
that Ms. Hilda played, she used at least one of the words
HIT ,OAT , and AID to navigate from any given word to any
other word. Below are some of the word-morph games that
Ms. Hilda played. Note the usage of the landmark word AID:

EGO AGO ADO ADD AID BID BAD BAY BOY TOY TOE
WOE
SAY BAY BAD BID AID ADD ADO AGO EGO
BAY BAD BID AID ADD ADO AGO EGO EGG
ASS ASK ARK ARM AIM AID BID BAD BAR EAR
THY TOY BOY BAY BAD BID AID ADD ADO AGO AGE

We noticed that participants used certain landmark words
repeatedly to navigate on the network. To understand how
these words are used to navigate in the network, we will now
introduce two definitions concerning the trajectory of a single
solution. Let S(Pi,x) = {w1,w2, . . . ,wk} be the solution of
participant Pi for the x-th game as defined by the word pair
(w1,wk). To each word, we assign its closeness centrality
rank in G(Pi). Consider, e.g., the word pair (CAP−AWE)
and its solution by one of the participants in which each word
is assigned its rank:
CAP(59)-SAP(23)-SAY(33)-WAY(73)-WAR(125)-
OAR(116)-OAK(163)-

YAK(183)-YAM(158)-DAM(99)-DAY(48)-DRY(167)-
TRY(178)-THY(171)-
THE(156)-SHE(166)-SEE(114)-BEE(90)-BYE(157)-
EYE(180)-EVE(195)-
AVE(204)-AWE(210)
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Figure 4: A rank plot for the game (CAP−AWE) where the
rank is computed with respect to the word-morph network of
the according participant.

Fig. 4, shows the rank of the i-th word in the solution vs
i, i.e., its trajectory through the word-rank space. Such a plot
will be called a rank plot in the following. Note that such
a path can contain local minima, i.e., words whose closeness
centrality rank is lower than that of both neighboring words in
the solution. We call such a word a minimum word in the solu-
tion. The path shown in Fig. 5(a) contains only one minimum
word (AID), while the solution shown in Fig. 5(b) contains
three minima words (MAT , BEY and CRY ).
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Figure 5: Minima of a path
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of games played

Center-strategicness of the path: The number of minima
words in a solution is called the center-strategicness of the
path. Thus, the center-strategicness of the path in Fig. 5(a)
is 1, whereas the center-strategicness of the path in Fig. 5(b)
is 3. We call a solution center-strategic if it has exactly one
minimum word. The solution depicted in Fig. 5(a) is center-
strategic whereas the solution depicted in Fig. 5(b) is not
center-strategic.

The absolutely surprising result is that after 22 games
out of 65, each and every single participant only uses
center-strategic paths.

Main Inference: Fig. 6 gives us a very important in-
ference, we have plotted mean of the center-strategicness of
the paths which the participants took Vs game number. The
curve hits 1 at 22nd game and remains 1 henceforth. Put in
simple terms, after playing a few games, participants used
only center-strategic paths.

The sudden decrease in average solving time is tightly
coupled to the identification of a set of landmark words. This

set of words is then used in a center-strategic way to
navigate efficiently through the network.

Note that this strategy is indeed very efficient: instead
of learning the whole network which would potentially al-
low to find the shortest path for any two given words,
participants learned only a few important landmark words
and they first navigated to these landmark words and then
reached the final word. Interestingly, the paths chosen in
that way were considerably longer than the shortest paths.
Path length deviation of a participant Pi is denoted as ∆(Pi)
and is defined as the average of the ratios of actual path
length is to shortest path length of all 65 games. The
set {∆(G(P1)),∆(G(P2)), . . . ,∆(G(P20))} has minimum 1.22,
maximum 1.37 and an average of 1.254. Which signifies that
the paths taken by the participants were far from being the
shortest path.

To understand whether the peculiar structure of the word-
morph network in general or the word-morph networks of the
single participants in specific caused this effect, we computed
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ticipant (subject) Pi of all 65 solutions (red bars) in compari-
son with the expected percentage of center-strategic paths in
a random walk scenario in G(Pi).

the average fraction of center-strategic paths in the following
way: Given a word pair (w1,w2), we compute random paths
of length less than or equal to 20, using the random walk pro-
cedure in which every path is explored with the same prob-
ability. For example, out of 18,197 random paths between
AXE and NUN only 3,128 paths turned out to be center-
strategic. The fraction of center-strategic paths between AXE
to NUN is thus 17%.

For each participant Pi we computed this fraction for each
of the 65 word pairs in her respective graph G(Pi), and aver-
aged over the fraction. Furthermore, for all 65 solutions we
computed the fraction of center-strategic solutions for each
Pi. Fig. 7 shows for each participant the fraction of center-
strategic solutions and the average fraction of center-strategic
paths of all possible solutions. It can be clearly seen that the
human navigator chooses center-strategic paths with a signif-
icantly higher probability than the virtual random walk pro-
cedure. This result rules out the fact that the structure of the
network itself dictates the usage of center-strategic paths.

Related work
Of special interest to us is the work by Moeser (Moeser,
1988), in which he reports on results of a study conducted
in a five-storey hospital which had a very complicated struc-
ture. It was noted that the student nurses did not learn new
ways to navigate better even after two years of their stay in
the hospital. The reason for this is well explained by the work
by Passini, which says that humans learn only what is neces-
sary and sufficient to achieve a goal (Passini, 1984). We be-
lieve that these necessary and sufficient things which people
learn in order to navigate in a complex network like the word-
morph network, are the nodes with a high centrality-ranking.

Allen (Allen, 1997) has proposed certain important issues
in production and comprehension of route directions by at-
tempts to way-find a destination. He suggests that techno-
logical innovations aimed at providing verbal information to
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assist wayfinding activity be incorporated within a framework
focused on the ecology of wayfinding behaviour. Maguire et
al., (Maguire, Burgess, & O’Keefe, 1999) discuss how Com-
plexity and content of the environment affects navigation suc-
cess apart from the sex and age of the participant. Golledge
(Golledge, 1995) has analysed the kind of paths that people
select in virtual vs real environment. Guidice et al., (Giudice,
Bakdash, & Legge, 2007) propose that the similarity in learn-
ing and wayfinding behaviour observed between verbal and
visual conditions indicate that the spatial representation built
up from verbal learning is functionally similar to that devel-
oped from visual learning.

Conclusion
As far as we know, this study is the first study that aims at un-
derstanding the navigation of humans in virtual complex net-
works. With a simple approach and the help of network anal-
ysis we gathered convincing evidence how humans explore
such a network in a way that is sufficient (but not necessarily
optimal) for navigation in it. We showed that the efficiency
with which the network is explored increases drastically after
the identification of a set of landmark words. Furthermore,
these words belong to a network analytically determinable
set of the most central nodes in the according word-morph
network. Our work has thus direct implications for the de-
sign of complex connection or transport networks used by
humans. By using the representation as a network, we can
predict which parts of the connections will be used most and
thus need special attention in the design phase to, e.g., make
sure that streets are broad enough or that a lift’s or tram’s ca-
pacity is sufficient.

In general, our simple approach of asking participants to
find a set of paths in a given network allows for very control-
lable experiments. Due to the simple experimental setting,
the paths chosen by a participant give direct evidence of her
mental map of the network. We envision different variants
of the basic way-finding problem in which nodes or edges
are associated with additional information. One idea is to
test Kleinberg’s navigation hypothesis for humans by asking
them to navigate through an artificial network where nodes
are associated with geometric coordinates. Another experi-
ment could explore how participants react to a blockage, i.e.,
a (temporal) removal of those landmark nodes they identified
beforehand. Furthermore, a longer series of games would also
be interesting: we suspect that after a while participants will
finally explore the whole network by searching for short cuts.
This could eventually turn into a personality test, based on the
intuition that outgoing, innovative people are more likely to
step out of the known paths sooner than others. In summary,
we hope that the basic approach underlying this study opens
a new field in the analysis of human wayfinding in complex
networks.
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