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Abstract

Essays in the Economics of Wildfire

by

Jacob Gellman

This dissertation explores the economic consequences of wildfire and smoke in the United

States. The third chapter, Wildfire smoke in the United States, is joint work with Matthew

Wibbenmeyer, and examines regional and temporal trends in wildfire smoke impacts. It synthe-

sizes research on health, economic, and behavioral impacts, proposing modifications to federal

air quality regulations to address wildfire smoke. The second chapter, Wildfire, smoke, and

outdoor recreation in the western United States, is a collaboration with Margaret Walls and

Matthew Wibbenmeyer. It focuses on the effects of wildfire and smoke for outdoor recreation.

The paper combines millions of administrative campground reservation records with daily satel-

lite data on wildfire, smoke, and air pollution, finding that more than ten percent of available

recreation days are affected by severe smoke in some regions. The first chapter, Non-market

damages of wildfire smoke: evidence from administrative recreation data, is also a collabora-

tion with Margaret Walls and Matthew Wibbenmeyer. This chapter exploits the dataset of the

second chapter to provide among the first revealed preference estimates of smoke damages. A

structural model of sequential recreation decisions finds that smoke reduces welfare by $107 per

person per trip. Annually, more than 21.5 million outdoor visits in the western United States

are affected by wildfire smoke, with welfare losses of $2.3 billion. These findings contribute to

a growing body of evidence on the costs of wildfire smoke.
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Chapter 1

Non-market damages of wildfire

smoke: evidence from administrative

recreation data

1.1 Introduction

Large wildfires have increased in frequency and severity in the western United States, and

these trends are expected to continue as the climate warms (Abatzoglou and Williams 2016,

Westerling 2016, Westerling 2018, Williams et al. 2019). Increased wildfire activity has also

brought an increase in wildfire smoke, which can transport pollution hundreds of miles from

the point of origin. The smoke produced by wildfires has large costs for society. Wildfire smoke

now accounts for up to half of particulate matter pollution in some areas of the western United

States (Burke et al. 2021a). Health damages from wildfire smoke are distinct from other air

quality damages, as smoke harms health more severely than fine particles from other sources

(Aguilera et al. 2021, Kochi et al. 2010). Negative health effects include increased morbidity,

higher mortality, and reduced mental health (Cullen 2020, Heft-Neal et al. 2022, McCoy and

Zhao 2020, Miller et al. 2021, Reid et al. 2016, Wen and Burke 2021).
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Non-market damages of wildfire smoke: evidence from administrative recreation data Chapter 1

While measures of health impacts are numerous, there are few revealed preference estimates

for the welfare damages of smoke. In contrast to stated preference approaches such as surveys,

revealed preference methods directly measure individuals’ behavioral responses to an amenity or

disamenity. Smoke is particularly challenging to study in a revealed preference setting because

it is a transient environmental bad: it may blanket an area for several days before winds change

or the fire is extinguished. Estimation of revealed preference values for wildfire smoke requires a

context where individuals are both exposed to the environmental bad and where the researcher

can observe their behavior at a high temporal resolution.

One setting where exposure is likely to be high is outdoor recreation. Researchers frequently

use changes in outdoor recreation activity, such as camping and hiking, for revealed preference

estimates of environmental amenities. Natural areas hold implicit non-market value due to the

time and travel cost that people expend to visit them; the difference in a site’s value across levels

of an amenity identifies the amenity’s value. Empirical measures of recreation value often form

a large portion of natural resource appraisals or damage assessments (Phaneuf and Requate

2016). These estimates inform conservation decisions, natural resource management, and legal

settlements for environmental accidents (English et al. 2018, Phaneuf and Requate 2016).

Wildfire smoke has numerous consequences for recreation. Wildfire season and peak outdoor

recreation season tend to coincide, with more than 1 million National Park visitor-days per year

taking place during hazardous smoke conditions (Gellman et al. 2022). This smoke puts visitors

at an increased risk of respiratory health problems (Reid et al. 2016). Visitors to natural areas

spend the majority of their trip outdoors, and vigorous activity such as hiking or rock climbing

may exacerbate the effects of this direct exposure (Korrick et al. 1998, Richardson et al.

2012). Apart from health impacts, smoke may also reduce the visibility and amenity value

from visitation. Visitors wary of air pollution and reduced site quality may avoid their trip

altogether, with documented reductions in participation due to smoke (Cai 2021, Gellman et

al. 2022). However, despite the numerous effects of wildfire smoke on outdoor visitation, most

recreation data has not allowed for welfare estimation because it typically lacks the necessary
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temporal resolution to study avoidance behavior.

In this paper we provide the first revealed preference welfare estimates of the damage of

wildfire smoke for outdoor recreation. We combine millions of administrative campground

reservation records with satellite data on wildfire, smoke, and air pollution. These data are

especially rich among most studies of recreation. The combined dataset features more than 16

million transactions from 2 million unique users, high frequency daily data over eight years,

nearly 1,000 federally managed campgrounds across the west, and detailed records of individual-

level behavior. The detail and variation afforded by this data are particularly necessary in our

setting. Because wildfire smoke events affect large areas, campgrounds in a single region are

often affected by smoke at exactly the same time, limiting the effectiveness of a region- or

year-specific study. Our approach exploits daily variation across many years and many regions,

which is necessary for proper identification of smoke effects.

We also account for the transient nature of wildfire smoke by measuring decisions both before

and after visitors have knowledge of smoke conditions. Most visitors to campgrounds reserve

their site several weeks or months in advance, before smoke conditions can be known. But, by

the time smoke conditions are likely known, many campgrounds are either completely full or

completely empty, which would limit the identifying variation from measuring new visitors. Our

setting allows us to study one decision where visitors both have knowledge of site conditions

and where they are unconstrained by congestion: cancellations of existing reservations due to

smoke.

We consider visitors’ cancellation decisions with a unique two stage discrete choice. In a

first stage, a visitor chooses to reserve ahead of time based on expected site conditions; in a

second stage, they decide whether to cancel or follow through with the reservation based on

realized site conditions. A key feature of this setting is the correlation of preferences between

the two decisions. A visitor can only cancel a trip if they previously made a reservation,

meaning they have already demonstrated a taste for the site. Using a numerical example we

show how failure to account for this form of sample selection would bias welfare estimates

3
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of wildfire smoke damages. The bias operates by attenuating estimates of visitors’ marginal

disutility in expenditure, a key input for welfare calculation. To correct for this bias we develop

a novel control function approach to link preferences across choices (Wooldridge 2015), and

demonstrate its effectiveness through numerical simulations.

There are several main findings of this paper. First, we estimate that wildfire smoke reduces

welfare by $107 per person per trip. This estimate uses the aforementioned control function to

account for sample selection. Without accounting for sample selection, the analysis would have

implied damages of $154 per person per trip, which would overstate welfare damages by 44%.

Inclusion of the control function increases the estimated magnitude of the marginal disutility

in expenditure, as the numerical example predicts.

In further analyses we explore how welfare losses vary by the duration of smoke events.

When a campground was affected by smoke on only one day in the week of arrival, damages

are as low as $32 per person per trip; when affected by smoke on all seven days in the week of

arrival, losses are as high as $432 per person per trip. These damages increase at an increasing

rate, implying convexity of losses in the duration of smoke events. In addition, damages vary by

proximity to active wildfires. Previous research has found that visitors to natural areas are less

avoidant of smoke that originates from distant fires (Cai 2021). We find results that are in line

with this research, with 20% lower welfare damages for smoke-affected campgrounds that are

far from active fires. In general, the estimates are robust to multiple specifications, including

a placebo for wildfire smoke. The placebo reassigns smoke events to either one or two weeks

after the scheduled arrival date, testing whether visitors actually respond to wildfire smoke. We

indeed find null results for this placebo, building confidence that the main estimates measure

smoke responses.

The scale of wildfire smoke impacts for outdoor recreation is large. We combine estimates

of the proportion of smoke-affected campers in our dataset, at park-specific and forest-specific

levels, with total visitation data from state and federal agencies to determine the total number

of outdoor visits affected by smoke each year. As a back of the envelope calculation we multiply
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this total smoke-affected visitation by the empirical per trip welfare estimate to approximate

the total annual welfare loss due to smoke in the west. This analysis carries the limitation

that welfare estimates are derived from camping activity, which may not be representative of

other forms of outdoor recreation such as swimming, fishing, or day hiking. In addition, it

accounts for lost welfare to inframarginal visitors and does not include the value of lost trips

due to smoke. However, it provides an approximation of the magnitude of total annual smoke

damages for recreation in the west. We find that an average of 21.5 million outdoor recreation

visits per year are affected by wildfire smoke on lands managed by the National Park Service,

US Forest Service, Bureau of Land Management, US Army Corps of Engineers, and at state

parks. A high proportion of outdoor trips are affected by smoke, at roughly 4.2% of the more

than 511 million annual visits. Applying the empirical welfare estimate of $107 per person per

trip, this figure implies welfare losses of roughly $2.3 billion per year due to wildfire smoke.

This paper makes several contributions. First, it adds to the literature on both market and

non-market damages of wildfire smoke. To the best of our knowledge, this study is the first

to directly value smoke damages using revealed preference methods and observational data.

Existing non-market estimates have used survey methods, healthcare costs, or have applied the

value of a statistical life (VSL) to changes in mortality. This paper’s results complement these

estimates. Richardson et al. (2012) surveyed individuals about self-protective expenditures

following one fire in Los Angeles County. They found a willingness to pay (WTP) to reduce

one wildfire smoke induced symptom day of $102.1 We measure the value of an exposure day,

rather than a symptom day; by comparison, this paper’s estimate of $107 per trip roughly

translates to $38 per day. The total cost of smoke for recreation, at $2.3 billion per year, is

also informative for the literature. Miller et al. (2021) estimated the increase in mortality

among elderly Medicare recipients in the United States, finding annual damages of $6 billion

to $170 billion, depending on VSL assumptions. Borgschulte et al. (2022) found annual lost

labor earnings of $125 billion per year due to wildfire smoke. Other studies have found costs of

1This figure is inflation-adjusted to 2020 dollars from the published estimate of $84 in 2009 dollars.
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wildfire smoke for test scores, crime, and hospital visits (Burkhardt et al. 2019, Cullen 2020,

Wen and Burke 2021). Aside from smoke, this paper complements the literature on the costs

of wildfires more generally (Baylis and Boomhower 2021, Graff Zivin et al. 2020, Plantinga et

al. 2022).

Measuring the cost of wildfire smoke is crucial to inform public policy. The federal govern-

ment has spent an average of $2.8 billion per year on fire suppression over the period 2017 to

2021, while California has spent an average of $900 million per year from 2018 to 2022.2,3 Proac-

tively, California has proposed spending $1.2 billion over Fiscal Years 2022-23 and 2023-24 on

fire mitigation measures including vegetation management, prescribed burns, home hardening,

and related activities.4 These activities are consistent with the state’s recently declared goal to

treat 1 million acres of hazardous fuels per year.5 Understanding the averted costs of wildfire

and smoke is critical to assess the benefit of these public expenditures.

This paper also contributes by using novel methods and data sources. We value a transient

environmental good, wildfire smoke, in a setting where users make decisions under evolving

sets of information. The two stage choice structure which links preferences across decisions

is informed by literature on sample selection correction in non-linear models (Greene 2012,

Terza 2009), as well as in recreation contexts (Cameron and DeShazo 2013, Cameron and

Kolstoe 2022, Kolstoe and Cameron 2017, Lewis et al. 2019). Our framework could be used

to model sample selection or sequential choices in other non-linear or discrete choice settings.

It could also be applied to recreation studies valuing other transient environmental amenities

such as temperature, rainfall, or acute pollution events. In addition to the modeling, our use

of administrative data contributes to a recent literature using new, large, or innovative data to

study recreation across broad areas (Cameron and Kolstoe 2022, Dundas and von Haefen 2020,

2National Interagency Fire Center. Suppression Costs. https://www.nifc.gov/fire-information/

statistics/suppression-costs.
3California Department of Forestry and Fire Protection. Suppression Costs. https://www.fire.ca.gov/

stats-events.
4California Legislative Analyst’s Office. The 2022-23 Budget Wildfire and Forest Resilience Package. https:

//lao.ca.gov/Publications/Report/4495.
5Agreement for shared stewardship of California’s forest and rangelands between the State of California and

the USDA Forest Service, Pacific Southwest Region. https://www.gov.ca.gov/wp-content/uploads/2020/08/
8.12.20-CA-Shared-Stewardship-MOU.pdf.
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Non-market damages of wildfire smoke: evidence from administrative recreation data Chapter 1

English et al. 2018).

The remainder of this paper is organized as follows. In Section 1.2 we describe the data

sources for the study, including recreation, smoke, fire, and pollution data. We also discuss

several descriptive features of the data. Section 1.3 describes the modeling approach, including

a conceptual framework and a description of the estimating dataset. In Section 1.4 we turn

to estimation, describing various sets of results. Section 1.5 appraises the total annual welfare

damages of wildfire smoke in the west. Section 1.6 concludes.

1.2 Data

We combine data on recreation, wildfire smoke, air pollution, wildfire activity, and weather.

We build three main datasets. The first is a daily panel of federally managed campgrounds in

the western United States over the period 2010 to 2017. This panel includes daily smoke, wild-

fire activity, pollution, weather, and climate normals at each campground. The second dataset

is a record of individual-level reservations for campgrounds, which we link to the daily camp-

ground panel to show site conditions for users’ reservation dates. The last dataset aggregates

the individual users into travel cost zones around each campground to show daily reservation

activity at various distance radii.

1.2.1 Recreation

We obtained data on campground use from Recreation.gov.6 Recreation.gov is the web

portal used to make reservations for federally managed campgrounds, including those managed

by the National Park Service, Bureau of Land Management, US Forest Service, US Army

Corps of Engineers, and Bureau of Reclamation. Figure A.1 in Appendix A.1 displays the

Recreation.gov web interface as a user would experience it. The website gives users information

about campground amenities, prices, availability, and nearby points of interest.

The raw data include more than 90 million transactions from more than 7 million unique

6Recreation.gov. https://www.recreation.gov.

7

https://www.recreation.gov


Non-market damages of wildfire smoke: evidence from administrative recreation data Chapter 1

users. We limit attention to campgrounds in the eleven western states, during the months of

May through September, and for the years 2010 to 2017, which leaves more than 16 million

transactions from 2 million unique users at 999 campgrounds. Our analysis is primarily con-

cerned with overnight camping and excludes, for instance, large group or equestrian facilities.

The data give detailed information on reservations, walk-ins, cancellations, no shows, trans-

action dates, payments, refunds, zip code of origin, group size, user identifiers, and other infor-

mation. For every transaction in an order, such as a payment or cancellation, the exact time of

the transaction is known. For the 999 campgrounds in our analysis, 84% of transactions were

made online, 9% over the phone, and 7% on-site (such as walk-ins or early checkouts).

1.2.2 Travel costs

We calculate travel costs using the distance and travel time between an origin zip code

and a destination campground. We use GraphHopper, an open source routing engine which

calculates routes using Djikstra’s algorithm and OpenStreetMap data.7,8 In total, we calculate

nearly 5.4 million routes representing 5,379 origin points and 999 destinations. Our estimates

reflect the fastest routes by car between each origin and destination. Optimal routes generally

match routes identified by Google Maps during periods of low traffic. To identify coordinates

of each user’s zip code, we matched zip codes to Census Zip Code Tabulation Areas (ZCTAs)

and found the centroid of each ZCTA.9,10 Figure A.2 in Appendix A.1 displays an example

automobile route.

Following English et al. (2018), we calculate the per-person travel costs between ZCTA z

and campground j as:

czjt =
pDztDzj

n
+ pTztTzj , (1.1)

7GraphHopper. https://www.graphhopper.com.
8GraphHopper GitHub. https://github.com/crazycapivara/graphhopper-r.
9Health Resources and Services Administration, John Snow, Inc., & American Academy of Family Physicians.

Uniform Data System. https://udsmapper.org/zip-code-to-zcta-crosswalk.
10Because ZCTA centroids may not be located along roads, we snapped ZCTA centroids to the nearest road

using Census TIGER/Line shapefiles, and used the nearest points along roads as origin points.
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for travel distance Dzj and travel time Tzj . The per-kilometer cost of traveling between ZCTA

z and campground j is given by pDzt and includes costs of gasoline, per-kilometer vehicle main-

tenance costs, and per-kilometer average vehicle depreciation. For gasoline costs we use state-

and year-specific averages of per-kilometer gasoline costs during summer months, based on per-

gallon gasoline costs from the Energy Information Administration and nationwide average fleet

fuel economy.11,12 We use per-kilometer average depreciation and vehicle maintenance costs

from AAA data, as in English et al. (2018).13 Lastly, we measure hourly costs of travel time

pTzt as one third of the average household income in ZCTA z divided by 2,080 hours worked per

year (English et al. 2018). All numbers are inflation-adjusted to 2020 US dollars.

1.2.3 Smoke and air pollution

For each day we record whether a campground was covered by wildfire smoke. We use daily

observations of wildfire smoke from the National Oceanic and Atmospheric Administration

(NOAA) Hazard Mapping System (HMS) by Schroeder et al. (2008).14 Each day NOAA

analysts manually trace the perimeters of wildfire smoke plumes using satellite photography,

producing daily shapefiles. These data have been used in studies examining the effect of smoke

on air pollution, health, labor markets, self-protective behavior, and crime (Borgschulte et al.

2022, Burke et al. 2021a, Burke et al. 2021b, Burkhardt et al. 2019, Cullen 2020, Gellman et

al. 2022, Heft-Neal et al. 2022, Miller et al. 2021, Preisler et al. 2015).

One challenge presented by this dataset is that satellite photography does not reveal where

in the air column a smoke plume is: the smoke could be at the ground level or it could be

high in the atmosphere. If the plume is located high in the atmosphere it might not reflect

on-the-ground conditions. To address this challenge we code an area as smoke-affected only if it

is both covered by a smoke plume and if its ground-level PM2.5 is above at least 1.64 standard

11Energy Information Administration. Weekly Retail Gasoline and Diesel Prices. https://www.eia.gov/

dnav/pet/pet_pri_gnd_a_epmr_pte_dpgal_m.htm.
12Bureau of Transportation Statistics. Average Fuel Efficiency of US Light Duty Vehicles. https://www.bts.

gov/content/average-fuel-efficiency-us-light-duty-vehicles.
13For example: AAA. Your Driving Costs 2016. https://jacobgellman.github.io/files/aaa/aaa_your_

driving_costs_2016.pdf.
14NOAA. Hazard Mapping System. https://www.ospo.noaa.gov/Products/land/hms.html.
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deviations of the location-specific seasonal mean for non-smoke days, which represents the 95th

percentile of a normal distribution (Burkhardt et al. 2019, Gellman et al. 2022).15 Figure A.3 in

Appendix A.1 displays an example of that restriction using kriged PM2.5 data from Burkhardt

et al. (2019). The map shows that while many areas were covered by smoke, only some had air

quality poor enough to be coded as smoke-affected.

1.2.4 Wildfire activity

At each campground we measure the daily distance to an actively burning fire. To measure

wildfire activity we combine NASA MODIS fire detection points with the United States Ge-

ological Survey Monitoring Trends in Burn Severity (MTBS) fire perimeter dataset.16,17 The

MODIS detection points record 1 km centroids of fire activity at a daily resolution, including

agricultural and prescribed fires (Giglio et al. 2016). The MTBS data map the final perimeters

for wildfires occurring in the United States. Combining these data has two advantages. First,

the use of known wildfire perimeters filters out any MODIS points not associated with a large

wildfire. Second, the MODIS detection points limit attention only to the portion of a wildfire

that was burning on a given day. We use a 1 km buffer around the final perimeter of the fire,

as well as the start and containment dates of the fire, to filter MODIS points. Figure A.4 in

Appendix A.1 demonstrates an example of this process for the western United States.

1.2.5 Temperature and precipitation

To control for weather conditions we gather daily precipitation (mm), maximum tempera-

ture (◦C), and minimum temperature (◦C) for every campground. These data are published at

a 4 km resolution by the PRISM Climate Group at Oregon State University.18 In addition, at

each campground we record 30-year climate normals which reflect average conditions over the

period 1980 to 2010.

15A “season” is defined as fall, winter, spring, or summer.
16NASA. Earthdata. https://earthdata.nasa.gov.
17USGS. Monitoring Trends in Burn Severity. https://www.mtbs.gov.
18Northwest Alliance for Computational Science and Engineering, Oregon State University. PRISM Climate

Data. https://www.prism.oregonstate.edu.
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1.2.6 Descriptive features of the data

Of the 999 campgrounds in the analysis, 908 are managed by the US Forest Service, 50 by

the National Park Service, 31 by the US Army Corps of Engineers, 5 by the Bureau of Land

Management, and 5 by the Bureau of Reclamation. Figure A.5 in Appendix A.1 plots a map of

the campgrounds in the analysis. While most of the campgrounds are managed by the Forest

Service, the most-visited campgrounds tend to be National Parks. Table A.1 in Appendix A.1

reports the most-visited campgrounds in the dataset.

For the main analysis we restrict the set of potential reservers to residents living within

one day’s driving distance of a given campground. We set this restriction at 650 km (400

miles) of one-way driving distance. English et al. (2018) report survey results showing that,

beyond 500 miles of driving distance, a substantial portion of recreation visitors are likely to

have flown to their destination, which adds additional complications in the calculation of travel

cost. Figure 1.1 shows that our 650 km restriction results in inclusion of more than 85% of

reservations in the dataset. Half of our observed trips come from within 250 km (155 miles) and

three quarters come from within 450 km (280 miles). Appendix A.7 reports the main results

using alternative distance thresholds.
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Figure 1.1: One-way driving distance of reservations from campground. Red line indicates 650
km cutoff.
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The timing of a reservation is also key for our setting. Wildfire smoke is a random event,

meaning that visitors who reserved far in advance could not have known that their chosen camp-

ground would be smoke-affected. Figure 1.2 shows that most visitors reserve far in advance of

their arrival date, consistent with results in Walls et al. (2018). Although a plurality of visitors

reserve within a week of arrival, a majority reserve early. In addition, there is significant mass

around six months in advance, which is the earliest that some popular destinations allow reser-

vations. In the following section we describe our modeling approach to study the cancellation

decisions of visitors who reserved ahead of time.
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Figure 1.2: Days reserved in advance of arrival date.
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1.3 Modeling approach

In this section we model an individual’s decision to visit a campground under smoke and

non-smoke conditions. A key feature for this setting is that smoke is ephemeral; it is a random

event that may affect a site for several days before eventually disappearing. However, most

campground reservations are made well in advance, before site conditions are known. But, by

the time smoke conditions are likely known, many campgrounds are either completely full or

completely empty, which would limit the identifying variation from measuring new visitors.19

We therefore consider the cancellation decisions of visitors who reserved ahead of time.20 We

model a two part sequential process. In a first stage, visitors choose whether to reserve at a

campground based on expected site conditions. In a second stage, close to the arrival date, they

decide whether to cancel or follow through with the reservation based on realized site conditions.

19See Figure A.6 in Appendix A.1.
20We could have also considered new reservations close to arrival. For a discussion of late reservers, see

Appendix A.2.

13



Non-market damages of wildfire smoke: evidence from administrative recreation data Chapter 1

We allow for correlation of preferences across these decisions using a control function. For the

reservation decision we use a pooled zonal travel cost model, which provides parameters for

the control function in a trip-level model of cancellations. Figure 1.3 illustrates the timing of

these decisions, where t gives the arrival date and τ denotes a bandwidth sufficiently close to

the arrival date.

Figure 1.3: Timing of decisions.

tt− τ

Expected conditions Realized conditions

︸ ︷︷ ︸
Cancellations

︸ ︷︷ ︸
Reservations

1.3.1 Reservations

Define utility for the initial reservation decision as follows:

Uijt = Vijt + εijt, (1.2)

where Vijt gives the indirect utility of person i for campground j on arrival date t. The variable

εijt represents preferences known to the individual but unobserved by the researcher. Define

the observable portion of utility as:

Vijt =


δcijt + ϕsjt +X ′

jtγ + ψj + λt, j ∈ {1, 2, ..., J};

0, j = 0.

(1.3)

The variable cijt gives the travel cost for person i to site j at time t, while sjt is equal to 1 if there

are smoke conditions at campground j on date t. The vector Xjt contains campground-level

conditions including precipitation, temperature, and proximity to an active wildfire.

Additional variables include the alternative-specific constant ψj , which denotes campground-

specific, time-invariant traits such as the quality of a campground. The variable λt similarly
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captures time-specific factors including seasonality and yearly trends. The parameter of interest

is the willingness to pay (WTP) to avoid smoke, which is found by taking the ratio of marginal

disutility of smoke ϕ to the marginal disutility of expenditure δ, WTP = ϕ/δ.

To operationalize our model, we estimate the reservation decision using a pooled zonal travel

cost model. For each campground j and each day t, we sum the number of reservers and non-

reservers in concentric zones z around a campground. Consider a representative agent in zone z.

Because the agent reserves in advance, before site conditions are known, they compare utility

over expected site conditions, E[Uijt], to the expected utility of the outside option, E[Ui0t].

Denote Rijt = 1 if the individual chooses to reserve at campground j for arrival date t. When

εijt is distributed iid type I extreme value, the probability of observing Rijt = 1 is given by:

P(Rijt = 1) = P(E[Uijt] ≥ E[Ui0t])

= P(E[Vijt + εijt] ≥ E[Vi0t + εi0t])

= P(E[Vijt] + εijt ≥ 0 + εi0t)

= P(εi0t − εijt ≤ E[Vijt])

=
exp(E[Vijt])

1 + exp(E[Vijt])
, (1.4)

noting that Vi0t = 0, and that εijt is non-random from the perspective of the individual such

that E[εijt] = εijt.

The reservers are counted based on the reservations in the Recreation.gov dataset; for

example, a reservation for four people is counted as four reservers. The non-reservers are

determined based on zip code-level populations within each concentric ring, less the number of

people from each zip code that held a reservation to a different campground on that day. The

unit of observation for the zonal estimation is a campground by day by 50 km distance bin,

where each row of data reports the number of people choosing outcome variable Rijt ∈ {0, 1}.
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For example, on August 1, 2015, Diamond Lake in Oregon saw 49 reservers (Rijt = 1) from

distance bin (350, 400] and approximately 2.7 million non-reservers (Rijt = 0) from distance

bin (350, 400], which includes non-reserving residents from Portland, Oregon and Redding,

California. This implies a reservation rate of 1.8 per 100,000 individuals. All estimations use

frequency weights for the number of individuals choosing either Rijt = 0 or Rijt = 1.

We use a zonal model for the reservation decision for several reasons. The primary purpose

of the reservation estimation is to construct a control function that accounts for preferences in

the cancellation estimation. As we will see, a person can only cancel a trip if they previously

held a reservation. Therefore, preferences from the reservation decision likely play a role in

the cancellation. The zonal reservation model accounts for these preferences while providing

substantial flexibility over a multinomial logit approach. In this setting we have more than

1,200 arrival dates to define choice occasions, nearly 5 million reservations for the reserving

individuals, nearly 5,400 zip codes to account for the non-reserving individuals, and 999 camp-

grounds to form the choice set. It would be infeasible to use all of the data in a multinomial

logit model. One could reduce the size of the dataset by, for example, restricting the study to

a single region or year. However, smoke is temporally and spatially correlated within regions,

meaning we require multiple regions and years to provide necessary variation. The regional and

temporal correlation of smoke also mean that site substitution is less likely to play a role in

identifying the smoke parameter, a matter which we discuss further in Appendix A.3. Because

we require regional and temporal variation, fixed effects are crucial to remove location- and

time-specific unobservables across many heterogeneous sites. The zonal model accommodates a

high number of fixed effects and is comptuationally less expensive than the contraction mapping

method used in many multinomial logit studies (Berry 1994). This computational speed makes

a difference when bootstrapping standard errors in the two stage model.

Denoting the set of parameters {δ, ϕ, γ, ψj , λt} as ω, the likelihood and log likelihood func-
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tion of a representative individual’s reservation decision are written as:

L(ω|Rijt) =

N∏
i=1

J∏
j=0

T∏
t=1

P(Rijt = 1|ω)Rijt
(
1− P(Rijt = 1|ω)

)1−Rijt ; (1.5)

ℓ(ω|Rijt) =

N∑
i=1

J∑
j=0

T∑
t=1

Rijt log
(
P(Rijt = 1|ω)

)
+ (1−Rijt) log

(
1− P(Rijt = 1)

)
, (1.6)

for N agents, T choice occasions, and J sites. At the zonal level, we group each visitor i into

travel cost zone z ∈ {1, 2, ..., Z} to estimate the zonal travel cost model. Let N0
zjt and N1

zjt

denote the number of non-reservers and reservers in each zone, respectively. For each zone

the average travel costs for non-reservers and reservers are c̄0zjt = 1
N0

zjt

∑
i∈z

(1 − Rijt)cijt and

c̄1zjt =
1

N1
zjt

∑
i∈z

Rijtcijt. The likelihood function and log likelihood function are written as:

L(ω|Rijt) =

Z∏
z=1

J∏
j=0

T∏
t=1

P(Rijt = 1|ω)N
1
zjt

(
1− P(Rijt = 1|ω)

)N0
zjt ; (1.7)

ℓ(ω|Rijt) =

Z∑
z=1

J∑
j=0

T∑
t=1

N1
zjt log

(
P(Rijt = 1|ω)

)
+N0

zjt log
(
1− P(Rijt = 1|ω)

)
. (1.8)

Maximization of equation 1.8 yields utility parameters given a representative agent i from zone

z.

1.3.2 Cancellations

For the second stage cancellation decision we model a binary choice at the level of the

individual trip.21 Assume that an agent chose to reserve at campground j. Close to the arrival

date, within τ days, new preferences υijt are realized. The agent chooses whether or not to

21In Appendix A.3 we show that very few users cancel their trip and rebook at another site for the same choice
occasion. Close to the arrival date, many campgrounds are fully booked, which can prevent substitution. In
addition, because smoke conditions are spatially and temporally correlated, substitution is unlikely an important
factor in the identification of the smoke parameter. Therefore, a binary cancellation decision is a reasonable
representation of the choice that visitors face.
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cancel based on realized conditions. Let the utility from cancellation be:

Uijt = Vijt + υijt. (1.9)

Because agents only face a cancellation decision if they previously made a reservation, we allow

for correlation between their preferences close to the time of arrival υijt and their preferences

at the time of reservation εijt. We assume a linear correlation structure:

υijt = ρεijt + ηijt, (1.10)

where ηijt is distributed iid type I extreme value. The variable ηijt reflects additional shocks to

the agent’s preferences close to the trip. For example, an unforeseen work obligation might raise

the opportunity cost of the visit, or the agent could learn new information that increases their

anticipation of the trip. A value of ρ ̸= 0 implies that preferences at the time of reservation

influence the cancellation decision, which we will see is an empirically testable hypothesis.

Let Cijt = 1 if the agent cancels their reservation and 0 if they follow through. Within τ

days of arrival, site conditions such as smoke sjt are approximately known to the individual, so

they maximize utility over realized conditions by comparing Uijt to Ui0t. The probability that

an individual does not cancel, i.e. that they follow through with their reservation, is:

P(Cijt = 0|Rijt = 1) = P(Uijt ≥ Ui0t)

= P(Vijt + υijt ≥ Vi0t + υi0t)

= P(Vijt + ρεijt + ηijt ≥ 0 + ρεi0t + ηi0t)

= P(ηi0t − ηijt ≤ Vijt − ρ(εi0t − εijt)), (1.11)

again substituting for Vi0t = 0.

Equation 1.11 presents challenges for the econometrician. The variables εi0t and εijt are
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unobserved. However, omission of these variables will bias parameter estimates because they

are correlated with travel cost among the selected sample. The selected sample is such that

we only observe the cancellation decision for visitors that have already made a reservation.

For those that did reserve, the correlation is E[cijtεijt|Rijt = 1] > 0; among the selected

sample of reservers, those with a high travel cost tend to have a high taste for the site. This

relationship downward biases estimates of the travel cost parameter δ in the cancellation decision

and thus inflates estimates of WTP = ϕ/δ. Appendix A.4 explores this relationship using a

numerical example. We show that the bias arises only when preferences are correlated (ρ ̸= 0 in

equation 1.10) and when we can only observe the cancellation decision for the selected sample

of reservers (Rijt = 1).

1.3.3 Control function

To correct for this bias we develop a novel control function approach (Wooldridge 2015). We

begin by noting the conditional distribution of (εi0t − εijt) in the selected sample of reservers.

Let f(·) be the logistic density, F (·) the logistic distribution, and define ε̃ijt ≡ (εi0t− εijt). The

conditional density of ε̃ijt is:

f( ε̃ijt | Rijt = 1) = f( ε̃ijt | ε̃ijt ≤ E[Vijt]− E[Vi0t])

=
f(ε̃ijt) · 1{ε̃ijt ≤ E[Vijt]− E[Vi0t]}

F (E[Vijt]− E[Vi0t])

=
f(ε̃ijt) · 1{ε̃ijt ≤ E[Vijt]}

P(Rijt = 1)
, (1.12)

where the first line follows from the reservation condition in equation 1.4, the second line from

the definition of a truncated density, and the third line by noting that Vi0t = 0 and that
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F (E[Vijt]) = P(Rijt = 1). An estimand for ε̃ijt is given by:

E[ ε̃ijt | ε̃ijt ≤ E[Vijt]] =
∫ ∞

−∞
ε̃ijt f(ε̃ijt | ε̃ijt ≤ E[Vijt]) dε̃ijt

=

∫ E[Vijt]
−∞ ε̃ijt f(ε̃ijt) dε̃ijt

P(Rijt = 1)

=
E[Vijt] · exp(E[Vijt])

1+exp(E[Vijt])
− log(1 + exp(E[Vijt]))

P(Rijt = 1)

=
E[Vijt] · P(Rijt = 1)− Iijt

P(Rijt = 1)

= E[Vijt]−
Iijt

P(Rijt = 1)
. (1.13)

The first line follows from the definition of a conditional expectation, the second line by sub-

stituting in equation 1.12, the third line by evaluating the definite integral, the fourth line by

substituting equation 1.4 and by defining Iijt ≡ log(1 + exp(E[Vijt]), and the final line through

simplification. Equation 1.13 contains familiar terms. The E[Vijt] term gives the expected util-

ity of the site choice from the reservation decision. The second term contains the value Iijt,

which is equivalent to the inclusive value in the nested logit literature (Train 2009). This term

approximates the expected maximal utility a visitor could expect from holding the reservation,

which includes either the trip or the cancellation. The Iijt term is scaled by the inverse of the

probability that they would reserve at the site.

The estimand ε̃ijt captures the preferences of individual i from their reservation decision,

allowing for unbiased estimation of the travel cost parameter in the cancellation problem. Since

travel cost is positively correlated with εijt, we expect that it is negatively correlated with

ε̃ijt ≡ (εi0t−εijt). We also expect a higher value of ε̃ijt to increase the likelihood of cancellation,

as in equation 1.11. In Appendix A.4 we illustrate the bias correction of this estimand through

a numerical example.

Estimation of the cancellation decision proceeds through the following two stage process.
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First, we estimate the parameters of the reservation decision P(Rijt = 1) by maximizing a

zonal log likelihood function as in equation 1.8, for reservations made earlier than t − τ and

using expected site conditions. Then, we use the parameters to create a fitted value ˆ̃εijt for

every observed reservation. We substitute them into the trip-level equation for the cancellation

decision, where each row of data is a trip with a dependent variable Cijt ∈ {0, 1} indicating

whether the user cancelled the trip. In this second stage the independent variables in Vijt use

realized rather than expected site conditions since users approximately know the site conditions

close to the arrival date. For individual i, the likelihood and log likelihood function for the

cancellation decision are:

L(ω|Cijt, Rijt = 1) =

N∏
i=1

J∏
j=0

T∏
t=1

P(Cijt = 0|ω,Rijt = 1)1−Cijt
(
1− P(Cijt = 0|ω,Rijt = 1)

)Cijt ;

(1.14)

ℓ(ω|Cijt, Rijt = 1) =

N∑
i=1

J∑
j=0

T∑
t=1

(1− Cijt) log
(
P(Cijt = 0|ω,Rijt = 1)

)
+

Cijt log
(
1− P(Cijt = 0|ω,Rijt = 1)

)
. (1.15)

Because of the two stage estimation the researcher can use a bootstrapping process to obtain

appropriate standard errors (Cameron and Miller 2015, Wooldridge 2015).

1.3.4 Numerical example

In Appendix A.4 we provide a numerical example of the bias correction of our control

function. We simulate 10,000 draws with N = 100, 000 users who reserve and cancel. We assign

each user random travel costs, smoke conditions, and preferences εijt and υijt = ρεijt + ηijt.

Arbitrarily, we assert a true WTP to avoid smoke of ϕ/δ = 2. We vary two dimensions in the

simulation. First, we test the role of dependent preferences in the two stages by turning ρ on

(ρ ̸= 0) and off (ρ = 0). Second, we test the role of sample selection. Unlike with the real

recreation data, in the simulation we observe the counterfactual cancellation decisions of users
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who never held a reservation. In the simulation we test the cancellation estimation on both the

selected sample of reservers and among the full sample, which includes non-reservers.

Table 1.1 summarizes results from the simulation. Columns 2 and 3 show that either

correlated preferences or sample selection alone do not bias WTP estimates. It is only in

column 4, when both conditions are present, that WTP is biased. In Appendix A.4 we discuss

how this bias operates through correlation between preferences and travel cost in the selected

sample, which attenuates estimates of the travel cost parameter. In column 5, we maintain both

sample selection and correlated preferences, but introduce our control function ε̃ijt. Across

Monte Carlo simulations the control function corrects the bias and includes the true WTP in

the confidence interval. For a full treatment, refer to Appendix A.4.

Table 1.1: Numerical example for 10,000 simulations of cancellation estimation, bias, and bias
correction from ε̃ijt control function.

(1) (2) (3) (4) (5)

WTP 2.00** 2.00** 2.00** 3.77** 1.98**
(0.08) (0.10) (0.11) (0.46) (0.17)

Users All users All users Reservers Reservers Reservers
ρ Yes Yes Yes
2-step estim. ε̃ijt

Notes: True WTP = 2. N = 100,000 users. * p < 0.05, ** p < 0.01.

1.4 Estimation

In this section we estimate the welfare damages of wildfire smoke for outdoor recreation.

As discussed in the previous section, the estimation follows a two stage process that links

reservations ahead of time to cancellations close to arrival. Figure 1.3 shows the timing of

decisions. We restrict the data to the set of users who booked more than a week ahead of

time, or τ = 7 in Figure 1.3, and who subsequently decided whether to cancel within a week of

the arrival date. We therefore exclude reservations which were cancelled more than a week in
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advance. We also focus on trips scheduled for the months of May to September and over the

years 2010 to 2017. Lastly, we limit attention to trips coming from within 650 km (400 miles),

as described in Section 1.2.6. These restrictions result in a sample of 2,723,940 reservations.22

Our analysis explores the sample selection issues characterized in the previous section,

namely that a visitor can only cancel a trip if they previously demonstrated a taste for the

site by reserving. Without accounting for this sample selection, the results would imply that

wildfire smoke causes $154 in welfare damages per person per trip. However, when accounting

for sample selection using a control function, we find damages of $107 per person per trip.

We show that the control function operates by correcting for the correlation between a user’s

preferences and their travel cost in the selected sample.

We also discuss how damages vary based on the severity of smoke. Welfare damages mono-

tonically increase in the duration of smoke events. The main results set the variable of interest

sjt equal to one if there was at least one hazardous smoke day in the week of arrival, t − τ .

However, when a campground was affected by smoke on two, three, or up to seven days in the

week of arrival, we find damages of up to $432 per person per trip. These damages increase at

an increasing rate, implying convexity in the duration of smoke events.

Damages are attenuated, however, when wildfire smoke is far from an active fire. When we

remove observations for which there is an active wildfire within 20 km, we find reduced damage

estimates of $85 per person per trip. The estimates are robust to a placebo which reassigns

smoke events to the weeks following an arrival date.

1.4.1 Cancellations close to arrival

Figure 1.4 displays how the cancellation rate varies by travel cost and wildfire smoke con-

ditions. The figure shows that users cancel their trips at higher rates during smoke conditions

than during non-smoke conditions. This relationship does not appear to vary by travel cost,

as the distance between the red and blue points is relatively constant across travel cost bins.

22A “reservation” or “trip” is composed of multiple “transactions,” which could include, for instance, an initial
booking, payment, check in, cancellation, or refund.
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Visually, the slope between cancellation rate and travel cost appears shallow. As explored in

Section 1.3 and Appendix A.4, this shallow slope is likely due to positive correlation between

travel cost and the unobserved preference parameter εijt among the selected sample of reservers.

Intuitively, if we were to observe someone reserve at site j despite a high travel cost, on average

they should have a higher preference εijt for the site than for someone with a similar travel

cost that did not reserve, such that E[εijtcijt|Rijt = 1] > 0. If ignored, we expect this corre-

lation to depress the magnitude of the travel cost coefficient in the estimation of cancellations

P(Cijt = 0|Rijt = 1), which translates to a shallow slope in Figure 1.4.

Figure 1.4: Cancellation rate close to arrival.
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Table 1.2 reports results for biased estimation of cancellations P(Cijt = 0|Rijt = 1) using the

trip-level maximum likelihood function of equation 1.15. These estimates ignore the correlation

between εijt and travel cost among the set of users that chose to reserve. WTP is computed by

taking the ratio of marginal disutility in smoke to marginal disutility in expenditure, i.e. the

smoke coefficient divided by the travel cost coefficient. Standard errors for WTP are computed
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using the delta method.23 In all estimations the observations are weighted using frequency

weights since a single reservation might represent, for example, two visitors or eight visitors.

In column 1 we display results without controlling for campground or seasonal fixed ef-

fects. Columns 2 through 4 add fixed effects. We include a campground fixed effect to account

for location-specific, time-invariant unobservables related to site quality. We also account for

differences in reservation rates based on the day of the week, since weekends see higher reser-

vation activity than weekdays. A campground by week fixed effect controls for unobserved

location-specific seasonality, such as seasonal campground-specific natural phenomena. Lastly,

we include various year fixed effects to account for time-related unobservables. Column 4 would

imply that wildfire smoke causes $154 in lost welfare per person per trip. This result is likely

upward biased since WTP = ϕ/δ and we expect the travel cost parameter δ to be attenuated.

23For an example of the delta method for the ratio of two coefficients, such as the ratio in our WTP estimate,
an interested reader may refer to Casella and Berger (2002), example 5.5.27.
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Table 1.2: P(Cijt = 0|Rijt = 1) within one week, uncorrected for sample selection.

(1) (2) (3) (4)

Smoke in week of arrival -0.2195** -0.2615** -0.2346** -0.2615**
(0.0238) (0.0283) (0.0273) (0.0215)

Travel cost (dollars) -0.0024** -0.0017** -0.0017** -0.0017**
(0.0003) (0.0001) (0.0001) (0.0001)

Inv. distance to wildfire (km−1) -11.1276** -12.0389** -11.9174** -7.8003**
(0.9266) (2.4288) (2.4432) (0.8291)

High temp. (degrees C) 0.0198** 0.0287** 0.0292** 0.0307**
(0.0045) (0.0023) (0.0023) (0.0022)

Low temp. (degrees C) -0.0033 -0.0205** -0.0214** -0.0253**
(0.0058) (0.0025) (0.0025) (0.0025)

Precip. in week of arrival (mm) -0.0041** -0.0058** -0.0060** -0.0057**
(0.0011) (0.0009) (0.0009) (0.0009)

N 2,723,830 2,692,468 2,692,468 2,689,216
WTP 91.1** 153.4** 137.35** 154.04**

(12.36) (21.06) (19.85) (15.43)

Campground FE Yes Yes Yes
Day-of-week FE Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes
Year FE Yes
State x year FE Yes
Campground x year FE Yes

Notes: Std. err. clustered at campground level. * p < 0.05, ** p < 0.01.

To correct for the biased WTP in Table 1.2 we use the control function described in equa-

tion 1.13, ε̃ijt = E[Vijt] − Iijt
P(Rijt=1) . The first step is to estimate the probability of reservation

earlier than one week based on expected site conditions and using a zonal travel cost model.

Then, we fit the parameters from the reservation estimation to form an estimate for ε̃ijt. This

estimate is used as a covariate in the trip-level estimation of cancellations P(Cijt = 0|Rijt = 1),

after site conditions become approximately known to visitors.

We construct expected site conditions in the following way. For temperature and precipi-

tation, we use climate normals from our PRISM data source, which represent average weather

conditions from the period 1980 to 2010. Because travel cost is likely known to the individual
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ahead of time, we use the visitor’s actual travel cost. For expected smoke and expected distance

to fire, we use the average conditions over the past four years. For example, if a site was affected

by smoke for one out of the past four years, we code expected smoke as 0.25.

Table 1.3 shows results from the first stage reservation decision P(Rijt = 1) implied by

equation 1.8. Users appear unexpectedly more likely to reserve at a campground with a higher

expectation of wildfire smoke. Including more fixed effects generally decreases the magnitude

and significance of the estimate, including moving the WTP closer to zero. Still, even with a

high number of seasonal fixed effects we may be unable to remove the correlation of seasonal

variation in camping with wildfire smoke. Nevertheless, the primary purpose to estimate the

likelihood of reservation P(Rijt = 1) is as an input for the control function ε̃ijt in the estimation

of P(Cijt = 0|Rijt = 1), so we should be unconcerned by the direction of the smoke expectations

parameter.
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Table 1.3: P(Rijt = 1) for reservations made earlier than one week based on expected site
conditions.

(1) (2) (3) (4)

Smoke exp. 0.9260** 0.2513** 0.1032** 0.0822*
(0.0036) (0.0423) (0.0363) (0.0324)

Travel cost (dollars) -0.0202** -0.0244** -0.0244** -0.0244**
(0.0000) (0.0013) (0.0013) (0.0013)

Inv. distance to wildfire exp. (km−1) 39.6901** 6.0569** 6.1590** 6.7856**
(0.0742) (1.7451) (1.5707) (1.4654)

High temp. exp. (degrees C) 0.0191** 0.0597** 0.0611** 0.0588**
(0.0001) (0.0130) (0.0131) (0.0126)

Low temp. exp. (degrees C) -0.0191** -0.0818** -0.0835** -0.0812**
(0.0001) (0.0153) (0.0153) (0.0148)

Precip. exp. in week of arrival (mm) -0.0126** 0.0071** 0.0066* 0.0067*
(0.0001) (0.0027) (0.0027) (0.0027)

N 15,209,187 12,668,366 12,668,366 12,298,572
WTP -45.93** -10.31** -4.23** -3.37*

(0.18) (1.72) (1.45) (1.31)

Campground FE Yes Yes Yes
Day-of-week FE Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes
Year FE Yes
State x year FE Yes
Campground x year FE Yes

Notes: Std. err. clustered at campground level. * p < 0.05, ** p < 0.01.

After zonal estimation of P(Rijt = 1) for early reservers, we use the parameter estimates to

create fitted probabilities of reservation at the trip level. Figures A.7 and A.8 in Appendix A.1

show the variation in fitted probability P(Rijt = 1) and in the control function ε̃ijt. Since we

expect that preferences and travel costs are correlated in the selected sample, E[cijtεijt|Rijt =

1] > 0, then it should be true that our control function is inversely correlated with travel

cost, E[cijt(εi0t − εijt)|Rijt = 1] < 0. Figure 1.5 illustrates this relationship using the fitted

values of ε̃ijt for the sample of reservers. The slope of the fitted line follows the expected

direction. Using 400 bootstrapped estimations and the fixed effects from model (4) we find that
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cijt = −(239.738 + 24.70 ε̃ijt), where the intercept and slope coefficients are both significant

at the 0.01 level. This empirical result is consistent with the prediction of our theory and

numerical exercise in Section 1.3 and Appendix A.4.

Figure 1.5: Relationship between control function ε̃ijt and travel cost using model (4) demon-
strates correlation between preferences and travel cost in the selected sample of reservers.

Table 1.4 reports the main trip-level results for the cancellation estimation P(Cijt = 0|Rijt =

1) using the bias correcting control function ε̃ijt. The coefficient for ε̃ijt is significant, suggesting

that preferences at the time of reservation are an important determinant of the cancellation

decision. In addition, comparing to Table 1.2, the travel cost coefficient was the only parameter

to change when including ε̃ijt, which is consistent with the notion that sample selection bias

operates through correlation with travel cost. Overall, the WTP estimates are reduced to $107

per person per trip of lost utility due to cancellations. By comparison, the biased results in

Table 1.2 were $154 per person per trip, which is 44% higher.

29



Non-market damages of wildfire smoke: evidence from administrative recreation data Chapter 1

Table 1.4: P(Cijt = 0|Rijt = 1) within one week, corrected for sample selection.

(1) (2) (3) (4)

Smoke in week of arrival -0.2175** -0.2708** -0.2438** -0.2603**
(0.0247) (0.0238) (0.0221) (0.0218)

Travel cost (dollars) -0.0026** -0.0024** -0.0024** -0.0025**
(0.0004) (0.0003) (0.0003) (0.0003)

Inv. distance to wildfire (km−1) -11.1017** -10.8883** -10.7067** -7.8141**
(0.8580) (1.4280) (1.4288) (0.7920)

High temp. (degrees C) 0.0202** 0.0284** 0.0289** 0.0306**
(0.0043) (0.0024) (0.0024) (0.0023)

Low temp. (degrees C) -0.0037 -0.0204** -0.0214** -0.0252**
(0.0052) (0.0026) (0.0025) (0.0025)

Precip. in week of arrival (mm) -0.0041** -0.0058** -0.0060** -0.0057**
(0.0010) (0.0009) (0.0009) (0.0009)

ε̃ijt -0.0112 -0.0356** -0.0366** -0.0385**
(0.0284) (0.0106) (0.0105) (0.0106)

N 2,723,034 2,691,655 2,691,655 2,688,739
WTP 85.23** 113.91** 101.50** 107.14**

(17.82) (18.48) (16.50) (16.33)

Campground FE Yes Yes Yes
Day-of-week FE Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes
Year FE Yes
State x year FE Yes
Campground x year FE Yes

Notes: Bootstrapped std. err. clustered at campground level. * p < 0.05, ** p < 0.01.

Wooldridge (2015) recommends bootstrapping standard errors for control functions because

of the two stage estimation process. We follow the clustered bootstrapping process of Cameron

and Miller (2015), drawing with replacement at the campground level for 400 bootstraps. In

Appendix A.5 we report results from Shapiro-Wilk tests for normality, failing to reject the null

hypothesis that the bootstrapped smoke coefficients and travel cost coefficients are normally

distributed. These tests suggest that 400 bootstraps are adequate for the analysis.
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1.4.2 Relationship of damages to smoke duration

In this section we investigate how welfare losses vary by the severity of smoke events.

Severity could refer either to the intensity or duration of a smoke event. We explore the

relationship of damages to the duration of an event. In our main specification the variable of

interest is an indicator equal to one if the campground was affected by at least one day of wildfire

smoke in the week of arrival. We respecify the equation of interest, P(Cijt = 0|Rijt = 1), and

allow for differential effects based on the number of smoke-affected days in the week of arrival.

Figure 1.6 plots the welfare damages visually as a function of the number of smoke days in

the week of arrival. For full results an interested reader may refer to Table A.2 in Appendix A.1.

Damages monotonically increase in the number of smoke days. When a campground was

affected by smoke on all seven days in the week of arrival, we find welfare damages of $432

per person per trip. Further, these damages appear to increase at an increasing rate. That is,

welfare damages are approximately convex in the number of smoke days in the arrival week.

Figure 1.7 demonstrates this relationship by showing that the marginal willingness to pay

(MWTP) generally increases in the number of smoke-affected days in the week of arrival. On

average, WTP rises about $62 with each additional day of smoke.

Two potential mechanisms could explain these results. First, additional smoke days cor-

respond to the severity of an event, as measured by duration. Visitors may be more likely to

cancel during severe events. Second, additional smoke days in the week of arrival communicate

the likelihood of smoke on the actual arrival date. Multiple days of smoke in the week lead-

ing up may increase a visitor’s expectation of smoke during their own visit. This expectation

might raise the probability of cancellation. For example, in a regression of an indicator variable

1{campground is smoke-affected} on indicator variables for one, two, ..., seven days of smoke

in the week before arrival, each additional smoke day increases the probability of smoke on the

actual day of arrival. In such a regression, two days of smoke in the week raises the probability

of smoke on the arrival date by 0.301; six days of smoke in the week raises the probability of

smoke on the arrival date by 0.739.
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Figure 1.6: Welfare damages are greater for weeks that were more smoke-affected, consistent
with either more severe events or increased certainty of smoke conditions.
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Figure 1.7: Marginal willingness to pay (MWTP) increases with additional smoke days.
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1.4.3 The role of active wildfires

The existing literature has found that visitors to National Parks are less avoidant of wildfire

smoke that originates from distant sources (Cai 2021). In this section we investigate how nearby

active wildfires affect the main estimates. Although the main estimation controls for proximity

to active wildfire, one might still be concerned that individuals avoid recreation primarily due to

fire rather than smoke. If smoke days are highly correlated with nearness to fire it could increase

the estimated smoke coefficient and inflate WTP. To address this possibility, we reestimate the

main specifications but remove observations for which there was a nearby active fire.

We consider a campground as near to fire on day t if there is an active burning wildfire within

20 km (12 miles), a threshold we have used in previous work (Gellman et al. 2022). Table 1.5

reports the number of reservations affected by either smoke or fire conditions. When there is

fire nearby, there is nearly an equal number of smoke- and non-smoke-affected reservations.

However, due to the large distances that smoke travels, most smoke-affected reservations are

not for campgrounds near an actively burning wildfire.

Table 1.5: Reservations with smoke or fire conditions in the estimating dataset.

Smoke in week Fire within Number of Percent of
of arrival 20 km reservations sample (%)

0 0 2,356,407 86.5
1 0 322,114 11.8
0 1 24,199 0.9
1 1 21,220 0.8

Table 1.6 reports results for the cancellation estimation P(Cijt = 0|Rijt = 1) when removing

observations with nearby active wildfire. We find welfare damages of $85 per person per trip due

to smoke. By comparison, in the main specification we estimated lost welfare of $107 per person

per trip. The omission of fire days thus reduced estimated welfare damages by approximately

20%. These results are consistent with the findings of Cai (2021), who found that outdoor
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recreationists are less responsive to smoke originating from distant sources of fire.

Table 1.6: P(Cijt = 0|Rijt = 1), removing days with wildfire within 20 km.

(1) (2) (3) (4)

Smoke in week of arrival -0.1678** -0.2323** -0.2119** -0.2116**
(0.0224) (0.0195) (0.0173) (0.0177)

Travel cost (dollars) -0.0028** -0.0024** -0.0025** -0.0025**
(0.0003) (0.0003) (0.0003) (0.0003)

Inv. distance to wildfire (km−1) -9.4566** -7.7163** -7.2826** -6.5691**
(1.1591) (1.0196) (1.0794) (0.8965)

High temp. (degrees C) 0.0195** 0.0275** 0.0277** 0.0298**
(0.0043) (0.0021) (0.0021) (0.0021)

Low temp. (degrees C) -0.0029 -0.0202** -0.0208** -0.0249**
(0.0056) (0.0025) (0.0025) (0.0025)

Precip. in week of arrival (mm) -0.0043** -0.0060** -0.0062** -0.0059**
(0.0011) (0.0009) (0.0009) (0.0009)

ε̃ijt -0.0129 -0.0348** -0.0357** -0.0377**
(0.0261) (0.0121) (0.0121) (0.0123)

N 2,677,628 2,645,592 2,645,592 2,642,695
WTP 60.97** 95.08** 85.96** 84.66**

(12.4) (13.13) (12.03) (12)

Campground FE Yes Yes Yes
Day-of-week FE Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes
Year FE Yes
State x year FE Yes
Campground x year FE Yes

Notes: Std. err. clustered at campground level. * p < 0.05, ** p < 0.01.

1.4.4 Placebo test for smoke

As a robustness check, we devise a placebo test to check whether the smoke coefficient

actually measures responses to wildfire smoke. The placebo considers the responses of visitors

whose campground was not affected by smoke until one or two weeks after their arrival. If

visitors are truly averting recreation due to smoke then we should see no response to these

placebos. Of the 2.38 million reservations without smoke in the week of arrival, there are more
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than 375,000 placebo reservations for campgrounds that saw smoke in the week or second week

after arrival.

Table 1.7 displays results from the placebo test. Across the main specifications we find null

responses to the two smoke placebos. Comparing to Table 1.4, most coefficients remain the

same for this placebo test. This exercise should add confidence that individuals are actually

responding to smoke in the main estimation.

Table 1.7: Placebo test for P(Cijt = 0|Rijt = 1) using smoke long after arrival.

(1) (2) (3) (4)

Smoke in week after arrival 0.0874** 0.0248 0.0226 0.0066
(0.0190) (0.0163) (0.0155) (0.0159)

Smoke two weeks after arrival 0.0783** 0.0041 0.0034 -0.0042
(0.0231) (0.0147) (0.0146) (0.0156)

Travel cost (dollars) -0.0027** -0.0025** -0.0025** -0.0025**
(0.0004) (0.0003) (0.0003) (0.0003)

Inv. distance to wildfire (km−1) -8.5921** -7.3229** -7.2413** -5.2047**
(0.8373) (0.8998) (0.8823) (0.7795)

High temp. (degrees C) 0.0201** 0.0294** 0.0285** 0.0303**
(0.0043) (0.0022) (0.0022) (0.0022)

Low temp. (degrees C) -0.0010 -0.0184** -0.0184** -0.0221**
(0.0057) (0.0026) (0.0026) (0.0025)

Precip. in week of arrival (mm) -0.0039** -0.0062** -0.0062** -0.0058**
(0.0011) (0.0009) (0.0009) (0.0010)

ε̃ijt -0.0089 -0.0332** -0.0337** -0.0352**
(0.0262) (0.0123) (0.0122) (0.0124)

N 2,379,842 2,344,620 2,344,620 2,340,894
Campground FE Yes Yes Yes
Day-of-week FE Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes
Year FE Yes
State x year FE Yes
Campground x year FE Yes

Notes: Std. err. clustered at campground level. * p < 0.05, ** p < 0.01.
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1.4.5 Additional results and robustness checks

We report several additional results and robustness checks in the appendices. These checks

include an exploration of the role of no shows in the estimation of cancellation probability. In

addition, we vary the distance threshold that defines the sample restriction. Lastly, we show

how results vary by the popularity of the recreation destination.

One concern when studying cancellations is the question of whether an individual will for-

mally cancel their reservation, or whether they will simply not show up. For most campgrounds

we do not observe whether an individual checks in to their campground or not. However,

campers have an incentive to cancel their reservation. For cancellations made more than 24

hours before the arrival date, visitors are reimbursed for the full cost of the reservation less a $10

cancellation fee; and, when cancelling within 24 hours of arrival, they are still reimbursed for

the full trip less the $10 fee and the price of the first night’s stay. Still, we further explore this

question in Appendix A.6. For a small subset of campgrounds we are able to observe no shows.

Among the sample of campgrounds reporting no shows we demonstrate that the inclusion or

exclusion of no show observations in the estimation of cancellations P(Cijt = 0|Rijt = 1) does

not change the estimates for the smoke or travel cost coefficients. For a discussion of this issue

the interested reader may refer to Appendix A.6.

We also explore alternative distance thresholds for the sample restriction. In the main

results we limit attention to reservations made within 650 km of one-way driving distance, or

approximately 400 miles. Figure 1.1 shows that this distance restriction results in the inclusion

of more than 85% of all reservations. Appendix A.7 reports how estimates vary with this

threshold. Increasing the distance threshold attenuates the parameter estimate for travel cost,

which is an input to welfare calculation. This relationship is possibly due to the inclusion of

some visitors at greater distances who chose not to cancel their reservations. As a result, the

estimated welfare damages increase as the distance threshold is relaxed. For more information,

see Appendix A.7.

Lastly, we assess which types of campgrounds drive the parameter estimates. Even with a
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high number of fixed effects, visitors could respond differentially to disamenities at highly valued

destinations such as Glacier National Park as opposed to small, primarily local US Forest Service

campgrounds. Appendix A.8 reports heterogeneous results by campground popularity, where

popularity is defined by annual visitation. We find that visitors are less responsive to both

smoke and to travel cost at the most popular destinations. Visitors may be more tolerant of

environmental disamenities at highly valued destinations. Across most specifications, welfare

damages are highest for destinations in the middle quartiles of popularity.

1.5 Total welfare losses

In the preceding sections we have estimated per trip damages of wildfire smoke. We now

turn to an appraisal of the total annual welfare damages for recreation. We combine the

camping data from Recreation.gov with overall visitation data from federal and state agencies

to determine the total number of outdoor visits in the west that are affected by smoke each

year. As a back of the envelope calculation we multiply total smoke-affected visitation by the

empirical per trip welfare estimate to approximate the total annual welfare loss due to smoke in

the west. One limitation of this analysis is that the welfare estimates are derived from camping

activity, which may not be representative of losses to other forms of recreation such as angling,

swimming, or daytime visits. Still, this figure approximates the relative magnitude of total

annual smoke damages for recreation in the western United States.

We find that across federal and state lands, an average of 21.5 million outdoor recreation

visits per year are affected by wildfire smoke. Multiplying by a per trip damage of $107 per

person, this result implies more than $2.3 billion of welfare losses each year due to smoke. This

back of the envelope estimate represents the lost welfare to inframarginal visitors and does not

include the value of lost trips.

To arrive at this number we use total visitation numbers from the National Park Service,24

24National Park Service. Annual Summary Report. https://irma.nps.gov/STATS.
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US Forest Service,25 Bureau of Land Management,26 US Army Corps of Engineers,27 and the

National Association of State Park Directors (Smith et al. 2019) for the years 2008 to 2017.

These data sources have varying levels of spatial and temporal granularity. For each data source

we use the Recreation.gov data to determine, at the relevant spatial and temporal scale, the

proportion of total visits at each agency that were affected by smoke. For more information on

the estimation of smoke-affected visitation, an interested reader may refer to Appendix A.9.

Table 1.8 displays estimates of total visitation, smoke-affected visitation, and total welfare

losses by agency. One key point is the high overall level of outdoor recreation, with more than

511 million annual visits to state and federal lands in the western United States. In addition,

a high proportion of these visits are affected by smoke. We estimate that approximately 21.5

million visits per year are affected by wildfire smoke, or 4.2%. When multiplied by the per trip

estimate of $107, we find total annual welfare losses of approximately $2.3 billion due to smoke.

Nearly half of these damages occur at state parks, which see larger visitation compared to

federal agencies. Of any agency, the US Army Corps of Engineers saw the highest proportion of

its visitors affected by smoke. This is likely due to the fact that much of that agency’s visitation

(nearly 40%) occurs at lakes and reservoirs in the Pacific Northwest, a region which has seen

particularly high wildfire smoke impacts relative to other regions (Burke et al. 2021a, Gellman

et al. 2022, Miller et al. 2021).

25US Forest Service. National Visitor Use Monitoring Program. https://www.fs.usda.gov/about-agency/

nvum.
26Bureau of Land Management. Public Land Statistics. https://www.blm.gov/about/data/

public-land-statistics.
27US Army Corps of Engineers. Value to the Nation. https://www.iwr.usace.army.mil/Missions/

Value-to-the-Nation.
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Table 1.8: Smoke-affected recreation visits and welfare losses for the western US, by agency,
2008 to 2017.

Total Smoke-affected Welfare
visits/year visits/year loss/year
(millions) (millions) (millions)

National Park Service 102.6 2.3 $248.1
US Forest Service 108.0 4.8 $511.4
Bureau of Land Management 59.8 2.5 $267.3
US Army Corps of Engineers 46.4 2.4 $251.7
State Parks 194.5 9.6 $1,022.1

Total 511.4 21.5 $2,300.6
Notes: Welfare loss computed by multiplying $107 per trip by smoke-affected visits.

Welfare losses vary by region. Some states saw high smoke damages due to high baseline

levels of visitation, while damages in other regions were driven by a high proportion of smoke-

affected visits. Table 1.9 reports losses by state, while Figure 1.8 maps the proportion of visits

that were affected by smoke in each state. For states such as California and Colorado, damages

are large due to high visitation. States such as Oregon and Washington saw both relatively high

visitation and a high share of smoke-impacted visits. At the other end of the spectrum, states

in the Southwest such as Arizona, Nevada, and Utah saw high visitation but a low proportion of

smoke-affected visits. In Northern Rocky Mountain states like Idaho, Montana, and Wyoming,

damages are driven by a high share of smoke-affected days. As a whole, these findings show

the high cost of wildfire smoke for outdoor recreation in the western United States.
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Table 1.9: Smoke-affected recreation visits and welfare losses for the western US, by state, 2008
to 2017.

Total visits/year Smoke-affected visits/year Welfare loss/year
(millions) (millions) (millions)

California 162.7 6.1 $649.6
Oregon 69.9 4.4 $466.2
Washington 64.8 3.3 $351.9
Colorado 55.3 2.1 $220.9
Idaho 19.6 1.3 $136.8
Wyoming 21.9 1.2 $131.6
Montana 18.3 1.1 $121.8
Utah 32.1 0.8 $84.8
New Mexico 13.7 0.6 $60.9
Arizona 33.0 0.4 $46.3
Nevada 20.2 0.3 $29.8

Total 511.4 21.5 $2,300.6
Notes: Welfare losses computed by multiplying $107 per trip by smoke-affected visits.

Figure 1.8: Estimated proportion of visits affected by smoke per year.
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1.6 Conclusion

This study provides the first revealed preference welfare estimates of the damage of wildfire

smoke for outdoor recreation. Using high frequency data on campground reservations, wild-

fire, smoke, and air pollution, we study avoidance behavior at federally managed lands in the

western United States. We estimate that wildfire smoke causes welfare losses of $107 per per-

son per trip. These damages increase at an increasing rate when campgrounds are affected

by consecutive days of smoke, and are attenuated when smoke-affected campgrounds are far

from active wildfires. Combining these results with federal and state data on total visitation,

we estimate that 21.5 million outdoor recreation visits per year are affected by smoke, with

associated welfare losses of $2.3 billion.

The paper provides several contributions to the literature. First, we contibute by using novel

methods and data. We value a temporary environmental bad, wildfire smoke, in a context where

visitors face changing sets of information. To do so, we develop a two stage decision structure

that links preferences with a control function. This model draws on work from economists

concerned with sample selection in non-linear models (Greene 2012, Terza 2009), as well as

researchers confronting sample selection in recreation settings (Cameron and DeShazo 2013,

Cameron and Kolstoe 2022, Kolstoe and Cameron 2017, Lewis et al. 2019). The framework we

develop could be used in other studies facing sample selection or sequential choices. Further,

our use of administrative data complements recent literature using large or innovative datasets

to study recreation across multi-state regions (Cameron and Kolstoe 2022, Dundas and von

Haefen 2020, English et al. 2018).

We also add to the existing literature on the costs of wildfire smoke. To contextualize the

results of this study, we compare to several other studies on the costs of wildfire smoke. Most of

these studies have used survey methods, healthcare costs, or have valued changes in mortality

using the value of a statistical life (VSL). Richardson et al. (2012) report results from a survey

following a large wildfire in Los Angeles County. They asked respondents about avoidance

behavior during this fire, namely expenditures on air purifiers, as well as health outcomes and
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risk perceptions. They derive a WTP to avert one wildfire induced symptom day of $84 in 2009

dollars, or $102 when adjusted to 2020 dollars. We estimate the WTP to avoid an exposure

day, rather than a symptom day. Taking the empirical estimate of $107 per trip, this translates

to approximately $38 per day, based on an average trip length of 2.84 days.

We can also compare total welfare results to the literature. We estimate welfare losses of

approximately $2.3 billion per year for recreation in the western United States. Miller et al.

(2021) combined a VSL with estimates of mortality among elderly Medicare recipients due to

wildfire smoke. They found between $6 billion and $170 billion in annual damages, in 2021

dollars. These results mainly vary due to assumptions on remaining years of life, since their

sample is comprised largely of elderly individuals. When assuming that those who die from

wildfire smoke would have lived an additional 3.5 years, they arrive at a lower bound of $6

billion. Borgschulte et al. (2022) found annual lost labor earnings of $125 billion per year, in

2018 dollars, due to wildfire smoke. Several other studies have found costs of wildfire smoke

for test scores, crime, and hospital visits (Burkhardt et al. 2019, Cullen 2020, Wen and Burke

2021).

Estimating these costs can inform public policy. The federal government spends an average

of $2.8 billion per year on fire suppression, and the State of California spends $900 million per

year on suppression.28,29 Wildfires destroy thousands of structures per year, which has cost

tens of billions of dollars in recent years (Baylis and Boomhower 2021, Buechi et al. 2021).

Both states and the federal government have pledged to increase fuels treatment projects to

mitigate the risk of fire ignition and spread. California has jointly declared a goal with the US

Forest Service to treat more than 1 million acres of hazardous vegetation per year.30 Consistent

with this goal, California has proposed to spend $1.2 billion across Fiscal Years 2022-23 and

28National Interagency Fire Center. Suppression Costs. https://www.nifc.gov/fire-information/

statistics/suppression-costs.
29California Department of Forestry and Fire Protection. Suppression Costs. https://www.fire.ca.gov/

stats-events.
30Agreement for shared stewardship of California’s forest and rangelands between the State of California and

the USDA Forest Service, Pacific Southwest Region. https://www.gov.ca.gov/wp-content/uploads/2020/08/
8.12.20-CA-Shared-Stewardship-MOU.pdf.

42

https://www.nifc.gov/fire-information/statistics/suppression-costs
https://www.nifc.gov/fire-information/statistics/suppression-costs
https://www.fire.ca.gov/stats-events
https://www.fire.ca.gov/stats-events
https://www.gov.ca.gov/wp-content/uploads/2020/08/8.12.20-CA-Shared-Stewardship-MOU.pdf
https://www.gov.ca.gov/wp-content/uploads/2020/08/8.12.20-CA-Shared-Stewardship-MOU.pdf


Non-market damages of wildfire smoke: evidence from administrative recreation data Chapter 1

2023-24 for fire mitigation activities such as vegetation management and home hardening.31

Understanding the cost of wildfires is crucial to assess the benefit of these public policies. Our

study contributes to a growing understanding of the costs of wildfire smoke.

31California Legislative Analyst’s Office. The 2022-23 Budget Wildfire and Forest Resilience Package. https:
//lao.ca.gov/Publications/Report/4495.
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Chapter 2

Wildfire, smoke, and outdoor

recreation in the western United

States

2.1 Introduction

Outdoor recreation on public lands in the United States has never been more popular. Na-

tional parks saw 327.5 million visitors in 2019, and the six highest-visitation years on record were

2014–2019 (NPS 2019a). Visits to Bureau of Land Management (BLM) sites, such as national

monuments and national conservation areas, rose by 20% over the past ten years (BLM 2019).

In the western United States, where more than half the land is owned by the federal government

and many of the most famous national parks are located (including the Grand Canyon, Glacier,

Yellowstone, and Yosemite), outdoor recreation is a significant economic driver. In Montana,

for example, outdoor recreation accounts for 5% of state GDP, compared to 2.2% nationally

(BEA 2019).

As outdoor recreation has increased in popularity, wildfires in the American West have be-

come more frequent and more severe (Abatzoglou and Williams 2016, Westerling 2016, Crockett
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and Westerling 2016). Wildfires pose a problem for outdoor recreation for three reasons. First,

they frequently burn on public lands used for recreation, in some cases impacting visitor experi-

ences for years into the future (Englin et al. 2001, Hesseln et al. 2003, Hilger and Englin 2009).

In 2018, 63% of the acreage burned in wildfires in the western United States was on federal

lands (Hoover and Hanson 2019). Second, fire season coincides with outdoor recreation season.

Approximately 48.5% of visits to national parks in 2018 occurred between June and September,

which overlaps with peak wildfire season in many parts of the western US (NPS 2019b). Third,

outdoor recreationists spend large amounts of time outside. Recent estimates indicate that up

to half of PM2.5 exposure in some parts of the western United States is attributable to wildfire

smoke (Burke et al. 2021). Exposure to unhealthy air quality from wildfire smoke can reduce

enjoyment of the recreation activity, lead to respiratory health problems, and offset the health

benefits of physical activity (Korrick et al. 1998).

Much of the literature on wildfire and outdoor recreation has focused on the impacts that

a fire-damaged landscape has on recreation in the years after a fire. Using a combination of

recreation site visit data and responses to survey questions about visitation under hypothetical

fire conditions, studies have examined how various fire characteristics, such as size, severity, and

age, affect the frequency of trips and the value of outdoor recreation (Englin et al. 2001, Hesseln

et al. 2003, Loomis et al. 2001, Hesseln et al. 2004, Starbuck et al. 2006, Boxall and Englin

2008, Sánchez et al. 2016). These studies typically focus on relatively small geographic areas

and a limited number of fires, or sometimes a single fire event. Two studies have used multiple

years of national park visitation data to analyze how fire affected visitation in Yellowstone

National Park (Duffield et al. 2013) and five national parks in Utah (Kim and Jakus 2019).

Some studies have used the effects of fire as a way to assess the value of forest characteristics,

including forest age (Englin et al. 2006).

The effect of wildfire smoke on recreation has received decidedly less attention. Two studies

collected survey data to analyze how outdoor activity, including exercise and recreation, changed

in response to a wildfire event (Richardson et al. 2012, Fowler et al. 2019), but these studies
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were focused in urban areas. We are aware of only one study focused on evaluating the impact

of wildfire smoke on outdoor recreation away from home, a recent paper that used a case study

and survey approach to evaluate changes to public lands users’ recreation experiences and trip

planning (White et al. 2020). A few studies have examined effects of air quality on recreation.

For example, a 2018 study using monthly visitation data found that air pollution is about as

severe in some national parks as in US urban areas, and that it negatively affects visitation

(Keiser et al. 2018).In a study of the effect of smog alerts on outdoor recreation in southern

California, Graff-Zivin and Neidell (2011) found that residents make short-run adjustments to

shift outdoor activities from days with smog alerts to days with better air quality. However,

the specific effects of wildfire smoke on outdoor recreation are largely unexplored, and several

studies show that exposure to particulate matter (PM) from smoke has different effects on

health outcomes and behavior than exposure to PM from typical urban sources (Kochi et al.

2010).

We combine daily observational data on outdoor recreation over a ten-year period across

the western continental United States, daily satellite data on wildfire burn areas and smoke

plumes, and ground-level air quality monitoring data. We assess the impact of wildfire and

smoke on outdoor recreation across a large region and multiple fire events. Our recreation data

are drawn from the Recreation.gov website, which is used to make reservations for a variety of

activities at more than 3,700 federally managed facilities across the United States. We focus

on camping, one of the most popular nature-based recreation activities and the source of most

reservations in the Recreation.gov system. Camping has relatively high smoke exposure, given

the many hours campers spend outdoors. Our data include camping reservations and walk-in

registrations at more than 1,000 individual campgrounds in the western United States on each

day of the year from 2008 through 2017 and information on reservation cancellations and early

check-outs.

We address two main research questions. First, we ask how many people are directly affected

by wildfires and wildfire smoke each year while camping on public lands in the western United

46



Wildfire, smoke, and outdoor recreation in the western United States Chapter 2

States. Using these estimates, we calculate the share of total camper-days affected by wildfires

and smoke and the spatial variation of the impacts across the region. The daily data from the

Recreation.gov system allows us to calculate the first comprehensive estimates of fire and smoke

impacts on outdoor recreationists. Compared to other data sources, which are often either

survey-based and limited geographically or aggregate monthly or annual data, Recreation.gov

provides daily counts of visitors at specific latitude-longitude locations (the locations of their

reserved campgrounds). Not only does this give us a better understanding of the number of

individuals in a recreation area at a given time, but once merged with daily data on fire and

smoke, it allows us to estimate smoke and fire impacts at a much finer spatial resolution than

in previous research. In addition to quantifying the number of campers affected, we combine

our data with broader monthly visitation data for the national parks in our sample to estimate

the total number of all visitors (not just overnight campers) at national parks affected by fire

and smoke.

Second, we ask how fire and smoke alters campground use. Specifically, using panel fixed

effects regression models, we analyze the following outcomes at the individual campground

level: (i) campground occupancy rates, (ii) trip cancellation rates prior to arrival, and (iii)

trip cancellation rates after arrival. The estimates from these models provide evidence on the

extent to which people alter their recreation plans to avoid fire and smoke, and the first causal

estimates thus far on the effects of wildfire smoke on outdoor recreation behavior. Our daily

campground use data are particularly valuable for estimating impacts of wildfire smoke on

visitation since wildfire smoke may be transient and short-lived.

Our analysis reveals that 124,000 campground visitor-days per year, on average, were within

20 kilometers (km) of an active wildfire over our ten-year sample period and nearly 400,000

campground visitor-days per year were affected by air pollution from wildfire smoke. Seventy

percent of the campground visitor-days affected by fire and 42% affected by adverse smoke

conditions were in California, highlighting both the prevalence of wildfire and popularity of

outdoor recreation on public lands in the state. The northern states of Montana, Idaho, Wash-
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ington, and Oregon accounted for only 16% of the campground visitor-days affected by fire

but 38 % of the visitor-days affected by smoke, underscoring the tendency of smoke to travel

long distances with prevailing winds from south to northeast. Moreover, because of the shorter

outdoor recreation season in the north, these four states had the greatest share of campground

visitor-days affected by smoke, 7% over the ten-year period. A total of 392,000 national park

visitor-days per year were near a wildfire, and 1 million park visitor-days per year were affected

by air pollution from wildfire smoke.

Finally, our regression results show statistically significant impacts on campground occu-

pancy rates and cancellation rates from fire and smoke. When a fire is within 20 km of a

campground, the occupancy rate drops 6.4 percentage points, on average, and cancellation

rates before arrival more than double. The magnitudes of the smoke impacts are comparatively

small, however. The occupancy rate falls by only 1.3 percentage points under adverse smoke

conditions. We attribute this small effect, in part, to the challenge of finding an open campsite

at many national parks in the peak summer months (Walls et al. 2018). Cancelling a trip

because of smoky conditions may mean foregoing a visit for the entire season, which many

travelers may be unwilling to do. Indeed, we estimate separate regressions by campground

popularity quartiles and find that smoke has the smallest effect on occupancy rates in the most

popular campgrounds. In a back-of-the envelope welfare calculation, combining our results

with valuation estimates in the literature, we find that wildfire smoke causes welfare losses

from smoke-related illnesses and avoided camping trips of approximately $4.8 million per year.

These losses are an underestimate of the full welfare loss, as they do not include the disutility

of camping during smoky conditions. Nonetheless, they provide some sense of the welfare losses

to outdoor recreationists from wildfire smoke—losses that are likely to rise as wildfire activity

continues to escalate in the western United States.
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2.2 Data and methods

2.2.1 Recreation data

We assembled a panel dataset comprising daily campsite reservations, proximity to active

wildfires, and air-pollution-related smoke conditions at federally managed campgrounds. We

source the data from Recreation.gov. Though not all federally managed campgrounds are reserv-

able, and some sites are managed through alternative systems, Recreation.gov is the primary

online system through which visitors can make and cancel reservations at federal campgrounds.

We obtained historical data for 2008–2017 from the website managers. The complete database

includes 90 million transactions by 7 million unique users of federal outdoor recreation facilities

for each day of the year between 2008 and 2017. We focus on campground facilities in the 11

western continental US states, reducing the dataset to approximately 25 million transactions

by 3.1 million unique users at 1,069 campgrounds managed by the US Forest Service, BLM,

the US Army Corps of Engineers, National Park Service (NPS), and Bureau of Reclamation.

Campgrounds in our dataset belong to 269 distinct “recreation areas,” which include national

parks, lakes, or reservoirs managed by the Army Corps of Engineers, ranger districts in national

forests, and resource areas or districts managed by BLM.

Our dataset includes all transactions online, by phone, and on-site (such as walk-in reser-

vations or early check-outs). For the western campgrounds in our analysis, 81% of transactions

were made online, 10% over the phone, and 9% on-site. The dataset includes the date of

each transaction, the scheduled arrival and departure dates, payments, dates of cancellation,

group size, zip code of origin, and campground information. For most campgrounds, we do

not observe whether the individual checked in to the campground on the scheduled date, so

we cannot identify “no-shows” at all locations. However, campers have a financial incentive to

cancel when plans change, mitigating this concern. They usually receive a full refund less a

$10 service fee if they cancel more than one day prior to the scheduled arrival date and a full

refund less a $10 service fee plus the cost of one night’s stay when they cancel within one day
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of the scheduled arrival date. We aggregate reservation records from the individual campsites

to the campground level to construct a daily panel of use measures for each campground in our

dataset. Our measures of interest are the number of occupants, occupancy rate (i.e., the share of

sites in use), and pre- and post-arrival cancellation rates (the number of reservations cancelled

prior to arrival and during the stay, respectively, as a share of all reservations). Appendix B.1

provides more information about the construction of the dataset from the raw Recreation.gov

database.

For every campground we determine the number of daily occupants based on the number

of uncancelled reservations. We measure the occupancy rate on date t as the proportion of

campground sites that are reserved (and for which reservations have not been cancelled) on date

t. Formally, the occupancy rate variable is (occupied campsitesit)/(total number of campsitesit).

The occupancy rate provides a measure of overall site use, which we expect will decline during

nearby wildfire activity or periods of heavy smoke, due to both decreases in new reservations

and increases in cancelled reservations. Appendix B.1 describes how we calculate the total

number of campsites (the denominator in the occupancy rate variable) for each campground on

each day.

We also consider two measures of cancellations. The pre-arrival cancellation rate is the

number of cancelled reservations as a share of total reservations for arrival date t. We consider

only the cancellations that occurred within one week of arrival, because these trips are most

likely to be influenced by current and anticipated fire and smoke conditions.

Visitors may also decide to end their visit early in response to fire or smoke. Therefore,

for each campground, we also measure the post-arrival cancellation rate as the number of

cancellations made on date t for visits that began prior to date t and had a scheduled departure

date after day t, calculated as a share of the number of occupants at the campground on day t.

In a supplementary analysis, we estimate the total number of national park visitors (campers

and noncampers) exposed to fire and smoke. For this analysis, we use data from NPS Visitor

Use Statistics, which provide monthly visitation data for individual national parks (NPS 2019a).
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We combine these data with our estimates of calculated exposure of campground users to obtain

an estimate of total numbers of national park visitors affected by fire and smoke.

2.2.2 Active fire and smoke data

Locations of active wildfires come from MODIS fire detection data (Giglio et al. 2016).

MODIS is an instrument aboard NASA’s Terra and Aqua satellites capable of detecting fire

activity. MODIS fire detection data provide centroids of 1 km observations with a temporal

resolution of 1–2 days for all observed fire activity, including agricultural burning and prescribed

fires. We restrict fire detections to those associated with wildfires by selecting those near in

space (within 1 km) to and occurring during the same time as wildfires in the USGS Monitoring

Trends in Burn Severity (MTBS) dataset, which maps perimeters of wildfires larger than 1,000

acres in the western United States (Eidenshink et al. 2007). An advantage to using this modified

MODIS dataset, rather than simply the final fire perimeters from MTBS, is that MODIS data

more reliably identify the period during which fires are actively burning. We measured the

distance between each campground and the nearest active wildfire for each date in the study

period and used that distance to identify campgrounds that were within 20 km of an actively

burning fire on each date. In Appendix B.2, we show results for alternative distances.

Days with adverse smoke conditions are based on data from the NOAA HMS and the US

Environmental Protection Agency (EPA). Since 2005, NOAA analysts have used imagery from

GOES satellites to map smoke plume boundaries. Usually twice a day—once in the morning

and once in the evening—analysts use 2–4 hour satellite imagery animations to trace polygons

delineating the boundary of each smoke plume they observe. They identify each plume as low,

medium, or heavy smoke. The NOAA HMS smoke product has been used recently in studies

of smoke’s contribution to air pollution and air pollution’s effect on crime (Preisler et al. 2015,

Burkhardt et al. 2019). A disadvantage of the NOAA HMS smoke data is that because plumes

are identified based on aerial imagery, and smoke may be high in the air column, they do not

necessarily identify locations with poor on-the-ground air quality. We combine the smoke data
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with data provided by Burkhardt et al. (2019), who interpolate EPA daily surface-level PM2.5

monitoring data to a 15 km grid using kriging, a geostatistical spatial interpolation method that

has been shown to be effective for air quality data over large areas (e.g., Jerrett et al. 2005).

The data and interpolation method are described in detail in Burkhardt et al. (2019). Following

their approach, we calculate seasonal means and standard deviations of air quality on days that

each cell is not covered by a smoke plume. We then identify air-quality-impacted smoke days as

days on which a campground is covered by a smoke plume and PM2.5 is at least 1.64 standard

deviations above the within-cell seasonal mean for nonsmoky days, which represents the 95th

percentile of a normal distribution. This method eliminates many of the areas covered by smoke

plumes because they fall below the 95th percentile for PM2.5. In Appendix B.2, we show results

for an alternative, less conservative, assumption using only the smoke plume data without the

adjustment from the ground-level monitors.

2.2.3 Quantification of total wildfire and smoke impacts on outdoor recre-

ation

The first part of our analysis involves a spatial merge of the campgrounds in our dataset

with the wildfire data and combined smoke plume-PM2.5 monitor data to calculate the total

number of campground-days near wildfires and affected by adverse smoke conditions over the

2008–2017 sample period. Using the total number of days the campground is open (as described

in Appendix B.1), we then calculate the share of campground-days affected by fire and smoke

in each year.

Using the reservation data from Recreation.gov, we tally the sum of campers at each camp-

ground on each day in our sample. An individual camper that visits a park for one day is tallied

as a single camper-day. We merge the daily camper-days panel with the wildfire, smoke, and

PM2.5 data at the campground level and estimate the total number, and share, of camper-days

affected by fire and smoke over the ten-year sample period.

Finally, we estimate the total number of national park visitor-days affected by fire and
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smoke by multiplying monthly visitor-days from the NPS Visitor Use Statistics database for

each of the 30 national parks in our sample by the ratio of monthly camper-days affected to

total monthly camper-days at each park.

2.2.4 Analysis of behavioral responses to fire and smoke

We estimate the effects of wildfire and wildfire smoke on camping behavior at campground

i on date t using the following regression specification:

yit = βffireit + βssmokeit + γprecipit + ϕtempit + ψi + δt + λk(i),t + εit (2.1)

where yit = {occupancy rate, pre-arrival cancellation rate, post-arrival cancellation rate} at

campground i on date t; fireit is an indicator equal to 1 if a fire is within 20 km of campground

i on date t; smokeit is an indicator equal to 1 if campground i is affected by adverse smoke

conditions on date t; precipit is the amount of rainfall, in millimeters, at the campground on

date t; tempit is the normalized difference between the campground’s temperature on date t

and its ten-year average on that week of year, where the normalization is based on the standard

deviation of temperatures for that week; ψi is a set of campground fixed effects; δt includes

week-of-year and day-of-week fixed effects and indicators for federal holidays; and λk(i),t includes

recreation area by month-of-year and recreation area by year fixed effects. The fixed effects

control for seasonal factors and unobserved campground and recreation area characteristics that

drive occupancy rates and cancellations. The precipitation and temperature variables control

for weather effects that might affect camping decisions and outcomes. Thus, our model isolates

the impacts of fire and smoke by controlling for a variety of unobserved factors that could be

correlated with both fire and smoke and campground use. Regressions are weighted by the

number of campsites at campground i on date t to account for heteroskedasticity. Standard

errors are clustered at the recreation area level to allow for errors to be correlated across

campgrounds in the same area.

In Appendix B.2, we test distance bandwidths of 10 km and 30 km for the fire variable and
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relax our measure of adverse smoke conditions by using the smoke plumes data without the

ground-level PM2.5 readings adjustment.

2.3 Results

2.3.1 Campgrounds and campground visitor-days affected by wildfire and

smoke

Consistent with our initial expectations, and the findings of previous literature, we find

that increased recreational activity coincides with wildfire and smoke events. Participation

in camping and other outdoor recreation activities on public lands is highly seasonal. Good

weather, long hours of daylight, school holidays, and other factors lead most people to national

parks and other recreation areas during summer months, when wildfires are most common.

Figure 2.1 plots average campground occupancy rates within each week of the year against the

frequency of campground-days with smoke (left y-axis) or a wildfire nearby (right y-axis) for

six subregions of the western United States. Each triangle (fire) and circle (smoke) is colored

by week—redder colors are closer to the middle of the summer, and bluer colors correspond

to winter. In each region, higher occupancy rates are positively correlated with the fraction

of campground-days that are smoky or near a fire; further, campground occupancy, fire, and

smoke all coincide in the summer months.
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Figure 2.1: Average overall campground occupancy and percentage of days with fire (triangles)
and smoke (circles) within each region and week-of-year, 2008–2017. Solid and dotted lines
show fitted values for fire and smoke, respectively, with shaded 95% confidence intervals. The
six regions are defined in the text.
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Campgrounds in our sample were near active burning fires (within 20 km) an average of 1.5

days per year, corresponding to 1.7% of the days those campgrounds were open (Table 2.1, panel

I, columns 1 and 2). The frequency with which campgrounds experienced nearby fires varied

across western subregions. In Southwest states (Arizona and New Mexico) and California,

campgrounds experienced nearby fires more than two days per year on average, and the Rocky

Mountains (Colorado and Wyoming) and Great Basin (Nevada and Utah) campgrounds had

fires nearby an average of only 0.5 days per year. The result for California is relatively high

because wildfires were common in the state. Fires were less frequent in the Southwest, but

those that did occur were often close to federally managed campgrounds, especially the Grand

Canyon. Within a larger distance of 30 km to the nearest fire, more campgrounds were affected:

an average of 2.8 days per year, or 3.0% of the days campgrounds were open during the period

(Appendix B.2).
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Table 2.1: Annual campground- and camper-days near wildfires and with adverse smoke con-
ditions, by region. Campground-days are the number of days campgrounds in each region were
within 20 km of an active fire (Panel I) or had adverse smoke conditions (panel II). Camper-
days multiply the number of days campgrounds in each region were affected by the number of
campers at each campground on affected days. Each campground’s total available campground-
days are calculated as the number of days each year the campground had at least one occupant.

Campground-days Camper-days

Avg. annual Percent total Avg. annual Percent
days per available camper-days total

campground campground-days (thousands) camper-days

I. Fire

California 2.5 2.0 86 2.1
Great Basin 0.5 0.6 3 0.3
Northern Rockies 1.5 1.9 7 1.0
Pacific Northwest 1.5 2.2 13 0.9
Rocky Mountains 0.5 0.6 2 0.2
Southwest 2.1 2.0 14 1.8

Total 1.5 1.7 124 1.4

II. Smoke

California 6 5 160 4
Great Basin 4 5 23 3
Northern Rockies 9 11 49 7
Pacific Northwest 9 12 95 7
Rocky Mountains 6 7 41 4
Southwest 4 4 15 2

Total 7 7 383 4

On average, 124,000 camper-days per year were within 20 km of an active wildfire, and

86,000 of these—nearly 70%—were in California (Table 2.1, panel I, columns 3 and 4). As a

share of total camper-days, the number near an active fire ranged from an average of 0.2%

in the Rocky Mountains to 2.1% in California; the overall average was 1.4%. If we relax the

distance bandwidth to 30 km within an active wildfire, the number of affected camper-days
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rises to 218,000, and the percent of affected days rises to 2.5 (Appendix B.2).

In contrast to fire, smoke affects campgrounds and campers more often. On average, across

the western states, campgrounds experienced adverse smoke conditions seven days per year,

representing 7% of the days that campgrounds were open (Table 2.1, panel II, columns 1

and 2). Campgrounds in the Northern Rockies (Idaho and Montana) and Pacific Northwest

states (Oregon and Washington) were especially affected, with 10 and 12% of campground-days,

respectively, experiencing adverse smoke conditions. These subregions have actively burning

wildfires less frequently than other regions, but prevailing wind patterns bringing smoke from

fires in the south mean that they are disproportionately affected by smoke. Not only was the

average number of smoky days higher than in other subregions, but the percent of available

campground-days affected by smoke was much higher due to the shorter camping season in

those subregions, particularly in the Northern Rockies.

Nearly 400,000 camper-days per year, on average, were under adverse smoke conditions

during our sample period, with 160,000 in California (Table 2.1, panel II, columns 3 and 4).

However, that number accounts for only 4% of all camper-days in California, much lower than

the Pacific Northwest and Northern Rockies subregions. This difference likely owes to the

comparatively longer camping season in California. By contrast, in the Northern Rockies, 7% of

camper-days were under adverse smoke conditions. On average, across the western continental

United States, 4% of camper-days had air quality impaired by wildfire smoke. These findings

suggest that a nontrivial portion of the camping season is impacted by poor air quality due to

smoke in many parts of the western United States.

Impacts show substantial regional heterogeneity. Figure 2.2 combines the fire and smoke

information in a map of the western United States. The gray base map shows the average

number of annual days with adverse smoke conditions on a 15 km by 15 km grid. Smoke

is most frequent in northern California and southern Oregon and along the Idaho-Montana

border. Markers represent the location of campgrounds, with colors denoting the total number

of campground-days with a nearby wildfire (within 20 km) over the study period. The map
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shows that California has a higher number of fire-affected campground-days than most other

states. Colorado, for example, has many campgrounds but few campground-days near a fire,

and Eastern Oregon has many days with smoky conditions but few campgrounds.

Figure 2.2: Geographic distribution of smoke and fire impacts on campgrounds.
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Although wildfire activity has increased in the western United States over the past several

decades (Westerling 2016), we observed no clear trend in the number of campground-days near

wildfires over 2008–2017 (see Figure B.2 in Appendix B.2). The 10-year study period is likely

too short to observe longer term trends in campground impacts, especially given the substantial

year-to-year variation in fire events.

2.3.2 National park visitor-days affected by wildfire and smoke

Campers are only a subset of all visitors at many federal recreation sites, particularly at

national parks. Although we do not have daily data on all visitors, we can approximate the
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full impact of fire and smoke at national parks by combining our estimated fire- and smoke-

affected camper-days with monthly total visitation data collected by the NPS. We find that, on

average, 392,000 visitor-days per year at the national parks in our sample were close to active

wildfires; Yosemite accounts for over half of this number (Table 2.2). Approximately 1 million

visitor-days per year occurred during adverse smoke conditions, and these impacts were spread

out across a larger number of parks. Once again, this highlights the wide-ranging effects of

smoke across the region. Total visitor-days affected by fire and smoke exceed the numbers of

camper-days at national parks by factors of 6 and 12, respectively.

Table 2.2: Annual camper-days and annual estimated total visitor-days near fire and with
adverse smoke conditions at selected national parks. Camper-days are the number of days
campgrounds in each region were within 20 km of an active fire or with adverse smoke conditions,
multiplied by the number of campers at each campground on affected days. Estimated total
visitor-days with fire and smoke are calculated by multiplying total smoke and fire camper-days
per month at each NPS site by the ratio of total visitors to campers at each site in that month.

Fire Smoke

Estimated total Estimated total
Camper-days visitor-days Camper-days visitor-days

per year per year per year per year
(thousands) (thousands) (thousands) (thousands)

Yosemite National Park 47 206 40 175
Glacier National Park 2 51 7 159
Rocky Mountain National Park 0.009 0.8 7 110
Mount Rainier National Park 0 0 6 61
Grand Canyon National Park 9 91 4 43
Total (all parks in sample) 61 392 83 1000

2.3.3 Changes in recreation site use due to wildfire and smoke

Our results suggest a substantial number of people are affected every year by fire and smoke

while recreating on public lands. In this section, we analyze the extent to which fire and smoke

lead to averting behavior that affects campground use outcomes.

Table 2.3 displays summary statistics for the dependent variables of interest for estimation
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of equation 2.1 – campground occupancy rates and pre- and post-arrival cancellation rates

(as defined above). Before controlling for other factors, Table 2.3 shows evidence of changes

in recreation site use in response to fire and smoke. Column 1 reports means for a baseline

scenario with no smoke or fire. Column 2 shows how mean occupancy and cancellation rates

change when a fire is burning within 20 km. Column 4 reports mean values for dates with

adverse air quality due to wildfire smoke. As expected, cancellation rates increase with fire or

smoke. In contrast, occupancy rates are higher, on average, on dates with fire or smoke. This

result may be because fire and smoke tend to occur during times of year that are popular for

camping (Figure 2.1). This highlights the need for a regression analysis that controls for these

temporal effects.

Table 2.3: Summary statistics for campground recreational activity. The t-stat reported is from
a test of the difference in means relative to the baseline (no smoke or fire), clustering at the
recreation area level. The smoke variable indicates whether a campground had adverse smoke
conditions; the fire variable is for active fires within 20 km of a campground. The observations
are restricted to May through September.

Baseline Mean Fire Smoke
Mean t-stat Mean t-stat

Occupancy rate 0.306 0.348 1.380 0.365 8.470
Pre-arrival cancellation rate 0.073 0.211 12.740 0.106 8.420
Post-arrival cancellation rate 0.002 0.021 7.400 0.004 4.110
No. of obs. 1,281,992 12,839 59,264

Table 2.4 shows the results of estimating the model in equation 2.1. We find statistically

significant evidence that campground use decreases and campground cancellations increase on

smoky days and days when wildfires burn within 20 km. On days with nearby wildfires, the

campground occupancy rate declines, on average, by 6.4 percentage points. With an average

of 30.6% of campsites occupied in the baseline (Table 2.3), this indicates a drop to 24.6% when

a fire is nearby. The pre-arrival cancellation rate increases by 8.7 percentage points with a
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fire nearby, more than double the baseline average cancellation rate of 7.3%. The post-arrival

cancellation (or early departure) rate increases by 1.3 percentage points, an order of magnitude

greater than the baseline average post-arrival cancellation rate, which is only 0.2%. Using a

relaxed bandwidth of 30 km for the nearest fire, we still observe statistically significant effects:

a campground occupancy rate that is 4.2 percentage points lower and increases in pre-arrival

and mid-stay cancellation rates of 6.1 and 0.8 percentage points, respectively (Appendix B.2).

Table 2.4: Estimated effects of wildfire and smoke on campground use. All columns include
campground, recreation area by month-of-year, recreation area by year, week-of-year, and day-
of-week fixed effects, as well as indicators for holidays and days before holidays. In addition,
regressions control for the upcoming week’s total precipitation. Campground observations are
weighted by the number of campsites, and standard errors, shown in brackets, are clustered by
recreation area. The observations are restricted to May through September. ** p < 0.01.

Pre-arrival Post-arrival
Occupancy rate cancellation rate cancellation rate

Fire -0.064** 0.087** 0.013**
[0.011] [0.012] [0.0019]

Smoke -0.013** 0.023** 0.0014**
[0.0022] [0.0023] [0.00037]

Mean of dep. var. 0.31 0.076 0.0024
No. of obs. 1,349,460 688,653 842,240
R2 0.72 0.047 0.13

Our estimates for the effect of fire on recreation do not distinguish among several channels

through which fires affect campground use. During fire events, campgrounds may close, causing

reservations to be cancelled by the managing agency. Fires can also result in road closures, and

even if roads remain open, campers may cancel if they are worried that further fire spread

might disrupt their plans. We interpret our estimates of the effect of fire on campground use

as inclusive of each of these channels.

The estimated effects of smoke on camping decisions are more modest (Table 2.4). On days

with adverse smoke conditions, occupancy rates decline by only 1.3 percentage point (from
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30.6% of campsites occupied to 29.3% for the average campground). Pre-arrival cancellation

rates rise by approximately 2.3 percentage points (a 32% increase from the baseline average

cancellation rate of 7.3), and post-arrival cancellation rates rise by one-tenth of a percentage

point (nearly a 50% increase from the baseline rate). When using only smoke plumes to identify

smoky days, estimated effects of smoke on occupancy and cancellation are more modest but

remain statistically significant in most cases (Appendix B.2).

Campgrounds and roads do not typically close due to smoke; therefore, we interpret changes

in campground use as indicative of avoidance behavior on the part of campers. This behavior

may be driven by concern over health impacts of exposure to smoke or by decreased amenity

values due to diminished views. Regardless of motivation, we find that the magnitude of the

resulting changes in total campground use is, on average, relatively small.

The detail provided in our daily damping data allowed us to further investigate differential

avoidance behavior responses based on specific recreation areas. We posit that visitors could

be more willing to camp during adverse conditions at a popular location like Glacier National

Park relative to a smaller local campground. Limited visitation seasons at northern parks like

Glacier, as well as competitive reservations at popular parks like Yosemite, could lead campers

to brave the smoky conditions rather than forego a trip altogether. To test for heterogeneous

responses, we ran a version of the regression that allows responses to fire and smoke to vary

according to campground popularity. To determine popularity, we measured campgrounds’

historical average occupancy rates and segmented the results into quartiles (Table 2.5). In

line with our hypothesis, the occupancy rate was less responsive to smoke at the most popular

campgrounds (the top occupancy quartile) than at less popular ones. We found no statistically

significant differences in cancellation rates in response to smoke by site popularity, however.
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Table 2.5: Heterogeneity in responses to wildfire and smoke by popularity of campground.
All columns include campground, recreation area by month-of-year, recreation area by year,
week-of-year, and day-of-week fixed effects, as well as indicators for holidays and days before
holidays. In addition, regressions control for the upcoming week’s total precipitation. Camp-
ground observations are weighted by the number of campsites, and standard errors, shown in
brackets, are clustered by recreation area. The observations are restricted to May through
September. Quartiles based on campground popularity as measured by mean occupancy rates
over the sample period on days when campground is open. ** p < 0.01; * p < 0.05.

Pre-arrival Post-arrival
Occupancy rate cancellation rate cancellation rate

Fire -0.029* 0.112** 0.014**
[0.011] [0.024] [0.004]

Smoke -0.030** 0.022** 0.0005
[0.004] [0.004] [0.001]

Fire x first quartile (most popular) -0.044* -0.048 -0.005
[0.022] [0.026] [0.005]

Smoke x first quartile 0.027** 0.002 0.002*
[0.007] [0.005] [0.002]

Fire x second quartile -0.047* 0.01 0.01
[0.021] [0.031] [0.007]

Smoke x second quartile 0.031** -0.001 0.001
[0.007] [0.005] [0.001]

Fire x third quartile -0.047 0.016 0.007
[0.025] [0.031] [0.005]

Smoke x third quartile 0.014* -0.001 0.0003
[0.006] [0.004] [0.001]

Mean of dep. var. 0.31 0.076 0.0024
No. of obs. 1,349,460 688,653 842,240
R2 0.72 0.048 0.13

Responsiveness to fire was greater at more popular sites. Figure 2.3 uses our estimated

regression results from Table 2.4 to map total declines in the number of camper-days due to

fire and smoke over the course of the study period. We calculate declines in the number of

campground-days due to fire (smoke) by multiplying the estimated fire (smoke) coefficient in

the occupancy rate regression by the product of the average number of occupied sites at each

campground on days without fire (smoke), the average number of campers per campsite at each

campground, and the average number of days per year with fire (smoke) at each campground.
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We aggregate these campground figures to the recreation area level, which are the numbers

shown on the map. Because fires tend to occur during times of year with greater occupancy

(Figure 2.1), we expect that these estimates understate total reductions in campground use due

to fire and smoke.

Figure 2.3: Geographic distribution of recreational responses to smoke and fire.
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The figure highlights several key findings. First, although fires occur infrequently at many

locations, our regression results suggest that the marginal effects of fire on recreation behavior

are relatively large. As a result, fires have large effects compared to smoke. This shows up as

large circles on the fire maps, which are mainly in California—Yosemite in particular.

Second, although fire has much larger effects in some locations than others, the magnitude

of the smoke effects is more consistent across locations. Fire caused much greater decreases in

visitation than smoke at the most impacted campgrounds, but the median campground experi-

enced 259 fewer camper-days per year on average due to smoke and only 95 fewer camper-days

per year on average due to nearby fires. In subregions with comparatively few fires—namely,

the Pacific Northwest and the Northern Rockies—smoke is still prevalent and has a similar

impact on recreation behavior as in other locations.

Third, the consequences of fire and smoke for changes in recreation site use over the 10-year
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period are low to moderate in most places, but we see large impacts in some regions and years.

In Yosemite, the recreation area most impacted by fire, nearly 3,400 camper-days each year

were lost due to fires. These impacts were not spread evenly across years. In 2012, the year of

the Cascade fire, which struck Yosemite and surrounding areas in June and July, we estimate

more than 8,500 fewer camper-days due to nearby fire. Smoke also had its greatest effects in

Yosemite: campers spent 590 fewer days per year there, on average, as a result of adverse smoke

conditions.

We can combine our estimates of the reductions in camper-days from fire and smoke with

consumer surplus values for outdoor recreation estimated in the literature to obtain a back-of-

the-envelope estimate of the total annual consumer surplus loss to campers who forego their trips

because of fire or smoke. Rosenberger et al. (2017) provide a review and summary of estimates

of the value of fourteen outdoor recreation activities, including camping, on US Forest Service

lands by region. Kaval and Loomis (2003) provide similar estimates for national parks, also by

region. We combine the mean values from these two studies, which are per activity day per

person, with our predicted declines in camper-days, and inflate to 2020 dollars. The consumer

surplus loss from fire and smoke across the 11 western states in our study averages $1.3 million

and $662,000 per year, respectively. Seventy-five percent of the consumer surplus loss from fire

and 41% of the loss from smoke occurs in California.

In addition to losses from recreationists who forfeit their trips, there are also losses expe-

rienced by recreationists who continue with their plans but experience health effects or visual

disamenities from smoke. Richardson et al. (2012), using survey data from households in the

Los Angeles area after a major fire, estimate an average cost of smoke-related illness (costs of

medications, doctor visits, and missed workdays) per exposed person per day of $9.50. Inflat-

ing to 2020 dollars and multiplying by the average number of camper-days affected by adverse

smoke conditions per year (383,000, from Table 2.1), we estimate illness costs of $4.1 million

per year. This may be an underestimate since our adverse smoke conditions measure is con-

servative and omits some days with low density smoke, which nevertheless may impact health.
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Using the average number of camper-days per year that intersect a smoke plume (1,588,000,

from Table B.1) in place of the average number of camper-days with adverse smoke conditions,

we estimate illness costs of approximately $15.1 million per year. Adding these costs to the

losses from avoided trips gives a total losses of $4.8-$15.8 million per year from wildfire smoke.

This calculation is back-of-the-envelope and underestimates the full welfare losses to exposed

campers as it only includes cost of illness and not the diminished value of the trip. Nonetheless,

it provides some sense of the magnitude of the welfare impacts from wildfire smoke experienced

by campers on public lands.

2.4 Discussion

Increases in the popularity of outdoor recreation and increases in visitation to western public

lands in the United States are coinciding with another trend: the rising number and size of

wildfires. Our study, which merged detailed daily camping data at 1,069 western campgrounds

with spatial wildfire, smoke plume, and air quality data over a 10-year period, documents the

extent of the impacts nearby actively burning wildfires and wildfire smoke have on outdoor

recreation in the region, and provides causal estimates for how outdoor recreationists respond

to fires and smoke. Importantly, we provide the first estimates of wildfire smoke impacts on

recreation on public lands across the continental western United States. Smoke, which disperses

over great distances, affects many more people than fire itself. We calculated that 383,000

camper-days per year, on average, took place under adverse smoke conditions, or 4% of all

camper-days. Using monthly visitation data for the 27 national parks in our sample, we scaled

the camping results and estimated that approximately one million national park visitor-days

per year, on average, were potentially affected by smoke over the 10-year sample period. As

our data exclude a few national parks in the region, this is likely to be an underestimate of the

full effects of smoke on national park visitors.

We found that campground use declines in response to fire and smoke. The magnitudes

of the estimated adjustments were relatively small, however. Average occupancy rates, for
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example, decline by 6.4 percentage points for a fire within 20 km and only 1.3 percentage points

for adverse smoke conditions. Effects on recreation site use on particularly threatening days

(when a fire is very close by or air quality is especially poor) are likely to be greater. Moreover,

measurement error may bias these estimated effects downward to some extent. Campers may

change their plans without cancelling their reservations, so that we are counting some visits

that do not occur. We feel that the magnitude of this error is likely to be small, however, as we

observe cancellations in the data and the refund policy provides a financial incentive to cancel.

The minimal effects of fire and smoke on campground usage may be a consequence of

constraints on either vacation times or campground availability. As shown in Walls et al.

(2018), it is challenging to find an open campsite at many national parks in the peak summer

months, so cancelling a trip because of smoky conditions may mean foregoing the entire season.

Indeed, we find that the effect of smoke on the average occupancy rate is attenuated in the

most popular campgrounds (Table 2.5).

Unfortunately, this lack of behavioral response by campers may mean significant exposure

to poor air quality. The contribution of wildfire smoke to PM2.5 concentrations in the United

States has increased substantially since about the mid-2000s, now accounting for approximately

half of overall PM2.5 exposure in the western United States (Burke et al. 2021). The literature

finds consistent evidence of an association between wildfire smoke and general respiratory health

effects, especially exacerbation of asthma and chronic obstructive pulmonary disease, as well as

an association between smoke and increased risk of respiratory infections and all-cause mortality

(Reid et al. 2016; Cascio 2018). Because camping involves extended time outdoors and is

often accompanied by strenuous activities, such as hiking, recreational campers are likely to

be particularly at risk of health impacts in smoky conditions. Some studies have found that

the negative health effects of elevated levels of air pollution can offset the benefits of exercise

(Korrick et al. 1998, Guo 2020).

In addition to health impacts, smoke can cause haze and reduced visibility. For visitors

to scenic public lands in the western United States, especially signature national parks, such
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as Grand Teton, Glacier, and the Grand Canyon, reduced visibility can significantly lower the

value of the visit. Stated preference survey studies of visibility in national parks have found that

improved visibility is highly valued (Rowe et al. 1980, Schulze et al. 1983). One study found

that survey respondents would pay about $120 per year in the southeastern United States and

about $80 per year in the Southwest for visibility improvement programs that would remove the

20 percent worst visibility days (Boyle et al. 2016). A separate study in southwestern British

Columbia found that survey respondents were willing to pay $92–$112 per year per household

(in 2002 Canadian dollars) for a 5–20% improvement in visual range (Haider et al. 2019). The

authors apply these estimates to the number of poor visibility days due to wildfire in July and

August of each year from 2002 through 2018 and calculate that the value of improving those

days from “poor” to “excellent” would total $120 million over the 17-year period.

US federal land management agencies could consider several policies to reduce the impacts

that wildfires and associated smoke have on outdoor recreation. These policies can focus on

lowering the threat of fire or increasing the ability of outdoor recreationists to adapt. Lowering

the threat can be achieved through mechanical thinning of forests, prescribed burns, and man-

aged wildfires (Kalies and Kent 2016). These activities work in areas where heavy fuel loads

have contributed to increasing wildfire activity. Although prescribed burns and managed wild-

fires produce smoke, they can be used opportunistically during times of the year with minimal

impacts on human activities, including outdoor recreation. Prescribed burns also reduce future

wildfire activity (Cochrane et al. 2012). While these land management strategies are routinely

used by agencies to reduce wildfire hazard, their pace and scale needs to increase dramatically

to result in substantial reductions in wildfire hazards and impacts to recreationists and the

regions outdoor recreation economy (Clavet et al. 2021).

Adaptation can take the form of shifts in the location and timing of visits to public lands

to reduce exposure. To encourage these behavioral adjustments, recreationists may need a

“nudge.” As one example, land managers could employ flexible pricing strategies across peak

and nonpeak camping seasons by region that could be coupled with other incentives to visit less
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fire- and smoke-prone locations during peak fire season. In addition, increasing the supply of

campsites in less risky locations could help. With wildfires predicted to increase with climate

change and outdoor recreation on public lands more popular than ever, policymakers will need

to devise creative strategies to both reduce the likelihood and severity of fires and mitigate their

impacts on outdoor recreationists.
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Chapter 3

Wildfire smoke in the United States

3.1 Introduction

Wildfire activity is increasing in the western United States, and associated smoke emissions

have led to increased particulate pollution across the country. Smoke travels thousands of miles,

creating dangerous air quality both in the western United States and in other regions. As the

climate warms over the 21st century, these impacts are expected to increase.

Research has documented significant impacts of wildfire smoke to human health, well-being,

and the economy. Smoke emissions produce numerous pollutants, including carbon monoxide

(CO), nitrogen dioxide (NO2), nitrogen oxides (NOx), ozone (O3), volatile organic compounds

(VOCs), and particulate matter with diameter less than 2.5 µg (PM2.5) and 10 µg (PM10)

(Cascio 2018, Reid et al. 2016). Many of these pollutants are criteria pollutants in the Clean

Air Act (CAA), but are regulated only for urban and industrial sources.

In this feature we discuss economic and social science research on wildfire smoke in the

United States. In Section 3.2 we first summarize national and regional smoke trends, while

highlighting how smoke affects communities differently than ambient pollution from urban and

industrial sources. Section 3.3 surveys the growing literature on the impacts of wildfire smoke

to human health, the economy, well-being, and behavior. In Section 3.4 we argue that current

federal policy creates barriers to management activities that could mitigate wildfire smoke, and
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argue for solutions.

3.2 Wildfire smoke trends

Wildfire smoke pollution is increasing in the United States. This trend has been docu-

mented by a combination of on-the-ground air quality monitoring, satellite-derived wildfire

smoke images, and machine learning approaches. Smoke pollution is currently undermining

federal air quality goals, and impacts are expected to increase with climate change. Pollution

from these smoke events is consequential for both indoor and outdoor air quality, and it has

affected subpopulations differently than PM2.5 from industrial air pollution sources.

Wildfire smoke has accounted for up to 25% of PM2.5 in recent years across the United

States, and up to half in some areas of the western United States (Burke et al. 2021, O’Dell et

al. 2019). Although overall levels of ambient PM2.5 pollution had previously been declining for

several decades, wildfire smoke pollution has reversed those trends for 31 states (Burke et al.

2023). The presence of smoke increases daily county-level PM2.5 concentrations by an average

of 1.0 to 4.0 µg/m3 (Borgschulte et al. 2022, Burke et al. 2022, Childs et al. 2022, Miller

et al. 2021). However, this increase can exceed 10 µg/m3 (1.5% of smoke days), 20 µg/m3

(0.3% of smoke days), or even 100 µg/m3 (0.01% of smoke days) (Childs et al. 2022). From

2011 to 2022, wildfire smoke caused at least 25% of daily exceedances over 35 µg/m3 in seven

states, where 35 µg/m3 is the daily concentration threshold used as part of the CAA (Burke

et al. 2023). Figures 3.1 and 3.2 illustrate the increasing trend of wildfire smoke in the United

States. Smoke emissions from wildfires are expected to increase over the 21st century due to

continuing climate-driven increases in fire activity (Burke et al. 2023, Hurteau et al. 2014, Liu

et al. 2022).
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Figure 3.1: Number of smoke days per year by county using Childs et al. (2022) data.

Figure 3.2: Trend in (A) smoke days and (B) severe smoke days using Childs et al. (2022) data.

(A) All smoke days (B) Severe smoke days
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This smoke pollution affects populations differently than PM2.5 from ambient urban sources.

A majority of experienced smoke PM2.5 comes from sources outside the local jurisdiction, with

87% coming from fires in other counties and 60% from fires in other states (Wen et al. 2023).

Most exposure has been concentrated in the western United States, especially the Pacific North-

west (Burke et al. 2021, Burke et al. 2023). Counties with greater shares of white residents are

less exposed to overall PM2.5, but are more exposed to PM2.5 from smoke; however, exposure

is uncorrelated with income (Burke et al. 2021, Burke et al. 2022).

The degree of vulnerability to this exposure does vary across populations, in part due to

differences in time spent outdoors and due to differences in impacts on indoor air quality (Liang

et al. 2021, Marlier et al. 2022, O’Dell et al. 2022, Wen and Burke 2022). In general, a 1

µg/m3 increase in outdoor PM2.5 is associated with an increase in indoor PM2.5 by 0.15 to 0.4

µg/m3 (Burke et al. 2022, Liang et al. 2021, O’Dell et al. 2022). Indoor air pollution can

triple during smoke events and can exceed the 35 µg/m3 standard set by the Environmental

Protection Agency (EPA), though infiltration varies by building type (Burke et al. 2022, Liang

et al. 2021, O’Dell et al. 2022). These results suggest limited benefit to policies that focus on

indoor sheltering as a response to smoke.

3.3 Impacts of wildfire smoke

The economics and natural science literatures have documented numerous impacts of wild-

fire smoke. These impacts include health effects, economic effects, and well-being effects. Smoke

is salient; individuals engage in costly defensive behavior to avoid it.

3.3.1 Health effects

Most studies of health effects have focused primarily on the PM2.5 from wildfire smoke,

which has been found to be more toxic than PM2.5 from general urban ambient PM2.5 (Kochi

et al. 2010, Aguilera et al. 2021). Smoke has numerous consequences for human health,

including mortality, morbidity, and impacts on pregnancy, infants, and children. The majority
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of research, particularly in the economics literature, has limited attention to the short-term

impacts of acute exposure to smoke.

Wildfire smoke has been found to increase mortality both globally and in North America

(Cascio 2018, Johnston et al. 2012, Miller et al. 2021, Reid et al. 2016). While there is

strong evidence for smoke’s effect on all-cause mortality, more work is needed to clarify whether

respiratory or cardiovascular disease is the main channel (Cascio 2018, Reid et al. 2016). Miller

et al. (2021) estimated the increased mortality due to wildfire smoke among elderly Medicare

recipients in the United States. Their average treatment effect suggests that a 1 µg/m3 increase

in daily PM2.5 increases elderly mortality by 0.62 deaths per million people over the following

three-day period. They find a concave relationship of mortality to PM2.5, which contrasts with

prior literature that has assumed a convex damage function. Applying value of statistical life

(VSL) estimates, they find welfare damages of between $6 and $170 billion per year due to

smoke-related mortality, depending on the assumptions on remaining years of life.

Morbidity effects of wildfire smoke include respiratory and cardiovascular impacts. Both

Reid et al. (2016) and Cascio (2018) find that, across a large number of studies, wildfire

smoke exposure is strongly linked to respiratory health problems, particularly asthma, chronic

obstructive pulmonary disease, and infections. Evidence is mixed for the effect of wildfire smoke

pollution on cardiovascular diseases. Heft-Neal et al. (2023) estimated the effects of wildfire

smoke PM2.5 concentrations on emergency room visits in California. Low and moderate levels

of wildfire smoke increase total emergency room visits by 1 to 1.5% in the week following

exposure, while extreme levels of smoke increase respiratory emergency visits by 30 to 110% in

the week following exposure. The authors find that wildfire smoke increased emergency room

visits by 3,000 per year in California from 2006 to 2017. Other studies to document increased

respiratory and/or cardiovascular emergency room visits due to wildfire smoke include Cullen

(2020) and Parthum et al. (2017).

Smoke is also known to affect pregnancy, infants, and children. For example, Heft-Neal

et al. (2022) estimated associations between wildfire smoke exposure during pregnancy and
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preterm birth in Cailfornia, finding that each additional day of exposure to any wildfire smoke

during pregnancy was associated with a 0.49% increase in the risk of preterm birth. Similarly,

McCoy and Zhao (2021) estimated the effects of wildfire smoke exposure on infant health.

Using a difference-in-differences approach, they showed that exposure to wildfire smoke causes

a 0.034 increase in the probability of low birthweight. Lastly, Wen and Burke (2022) showed

that wildfire smoke decreases cognitive performance of children, finding reductions in exam

performance due to smoke, especially for younger primary school children.

3.3.2 Economic effects

There is emerging literature on the impacts of wildfire smoke on productivity, labor supply,

education, and agricultural output. Much of the early evidence is consistent with a large related

literature on the effects of PM2.5 on various forms of economic activity. Studies of general air

pollution impacts are suggestive of the likely impacts of wildfire smoke, which contains large

concentrations of PM2.5.

Particulate pollution, in general, leads to declines in economic productivity. Several studies

have documented this phenomenon in both the service and the manufacturing sector, as well

as at an aggregate economic level (Chang et al. 2016, Chang et al. 2019, Dechezlepretre et

al. 2019, Fu et al. 2021, He et al. 2019). The relevant time frames for measurement vary

from short-run daily levels using pollution shocks (Chang et al. 2016, Chang et al. 2019) to

medium- to long-run measurements (Fu et al. 2017, He et al. 2019). For example, He et al.

(2019) examined productivity based on exposure over 25 days, while Fu et al. (2017) examined

the effect of air pollution on annual productivity. Similarly, Dechezlepretre et al. (2019) studied

effects of air pollution on gross domestic product at an annual level.

One potential mechanism to explain declines in productivity is that particulate pollution

negatively affects cognitive function (Archsmith et al. 2021, Bedi et al. 2021, La Nauze and

Severnini 2021, Lai et al. 2021, Schmidt 2022, Graff Zivin and Neidell 2012). Wildfire smoke

contains high concentrations of PM2.5 and therefore likely affects productivity similarly through
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cognitive decline. This effect, for example, was documented in the Wen and Burke (2022) study

on school performance in the United States.

Reduced air quality can also decrease labor supply in the medium to long term. Reductions

in labor supply have been measured both for general air pollution (Aragon et al. 2017) as well

as for wildfire smoke (Borgschulte et al. 2022). Borgschulte et al. (2022) used county-level data

to estimate that an additional day of wildfire smoke exposure reduces quarterly earnings by

0.1%, where 13% of the earnings losses were explained by extensive margin responses such as

employment reductions and labor exits. The primary estimating equation in Borgschulte et al.

(2022) regresses changes in labor market outcomes on the number of smoke days at a quarterly

level. This approach contrasts with distributed lag measures of smoke such as that by Miller

et al. (2021) or Heft-Neal et al. (2023), who studied short-term effects of smoke. Labor supply

may also contract at these shorter time scales through a health channel. Both Borgschulte et

al. (2022) and Dechezlepretre et al. (2019) found that welfare losses from wildfire smoke and

from general particulate pollution, respectively, were on par with welfare losses from mortality;

for example, Borgschulte estimated that the welfare value of lost earnings due to wildfire smoke

is $125 billion per year.

In the long run, smoke and particulate pollution may decrease productivity and earnings

by affecting educational outcomes (Chen et al. 2018, Pham and Roach 2023). Wen and Burke

(2022) calculated that smoke exposure to primary school students in 2016, a severe smoke year,

likely reduced discounted future earnings by $1.7 billion, or $111 per student. Severe smoke

years are projected to grow more frequent with climate change (Liu et al. 2022, Hurteau et al.

2014).

Smoke also has effects on agriculture. There has been concern about the negative effects

of “smoke taint” on winegrowing, but evidence indicates that, overall, smoke may benefit agri-

culture in the near term. Behrer and Wang (2022) measured the impacts of wildfire smoke on

agriculture in the American Midwest over the period 2006 to 2020. Smoke plumes alter direct,

diffuse, and total sunlight, all of which affect crop yields. They find that low-density smoke
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plumes increase yields, possibly by increasing the proportion of diffuse light, whereas medium-

and high-density plumes decrease yields. Because there is currently a greater proportion of

low-density plumes, the net effect is to increase crop yields, but these benefits are expected to

dissipate by 2050.

3.3.3 Well-being effects

Beyond health and economic output, wildfire smoke has numerous effects on human well-

being. These effects include reduced happiness or sentiment, increased violent crime, and lost

or impaired outdoor recreation.

Several studies have measured the effect of wildfire smoke on sentiment and well-being. Both

Burke et al. (2022) and Loureiro et al. (2022) performed text analysis on high frequency social

media data, finding that large wildfire smoke events significantly reduced sentiment; Burke et al.

(2022) found that effects were driven by wealthy locations, with a more muted response in lower-

income neighborhoods. Studies of general air pollution have documented similar phenomena

using social media and text analysis (Du et al. 2022, Shan et al. 2022). Results from these

studies of social media are consistent with evidence from survey-based approaches, which have

found that wildfire smoke exposure is associated with reduced subjective well-being or place-

based satisfaction (Jones 2017, Rubin and Wong-Parodi 2022).

Wildfire smoke has also been used to study the effect of air pollution on crime. Burkhardt et

al. (2019) used daily variation in a subset of United States counties to estimate that PM2.5 and

ozone increase violent crime. They find no differential effect of pollution when wildfire smoke

is present, suggesting that smoke likely affects crime only through the channel of pollution.

Burkhardt et al. (2020) repeated this analysis at a monthly level, but for the entire coverage of

United States counties. Instead of treating smoke as an interaction variable, they used it as an

instrument for PM2.5, similar to the instrumental variable strategy of Borgschulte et al. (2022)

and Miller et al. (2021). The use of smoke as an instrumental variable implies an exclusion

restriction whereby smoke can only affect an outcome variable through the channel of pollution;
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however, in other contexts, smoke may affect well-being through amenity effects.

Smoke has consequences for outdoor recreation, which is a welfare-enhancing activity. Visi-

tation to public lands continues to increase in popularity, but these areas are also highly exposed

to wildfire smoke. Gellman et al. (2022b) found that, in some regions of the western United

States, more than 10% of available federal campground days were affected by high pollution

smoke over the period 2008 to 2017. This smoke reduces visitation, but the effects vary by

distance to the origin of the fire (Cai 2021, Gellman et al. 2022a, Gellman et al. 2022b).

Gellman et al. (2022a) estimated that high pollution smoke affected 21.5 million outdoor visits

per year on state and federal lands in the western United States over the period 2008 to 2017,

with welfare losses of $2.3 billion per year.

3.3.4 Behavioral adjustments

Individuals are aware of high severity smoke events and, in response, seek information on air

quality and health impacts. Behavioral adjustments to smoke include staying at home, engaging

in health-protective behavior, or leaving an area entirely. These behavioral adjustments can

be costly. Over time, increased wildfire smoke could potentially lead to outmigration from

heavily-affected areas.

Evidence from both large data analysis and from survey methods shows that large wildfire

smoke events are highly salient for individuals. Burke et al. (2022) found that, during large

smoke events, individuals search the internet more for information about air quality and health

protection. These results are consistent with studies using survey and interview methods, which

have found that individuals are aware of smoke, search for health information on the internet,

and link smoke to their own health effects (Fowler et al. 2019, Masri et al. 2023, Richardson

et al. 2012, Santana et al. 2021).

Individuals take various actions to avoid smoke or mitigate its damages. Burke et al.

(2022) used cell phone data to find that residents of smoke-affected counties are more likely to

stay at home at higher levels of smoke pollution; similarly, Holloway and Rubin (2022) used
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cell phone data to find that high income and whiter populations leave their home counties at

higher rates than other socioeconomic groups during smoke events, presumably as avoidance.

Heft-Neal et al. (2023) reported that emergency room visits for accidental injuries decrease

during smoke events, suggesting people avoid normal activities due to smoke. Studies using

survey or interview methods have found that smoke-affected respondents avoid work, run the

air conditioner more, use home air cleaners, stay indoors, and avoid normal outdoor recreation

or exercise (Fowler et al. 2019, Richardson et al. 2012, Santana et al. 2021). Individuals may

also take steps to reduce PM2.5 infiltration levels, such as by sealing doors or windows (Liang

et al. 2021).

The ability to engage in protective behavior may vary across socioeconomic populations

(Burke et al. 2022, Holloway and Rubin 2022, O’Dell et al. 2022). Defensive actions can be

costly, including for health-protecting defensive investments like air purifiers (Ito and Zhang

2020, Richardson et al. 2012). Staying home during smoke events is also costly, for example,

by reducing short run labor force participation (Aragon et al. 2017, Borgschulte et al. 2022).

Smoke-related pollution may induce individuals to avoid welfare enhancing activities such as

outdoor recreation (Cai 2021, Gellman et al. 2022a, Gellman et al. 2022b).

Over time, there is potential that increases in wildfire smoke could cause outmigration

from heavily-affected areas. Because wildfire smoke impacts are episodic and highly spatially

correlated, no quantitative estimates exist regarding the effects of wildfire smoke on migration

or home values in the United States. The issue has been studied in India, where Tiwari (2023)

estimated the effect of smoke pollution from agricultural fires on migration. In the United

States and in international contexts, studies have estimated the effect of general air pollution

on home values (Chay and Greenstone 2005, Freeman et al. 2018, Nam et al. 2022), as well as

on migration (Chen et al. 2022). It is possible that the effects of smoke may only be capitalized

into home values through an air quality channel, rather than a climate risk channel; for example,

a large literature finds imperfect capitalization of climate risk into real estate and insurance due

to information failures, market failures, or beliefs (Bakkensen and Barrage 2022, Gibson and
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Mullins 2020, Hadziomerspahic 2022, Hino and Burke 2021, Keys and Mulder 2020, Mulder

2021, Wagner 2022). Rubin and Wong-Parodi (2022) found in a survey of California residents

that, among those who intended to move in the next five years, nearly a quarter reported that

wildfire and smoke affected their decision to migrate at least a moderate amount.

3.4 Policy responses

The CAA has been successful in reducing PM2.5 concentrations across the country; how-

ever, the CAA is not currently positioned to drive down wildfire smoke. The CAA centers

on regulating controllable human-caused emissions. Currently, wildfire smoke is treated as an

uncontrollable “exceptional event” which is exempt from determinations of attainment status.

Therefore, the EPA has not played a role in regulating wildfire smoke or encouraging mitigation

of smoke. Perversely, it is actually more difficult for prescribed burns, which are a management

strategy to reduce the risk of high severity fires by clearing understory vegetation, to obtain

the exemption status of “exceptional event” than for wildland fires (Williams 2021).

Responsibility for mitigating wildfire smoke has primarily been the province of land man-

agement agencies and private landowners. Due to concern over the increasing impacts from

wildfires, the federal government has recently invested large sums of money in wildfire hazard

mitigation, much of it to be distributed by land management agencies such as the US Forest

Service. For example, the Infrastructure Investment and Jobs Act (IIJA) of 2021 included $3.4

billion in funding for wildfire risk reduction, including $500 million for prescribed burning, as

well as $2.6 billion for ecosystem restoration projects. Though there is increasing recognition of

the importance of wildfire smoke impacts relative to other impacts from wildfires, the US Forest

Service has generally not made wildfire smoke impacts a primary criterion in determining pri-

ority wildfire treatment locations. For example, priority “firesheds” for initial IIJA landscape

investments were identified based on potential to reduce exposure of communities and natural

resources to catastrophic fire risk, to allow for investment in underserved communities, and to

leverage community partnerships (US Forest Service 2022); potential to reduce smoke impacts
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was not a primary consideration.

As the prevalence of wildfire smoke continues to increase and reverse the air quality gains

of the CAA (Burke et al. 2023), there is need for concentrated and coordinated policymaking

efforts to encourage wildfire smoke mitigation (US Government Accountability Office 2023).

First, prescribed fires, a primary tool for reducing the likelihood of large and severe wildfires,

themselves emit smoke, albeit typically at lower and less sustained levels. Regulations should

acknowledge this “smoke paradox” and allow increased use of prescribed fires by land managers

(Williams 2021, Jones et al. 2022).

Moreover, policy should do more to encourage such activities. Simply removing the excep-

tional event exemption for all wildfire smoke would be overly punitive to states and their local

authorities, which are responsible for attainment of national ambient air quality standards

(NAAQS), since increases in wildfire smoke are unrelated to urban or industrial pollution.

Rather, smoke has been driven by climate change, as well as decades of federal fire manage-

ment that has largely prioritized fire suppression and allowed dry fuels to accumulate in forests.

Instead, Williams (2021) suggests a way to use the framework of the CAA to incentivize smoke

mitigation. In her framework, states would be allowed to treat wildfires as exceptional events

only if they are able to show they are taking all reasonable steps to encourage appropriate

forest management to reduce wildfire risk. Such steps could include fuels management projects

such as thinning and controlled burns, home hardening, or the encouragement of community

preparedness organizations like Firewise Communities and Fire Safe Councils.

In the shorter run, more should be done to encourage adaptation and reduce the burden of

impacts from smoke. Because indoor air pollution increases significantly during smoke events,

current policy reliance on self-protection may have limited benefit (Burke et al. 2022). At a

local level, communities can provide better information on clean air centers, which are shelters

in public buildings with improved air filtration (Treves et al. 2022). At a federal level, the

EPA can continue to provide information about air quality conditions, as well as potential

consequences of exposure to high levels of smoke.
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3.5 Conclusion

As large wildfires grow more frequent, the United States has seen increasing impacts of

smoke. In some years, counties might spend nearly a third of the year under wildfire smoke

(Childs et al. 2022). During extreme events, smoke increases pollution above federal attain-

ment standards for particulate matter pollution. Trends are most severe in the western states,

especially the Pacific Northwest, but have affected the entire continental United States. These

impacts are projected to grow over the 21st century as the climate warms.

The economics and social sciences literature has documented numerous impacts from wild-

fire smoke for health, the economy, well-being, and behavior. Most of these impacts are through

the channel of pollution. Although smoke contains many pollutants, most studies focus on the

PM2.5 produced from smoke. While there has been a great deal of attention paid to short run

responses, identifying longer term impacts, such as the effect of repeated seasonal exposure to

smoke, is more difficult to empirically identify with observational data.

Although air quality is federally regulated by the EPA, these regulations were designed for

urban and industrial air pollution. Currently, the lack of air quality exemptions for smoke from

prescribed fires creates barriers to mitigation activities that could ultimately reduce the severity

of future smoke. We propose ways that the EPA could modify existing regulations.
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Appendix to Chapter 1

A.1 Additional figures

Figure A.1: Recreation.gov web interface.
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Figure A.2: Automobile route from Santa Barbara, California to Yosemite National Park.

Figure A.3: NOAA smoke plumes and PM2.5. Red areas are affected by smoke and poor air
quality.
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Figure A.4: Fire detection points and fire perimeters.
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Figure A.5: Map of campgrounds in dataset.
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Table A.1: Most visited federally-managed campgrounds.

Annual
average

Campground Recreation area State Agency campers

Upper Pines Yosemite NP CA NPS 99,820
Mather Grand Canyon NP AZ NPS 59,196

Watchman Zion NP UT NPS 49,389
Serrano Big Bear, San Bernardino NF CA USFS 46,610
Pinecrest Summit RD, Stanislaus NF CA USFS 36,576
Fallen Leaf Lake Tahoe Basin CA USFS 32,966
Lodgepole Sequoia And Kings Canyon NP CA NPS 30,634
North Pines Yosemite NP CA NPS 26,883
Moraine Park Rocky Mountain NP CO NPS 25,884
Lower Pines Yosemite NP CA NPS 25,644
Wawona Yosemite NP CA NPS 25,407

Hodgdon Meadow Yosemite NP CA NPS 24,746
Pinnacles Pinnacles NP CA NPS 24,210
Crane Flat Yosemite NP CA NPS 23,844
Indian Cove Joshua Tree NP CA NPS 23,376
Dogwood Arrow Head, San Bernardino NF CA USFS 21,540
Acorn New Hogan Lake CA USACE 21,164

Black Rock Joshua Tree NP CA NPS 19,888
Kalaloch Olympic NP WA NPS 18,105

Dinkey Creek High Sierra RD, Sierra NF CA USFS 16,294
Logger Truckee RD, Tahoe NF CA USFS 16,253

Diamond Lake Diamond Lake RD, Umpqua NF OR USFS 15,683
Kyen Lake Mendocino CA USACE 15,015

Dorst Creek Sequoia And Kings Canyon NP CA NPS 14,435
North Rim Grand Canyon NP AZ NPS 13,898

Ohanapecosh Mount Rainier NP WA NPS 13,889
Devils Garden Arches NP UT NPS 13,138

Oh Ridge Mono Lake RD, Inyo NF CA USFS 13,063
Fish Creek Glacier NP MT NPS 12,434

Manzanita Lake Lassen Volcanic NP CA NPS 12,379
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Figure A.6: Campground occupancy rates follow a bimodal distribution both on the date of
arrival and one week in advance.
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Figure A.7: Fitted P(Rijt = 1) for reservations made earlier than one week from model (4).
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Figure A.8: Fitted ε̃ijt for reservations made earlier than one week from model (4).
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Table A.2: P(Cijt = 0|Rijt = 1), heterogeneity by smoke days in week before arrival.

(1) (2) (3) (4)

Travel cost (dollars) -0.0025** -0.0024** -0.0024** -0.0024**
(0.0003) (0.0003) (0.0003) (0.0003)

Inv. distance to wildfire (km−1) -10.5524** -11.6117** -11.5449** -7.4215**
(0.9020) (2.3964) (2.4152) (0.7843)

High temp. (degrees C) 0.0202** 0.0289** 0.0289** 0.0302**
(0.0044) (0.0023) (0.0023) (0.0021)

Low temp. (degrees C) -0.0031 -0.0183** -0.0189** -0.0226**
(0.0057) (0.0025) (0.0025) (0.0025)

Precip. in week of arrival (mm) -0.0043** -0.0060** -0.0061** -0.0057**
(0.0011) (0.0009) (0.0009) (0.0009)

ε̃ijt -0.0027 -0.0342** -0.0352** -0.0368**
(0.0255) (0.0124) (0.0124) (0.0126)

Smoke days = 1 0.0158 -0.0718** -0.0575* -0.0776**
(0.0268) (0.0247) (0.0246) (0.0201)

Smoke days = 2 -0.1521** -0.2164** -0.1975** -0.2217**
(0.0436) (0.0427) (0.0416) (0.0339)

Smoke days = 3 -0.2257** -0.3050** -0.2862** -0.3182**
(0.0410) (0.0441) (0.0437) (0.0357)

Smoke days = 4 -0.4418** -0.4792** -0.4506** -0.5066**
(0.0472) (0.0511) (0.0502) (0.0447)

Smoke days = 5 -0.5737** -0.6032** -0.5779** -0.6583**
(0.0448) (0.0560) (0.0551) (0.0488)

Smoke days = 6 -0.7121** -0.7612** -0.7444** -0.8348**
(0.0603) (0.0669) (0.0669) (0.0637)

Smoke days = 7 -1.0022** -1.0065** -0.9868** -1.0481**
(0.0660) (0.0939) (0.0922) (0.0908)

WTP: 1 smoke day -6.31 30.11* 23.87* 31.96**
(10.45) (11.92) (11.38) (9.66)

WTP: 2 smoke days 60.79** 90.8** 82.03** 91.32**
(21.15) (24.32) (22.91) (20.36)

WTP: 3 smoke days 90.26** 127.98** 118.9** 131.09**
(22.07) (27.66) (26.04) (23.07)

WTP: 4 smoke days 176.63** 201.07** 187.15** 208.68**
(31.73) (33.26) (31.01) (29.87)

WTP: 5 smoke days 229.38** 253.09** 240.06** 271.19**
(38.74) (39.86) (36.75) (34.92)

WTP: 6 smoke days 284.7** 319.4** 309.19** 343.87**
(46.09) (50.3) (47.28) (47.41)

WTP: 7 smoke days 400.7** 422.33** 409.86** 431.74**
(59.86) (73.41) (68.21) (68.64)

N 2,723,034 2,691,655 2,691,655 2,688,739
Campground FE Yes Yes Yes
Day-of-week FE Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes
Year FE Yes
State x year FE Yes
Campground x year FE Yes

Notes: Std. err. clustered at campground level. * p < 0.05, ** p < 0.01.
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A.2 Reservations close to arrival

This paper focuses on the cancellation decisions of visitors who reserve ahead of time, before

smoke conditions are known, and who subsequently decide whether to cancel close to the arrival

date, after site conditions are realized. Figure 1.3 illustrates the timing of decisions in the main

analysis. We focus on this structure for several reasons. First, most reservations are made ahead

of time. Figure 1.2 shows that, although a plurality of reservations are made within a week of

arrival, the majority are made in advance. Second, by the time smoke conditions are known,

many campgrounds are either fully booked or completely empty, which limits the variation

needed to identify changes in campground activity due to wildfire smoke. Figure A.6 depicts this

bimodal distribution. Congested campgrounds and empty campgrounds both prevent proper

measurement of changes in recreation activity due to smoke. When campgrounds are completely

booked, logistic regression would underestimate the latent demand for recreation on non-smoke

days because campground occupancy meets a binding constraint; this analysis would lead to an

underestimate of the coefficient on smoke. When campgrounds are empty on non-smoke days,

there is similarly not identifying variation. We focus on cancellations because, once a visitor

holds a reservation, they may always cancel it and do not face constraints.1

Still, we could have measured decisions for visitors who make new reservations close to the

arrival date, when they are likely aware of smoke conditions. In this section we report results

for a zonal travel cost model of new reservations close to the arrival date. We restrict the data

to reservations made within a week of arrival during the months of May to September and over

the years 2010 to 2017. We also limit attention to trips coming from within 650 km (400 miles),

as described in Section 1.2.6. Lastly, we exclude new reservations which were also cancelled in

the same week. These restrictions result in 693,501 same-week reservations. We aggregate these

1For a discussion of site substitution, refer to Appendix A.3. Users tend not to cancel and rebook for the
same choice occasion. In addition, smoke conditions are spatially and temporally correlated among choice sets,
meaning there is low variation of differences in smoke-related disutility among choice alternatives.
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reservations for a zonal estimation as described in Section 1.3.1, but for same-week reservations

rather than early reservations.

Figure A.9 shows how reservation rates vary by travel cost and wildfire smoke conditions.

Reservation rates are much higher at lower levels of travel cost. Before controlling for other

observable and unobservable factors, Figure A.9 shows that raw reservation rates are actually

higher on days with smoke than on days without smoke. This difference is likely due to the

fact that wildfire season overlaps with popular camping times, such as the American holidays

of Independence Day and Labor Day. Therefore, fixed effects for location and seasonality are

likely to be important.

Figure A.9: Reservation rate within one week of arrival.
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Table A.3 reports results for estimation of the reservation likelihood within one week,

P(Rijt = 1), using the zonal maximum likelihood function of equation 1.8. In all estima-

tions the observations are weighted using frequency weights since a single row of data might

represent, for example, 20 reservers or 2.3 million non-reservers. In column 1 we display results

without controlling for campground or seasonal fixed effects. As suggested by Figure A.9, users
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are unconditionally more likely to reserve for dates that happened to be smoke-affected, yielding

an unexpectedly positive coefficient on smoke. Columns 2 through 4 add fixed effects, which

yield the expected sign for the smoke coefficient. The results in columns 2 through 4 indicate a

WTP to avoid smoke of between $1.45 and $1.65 per person per trip. Given previous discussion

of congested and empty campgrounds, we believe these estimates are less plausible than the

paper’s main set of results.

Table A.3: P(Rijt = 1) for reservations within one week.

(1) (2) (3) (4)

Smoke in week of arrival 0.1382** -0.0434** -0.0406** -0.0460**
(0.0021) (0.0125) (0.0104) (0.0091)

Travel cost (dollars) -0.0241** -0.0279** -0.0279** -0.0279**
(0.0000) (0.0017) (0.0017) (0.0017)

Inv. distance to wildfire (km−1) -0.6732** -2.0485** -2.0798** -1.9822**
(0.0310) (0.3046) (0.3029) (0.2809)

High temp. (degrees C) 0.0602** 0.0074** 0.0075** 0.0079**
(0.0002) (0.0012) (0.0011) (0.0010)

Low temp. (degrees C) -0.0205** -0.0044** -0.0039** -0.0047**
(0.0002) (0.0016) (0.0015) (0.0014)

Precip. in week of arrival (mm) -0.0035** -0.0028** -0.0027** -0.0028**
(0.0001) (0.0004) (0.0004) (0.0003)

N 13,792,677 10,913,738 10,913,738 10,542,160
WTP -5.73** 1.55** 1.45** 1.65**

(0.09) (0.45) (0.37) (0.32)

Campground FE Yes Yes Yes
Day-of-week FE Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes
Year FE Yes
State x year FE Yes
Campground x year FE Yes

Notes: Std. err. clustered at campground level. * p < 0.05, ** p < 0.01.
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A.3 Site substitution

In the main analysis, both the trip-level cancellation decision and the zonal travel cost model

imply a binary choice for the representative visitor. While one could have used a multinomial

logit to model site substitution, we discuss in Section 1.3.1 the practical limitations of that

approach and the advantages afforded by a zonal travel cost model. Moreover, the zonal reser-

vation estimation and the binary cancellation decision should properly identify the parameters

of interest, namely the marginal disutility of smoke and the marginal disutility of expenditure.

In this section we first show that a binary cancellation decision is a realistic representation of

the choice that users face. We also discuss the choice to model early reservations in a zonal

setting.

We begin by discussing the binary cancellation decision. Substitution following a can-

cellation is uncommon. Of the 2,723,940 trips in the estimating dataset, there are 268,750

cancellations, implying a 9.87% raw cancellation rate. Among the cancelled reservations, ap-

proximately 10.3% of users “rebooked,” meaning they made a new reservation for a date within

a year of their original scheduled arrival date. However, rebookers rarely substitute for the

same choice occasion. Only 11% of rebookings substituted to a different campground on the

same week of arrival; multiplying by 10.3%, this implies that only 1.1% of all cancellations sub-

stituted to a different site for the same week. Intertemporal substitution is more common: 57%

of all rebookings were for either the same campground or a different campground but at a later

arrival week. Multiplying by 10.3%, this means that 5.8% of all cancellations intertemporally

substituted.

Because this analysis is concerned with wildfire smoke, we note the smoke status of rebooked

visits. Of all rebooked visits, 0.9% were smoke-affected and rebooked for a different week; 1%

were smoke-affected and rebooked for the same week. Multiplying by 10.3%, this means that

0.09% and 0.1% of all cancellations could have ostensibly substituted due to wildfire smoke. We

view these substitutions as uncommon. Therefore, modeling cancellations as a binary decision

is a reasonable representation of the choice that visitors face.
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One additional reason not to model site substitution is that smoke conditions are spatially

and temporally correlated. This correlation could wash out differences in smoke-related utility

between choice alternatives, variation which is needed to properly identify the smoke parameter.

Figures A.10, A.11, and A.12 plot a visualization of this spatial and temporal correlation for

Colorado, Oregon, and California. These figures sort campgrounds north to south on the vertical

axis, while on the horizontal axis they plot days of the year during the summer months. Each

tile represents a campground day and is colored according to the smoke conditions on those

days. These figures reveal that, when one campground is smoke-affected, it tends to be the case

that nearby campgrounds are also smoke-affected. Figure A.13 also shows this relationship as

a histogram for all campground days in the estimating dataset.

Figure A.10: Spatial and temporal correlation of smoke in Colorado.
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Figure A.11: Spatial and temporal correlation of smoke in Oregon.
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Figure A.12: Spatial and temporal correlation of smoke in California.
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Figure A.13: When a campground is smoke-affected, proportion of campgrounds within 350
km experiencing smoke in the same week.
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The goal of this study is to value the non-market damages of wildfire smoke. The parame-

ters of interest to estimate welfare damages are the marginal disutility of wildfire smoke and the

marginal disutility in expenditure. Both of these parameters arise from the cancellation model,

when site conditions become known to individuals. As we discuss in Section 1.3.1, the main

purpose for the reservation estimation is to build the control function that accounts for pref-

erences in the cancellation estimation. These preferences are likely correlated with travel cost

in the selected sample, which we explore theoretically in Appendix A.4 and show empirically

in Figure 1.5. We are less concerned with the estimation of smoke in the reservation decision

since the reservation occurs ahead of time, before smoke conditions are known. In addition,

the binned travel cost zones provide variation to estimate how travel cost affects the likelihood

of reservation. Overall, because we are less interested in site substitution for the reservation

decision, we argue that the flexible computational advantages afforded by the zonal estimation

justify this tradeoff. For more discussion, refer to Section 1.3.1.
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A.4 Numerical example of sample selection correction

In Section 1.3.3 we proposed a control function approach to account for unobserved pref-

erences ε̃ijt which could bias estimation of P(Cijt = 0|Rijt = 1) if omitted. In this appendix

we provide a numerical example to illustrate the source of this bias, its effect on estimation of

WTP, and correction using a control function. We show that WTP is only biased when prefer-

ences for the reservation and cancellation decisions are correlated, and when the counterfactual

cancellation decision of non-reservers is unobserved. Further, the bias operates through corre-

lation between preferences and travel cost: among the selected sample of reservers, those with

a high travel cost tend to have had a high taste for the site. This relationship downward biases

estimates of the travel cost parameter in the cancellation decision. Finally, we demonstrate bias

correction using the control function for ε̃ijt given in equation 1.13.

In this numerical example we simulate the two stage reservation and cancellation decision

using a Monte Carlo of 10,000 random draws. For every iteration we generate N = 100, 000

users i, each with a spatial coordinate (x, y) ∈ [0, 1] × [0, 1], where x and y are distributed

uniform. In addition, we generate a single site j at a random coordinate (x, y) ∈ [0, 1]× [0, 1],

where x and y are again distributed uniform. User i’s travel cost cij is given by the Euclidean

distance from i to j.

Users who reserve far in advance maximize utility based on expected smoke conditions.

Define the utility from the reservation as UR
ij = αj+δcij+ϕE[sj ]+εij . We will assert arbitrarily

that αj = 1, δ = −0.8, and ϕ = −1.6. Therefore, the true WTP is ϕ/δ = 2. Each user’s site-

specific preference value of εi0 and εij are drawn from a type I extreme value distribution.

Based on the “time of visitation” expected smoke conditions E[sj ] are drawn for each user from

{0.1, 0.2, 0.4} with equal probability. Users will choose to reserve Rij = 1 ⇐⇒ UR
ij ≥ UR

i0 .

For the cancellation decision the user decides based on realized smoke conditions. Let the

utility from cancellation be UC
ij = αj + δcij +ϕsj + υij . Realized smoke sj is drawn from {0, 1}

with P(sj = 1) = 0.25 for each user to create variation based on the “time of visitation.”

We consider two types of errors υij in the cancellation decision. The first is an independent
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error, υindij ∼ type I extreme value, which assumes the user’s preferences in the cancellation

decision are completely uncorrelated with their choice to have reserved. The second is a depen-

dent error, υdepij = ρεij+ηij , which allows correlation of preferences between the reservation and

the cancellation decision. We assume ηij ∼ type I extreme value and arbitrarily set ρ = 0.7.

Users will cancel Cij = 1 ⇐⇒ UC
ij ≤ UC

i0 . Because of the differing error structures we con-

sider two cancellation decisions under both υindij and υdepij , which we will denote Cind
ij and Cdep

ij ,

respectively.

The selection issue in the real recreation data arises because we can only observe the can-

cellation decision for users that chose to make a reservation. However, under the Monte Carlo

simulation, we can also examine the counterfactual cancellation decision of the non-reservers

to see if they “would have” cancelled. We will show that, even with a dependent error υdepij ,

estimation of P(Cij = 1) on the full sample (reservers and non-reservers) without observing εij

will still recover the true WTP since there is no selection effect. That is, the biased estimation

of P(Cij = 1|Rij = 1) comes from the fact that εij and cij are correlated in the selected sample,

not the full sample.

Table A.4: Example of users’ reservation and cancellation decisions.

Rij Cind
ij Cdep

ij N

0 0 0 9,004
0 0 1 15,135
0 1 0 5,453
0 1 1 12,849
1 0 0 24,759
1 0 1 8,215
1 1 0 16,141
1 1 1 8,444

Table A.4 shows an example of users’ reservation and cancellation decisions from one iter-

ation of the Monte Carlo. In this case non-reservers were more likely to cancel with correlated
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errors and reservers were less likely to cancel with correlated errors. This result is driven by

their initial preferences about the site since reservers have a higher εij . Figure A.14 illustrates

this point by comparing the εij of reservers to the total population.

Figure A.14: Example distribution of εij for reservers and for all users.

0.00

0.25

0.50

0.75

1.00

−3 0 3 6
eps1

de
ns

ity

All users

Reservers

Figure A.15 plots the cancellation rate for reservers at various distances for smoke and

non-smoke conditions. Results are shown under both independent and dependent errors. The

figure illustrates several key points. First, the overall cancellation rate is lower with dependent

errors, as indicated by the intercept of the fitted golden line. Users that made a reservation

had a high initial preference for the site, so they are less likely overall to cancel. Second, the

average effect of smoke, which is the distance between the red and blue points, is similar with

independent and dependent errors. Third, the effect of travel cost, which is the slope of the

golden fitted line, is attenuated when errors are dependent. This attenuation illustrates that

the selection effect likely operates through positive correlation between εij and travel cost.

We can further demonstrate this relationship by regressing distance on εij in the full sample

and the selected sample. Table A.5 shows an example of such a regression using one draw from

the Monte Carlo simulation. Travel cost and distance are correlated among the selected sample,
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but not among all users.

Figure A.15: Example cancellation rate for reservers by distance and smoke.
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Table A.5: Example regression of distance on εij in the full and selected sample.

(1) (2)

εij −0.0003 0.005∗∗

(0.0004) (0.001)

Intercept 0.398∗∗ 0.384∗∗

(0.001) (0.001)

Observations 100,000 57,559
R2 0.00001 0.001
Users All users Reservers

Note: ∗p<0.05; ∗∗p<0.01.

Next we show that WTP estimates are only biased under a selected sample and with corre-

lated preferences. We estimate a logit regression for the reservation and cancellation decisions,

varying whether we use the full sample or the selected sample of reservers. In addition, we
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vary whether we use the dependent error υdepij or the independent error υindij for the cancellation

decision.

Table A.6 shows an example from one iteration of the Monte Carlo simulation. In column

1 we use the full sample for the reservation decision. In columns 2 and 3 we estimate the

cancellation decision with both errors υindij and υdepij , but with the full sample. These regressions

show that the dependency of the error would not cause biased estimation if the counterfactual

cancellation decision of the non-reservers were known. In column 4 we estimate the cancellation

decision among only the selected sample but with an independent error υindij . Regression 4

demonstrates that sample selection is not an issue if the user’s preferences at cancellation are

uncorrelated with their preferences at the time of reservation. Finally, column 5 shows that

WTP estimates are biased when preferences are correlated and the sample is selected.

Table A.6 uses only one draw from the full set of 10,000 random draws. In Figure A.16 we

show the same results over the full set of 10,000 draws. The logic holds: estimation of WTP is

biased only under a selected sample with correlated preferences.

Table A.6: Example regressions of reservation and cancellation decisions under various samples
and error structures.

(1) (2) (3) (4) (5)

Distance -0.7998** -0.8131** -0.5826** -0.8261** -0.2727**
(0.0405) (0.0426) (0.0414) (0.0563) (0.0606)

E[Smoke] -1.5951**
(0.0515)

Smoke -1.5814** -1.2402** -1.6025** -1.4407**
(0.0160) (0.0155) (0.0211) (0.0205)

Intercept 0.9988** 1.0091** 0.7576** 1.0190** 1.4310**
(0.0214) (0.0189) (0.0183) (0.0245) (0.0266)

N 100,000 100,000 100,000 57,559 57,559
Dep. var. Rij Cij Cij Cij Cij

Users All users All users All users Reservers Reservers

Error εij υindij υdepij υindij υdepij

WTP 1.99 1.95 2.13 1.94 5.28

Notes: True WTP = 2. * p < 0.05, ** p < 0.01.
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Figure A.16: Monte Carlo 10,000 simulated regressions of reservation and cancellation decisions.
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Notes: True WTP = 2. * p < 0.05, ** p < 0.01.

We next demonstrate the bias correction of the estimand ε̃ij derived in equation 1.13. We

first estimate the reservation decision, then use the fitted values of E[Vij ] to form ε̃ij . Table A.7

shows an example from one draw of the 10,000 simulations. In this example we see that the

smoke coefficient is unaffected by the bias corrector. Instead, the value of the intercept is

reduced and the value of the distance coefficient is inflated. In this single random draw the

true WTP was not exactly recovered. However, over the full set of 10,000 simulations we see

that the inclusion of ε̃ij results in unbiased estimation. Figure A.17 shows WTP results for the
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full set of 10,000 simulations. The inclusion of the ε̃ij estimator resulted in recovery of the true

WTP. This result lends support to the use of this bias corrector in the empirical dataset.

Table A.7: Example regression of cancellation decision for reservers using bias correction.

(1) (2)

Intercept 1.4310** 0.7590**
(0.0266) (0.0813)

Smoke -1.4407** -1.4417**
(0.0205) (0.0205)

Distance -0.2727** -0.6088**
(0.0606) (0.0718)

ε̃ijt -0.6862**
(0.0786)

N 57,559 57,559
WTP 5.28 2.37
2-step estimator None ε̃ijt

Notes: True WTP = 2. * p < 0.05, ** p < 0.01.
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Figure A.17: Monte Carlo 10,000 simulated regressions showing bias correction.
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There are several key assumptions from this exercise. First, the data generating process

asserts that users react the same way to expected smoke as to realized smoke. That is, the

coefficient for expected smoke and realized smoke is the same. This assumption may not hold for

real users; it is reasonable to believe that decision makers may respond differently to expected

conditions than to realized conditions. Still, the purpose of ε̃ij is to account for selection

from the first stage and should therefore serve as an appropriate control function, regardless of

whether the coefficients are identical between stages.

The second key assumption is that the decision maker selects from a single choice alternative.

This setup matches our conceptual framework in Section 1.3, where we assumed a binary site
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choice. The main reason for this assumption is for computational tractability of the dataset,

which features millions of users and nearly one thousand campgrounds over eight years. For an

extended treatment of this matter see Appendix A.3.

A.5 Bootstrapped standard errors for P(Cijt = 0|Rijt = 1)

In Section 1.4 we used a two stage sample selection correction to estimate P(Cijt = 0|Rijt =

1). Wooldridge (2015) recommends that researchers bootstrap standard errors when estimating

two stage control functions. Because we cluster standard errors at the campground level, our

bootstrap follows the process outlined by Cameron and Miller (2015) in a methods guide for

clustered standard errors. Their process is as follows: for B bootstraps and G clusters, (1)

sample with replacement G times from the original sample of clusters, (2) compute parameter

estimates. The estimating dataset contains G = 999 clusters. The resampling occurs over entire

clusters; in some bootstraps, some clusters will not be represented, whereas some clusters will

have all of their observations appear multiple times in the estimating dataset. Cameron and

Miller (2015) note that B = 400 should be “more than adequate” in most settings.

In this section we test that the bootstrapped coefficients follow a normal distribution, as-

sessing whether B = 400 is an adequate number of bootstraps. Table A.8 reports W statistics

from Shapiro-Wilk tests of normality for the smoke and travel cost coefficients from the main

estimation of Table 1.4. We fail to reject the null hypothesis that the bootstrapped smoke and

travel cost coefficients follow a normal distribution. These tests imply that 400 bootstraps are

adequate for the analysis. Figures A.18 and A.19 plot the bootstrapped coefficients visually.
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Table A.8: W statistics from Shapiro-Wilk test of normality for bootstrapped coefficients of
P(Cijt = 0|Rijt = 1) with sample selection correction. Parentheses indicate p values. The null
hypothesis is that the coefficients are normally distributed.

(1) (2) (3) (4)

Smoke in week of arrival 0.996 0.998 0.998 0.994
(0.450) (0.979) (0.852) (0.084)

Travel cost (dollars) 0.990 0.996 0.995 0.995
(0.006) (0.343) (0.291) (0.255)

Campground FE Yes Yes Yes
Day-of-week FE Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes
Year FE Yes
State x year FE Yes
Campground x year FE Yes
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Figure A.18: Distribution of estimated smoke coefficient from models (1) through (4) in boot-
strapped estimation of P(Cijt = 0|Rijt = 1) with sample selection correction. Red line indicates
mean.
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Figure A.19: Distribution of estimated travel cost coefficient from models (1) through (4) in
bootstrapped estimation of P(Cijt = 0|Rijt = 1) with sample selection correction. Red line
indicates mean.

(1) (2)

0

10

20

30

40

−0.004 −0.003 −0.002
Travel cost coefficient

B
oo

ts
tr

ap
s

0

10

20

30

40

50

−0.0035 −0.0030 −0.0025 −0.0020 −0.0015
Travel cost coefficient

B
oo

ts
tr

ap
s

(3) (4)

0

10

20

30

40

50

−0.0035 −0.0030 −0.0025 −0.0020 −0.0015
Travel cost coefficient

B
oo

ts
tr

ap
s

0

10

20

30

40

−0.0035 −0.0030 −0.0025 −0.0020 −0.0015
Travel cost coefficient

B
oo

ts
tr

ap
s

A.6 Testing the influence of no shows in cancellations

One may be concerned that some recreationists do not formally cancel their reservation

when they decide not to complete a trip. Unreported no shows threaten the identification of

any WTP that is based on cancellations, since it could potentially underestimate cancellations.

While most of the campgrounds in the Recreation.gov dataset do not report check ins or no

shows, a subset of campgrounds do.

In this section we compare estimates at these select campgrounds with and without the
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inclusion of no shows. We demonstrate that although no shows are not infrequent at these

campgrounds, omitting them does not influence measures of responses to smoke and travel

cost. This analysis should mitigate some concern that we understate avoidance behavior.

In total, just 36 out of 999 campgrounds (3.6%) report no shows. However, these camp-

grounds represent a large proportion of the reservations used in the cancellation estimation. Of

the reservations made greater than a week ahead of time, 2,188,444 reservations were at non-

no show facilities (80.3%), while 535,496 were reservations at facilities that report no shows

(19.7%).

To gauge the importance of no shows in the cancellation estimation, Figure A.20 and Ta-

ble A.9 report the share of all cancellations that are no shows at each campground. While

most of the overall dataset is comprised of US Forest Service campgrounds, Table A.9 shows

that many campgrounds reporting no shows are managed by the National Park Service and

US Army Corps of Engineers. For most of these campgrounds, no shows represent less than

15% of all cancellations, though at some campgrounds no shows represent nearly a third of all

cancellations.
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Figure A.20: No shows as a proportion of all cancellations among campgrounds reporting no
shows.
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Table A.9: Campgrounds reporting no shows.

No show %
Campground Recreation area State Agency of cancellations

Aspenglen Rocky Mountain CO NPS 33.69
Glacier Basin Rocky Mountain CO NPS 32.8
Moraine Park Rocky Mountain CO NPS 32.51
Watchman Zion UT NPS 32.36
Mather Grand Canyon AZ NPS 27.59

Schwarz Park Dorena Lake OR USACE 24.62
Buckhorn Black Butte Lake CA USACE 23.37

Springy Point Albeni Falls Dam ID USACE 20.44
Hood Park McNary Lock And Dam WA USACE 18.51

Hodgdon Meadow Yosemite CA NPS 18.49
Fishhook Park Ice Harbor Lock WA USACE 15.09
Dinkey Creek High Sierra RD CA USFS 14.86
Meeks Bay Lake Tahoe Basin CA USFS 14.03
Serrano Big Bear CA USFS 14.02

Crane Flat Yosemite CA NPS 13.89
Riley Creek Albeni Falls Dam ID USACE 13.83
Dogwood Arrow Head CA USFS 13.24
Wawona Yosemite CA NPS 13.2

Charbonneau Pk Ice Harbor Lock WA USACE 12.74
Pine Meadows Cottage Grove Lake OR USACE 12.65
North Rim Grand Canyon AZ NPS 12.47

Kyen Lake Mendocino CA USACE 10.83
Nevada Beach Lake Tahoe Basin CA USFS 10.81
William Kent Lake Tahoe Basin CA USFS 10.1
Lepage Park John Day Lock OR USACE 9.74
Fish Creek Glacier MT NPS 8.5
Rancheria High Sierra RD CA USFS 7.61
Oh Ridge Mono Lake RD CA USFS 7.19
Deer Creek High Sierra RD CA USFS 7.1

Diamond Lake Diamond Lake RD OR USFS 6.01
Downstream Fort Peck Project MT USACE 5.68
Pinecrest Summit RD CA USFS 5.47
Fallen Leaf Lake Tahoe Basin CA USFS 4.56

Acorn New Hogan Lake CA USACE 4.46
Lodgepole Sequoia And Kings Canyon CA NPS 2.5
Dorst Creek Sequoia And Kings Canyon CA NPS 2.33

We would like to use this subset of campgrounds to demonstrate that unreported no shows

likely do not matter in the full sample. Table A.10 tests whether these campgrounds are

systematically different than the full sample. The table shows that these no show campgrounds
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tend to have higher cancellation rates under both smoke and non-smoke conditions.

However, the estimates in Table A.11 should alleviate concerns that no shows are influential

in cancellation estimates. We test four models with the same sets of fixed effects, but vary the

estimating sample. In column 1 we include all campgrounds and estimate P(Cijt = 0|Rijt = 1).

Column 2 removes no shows from the dataset, finding that WTP is unchanged. In column 3

we allow smoke and travel cost to respond differentially for no show and non-no show camp-

grounds, but include no shows in the dataset. This model shows that no show and non-no show

campgrounds have different overall measures of WTP. Finally, column 4 removes no shows from

the dataset. Comparing the WTP of no show campgrounds with and without the inclusion of

no shows, WTP is virtually unchanged. This analysis should alleviate concerns that no shows

influence the estimate of WTP in the full sample.

Table A.10: Cancellation rate mean by campground type and by smoke.

All Non-no show No show
campgrounds campgrounds campgrounds t-statistic

Baseline 0.09 0.09 0.13 (9.44)

No. of res. 2,380,606 1,898,955 481,651

Smoke 0.13 0.12 0.19 (2.02)

No. of res. 343,334 289,489 53,845

t-statistic (13.41) (13.19) (3.06)

Notes: The righthand column gives the t-statistic for the difference in mean cancellation rates
by campground type in either smoke or non-smoke conditions. The bottom row gives the t-
statistic for the difference in mean cancellation rate for smoke and non-smoke days among the
different campground types.
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Table A.11: P(Cijt = 0|Rijt = 1), testing effect of no shows on cancellation.

(1) (2) (3) (4)

Smoke in week of arrival -0.2613** -0.2659**
(0.0215) (0.0215)

Smoke x 1(Non-no show campground) -0.2608** -0.2605**
(0.0188) (0.0188)

Smoke x 1(No show campground) -0.2628** -0.2846**
(0.0689) (0.0736)

Travel cost (dollars) -0.0024** -0.0025**
(0.0003) (0.0004)

Travel cost x 1(Non-no show campground) -0.0025** -0.0025**
(0.0004) (0.0004)

Travel cost x 1(No show campground) -0.0023** -0.0024**
(0.0003) (0.0003)

Inv. distance to wildfire (km−1) -7.8194** -7.9970** -7.8180** -7.9907**
(0.8239) (0.8659) (0.8223) (0.8631)

High temp. (degrees C) 0.0306** 0.0308** 0.0306** 0.0308**
(0.0022) (0.0022) (0.0022) (0.0022)

Low temp. (degrees C) -0.0252** -0.0254** -0.0252** -0.0254**
(0.0025) (0.0025) (0.0025) (0.0025)

Precip. in week of arrival (mm) -0.0057** -0.0058** -0.0057** -0.0058**
(0.0009) (0.0009) (0.0009) (0.0009)

ε̃ijt -0.0370** -0.0370** -0.0376** -0.0373**
(0.0126) (0.0131) (0.0134) (0.0137)

WTP 107.95** 107.92**
(17.14) (17.48)

WTP, non-no show campgrounds 103.82** 103.9**
(17.39) (17.75)

WTP, no show campgrounds 116.66** 119.75**
(32.1) (33.5)

No shows included? Yes No Yes No
N 2,688,739 2,677,763 2,688,739 2,677,763
Campground FE Yes Yes Yes Yes
Day-of-week FE Yes Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes Yes
Campground x year FE Yes Yes Yes Yes

Notes: Std. err. clustered at campground level. * p < 0.05, ** p < 0.01.

113



Appendix to Chapter 1 Chapter A

A.7 Alternative distance thresholds for sample restriction

The main estimates of this paper restrict the estimating sample to reservations from origins

within driving distance of a site, which we define as 650 km of one-way driving distance, or

approximately 400 miles. Figure 1.1 shows that this threshold admits approximately 85%

of the total reservations into the estimation. In this section we show results from the main

estimation using alternative distance thresholds of 350 km (approximately 217 miles) and 950

km (approximately 590 miles).

Figure A.21 illustrates how WTP estimates increase as the distance threshold is relaxed.

Using a restrictive threshold of 350 km, WTP is estimated to be $79 per person per trip; with

a wider threshold of 950 km, WTP is estimated to be $140 per person per trip. Tables A.12

and A.13 show full results for these estimations, which should be compared to the main estimates

in Table 1.4.

Recall that WTP is calculated as the ratio of marginal disutility in smoke to marginal

disutility in expenditure, i.e. the smoke coefficient divided by the travel cost coefficient. The

choice of distance threshold does not alter the estimated smoke coefficient. Instead, the in-

creasing WTP estimates are driven by a decline in the magnitude of the travel cost coefficient

as the distance threshold is relaxed. The travel cost coefficient is estimated at -0.0034, -0.0025,

and -0.0019 for thresholds of 350 km, 650 km, and 950 km, respectively. In other words, in-

creasing the pool of potential reservers decreases the estimated response to travel cost. This

phenomenon could from the inclusion of visitors at greater distances who chose not to cancel

their reservations.

An additional difference across estimations is the magnitude of the coefficient for the ε̃ijt

preference parameter, which is estimated at -0.0240, -0.0385, and -0.0390 for the respective

distance thresholds of 350 km, 650 km, and 950 km. The magnitude of this coefficient is likely

smaller at low distance restriction thresholds due to the correlation of preferences with travel

cost; removing reservations made from larger distances eliminates some visitors with both high

travel costs and high preferences. Figure A.22 shows that the fitted parameter ε̃ijt correlates
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with travel cost in both the 350 km sample and the 950 km sample.

Figure A.21: Summary of WTP measures using alternative distance thresholds for sample
restriction of 350 km (217 miles) and 950 km (590 miles).
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Figure A.22: Relationship between control function ε̃ijt and travel cost using model (4), using a
distance threshold of: (A) 350 km (217 miles); (B) 950 km (590 miles). Compare to Figure 1.5.
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Table A.12: P(Cijt = 0|Rijt = 1) within one week, restricting sample distance to within 350
km (217 miles) of site.

(1) (2) (3) (4)

Smoke in week of arrival -0.2227** -0.2641** -0.2329** -0.2651**
(0.0262) (0.0342) (0.0324) (0.0241)

Travel cost (dollars) -0.0039** -0.0033** -0.0033** -0.0034**
(0.0006) (0.0005) (0.0005) (0.0005)

Inv. distance to wildfire (km−1) -12.3006** -14.1542** -14.0303** -8.9377**
(1.0509) (3.2997) (3.3356) (0.8670)

High temp. (degrees C) 0.0210** 0.0323** 0.0325** 0.0331**
(0.0043) (0.0027) (0.0027) (0.0025)

Low temp. (degrees C) -0.0007 -0.0209** -0.0217** -0.0248**
(0.0054) (0.0029) (0.0029) (0.0028)

Precip. in week of arrival (mm) -0.0045** -0.0065** -0.0066** -0.0061**
(0.0011) (0.0010) (0.0010) (0.0010)

ε̃ijt -0.0139 -0.0222 -0.0230 -0.0240
(0.0344) (0.0160) (0.0162) (0.0165)

N 2,085,985 2,047,894 2,047,894 2,044,062
WTP 57.42** 80.09** 69.86** 78.74**

(11.65) (17.61) (15.7) (14.02)

Campground FE Yes Yes Yes
Day-of-week FE Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes
Year FE Yes
State x year FE Yes
Campground x year FE Yes

Notes: Std. err. clustered at campground level. * p < 0.05, ** p < 0.01.

A.8 Heterogeneous results by campground popularity

This section explores heterogeneous welfare damages based on the popularity of the camp-

ground. We define popularity based on the average number of visitors per year for years in which

the campground was open. For reference, Table A.1 shows the top most-visited campgrounds,

many of which belong to high profile National Parks such as Yosemite National Park, Grand
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Table A.13: P(Cijt = 0|Rijt = 1) within one week, restricting sample distance to within 950
km (590 miles) of site.

(1) (2) (3) (4)

Smoke in week of arrival -0.2128** -0.2622** -0.2354** -0.2589**
(0.0238) (0.0269) (0.0259) (0.0206)

Travel cost (dollars) -0.0021** -0.0019** -0.0019** -0.0019**
(0.0003) (0.0003) (0.0003) (0.0003)

Inv. distance to wildfire (km−1) -10.9723** -11.6811** -11.5690** -7.5899**
(0.9010) (2.2906) (2.3049) (0.8101)

High temp. (degrees C) 0.0198** 0.0280** 0.0286** 0.0300**
(0.0046) (0.0023) (0.0022) (0.0021)

Low temp. (degrees C) -0.0053 -0.0199** -0.0210** -0.0249**
(0.0058) (0.0024) (0.0024) (0.0024)

Precip. in week of arrival (mm) -0.0039** -0.0058** -0.0060** -0.0056**
(0.0011) (0.0009) (0.0009) (0.0009)

ε̃ijt -0.0121 -0.0414** -0.0424** -0.0390**
(0.0243) (0.0122) (0.0121) (0.0128)

N 2,884,364 2,854,171 2,854,171 2,851,414
WTP 100.43** 137.19** 121.83** 139.83**

(20.95) (27.77) (24.69) (25.27)

Campground FE Yes Yes Yes
Day-of-week FE Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes
Year FE Yes
State x year FE Yes
Campground x year FE Yes

Notes: Std. err. clustered at campground level. * p < 0.05, ** p < 0.01.
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Canyon National Park, and Rocky Mountain National Park. The least popular campgrounds

tend to be small, local, or regional US Forest Service campgrounds. We rerun the main esti-

mation but allow the smoke and travel cost coefficients to vary by the quartile of campground

popularity. Given 999 campgrounds, each quartile contains approximately 250 campgrounds.

Figure A.23 summarizes the point estimates for smoke responses, travel cost responses, and

WTP. Full results are displayed in Table A.14. Across specifications, the magnitude for both

the smoke and travel cost coefficients are lower at more popular campgrounds. These results

suggest visitors are more willing to incur both higher travel costs and some environmental

disamenity for highly desirable locations.

The translation of these responses to welfare impacts is less clear. Recall that WTP is

estimated as the ratio of marginal disutility in smoke to marginal disutility in expenditure,

i.e. the smoke coefficient divided by the travel cost coefficient. Because WTP is a ratio, WTP

could be either higher or lower given reductions in both the smoke parameter (the numerator)

and the travel cost parameter (the denominator). Figure A.23 shows that the reduction in

the smoke parameter dominates, resulting in lower WTP at popular campgrounds. Table A.14

confirms that WTP is lower at popular campgrounds across all specifications. In general, welfare

damages tend to be largest for the middle two quartiles of campground popularity.
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Figure A.23: Point estimates for smoke response, travel cost response, and WTP by quartile
of popularity using model (4). Visitors are less responsive to smoke and travel cost at more
popular campgrounds.
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Table A.14: P(Cijt = 0|Rijt = 1), heterogeneity by campground popularity.

(1) (2) (3) (4)

Inv. distance to wildfire (km−1) -11.0284** -12.0844** -11.9595** -7.8196**
(0.9225) (2.4306) (2.4448) (0.8254)

High temp. (degrees C) 0.0187** 0.0289** 0.0293** 0.0307**
(0.0044) (0.0023) (0.0023) (0.0022)

Low temp. (degrees C) -0.0012 -0.0204** -0.0213** -0.0252**
(0.0055) (0.0025) (0.0025) (0.0025)

Precip. in week of arrival (mm) -0.0046** -0.0059** -0.0061** -0.0057**
(0.0010) (0.0009) (0.0009) (0.0009)

ε̃ijt -0.0037 -0.0377** -0.0387** -0.0402**
(0.0256) (0.0120) (0.0120) (0.0122)

Smoke x first quartile (most popular) -0.2208** -0.2297** -0.2035** -0.2446**
(0.0320) (0.0345) (0.0338) (0.0286)

Smoke x second quartile -0.2563** -0.3296** -0.3007** -0.2915**
(0.0425) (0.0417) (0.0407) (0.0335)

Smoke x third quartile -0.2364** -0.3161** -0.2889** -0.3301**
(0.0462) (0.0482) (0.0482) (0.0482)

Smoke x fourth quartile (least popular) -0.2488** -0.3577** -0.3457** -0.2781**
(0.0576) (0.0673) (0.0681) (0.0743)

Travel cost x first quartile (most popular) -0.0028** -0.0023** -0.0024** -0.0024**
(0.0004) (0.0003) (0.0003) (0.0004)

Travel cost x second quartile -0.0010* -0.0027** -0.0027** -0.0026**
(0.0005) (0.0003) (0.0003) (0.0003)

Travel cost x third quartile -0.0009 -0.0030** -0.0030** -0.0030**
(0.0006) (0.0004) (0.0004) (0.0004)

Travel cost x fourth quartile (least popular) -0.0009 -0.0031** -0.0031** -0.0032**
(0.0006) (0.0005) (0.0005) (0.0005)

WTP: first quartile (most popular) 79.36** 98.63** 86.49** 102.87**
(17.55) (21.64) (20.09) (18.25)

WTP: second quartile 249.52 123.65** 112.36** 110.23**
(136.76) (22.99) (21.6) (19.31)

WTP: third quartile 253.55 106.16** 96.52** 108.62**
(169.66) (22.64) (21.48) (20.82)

WTP: fourth quartile (least popular) 272.18 116.18** 110.39** 87.8**
(195.78) (29.58) (28.58) (27.56)

N 2,723,034 2,691,655 2,691,655 2,688,739
Campground FE Yes Yes Yes
Day-of-week FE Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes
Year FE Yes
State x year FE Yes
Campground x year FE Yes

Notes: Std. err. clustered at campground level. * p < 0.05, ** p < 0.01.
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A.9 Total welfare estimate data construction

In Section 1.5 we report estimates for the total annual number of recreation visits affected

by smoke in the west. To do so we combine the Recreation.gov data with overall visitation data

from various federal and state agencies. In particular, we use total visitation numbers from the

National Park Service, US Forest Service, Bureau of Land Management, US Army Corps of

Engineers, and the National Association of State Park Directors. Each of these agencies reports

visitation at varying spatial and temporal levels. For example, the National Park Service reports

visitation at a park by month level; the US Forest Service reports at a forest by year level; and

the state parks data is reported at a state by year level. For each data source we aggregate

the daily Recreation.gov data to the most relevant spatial and temporal scale to determine the

proportion of visits affected by smoke. We then multiply this proportion by the total visitation

data. In this section we detail this process for each data source.

For the National Park Service we use the agency’s Annual Summary Reports.2 This dataset

reports total monthly visitation at all National Parks, National Monuments, National Recre-

ation Areas, and other lands managed by the National Park Service. In the western states,

27 National Parks are included in the Recreation.gov dataset, while 82 are not. For the 27

parks in the Recreation.gov dataset, we determine each park’s monthly proportion of campers

that were affected by wildfire smoke. We then multiply this proportion by each park’s monthly

visitation from the Annual Summary Reports to infer the total number of visits affected by

smoke. For the 82 parks not in the Recreation.gov dataset, we calculate a statewide proportion

of smoke-affected campers in the data. We multiply these state by month proportions by each

park’s visitation levels in the Annual Summary Reports based on its location.

To estimate smoke-affected visits at National Forests we use the US Forest Service’s National

Visitor Use Monitoring (NVUM) Program.3 These data report visitation at all National Forests

at an annual level. In the west, 70 National Forests are included in the Recreation.gov dataset,

2National Park Service. Annual Summary Report. https://irma.nps.gov/STATS.
3US Forest Service. National Visitor Use Monitoring Program. https://www.fs.usda.gov/about-agency/

nvum.
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while 8 are not. For the 70 forests in the Recreation.gov data we calculate each forest’s annual

proportion of campers affected by smoke and multiply it by the corresponding annual visitation

totals in the NVUM data. For the 8 forests not in the Recreation.gov dataset, we use a statewide

annual proportion of smoke-affected campers.

The Bureau of Land Management records visitation statistics as part of its Recreation Man-

agement Information System (RMIS).4 We contacted the program administrator and received

data on site by year visitation for all BLM sites.5 Most visitation to BLM lands is not reservable

and a large portion is considered backcountry. Therefore, the Recreation.gov dataset contains

very few BLM campgrounds. We thus combine annual state level proportions of smoke-affected

campers from the Recreation.gov data with annual site visitation from the RMIS.

For sites managed by the US Army Corps of Engineers we use data from the agency’s Value

to the Nation (VTN) reports.6 For the study period of 2008 to 2017 the agency only has one

year of recreation data, which is for the year 2016. We treat this year as representative of

typical annual visitation over the study period. For each site we multiply the total number of

visitors by the state level average of smoke-affected campers from the Recreation.gov data over

all years.

Lastly, we estimate smoke impacts at state parks. We use visitation data from the National

Association of State Park Directors which was compiled by Smith et al. (2019). For these

data the unit of observation is a state by year. We again use annual state level proportions of

smoke-affected campers from the Recreation.gov data multiplied by the NASPD data.

Having approximated total visitation, we multiply each agency’s annual smoke-affected

visits by the empirical estimate of per trip losses due to wildfire smoke. We estimate that more

than 21.5 million recreation visits per year are affected by smoke in the west, with annual losses

of $2.3 billion. For further discussion, see Section 1.5.

4Bureau of Land Management. Public Land Statistics. https://www.blm.gov/about/data/

public-land-statistics.
5Ridenhour, L. & Leitzinger, K. Bureau of Land Management. Personal correspondence.
6US Army Corps of Engineers. Value to the Nation. https://www.iwr.usace.army.mil/Missions/

Value-to-the-Nation.
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Appendix to Chapter 2

B.1 Recreation dataset construction

This section discusses the construction of the recreation data in greater depth. In the

raw Recreation.gov data, each record is a transaction. Transactions are grouped into orders,

each of which with one or more transactions. For example, a single order might contain the

following transactions, in order of transaction time: Registration/Walk-in, Make Payment,

Change Number of Vehicles, Extend Stay Leave Later, Change Number of People, Checkout.

Each transaction includes the date and time, campground or facility, unique user identifier

(retained across orders), user’s zip code of origin, arrival and departure dates for the order,

group size, and campsite type. If the order contains a “Cancellation” transaction, then it is

known that the order was cancelled.

For each date, we are able to determine the number of parties and the number of people

present at each campground using information on the orders’ arrival and departure dates. If the

order was cancelled, voided, or listed as a no-show, it is not added to the number of occupied

sites at a campground. Figure B.1 provides a visualization of the data. We plot the average

number of campers present at Glacier along with the proportion of days with observed smoke

conditions in the sample; smoke conditions in Glacier overlap with times of greater visitation.

One of our primary variables of interest is the occupancy rate of a campground i on a
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given day t, which we define as (occupied campsitesit)/(total number of campsitesit). The

Recreation.gov data do not report the total number of campsites at each campground on a

given date. While the data provide a list of campsites at each campground for 2017–18, the

actual number of available campsites at some campgrounds varies from year to year. Some

campgrounds, for example, were not yet open during the early years of the sample; others

added or removed campsites over time. In some cases, campgrounds have shut down for entire

seasons. To obtain the best possible estimate of the available campsites for each campground,

we create an algorithm that predicts the number of campsites by year for each campground

based on a combination of (i) the listed campsites in 2017–18, (ii) the maximum number of

sites reserved on any given day in a given year, and (iii) the individual identification numbers

for each site, to ensure that we capture as many of the available sites as possible. For each

campground for each year, the algorithm proceeds in the following way:

1. If the maximum number of reserved sites in a year (item ii) matches the number of

campsites listed in 2017–18 (item i), the algorithm applies that number.

2. If the maximum number of reserved sites does not match the number of campsites listed

in 2017–18, the algorithm counts the number of times the within-year maximum number

of occupants (item ii) was obtained. If it occurred three times or more, the algorithm

applies that number for the yearly number of available campsites.

3. If step 2 fails (the within-year maximum number of occupants was not obtained at least

three times), the algorithm checks how often the number of occupants matched the listed

number of campsites in 2017–18 (item i). If it was more than three times, the algorithm

applies that number for the yearly available campsites.

4. If both steps 2 and 3 fail, the algorithm checks if the maximum number of occupants in

the preceding year and the following year matched, and if so it applies that number.

5. If none of these criteria are satisfied, the algorithm selects the number of sites available

in 2017–18 (item i).
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This algorithm accounts for many scenarios. If a campground had more available sites

than was reported in 2017–18 (criterion i), then the yearly maximum would be achieved fairly

frequently (item ii), providing a more accurate measure of campground size. If a campground

was closed for an entire season, then the maximum number of sites reserved in a year (criterion

ii) is 0, which occurs 365 times, so the number of available sites for that year would be set to

0. We manually assessed and corrected the results of this algorithm by examining a time series

of the number of occupied sites for each campground and comparing against items (i), (ii), and

(iii). Some campgrounds do not fill up, but by examining the individual identification numbers

of each site (item iii), we can determine the number of available sites for each year.

Two other variables are of interest in regressions on campground use: the pre- and post-

arrival cancellation rates. For the pre-arrival cancellation rate, for day t, we add the transactions

of type “Cancellation,” “Cancellation (Waive Penalty),” and “No-Show” for arrival date t if the

cancellation was transacted within seven days (i.e., greater than or equal to t–7). We divide this

sum by the total number of reservations scheduled to arrive on t. Formally, for campground i,

this is
cancellationsit + cancellations (waived penalty)it + no showsit

reservationsit
. Intuitively, this measures the share

of reservations for date t that were cancelled prior to arrival.

For post-arrival cancellations, we add transactions of type “Cancellation,” “Cancellation

(Waive Penalty),” and “Shorten Stay Leave Early” on day t if the date t falls between the

scheduled arrival and departure date. We divide that sum by the number of occupants present

at the campground on day t. Formally, for campground i, this is (cancellationsit + cancellations

(waived penalty)it + shorten stay leave earlyit)/(occupantsit), for midstay cancellations only.
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Figure B.1: Occupancy and smoke at Glacier National Park. The average number of campers
at Glacier National Park and the proportion of days it was affected by adverse smoke conditions
in the study period.
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B.2 Results with alternative fire and smoke variables

B.2.1 Campground and campground visitor-days affected by wildfire and

smoke

The measurement of campground-days near actively burning wildfires or impacted by smoke

varies depending on how we define affected days. In the main text, we define “near to an active

fire” as being within 20 km of a burning wildfire. The upper panel of Table B.1 summarizes the

number of campground-days and visitor-days affected when we instead use a 30 km bandwidth.

The average number of days on which campgrounds experience a nearby fire increases from 1.5

to 2.8, and the percent of total visitor-days affected by a fire increases from 1.4 to 2.5. The

distribution of fire days across regions is similar for both bandwidths.
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Table B.1: Annual campground- and camper-days near wildfires (within 30 km) and under
smoke plumes, by region. Fire days are days in which a campground is 30 km or less from
an active wildfire. Days under smoke plumes are days in which campgrounds intersected a
NOAA HMS smoke plume. Each campground’s available campground-days are calculated as
the number of days each year that the campground had at least one occupant.

Campground-days Camper-days

Avg. annual Percent total Avg. annual Percent
days per available camper-days total

campground campground-days (thousands) camper-days

I. Fire

California 4.3 3.4 139 3.4
Pacific Northwest 3.1 4.3 26 1.8
Rocky Mountains 0.8 0.9 4 0.4
Great Basin 1 1.2 5 0.5
Southwest 4.1 3.8 29 3.8
Northern Rockies 3 3.7 15 2.2

Total 2.8 3 218 2.5

II. Smoke

California 28 22 707 17
Pacific Northwest 31 44 345 24
Rocky Mountains 20 24 163 16
Great Basin 16 19 107 12
Southwest 14 13 54 7
Northern Rockies 34 43 211 32

Total 26 28 1588 18

The lower panel of Table B.1 shows how the number of campground-days and visitor-days

affected by smoke changes when we define smoky days using only the NOAA HMS smoke plume

data, without restricting impacted days to be those with on-the-ground air quality above the

95th percentile on nonsmoky days (our definition of adverse smoke conditions in our baseline

results). Contrasting Table B.1 with Table 2.1, only approximately 26% of the days in which

campgrounds were covered by smoke plumes had PM2.5 levels above the 95th percentile.
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Figure B.2 shows trends over time in the number of campground-days and visitor-days

affected by fire and smoke. Though the frequency of large wildfires in the western United

States has increased over the past several decades (Westerling 2016), we observe no clear trends

in exposure to fire or smoke over the 10 years of our data set. It may be that year-to-year

variation in the numbers and locations of wildfire events masks long-term trends, especially

over the relatively short span of our data set.

Figure B.2: Prevalence of days near fire and with adverse smoke conditions over time. In the
upper panel, campground smoke days are defined as days in which a campground was covered
by a smoke plume and PM2.5 was more than 1.64 SD above the seasonal mean; campground
fire days are defined as days in which a fire burned within 20 km. In the lower panel, definitions
of adverse smoke conditions are varied, with standard deviations above the seasonal mean
that PM2.5 must be for the campground to be considered to have impacted air quality given
in parentheses. We also plot the number of days campgrounds were under a smoke plume,
irrespective of PM2.5. Finally the lower right panel shows differences in the number of camper-
days near fire by fire distance thresholds.
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B.2.2 Behavioral responses to smoke and fire

In our regressions on campground use, we explore behavioral responses to smoke and wild-

fire. Equation 2.1 shows the main specification, where the dependent variable is a function of

indicators for smoke, fire, and a series of location and time fixed effects. We test the effects of
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alternative definitions of the fire indicator and alternative sets of location and time fixed effects

specifications in Figures B.3 through B.5.

Our preferred model sets the fire variable equal to 1 when an active fire burns within 20

km of a campground. In Figures B.3- B.5, we test distance bandwidths of 10 km and 30 km.

The coefficient grows in magnitude as we narrow the bandwidth, indicating that campground

use is affected more when fire is closer to the campground.

Figures B.3- B.5 also illustrate effects of our choice of fixed effect specifications. For each

combination of smoke and fire variable, we show results of four specifications: (i) no fixed

effects; (ii) campground and month × year fixed effects; (iii) campground, recreation area ×

month-of-year, and recreation area × year fixed effects; (iv) the same fixed effects as in (iii),

but adding controls for holidays, week of year, and day of week; and (v) the same fixed effects

as in (iv) but adding a control for the upcoming week’s total precipitation.

In specification (i), standard errors are quite large and coefficients frequently do not have

the expected sign. For example, the coefficient on smoke in the percent occupancy regression

(Figure B.3) is positive, likely because recreation activity coincides with times of year with

greater fire activity (see, for instance, Figure 2.1), emphasizing the importance of the fixed

effects.

Specification (ii) greatly reduces standard errors. However, by including only campground

and month × year fixed effects, the specification assumes seasonal variation in campground

use is the same across campgrounds. The results of specification (ii) may be biased if time-

varying, location-specific unobservables exist that are correlated with the independent variable

of interest. In most cases, coefficients estimated from specification (ii) have the expected signs;

however, we observe sign reversal in the smoke coefficient in the percent occupancy regressions.

Models (iii) and (iv) allow for different temporal effects by recreation area. The recreation

area × month fixed effects allow for control of seasonality at the recreation area level, and

the recreation area × year fixed effects control for differential trends across time for different

recreation areas. These fixed effects take into account, for example, that different recreation
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areas peak at different times of year. For instance, the Grand Canyon in Arizona has differ-

ent seasonal peaks than North Cascades National Park in northern Washington. Model (iv)

additionally controls for seasonality, adding holiday indicators, day-of-week fixed effects, and

week-of-year fixed effects. These controls distinguish the effects of weekdays from weekends

and also account for popular times of the year, such as July 4 or Memorial Day. Including

precipitation controls in model (v) does not have a substantial effect on coefficient estimates.

In summary, these sensitivity analyses reveal that results vary sensibly as definitions of the

fire and smoke variables are altered. Fire and smoke coefficient estimates depend somewhat on

the set of fixed effects we include in the regression, but results are consistent across specifications

that account for recreation area-specific seasonal variation in visitation.
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Figure B.3: Specification chart for regression of campground occupancy rate on fire and smoke.
The coefficients of interest are on the y-axis. The baseline model is shown in blue.
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Figure B.4: Specification chart for regression of pre-arrival cancellation rate on fire and smoke.
The coefficients of interest are on the y-axis. The baseline model is shown in blue.
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Figure B.5: Specification chart for regression of post-arrival cancellation rate on fire and smoke
The coefficients of interest are on the y-axis. The baseline model is shown in blue.
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