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Representing causal schemata in connectionist systems
Richard M. Golden
Department of Psychology
Brown University

The connectionist approach to human memory is based upon the idea that knowledge can be
stored implicitly in the form of real-valued interconnections among a set of simple "neuron-like"
computing elements (Hinton & Anderson, 1981). The schema system approach (Rumelhart,
1980; Schank & Abelson, 1977) considers human memory % be organized in terms of many
small packets of knowledge called schemata. If a knowledge packet is defined as some sequence
of causally related events, then it is referred to as a "causal schema" or "script."

Although these two seemingly different approaches to the problem of modelling human
memory might seem incompatible, they are actually intimately related (Rumelhart, Smolensky,
McClelland, & Hinton, 1986; also see Touretzky & Hinton, 1985). In this paper, a connectionist
model of how causal schemata are used in the recail of actions from simple stories is described.
The paper is organized in the following manner. First, an explicit procedure for representing
complex causal schemata as "neural activation patterns" is discussed in detail. Next, the
fundamental neural mechanisms that are used to process and learn information are described
and motivated from a probabilistic viewpoint. Finally, the resulting system is used to model
some experimental data obtained by Bower, Black, and Turner (1979) in their studies of human
memory for written text.

Representational assumptions

The fundamental entity in this model is called a "causal relationship." A Causal
Relationship (CR) consists of an "initial situation," an "action," and a "final situation." If the
"final situation" of one causal relationship is identical to the "initial situation" of another causal
relationship, then the pair of causal relationships are said to be "causally linked." A collection of
causal relationships that have been linked together in this manner is referred to as a causal
schema. For example, let the notation (S3,A3,S5) indicate a causal relationship formed from an
initial situation S3, an action A3, and a final situation S5. Figure 1 shows that CR (S1,A1,S3)
is causally linked to CR (S3,A3,S5) which, in turn, is linked to CR (55,A2,5S6).

A basic assumption of the model discussed here is that a causal relationship corresponds to
some unique pattern of neural activity in the brain. In addition, similar causal relationships are
assumed to possess similar neural codings. More specifically, a causal relationship is
represented as a 160-dimensional state vector (i.e., a list of 160 real numbers) where the ith
element of the vector specifies the firing rate of the ith neuron in a neural network. Consider the
causal relationship at the top of Figure 2. The initial situation field of this CR is interpreted as:
"The actor is at a restaurant, the actor is hungry, and the actor is at the table."” The action field
of the CR is interpreted as: "The actor orders the meal." The final situation field is interpreted
as: "The actor is at the table, the actor is hungry, the food is on the table."

To encode the initial situation field as a 64-dimensional subvector, the three 64-dimensional
binary orthogonal subvectors corresponding to the states: "At__restaurant," "At__table," and
"Hungry" are added together to form a composite 64-dimensional subvector. If an element of
this composite subvector is non-negative, then the value of that element is set equal to +1,
otherwise the value of that element is set equal to -1. The resulting modified composite
subvector represents the initial situation field of the 160-dimensional causal relationship state
vector. More formally, the 41 states in the "state dictionary" form a psychological basis set that
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Figure 1. A portion of a causal schema. Note that such schemata may be
represented as unordered collections of causal relationships.
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Causal Relationship

SS5: At_restaurant, Hungry, At_table
A2: Order_meal
S6: Hungry, At_table. Food_on_table

State Dictionary

At_restaurant FFFFOOOOFFFFOOOO
At_table FFOOFFOOFFOOFFOO
Hungry FOFOFOFOFOFOFOFO
Food_on_table FFFFFFFFOO000000

Action Dictionary

Go_to_table  FFFFOO0O
Order_meal FOFOFOFO

Vector coding of Causal Relationship!

S5: FFFOFOOOFFFOFOOO
A2:. FOFOFOFO
S6: FFFOFFFOFOOOFO00

Causal Relationship State Vector |
FFFOFOOOFFFOFOOOFOFOFOFOFFFOFFFOFOOOFOO0O

Note.
O represents vector (-1,-1,-1,-1)

F represents vector (1,1,1,1)

Figure 2. Representing a causal relationship as a state vector. The initial situation
field of the CR is formed by adding the 64-dimensional subvectors in the state
dictionary labelled "At_restaurant,” "Hungry," and "At__table" together and
assigning a + 1 to the non-negative elements of the resulting vector and a -1 to the
negative vector elements. The action field of the CR is simply looked up in the action
dictionary. The final situation field of the CR is constructed in the same manner as
the initial situation field. Note that the symbol F refers to a sequence of four
positive ones, while the symbol 0 refers to a sequence of four negative ones.

15



GOLDEN

can represent over 50,000 situations in a 64-dimensional state vector space.

The action field of the causal relationship is represented by a 32-dimensional binary
orthogonal subvector whose value is obtained directly from the "action dictionary." The encoding
procedure for the final situation field of the causal relationship vector is identical to the
procedure used to encode the initial situation vector field.

Making "most probable" decisions with a neural model

The fundamental problem of content-addressable memory may be formulated as follows.
Given some unusual or "improbable" vector X, construct a more probable interpretation. More
formally, we can search for a maximum of some probability density function P(X) in the vicinity
of X. This density function indicates the relative frequency of occurrence of a stimulus vector X
within the environment. Within this framework, we can view a broad class of neural network
models as specific gradient ascent algorithms that maximize P(X), while some popular neural
network learning algorithms are viewed as procedures that estimate the general form of P(X).

In particular, the learning process is viewed as a procedure that constructs a P(X) such that P(X)
obtains a local maximum for each class of vectors learned by the system.

Memory Recall is Maximizing a Probability Density Function

The Brain-State-in-a-Box (BSB) neural model (Anderson, Silverstein, Ritz, & Jones, 1977) is
an abstract nervous system model that was designed to study various psychological phenomena.
Information in this system is represented by an N-dimensional state vector that specifies a
particular pattern of firing rates over a group of N neurons. The i#th neuron in the system is
modelled as a simple linear integrator possessing a maximum and minimum firing rate. The
system operates by amplifying an incoming activation pattern (state vector) using positive
feedback until many of the neurons in the system have obtained their maximum or minimum
firing rates. The assumption that neurons possess maximum and minimum firing rates implies
that the neural activation pattern over the set of N neurons is constrained to lie within an
N-dimensional hypercube. More formally the BSB model is defined as follows:

i
where xi(k) is the th element of the state vector X at discrete time interval k, and a.. is a
synaptic weight representing the synaptic efficacy between the ith and jth neurons in the
system. The linearized sigmoidal function S[a] is defined as follows. S[a] = +1fora > +1,
Slal] =-1fora <-1,and S[a]l =a for-1<a < +1.
Now let XO be the initial value of the system state vector. Let E(X) be defined as:
E(X) = (-1/2)XTAX 2)
where the ijth element of the matrix A is the synaptic weight a;;. Golden (1986) has
demonstrated that the BSB model is an algorithm that transforms X, into a new vector X,
located in the vicinity of Ko, such that E(X) < E(XO) under fairly general conditions.
Now define P(X) as the probability of X and let the form of P(X) be given as follows:
P(X) = ke X 3)

where k is a constant chosen such that / P (X) = 1 and E(X) is defined in (2). The gradient of
P(X) with respect to X is calculated as follows:
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GRAD[P(X)] = - GRAD[E(X)]P(X). (4)

Equation (4) states that an algorithm that moves along the path of steepest descent with
respect to E(X), is also moving along the path of steepest ascent with respect to P(X). Moreover,
when the state vector is "improbable"” (i.e., P(X) is small), the step size will be small. But when
the state vector is "probable"” (i.e., P(X) is large), the step size will be large. Finally note that
since P(X) is a monotonically decreasing function of E(X), a neural network model that minimizes
E(X) is also maximizing P(X). In psychological terms, the BSB model is constructing a "more
probable" interpretation of the initial state vector X,.

Learning is Estimating the Form of the Probability Density Function

In the BSB model, the synaptic weight between the ith and jth neurons in the system is
specified by a real number, ay;, that corresponds to the {jth element in the A matrix. The set of
synaptic weights specify the parameters of the probability density function in (3) and therefore
also specify the "knowledge base" of the system. To obtain a set of synaptic weights responsive
to a particular set of training stimuli, the autoassociative Widrow-Hoff learning rule (Anderson,
1983) is used. More specifically, at each learning trial, a state vector is randomly selected from
the set of training stimuli. Next, this training stimulus is used to update the current set of
synaptic weights according to the synaptic weight updating rule:

m

where a;;(k) is the value of the synaptic weight between the ith and jth neurons in the system at
learning trial k, x: is the ith element of the training stimulus vector, and 4 is a positive learning
constant. The on-diagonal elements, a;;, are not updated.

Let A be a matrix of synaptic weights formed by the coefficients a;;. Let X be the random
vector associated with some unknown stationary probability distribution function in the
environment. The autoassociative Widrow-Hoff learning rule can be shown to be searching for
an A matrix that minimizes the expected value of the Euclidean distance between AX and X
where the expectation is taken with respect to X (Widrow, 1971). Let C be a value of the
random vector X. Golden (in preparation) has demonstrated that if C is a hypercube vertex, A
is svmmetric, and AC is in the same quadrant of the hypercube as C, then C is a strict local
maximum of the density function. In conjunction with the observation that (2) is an energy or
Liapunov function, this implies that a region about C exists such that any state initiated in that
region must approach C as time increases.

Psychologically, these arguments simply indicate that the autoassociative Widrow-Hoff
learning rule connects the neurons in the system such that the neural network implicitly assigns
high probabilities to stimuli that have been taught to the system. These neural interconnections
are then used by the BSB neural network to reconstruct "more probable" interpretations of less
probable or novel state vector stimuli,

The Causal Schema neural network model

The Causal Schema (CS) neural model is a special type of production system specifically
designed to model causal schemata. The model makes specific qualitative predictions regarding
the pattern of errors made by people in recalling short, simple stories from memory. To
illustrate the operation and behavior of the model, an experiment performed by Bower, Black,
and Turner (1979) is described and then simulated using the CS neural model. Additional tests
of the model are discussed by Golden (in preparation).
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Bower et al. (1979) had college students learn a series of very short stories that were
organized about routine event sequences or "scripts." Some of the stories were generated from
the same script and were therefore very similar to one another (e.g., "visiting a doctor” and
"visiting a dentist"), while other stories studied by the subjects were quite distinctive. After an
intervening task, the subjects were given the titles of the stories as cues and requested to recall
the actions that were mentioned in the story. Bower et al. found that "stated" script actions
(i.e., actions explicitly mentioned within a story) were recalled more frequently than "unstated"
script actions (i.e., actions implicitly mentioned), and "unstated" script actions were recalled
more frequently than "other" types of script actions. In addition, as the similarity between two
stories learned by a subject was increased, the number of "unstated" script actions recalled by
the subjects increased and the number of "stated" script actions recalled by the subjects
decreased (Table 1).

Constructing a Long-term Memory

The first step to modelling the Bower et al. (1979) experiment is the development of a
long-term memory for the CS neural model. Such a memory was constructed in the following
manner. Four distinct causal schemata associated with the event sequences "going to a
restaurant,” "going to a fast food restaurant,” "going to a lecture," and "going to a doctor" were
constructed. Next, two variations upon each of these four basic causal schemata were
constructed. The resulting set of twelve schemata are then completely specified by a total of 107
causal relationships. A matrix of synaptic weights was then constructed from this stimulus set
of causal relationships by training the system using the autoassociative Widrow-Hoff learning
rule for 1000 learning trials. The resulting set of synaptic weights was defined as the model’s
long-term memory. In the simulations described here, five such matrices were generated using
different random number seeds in an attempt to model the long-term memory structures of five
college students,

Golden (in preparation) describes some computer simulations illustrating how this type of
long-term memory system can be used to control behavior. In particular, an incomplete CR
representing an initial situation (e.g., (51,0,0)) is presented to the BSB model which reconstructs
the action field of the CR. The effect of this action upon the environment results in a new
situation (e.g., (52,0,0)) that, in turn, can be used by the BSB model to reconstruct the second
action in some action sequence.

Modelling the Learning of Short Stories

After the 1000 learning trials using the "long-term memory" stimulus set of 107 CRs were
completed, the simulated "subjects" were trained with 24 "story sets." In particular, each
subject was taught a single story set for an additional 100 learning trials and then tested. Each
story set consisted of two similar stories derived from the same causal schema and one very
distinctive story derived from another causal schema. A "story" simply consisted of a collection
of five causal relationship state vectors that were implicitly linked together using the causal
schema state vector encoding procedure that was described earlier. Note that the system’s
knowledge of stories is stored over the same set of synaptic weights as the system’s long-term
memory.

Modelling the Recall Process

Figure 3 illustrates the main flow of control when the CS neural model is requested to recall
a story from memory. The BSB model is provided with an initial situation and action field
(corresponding to the title of the story), and reconstructs the final situation field. The final
situation field is then used to form the initial situation field of a new state vector. The action
and final situation fields of this new state vector are filled with zeroes. The new state vector is
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Figure 3. Flow of control during story recall. The CR representing the story title,
(S1,A1,0), is transformed by the BSB model into (S1,A1,52) thus reconstructing a
final situation field for the partially specified (S1,A1,0). The final situation of
(S1,A1,S2) is then used to form (S2,0,0) which is presented to the BSB model. The
BSB model recalls an action, A2, from memory and this action is recorded by the
experimenter. CR (52,A2,0) may now be used as a memory cue to recall the next
action in the story and the above cycle is repeated.
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then submitted to the BSB model which reconstructs a new action. This new action is recorded
as the first action recalled by the model, and the new action and new initial situation are used to
initiate the cycle once again to recall the second action from memory.

Computer Simulation Results

Table 2 provides the results of the computer simulations which may be compared with the
results obtained in the Bower et al. (1979) study. Like the human data in Table 1, "stated"
actions are recalled more frequently than "unstated” actions which are recalled more frequently
than "other" actions. In addition, as the number of related stories that are learned by the
computer subjects increases, the number of stated actions recalled decreases and the number of
unstated actions recalled increases. The interaction of "number of related stories" and "action
type" was highly significant (p < 0.01) in the computer simulations treating either story sets or
computer subjects as random factors.

Summary

A connectionist model of causal schemata in human memory has been described that makes
specific qualitative predictions about experiments involving memory for written text. As an
example, the performance of the model was compared with human subjects’ performance in a
specific psychological experiment. For this particular experiment, the CS model successfully
captured the general qualitative characteristics of human recall memory for simple stories. In
addition, a procedure for representing complex causal schemata as collections of neural
activation patterns (state vectors) and a probabilistic interpretation of memory recall and
learning in the BSB model were discussed.
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Table 1

Average number of actions recalled by human subjects
(adapted from Bower et al., 1979)

Number of Number of Number of

stated unstated other
actions actions actions
Number
of 1 3.03 0.80 0.39
related 2 2.27 1.26 0.35
stories
Table 2

Average number of actions recalled by the CS neural model
(Computer simulation)

Number of Number of Number of

stated unstated other
actions actions actions
Number
of 1 2.47 0.10 0.02
related 2 1.62 0.40 0.00
stories
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