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 Genome assembly is the problem of reconstructing genomes from DNA sequence reads. 

Even the best assemblies are often fragmented due to the presence of repetitive regions in the 

genome. Using long, single molecule sequencing (SMS) reads can improve the contiguity of 

these assemblies, but still fail to resolve long repetitive regions. Furthermore, the high error rate 

of SMS reads poses additional difficulties for assembly, raising the question of whether the 

popular de Bruijn graph (DBG) approach to genome assembly can be applied to SMS reads.  
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First, I present ABruijn, the first genome assembler for SMS reads that follows the DBG 

approach. By modifying the DBG into an A-Bruijn graph, ABruijn is able to produce very 

polished assemblies for simple genomes such as E. coli and S. cerevisiae. However, ABruijn has 

some difficulties with processing very repetitive regions and very large genomes.  

To address ABruijn’s shortcomings, I helped to develop Flye, a DBG-based assembler 

for SMS reads that can be applied to large mammalian genomes such as the human genome. Flye 

features a much more efficient method for resolving highly repetitive regions and also generates 

a repeat graph, which offers a compact representation of all of the repeats in a genome. Flye 

further performs steps to resolve those repeats and improve the quality of the assembly, resulting 

in a more contiguous assembly of the human genome compared to other state-of-the-art 

assemblers. 

Finally, I present diploidFlye, a haplotype-aware extension of Flye that is able to phase 

the contigs for assemblies of diploid organisms. diploidFlye takes advantage of the repeat graph 

generated by Flye to efficiently identify heterozygous variants and generate haplocontigs 

(haplotype-specific contigs) from the reads. 

Overall, this dissertation presents several novel algorithms for improving the 

performance of the de novo genome assembly of long SMS reads, establishing the efficacy of the 

DBG approach even for error-prone SMS reads and developing a state-of-the-art assembler 

known as Flye with many novel features for improving the overall assembly. 
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INTRODUCTION 

 With the development of new sequencing technologies over the last two decades, there 

has been an explosion of sequencing data generated at lower and lower costs (Verma et al. 2016). 

In order to utilize this sequencing data, it must be either compared to a reference sequence—a 

method called resequencing—or assembled into longer sequences such as genomes, known as de 

novo genome assembly. Although resequencing is by far the dominant method, it is not possible 

without a reference sequence available and may perform poorly when there are significant 

variations between the query and the reference sequence or when the query maps to multiple 

repetitive loci in the reference (Chaisson et al. 2015; Mills et al. 2011). In contrast, de novo 

genome assembly does not require a reference sequence and would accurately capture any 

variations in the sequence data. In fact, genome assembly is often utilized to capture large 

structural variations, to reconstruct highly mutated sequences such as in cancer, or to discover 

unknown or very diverse datasets such as when sequencing new organisms or complex 

metagenomics datasets (Chaisson et al. 2015; Raphael 2012; Saxena et al. 2014). However, 

genome assembly is a much more difficult task than resequencing, requiring sophisticated 

algorithms, significant computational resources and a long runtime for large genomes. 

Furthermore, existing methods still often perform poorly, resulting in very fragmented 

assemblies or missing regions of the genome entirely (Chaisson et al. 2015; Raphael 2012). 

Thus, new algorithms that can improve on both the quality of the assembly and the time and 

memory cost for the assembly are required to improve on existing genome assembly techniques, 

which is the focus of this dissertation.  

 Most sequencing projects utilize Next Generation Sequencing (NGS) platforms, which 

have rapidly increased the throughput and lowered the cost of sequencing by leveraging 
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massively parallel sequencing techniques. These NGS platforms include Roche/454 

pyrosequencing, Applied Biosciences SOLiD sequencing by ligation, Ion Torrent sequencing, 

and Illumina sequencing-by-synthesis (Harrington et al. 2013; Shendure et al. 2011; Verma et al. 

2016). However, the DNA sequence outputs of these technologies, known as reads, are all short 

in length, between 100 – 400 base-pairs (bp) (Van Dijk et al. 2014). These short reads pose a 

problem for genome assembly because assemblies are usually limited by the length of genomic 

repetitive regions that can be resolved, which in turn depends on the read length; short read 

assemblies tend to result in very fragmented assemblies due to the presence of many repeats in 

the genome that are longer than the read length (Chaisson et al. 2015). Thus, one way to improve 

the quality of assembly is to start with longer reads. 

In the past decade, single molecule sequencing (SMS) techniques have been developed 

that generate longer reads but have higher error rates. The two main platforms are Pacific 

Biosciences’ Single Molecule Real-Time sequencing technology and Oxford Nanopore 

Technology’s nanopore sequencing. Currently, SMS reads are on average longer than 10,000 bp 

but have very high error rates even exceeding 10% (Jain et al. 2016; Rhoads et al. 2015). 

Although these long reads would indeed be able to resolve longer repeats and thus improve 

genome assembly, the high error rate makes the assembly process more challenging. 

Prior to the advent of SMS reads, there were two main paradigms for genome assembly: 

the Overlap-Layout-Consensus (OLC) approach and the de Bruijn graph (DBG) approach (Li et 

al. 2012). These approaches offer alternative strategies for performing assembly. The OLC 

approach finds all overlaps between reads, then it builds a network of overlapping reads called 

the overlap graph to find the structure of the genome, and then constructs the sequence by taking 

the consensus of the reads (Li et al. 2012; Pevzner et al. 2001). The DBG approach, on the other 
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hand, first breaks every read into smaller segments of length 𝑘 called 𝑘-mers, then glues together 

identical 𝑘-mers to build a large network called the de Bruijn graph, and finally finds the 

sequence of the genome by tracing a path in the graph (Pevzner et al. 2001; Sohn et al. 2016). 

Modern NGS short-read assemblers such as the Celera Assembler (Myers et al. 2000), 

the JR-Assembler (Chu et al. 2013), and SGA (Simpson et al. 2012) utilize the OLC approach; 

however, the DBG approach is much more popular, implemented by many more assemblers such 

as Velvet (Zerbino et al. 2008), ABySS (Simpson et al. 2009), AllPaths (Gnerre et al. 2011), 

SOAPdenovo (Luo et al. 2012), and SPAdes (Bankevich et al. 2012), to name a few. Therefore, 

the DBG approach must offer some advantages over the OLC approach. Indeed, the de Bruijn 

graph is simpler and less computationally expensive to construct than the overlap graph (exact 𝑘-

mer matching is significantly easier than computing all pairwise alignments of reads); finding the 

path corresponding to the genome is easier in a DBG than in an overlap graph (since the genome 

appears as an Eulerian path rather than a Hamiltonian path); and the DBG offers an accurate 

representation of the repeat structure and complexity of the genome that the OLC approach does 

not (Kamath et al. 2017; Pevzner et al. 2004; Sohn et al. 2016). 

Nevertheless, when it comes to long SMS reads, all existing assemblers, such as HGAP 

(Chin et al. 2013), FALCON (Chin et al. 2016) and Canu (Koren et al. 2017) rely on the OLC 

approach. This may be because the increased length of SMS reads renders the OLC approach 

more intuitive since longer reads lead to longer overlaps, but then these assemblers miss out on 

the advantages of the DBG approach, which has always been rather counter-intuitive. It may also 

be due to the commonly held belief that the high error rate of SMS reads renders the DBG 

approach infeasible, since the de Bruijn graph constructed from SMS reads would become very 

tangled by the presence of so many erroneous 𝑘-mers. However, Pevzner et al. 2004 showed that 
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the presence of any similarity between reads is enough to build an A-Bruijn graph, which can be 

used for genome assembly in the same way as a de Bruijn graph. The following chapters of this 

dissertation discuss how to apply the DBG approach for error-prone SMS reads and illustrate that 

the advantages offered by the DBG approach leads to improved genome assemblies. 

The first chapter of this dissertation presents the ABruijn assembler, the first nonhybrid 

genome assembler for long SMS reads that utilizes the DBG approach. ABruijn builds an A-

Bruijn graph on a subset of the 𝑘-mers in the reads (rather than on all 𝑘-mers as in the de Bruijn 

graph) and is thus able to avoid incorporating too many erroneous 𝑘-mers into the graph. Since 

ABruijn was developed as an initial proof-of-concept assembler, it is only applied to smaller 

genomes such as E. coli, S. cerevisiae, and C. elegans, and it is shown to obtain comparable 

results to other state-of-the-art assemblers such as Canu. ABruijn is also shown to perform well 

on complex bacterial genomes such as Xanthomonas oryzae as well as on lower coverage 

datasets. However, ABruijn runs into computational bottlenecks when it encounters highly 

repetitive regions, and its use is limited to relatively small organisms. To overcome these 

obstacles and increase the scale of genome sizes that can be assembled, Flye was developed 

following the same framework as ABruijn. 

The second chapter describes Flye, which also utilizes an A-Bruijn graph to perform a 

DBG-based assembly of SMS reads. However, Flye also introduces a novel method for contig 

generation: rather than performing a large number of expensive calculations into resolving 

difficult repetitive regions like ABruijn, Flye greedily chooses an arbitrary path to produce 

disjointigs, which may contain misassemblies (falsely connected sequences). Then Flye 

constructs a repeat graph from these disjointigs, which is shown to be equivalent to the repeat 

graph constructed from the true genome or from correct contigs (pieces of assembled sequences). 
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This repeat graph provides a compact representation of all repetitive sequences in the genome, 

which is useful for visualizing the structure of the genome and for identifying the remaining 

unresolved repeats of the assembly. Flye produces both the repeat graph and a set of contigs 

generated from the repeat graph as the assembly output. The remaining unresolved regions can 

then be targeted for “finishing” the assembled genome by incorporating other technologies such 

as 10X Genomics or BioNano (Mostovoy et al. 2016). Note that the repeat graph is a natural 

product of the DBG approach to assembly, representing one of the major advantages of the DBG 

approach over the OLC approach. 

In addition to constructing the repeat graph, Flye also performs additional repeat 

resolution steps, using spanning reads to resolve bridged repeats and using variations between 

different copies of the same repeat to resolve unbridged repeats. These additional steps help to 

simplify the repeat graph and result in more contiguous assemblies. Flye’s many improvements 

(along with several other optimizations) allow it to assemble larger and more difficult datasets 

such as the human genome and complex metagenomes, producing comparable or better results 

than other SMS assemblers like Canu and FALCON. 

Finally, in the third chapter, another method is presented for improving the assemblies 

produced by Flye, called diploidFlye. The genomes of more complex organisms are typically 

diploid, which means there are two, slightly different versions of the genome present in each 

organism, one from each parent (called haplotypes). Flye does not distinguish between the two 

parental haplotypes of the genome, but diploidFlye detects the variations between these 

haplotypes and constructs a separate sequence for each one, called haplocontigs. diploidFlye 

utilizes the structure of the repeat graph produced by Flye to simplify the process of phasing 

these haplotypes, producing improved, haplotype-aware assemblies.  
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CHAPTER 1:  

Assembly of Long Error-Prone Reads Using De Bruijn Graphs 

 

1.1 Abstract 

The recent breakthroughs in assembling long error-prone reads were based on the 

overlap-layout-consensus (OLC) approach and did not utilize the strengths of the alternative de 

Bruijn graph approach to genome assembly. Moreover, these studies often assume that the 

applications of the de Bruijn graph approach are limited to short and accurate reads and that the 

OLC approach is the only practical paradigm for assembling long, error-prone reads. We show 

how to generalize de Bruijn graphs for assembling long, error-prone reads and describe the 

ABruijn assembler, which combines the de Bruijn graph and OLC approaches and results in 

accurate genome reconstructions. 

 

1.2 Significance Statement 

 When long reads generated using single-molecule sequencing (SMS) technology were 

first made available, most researchers were skeptical about the ability of existing algorithms to 

generate high-quality assemblies from long, error-prone reads. Nevertheless, recent algorithmic 

breakthroughs resulted in many successful SMS sequencing projects. However, as the recent 

assemblies of important plant pathogens illustrate, the problem of assembling long, error-prone 

reads is far from being resolved even in the case of relatively short bacterial genomes. We 

propose an algorithmic approach for assembling long error-prone reads and describe the ABruijn 

assembler, which results in accurate genome reconstructions. 
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1.3 Introduction 

 The key challenge to the success of single-molecule sequencing (SMS) technologies lies 

in the development of algorithms for assembling genomes from long but inaccurate reads. Pacific 

Biosciences, known as the pioneer in long reads technologies can now produce accurate 

assemblies from these long, error-prone reads (Berlin et al. 2015; Chin et al. 2013). Goodwin et 

al. (2015) and Loman et al. (2015) demonstrated that high-quality assemblies can even be 

obtained from less-accurate Oxford Nanopore reads. Advances in the assembly of long, error-

prone reads also recently resulted in the accurate reconstructions of many different genomes 

(Koren et al. 2013; Koren et al. 2015; Lam et al. 2015; Chaisson et al. 2015; Huddleston et al. 

2014; Ummat et al. 2014). However, as illustrated in Booher et al. (2015), the problem of 

assembling long, error-prone reads is far from being completely solved even in the case of 

relatively small bacterial genomes. 

Previous studies of SMS assemblies were based on the overlap-layout-consensus (OLC) 

approach (Kececioglu et al. 1995) or the similar string graph approach (Myers 2005), which 

requires an all-against-all comparison of reads (Myers 2014) and remains computationally 

challenging (see Idury et al. 2014, Li et al. 2012, and Pevzner et al. 2001 for a discussion of the 

pros and cons of this approach). Moreover, there is an assumption that the de Bruijn graph 

approach, which has dominated genome assembly for the last decade, is inapplicable to long 

reads. This is a misunderstanding because the de Bruijn graph approach, as well as its variation 

called the A-Bruijn graph approach, was originally developed to assemble rather long Sanger 

reads (Pevzner et al. 2004). There is also a misunderstanding that the de Bruijn graph approach 

can only assemble highly accurate reads and fails when assembling error-prone reads. Although 

this is true for the original de Bruijn graph approach to assembly (Idury et al. 1995; Pevzner et al. 
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2001), the A-Bruijn graph approach was originally designed to assemble inaccurate reads as long 

as any similarities between reads can be reliably identified. Moreover, A-Bruijn graphs have 

proven to be useful even for assembling mass spectra, which represent highly inaccurate 

fingerprints of the amino acid sequences of peptides (Bandeira et al. 2007; Bandeira et al. 2008). 

However, although A-Bruijn graphs have proven to be useful in assembling Sanger reads and 

mass spectra, the question of how to apply A-Bruijn graphs for assembling long, error-prone 

reads remains open. 

De Bruijn graphs are a key algorithmic technique in genome assembly (Idury et al. 1995; 

Butler et al. 2008; Simpson et al. 2009; Zerbino et al. 2008; Bankevich et al. 2012). In addition, 

de Bruijn graphs have been used for sequencing by hybridization (Pevzner 1989), repeat 

classification (Pevzner et al. 2004), de novo protein sequencing (Bandeira et al. 2008), synteny 

block construction (Pham et al. 2010), genotyping (Iqbal et al. 2012), and Ig classification 

(Bonissone et al. 2016). A-Bruijn graphs are even more general than de Bruijn graphs; for 

example, they also encompass breakpoint graphs, which is the workhorse of genome-

rearrangement studies (Lin et al. 2014). 

However, as discussed in Lin et al. 2014, the original definition of a de Bruijn graph is far 

from being optimal for the challenges posed by the assembly problem. Below, we describe the 

concept of an A-Bruijn graph, introduce the ABruijn assembler for long error-prone reads, and 

demonstrate that it generates accurate genome reconstructions. 

 

  



	

	 12 

1.4 Methods 

 

1.4.1 The Key Idea of the ABruijn Algorithm 

 

The Challenge of Assembling Long Error-Prone Reads. 

Given the high error rates of SMS technologies, the accurate assembly of long repeats 

remains challenging. Also, frequent k-mers dramatically increase the number of candidate 

overlaps, thus complicating how to choose the correct path in the overlap graph. A common 

solution is to mask highly repetitive k-mers as done in the Celera Assembler (Myers et al. 2000) 

and in Falcon (Chin et al. 2016). However, such masking may lead to the loss of some correct 

overlaps. Below, we illustrate these challenges using the Xanthomonas genomes as an example. 

Booher et al. (2015) recently sequenced several different strains of the plant pathogen 

Xanthomonas oryzae and revealed the striking plasticity of transcription activator-like (tal) 

genes, which play a key role in Xanthomonas infections. Each tal gene encodes a TAL protein, 

which has a large domain formed by nearly identical TAL repeats. Because variations in tal genes 

and TAL repeats are important for understanding the pathogenicity of various Xanthomonas 

strains, massive sequencing of these strains is an important task that may lead to the development 

of novel measures for plant disease control (Schornack et al. 2013; Doyle et al. 2013). However, 

assembling Xanthomonas genomes using SMS reads remains challenging (let alone using short 

reads). 

Depending on the strain, Xanthomonas genomes may harbor over 20 tal genes with some 

tal genes encoding over 30 TAL repeats. Assembling Xanthomonas genomes is further 

complicated by the aggregation of various types of repeats into complex regions that may extend 
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for over 30 kb in length. These repeats render Xanthomonas genomes nearly impossible to 

assemble using short reads. Moreover, as Booher et al. (2015) described, existing SMS 

assemblers also fail to assemble Xanthomonas genomes. The challenge of finishing draft 

genomes assembled from SMS reads also extends beyond these Xanthomonas genomes (e.g., 

many genomes sequenced at the Centers for Disease Control are being finished using optical 

mapping; Williams et al. 2016). 

Another challenge is using SMS technologies to assemble metagenomics datasets with 

highly variable coverage across various bacterial genomes. Because existing assemblers for long, 

error-prone reads generate fragmented assemblies of bacterial communities, there are as yet no 

publications describing metagenomics applications of SMS technologies. Below we benchmark 

ABruijn and other state-of-the-art SMS assemblers on several Xanthomonas genomes as well as 

the Bugula neritina metagenome. 

 

From de Bruijn Graphs to A-Bruijn Graphs. 

In the A-Bruijn graph framework, the classical de Bruijn graph 𝐷𝐵(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑘) of a 

string 𝑆𝑡𝑟𝑖𝑛𝑔 is defined as follows. Let 𝑃𝑎𝑡ℎ(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑘) be a path consisting of 𝑆𝑡𝑟𝑖𝑛𝑔 − 𝑘 +

1 edges, where the 𝑖-th edge of this path is labeled by the 𝑖-th 𝑘-mer in 𝑆𝑡𝑟𝑖𝑛𝑔 and the 𝑖-th 

vertex of the path is labeled by the 𝑖-th (𝑘 − 1)-mer in 𝑆𝑡𝑟𝑖𝑛𝑔. The de Bruijn graph 

𝐷𝐵(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑘) is formed by gluing together identically labeled vertices in 𝑃𝑎𝑡ℎ(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑘) (see 

Figure 1.1). Note that this somewhat unusual definition results in exactly the same de Bruijn 

graph as the standard definition (see Compeau et al. 2014 for details). 
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We now consider an arbitrary substring-free set of strings 𝑉 (which we refer to as a set of 

solid strings), where no string in 𝑉 is a substring of another one in 𝑉. The set 𝑉 consists of words 

(of any length) and a new concept 𝑃𝑎𝑡ℎ(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑉) is defined as the path through all words 

from 𝑉 appearing in 𝑆𝑡𝑟𝑖𝑛𝑔	(in order) as shown in Figure 1.1. Afterward, we glue identically 

Figure 1.1: Constructing the de Bruijn graph (Left) and the A-Bruijn graph (Right) for a 
circular 𝑺𝒕𝒓𝒊𝒏𝒈 = 𝐂𝐀𝐓𝐂𝐀𝐆𝐀𝐓𝐀𝐆𝐆𝐀 . (Left) From 𝑃𝑎𝑡ℎ(𝑆𝑡𝑟𝑖𝑛𝑔, 3)  to 𝐷𝐵(𝑆𝑡𝑟𝑖𝑛𝑔, 3) . 
(Right) From 𝑃𝑎𝑡ℎ(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑉)  to 𝐴𝐵(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑉)  for 𝑉 = {CA, AT, TC, AGA, TA, AC}.  The 
figure illustrates the process of bringing the vertices with the same label closer to each other 
(Middle Row) to eventually glue them into a single vertex (Bottom Row). Note that some 
symbols of 𝑆𝑡𝑟𝑖𝑛𝑔	are not covered by strings in 𝑉. We assign integer 𝑠ℎ𝑖𝑓𝑡(𝑣, 𝑤) to the edge 
(𝑣, 𝑤) in this path to denote the difference between the positions of 𝑣 and 𝑤 in 𝑆𝑡𝑟𝑖𝑛𝑔 (i.e., it is 
the number of symbols between the start of 𝑣 and the start of 𝑤 in 𝑆𝑡𝑟𝑖𝑛𝑔). 
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labeled vertices as before to construct the A-Bruijn graph 𝐴𝐵(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑉) as shown in Figure 1.1. 

Clearly, 𝐷𝐵(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑘) is identical to 𝐴𝐵(𝑆𝑡𝑟𝑖𝑛𝑔, ∑Y9Z), where ∑Y9Z stands for the set of 

all (𝑘 − 1)-mers in alphabet ∑. 

The definition of 𝐴𝐵(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑉) generalizes to 𝐴𝐵(𝑅𝑒𝑎𝑑𝑠, 𝑉) by constructing a path for 

each read in the set 𝑅𝑒𝑎𝑑𝑠	and further gluing all identically labeled vertices in all paths. Because 

the draft genome is spelled by a path in 𝐴𝐵(𝑅𝑒𝑎𝑑𝑠, 𝑉) (Pevzner 2004), it seems that the only 

thing needed to apply the A-Bruijn graph concept to SMS reads is to select an appropriate set of 

solid strings 𝑉, to construct the graph 𝐴𝐵(𝑅𝑒𝑎𝑑𝑠, 𝑉), to select an appropriate path in this graph 

as a draft genome, and to correct errors in the draft genome. Below, we show how ABruijn 

addresses these tasks. 

 

The Challenge of Selecting Solid Strings. 

Different approaches to selecting solid strings affect the complexity of the resulting A-

Bruijn graph and may either enable further assembly using the A-Bruijn graph or make it 

impractical. For example, when the set of solid strings 𝑉 = ∑Y9Z consists of all (𝑘 − 1)-mers, 

𝐴𝐵(𝑅𝑒𝑎𝑑𝑠, ∑Y9Z) may be either too tangled (if 𝑘 is small) or too fragmented (if 𝑘 is large). 

Although this is true for both short accurate reads and long error-prone reads, there is a 

key difference between these two technologies with respect to their resulting A-Bruijn graphs. In 

the case of Illumina reads, there exists a range of values of 𝑘 such that one can apply various 

graph simplification procedures (e.g., bubble and tip removal; Pevzner et al. 2004; Zerbino et al. 

2008) to enable further analysis of the resulting graph. However, these graph simplification 

procedures were developed for the case when the error rate in the reads does not exceed 1% and 

fail for SMS reads where the error rate exceeds 10%. 
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An Outline of the ABruijn Algorithm. 

We classify a 𝑘-mer as genomic if it appears in the genome and non-genomic otherwise. 

Ideally, we would like to select a set of solid strings containing all genomic 𝑘-mers and no non-

genomic 𝑘-mers. 

Although the set of genomic 𝑘-mers occurring in the set of reads is unknown, we show 

how to identify a large set of predominantly genomic 𝑘-mers by selecting sufficiently frequent 𝑘-

mers in reads. However, this is not sufficient for assembly, because some genomic 𝑘-mers are 

missing and some non-genomic 𝑘-mers are present in the constructed set of solid 𝑘-mers. 

Moreover, even if we were able to construct a very accurate set of genomic 𝑘-mers, the de Bruijn 

graph constructed on this set would be too tangled because typical values of 𝑘 range from 15 to 

25 (other values make it difficult to construct a good set of solid 𝑘-mers). Instead, we construct 

the A-Bruijn graph on the set of identified solid 𝑘-mers rather than the de Bruijn graph on all 𝑘-

mers in reads. Although only a small fraction of the 𝑘-mers in each read are solid (and hence this 

is a very incomplete representation of the reads), overlapping reads typically share many solid 𝑘-

mers (as opposed to non-overlapping reads). Therefore, a rough estimate of the overlap between 

two reads can be obtained by finding the longest common subpath between the two read-paths 

using a fast, dynamic-programming algorithm. Hence, the A-Bruijn graph can function as an 

oracle, from which one can efficiently identify the overlaps of a given read with all other reads 

by considering all possible overlaps at once. The genome is assembled by repeatedly applying 

this procedure and following the path extension paradigm borrowed from some short read 

assemblers (Boisvert et al. 2012; Prjibelski et al. 2014; Vasilinetc et al. 2015). 

Each assembler should minimize the number of misassemblies and the number of base-

calling errors. The described approach minimizes the number of misassemblies but results in an 
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inaccurate draft genome with many base-calling errors. We later describe an error-correction 

approach, which results in accurate genome reconstructions. 

 

1.4.2 Assembling Long Error-Prone Reads 

 

Selecting Solid Strings for Constructing A-Bruijn Graphs. 

We define the frequency of a 𝑘-mer as the number of times this 𝑘-mer appears in the 

reads and argue that frequent 𝑘-mers (for sufficiently large 𝑘) are good candidates for the set of 

solid strings. We define a (𝑘, 𝑡)-mer as a 𝑘-mer that appears at least 𝑡 times in the set of reads. 

We classify a 𝑘-mer as unique if it appears once in the genome and repeated if it appears 

multiple times. Figure 1.2 shows a histogram of the number of unique, repeated, and non-

genomic 15-mers for a range of frequencies for the ECOLI SMS dataset (details for this dataset 

can be found in the “Datasets” paragraph of the Results section of this chapter). As Figure 1.2 

illustrates, the lion’s share of 15-mers with frequencies above a threshold 𝑡 are genomic (𝑡 =

7 for the ECOLI dataset). To automatically select the parameter 𝑡, we compute the number of 𝑘-

mers with frequencies exceeding 𝑡, and select a maximal 𝑡 such that this number exceeds the 

estimated genome length. As Figure 1.2 illustrates, this selection results in relatively few non-

genomic k-mers while capturing most genomic 𝑘-mers. 
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Finding the Genomic Path in an A-Bruijn Graph. 

After constructing an A-Bruijn graph, one faces the problem of finding a path in this 

graph that corresponds to traversing the genome and then correcting errors in the sequence 

spelled by this path (this genomic path does not have to traverse all edges of the graph). Because 

the long reads are merely paths in the A-Bruijn graph, one can use the path extension paradigm 

(Boisvert et al. 2012; Prjibelski et al. 2014; Vasilinetc et al. 2015) to derive the genomic path 

from these (shorter) read-paths. exSPAnder (Prjibelski et al. 2014) is a module of the SPAdes 

Figure 1.2: A histogram of the number of 15-mers vs frequency for the ECOLI dataset.  
The bars for unique, repeated, and non-genomic 15-mers for the E. coli genome are stacked and 
shown in green, red, and blue according to their fractions. ABruijn automatically selects the 
parameter 𝑡 and defines solid strings as all 15-mers with frequencies at least 𝑡 = 7 for the 
ECOLI dataset. We found that increasing the automatically selected values of 𝑡 by 1 results in 
equally accurate assemblies. There exist 4.1, 0.1, and 0.5 million unique, repeated, and non-
genomic 15-mers, respectively, for ECOLI at 𝑡 = 7 (and 3.9, 0.1, and 0.3 million for 𝑡 = 8). 
Although larger values of 𝑘 (e.g. 𝑘 = 25) also produce high-quality SMS assemblies, we found 
that selecting smaller, rather than larger, values for 𝑘 results in slightly better performance. 
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assembler (Bankevich et al. 2012) that finds a genomic path in the assembly graph constructed 

from short reads based either on read-pair-paths, or on read-paths derived from SMS reads in the 

case of hybridSPAdes (Antipov et al. 2015). Recent studies of bacterial plankton (Labont et al. 

2015), antibiotics resistance (Ashton et al. 2015), and genome rearrangements (Risse et al. 2015) 

demonstrated that hybridSPades works well even for coassembly with less-accurate nanopore 

reads. Below we sketch the hybridSPAdes algorithm (Antipov et al. 2015) and show how to 

modify the path extension paradigm to arrive at the ABruijn algorithm. 

 

hybridSPAdes. 

hybridSPAdes uses SPAdes to construct the de Bruijn graph solely from short accurate 

reads and transforms it into an assembly graph by removing bubbles and tips (24). It represents 

long error-prone reads as read-paths in the assembly graph and uses them for repeat resolution. 

A set of paths in a directed graph (referred to as 𝑃𝑎𝑡ℎ𝑠) is consistent if the set of all edges 

in 𝑃𝑎𝑡ℎ𝑠	forms a single directed path in the graph. We further refer to this path as 

𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠𝑃𝑎𝑡ℎ(𝑃𝑎𝑡ℎ𝑠). The intuition for the notion of a consistent set of paths is that they are 

sampled from a single segment of the genomic path in the assembly graph (as opposed to an 

inconsistent set of paths that are sampled from multiple segments of the genomic path; see 

Antipov et al. 2015). 

A path 𝑃′ in a weighted graph overlaps with a path 𝑃 if a sufficiently long suffix of 𝑃 (of 

total weight at least 𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝) coincides with a prefix of 𝑃′ and 𝑃 does not contain the entire 

path 𝑃′ as a subpath. Given a path 𝑃 and a set of paths 𝑃𝑎𝑡ℎ𝑠, we define 𝑃𝑎𝑡ℎ𝑠defghijklm(𝑃) as 

the set of all paths in 𝑃𝑎𝑡ℎ𝑠	that overlap with 𝑃. 
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Our sketch of hybridSPAdes (Figure 1.3) omits some details and deviates from the 

current implementation to make similarities with the A-Bruijn graph approach more apparent 

(e.g., it assumes that there are no chimeric reads and only shows an algorithm for constructing a 

single contig). 

 

 

 

 

From hybridSPAdes to longSPAdes. 

Using the concept of the A-Bruijn graph, a similar approach can be applied to assembling 

long reads only. The pseudocode of longSPAdes differs from the pseudocode of hybridSPAdes 

by only the top three lines (Figure 1.4). 

 

Figure 1.3: The pseudocode for hybridSPAdes.  
This simplified sketch of the hybridSPAdes pseudocode shows how to construct 
contigs starting with an assembly graph. It is important to check that 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑃𝑎𝑡ℎ𝑠 
is consistent to ensure that they correspond to a single genomic path segment before 
including them in the resulting contigs. 
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We note that longSPAdes constructs a path spelling out an error-prone draft genome that 

requires further error correction. However, error correction of a draft genome is faster than the 

error correction of individual reads required before performing assembly using the OLC 

approach (Berlin et al. 2015; Chin et al. 2013; Goodwin et al. 2015; Loman et al. 2015). 

Although hybridSPAdes and longSPAdes are similar, longSPAdes is more difficult to 

implement because bubbles in the A-Bruijn graph of error-prone long reads are more complex 

than bubbles in the de Bruijn graph of accurate short reads (see Figure 1.5 for an example of 

bubble in the A-Bruijn graph). As a result, the existing graph simplification algorithms fail to 

work for A-Bruijn graphs made from long error-prone reads. Although it is possible to modify 

the existing graph simplification procedures for long error-prone reads (to be described 

elsewhere), this paper focuses on a different approach that does not require graph simplification. 

 

Figure 1.4: The starting three lines of the pseudocode for longSPAdes.  
These are the only lines that differ between the pseudocode for longSPAdes and that 
of hybridSPAdes. The rest of the pseudocode is identical to the remaining lines shown 
in Figure 1.3. 
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Figure 1.5: A bubble in the A-Bruijn graph of (15, 7)-mers for the ECOLI dataset.  
The A-Bruijn graph was constructed using (15, 7)-mers for the ECOLI dataset. This small 
subgraph of the A-Bruijn graph shows 82 (15, 7)-mers appearing in segments of 61 reads 
covering a short 100-nucleotide region (starting at position 2,000,000 in the E. coli genome). 
Three out of 61 read-paths are highlighted in blue, red, and green. The complexity of this small 
subgraph illustrates how difficult it would be to correct the A-Bruijn graph. 
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From longSPAdes to ABruijn. 

Instead of finding a genomic path in the simplified A-Bruijn graph, ABruijn attempts to 

find a corresponding genomic path in the original A-Bruijn graph. This approach leads to an 

algorithmic challenge: although it is easy to decide whether two reads overlap given an assembly 

graph, it is not clear how to answer the same question in the context of the A-Bruijn graph. Note 

that although the ABruijn pseudocode (Figure 1.6) uses the same terms “overlapping” and 

“consistent” as longSPAdes, these notions are defined differently in the context of the A-Bruijn 

graph. These new notions (as well as the parameters 𝑗𝑢𝑚𝑝	and 𝑚𝑎𝑥𝑂𝑣𝑒𝑟ℎ𝑎𝑛𝑔) are described 

below. 

 

 

Figure 1.6: The pseudocode for ABruijn.  
The pseudocode for ABruijn is similar to that of longSPAdes, but there are 
significant differences in the definitions for the terms “consistent” and 
“overlapping.” Furthermore, there are additional parameters 𝑗𝑢𝑚𝑝  and 
𝑚𝑎𝑥𝑂𝑣𝑒𝑟ℎ𝑎𝑛𝑔 specific to ABruijn. 
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The constructed path in the A-Bruijn graph spells out an error-prone draft genome (or one 

of the draft contigs). For simplicity, the pseudocode above describes the construction of a single 

contig and does not cover the error-correction step. In reality, after a contig is constructed, 

ABruijn maps all reads to this contig and uses the remaining reads to iteratively construct other 

contigs. Also, ABruijn attempts to extend the path to the “left” if the path extension to the “right” 

halts. Other complications such as removing chimeric reads are also omitted. 

 

Common 𝒋𝒖𝒎𝒑-Subpaths. 

Given a path 𝑃 in a weighted directed graph (weights correspond to shifts in the A-Bruijn 

graph), we refer to the distance 𝑑s(𝑣, 𝑤) along path 𝑃 between vertices 𝑣 and 𝑤 in this path (i.e., 

the sum of the weights of all edges in the path) as the 𝑃-distance. The span of a subpath of a 

path 𝑃 is defined as the 𝑃-distance from the first to the last vertex of this subpath. 

Given a parameter 𝑗𝑢𝑚𝑝, a 𝑗𝑢𝑚𝑝-subpath of 𝑃 is a subsequence of vertices 𝑣Z …𝑣u in 𝑃 such 

that 𝑑s(𝑣e, 𝑣e1Z) ≤ 𝑗𝑢𝑚𝑝 for all 𝑖 from 1 to 𝑡 − 1. We define 𝑃𝑎𝑡ℎwxdm(𝑃) as a 𝑗𝑢𝑚𝑝-subpath 

with the maximum span out of all 𝑗𝑢𝑚𝑝-subpaths of a path 𝑃. 

A sequence of vertices in a weighted directed graph is called a common 𝑗𝑢𝑚𝑝-subpath of 

paths 𝑃Z and 𝑃y if it is a 𝑗𝑢𝑚𝑝-subpath of both 𝑃Z and 𝑃y (Figure 1.7). The span of a 

common 𝑗𝑢𝑚𝑝-subpath of 𝑃Z and 𝑃y is defined as its span with respect to path 𝑃Z (note that this 

definition is non-symmetric with respect to 𝑃Z and 𝑃y). We refer to a common 𝑗𝑢𝑚𝑝-subpath of 

paths 𝑃Z and 𝑃y with the maximum span as 𝑃𝑎𝑡ℎwxdm(𝑃Z, 𝑃y) (with ties broken arbitrarily). 
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 Below we describe how the ABruijn assembler uses the notion of common 𝑗𝑢𝑚𝑝-

subpaths with maximum span to detect overlapping reads. 

 

Finding a Common 𝒋𝒖𝒎𝒑-Subpath with Maximum Span. 

For the sake of simplicity, below we limit our attention to the case when paths 𝑃Z and 𝑃y 

traverse each of their shared vertices exactly once. 

A vertex 𝑤 is a 𝑗𝑢𝑚𝑝-predecessor of a vertex 𝑣	in a path 𝑃	if 𝑃	traverses 𝑤	before 

traversing 𝑣	and 𝑑s(𝑤, 𝑣) ≤ 𝑗𝑢𝑚𝑝. 

We define 𝑃(𝑣) as the subpath of 𝑃 from its first vertex to 𝑣. Given a vertex 𝑣 shared 

between paths 𝑃Z and 𝑃y, we define 𝑠𝑝𝑎𝑛wxdm(𝑣) as the largest span among all common 𝑗𝑢𝑚𝑝-

subpaths of paths 𝑃Z(𝑣) and 𝑃y(𝑣) ending in 𝑣. The dynamic programming algorithm for finding 

a common 𝑗𝑢𝑚𝑝-subpath with the maximum span is based on the following recurrence: 

𝑠𝑝𝑎𝑛wxdm 𝑣 = max
}~~	wxdm9������������	�	��	h	��	s�	}��	s�

𝑠𝑝𝑎𝑛wxdm 𝑤 + 𝑑s� 𝑤, 𝑣  

Given all paths sharing vertices with a path 𝑃, common 𝑗𝑢𝑚𝑝-subpaths with maximum span 

with 𝑃 for all of them can be computed using a single scan of 𝑃. Below we describe a fast 

heuristic for this procedure.  

18502 634 531 427 585 564 530 901 992 434

425 494 455 475 453 453 721 758 15672

Figure 1.7: An example of a common 𝒋𝒖𝒎𝒑-subpath from the ECOLI dataset.  
Two overlapping reads from the ECOLI dataset and their common 𝑗𝑢𝑚𝑝 -subpath with 
maximum span that contains 50 vertices and has span 6,714 with respect to the bottom read (for 
𝑗𝑢𝑚𝑝	 = 1,000). The left and right overhangs for these reads are 425 and 434. The weights of 
the edges in the A-Bruijn graph are shown only if they exceed 400 bp.	
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A Fast Heuristic for Finding a Common 𝒋𝒖𝒎𝒑-Subpath with Maximum Span. 

We define 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠wxdm(𝑣) as the set of all jump-predecessors of a vertex 𝑣 in 

paths 𝑃Z and 𝑃y. A vertex 𝑤 in 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠wxdm(𝑣) is called dominant if it is not a 𝑗𝑢𝑚𝑝-

predecessor of any other vertex in 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠wxdm(𝑣). If paths 𝑃Z and 𝑃y traverse 

𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠wxdm(𝑣) in the same order, then there is one dominant vertex in 

𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠wxdm(𝑣), denoted as 𝑤, and 𝑠𝑝𝑎𝑛wxdm(𝑣) = 𝑠𝑝𝑎𝑛wxdm 𝑤 +	𝑑s� 𝑤, 𝑣 . To 

speed-up the dynamic programming algorithm based on the recurrence in the main text, ABruijn 

stores and checks only the dominant vertices in 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠wxdm(𝑣). 

Our use of 𝑘-mers to identify overlapping reads has similarities with MHAP (Berlin et al. 

2015), which utilizes hashing of all 𝑘-mers on every read as a way to identify overlaps. The key 

difference is that, while MHAP is applied to a pair of reads, ABruijn utilizes information from all 

reads in order to identify the set of solid 𝑘-mers that one should focus on, make extension 

decisions, identify chimeric reads, etc. 

 

(𝒋𝒖𝒎𝒑, ∆)- Subpaths. 

ABruijn uses a more restricted notion of the common 𝑗𝑢𝑚𝑝-subpath described below. 

Given a parameter ∆ (the default value is 𝑗𝑢𝑚𝑝/2), a sequence of vertices 𝑣Z. . . 𝑣u in a weighted 

directed graph is called a common (𝑗𝑢𝑚𝑝, ∆)-subpath of paths 𝑃Z and 𝑃y if it is a 𝑗𝑢𝑚𝑝-subpath 

of both 𝑃Z and 𝑃y, and 𝑑s� 𝑣e, 𝑣e1Z − 𝑑s� 𝑣e, 𝑣e1Z ≤ ∆ for 1 ≤ 𝑖 < 𝑡. The concept 

𝑃𝑎𝑡ℎwxdm,∆(𝑃Z, 𝑃y) is defined similarly to the concept 𝑃𝑎𝑡ℎwxdm(𝑃Z, 𝑃y). 

We found that using (𝑗𝑢𝑚𝑝, ∆)-subpaths results in slightly more accurate assemblies of 

highly repetitive genomes. Common (𝑗𝑢𝑚𝑝, ∆)-subpaths with maximum span can be computed 

using a recurrence that is similar to the one for common 𝑗𝑢𝑚𝑝-subpaths. Below we will revert to 
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using common 𝑗𝑢𝑚𝑝-subpaths rather than common (𝑗𝑢𝑚𝑝, ∆)-subpaths for the sake of 

simplicity. 

 

Overlapping Paths in A-Bruijn Graphs. 

We define the right overhang between paths 𝑃Z and 𝑃y as the minimum of the distances 

from the last vertex in 𝑃𝑎𝑡ℎwxdm(𝑃Z, 𝑃y) to the ends of 𝑃Z	and 𝑃y. Similarly, the left overhang 

between paths 𝑃Z	and 𝑃y	is the minimum of the distances from the starts of 𝑃Z and 𝑃y	to the first 

vertex in 𝑃𝑎𝑡ℎwxdm(𝑃Z, 𝑃y). 

Given parameters 𝑗𝑢𝑚𝑝, 𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 and 𝑚𝑎𝑥𝑂𝑣𝑒𝑟ℎ𝑎𝑛𝑔, we say that paths 𝑃Z	and 𝑃y 

overlap if they share a common 𝑗𝑢𝑚𝑝-subpath of span at least 𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝	and their right and 

left overhangs do not exceed 𝑚𝑎𝑥𝑂𝑣𝑒𝑟ℎ𝑎𝑛𝑔. To decide whether two reads have arisen from two 

overlapping regions in the genome, ABruijn checks whether their corresponding read-

paths 𝑃Z	and 𝑃y	overlap (with respect to parameters 𝑗𝑢𝑚𝑝, 𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝, and 𝑚𝑎𝑥𝑂𝑣𝑒𝑟ℎ𝑎𝑛𝑔). 

Given overlapping paths 𝑃Z and 𝑃y, we say that 𝑃Z is supported by 𝑃y	if the 𝑃Z-distance from the 

last vertex in 𝑃𝑎𝑡ℎwxdm(𝑃Z, 𝑃y) to the end of 𝑃Z	is smaller than the 𝑃y-distance from the last 

vertex in 𝑃𝑎𝑡ℎwxdm(𝑃Z, 𝑃y) to the end of 𝑃y.  

 

Choice of Parameters in the ABruijn Algorithm. 

 Given parameters 𝑘, 𝑡, 𝑗𝑢𝑚𝑝 and ∆, we define the following statistics (Table 1.1): 

• 𝑃𝑟1(𝑘, 𝑡, 𝑗𝑢𝑚𝑝): the probability that two overlapping reads share a (𝑘, 𝑡)-mer along a 

region of length 𝑗𝑢𝑚𝑝 in their overlap. To ensure that the notion of a common 𝑗𝑢𝑚𝑝-
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subpath indeed detects overlapping reads, ABruijn selects parameters 𝑘, 𝑡, and 𝑗𝑢𝑚𝑝 in 

such a way that 𝑃𝑟1(𝑘, 𝑡, 𝑗𝑢𝑚𝑝) is large. 

• 𝑃𝑟9(𝑘, 𝑡, 𝑗𝑢𝑚𝑝): the probability that two regions of length jump from two non-

overlapping reads share a (𝑘, 𝑡)-mer. To ensure that the notion of the common 𝑗𝑢𝑚𝑝-

subpath does not detect non-overlapping reads, ABruijn selects parameters 𝑘, 𝑡, and 

𝑗𝑢𝑚𝑝 in such a way that 𝑃𝑟9(𝑘, 𝑡, 𝑗𝑢𝑚𝑝) is small. 

• 𝑃𝑟∗(𝑗𝑢𝑚𝑝, ∆): the probability that two overlapping reads differ by at most ∆ in length 

along a region of length 𝑗𝑢𝑚𝑝 in their overlap. 

 

ABruijn uses the default parameters 𝑘 = 15, 𝑗𝑢𝑚𝑝 = 1500, ∆= 𝑗𝑢𝑚𝑝/2, 

𝑚𝑎𝑥𝑂𝑣𝑒𝑟ℎ𝑎𝑛𝑔 = 1500 and 𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 = 5000 for all datasets and automatically selects 

parameter 𝑡. For the ECOLI dataset, it results in 𝑃𝑟1(15, 7, 1500) = 0.98, 𝑃𝑟9(15, 7, 1500) =

0.002, and 𝑃𝑟∗(𝑗𝑢𝑚𝑝, ∆) = 0.97. For the ECOLInano dataset, it results in 𝑡 = 4, 

𝑃𝑟1(15, 4, 1500) = 0.97, 𝑃𝑟9(15, 4, 1500) = 0.002, and 𝑃𝑟∗(𝑗𝑢𝑚𝑝, ∆) = 1.00. Increasing the 

default parameter 𝑘 = 15 to 17 and 19 result in assemblies of similar quality (with the exception 

of sequencing projects with low coverage). 
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Additional Complications with the Implementation of the Path Extension Paradigm. 

Although it seems that the notion of overlapping paths allows us to implement the path 

extension paradigm for A-Bruijn graphs, there are two complications. First, the path extension 

algorithm becomes more complex when the growing path ends in a long repeat (Vasilinetc et al. 

2015). Second, chimeric reads may end up in the set of overlapping read-paths extending the 

growing path in the ABruijn algorithm. Also, a set of extension candidates may include a small 

fraction of spurious reads from other regions of the genome (Table 1.1 describes statistics on 

spurious overlaps). Below we describe how ABruijn addresses these complications. 

 

Detecting chimeric reads.  

The traditional way to identify a chimeric read in the de Bruijn graph framework (when 

the reference genome is not known) is to detect a chimeric junction in this read, i.e., a junction 

that improperly connects two non-adjacent segments of the genome. The existing assembly 

Table 1.1: The empirical estimates of 𝑷𝒓1(𝒌, 𝒕, 𝒋𝒖𝒎𝒑)  and 𝑷𝒓9(𝒌, 𝒕, 𝒋𝒖𝒎𝒑)  under 
different choices of parameters 𝒌, 𝒕, and 𝒋𝒖𝒎𝒑. The estimates are based on statistics from 
10,000 pairs of overlapping reads (to estimate 𝑃𝑟1(𝑘, 𝑡, 𝑗𝑢𝑚𝑝)) and 10,000 pairs of non-
overlapping reads (to estimate 𝑃𝑟9(𝑘, 𝑡, 𝑗𝑢𝑚𝑝)) from the ECOLI dataset and the ECOLInano 
dataset.	
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algorithms often classify a position in the read as a chimeric junction if it is not covered by (or 

poorly covered by) alignments of this read with other reads. However, while this approach works 

for accurate reads, it needs to be modified for inaccurate reads since alignment artifacts make it 

difficult to identify chimeric junctions. 

Traditional de Bruijn graph assemblers classify a read as chimeric if one of the edges in 

its read-path in the assembly graph has low coverage. They further remove the chimeric reads 

and corresponding edges from the assembly graph (see Nurk et al. 2013 for more advanced 

approaches to the detection of chimeric reads). To generalize this approach to A-Bruijn graphs, 

we need to redefine the notion of coverage for A-Bruin graphs. 

An edge (𝑣, 𝑤) in a path 𝑃 is called internal if the distances from 𝑣 to the start of 𝑃 and 

from 𝑤 to the end of 𝑃 exceed 𝑗𝑢𝑚𝑝, and strongly internal if those distances exceed 𝑗𝑢𝑚𝑝 +

𝑚𝑎𝑥𝑂𝑣𝑒𝑟ℎ𝑎𝑛𝑔. Given overlapping paths 𝑃 and 𝑃’, we define the 𝑃-spread of 𝑃’ as the sub-path 

of 𝑃 starting and ending at the first and last vertices of 𝑃𝑎𝑡ℎwxdm(𝑃, 𝑃′). 

To check if a path 𝑃 in the A-Bruijn graph is chimeric, we consider all paths 𝑃𝑎𝑡ℎ𝑠 that 

overlap with this path and further trim the non-internal edges of these paths, resulting in a set of 

paths that we refer to as 𝑇𝑟𝑖𝑚𝑚𝑒𝑑𝑃𝑎𝑡ℎ𝑠. The coverage of an edge in path 𝑃 is defined as the 

number of paths in 𝑇𝑟𝑖𝑚𝑚𝑒𝑑𝑃𝑎𝑡ℎ𝑠 whose 𝑃-spread contain this edge. A path is called chimeric 

if one of its strongly internal edges has coverage below 10% of the coverage of its neighboring 

edge. 

 

Most-Consistent Paths. 

Given a path 𝑃	in a set of paths 𝑃𝑎𝑡ℎ𝑠, we define 𝑟𝑖𝑔ℎ𝑡𝑆𝑢𝑝𝑝𝑜𝑟𝑡slu��(𝑃) as the number 

of paths in 𝑃𝑎𝑡ℎ𝑠	that support 𝑃. 𝑙𝑒𝑓𝑡𝑆𝑢𝑝𝑝𝑜𝑟𝑡slu��(𝑃) is defined as the number of paths 
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in 𝑃𝑎𝑡ℎ𝑠	that are supported by 𝑃. We also define 𝑆𝑢𝑝𝑝𝑜𝑟𝑡slu��(𝑃) as the minimum of 

𝑟𝑖𝑔ℎ𝑡𝑆𝑢𝑝𝑝𝑜𝑟𝑡slu��(𝑃) and 𝑙𝑒𝑓𝑡𝑆𝑢𝑝𝑝𝑜𝑟𝑡slu��(𝑃). A path 𝑃 is most-consistent if it maximizes 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡slu��(𝑃) among all paths in 𝑃𝑎𝑡ℎ𝑠 (Figure 1.8, Top). 

Given a set of paths 𝑃𝑎𝑡ℎ𝑠	overlapping with 𝑅𝑒𝑎𝑑𝑃𝑎𝑡ℎ, ABruijn selects a most-

consistent path for extending 𝑅𝑒𝑎𝑑𝑃𝑎𝑡ℎ. Our rationale for selecting a most-consistent path is 

based on the observation that chimeric and spurious reads usually have either limited support or 

themselves support few other reads from the set 𝑃𝑎𝑡ℎ𝑠. For example, a chimeric read 

in 𝑃𝑎𝑡ℎ𝑠	with a spurious suffix may support many reads in 𝑃𝑎𝑡ℎ𝑠	but is unlikely to be supported 

by any reads in 𝑃𝑎𝑡ℎ𝑠. 
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Figure 1.8: Path support and most-consistent paths.  
(Top) A growing path (shown in green) and a set of five paths 𝑃𝑎𝑡ℎ𝑠	above it (extending this 
path). The gray path with 𝑆𝑢𝑝𝑝𝑜𝑟𝑡slu��(𝑃) = 2 is the most-consistent path in the set 𝑃𝑎𝑡ℎ𝑠. 
(Middle) A growing path (shown in green) ending in a repeat (represented by the internal edge 
in the graph), and eight read-paths that extend this growing path (five correct extensions shown 
in blue and three incorrect extensions shown in red. (Bottom) A support graph for the above 
eight read-paths. Note that the blue read-path 1 is connected by edges with all red read-paths 
because it is supported by all red paths even though these paths do not contain any short suffix 
of read-path 1 (the ABruijn graph framework is less sensitive than the de Bruijn graph 
framework with respect to overlap detection).	
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Support Graphs. 

When exSPAnder extends the growing path, it takes into account the local repeat 

structure of the de Bruijn graph, resulting in a rather complex decision rule when the growing 

path contains a repeat (Prjibelski et al. 2014; Vasilinetc et al. 2015). Figure 1.8, Middle shows a 

fragment of the de Bruijn graph with a repeat of multiplicity 2 (internal edge), a growing path 

ending in this repeat (shown in green), and eight read-paths that extend this growing path. 

exSPAnder analyzes the subgraph of the de Bruijn graph traversed by the growing path, ignores 

paths starting in the edges corresponding to repeats, and selects the remaining paths as 

candidates for an extension (reads 1, 2, and 3 in Figure 1.8, Middle). Below we show how to 

detect that a growing path ends in a repeat in the absence of the de Bruijn graph and how to 

analyze read-paths ending/starting in a repeat in the A-Bruijn graph framework. 

Figure 1.8, Bottom shows a support graph with eight vertices (each vertex corresponds to 

a read-path in Figure 1.8, Middle). There is an edge from a vertex 𝑣	to a vertex 𝑤	in this graph if 

read 𝑣	is supported by read 𝑤. The vertex of this graph with maximal indegree corresponds to the 

rightmost blue read-path (read 8) and reveals four other blue read-paths as its predecessors, that 

is, vertices connected to the vertex 8 (the cluster of blue vertices in Figure 1.8, Bottom). The 

remaining three vertices in the graph represent incorrect extensions of the growing path and 

reveal that this growing path ends in a repeat (the cluster of red vertices in Figure 1.8, Bottom). 

This toy example illustrates that decomposing the vertices of the support graph into clusters 

helps to answer the question of whether the growing path ends in a repeat (which would lead to 

multiple clusters) or not (which would lead to a single cluster). 

Although exSPAnder and ABruijn face a similar challenge when analyzing repeats, the 

A-Bruijn graph, in contrast to the de Bruijn graph, does not reveal local repeat structure. 
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However, it allows one to detect reads ending in long repeats using an approach that is similar to 

the approach illustrated in Figure 1.8. Below we show how to detect such reads and how to 

incorporate their analysis in the decision rule of ABruijn. 

 

Identifying Reads Ending/Starting in a Repeat. 

Given a set of reads 𝑅𝑒𝑎𝑑𝑠	supporting a given read, we construct a support graph 

𝐺(𝑅𝑒𝑎𝑑𝑠) on |𝑅𝑒𝑎𝑑𝑠| vertices. We further construct the transitive closure of this graph, 

denoted 𝐺 ∗ (𝑅𝑒𝑎𝑑𝑠), using the Floyd–Warshall algorithm. Figure 1.9 presents the 

graph 𝐺(𝑅𝑒𝑎𝑑𝑠) for a read that does not end in a long repeat and for another read that ends in a 

long repeat. 

ABruijn partitions the set of vertices in the graph 𝐺 ∗ (𝑅𝑒𝑎𝑑𝑠) into non-overlapping 

clusters as follows. It selects a vertex 𝑣 with maximum indegree in 𝐺 ∗ (𝑅𝑒𝑎𝑑𝑠) and, if this 

indegree exceeds a threshold (the default value is 1), it removes this vertex along with all its 

predecessors from the graph. We refer to the set of removed vertices as a cluster of reads and 

iteratively repeat this procedure on the remaining subgraph until no vertex in the graph has 

indegree exceeding the threshold. Figure 1.9 illustrates that this decomposition results in a single 

cluster for a read that does not end in a repeat and in two clusters for a read that ends in a repeat. 

We classify a read as a read ending in a repeat if the number of clusters in G∗(Reads) 

exceeds 1 (the notion of a read starting from a repeat is defined similarly). A set of reads is called 

inconsistent if all reads in this set either end or start in a repeat, and consistent otherwise. 

ABruijn detects all reads ending and starting in a repeat before the start of the path extension 

algorithm; 3.2% and 6.4% of all reads in the ECOLI and BLS datasets, respectively, end in 

repeats. 
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The Path Extension Paradigm and Repeats. 

ABruijn attempts to exclude reads ending in repeats while selecting a read that extends 

the growing path. Because this is not always possible, below we describe two cases: the growing 

path does not end in a repeat and the growing path ends in a repeat. 

Figure 1.9: Support graph examples revealing the absence and presence of repeats.  
(Left) Support graph 𝐺(𝑅𝑒𝑎𝑑𝑠) for a read in the BLS dataset that does not end in a long repeat 
(details for this dataset can be found in the “Datasets” paragraph of the Results section of this 
chapter). Reads in the BLS dataset are numbered in order of their appearance along the genome. 
The green vertex represents a chimeric read. The blue vertex has maximum degree in 
𝐺∗(𝑅𝑒𝑎𝑑𝑠) and reveals a single cluster consisting of all vertices but the green one. A vertex 
281 with large indegree (5) and large outdegree (3) in 𝐺∗(𝑅𝑒𝑎𝑑𝑠) is a most-consistent read-
path, and it is selected for path extension (unless it ends in a repeat). (Right) Support graph 
𝐺∗(𝑅𝑒𝑎𝑑𝑠) for a read in the BLS dataset that ends in a long repeat. The green vertex represents 
a chimeric read. The blue vertex has maximum degree in 𝐺∗(𝑅𝑒𝑎𝑑𝑠) and reveals a cluster 
consisting of nine blue vertices. The vertex 4901 with large indegree (4) and large outdegree 
(4) in 𝐺∗(𝑅𝑒𝑎𝑑𝑠) is a most-consistent read-path, and it is selected for path extension if it does 
not start in a repeat. The red vertex reveals another cluster consisting of five red vertices. 
Generally, we expect that a read ending in a long repeat of multiplicity 𝑚  will result 
in 𝑚 clusters because reads originating different instances of this repeat are not expected to 
support each other and, thus, are not connected by edges in 𝐺∗(𝑅𝑒𝑎𝑑𝑠).	
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If the growing path does not end in a repeat, our goal is to exclude chimeric and spurious 

reads during the path extension process. ABruijn, thus, selects a read from 𝑅𝑒𝑎𝑑𝑠	that (i) does 

not end in a repeat and (ii) supports many reads and is supported by many reads. 

Condition ii translates into selecting a vertex whose indegree and outdegree are both large (i.e., a 

most-consistent path). In the case that all reads in 𝑅𝑒𝑎𝑑𝑠	end in a repeat, ABruijn selects a read 

that satisfies the condition ii but ends in a repeat. 

If the growing path ends in a repeat, ABruijn uses a strategy similar to exSPAnder to 

avoid reads that start in a repeat as extension candidates (e.g., all reads in Figure 1.8, Middle 

except for reads 1, 2, and 3). It thus selects a read from 𝑅𝑒𝑎𝑑𝑠	that (i) does not start in a repeat 

and (ii) supports many reads and is supported by many reads. To satisfy condition ii, ABruijn 

selects a most-consistent read among all reads in 𝑅𝑒𝑎𝑑𝑠	that do not start in a repeat. If there are 

no such reads, ABruijn halts the path extension procedure. 

 

1.4.3 Correcting Errors in the Draft Genome 

 

Matching Reads Against the Draft Genome. 

ABruijn uses BLASR (Chaisson et al. 2012) to align all reads against the draft genome. It 

further combines pairwise alignments of all reads into a multiple alignment. Because this 

alignment against the error-prone draft genome is rather inaccurate, we need to modify it into a 

different alignment that we will use for error correction. 

Our goal now is to partition the multiple alignment of reads to the entire draft genome 

into thousands of short segments (mini-alignments) and to error-correct each segment into the 

consensus string of the mini-alignment. The motivation for constructing mini-alignments is to 
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enable accurate error-correction methods that are fast when applied to short segments of reads 

but become too slow in the case of long segments. 

The task of constructing mini-alignments is not as simple as it may appear. For example, 

breaking the multiple alignment into segments of fixed size will result in inaccurate consensus 

sequences because a region in a read aligned to a particular segment of the draft genome has not 

necessarily arisen from this segment [e.g., it may have arisen from a neighboring segment or 

from a different instance of a repeat (misaligned segments)]. Because many segments in BLASR 

alignments are misaligned, the accuracy of our error-correction approach (that is designed for 

well-aligned reads) may deteriorate. 

We, thus, search for a good partition of the draft genome that satisfies the following 

criteria: (i) most segments in the partition are short, so that the algorithm for their error-

correction is fast, and (ii) with high probability, the region of each read aligned to a given 

segment in the partition represents an error-prone version of this segment. Below we show how 

to construct a good partition by building an A-Bruijn graph. 

 

Defining Solid Regions in the Draft Genome. 

We refer to a position (or column) of the alignment with the space symbol “-” in the 

reference sequence as a non-reference position (or column) and to all other positions as a 

reference position (or column). We refer to the column in the multiple alignment containing 

the 𝑖-th position in a given region of the reference genome as the 𝑖-th column. The total number 

of reads covering a position 𝑖 in the alignment is referred to as 𝐶𝑜𝑣(𝑖). 

A non-space symbol in a reference column of the alignment is classified as a match (or a 

substitution) if it matches (or does not match, respectively) the reference symbol in this column. 
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A space symbol in a reference column of the alignment is classified as a deletion. We refer to the 

number of matches, substitutions, and deletions in the 𝑖-th column of the alignment as 𝑀𝑎𝑡𝑐ℎ(𝑖), 

𝑆𝑢𝑏(𝑖), and 𝐷𝑒𝑙(𝑖), respectively. We refer to a non-space symbol in a non-reference column as 

an insertion and denote 𝐼𝑛𝑠(𝑖) as the number of nucleotides in the non-reference columns 

flanked between the reference columns 𝑖 and 𝑖 + 1 (Figure 1.10). 

 

 

For each reference position 𝑖, 𝐶𝑜𝑣(𝑖) = 𝑀𝑎𝑡𝑐ℎ(𝑖) + 𝑆𝑢𝑏(𝑖) + 𝐷𝑒𝑙(𝑖). We define the 

match, substitution, and insertion rates at position 𝑖 as 𝑀𝑎𝑡𝑐ℎ(𝑖)	/	𝐶𝑜𝑣(𝑖), 𝑆𝑢𝑏(𝑖)	/

	𝐶𝑜𝑣(𝑖), 𝐷𝑒𝑙(𝑖)	/	𝐶𝑜𝑣(𝑖), and 𝐼𝑛𝑠(𝑖)	/	𝐶𝑜𝑣(𝑖), respectively. Given an 𝑙-mer in a draft genome, 

Figure 1.10: Decomposing a multiple alignment into necklaces. 
(Top Left) The pairwise alignments between a reference region 𝑟𝑒𝑓 in the draft genome and 
five reads 𝑅𝑒𝑎𝑑𝑠 = {𝑟𝑒𝑎𝑑Z, 𝑟𝑒𝑎𝑑y, 𝑟𝑒𝑎𝑑�, 𝑟𝑒𝑎𝑑�, 𝑟𝑒𝑎𝑑�}. All inserted symbols in these reads 
with respect to the region 𝑟𝑒𝑓  are colored in blue. (Bottom Left) The multiple alignment 
𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 constructed from the above pairwise alignments along with the values of 𝐶𝑜𝑣(𝑖), 
𝑀𝑎𝑡𝑐ℎ(𝑖), 𝐷𝑒𝑙(𝑖), 𝑆𝑢𝑏(𝑖) and 𝐼𝑛𝑠(𝑖). The last row shows the set 𝑉 of (0.8, 0.2)-solid 4-mers. 
The nonreference columns in the alignment are not numbered. (Right) Constructing 
𝐴𝐵    (𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡), that is, combining all paths 𝑃𝑎𝑡ℎ(𝑟𝑒𝑎𝑑w, 𝑉) into 𝐴𝐵    (𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡). Note that 
the 4-mer ATGA corresponds to two different nodes with labels 1 and 13. The three boundaries 
of the mini-alignments are between positions 2 and 3, 7 and 8, and 14 and 15. The two resulting 
necklaces are made up of segments {GAATCA,GATTCA,GAAACA,GAAACA,GAGGTA} 
and {GTCAT,GTTCA,TCCTCGAT,GTATTACAT,GTCTTAAT}.	
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we define its local match rate as the minimum match rate among the positions within this 𝑙-mer. 

We further define its local insertion rate as the maximum insertion rate among the positions 

within this 𝑙-mer. 

An 𝑙-mer in the draft genome is called 𝛼, 𝛽 -solid if its local match rate exceeds 𝛼 and 

its local insertion rate does not exceed 𝛽. When 𝛼	is large and 𝛽	is small, (𝛼, 𝛽)-solid 𝑙-mers 

typically represent the correct 𝑙-mers from the genome. The last row in Figure 1.10, Bottom Left 

shows all of the (0.8, 0.2)-solid 4-mers in the draft genome. 

The contiguous sequence of (𝛼, 𝛽)-solid 𝑙-mers forms a solid region. There are 139,585 

solid regions in the draft assembly of the ECOLI dataset (for 𝑙 = 10). Our goal now is to select a 

position within each solid region (referred to as a landmark) and to form mini-alignments from 

the segments of reads spanning the intervals between two consecutive landmarks. 

 

Breaking the Multiple Alignment into Mini-Alignments. 

Because (𝛼, 𝛽)-solid 𝑙-mers are very accurate (for appropriate choices of 𝛼, 𝛽 and 𝑙), we 

use them to construct yet another A-Bruijn graph with much simpler bubbles. Because analyzing 

errors in homonucleotide runs is a difficult problem (Chin et al. 2013), we select landmarks 

outside of homonucleotide runs. 

A 4-mer is called simple if all its consecutive nucleotides are different. For example, 

CAGT and ATGA are simple 4-mers, and GTTC is not a simple 4-mer. We select simple 4-mers 

that are at least 𝑙 positions away from each other within solid regions as landmarks. We 

introduce multiple landmarks (rather than a single one) in some solid regions to minimize the 

size of mini-alignments resulting from long solid regions. We further use the middle points (i.e., 

a point between its 2nd and 3rd nucleotides) of selected simple 4-mers as landmarks. This 
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procedure resulted in 159,142 mini-alignments for the ECOLI dataset. ABruijn analyzes each 

mini-alignment and error-corrects each segment between consecutive landmarks (the average 

length of these segments is only ≈30 nucleotides). Figure 1.11 shows the distribution of the 

lengths of necklaces constructed by aligning all reads in the ECOLI dataset to the draft genome. 

 

 

 

To evaluate how errors in the draft genome affect alignments of long error-prone reads, 

we corrupted the reference E. coli genome by introducing random single-nucleotide errors at 

randomly chosen positions (10,000 mismatches, deletions, and insertions) and aligned all reads 

against the corrupted genome. A segment in the corrupted genome is called corrupted if it has 

been changed by an error and correct otherwise. Figure 1.12 shows the distribution of the local 

Figure 1.11: A histogram of necklace lengths. 
A histogram of the lengths of 159,142 necklaces formed by aligning all reads in the ECOLI 
dataset to the draft genome and constructing the A-Bruijn graph for this alignment. 3,271 
necklaces that are longer than 100 bp are not shown. 
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match and insertion rates (for both corrupted and correct simple 4-mers) and illustrates that 77% 

of all correct simple 4-mers are (0.8, 0.2)-solid. Remarkably, none of the corrupted simple 4-

mers are (0.8, 0.2)-solid.  

 

 

ABruijn finds all maximal (𝛼, 𝛽)-solid 𝑙-mers (the default value of 𝑙 is 10) and treats 

them as solid regions. It further uses the landmarks (the middle points of simple 4-mers) within 

the solid regions as the boundaries of necklaces to ensure that single homonucleotide runs in 

reads do not split into two consecutive necklaces and are not adjacent to the boundaries of 

necklaces. This condition is important for the subsequent genome polishing step. 

 

Constructing the A-Bruijn Graph on Solid Regions in the Draft Genome. 

We refer to the multiple alignment of all reads against the draft genome as 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡. 

We label each landmark by its landmark position in 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡	and break each read into a 

Figure 1.12: Match and insertion rate distribution for a simulated corrupted genome. 
Distribution of local match and insertion rates as a 2-D plot for correct simple 4-mers (green), 
corrupted simple 4-mers with mismatches (blue), corrupted simple 4-mers with insertions (red) 
and corrupted simple 4-mers with deletions (orange). 
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sequence of segments aligned between consecutive landmarks. We further represent each read as 

a directed path through the vertices corresponding to the landmarks that it spans over. To 

construct the A-Bruijn graph 𝐴𝐵(𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡), we glue all identically labeled vertices in the set 

of paths resulting from the reads (Figure 1.10, Right). 

Labeling vertices by their positions in the draft genome (rather than the sequences of 

landmarks) distinguishes identical landmarks from different regions of the genome and prevents 

excessive gluing of vertices in the A-Bruijn graph 𝐴𝐵(𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡). We note that whereas the 

A-Bruijn graph constructed from reads is very complex, the A-Bruijn graph 𝐴𝐵(𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡) 

constructed from reads aligned to the draft genome is rather simple. Although there are many 

bubbles in this graph, each bubble is simple, making the error correction step fast and accurate. 

The edges between two consecutive landmarks (two vertices in the A-Bruijn graph) form a 

necklace consisting of segments from different reads that align to the region flanked by these 

landmarks (Figure 1.10, Right shows two necklaces). Below we describe how ABruijn constructs 

a consensus for each necklace (called the necklace consensus) and transforms the inaccurate 

draft genome for the ECOLI dataset into a polished genome to reduce the error rate to 0.0004% 

for the ECOLI dataset (only 19 putative errors for the entire genome). 

 

A Probabilistic Model for Necklace Polishing. 

Each necklace contains read-segments 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = {𝑠𝑒𝑔Z, 𝑠𝑒𝑔y, … , 𝑠𝑒𝑔d} and our goal 

is to find a consensus sequence 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 maximizing 𝑃𝑟(𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠|𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠) =

𝑃𝑟	(𝑠𝑒𝑔e|𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠)d
e£Z , where 𝑃𝑟(𝑠𝑒𝑔e|𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠) is the probability of generating a 

segment 𝑠𝑒𝑔e	from a consensus sequence 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠. Given an alignment between a 
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segment 𝑠𝑒𝑔e	and a consensus 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠, we define 𝑃𝑟(𝑠𝑒𝑔e|𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠) as the product of all 

match, mismatch, insertion, and deletion rates for all positions in this alignment. 

The match, mismatch, insertion, and deletion rates should be derived using an alignment 

of any set of reads to any reference genome. Table 1.2 shows the values for these rates for three 

different protocols of Pacific Biosciences reads: P6-C4, P5-C3, and P4-C2. Note that the 

parameters for P6-C4 and P5-C3 are nearly identical. 

 

 

Table 1.2: Match, mismatch, insertion, and deletion rates for various 
Pacific Biosciences protocols. 
The match, mismatch, insertion, and deletion rates obtained by aligning 
datasets from different protocols against the reference genome. The statistical 
parameters of the P6-C4 protocol were compared with the statistical 
parameters of the older P5-C3 and P4-C2 protocol (derived from the P5-C3 
and P4-C2 Pacific Biosciences datasets in Kim et al. 2014). 	
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ABruijn selects a segment of median length from each necklace and iteratively checks 

whether the consensus sequence for each necklace can be improved by introducing a single 

mutation in the selected segment. If there exists a mutation that increases 

𝑃𝑟(𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠|𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠), we select the mutation that results in the maximum increase and 

iterate until convergence. We further output the final sequence as the error-corrected sequence of 

the necklace. As described in Chin et al. (2013), this greedy strategy can be implemented 

efficiently because a mutation maximizing 𝑃𝑟(𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠|𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠) among all possible 

mutated sequences can be found in a single run of the forward–backward dynamic programming 

algorithm for each sequence in 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠. The error rate drops to 0.003% after this step for the 

ECOLI dataset. 

 

Error-Correcting Homonucleotide Runs. 

The probabilistic approach described above works well for most necklaces but its 

performance deteriorates when it faces the difficult problem of estimating the lengths of 

homonucleotide runs, which account for 46% of the E. coli genome (see discussion on pulse 

merging in Chin et al. 2015). We, thus, complement this approach with a homonucleotide 

likelihood function based on the statistics of homonucleotide runs. In contrast to previous 

approaches to error-correction of long error-prone reads, this new likelihood function 

incorporates all corrupted versions of all homonucleotide runs across the training set of reads and 

reduces the error rate sevenfold (from 0.003% to 0.0004% for the ECOLI dataset) compared with 

the standard likelihood approach. 



	

	 45 

To generate the statistics of homonucleotide runs, we need an arbitrary set of reads 

aligned against a training reference genome. For each homonucleotide run in the genome and 

each read spanning this run, we represent the aligned segment of this read simply as the set of its 

nucleotide counts. For example, if a run AAAAAAA in the genome is aligned against 

AATTACA in a read, we represent this read-segment as 4A3X, where X stands for any 

nucleotide differing from A. 

Furthermore, for each run LZ ... ZR, where a nucleotide Z in the genome is flanked by 

the nucleotides L (on the left) and R (on the right) distinct from Z, we limit our analysis to only 

reads that are well-aligned against LZ ... ZR. A read is well-aligned against LZ ... ZR if the 

flanking L and R nucleotides both form either a match with the read or is aligned against a 

nucleotide Z in the read (see Figure 1.13). The counts of all read segments well-aligned to each 

homonucleotide region are used to calculate the error distributions for all homonucleotide runs. 

 

 

 

Table 1.3 presents the frequencies for all read segments covering the homonucleotide 

runs AAAAAA and AAAAAAA in the ECOLI dataset. Table 1.4 presents the frequencies for all 

read segments covering the homonucleotide runs AAAA and AAAAA for ECOLInano. 

Interestingly, when we apply the statistical parameters derived from the older P5-C3 protocol to 

our P6-C4 ECOLI dataset, the number of ABruijn errors remains small, illustrating that our 

Figure 1.13: Examples of read well-aligned to homonucleotide regions. 
Well-aligned reads (the first two examples) and a poorly aligned read (the last 
example). The well-aligned reads are represented as 3A1X and 4A1X in the 
likelihood estimate (X stands for an arbitrary nucleotide). 
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probabilistic framework is not subject to over-training. The frequencies in the resulting tables 

hardly change when one changes the dataset of reads or the reference genome either. 

 

 

 

 

 

 

Table 1.3: AAAAAA and AAAAAAA error distributions for ECOLI.  
The frequencies of segments from reads spanning 6-nucleotide runs 
AAAAAA (Left) and 7-nucleotide runs AAAAAAA (Right) in the 
ECOLI dataset. Only combinations with frequencies exceeding 0.001 are 
shown. X stands for an arbitrary nucleotide. 
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We further use the frequencies in this table for computing the likelihood function as the 

product of these frequencies for all reads in each necklace (frequencies below a threshold 0.001 

are ignored). To decide on the length of a homonucleotide run, we simply select the length of the 

run that maximizes the likelihood function. For example, using the frequencies from Table 1.3, if 

𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = {5𝐴, 6𝐴, 6𝐴, 7𝐴, 6𝐴1𝐶}, then 

Table 1.4: AAAA and AAAAA error distributions for ECOLInano.  
The frequencies of segments from Oxford Nanopore reads spanning 4-
nucleotide runs AAAA (Left) and 5-nucleotide runs AAAAA (Right) in 
the ECOLInano dataset. Only combinations with frequencies exceeding 
0.001 are shown. X stands for an arbitrary nucleotide. 
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𝑃𝑟(𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠|6𝐴) = 0.156×0.4392×0.115×0.0740.156×0.4392×0.115×0.074	 >

	𝑃𝑟(𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠|7𝐴) = 0.049×0.1562×0.385×0.0450.049×0.1562×0.385×0.045  

and we select AAAAAA over AAAAAAA as the necklace consensus. 

Although the described error-correcting approach results in a very low error rate even 

after a single iteration, ABruijn realigns all reads and error-corrects the pre-polished genome in 

an iterative fashion (three iterations by default). Further improvements on correcting errors was 

explored by considering the lengths of Open Reading Frames (ORFs). 

 

ORF-Based Error-Correction of Bacterial Genomes. 

While the likelihood-based approaches to error-correction (described in the main text) 

corrects the lion’s share of errors in the draft genomes, some errors remain uncorrected, 

particularly with respect to the errors in estimating the lengths of homonucleotide runs. We thus 

complement the likelihood-based approaches with an ORF-based error-correction approach that 

analyzes Open Reading Frames (ORFs). 

Note that while the average length of a protein-coding gene in most bacterial genomes 

exceeds 800 bp (Brocchieri et al. 2005), the average ORF length in a randomly generated string 

of nucleotides is only 64 bp. Thus, every error that represents an indel within a gene (a 

frameshift) may introduce a premature stop codon and has the potential to significantly reduce 

the length of the ORF corresponding to this gene. 

If we are deciding between two alternative lengths of a homonucleotide run within a gene 

(correct and incorrect), the correct choice results in an ORF that corresponds to the gene length 

while the incorrect choice results in a frameshift that may introduce a premature stop codon. 
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Such frameshift mutations usually shorten the length of the longest ORF that spans over the 

homonucleotide run with incorrectly defined length. 

Given a position in the genome, we compute its ORF-length as the maximum length of 

all six ORFs covering this position. If the genome is assembled without errors, then ORF-lengths 

are large for most positions that belong to genes. Since genes typically cover over 85% of 

bacterial genomes, most positions in the entire genome have large ORF-lengths. However, if a 

genome is assembled with errors, the ORF-lengths for positions with indels are typically smaller 

than the ORF-length of this position in the error-free genome (see Figure 1.14). 

Since in some cases, the likelihood values for alternative choices for the length of a 

homonucleotide run are nearly the same, we develop an additional decision rule that analyzes the 

ORF-lengths between two alternatives and gives preference to the choice that results in a 

significantly longer ORF-length.  

Given two candidate lengths of a homonucleotide run with a small difference in their 

homonucleotide likelihood score (smaller than a threshold ∆), we compute the difference 

between their ORF-lengths and select the candidate with larger ORF-length if the difference 

between ORF-lengths exceeds a threshold (the default value is 128 bp). If the difference between 

the ORF-lengths is smaller than the threshold, we retain the length of the run that maximizes the 

homonucleotide likelihood score described in the main text. 
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Figure 1.14: ORF-length histograms for correct and incorrect positions. 
Distribution of ORF-lengths for correct positions in the error-free E. coli genome (top) and 
incorrect positions in the error-prone E. coli genome (middle), and the difference between the 
ORF-lengths of corresponding correct and incorrect positions (bottom). The error-prone E. 
coli genome was generated by deleting or inserting a single (randomly chosen) nucleotide 
with probability 0.0005 at each position. The vast majority of indels in the error-prone genome 
result in a significant reduction of ORF lengths. On average, there is a 276-nucleotide 
reduction in the ORF-length for the error-prone genome. 
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1.5 Results 

Because CANU (Berlin et al. 2015) improved on PBcR (Koren et al. 2012) with respect 

to both speed and accuracy, we limited our benchmarking to ABruijn and CANU v1.2 using the 

following datasets. 

 

Datasets. 

The E. coli K12 dataset (referred to as ECOLI) contains 10,277 reads with ≈ 55× 

coverage generated using P6-C4 Pacific Biosciences technology (Kim et al. 2014). 

The E. coli K12 Oxford Nanopore dataset (referred to as ECOLInano) contains 22,270 

reads with ≈ 29×	coverage (Loman et al. 2015). 

The BLS and PXO datasets were derived from X. oryzae strains BLS256 and PXO99A 

previously assembled using Sanger reads (Bogdanove et al. 2011; Salzberg et al. 2008) and 

reassembled using Pacific Biosciences P6-C4 reads in Booher et al. (2015). The BLS dataset 

contains 89,634 reads (≈ 234×	coverage), and the PXO dataset contains 55,808 reads (≈

141×	coverage). The assembly of BLS and PXO datasets is particularly challenging because 

these genomes have a large number of tal genes. 

The B. neritina dataset (referred to as BNE) contains 1,127,494 reads (estimated 

coverage ≈ 25×) generated using the P6-C4 Pacific Biosciences technology. B. neritina is a 

microscopic marine eukaryote that forms colonies attached to the wetted surfaces and forms 

symbiotic communities with various bacteria. B. neritina is the source of bryostatin, an 

anticancer and memory-enhancing compound (Trost et al. 2008). B. neritina is also a model 

organism for biofouling, studies of accumulation of various organisms on wetted surfaces that 

present a risk to underwater construction. 
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Symbiotic bacteria live inside of B. neritina, making it impossible to isolate the B. 

neritina DNA from the bacterial DNA when performing genome sequencing. As a result, despite 

the importance of B. neritina, all attempts to sequence it so far have failed (Lopanik et al. 2008). 

The total genome size of the symbiotic bacteria in B. neritina is significantly larger than the 

estimated size of the B. neritina genome (135 Mb). Thus, sequencing B. neritina presents a 

complex metagenomics challenge. 

We have also assembled the S. cerevisiae W303 genome (referred to as SCE), which 

contains 232,230 reads with ≈ 117× coverage generated using the P5-C3 Pacific Biosciences 

technology (Kim et al. 2014). 

 

The Challenge of Benchmarking SMS Assemblies. 

High-quality short-read bacterial assemblies typically have error-rates on the order 

of 10−5, which typically result in 50 to 100 errors per assembled genome (Ronen et al. 2012). 

Because assemblies of high-coverage SMS datasets are often even more accurate than assemblies 

of short reads, short-read assemblies do not represent a gold standard for estimating the accuracy 

of SMS assemblies. Moreover, the E. coli K12 strain used for SMS sequencing of the ECOLI 

dataset differs from the reference genome. Thus, the standard benchmarking approach based on 

comparison with the reference genome (Gurevich et al. 2013) is not applicable to these 

assemblies. 

We used the following approach to benchmark ABruijn and CANU against the 

reference E. coli K12 genome. There are 2,892 and 2,887 positions in E. coli K12 genome where 

the reference sequence differs from ABruijn and CANU+Quiver, respectively. However, 

ABruijn and CANU+Quiver agree on 2,873 of them, suggesting that most of these positions 
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represent mutations in E. coli K12 compared with the reference genome. Both CANU+Quiver 

and ABruijn suggest that the ECOLI dataset was derived from a strain that differs from the 

reference E. coli K12 genome by a 1,798-bp inversion, two insertions (776 and 180 bp), one 

deletion (112 bp), and seven other single positions. We, thus, revised the E. coli K12 genome to 

account for these variations and classified a position as an ABruijn error if the CANU+Quiver 

sequence at this position agreed with the revised reference but not with the ABruijn sequence 

(CANU errors are defined analogously). 

 

Assembling the ECOLI Dataset. 

ABruijn and CANU assembled the ECOLI dataset into a single circular contig 

structurally concordant with the E. coli genome. We further estimated the accuracy of ABruijn 

and CANU in projects with lower coverage by down-sampling the reads from ECOLI. For each 

value of coverage, we made five independent replicas and analyzed errors in all of them. 

In contrast to ABruijn, CANU does not explicitly circularize the reconstructed bacterial 

chromosomes but instead outputs each linear contig with an identical (or nearly identical) prefix 

and suffix. We used these suffixes and prefixes to circularize bacterial chromosomes and did not 

count differences between some of them as potential CANU errors. However, for some replicas 

with coverage 40×, 35×, 30×, and 25×, CANU missed short 2-kb to 7-kb fragments of the 

genome (possibly due to low coverage in some regions), thus, preventing us from circularization. 

To enable benchmarking, we did not count these missing regions as CANU errors. Also, at 

coverage 30×, CANU (i) failed to assemble the ECOLI dataset into a single contig for one out of 

five replicas and (ii) correctly assembled bacterial chromosome for another replica but also 
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generated a false contig (probably formed by chimeric reads). In contrast, ABruijn correctly 

assembled all replicas for all values of coverage. 

Table 1.5 illustrates that, in contrast to ABruijn, CANU generates rather inaccurate 

assemblies without Quiver, a tool that uses raw machine-level signals saved in HDF5 files for 

polishing: 637 errors (160 insertions and 477 deletions) and 19 errors (12 insertions and 7 

deletions) remain for CANU and ABruijn, respectively. However, after applying Quiver, the 

number of errors reduces to 14 (1 insertion and 13 deletions) and 15 (2 insertions and 13 

deletions) for CANU and ABruijn, respectively. ABruijn assembled the ECOLI dataset in ≈8 

min and polished it in ≈36 min (the memory footprint was 2 Gb). ABruijn and CANU have 

similar running times: 2,599 s and 2,488 s, respectively (4,873 s and 4,803 s for ABruijn+Quiver 

and CANU+Quiver, respectively). 

 

 

 

 

Table 1.5: Total errors remaining for CANU and ABruijn assemblies.  
Summary of errors for the CANU and ABruijn assemblies of the ECOLI, BLS, and 
PXO datasets as well as for the down-sampled ECOLI datasets with coverage varying 
from 50× to 25×. To offset CANU assembly errors in the case of 30× coverage, we 
provided the average number of errors for the four replicas with best results (out of 
five). 
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To enable a fair benchmarking and to offset the artifacts of CANU assemblies at 30× 

coverage, we collected statistics of errors for the four out of five best assemblies for each value 

of coverage. Table 1.5 illustrates that both ABruijn and CANU maintain accuracy even in 

relatively low coverage projects but CANU assemblies become fragmented and may miss short 

segments when the coverage is low. Table 1.6 illustrates that the lion’s share of ABruijn errors 

occur in the low-coverage regions. When the coverage of bubbles drops to at most 15×, the 

fraction of bubbles with errors goes up to 1% and then for coverage at most 10× up to 5%.  

 

 

 

 

Assembling the ECOLInano Dataset. 

Both the Nanocorrect assembler described in Loman et al. (2015) and ABruijn assembled 

the ECOLInano dataset into a single circular contig structurally concordant with the E. coli K12 

genome. Nanocorrect and ABruijn runs resulted in assemblies with error rates 1.5% and 1.1%, 

respectively (2,475 substitutions, 9,238 insertions, and 40,399 deletions for ABruijn). We note 

that, in contrast to the more accurate Pacific Biosciences technology, Oxford Nanopore 

Table 1.6: Analysis of errors in down-sampled datasets. 
The total number of bubbles/necklaces with errors in them increases as the coverage 
of those bubbles/necklaces decreases. Very few errors occur when the coverage is at 
above 20×. 
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technology currently has to be complemented by hybrid co-assembly with short reads to generate 

finished genomes (Antipov et al. 2015; Labont et al. 2015; Ashton et al. 2015; Risse et al. 2015). 

Although further reduction in the error rate in Oxford Nanopore assemblies can be 

achieved by machine-level processing of the signal resulting from DNA translocation (Loman et 

al. 2015), it is still two orders of magnitude higher that the error rate for the down-sampled 

ECOLI dataset with similar 30× coverage by Pacific Biosciences reads (see Table 1.5) and 

below the acceptable standards for finished genomes. Because Oxford Nanopore technology is 

rapidly progressing, we decided not to optimize it further using signal processing of raw 

translocation signals. 

 

Assembling Xanthomonas Genomes. 

Because HGAP 2.0 failed to assemble the BLS dataset, Booher et al. (2015) developed a 

special PBS algorithm for local tal gene assembly to address this deficiency in HGAP. They 

further proposed a workflow that first launches PBS and uses the resulting local tal gene 

assemblies as seeds for a further HGAP assembly with custom adjustment of parameters in 

HGAP/Celera workflows. Although HGAP 3.0 resulted in an improved assembly of the BLS 

dataset, Booher et al. (2015) commented that the PBS algorithm is still required for assembling 

other Xanthomonas genomes. Because PBS represents a customized assembler for tal genes that 

is not designed to work with other types of complex repeats, development of a general SMS 

assembly tool that accurately reconstructs repeats remains an open problem. 

We launched ABruijn with the automatically selected parameters t = 28 and t = 18 for the 

BLS and PXO datasets, respectively (all other parameters were the same default parameters that 

we used for the ECOLI dataset). ABruijn assembled the BLS dataset into a circular contig 
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structurally concordant with the BLS reference genome. It also assembled the PXO dataset into a 

circular contig structurally concordant with the PXO reference genome but, similarly to the 

initial assembly in Booher et al. (2015), it collapsed a 212-kb long tandem repeat. 

CANU assembled the BLS dataset into a circular contig structurally concordant with the 

BLS reference genome but assembled the PXO dataset into two contigs, a long contig similar to 

the reference genome (with a collapsed 212-kb tandem repeat and three large indels of total 

length over 1,500 nucleotides) and a short contig. In summary, ABruijn+Quiver and 

CANU+Quiver assemblies of the BLS dataset resulted in only 31 and 51 errors, respectively. 

Surprisingly, ABruijn without Quiver resulted in a better assembly than ABruijn+Quiver with 

only five errors. 

To evaluate errors for the PXO dataset, we decided to ignore the short contig generated 

by CANU and the collapsed 212-kb repeat (generated by both CANU and ABruijn). The 

ABruijn+Quiver assembly of the PXO dataset resulted in only 15 errors whereas the 

CANU+Quiver assembly resulted in 130 errors, including one insertion of 100 nucleotides. 

 

Assembling the B. neritina Metagenome. 

We have assembled the B. neritina metagenome and further analyzed all long contigs at 

least 50 kb in size (1,319 and 1,108 long contigs for CANU and ABruijn, respectively). We 

ignored shorter contigs because they are often formed by a few reads or even a single read. The 

total length of long contigs was 171 Mb for CANU and 202 Mb for ABruijn. Figure 1.15 shows 

the histogram of the total length of contigs with a given coverage. Because the spread of the 

distribution of coverage for B. neritina significantly exceeds the spread we observed in other 

SMS datasets (typically within 15% of the average coverage), we attribute most bins with 
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coverage below 20× to contigs from symbiotic bacteria (the tallest peak in the histogram 

suggests that the average coverage of B. neritina is 25×). Running AntiSmash (Medema et al. 

2011) on the ABruijn assembly revealed nine bacterial biosynthetic gene clusters encoding 

natural products that, similarly to bryostatin, may represent new bioactive compounds. 

 

 

 

We attribute the large difference in the total contig length to fragmentation in CANU 

assemblies for low-coverage datasets, which we had already observed in our analysis of the 

down-sampled ECOLI datasets. This fragmentation may have also contributed to differences in 

the N50 (98 kb vs. 242 kb) between CANU and ABruijn. 

However, differences in N50 are poor indicators of assembly quality in the case when the 

reference genome is unknown. We, thus, conducted an additional analysis using the Core 

Figure 1.15: A comparison between ABruijn and CANU assemblies for B. neritina. 
This histogram shows how the total length of contigs varies with coverage for CANU 
(red) and ABruijn (blue) assemblies. ABruijn contig lengths are shown on the left of 
the corresponding CANU contig length for each coverage value. 
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Eukaryotic Genes Mapping Approach (CEGMA) that was used in hundreds of previous studies 

for evaluating the completeness of eukaryotic assemblies (Parra et al. 2007). CEGMA evaluates 

an assembly by checking whether its contigs encode all 248 ultra-conserved eukaryotic core 

protein families. CANU and ABruijn assemblies missed 18 and 11 out of 248 core genes, 

respectively (7.3% vs. 4.4%). Thus, although both CANU and ABruijn generated better 

assemblies than typical eukaryotic short read assemblers (that often miss over 20% of core 

genes), the ABruijn assembly improved on the CANU assembly in this respect.  

 

Assembling the S. cerevisiae W303 Genome. 

 Since the S. cerevisiae W303 genome has not been finished using an alternative 

sequencing technology yet, we use its closest finished reference S. cerevisiae S288c (12,157,105 

nucleotides, NCBI Assembly GCF 000146045.2) for estimating the accuracy of the ABruijn 

assembly. We estimated the average percent identity between the S. cerevisiae W303 and S. 

cerevisiae S288c genomes by comparing the longest contig assembled by ABruijn and PBcR-

MHAP (Berlin et al. 2015) that is structurally concordant with the entire chromosome IV in S. 

cerevisiae S288c. ABruijn and PBcR-MHAP contigs featured 99.92% similarity with each other 

but only 97.8% similarity with chromosome IV. This high similarity between the assemblies 

suggests that many of the differences between these assemblies and chromosome IV represent 

structural variations rather than assembly errors. 

Considering only long contigs (longer than 50 Kb), both the PBcR-MHAP assemblies 

and ABruijn assemblies of the SCE dataset were largely structurally concordant with the sixteen 

chromosomes of the S. cerevisiae S288C genome (Kim et al. 2014). Although QUAST with 

default parameters reported 77 and 72 misassemblies for the 20 long contigs in the PBcR-MHAP 
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assembly and the 24 long contigs in the ABruijn assembly, respectively, most of these 

misassemblies represent structural variations or regions of high divergence as compared to the 

reference genome (e.g., the PBcR-MHAP and ABruijn assemblies coincided with each other in 

most regions where QUAST reported misassemblies). The total contig length for the PBcR-

MHAP assembly was slightly longer than for the ABruijn assembly (12.18 Mb vs. 12.08 Mb) but 

its duplication ratio was slightly larger. 

It is not clear whether the small difference in the total contig length represents an 

improvement in assembly or a reporting artifact. For example, while the longest contig in the 

PBcR-MHAP and ABruijn assemblies (1.548 Mb and 1.532 Mb, respectively) are structurally 

concordant with chromosome IV in S. cerevisiae S288C, the PBcR-MHAP contig is slightly 

longer. However, the 14 kb long suffix of this contig does not align to the reference chromosome 

IV, so it remains unclear whether this suffix represents an extension of chromosome IV as 

compared to the S. cerevisiae S288C genome or an assembly artifact. 

To offset the effect of differences with the reference genome on the number of 

misassemblies, we increased the QUAST parameter extensive-mis-size from its default value 1 

kb to 40 kb to mask out the large structural variations between the S. cerevisiae S288C and S. 

cerevisiae W303 genomes. After this increase, QUAST reported no misassemblies for PBcR-

MHAP and one misassembly for ABruijn. Thus, most of misassemblies reported by QUAST 

with the default 1 kb value of the extensive-mis-size parameter likely represent insertions of 

mobile elements, large indels (longer than 1 kb), or long regions with high divergence as 

compared to the reference. 
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Running Time and Memory Footprint. 

 For the Xanthomonas genomes, which have complex repeat structure and high coverage, 

the assembly time and memory footprint increased compared to the ECOLI dataset: 48 minutes 

for the assembly step, 125 minutes for the polishing step, and 15 Gb of memory for the PXO 

dataset, and 26 minutes for the assembly step, 90 minutes for the polishing step, and 21 Gb of 

memory for the BLS dataset [Intel Core i7-4790 3.60 GHz with 4 cores (8 threads), 32Gb of 

RAM]. 

The running time increased to 48 minutes (with a memory footprint of 2 Gb) for the 

ECOLInano dataset. The increase in the running time is attributed to the polishing step since 

Oxford Nanopore reads are less accurate than Pacific Biosciences reads (the assembly step took 

less than 2 minutes). 

In contrast, the running time for the SCE dataset was dominated by the assembly step (8 

hours and 44 minutes for the assembly step and 2 hours and 30 minutes for the polishing step). 

The increase in the running time of the assembly step is explained by the presence of many long 

and highly conserved Ty1 - Ty 5 repeats and long segmental duplications.  

For the BNE metagenome, the assembly step took 9 hours and 10 minutes, the polishing 

step took 19 hours and 21 minutes, and the memory footprint was 278 Gb (64 cores, AMD 

Opteron 6376 2.30 GHz, 512 Gb of RAM). 
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1.6 Discussion 

We developed the ABruijn algorithm aimed at assembling bacterial and relatively small 

eukaryotic genomes from long error-prone reads. Because the number of bacterial genomes that 

are currently being sequenced exceeds the number of all other genome sequencing projects by an 

order of magnitude, accurate sequencing of bacterial genomes remains an important goal. Since 

short-read technologies typically fail to generate long contiguous assemblies (even in the case of 

bacterial genomes), long reads are often necessary to span repeats and to generate accurate 

genome reconstructions. 

Because traditional assemblers were not designed for working with error-prone reads, the 

common view is that OLC is the only approach capable of assembling inaccurate reads and that 

these reads must be error-corrected before performing the assembly (Berlin et al. 2015). We have 

demonstrated that these assumptions are incorrect and that the A-Bruijn approach can be used for 

assembling genomes from long error-prone reads. We believe that initial assembly with ABruijn, 

followed by construction of the de Bruijn graph of the resulting contigs, followed by a de Bruijn 

graph-aware reassembly with ABruijn may result in even more accurate and contiguous 

assemblies of SMS reads. 
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CHAPTER 2:  

Assembly of Long Error-Prone Reads Using Repeat Graphs 

 

2.1 Abstract 

 Accurate genome assembly is hampered by repetitive regions. Although long single 

molecule sequencing reads are better able to resolve genomic repeats than short read data, most 

long read assembly algorithms do not provide the repeat characterization necessary for producing 

optimal assemblies. Here, we present Flye, a long-read assembly algorithm that generates 

arbitrary paths from an unknown repeat graph, called disjointigs, and constructs an accurate 

repeat graph from these error-riddled disjointigs. We benchmark Flye against five state-of-the-art 

assemblers and show that it generates better or comparable assemblies, while being an order of 

magnitude faster. Flye nearly doubled the contiguity of the human genome assembly (as 

measured by the NGA50 assembly quality metric) compared to existing assemblers. 
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2.2 Introduction 

 Genome assembly is the problem of reconstructing genomes from DNA sequence reads.  

In repetitive regions of the genome, accurately assembling short reads is challenging and can 

lead to inaccurate or unresolved assemblies. Single molecule sequencing (SMS) long read 

technologies (such as Pacific Biosciences or Oxford Nanopore) have been used to improve the 

resolution of repetitive genomic regions, but many long stretches of repetitive DNA remain 

intractable to these approaches. Current SMS assemblers, such as PBcR (Koren et al. 2012; Chin 

et al. 2013; Berlin et al. 2015), Falcon (Chin et al. 2016), Miniasm (Li 2016), ABruijn (Lin et al. 

2016), HINGE (Kamath et al. 2017), Canu (Koren et al. 2017), and Marvel (Nowoshilow, et al. 

2018) have been used to successfully resolve some repeat regions across complex genomes, but 

correct assembly of long reads in long and highly repetitive genomic regions remains 

challenging. As a result, long read technologies are often complemented by Hi-C (Ghurye, et al. 

2017) and optical mapping data (Weissensteiner et al. 2017) to improve the contiguity of 

assemblies.  

The de Bruijn (DB) graph has been used by short read assembly approaches to represent 

genomic repeats as a repeat graph. Previous studies have demonstrated the value of this 

approach for improving the accuracy of genome assembly (Pevzner et al. 2004). Recently, long 

read assemblers such as ABruijn (Lin et al. 2016) and HINGE (Kamath et al. 2017), that 

capitalize on a similar DB graph-based approach, have also been developed. Most short read 

assemblers construct the DB graph based on all 𝑘-mers in reads and further transform it into a 

simpler DB assembly graph (Bankevich et al. 2012). This approach collapses multiple instances 

of the same repeat into a single path in the assembly graph and represents the genome as a 

genome tour that visits each edge in the assembly graph. However, in the case of SMS reads, the 
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key assumption of the DB graph approach—that most 𝑘-mers from the genome are preserved in 

multiple reads—does not hold. As a result, various challenges that have been addressed for short 

read assembly, such as how to deal with the fragmented DB graph and how to transform it into 

an assembly graph, remain largely unaddressed in long read assemblers.  

Here, we describe the Flye algorithm for accurately assembling long reads. Unlike 

existing assemblers that attempt to generate contigs, Flye initially generates disjointigs that 

represent concatenations of multiple disjoint genomic segments, concatenates all error-prone 

disjointigs into a single string (in an arbitrary order), constructs an accurate assembly graph from 

the resulting concatenate, uses reads to untangle this graph, and resolves bridged repeats (that are 

bridged by some reads in the repeat graph). Afterwards, it uses the repeat graph to resolve 

unbridged repeats (that are not bridged by any reads) using small differences between repeat 

copies and then outputs accurate contigs formed by paths in this graph. 

We benchmark Flye against five state-of-the-art SMS assemblers (Falcon, Miniasm, 

HINGE, Canu, and MaSuRCA), and show that it generates more accurate and contiguous 

assemblies and provides valuable information to aid in assembly finishing. Flye also reconstructs 

the mosaic structure of segmental duplications—a difficult problem even for finished genomes 

(Jiang et al. 2007; Pu et al. 2018). 
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2.3 Results 

Figure 2.1 outlines the various steps of the Flye assembler (see the Methods section for 

further details). 
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(b) Reads
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Figure 2.1: An outline of the Flye assembler workflow. 
(a) A “genome” with two 99% identical copies of a repeat R1 and two 99% identical 
copies of a repeat R2. Segments A, B, C, and D represent non-repetitive regions. (b) A 
set of reads sampled from the genome. (c) Two (misassembled) disjointigs AR1DR2A 
and R2CR1BR2C derived from reads. (d) Concatenate of disjointigs. (e) Repeat plot of 
the concatenate. (f) Repeat graph constructed by “gluing” vertices in the concatenate 
according to the repeat-plot. For each 2-dimensional point (x, y) in the repeat-plot, we 
glue vertices x and y in the concatenate. (g) Aligning reads against the repeat graph. (h) 
Resolving the bridged repeat R1 and reconstructing its two copies R1’ and R1’’. The 
differences between each copy of this repeat and the consensus of this repeat are shown 
as small diamonds. (i) Resolving the unbridged repeat R2 with two slightly diverged 
copies.  
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Repeat Graph Construction. 

Repeats in a genome are often represented as pairwise local alignments and visualized as 

alignment-paths in a two-dimensional dot plot of a genome. This pairwise representation is 

limited since it does not contribute to solving the repeat characterization problem (Bao et al. 

2002). In contrast, the repeat graph compactly represents all repeats in a genome and reveals 

their mosaic structure (Pevzner et al. 2004; Jiang et al. 2007). Assembly graph construction 

represents a special case of the repeat graph construction problem. 

Figure 2.2 outlines the algorithm for constructing the repeat graph of a finished 

(complete) genome. Flye applies this algorithm to construct the repeat graph of a pseudo-genome 

formed by concatenating all disjointigs (formed at the previous stage of the pipeline) in an 

arbitrary order. The Methods section explains why the resulting graph provides the correct 

representation of the assembled genome (as if it had been constructed from a complete genome) 

and describes additional algorithmic details. 
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Figure 2.2: Constructing the approximate repeat graph from local self-alignments. 
(Left) Alignment-paths for all local self-alignments within a genome XABYABZBU formed 
by segments X, A, B, Y, Z, and U. Three instances of a mosaic repeat (AB, AB, and B) are 
represented as diagonal alignment-paths in the repeat plot. The self-alignment of the entire 
genome is shown by the main (dotted) diagonal. Alignment endpoints are clustered together if 
their projections on the main diagonal coincide or are close to each other (clusters of closely 
located endpoints for the distance threshold 𝑑 = 0 are painted with the same color). For 
example, the rightmost endpoints (shown in blue) of all three alignments form a single cluster 
because two of them have the same vertical projection and two of them have the same 
horizontal projection on the main diagonal. This clustering reveals three clusters (yellow, 
purple, and blue) with eight projections to the main diagonal. (Top Right) Projections of the 
clustered endpoints on the main diagonal define eight vertices (breakpoints) that will be used 
for constructing the approximate repeat graph. (Middle Right) Breakpoints that belong to the 
same clusters are glued together. (Bottom Right) Gluing parallel edges in the resulting graph 
produces the approximate repeat graph.  
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Resolving Unbridged Repeats with Flye. 

Flye utilizes the constructed repeat graph for the resolution of unbridged repeats. 

Resolving unbridged and nearly identical repeats using SMS reads is a difficult problem since 

error-prone SMS reads make it difficult to distinguish repeat copies with divergence below 10%. 

As a result, SMS assemblers often fail to resolve unbridged repeats, which are common even in 

bacterial genomes (Kamath et al. 2017; Schmid et al. 2018). This challenge is related to the 

challenge of constructing phased diploid genome assemblies (Chin et al. 2016) and overlap-

filtering for repeat resolution (Koren et al. 2017; Tischler et al. 2017). The repeat graph 

constructed by Flye offers a new approach for resolving unbridged repeats based on analyzing 

the topology of the repeat graph.  

Figure 2.3 shows an unbridged repeat with a consensus sequence 𝑅𝐸𝑃 as an edge in the 

assembly graph. It would be impossible to resolve this repeat (i.e., to pair each incoming edge 

into the initial vertex of 𝑅𝐸𝑃 with the corresponding outgoing edge from the terminal vertex of 

𝑅𝐸𝑃) if its two copies were identical. However, since there exist variations between these copies, 

it becomes possible to transform the single sequence 𝑅𝐸𝑃 into two different repeat instances 

𝑅𝐸𝑃Z and 𝑅𝐸𝑃y as shown in Figure 2.3. The Methods section describes how Flye resolves 

unbridged repeats by (i) identifying variations between repeat copies, (ii) matching each read 

with a specific repeat copy using these variations, and (iii) using these reads to derive a distinct 

consensus sequence for each repeat copy.  
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Benchmarking Flye. 

We benchmarked Flye against various SMS assemblers using six datasets.  We used 

QUAST to evaluate all assemblers (Mikheenko et al. 2018). Since Miniasm returns assemblies 

with a much larger number of mismatches and indels than other assemblers, it is not well suited 

for a reference-based quality evaluation with QUAST. To make a fair comparison, we ran the 
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Figure 2.3: Resolving unbridged repeats.  
(Left) An assembly graph of SMS reads from the E. coli strain EC9964 genome visualized 
with Bandage (Wick et al. 2015). (Middle) The untangled assembly graph (after resolving 
bridged repeats in the graph on the left) contains a single unbridged repeat 𝑅𝐸𝑃  (and its 
complement 𝑅𝐸𝑃’) of length 22 kb. The incoming edges into the initial vertex of edge 𝑅𝐸𝑃 
are denoted 𝐼𝑁Z and 𝐼𝑁y; the outgoing edges from the terminal vertex are denoted 𝑂𝑈𝑇Z and 
𝑂𝑈𝑇y. Two complementary strands are fused together into a single connected component. It 
is unclear whether the genome traverses the assembly graph as 𝐼𝑁Z → 𝑅𝐸𝑃 → 𝑂𝑈𝑇Z → 𝑅𝐸𝑃’ 
or as 𝐼𝑁Z → 𝑅𝐸𝑃 → 𝑂𝑈𝑇y → 𝑅𝐸𝑃’. (Top Right) 93, 71, 75, and 76 reads traverse both 𝐼𝑁Z 
and 𝑅𝐸𝑃, 𝐼𝑁y and 𝑅𝐸𝑃, 𝑅𝐸𝑃 and 𝑂𝑈𝑇Z, and 𝑅𝐸𝑃 and 𝑂𝑈𝑇y, respectively. The span of 383 
reads falls entirely within edge 𝑅𝐸𝑃. (Middle Right) After assigning 93 reads that traverse 
both 𝐼𝑁Z and 𝑅𝐸𝑃 to the first repeat copy, and 71 reads that traverse both 𝐼𝑁y and 𝑅𝐸𝑃 to the 
second repeat copy, we “move forward” into the repeat and construct two differing consensus 
sequences for an 8.6 kb long prefix of 𝑅𝐸𝑃 with divergence 9.8%; we also construct two 
consensus sequences for a 6.8 kb long suffix of 𝑅𝐸𝑃 when we “move backward” into the 
repeat. The length of the repeat edge is reduced to 22.0– 8.6– 6.8 = 6.6	kb, resulting in the 
emergence of 13 + 18 = 31  spanning reads for this repeat, all of them supporting a cis 
transition (𝐼𝑁Z  with 𝑂𝑈𝑇Z  and 𝐼𝑁y  with 𝑂𝑈𝑇y ).  (Bottom Right) The resulting resolved 
instances of the repeat with consensus sequences 𝑅𝐸𝑃Z and 𝑅𝐸𝑃y and divergence 6.9%. 
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ABruijn contig polishing module (Lin et al. 2016) on the Miniasm output to improve the 

accuracy of its contigs (referred to as Miniasm+ABruijn).  

 

Benchmarking Flye on a Simple Simulated Genome. 

We simulated the “genome” shown in Figure 2.1 with two 99% identical copies of repeat 

R1 of length 10 kb and two 99% identical copies of repeat R2 of length 30 kb. The unique 

segments A, B, C, and D were simulated as random strings of length ≈250 kb each so that the 

total genome length is 1 Mb. Afterwards, we simulated reads of length 𝑁 randomly sampled 

from this genome at coverage 100× using the PBSIM tool (Ono et al. 2013) and assembled them 

with Flye. We simulated two sets of reads, one with 𝑁 = 12	kb (slightly larger than the length of 

the repeat R1 but shorter than the length of the repeat R2) and another with 𝑁 = 10	kb.   

In the case of 𝑁 = 12	kb, Flye constructed the repeat graph (Figure 2.1f), identified the 

bridged repeat R1, and resolved it as shown in Figure 2.1h. Afterwards, it resolved the unbridged 

repeat R2 and reconstructed its two 99% identical copies (Figure 2.1i), assembling the entire 

genome into a single circular contig.  

In the case 𝑁 = 10	kb, Flye constructed the repeat graph (Figure 2.1f), identified both R1 

and R2 as unbridged repeats and resolved them as shown in Figure 2.1i. As the result, it 

assembled the entire genome into a single circular contig.  

 

Benchmarking with the BACTERIA Dataset. 

The dataset consists of 21 sets of Pacific Biosciences (PacBio) reads from the National 

Collection of Type Cultures (NCTC). These NCTC sets were studied in detail in Kamath et al. 

2017 and used to benchmark various assemblers. We only benchmarked Flye against HINGE on 
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these datasets, since HINGE outperformed the other assemblers on these bacterial genomes 

(Kamath et al. 2017).  

We ignored small connected components in the bacterial assembly graphs (representing 

plasmids that do not share repeats with chromosomes) and classified an assembly as (i) complete 

if the assembly graph consists of a single loop-edge representing a circular chromosome, (ii) 

semi-complete if the assembly graph contains multiple edges but there exists a single Chinese 

postman tour in this graph (Edmonds et al. 1973), and (iii) tangled if the assembly graph is 

neither complete nor semi-complete.  

While HINGE does not distinguish between complete and semi-complete assemblies, we 

argue that ignoring this separation may lead to assembly errors. Indeed, a single Chinese 

postman tour in a semi-complete assembly graph results in a unique assembly only in the case of 

unichromosomal genomes without any plasmids that share repeats with the chromosome (repeat-

sharing plasmids). In the case of multichromosomal genomes or in the case of repeat-sharing 

plasmids, there exist multiple possible assemblies from a semi-complete assembly graph. Since 

≈10% of known bacterial genomes are multichromosomal and since a large fraction of 

unichromosomal genomes have repeat-sharing plasmids (Antipov et al. 2015), the assumption 

that a semi-complete assembly graph results in a complete genome reconstruction may lead to 

errors.   

Before resolving unbridged repeats, Flye assembled genomes from the BACTERIA 

dataset into four complete, one semi-complete, and 16 tangled assembly graphs. After resolving 

unbridged repeats, Flye assemblies resulted in eight complete, five semi-complete, and eight 

tangled assembly graphs with the number of edges varying from 3 to 25. Figure 2.4 shows 
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examples of assembly graphs generated by Flye and HINGE, and Table 2.1 illustrates that Flye 

and HINGE generated very similar assemblies. 

 

 

 

 

  

Flye HINGE

KP9657 EC10864

Flye HINGE

Figure 2.4: A comparison of Flye and HINGE assembly graphs on bacterial genomes 
from the BACTERIA dataset. 
(Left) Flye and Hinge assembly graphs of the KP9657 dataset. There is a single unique edge 
entering into (and exiting) the unresolved “yellow” repeat and connecting it to the rest of the 
graph. Thus, this repeat can be resolved if one excludes the possibility that it is shared 
between a chromosome and a plasmid. In contrast to HINGE, Flye does not rule out this 
possibility and classifies the yellow repeat as unresolved. (Right) The Flye and Hinge 
assembly graphs of the EC10864 dataset show a mosaic repeat of multiplicity four formed 
by yellow, blue, red and green edges (the two copies of each edge represent complementary 
strands). HINGE reports a complete assembly into a single chromosome. 
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Dataset	 Bacterial Species	 Flye	 Flye + Unbridged 
Repeat Resolution	

HINGE	

EC4450	 Escherichia coli	 Tangled	 n/a	 Tangled	
KP5052	 Klebsiella 

pneumoniae	
Tangled	 Tangled	 Tangled	

SA6134	 Staphylococcus 
aureus	

Complete	 n/a	 Complete	

EC7921	 Escherichia coli	 Tangled	 Complete	 Complete	
EC8333	 Escherichia coli	 Tangled*	 n/a	 Tangled	
EC8781	 Escherichia coli	 Tangled	 n/a	 Tangled	
EC9002	 Escherichia coli	 Complete	 n/a	 Complete	
EC9006	 Escherichia coli	 Tangled	 Tangled	 Tangled	
EC9007	 Escherichia coli	 Tangled	 Tangled	 Tangled	
EC9012	 Escherichia coli	 Tangled	 Tangled	 Complete	
EC9016	 Escherichia coli	 Tangled	 Tangled	 Tangled	
EC9024	 Escherichia coli	 Tangled	 n/a	 Tangled	
EC9103	 Escherichia coli	 Complete	 n/a	 Complete	
KP9657	 Klebsiella 

pneumoniae	
Tangled	 n/a	 Tangled	

EC9664	 Escherichia coli	 Tangled	 Complete	 Tangled	
EC10864	 Escherichia coli	 Tangled	 n/a	 Complete	
EC11022	 Escherichia coli	 Tangled	 Semi-complete	 Complete	
KS11692	 Klebsiella sp	 Tangled	 n/a	 Complete	
SA11962	 Staphylococcus 

aureus	
Tangled	 Tangled	 Tangled	

KP12158	 Klebsiella planticola	 Semi-complete	 n/a	 Complete	
KC12993	 Kluyvera 

cryocrescens	
Complete	 n/a	 Complete	

 

Table 2.1: A comparison of the Flye and HINGE assemblies of the bacterial genomes 
in the BACTERIA dataset. 
HINGE results were reproduced from Kamath et al. 2017. “Tangled*” means that the 
assembly remained tangled and lacked circularization. “n/a” indicates that the assembly 
graph is not complete and has no unbridged repeats of multiplicity two. “Complete,” “Semi-
complete” and “Tangled” are defined in the main text. 
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Benchmarking with the METAGENOME Dataset. 

The dataset consists of PacBio reads from a synthetic community of 20 bacteria. Since 3 

out of 20 bacterial genomes in the metagenomic sample had coverage below 1× (M. smithii, C. 

albicans and S. pneumoniae), they were excluded from the benchmarking analysis. Since other 

assemblers performed poorly on the METAGENOME dataset, we limited our benchmarking to 

Flye and Canu, which assembled the METAGENOME dataset with an NA50 = 1,064 kb (84 

misassemblies) and an NA50 = 969 kb (99 misassemblies), respectively. Table 2.2 presents 

information about the Flye and Canu assemblies of the METAGENOME dataset.  
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 Flye Canu 
Bacteria Length 

(kb) 
 Cov % Assembled NGA50  

(kb) 
#Mis % Assembled NGA50  

(kb) 
#Mis 

A. baumannii 3,976 40 99.8% 906 18 99.8% 906 19	
A. odontolyticus 2,393 41 99.5% 622 6 99.8% 1,285 5	

B. cereus 5,224 25 99.8% 2,716	 4	 99.5% 581 4	
B. vulgatus 5,163 46 99.6 832	 18	 98.9% 539	 20	

D. radiodurans 3,060 52 99.5% 253	 25	 99.6% 224 27	
E. faecalis 2,793 43 99.9% 2,738 0 99.9% 2,747	 0 

E. coli 4,640 46 99.9% 4,637 0 99.9% 4,643 0 
H. pylori 1,667 317 100% 165	 2 100% 1,314 3	
L. gasseri 1,894 83 97.9% 898	 1 97.7% 969	 1	

L. monocytogenes 2,944 98 96.4%	 2,008	 0 100% 1,507 1	
P. acnes 2,560 65 100% 2,560 0 100% 2,566 0 

P. aeruginosa 6,264 55 99.9% 4,001 3	 99.9% 3,998	 9	
R. sphaeroides 4,131 24 99.4% 2,006	 1	 90.1% 54 0	

S. aureus 2,872 66 98.2% 1,003	 0 100% 1,543 2	
S. epidermidis 2,499 59 99.7% 1,276	 1	 100% 2,465 2	
S. agalactiae 2,160 42 98.8% 1,836	 0 99.9% 2,159 0 

S. mutans 2,032 82 99.9% 1,554	 0 99.9% 1,085 3	
 

Flye performed better than Canu for five genomes and Canu performed better than Flye 

for four genomes. In particular, Flye produced a better assembly of R. sphaeroides, which has 

the lowest coverage (24×) among the 17 analyzed genomes (NGA50 = 2 Mb for Flye as 

compared to 54 kb for Canu). Comparison between the metagenome assemblies and the inferred 

Table 2.2: Information about the Flye and Canu assemblies for the METAGENOME 
dataset. 
Statistics were computed using MetaQUAST v5.0 with default parameters for the bacterial 
genomes. Entries in bold highlight five assemblies where Flye significantly improved on Canu 
and four assemblies where Canu significantly improved on Flye. Flye and Canu produced 84 
and 99 misassemblies in total, respectively. “Length” refers to the length of the genome, “Cov” 
refers to coverage, “#Mis” refers to the number of misassemblies, and “% Assembled” refers 
to the percent of the genome that was assembled. 
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isolate assemblies (from reads matched to the reference genomes) suggests that our 

metagenomics assemblies could be further improved by better handling datasets with uneven 

coverage. 

Synthetic metagenomic datasets often contain genomes with inaccurate references that 

present problems for follow-up benchmarking efforts (Nurk et al. 2017). To estimate the 

expected number of misassemblies caused by the differences between the assembled and 

reference bacterial strains, we performed assembly on each of the 17 bacteria separately 

(separate assemblies) by first binning the initial reads using alignments to the references and then 

running Flye and Canu on the resulting set of reads (see Table 2.3).  Six out of the 17 separate 

assemblies (R. sphaeroides, A. baumannii, B. cereus and B. vulgatus) were fragmented into 2-4 

contigs per chromosome (by both Flye and Canu), while the remaining 11 resulted in a single 

contig per chromosome. Nevertheless, metaQUAST reported 92 misassemblies in total for the 

Flye separate assemblies (and 103 misassemblies for Canu). The misassemblies reported for Flye 

and Canu were highly correlated: 80% of Flye misassembly breakpoints had a matching 

breakpoint in the Canu contigs, whereas 70% of Canu breakpoints had a matching one in the 

Flye contigs (two breakpoints are matching if their reference coordinates are within 1 kb; note 

that a single misassembly might have two breakpoints). We thus concluded that the 

misassemblies reported by metaQUAST were mainly caused by differences between the 

genomes in the METAGENOME sample and the reference genomes rather than assembly 

artifacts. 
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 Flye Canu 
Bacteria Length 

(kb) 
 Cov % Assembled NGA50  

(kb) 
#Mis % Assembled NGA50  

(kb) 
#Mis 

A. baumannii* 3,976 40 99.8% 906 21 99.8% 906 18	
A. odontolyticus 2,393 41 99.8% 1,286 4 99.8% 1,285 5	

B. cereus* 5,224 25 99.6% 4,948	 3	 99.8% 4,625 3	
B. vulgatus* 5,163 46 99.3% 832	 21	 99.2% 1,112	 28	

D. radiodurans* 3,060 52 99.6% 253	 31	 99.5% 222 31	
E. faecalis+ 2,793 43 99.9% 2,738 0 99.9% 2,745	 0 

E. coli+ 4,640 46 99.9% 4,638 0 99.9% 4,643 0 
H. pylori 1,667 317 100% 1,123	 2 100% 1,617 2	
L. gasseri 1,894 83 97.9% 1,729	 1 97.8% 961	 4	

L. monocytogenes+ 2,944 98 100%	 2,944	 0 100% 2,151 1	
P. acnes+ 2,560 65 100% 2,560 0 100% 2,566 0 

P. aeruginosa* 6,264 55 99.8% 1,982 2	 99.9% 3,998	 6	
R. sphaeroides* 4,131 24 99.9% 2,669	 2	 99.9% 2,578 0	

S. aureus 2,872 66 99.8% 2,665	 1 100% 1,571 2	
S. epidermidis 2,499 59 100% 2,498	 1	 100% 1,319 2	
S. agalactiae+ 2,160 42 99.7% 2,155	 0 99.9% 1,602 1 

S. mutans+ 2,032 82 99.9% 2,032	 0 99.9% 1,546 1	
 

 

 

Table 2.3: Analysis of the separate assemblies of 17 genomes from the METAGENOME 
dataset. 
Initial reads were binned into 17 groups using alignments to their respective references. Flye 
and Canu produced 92 and 104 misassemblies in total, respectively. Statistics were computed 
using MetaQUAST v5.0. All genomes but the six marked with “*” (R. sphaeroides, A. 
baumannii, B. cereus, B. vulgatus, D. radiodurans and P. aeruginosa) were assembled into a 
single contig per chromosome. Six of the remaining 11 Flye assemblies (marked with “+”) had 
no misassemblies compared to the reference. Canu generated four assemblies without reported 
errors. “Length” refers to the length of the genome, “Cov” refers to coverage, “#Mis” refers to 
the number of misassemblies, and “% Assembled” refers to the percent of the genome that was 
assembled. Bolded numbers indicate significant improvement over the other assembler. 
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Benchmarking with the YEAST Dataset. 

The YEAST dataset contains PacBio and Oxford Nanopore Technology (ONT) reads 

from the S. cerevisiae S288c genome of length 12.1 Mb at 30× coverage (Giordano et al. 2017). 

Similarly to the original study, we used the full set of ONT reads in the YEAST-ONT dataset 

(30× coverage) but down-sampled the PacBio reads from the original 120× coverage to 30× in 

the YEAST-PB dataset to have their coverage distribution be similar to the ONT data. 

Assembling this dataset with the original 120× coverage results in better assemblies; e.g., the 

NGA50 increased from 560 kb to 732 kb for the Flye assembly (Flye fully assembled 14 out of 

16 yeast chromosomes). Table 2.4 illustrates that all of the assemblers tested except HINGE 

produced YEAST-PB assemblies with similar NGA50 values ranging from 560 kb for Flye to 

603 kb for Canu. (HINGE resulted in a lower NGA50 of 361 kb). Flye generated the most 

accurate assembly with 5 errors (vs 13 errors for Canu). Although Miniasm generated an 

assembly with only ≈90% sequence identity, Miniasm+ABruijn contigs had 99.93% accuracy. 

Canu and Flye resulted in assemblies with the highest sequence identity (above 99.95%).  
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Dataset	 Assembler	 Len 
(Mb)	

#Contigs	 NG50 
(kb)	

Reference 
Coverage	

Reference        
% Identity	

#Mis	 NGA50 
(kb)	

YEAST	
PB 	

Flye	 12.1	 28	 670	 98.3%	 99.95%	 5	 560	
Canu	 12.4	 33	 708	 99.5%	 99.95%	 13	 603	

Falcon	 12.1	 42	 562	 97.5%	 99.81%	 27	 562	
HINGE	 12.2	 45	 440	 91.9%	 98.81%	 19	 361	

Miniasm+ABruijn	 12.2	 36	 600	 98.2%	 99.93%	 11	 592	
YEAST	

ONT	
Flye	 12.1	 28	 810	 98.7%	 99.04%	 9	 660	

Canu	 12.2	 41	 800	 99.1%	 98.96%	 18	 655	
Falcon	 11.9	 41	 662	 97.4%	 98.81%	 17	 637	
HINGE	 12.2	 64	 309	 92.5%	 97.94%	 59	 292	

Miniasm+ABruijn	 11.6	 24	 723	 98.8%	 99.03%	 12	 723	
WORM	 Flye	 103	 85	 3,256	 99.5%	 99.93%	 111	 1,893	

Canu	 108	 175	 2,954	 99.7%	 99.93%	 190	 1,974	

Falcon	 101	 106	 2,291	 98.7%	 99.78%	 118	 1,242	
HINGE	 103	 64	 2,710	 98.0%	 99.40%	 174	 1,441	

Miniasm+ABruijn	 108	 178	 2,314	 99.6%	 99.93%	 181	 1,437	
HUMAN	 Flye+Pilon	 2,776	 1,069	 7,886	 96.4%	 99.70%	 879	 6,349	

Canu+Pilon	 2,730	 2,195	 3,209	 95.4%	 99.49%	 1,200	 2,870	
MaSuRCA	 2,768	 1,269	 4,670	 95.1%	 99.84%	 1,500	 3,812	

HUMAN+ 	 Flye+Pilon	 2,823	 782	 18,181	 97.0%	 99.69%	 1,487	 11,800	
Canu+Pilon	 2,815	 798	 10,410	 96.8%	 99.81%	 1,455	 7,007	
MaSuRCA	 2,876	 1,111	 8,425	 97.5%	 99.80%	 2,101	 5,581	

 

Table 2.4: Assembly statistics for the YEAST, WORM, HUMAN and HUMAN+ datasets 
generated using QUAST 5.0. 
The NG50 of an assembly is the largest possible number 𝐿, such that all contigs of length 𝐿 or 
longer cover at least 50% of the genome. Given an assembled set of contigs and a reference 
genome, the corrected assembly is formed after breaking each erroneously assembled contig at 
its breakpoints resulting in shorter contigs (Mikheenko et al. 2018). The NGA50 of an assembly 
is defined as the NG50 of its corrected assembly. The minimum contig size was set to 5 kb for 
the YEAST and WORM assemblies and to 50 kb for the HUMAN assemblies. The human 
reference was modified by masking the low-complexity centromere regions of the 
chromosomes. “Len” is the total length assembled, “#Mis” is the number of misassemblies, 
and “Reference coverage” is how much of the reference is found in the assembly. 
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The YEAST-ONT assemblies show a similar trend, with all assemblers except HINGE 

producing similar NGA50 values ranging from 637 kb (Falcon) to 723 kb (Miniasm). Flye 

generated the most accurate assembly with 9 errors (Canu resulted in 18 errors). Figure 2.5 

shows the assembly graph generated by Flye. 
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Figure 2.5: The assembly graph of the YEAST-ONT dataset. 
Edges that were classified as repetitive by Flye are shown in color, while unique edges are 
black. Flye assembled the YEAST-ONT dataset into a graph with 21 unique and 34 repeat 
edges and generated 21 contigs as unambiguous paths in the assembly graph. A path 
𝑣Z …𝑣e, 𝑣e1Z …𝑣f in the graph is called unambiguous if there exists a single incoming edge 
into each vertex of this path before 𝑣e1Z and a single outgoing edge from each vertex after 
𝑣e. Each unique contig is formed by a single unique edge and possibly multiple repeat edges, 
while repetitive contigs consist of repetitive edges which were not covered by any unique 
contigs. This visualization was generated using the graphviz tool (Ellson et al. 2003). 
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Analyzing the WORM Dataset. 

The WORM dataset contains PacBio reads from the C. elegans genome of length 100 Mb 

at 40× coverage. Flye and Canu produced the most contiguous assemblies (NGA50 = 1,893 kb 

and 1,974 kb, respectively). However, Canu showed an increased number of misassemblies 

(190), compared to Flye (111) and Falcon (118). Flye was faster than Canu and Falcon in 

assembling the WORM dataset (128, 780 and 945 minutes of wall clock time, respectively; see 

the “Information about running time and memory usage” section for more details). With an 

increase in genome size, Flye achieves close to an order of magnitude speed-up as compared to 

Canu: e.g., 140 vs. 1100 hours to assemble the D. melanogaster genome. This speed-up 

highlights the advantages of skipping the time-consuming read-correction step and replacing 

conventional contig generation with the much more rapid generation of disjointigs. Figure 2.6 

shows the C. elegans assembly graph generated by Flye. 
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Since inferring the length of long tandem repeats is a difficult problem in short read 

assembly, tandem repeats in many reference genomes might be misassembled. Figure 2.7 

demonstrates that Flye improves on other long read assemblers in reconstructing tandem repeats 

and reveals that some differences between the Flye assembly and the reference C. elegans 

genome likely represent differences with the reference rather than misassemblies by Flye.  
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Figure 2.6: The assembly graph of the WORM dataset. 
Edges that were classified as repetitive by Flye are shown in color, while unique edges are 
black. Flye assembled the WORM dataset into a graph with 127 unique and 61 repeat edges 
and generated 127 contigs as unambiguous paths in the assembly graph. This visualization 
was generated using the graphviz tool (Ellson et al. 2003). 
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Figure 2.7: Dot-plots showing the alignment of reads against the Flye assembly, the 
Miniasm assembly and the reference C. elegans genome. 
(a) The reference genome contains a tandem repeat of length 1.9 kb (10 copies) on chromosome 
X with the repeated unit having length ≈190 nucleotides. In contrast, the Flye and Miniasm 
assemblies of this region suggest a tandem repeat of length 5.5 kb (27 copies) and 2.8 kb (13 
copies), respectively. 15 reads that span over the tandem repeat support the Flye assembly (the 
mean length between the flanking unique sequence matches the repeat length reconstructed by 
Flye) and suggests that the Flye length estimate is more accurate. (b) The reference genome 
contains a tandem repeat of length 2 kb on chromosome 1. In contrast, the Flye and Miniasm 
assemblies of this region suggest a tandem repeat of length 10 kb and 5.6 kb, respectively. A 
single read that spans over the tandem repeat supports the Flye assembly. Since the mean read 
length in the WORM dataset is 11 kb, it is expected to have a single read spanning a given 10.0 
kb region but many more reads spanning any 5.6 kb region (as implied by the Miniasm 
assembly) or 2.0 kb region (as implied by the reference genome). Six out of 23 reads cross the 
“left” border (two out of 18 reads cross the “right” border) of this tandem repeat by more than 
5.6 kb, thus contradicting the length estimate given by Miniasm and suggesting that the Flye 
length estimate is more accurate. (c) The reference genome contains a tandem repeat of length 
3 kb on chromosome X. In contrast, the Flye and Miniasm assemblies of this region suggest a 
tandem repeat of lengths 13.6 kb and 8 kb, respectively. A single read that spans over the tandem 
repeat reveals the repeat cluster to be of length 12.2k, which suggests that the Flye length 
estimate is more accurate. (d) The reference genome contains a tandem repeat of length 1.5 kb 
on chromosome 1. In contrast, the Flye and Miniasm assemblies of this region suggest tandem 
repeats of length 17 kb and 4.3 kb, respectively. One read that spans over the tandem repeat 
reveals the repeat cluster to be of length 18.0 kb, which suggests that the Flye length estimate 
is more accurate. 
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Analyzing the HUMAN and HUMAN+ Datasets. 

The HUMAN dataset contains ONT reads from the GM12878 human cell line at 30× 

coverage complemented by a set of short Illumina reads at 50× coverage. The HUMAN+ dataset 

combines the HUMAN dataset with a dataset of ultra-long ONT reads (with reads N50 = 100 kb) 

at 5× coverage (Jain et al. 2018). Since Canu improved on Falcon and Miniasm in assembling 

large genomes (Koren et al. 2017), we only benchmarked Flye against Canu for the human 

genome datasets. The Canu HUMAN assembly was generated in Jain et al. 2018, and the 

assembly of the HUMAN+ dataset was later updated by the authors using the latest Canu 1.7 

version. We also analyzed hybrid MaSuRCA assemblies of both the HUMAN and HUMAN+ 

datasets (Zimin et al. 2017), which are available from the MaSuRCA website.  

Currently, the ONT assemblies have rather high base-calling error rates (the Flye and 

Canu HUMAN assemblies had 1.2% and 2.8% error, respectively) because of the biased error 

pattern in ONT reads. Although the Nanopolish tool contributed to a reduction in the base-

calling error rates of the ONT assemblies (Simpson et al. 2017), the resulting error rate is still an 

order of magnitude higher than the error rates of Illumina or PacBio assemblies. Since most 

errors in the ONT assemblies are frameshift-introducing indels, they are particularly problematic 

for downstream applications.   

To mitigate the high error rates of these ONT assemblies, we used Pilon (Walker et al. 

2014) in the indel correction mode to polish Flye and Canu assemblies using Illumina reads. 

Although such polishing reduced the error rates (to 0.30% for Flye+Pilon and to 0.51% for 

Canu+Pilon), we note that Illumina-based read correction of ONT assemblies has limitations, 

especially for repetitive regions with low short-read mappability.  
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It turns out that Flye assembled a larger fraction of the human genome (96.4%) than Canu 

(95.4%) and MaSuRCA (95.1%). Interestingly, Flye and MaSuRCA, in contrast to Canu, 

assembled some difficult-to-assemble, low-complexity centromeric chromosome regions, which 

are hard to benchmark using reference-based methods. To provide a fair comparison between all 

three assemblers using QUAST, we thus modified the hg38 reference by masking the 

centromeric regions using their coordinates from the UCSC Genome Browser.   

For the HUMAN dataset, Flye, MaSuRCA and Canu generated assemblies with NGA50 

values equal to 6.35 Mb (879 assembly errors), 3.81 Mb (1500 assembly errors) and 2.87 Mb 

(1200 assembly errors), respectively. The MaSuRCA assembly had slightly higher percent 

identity with the reference (99.84% as compared to 99.70% for Flye+Pilon and 99.49% for 

Canu+Pilon).  

For the HUMAN+ dataset, Flye, Canu and MaSuRCA generated assemblies with NGA50 

values equal to 11.8 Mb (1,487 assembly errors), 7 Mb (1,455 assembly errors) and 5.6 Mb 

(2,101 assembly errors), respectively. As expected, incorporating ultra-long ONT reads resulted 

in a more contiguous assembly for all assemblers. 

 

Running QUAST. 

QUAST 5.0 was run using the ‘--large’ option for all eukaryotic genomes, which is 

recommended for the analysis of large genomes with complex repeat structures. The minimum 

alignment identity was set to a low 90% to account for the higher error rate in some regions of 

SMS assemblies. The minimum contig length was set to 50 kb for the HUMAN/HUMAN+ 

assemblies and 5 kb for all of the other assemblies.  

 



	

	 94 

Software Versions Used. 

All assemblies were run with the default parameters. The exact command lines (and the 

Falcon configuration script) can be found in the supplementary data archive.  

 

• Flye – 2.3.5 (commit 20afeda) 

• Canu – 1.7.1 (commit dfa60b8) 

• Falcon - 0.3.0 (FALCON-Integrate commit 7498ef9) 

• HINGE - 0.5.0 (commit 79fdf66) 

• Miniasm -  0.2-r168-dirty (commit 40ec280) / Minimap2 2.8-r711 (commit 8fc5f8d) 

• QUAST 5.0.0 (commit de6973bb) 

 

The HUMAN (but not the HUMAN+) assembly was generated with the earlier Flye 

version 2.3.2 (released on Feb 20th, 2018) to provide a fair comparison with the Canu and 

MaSuRCA assemblies (which were not updated since the release of Flye 2.3.2). We note that the 

HUMAN assembly using the latest Flye version 2.3.5 has NGA50 = 7.3 Mb and improves over 

the Flye 2.3.2 assembly (NGA50 = 6.3Mb). HUMAN+ was assembled using the latest Flye and 

Canu versions (as of September 2018). 

 

Information about running time and memory usage. 

Table 2.5 provides information on the running time and memory usage of various SMS 

assemblers for the YEAST and WORM datasets. 

Flye took ≈5,000 CPU hours to generate assemblies of the HUMAN+ dataset using an 

Intel(R) Xeon(R) 8164 CPU @ 2.00 GHz. RAM usage was 500 GB at peak. The Canu authors 
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reported ≈30,000 CPU hours of run-time using a cluster with 48-core Intel(R) Xeon(R) CPU @ 

2.5 GHz with 128 GB of RAM each (24 nodes) and two 80-core 1 TB machines. The memory 

usage of a single job did not exceed 120 GB. The MaSuRCA authors reported needing 

approximately 50,000 CPU hours. 

 

 

Dataset Assembler Wall clock 
time 

Peak memory 
usage 

YEAST-PB 
 	

Size: 12 Mb 
Cov: 31× 

Max threads: 8 

Flye (w/o polishing) 20m (9m)	 7G  

Canu 80m	 5G 

Falcon 62m 10G 
HINGE 9m 5G 

Miniasm+ABruijn (Miniasm) 16m (1m) 5G  

YEAST-ONT 
	

Size: 12 Mb 
Cov: 31× 

Max threads: 8 

Flye (w/o polishing) 19m (12m)	 7G 

Canu 184m	 6G	
Falcon 103m 11G 

HINGE 11m 8G 

Miniasm+ABruijn (Miniasm) 31m (3m) 5G 
WORM 

 
Size: 100 Mb 

Cov: 40× 
Max threads: 24 

Flye (w/o polishing) 128 m (77 m)	 30G	
Canu 780 m	 41G	

Falcon 945m 18G 
HINGE 803m 52G 

Miniasm+ABruijn (Miniasm) 290m (10m) 23G 
 

Table 2.5: Running time and memory usage of various SMS assemblers.  
We used a desktop machine with an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz (up to 8 
threads available) for the YEAST dataset assemblies and a single computational node with 
an Intel(R) Xeon(R) CPU X5680 @ 3.33GHz for the WORM dataset assemblies (up to 24 
threads available). Since we performed the ABruijn polishing step on the Miniasm output, 
the running time for Flye and Miniasm are given for runs with and without contig polishing; 
e.g., 25m (9m) for Flye in the case of YEAST-PB dataset indicates 9 minutes without 
polishing and 25 minutes with polishing. “Size” refers to genome size, “Cov” refers to 
sequencing coverage, “Max threads” is the maximum threads used during assembly, “Mb” 
indicates megabase-pairs, “G” indicates gigabytes, and “m” indicates minutes. 
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Segmental Duplications in the Human Genome. 

The repeat graph constructed by Flye reveals the complex mosaic structure of segmental 

duplications (SDs). Flye classifies all edges in the graph into unique and repeat edges by 

analyzing how reads traverse the graph and by using coverage-based arguments (details in the 

Methods section). After removing all of the unique edges from the assembly graph, only 

connected components made up of repeat edges remain, each of which encodes an SD. We 

define the complexity of an SD as the number of edges in its connected component, and the 

length as the total length of all edges in its connected component. Figure 2.8, Left illustrates a 

mosaic SD of complexity 7 and length 25.7 kb (the seven colored repeat edges form a connected 

component in the Flye assembly graph after removing all unique edges). An SD is classified as 

simple if its complexity is 1 and mosaic otherwise (Jiang et al. 2007; Pu et al. 2018). Figure 2.8, 

Right shows the distributions of lengths and complexities of SDs identified by Flye and 

illustrates the power of the assembly graph for repeat resolution.  
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There are 1,748 repeat edges longer than 5 kb, forming 749 connected components in the 

Flye assembly graph of the HUMAN dataset before performing repeat resolution. After repeat 
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Figure 2.8: The distribution of the lengths and complexities of all SDs from the Flye 
assembly of the HUMAN dataset (Right) and a detailed example of one such SD (Left). 
(Left) A mosaic SD of complexity 7 is represented as a connected component formed by repeat 
edges (there are seven colored edges of total length 25.7 kb) in the assembly graph of the 
HUMAN dataset (flanking unique edges are shown in black). Loop-edge C with coverage 473× 
represents a tandem repeat C* with unit length 1.3 kb that is repeated ≈19 times. The colored 
edges of the assembly graph align to a region on chromosome 7 of length 31 kb and two regions 
on chromosome 20 of lengths 30 kb and 46 kb. These three instances of SDs were not resolved 
using standard ONT reads but were resolved using ultra-long reads in a way that is consistent 
with the reference human genome. (Right) Statistics are given before resolving bridged repeats 
(green), after resolving bridged repeats with standard ONT reads (orange), and with standard 
and ultra-long ONT reads (blue). Only SDs between 5 kb and 50 kb in length and with 
complexity between 2 and 50 contributed to the “SD length” and “SD complexity” histograms. 
Only two SDs have complexity exceeding 50 before repeat resolution. 545 out of 688 of SDs 
between 5 kb and 50 kb were resolved using the standard ONT reads, and the ultra-long reads 
resolved an additional 58 SDs. There were 1,256 simple SDs before repeat resolution and 143 
after repeat resolution with ultra-long reads. Since Flye already normally resolves SDs shorter 
than the typical read length, these identified SDs do not include many known human SDs. 
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resolution with ultra-long reads, there are only 765 repeat edges, forming 107 connected 

components in the assembly graph. 73 of them represent mosaic SDs, and 34 of them represent 

simple SDs (most simple SDs represent isolated edges and loop-edges).  

A similar procedure is applied to the HUMAN+ dataset where unique edges are removed 

and connected components formed by repeat edges remain. These connected components 

correspond to putative SDs, though they might also include short edges corresponding to 

unresolved common repeats. Figure 2.9 shows the distribution of lengths of repeat edges 

exceeding 5 kb and the distributions of lengths of ultra-long SDs (longer than 50 kb) for the 

HUMAN+ dataset. 

 

 

 

 

Figure 2.9: The distribution of lengths of ultra-long SDs (longer than 50 kb) for the 
assembly graph constructed for the HUMAN+ dataset (left) and the lengths of all other 
repeat edges (right). 
(Left) 39 out of 81 SDs (48%) longer than 50 kb were resolved using standard ONT reads to 
bridge repeats. Ultra-long reads resolved an additional 20 SDs (28%) in this range of SD 
lengths. (Right) Only edges varying in length from 5 kb to 50 kb contributed to the histogram. 
In addition to these edges, there are 213 repeat edges with length exceeding 50 kb before repeat 
resolution, and 90 repeat edges of this length remaining after repeat resolution with ultra-long 
reads. Note that while a similar figure in the main text describes the lengths of SDs (the total 
length of edges in the connected components of the SDs), this figure describes the length of 
individual repeat edges. 
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We illustrate how Flye resolves unbridged repeats using all five unbridged repeats of 

multiplicity two in the assembly graph of the HUMAN+ dataset constructed by Flye (Table 2.6). 

Flye resolved all five repeats, which range in length from 37 kb to 152 kb, in coverage from 26× 

to 31×, and in divergence from 1.77% to 7.76%.  

 

 

Rep 
ID 

Rep 
Len 
(kb) 

Cov Div  #Tentative 
Divergent 
Positions 

#Confirmed 
Divergent 
Positions 

Max 
Dist 
btw 
Pos 
(kb) 

Remaining 
Gap 
(kb) 

#cis 
Linking 
Reads	

#trans 
Linking 
Reads	

625 152 27× 5.36% 29713 3256 79.2 32.2 2 12 
902 51 28× 1.77% 5694 1541 0.7 0 43 13 
1018 86 26× 6.77% 17509 11360 0.7 0 17 154 
1075 37 28× 3.05% 4379 1406 0.3 0 38 136 
1233 49 31× 7.76% 11786 8590 0.3 0 45 2 

 

All resolved repeats correspond to known segmental duplications in the human genome. 

The sequences of the constructed repeat copies preferentially map to specific copies of segmental 

duplications, showing that our method is successful even in the presence of Single Nucleotide 

Table 2.6: Resolving unbridged repeats of multiplicity two in the assembly graph of the 
HUMAN+ dataset. 
The assembly graph of the HUMAN+ dataset has five unbridged repeats of multiplicity two. 
The identifier of each unbridged repeat (Rep ID) is given by its edge id in the assembly graph. 
All repeats have been resolved. “Rep Len” refers to the estimated repeat length of the repeat. 
The “Cov” or coverage is calculated as the total length of reads covering the repeat divided by 
the repeat length, divided by the multiplicity of the repeat. The “Div” or divergence is 
calculated based on the alignment of constructed repeat consensus sequences, dividing the total 
number of substitutions and indels by the total number of matches, substitutions, and indels (if 
the forward and reverse consensus sequences do not overlap, then the mean divergence of the 
forward and reverse sequences is calculated, weighted by the length of the sequences). “Max 
Dist btw Pos” refers to the maximum of all distances between adjacent confirmed divergent 
positions. “Remaining gap” refers to the length of the repeat remaining without separate 
consensus sequences for each copy after Flye has “moved into the repeat” from both the 
forward and reverse directions. In the case that the forward and reverse consensus sequences 
overlap, the remaining gap is set to 0. See the Methods section for more details. 
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Variants (SNVs). For example, repeat 902 aligns to two ≈50 kb regions of chromosome X 

(separated by ≈65 kb), which are annotated as segmental duplications.  

The diploid nature of the human genome may add some complications to the repeat 

resolution procedure, especially if many SNVs are present in the repeat. However, if the 

divergence of the repeat significantly exceeds the fraction of SNVs, the described algorithm will 

still be able to resolve the unbridged repeat. Since the divergence of repeats analyzed in Table 

2.6 (above 4%) significantly exceeds the fraction of SNVs in the human genome (≈0.1%), SNVs 

do not significantly affect our approach. However, in the case of unbridged repeats with low 

divergence (e.g., below 1%), our algorithm has to be modified to take SNVs into account. When 

the algorithm is extended to repeats of higher multiplicity, it will automatically resolve 

haplotypes for diploid and polyploid genomes since they will simply be treated as additional 

repeat copies. 

 

A Theoretical Framework for Repeat Graph Construction. 

In addition to the described Flye algorithm, we provide a mathematical formulation of the 

repeat characterization problem and describe an alternative algorithm for the repeat graph 

construction (Figure 2.10). The Methods section provides additional details and explains the 

relation between the theoretical framework and the implementation in Flye. 
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Figure 2.10: Constructing the repeat plot of a tour in the graph (Left) and constructing 
the repeat graph from a repeat plot (Right). 
(Left) A tour 𝑇 =	…𝐴Z𝐵y𝐶�𝐷� …𝐵�𝐶°𝐷±𝐸² …𝐴³𝐵Z´𝐶ZZ𝐷Zy𝐸Z� …  in a graph 𝐺  with red, 
green, and blue instances of a repeat that includes two copies of vertices 𝐴 and 𝐸 and three 
copies of vertices 𝐵, 𝐶, and 𝐷. Dots represent multiple vertices that appear before, between, 
and after these three instances of the repeat. The repeat plot 𝑃𝑙𝑜𝑡µ(𝐺)  consists of three 
diagonals representing the three instances of the repeat in the tour. The trivial self-alignment of 
the entire genome against itself is shown by the main dotted diagonal (the points below this 
diagonal are not shown). Since vertex 𝐴 in the graph is visited twice in tour 𝑇, it results in a 
single point (1, 9) in 𝑃𝑙𝑜𝑡µ(𝐺). Vertex 𝐵 results in points (2, 5), (2, 10), and (5, 10); vertex 𝐶 
results in points (3, 6), (3, 11), and (6, 11); vertex 𝐷 results in points (4, 7), (4, 12), and (7, 12); 
and vertex 𝐸 results in the point (8, 13). (Right) Constructing the punctilious repeat graph from 
the repeat plot by gluing vertices with indices 𝑖 and 𝑗 for each point (𝑖, 𝑗) in the repeat plot. 
Each non-branching path in the graph is substituted by a single edge with length equal to the 
number of edges in this path. The lengths of the short edges (𝐴, 𝐵) and (𝐷, 𝐸) in the resulting 
graph are equal to 1 and the length of the long edge (𝐵, 𝐷) is equal to 2 (for edge length 
threshold 𝑑 = 1). The punctilious repeat graph (Upper Bottom Right) is transformed into the 
repeat graph (Lower Bottom Right) by contracting short edges (𝐴, 𝐵) and (𝐷, 𝐸). 
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2.4 Discussion 

We describe the Flye algorithm for constructing the assembly graph of SMS reads and 

demonstrate that repeat characterization improves genome assembly. We show how to use the 

assembly graph to resolve unbridged repeats using variations between repeat copies and 

compared Flye with the Canu, Falcon, HINGE, Miniasm and MaSuRCA assemblers.  

For the BACTERIA datasets, Flye and HINGE showed good agreement in the structure 

of constructed assembly graphs. Flye showed substantial improvement over HINGE on more 

complex eukaryotic datasets and generated the most accurate assemblies of the YEAST and 

WORM datasets; Flye and Canu also produced the best assembly contiguity for the WORM 

dataset. For the more complex HUMAN and HUMAN+ datasets, Flye generated more 

contiguous and accurate assemblies than Canu and MaSuRCA while being notably faster. 

Although assemblies of ONT reads feature rather high base-calling error rates (1.2% for the Flye 

HUMAN assembly), polishing the Flye assembly graph using Illumina reads has the potential to 

reduce the error rates by an order of magnitude.  

The fact that Flye substantially improved on the Canu and MaSuRCA assemblies of the 

human genome suggests that there are still unexplored avenues for increasing the contiguity of 

SMS assemblies. We believe that better algorithms for resolving unbridged repeats in assembly 

graphs have the potential to greatly improve SMS assemblies, potentially increasing their 

NGA50 values by an order of magnitude. Flye constructed a repeat graph of the human genome 

with only 765 repeat edges representing various long SDs. Our algorithm for resolving unbridged 

repeats resolved only a small fraction of these SDs since it is currently limited to simple SDs (the 

vast majority of human SDs are mosaic and complex). Moreover, it currently has difficulties 

resolving highly similar SDs, e.g. SDs with ~1% divergence. Although we reported the 
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resolution of highly similar SDs on simulated datasets (as did a previous study; Tischler et al. 

2017), most unbridged repeats resolved by Flye and Canu are simple repeats with divergence 

exceeding 3%. Extending Flye to mosaic SDs and highly similar SDs has the potential to resolve 

most of the remaining unbridged repeats, since the vast majority of SDs in the human genome 

diverged by more than 1% (Pu et al. 2018). Since there are only 53 long SDs (with length 

exceeding 15 kb) in the human genome that diverged by less than 1%, an SMS assembler that 

accurately resolves highly similar unbridged repeats will result in highly contiguous human 

genome assemblies, thus reducing the need for additional genome finishing experiments (such as 

using Hi-C and/or optical maps).   

Assembly graphs represent a special case of breakpoint graphs (Lin et al. 2014), and they 

are therefore well suited for analyzing structural variations (Chaisson et al. 2015; Nattestad et al. 

2018) and SDs (Jiang et al. 2007; Pu et al. 2018). Flye assembly graphs provide a useful 

framework for reconstructing SDs and planning additional genome finishing experiments. 
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2.5 Methods 

The Repeat Characterization Problem. 

Below we describe the abstract repeat characterization problem and explain how it relates 

to genome assembly. Consider a tour 𝑇 = 𝑣Z, 𝑣y, … 𝑣f of length 𝑛 visiting all vertices of a 

directed graph 𝐺. We say that the 𝑖-th and 𝑗-th vertices in the tour 𝑇 are equivalent if they 

correspond to the same vertex of the graph, i.e., 𝑣e = 𝑣w. The set of all pairs of equivalent 

vertices forms a set of points (𝑖, 𝑗) in a two-dimensional grid that we refer to as the repeat plot 

𝑃𝑙𝑜𝑡µ(𝐺) of the tour 𝑇 (Figure 2.10). The transformation of a tour 𝑇 traversing a known graph 𝐺 

into the repeat plot 𝑃𝑙𝑜𝑡µ(𝐺) is a simple procedure. Below, we address the reverse problem, 

which is at the heart of genome assembly, repeat characterization and synteny block 

construction: given an arbitrary set of points 𝑃𝑙𝑜𝑡, in a two-dimensional grid, find a graph 𝐺	 =

	𝐺(𝑃𝑙𝑜𝑡) and a tour 𝑇 in this graph such that 𝑃𝑙𝑜𝑡 = 𝑃𝑙𝑜𝑡µ(𝐺).  

A dot-plot of a genome is a matrix that graphically represents all repeats in a genome 

(Gibbs et al. 1970). In the case of repeat characterization, we are interested in the dot-plot 𝑃𝑙𝑜𝑡 

formed by the non-overlapping alignment-paths representing all high-scoring local self-

alignments of a genome against itself (below, we refer to these alignments as simply self-

alignments). Each self-alignment reveals two instances of a repeat corresponding to contiguous 

segments 𝑥 and 𝑦 in the genome (𝑥 and 𝑦 are called the spans of the alignment). Given a genome 

of length 𝑛 and a set of its self-alignments 𝑃𝑙𝑜𝑡, the repeat characterization problem amounts to 

constructing a graph 𝐺 and a tour 𝑇 of length 𝑛 in this graph (where each segment of the genome 

corresponds to a subpath of the graph traversed by the tour) such that 𝑃𝑙𝑜𝑡 = 𝑃𝑙𝑜𝑡µ(𝐺) and the 

tour 𝑇 is alignment-compatible. A tour is alignment-compatible with respect to the dot-plot 𝑃𝑙𝑜𝑡 
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if, for each alignment with spans 𝑥 and 𝑦 in 𝑃𝑙𝑜𝑡, paths in the graph corresponding to segments 

𝑥 and 𝑦 coincide.  

 

Generating the Repeat Plot of a Genome. 

Our goal is to construct both the repeat graph of a genome and an alignment-compatible 

tour in this graph. Constructing the de Bruijn graph of a genome based on long 𝑘-mers will not 

solve this problem since the differences between imperfect repeat copies mask the repeat 

structure of the genome. Constructing the de Bruijn graph based on short 𝑘-mers will not solve 

this problem due to the presence of repeating short 𝑘-mers within long repeats (these 𝑘-mers lead 

to a tangled repeat graph). Thus, at the initial stage, Flye generates all self-alignments (repeats) 

of a genome and combines them into a repeat plot 𝑃𝑙𝑜𝑡. However, it is unclear how to solve the 

reverse problem of generating the repeat graph 𝐺(𝑃𝑙𝑜𝑡) of the genome.  

To address this problem for a “genome” representing a concatenate of accurate short 

reads, a previous study (Pevzner et al. 2004) described various graph simplification procedures, 

e.g., bubble and whirl removals, that are now at the heart of various short read assemblers such 

as SPAdes (Bankevich et al. 2012). However, it is not clear how to generalize these procedures 

to make them applicable to error-prone SMS reads. Below we show how to modify the concept 

of a punctilious repeat graph (Pevzner et al. 2004) so it can be applied to assembling SMS reads.  

 

Constructing a Punctilious Repeat Graph. 

Let 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 = 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠(𝐺𝑒𝑛𝑜𝑚𝑒,𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝) be the set of all sufficiently 

long (of length at least 𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝) self-alignments of a genome 𝐺𝑒𝑛𝑜𝑚𝑒. Flye sets the 

𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 parameter as the N90 of the read-set; i.e., reads longer than N90 account for ≈90% 
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of the total read length (𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 varies from 3000 to 5000 nucleotides for the SMS datasets 

analyzed in this paper).  

Given a set of self-alignments 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 of a genome 𝐺𝑒𝑛𝑜𝑚𝑒, we construct the 

punctilious repeat graph 𝑅𝑒𝑝𝑒𝑎𝑡𝐺𝑟𝑎𝑝ℎ(𝐺𝑒𝑛𝑜𝑚𝑒, 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠) by representing 𝐺𝑒𝑛𝑜𝑚𝑒 as a 

path consisting of |𝐺𝑒𝑛𝑜𝑚𝑒| vertices (Figure 2.10) and by “gluing” each pair of vertices 

(positions in the genome) that are aligned against each other in one of the alignments in 

𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 (Pevzner et al. 2004). Gluing vertices 𝑣 and 𝑤 amounts to substituting them by a 

single vertex that is connected by edges to all vertices that either vertex 𝑣 or vertex 𝑤 was 

connected to. We consider branching vertices (i.e., vertices with either in-degree or out-degree 

not equal to one) in the resulting graph and substitute each non-branching path between them by 

a single edge of length equal to the number of original edges in this path. Edges in the 

punctilious repeat graph are classified as long (longer than a predefined threshold 𝑑 with default 

value 500 nucleotides) and short (Figure 2.10).  

The punctilious repeat graphs of real genomes are very complex due to various artifacts 

(Pevzner et al. 2004; Jiang et al. 2007). For example, the starting/ending points of alignment-

paths corresponding to three repeat copies starting at positions 𝑥, 𝑦, and 𝑧 in the genome hardly 

ever start at points (𝑥, 𝑦), (𝑥, 𝑧), and (𝑦, 𝑧) in the repeat plot. Because each repeat with 𝑚 copies 

in the genome results in d
y  pairwise alignments and each of the corresponding d

y  alignment-

paths may have unique starting and/or ending vertices that differ from all other starting/ending 

positions, there will be many gluing operations for the starting and/or ending positions of this 

repeat. Note that each of these operations may form a new branching vertex in the punctilious 

repeat graph. For example, gluing the endpoints of the three diagonals in Figure 2.10 results in 

the branching vertices 𝐴, 𝐵, 𝐷, and 𝐸 in the graph.  Punctilious repeat graphs of real genomes 
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often contain many branching vertices making it difficult to compactly represent repeats. We 

address this challenge by transforming the punctilious repeat graph into a simpler graph.  

 

From Punctilious Repeat Graph to Repeat Graph. 

As described before, the endpoints of alignment-paths representing the same repeat might 

not be coordinated among all pairwise alignments of this repeat. These uncoordinated alignments 

result in a complex repeat graph with an excessive number of branching vertices and many short 

edges (shorter than a threshold 𝑑). The repeat graph 𝑅𝑒𝑝𝑒𝑎𝑡𝐺𝑟𝑎𝑝ℎ(𝐺𝑒𝑛𝑜𝑚𝑒, 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠, 𝑑) is 

defined as the result of contracting all short edges in the punctilious repeat graph (Figure 2.10). 

The contraction of an edge is the gluing of the endpoints of this edge, followed by the removal of 

the loop-edge resulting from this gluing. Since the genome represents a tour visiting all edges in 

the repeat graph, we define the multiplicity of an edge in the repeat graph as the number of times 

this edge is traversed in the tour. Edges of multiplicity one are called unique edges and all other 

edges are called repeats.                                                                                                                                                

 

Approximate Repeat Graphs. 

The described approach, although simple in theory, results in various complications in the 

case of real genomes, particularly in the case of inconsistent pairwise alignments. In the case of 

short reads, various graph simplification procedures (Pevzner et al. 2004; Bankevich et al. 2012) 

result in a modified repeat graph that represents a more sensible repeat characterization, but 

sacrifice the fine details of some repeats in favor of revealing the mosaic structure shared by 

different repeat copies. However, in the case of SMS assemblies, repeat graph (and A-Bruijn 

graph) construction results in excessively complex graphs that make the previously proposed 
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graph simplification algorithm (Pevzner et al. 2004) inefficient and make it difficult to select 

sensible parameters for graph simplification. For example, it is unclear how to select an adequate 

𝑏𝑢𝑏𝑏𝑙𝑒_𝑠𝑖𝑧𝑒 parameter for bubble removal (small values of this parameter result in complex A-

Bruijn graphs while large values result in oversimplified A-Bruijn graphs).  While there exists a 

“sweet spot” for this parameter in short read assembly, we were not able to find such a spot for 

long read assembly. That is why we departed from the original A-Bruijn framework and opted to 

construct a different version of the repeat graph (called the approximate repeat graph) based only 

on the endpoints of diagonals in the genomic dot-plot rather than the entire diagonals as in a 

previous study (Pevzner et al. 2004). This approach led to a great reduction in running time and 

allowed us to bypass the bubble/whirl-removal steps (and the challenge of choosing parameters 

for these operations) altogether.                       

Some branching vertices in the repeat graph arise from the contraction of multiple 

vertices in the punctilious repeat graph; e.g., vertices 𝐴 and 𝐵 were contracted into a single 

vertex 𝐴/𝐵 in the repeat graph in Figure 2.10. Consider the set of all vertices in the punctilious 

repeat graph that gave rise to branching vertices in the repeat graph (vertices 𝐴, 𝐵, 𝐷 and 𝐸 in 

Figure 2.10) and let 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 = 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠(𝐺𝑒𝑛𝑜𝑚𝑒, 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠, 𝑑) be the set of all 

positions in the genome that gave rise to these vertices (𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠	 =

	{1, 2, 4, 5, 7, 8, 9, 10, 12, 13} in Figure 2.10). This set of vertices forms a set of short, contiguous 

genomic segments (segments [1, 2], [4, 5], [7, 8, 9, 10], and [12, 13] in Figure 2.10) that contain 

all horizontal and vertical projections of the endpoints of all alignments in Alignments.  

Flye approximates the set 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 by recruiting all horizontal and vertical 

projections of the endpoints of alignments from Alignments to the main diagonal in the repeat 

plot. Figure 2.2 presents three alignments, resulting in eight projected points on the main 
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diagonal. Two alignment endpoints are close if either of their projections on the main diagonal 

are located within distance threshold 𝑑 (including the case when a vertical projection of one 

endpoint coincides with or is close to a horizontal projection of another endpoint).  

 

Flye Clusters Close Endpoints Together Based on Single Linkage Clustering. 

Applying this procedure (with 𝑑 = 0) to eight breakpoints (projected endpoints) in Figure 

2.2 results in three clusters (breakpoints in the same cluster are painted with the same color). 

Figure 2.2 illustrates that gluing breakpoints that belong to the same clusters (and further 

collapsing parallel edges) results in an approximate repeat graph of the genome. However, 

although this procedure led to the correct repeat graph in the simple case shown in Figure 2, the 

approximate repeat graph constructed based on the clustering of closely located breakpoints may 

differ from the repeat graph constructed based on the punctilious repeat graph. Below, we 

describe how pairwise alignments may be inconsistent and explain how mosaic repeats and 

inconsistencies of local alignments may result in an “incorrect” clustering-based repeat graph. 

 

Inconsistent Pairwise Alignments. 

 Pevzner et al. 2004 introduced the concept of alignment-based de Bruijn graphs known as 

A-Bruijn graphs and applied them to the problems of repeat characterization and genome 

assembly. They further described the transformation of an A-Bruijn graph into a repeat graph 

that is particularly simple in the case of consistent alignments as described below.  

Each multiple alignment of 𝑚 sequences induces 𝑚
2  pairwise alignments. A set of 

pairwise alignments (described by the repeat plot) is consistent if its alignments can be combined 

into a single multiple alignment that induces each pairwise alignment in the set. The concept of 
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multiple alignment is usually defined for the case of aligning multiple sequences rather than for 

aligning a sequence against itself. Below, we describe the concept of a multiple self-alignment of 

a genome and define the notion of consistent pairwise self-alignments. This notion is important 

since A-Bruijn graphs result in a simple repeat graph in the case of consistent self-alignments but 

in a more complex graph in the case of inconsistent self-alignments (see Pevzner et al. 2004 for a 

discussion of complications arising from inconsistent self-alignments).  

A multiple self-alignment of a single sequence is a partition of its positions into non-

overlapping subsets, with each subset corresponding to a column of the multiple self-alignment. 

For example, a multiple self-alignment of the sequence ACTGGCTGACT can be represented as 

a partition of its 11 positions into six “painted” subsets: A0C1T2G3G4C5T6G7A8C9T10 (A0 and 

A8 share the same color; C1, C5, and C9 share the same color, and T3, T6, and T10 share the same 

color). Figure 2.11 visualizes such a partitioning as a multiple self-alignment where each column 

represents positions from the same subset. 
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Every pair of numbers 𝑖 < 𝑗 in the same column of the multiple self-alignment defines a 

point (𝑖, 𝑗) in the two-dimensional plot. For example, the leftmost column in Figure 2.11 

corresponds to a point (0, 8) and the rightmost column corresponds to points (2, 6), (2, 10), and 

(6, 10). The collection of all such points defines the dot plot of the multiple self-alignment. We 

refer to a rectangle in the dot plot with lower left corner (𝑥, 𝑦) and upper right corner (𝑥’, 𝑦’) as 

(𝑥, 𝑦, 𝑥’, 𝑦’). A pairwise alignment between segments (𝑥, 𝑥’) and (𝑦, 𝑦’) of a genome defines a 

set of two-dimensional points in the rectangle (𝑥, 𝑦, 𝑥’, 𝑦’) corresponding to matches in this 

alignment. A multiple self-alignment and a pairwise alignment between segments (𝑥, 𝑥’) and (𝑦, 

𝑦’) are consistent if the dot plot of the multiple self-alignment coincides with the dot plot of the 

pairwise alignment within the rectangle (𝑥, 𝑦, 𝑥’, 𝑦’). A set of pairwise alignments is consistent if 

Figure 2.11: Multiple self-alignment defined by the partitioning of 
A0C1T2G3G4C5T6G7A8C9T10 into six subsets (left) and the corresponding dot-plot (right). 
In contrast to the traditional representation of a multiple alignment (where each entry represents 
a nucleotide or a dash in the multiple alignment matrix), each entry in the multiple self-
alignment matrix represents a position in the sequence or a dash. 
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there exists a multiple self-alignment that is consistent with all pairwise alignments in this set, 

and inconsistent otherwise.	

 

Inconsistent Alignments Result in Excessively Complex Repeat Graphs. 

Figure 2.12 presents an example of inconsistent pairwise alignments and illustrates that 

they result in a repeat graph that differs from the repeat graph shown in Figure 2.2. In contrast to 

the graph in Figure 2.2, the graph in Figure 2.12 is not alignment-compatible; e.g., the repeat 

A+B corresponds to a single path in Figure 2.2 but two paths in Figure 2.12. Although it may 

appear to be a minor annoyance in the case of the toy example in Figure 2.12, inconsistent 

alignments may result in excessively complex repeat graphs for real genomes, making it difficult 

to analyze repeats in the genome. While it is easy to make the pairwise alignments consistent in 

the simple case shown in Figure 2.12 (by adding the missing diagonal), transforming inconsistent 

pairwise alignments into consistent ones is a challenging task in the case of real genomes.   

The approximate repeat graph in Figure 2.12 has seven vertices (since there exist seven 

projections of alignment endpoints to the main diagonal), in contrast to the approximate repeat 

graph in Figure 2.2 of the main text that has eight vertices. This deficiency of the approximate 

repeat graph in Figure 2.12 motivates us to develop a new algorithm for extending the set 

𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 described below. Note that the middle point of the long diagonal in Figure 2.12 

represents an invalid point since only one of its projections (shown as a purple point) belongs to 

the set of seven endpoint projections on the main diagonal. The algorithm described below adds 

the missing projection to the set 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 and results in the same approximate repeat graph 

as shown in Figure 2.2 (Figure 2.12, bottom panel).  
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Extending the Set of Breakpoints. 

As described above, Flye constructs the initial set 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 by projecting all 

endpoints of the alignments (in the set of self-alignments 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠) onto the main diagonal 

in the repeat plot. Each point in an alignment-path in the |𝐺𝑒𝑛𝑜𝑚𝑒|×|𝐺𝑒𝑛𝑜𝑚𝑒| grid has two 

projections (horizontal and vertical) on the main diagonal. Note that projections of some internal 

Figure 2.12: Inconsistent pairwise alignments result in an “incorrect” repeat graph (as 
compared to the graph shown in Figure 2.2), thus necessitating an extension of the set of 
alignment endpoints. 
(Left) Alignment-paths for two pairwise self-alignments within a genome XABYABZBU. 
Only two out of three pairwise alignments between instances of a mosaic repeat (AB, AB, and 
B) are shown since the third alignment did not pass the percent identity threshold, resulting in 
an inconsistent set of pairwise alignments. Alignment endpoints are clustered together if their 
projections on the main diagonal coincide or are close to each other (clusters of closely located 
endpoints for 𝑑 = 0 are painted with the same color). This clustering reveals three clusters with 
seven breakpoints on the main diagonal. (Top Right of Left Half) Projections of the clustered 
endpoints on the main diagonal define seven vertices of the approximate repeat graph. (Middle 
Right of Left Half) Gluing breakpoints that belong to the same clusters. (Bottom Right of 
Left Half) Gluing parallel edges in the resulting graph (parallel edges are glued if there exists 
an alignment between their sequences), which results in an approximate repeat graph that is not 
alignment-compatible. (Right) Extending the set 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 by adding an additional point 
to the longest diagonal (shown as a star). Since the middle point of the longer alignment-path 
is invalid (its vertical projection on the main diagonal belongs to the set 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 but its 
horizontal projection does not), we have added the missing projection to the set 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 
(shown as a purple square). Adding this breakpoint is equivalent to breaking the longer 
alignment-path into two subpaths (the breakage position is shown as a purple star). As a result 
of the breakpoint extension procedure, the approximate repeat graph constructed based on the 
extended set 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 coincides with the approximate repeat graph shown in Figure 2.2. 
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points in an alignment-path may belong to 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠; for example, both projections of the 

middle-point of the longest alignment-path in Figure 2.2 (shown in purple) belong to 

𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠. Such internal points should be re-classified as new alignment endpoints (by 

breaking the alignment-path into two parts) to avoid inconsistencies during the construction of 

the repeat graph. However, for some internal points, only one of their two projections belongs to 

𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠, leading to complications in the path-breaking process. Below we explain how to 

break the alignment-paths into subpaths (and, at the same time, extend the set 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠) to 

address this complication.  

A point in an alignment-path is called valid if both its projections belong to 

𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠, and invalid if only one of its projections belongs to 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠. A set 

𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 is called valid if all points in all alignment-paths are valid, and invalid otherwise.  

In the case that the constructed set 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 is invalid, our goal is to add the minimum 

number of points to this set to make it valid. Figure 2.12 provided an example of an invalid point 

and how it affects the resulting repeat graph.  

Flye iteratively adds the missing projection for each invalid point to the set 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 

on the main diagonal until there are no invalid points left. Afterwards, it combines close points in 

𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 into segments using single linkage clustering (as described above). The set of 

resulting segments (defined by their minimal and maximal positions on the main diagonal) forms 

a set 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠. Two segments from 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 are equivalent if there 

exists a point in one of the alignment-paths such that one of its projections to the main diagonal 

falls into the first segment and another falls into the second segment.  

Each repeat of multiplicity 𝑚 typically corresponds to 𝑚 segments in 

𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 corresponding to 𝑚 starting positions of this repeat in the genome (and 
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the same number of segments corresponding to its ending positions). Note that the number of 

breakpoint segments resulting from this repeat is reduced as compared to the number of 

breakpoints, which can be as large as 𝑚2  for the starting positions of the repeat (and the same 

number for its ending positions). Flye takes advantage of this reduction by selecting middle 

points of each breakpoint segment and only gluing these middle points rather than all 

breakpoints. Essentially, it redefines the endpoints of each alignment-path as the middle points of 

corresponding breakpoint segments.  

Specifically, Flye constructs the approximate repeat graph by generating the set 

𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠, selecting a middle point from each segment in 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠, 

and gluing the two middle points for every pair of equivalent segments.  Afterwards, it glues 

together parallel edges (edges that start and end at the same vertices) if the genome segments 

corresponding to these edges are aligned in 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠, i.e., if there exists an alignment with 

its 𝑥- and 𝑦-spans overlapping both these segments. For brevity, below we refer to the 

approximate repeat graph resulting from this procedure simply as the repeat graph.   

 

The Challenge of Assembling Contigs into a Repeat Graph. 

The ABruijn algorithm constructs a set of contigs but does not attempt to assemble them 

into even longer contigs (e.g. by utilizing ultra-long reads) and stops short of constructing the 

repeat graph of the genome (Lin et al. 2016). We note that contig assembly (let alone 

constructing the repeat graph based on contigs) is a non-trivial problem. Although it may appear 

that contig assembly can be achieved by simply utilizing existing long read assemblers, 

Bankevich et al. 2015 reported that the Celera (Myers et al., 2000), Minimus (Treangen et al., 

2013), and Lola (Sharon et al., 2015) assemblers produced suboptimal assemblies of contigs 
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generated using the TruSeq Synthetic Long Reads (TSLR) technology. Their attempts to modify 

the short read assembler SPAdes (Bankevich et al. 2012) for TSLR assembly improved on the 

results of Celera, Minimus, and Lola but stopped short of constructing the contig-based repeat 

graph.   

Similar challenges remain unresolved for short reads as well. Although popular short read 

assemblers construct the assembly graph of single reads (before resolving repeats using paired 

reads), they output a set of contigs (after the repeat resolution step) rather than an assembly 

graph that utilizes information about paired reads. For example, SPAdes (Bankevich et al. 2012) 

constructs the assembly graph of single reads, uses it together with paired reads for repeat 

resolution, and outputs the resulting contigs (Prjibelsky et al. 2014). A better option would be to 

construct the assembly graph of these contigs (which is less tangled than the assembly graph of 

individual reads) and to apply the repeat resolution step to this graph again. Another advantage 

of this (less tangled) contig-based assembly graph lies in applications relating to hybrid 

assembly, e.g., the co-assembly of short and long reads (Antipov et al. 2015; Wick et al. 2017). 

However, although some studies attempted to construct the assembly graph from contigs or 

directly from paired reads (Vyahhi et al. 2012), the popular short read assemblers have failed to 

incorporate this approach into their pipelines thus far. 

 

From the Repeat Graph of a Genome to the Assembly Graph of Contigs. 

Due to the challenges described above, the ABruijn assembler (Lin et al. 2016) opted to 

output a set of contigs rather than constructing the repeat graph of a genome based on these 

contigs. The contig construction in ABruijn essentially amounts to finding extension reads for 

extending paths in the (unknown) repeat graph of the genome. Each extension read increases the 
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length of the growing path until the extension process becomes ambiguous, i.e., when it reaches 

a branching vertex in the (unknown) repeat graph. Afterwards, ABruijn decides whether to 

continue or to stop the path extension in order to avoid assembly errors. Since ABruijn does not 

know the exact locations of branching vertices, it uses the last extension read to extend the path 

beyond the branching vertex by at least 𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 nucleotides. As a result, each linear contig 

constructed by ABruijn satisfies the overhang property: it extends at least 𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 

nucleotides in front of the first branching vertex and behind the last branching vertex it traverses. 

Note that the same 𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 value is used during repeat graph construction.  

 

Constructing Disjointigs. 

ABruijn and other existing SMS assemblers invest significant effort into making sure that 

the generated contigs are correctly assembled (that they represent subpaths of the genomic tour 

in the repeat graph). In contrast to ABruijn, Flye does not attempt to construct accurate contigs at 

the initial assembly stage but instead generates disjointigs as arbitrary paths in the (unknown) 

repeat graph of the genome. However, it constructs an accurate repeat graph from error-prone 

disjointigs (also known as an assembly graph). 

Flye randomly walks in the (unknown) assembly graph to generate random paths from 

this graph. Each non-chimeric read from 𝑅𝑒𝑎𝑑𝑠 defines a subpath of a genomic tour in an 

assembly graph. Flye extends this path by switching from the current read to any other 

overlapping read (which has a sufficiently long common 𝑗𝑢𝑚𝑝-subpath) rather than a carefully 

chosen overlapping read (Lin et al. 2016), avoiding a time-consuming test to check whether this 

selection triggers an assembly error.  
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Since the resulting 𝐹𝑙𝑦𝑒𝑊𝑎𝑙𝑘 algorithm does not invoke the contig correctness check, it 

constructs paths (chains of overlapping reads) that do not necessarily follow the genome tour 

through the assembly graph. Although it may appear counter-intuitive that inaccurate disjointigs 

constructed by 𝐹𝑙𝑦𝑒𝑊𝑎𝑙𝑘 result in an accurate assembly graph, note that inaccurate paths 

(disjointigs) in the de Bruijn graph (a special case of the assembly graph) certainly result in an 

accurate assembly graph. Indeed, an assembly graph constructed from arbitrary paths in a de 

Bruijn graph is the same as the original de Bruijn graph (as long as these paths include all 𝑘-mers 

from the assembly graph).  

 

The FlyeWalk Algorithm. 

 The FlyeWalk algorithm (Figure 2.13) computes alignments (within the Overlap, 

MapReads, and ExtendRead procedures) using the longest 𝑗𝑢𝑚𝑝-subpath approach described 

in Lin et al. 2016. In contrast to other SMS assemblers, FlyeWalk does not generate all-versus-

all pairwise alignments between reads (a major time bottleneck) since reads that align to a newly 

assembled disjointig are removed from the set UnprocessedReads. 
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Given a chain of reads 𝐶ℎ𝑎𝑖𝑛𝑂𝑓𝑅𝑒𝑎𝑑𝑠 formed by reads 𝑅𝑒𝑎𝑑Z …𝑅𝑒𝑎𝑑f, we define 

𝑝𝑟𝑒𝑓𝑖𝑥(𝑅𝑒𝑎𝑑e) as the overlapping region between consecutive reads 𝑅𝑒𝑎𝑑e9Z and 𝑅𝑒𝑎𝑑e in the 

chain and 𝑠𝑢𝑓𝑓𝑖𝑥(𝑅𝑒𝑎𝑑e) as the suffix of the 𝑖-th read after the removal of 𝑝𝑟𝑒𝑓𝑖𝑥(𝑅𝑒𝑎𝑑e) 

(note that 𝑠𝑢𝑓𝑓𝑖𝑥(𝑅𝑒𝑎𝑑Z) coincides with 𝑅𝑒𝑎𝑑Z). We define 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝐶ℎ𝑎𝑖𝑛𝑂𝑓𝑅𝑒𝑎𝑑𝑠) as 

the concatenate 𝑠𝑢𝑓𝑓𝑖𝑥(𝑅𝑒𝑎𝑑Z) ∗ … ∗ 	𝑠𝑢𝑓𝑓𝑖𝑥(𝑅𝑒𝑎𝑑f) of read suffixes in this chain. The 

Consensus procedure constructs an initial draft sequence (disjointig) of the chain 

Figure 2.13: The pseudocode for the FlyeWalk algorithm. 
FlyeWalk iteratively extends each unprocessed read and organizes the selected reads into a 
chain. Each such chain contributes to a disjointig, and FlyeWalk outputs the set of all 
disjointigs resulting from such extensions. ExtendRead generates a random walk in the 
assembly graph, which starts at a given read and constructs a chain of overlapping reads that 
contribute to a constructed disjointig. It terminates when there are no unprocessed reads 
overlapping the current read by at least 𝑀𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 nucleotides.  FindNextRead finds an 
unprocessed read that overlaps with the given read by at least 𝑀𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 nucleotides and 
returns an empty string if there are no such reads. MapReads finds all reads that align to a 
given chain of reads over their entire length with the possible exception of a short suffix and/or 
prefix of length at most 𝑀𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝. Consensus constructs the consensus of all reads that 
contribute to a given disjointig. 
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𝐶ℎ𝑎𝑖𝑛𝑂𝑓𝑅𝑒𝑎𝑑𝑠 by constructing 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝐶ℎ𝑎𝑖𝑛𝑂𝑓𝑅𝑒𝑎𝑑𝑠). Afterwards, all reads from the 

dataset are aligned to the draft disjointig sequence using minimap2 (Li 2017) and the consensus 

of the aligned reads is formed by taking the majority vote. This procedure reduces the error rate 

in the draft disjointig sequence from ≈13% to 1-5%, depending on the contig coverage. The 

follow-up polishing step reduces the error rate to ≈0.1% when the coverage exceeds 30×.  

ExtendRead is run in a single thread but multiple ExtendRead procedures are run in 

parallel for each read that is not in 𝑈𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝑅𝑒𝑎𝑑𝑠. When one of the ExtendRead 

procedures finishes, the algorithm checks if the returned disjointig has a significant overlap (by 

more than 10% of its length) with one of the previously constructed disjointigs from 

𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑖𝑔𝑠. If such an overlap is found, the new disjointig is discarded and the reads from this 

disjointig are returned to the set 𝑈𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝑅𝑒𝑎𝑑𝑠. This parallelization significantly speeds 

up FlyeWalk for assemblies that contain many contigs.  

 

Constructing assembly graph from disjointigs. 

Similarly to ABruijn, Flye generates disjointigs satisfying the overhang property, which, 

as will be explained below, represents an important condition for constructing the repeat graph. 

Flye further concatenates all disjointigs (separated by delimiters) in an arbitrary order into a 

single string 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒. It further uses the longest 𝑗𝑢𝑚𝑝-subpath approach (Lin et al. 2016) 

to generate the set 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 of all sufficiently long self-alignments within the resulting 

concatenate and constructs the assembly graph as the repeat graph of the concatenate 

𝑅𝑒𝑝𝑒𝑎𝑡𝐺𝑟𝑎𝑝ℎ(𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒, 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠, 𝑑).  

It has been shown that the repeat graph of concatenated accurate reads (where alignments 

between reads do not extend beyond delimiters in the concatenate of all reads) approximates the 
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repeat graph of the genome (Pevzner et al. 2004). Thus, the assembly graph constructed from 

accurate contigs (which can be viewed as virtual reads) also approximates the repeat graph of the 

genome. This is explained in further detail below. 

 

Flye Constructs an Accurate Assembly Graph from Error-Prone Disjointigs. 

There exist two tours in the assembly graph for the E. coli strain NCTC9964 shown in 

Figure 2.3, Middle: the correct genomic tour formed by edges 𝐼𝑁Z, 𝑅𝐸𝑃, 𝑂𝑈𝑇Z, and 𝑅𝐸𝑃’ (the 

corresponding complementary tour is formed by the complementary edges 𝑅𝐸𝑃, 𝑂𝑈𝑇y, 𝑅𝐸𝑃’, 

and 𝐼𝑁y) and the incorrect tour formed by edges 𝐼𝑁Z, 𝑅𝐸𝑃, 𝑂𝑈𝑇y, and 𝑅𝐸𝑃’ (the corresponding 

complementary tour is formed by edges 𝐼𝑁y, 𝑅𝐸𝑃, 𝑂𝑈𝑇Z, and 𝑅𝐸𝑃’). 

Although paths 𝐼𝑁Z → 𝑅𝐸𝑃 → 𝑂𝑈𝑇y → 𝑅𝐸𝑃’ and 𝐼𝑁y → 𝑅𝐸𝑃 → 𝑂𝑈𝑇Z → 𝑅𝐸𝑃’ form 

incorrect disjointigs, they are however assembled in the correct assembly graph by Flye. Below 

we explain why an arbitrary set of paths (disjointigs) constructed by FlyeWalk results in a 

correct assembly graph. Although our arguments apply to the punctilious repeat graph, the 

construction of the approximate repeat graph follows a similar logic, and the Results section 

demonstrates that these graphs constructed by Flye also result in accurate assemblies.   

Let 𝐺𝑒𝑛𝑜𝑚𝑒 be an (unknown) genomic sequence of an (unknown) length with an 

(unknown) alignment matrix 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠. Let 𝑆𝑡𝑟𝑖𝑛𝑔𝑠 = 𝑠 1 ,… , 𝑠 𝑡  be a covering set of 

strings for 𝐺𝑒𝑛𝑜𝑚𝑒, and 𝐴(𝑖, 𝑗) be the alignment snapshot, i.e., the sub-matrix of 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 

for substrings 𝑠(𝑖) and 𝑠(𝑗). Given a concatenate 𝑆𝑡𝑟𝑖𝑛𝑔𝑠∗ = 𝑠(1) ∗ 𝑠(2) ∗ … ∗ 𝑠(𝑡) of all 𝑡 

substrings (with delimiters), their 𝑡 ∗ (𝑡 − 1)/2 pairwise alignment snapshots 𝐴(𝑖, 𝑗) can be 

combined together to form the alignment matrix 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡∗ of the entire concatenate. We 
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emphasize that the coordinates of the strings 𝑠 1 , … , 𝑠(𝑡) and their ordering in the sequence 

𝐺𝑒𝑛𝑜𝑚𝑒 are unknown. 

Pevzner et al. 2004 demonstrated that 𝑅𝑒𝑝𝑒𝑎𝑡𝐺𝑟𝑎𝑝ℎ(𝐺𝑒𝑛𝑜𝑚𝑒, 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠) coincides 

with the repeat graph 𝑅𝑒𝑝𝑒𝑎𝑡𝐺𝑟𝑎𝑝ℎ(𝑆𝑡𝑟𝑖𝑛𝑔𝑠∗, 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠∗) of a concatenate of all substrings 

(in any order) for any covering set of substrings. As we explain below, this result implies that the 

Flye assembly of inaccurate disjointigs generated by FlyeWalk results in an accurate assembly 

graph. For simplicity, we assume that chimeric reads have been removed and that no read is 

contained within another read. 

Consider the set of disjointigs 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑖𝑔Z, 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑖𝑔y, … , 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑖𝑔u  constructed by 

FlyeWalk and map all reads to all these disjointigs. Since FlyeWalk utilizes all reads, each read 

will be mapped to one or more disjointigs. We now concatenate all reads starting from reads in 

the first disjointig, followed by reads in the second disjointig, etc., resulting in the sequence of 

reads:  

{𝑠(1, 1), 𝑠(1, 2), … , 𝑠(1, 𝑛Z)}, {𝑠(1, 1), 𝑠(2, 1), … , 𝑠(2, 𝑛y)}, …	, 𝑠 𝑡, 1 , 𝑠 𝑡, 1 , … , 𝑠 𝑡, 𝑛u   

where 𝑠(𝑖, 𝑗) stands for the 𝑗-th read in the 𝑖-th disjointig (reads are ordered in increasing order 

based on their starting positions in each disjointig). 

 Since all reads are included in this concatenate, the repeat graph constructed from this 

concatenate coincides with the repeat graph of the genome (Pevzner et al. 2004). Since the repeat 

graph does not depend on the order in which the reads are glued, we will perform gluing in two 

stages. At the first stage, we will perform some (but not all) gluing operations on reads from the 

first disjointig, followed by some gluing operations on reads from the second disjointig, etc. 

Specifically, with respect to the 𝑖-th disjointig, we will only glue overlapping reads within this 

disjointig (i.e., reads 𝑠(𝑖, 𝑛) and 𝑠(𝑖,𝑚) if 𝑛 < 𝑚 and read 𝑠(𝑖,𝑚) starts before read 𝑠(𝑖, 𝑛) ends) 
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and will only apply gluing operations to their overlap. Note that the first gluing stage does not 

necessarily includes all gluing operations applicable to reads from the 𝑖-th disjointig; i.e., non-

overlapping reads within this disjointig may share sufficiently long alignments that however do 

not contribute to first-stage gluing.  

The first-stage gluing of reads that were sampled from a single disjointig results in the 

same consensus of this disjointig that is constructed by FlyeWalk. Thus, the application of such 

“intra-disjointig” gluing operations to all disjointigs results in the set of disjointigs 

𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑖𝑔Z, 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑖𝑔y, … , 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑖𝑔u . Note that only some but not all gluing operations 

have been performed at this point; e.g., inter-disjointig gluing has not been applied yet. 

Therefore, the second-stage gluing of all of the disjointigs constructed by FlyeWalk (some of 

them may be misassembled) results in the same assembly graph as the gluing of all of the reads, 

and thus results in the repeat graph of the genome.  

 

Constructing the Repeat Graph from Substrings of a Genome. 

 The repeat graph construction algorithm assumes that the genome 𝐺𝑒𝑛𝑜𝑚𝑒 and the two-

dimensional matrix 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 (defining the pairwise alignments between similar substrings of 

the genome) are given. Any two substrings of the genome define a rectangle in the matrix 

𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 that we refer to as an alignment snapshot imposed by these substrings. Given a set 

of substrings from 𝐺𝑒𝑛𝑜𝑚𝑒, Pevzner et al. 2004 asked whether the repeat graph can be 

constructed from their pairwise snapshots without knowing 𝐺𝑒𝑛𝑜𝑚𝑒 and the entire matrix 

𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠. This question is relevant to genome assembly when 𝐺𝑒𝑛𝑜𝑚𝑒 and 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 are 

unknown but the alignments between substrings of the genome (i.e. the reads) can be computed 

as an approximation of alignment snapshots.   
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A set of substrings of a genome forms a covering set if, for every pair of consecutive 

positions in 𝐺𝑒𝑛𝑜𝑚𝑒, there exists a substring containing these positions. Pevzner et al. 2004 

demonstrated that if substrings of a genome (i.e. the reads) form a covering set, then gluing an 

arbitrary concatenate of these substrings (separated by delimiters), according to their alignment 

snapshots, produces the same repeat graph as gluing all of 𝐺𝑒𝑛𝑜𝑚𝑒.  

This result holds for the ideal case when the alignment snapshots are inherited from the 

matrix 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 representing all self-alignments of 𝐺𝑒𝑛𝑜𝑚𝑒. Since 𝐺𝑒𝑛𝑜𝑚𝑒 and the matrix 

𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 are unknown in the case of genome assembly, the alignment snapshot between two 

substrings (i.e. reads) is computed as their pairwise alignment rather than derived as the 

corresponding rectangle in the 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 matrix. This pairwise alignment may differ from the 

alignment snapshot; for example, an alignment between two reads overlapping by a single 

nucleotide will be captured in their alignment snapshot (since it is a part of the larger matrix 

𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠) but not in their pairwise alignment since it does not pass a statistical significance 

threshold. That is why Pevzner et al. 2004 introduced a more stringent condition for the concept 

of the covering set of substrings: for each 𝑚 consecutive positions in 𝐺𝑒𝑛𝑜𝑚𝑒 (where 𝑚 is a pre-

defined threshold), there must exist a substring (i.e. a read) spanning all these positions. This 

condition explains why it is important that Flye generates disjointigs satisfying the overhang 

property. 

After constructing the repeat graph, Flye proceeds to simplify this graph to improve the 

assembly. Figure 2.3, Left presents the assembly graph of the SMS reads from an E. coli 

genome. Flye further untangles this graph into a graph with just six edges (Figure 2.3, Middle) 

following the procedure described below.  
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Aligning Reads to the Assembly Graph. 

 Flye aligns all reads to the constructed assembly graph using the concept of common 

𝑗𝑢𝑚𝑝-subpaths (Lin et al., 2016). First, each read is matched against the edges of the assembly 

graph. For each repeat edge in the assembly graph, we store all copies of the corresponding 

repeat (from the original disjointigs), rather than a single consensus of all sequences contributing 

to this repeat edge. We then match a read to all these copies and select the best alignment to 

improve the recruitment of reads to the edges of the assembly graph. If a read is aligned to 

multiple edges in the assembly graph, we find a maximum scoring path in the graph formed by 

these edges using dynamic programming. 

 

Identifying Repeat Edges in the Assembly Graph. 

 After constructing the assembly graph, Flye aligns all reads to this graph and forms a 

read-path for each read. Given the alignments of all reads against the assembly graph, Flye 

computes the mean depth of coverage 𝑐𝑜𝑣 across the entire assembly graph and classifies an 

edge as low-coverage (if its coverage is below 2 ∗ 𝑐𝑜𝑣) and high-coverage (if its coverage is at 

least 2 ∗ 𝑐𝑜𝑣). While most low-coverage edges are unique (traversed only once in the genomic 

tour), some of them are repetitive since the coverage varies along the genome.  

To improve the classification of unique and repetitive edges in the assembly graph, Flye 

reclassifies some edges using information about the read-paths. An edge 𝑒’ in the assembly graph 

is a successor of an edge 𝑒 if it follows 𝑒 in one of the read-paths. A low-coverage edge is 

classified as unique if it has a single successor. All other edges (i.e., high-coverage edges and 

low-coverage edges with multiple successors) are classified as repetitive.  
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To avoid classifying chimeric connections in the assembly graph as successor edges and 

to minimize the influence of misaligned reads, Flye imposes an additional restriction on 

candidate successor edges: a fraction of the reads supporting a successor (among all reads 

contributing to the successor of a given edge) should exceed 𝑁 percent of the fraction of the 

reads supporting the most frequent successor (the default value is 𝑁 = 20%). 

We used the Flye C. elegans assembly to estimate the accuracy of Flye’s classification of 

unique and repetitive edges. For each edge in the C. elegans assembly graph, we found whether 

it is unique or repetitive in the reference genome by aligning the edge to the entire reference 

genome and checking whether there exists a single alignment for unique edges or multiple 

alignments for repetitive edges. This analysis revealed that the C. elegans assembly graph has 

339 unique and 219 repetitive edges. Flye misclassified 5 out of 219 repetitive edges as unique 

(2%) and 22 out of 339 unique edges as repetitive (6%). Note that only errors of the first type 

(misclassifying repeat edges as unique) lead to potential misassemblies during the repeat 

resolution step. Errors of the second type (misclassifying unique edges as repeat edges) do not 

lead to misassemblies but may potentially negatively affect the contiguity of the assembly since 

misclassified unique edges do not contribute to repeat resolution. This is however not a critical 

shortcoming in practice since long reads often bridge these misclassified edges. 

 

Resolving Bridged Repeats in the Assembly Graph. 

As described above, Flye aligns all reads to the constructed assembly graph and uses 

them to identify the repeat edges in this graph. It further transforms the assembly graph into the 

condensed assembly graph by contracting all its repeat edges. Aligning a read to the assembly 

graph induces its alignment to the condensed assembly graph, and we focus on bridging reads 
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that align to multiple edges from the condensed assembly graph. Untangling incident edges 𝑒 =

(𝑤, 𝑣) and 𝑓 = (𝑣, 𝑢) in the condensed assembly graph amounts to substituting them by a single 

edge (𝑤, 𝑢). Below we describe how Flye uses bridging reads to untangle the condensed 

assembly graph and how this untangling contributes to resolving repeats in the assembly graph.   

A bridging read in the condensed assembly graph is called an (𝑒, 𝑓)-read if it traverses 

two consecutive edges 𝑒 and 𝑓 in this graph. For each pair of incident edges 𝑒 and 𝑓 in the 

condensed assembly graph, we define 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑒, 𝑓) as the number of (𝑒, 𝑓)-reads plus the 

number of (𝑓’, 𝑒’)-reads, where 𝑒’ and 𝑓’ are the complementary edges of 𝑒 and 𝑓, i.e., edges 

representing a complementary strand. 

Given a set of bridging reads in the condensed assembly graph, we construct a transition 

graph as follows. Each edge 𝑒 in the condensed assembly graph corresponds to vertices 𝑒� and 

𝑒u in the transition graph, representing the head (start) and tail (end) of 𝑒, respectively. A 

complementary edge for 𝑒 corresponds to the same vertices, but in the opposite order. Each 

(𝑒, 𝑓)-read defines an undirected edge between 𝑒u and 𝑓� in the transition graph with weight 

equal to 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑒, 𝑓). 

Note that the transition graph is bipartite for the simple case when the two subgraphs of 

the condensed assembly graphs, corresponding to complementary strands, do not share vertices. 

However, it is not necessarily bipartite in the case of genomes that contain long inverted repeats. 

Flye thus applies Edmonds’ algorithm (Edmonds 1965) to find a maximum weight matching in 

the transition graph and uses this matching for untangling the condensed assembly graph. For 

each edge (𝑒u, 𝑓�) in the constructed matching, Flye additionally checks the confidence of the 

transition between edges 𝑒 and 𝑓 (explained further, below) and untangles 𝑒 and 𝑓 for each edge 

(𝑒u, 𝑓�) in the transition graph that passes this check. Flye iteratively untangles edges in the 
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condensed assembly graph and performs the corresponding iterative repeat resolution in the 

assembly graph.  

Note that consecutive edges 𝑒 and 𝑓 in the condensed assembly graph are not necessarily 

consecutive in the assembly graph. Thus, after Flye untangles 𝑒 and 𝑓, it uses one of the bridging 

(𝑒, 𝑓)-reads to fill the gap between the end of 𝑒 and the start of 𝑓 in the assembly graph. 

Afterwards, most repeat edges in the assembly graph either represent long unbridged repeat 

edges (that are not bridged by any reads) or form paths consisting of repeat edges with total 

lengths typically exceeding the median read length.  

 

Additional details on untangling assembly graphs. 

 The maximum-weight-matching defines the set of edges in the transition graph; Flye 

additionally checks each of the inferred edges as follows. For each edge (𝑢, 𝑣) from the 

matching, it computes the total weight 𝑇𝑜𝑡𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 of all edges in the transition graph adjacent 

to 𝑢 or 𝑣. If 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑢, 𝑣) < 𝑇𝑜𝑡𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡/2, the edge is classified as weak and is 

consequently ignored. Weak edges typically arise from long repeats that may be bridged by a 

few reads in an ambiguous way. 

Flye iteratively untangles edges and finds maximum-weight-matchings until no extra 

repeats can be resolved. Note that a repeat of multiplicity 𝑡 may require less than 𝑡 untangling 

operations to be completely resolved. For example, a repeat edge 𝑅𝐸𝑃 of multiplicity two in the 

assembly graph (with incoming edges 𝐼𝑁Z and 𝐼𝑁y and outgoing edges 𝑂𝑈𝑇Z and 𝑂𝑈𝑇y) may 

only have bridging reads traversing 𝐼𝑁Z, 𝑅𝐸𝑃, and 𝑂𝑈𝑇Z but not 𝐼𝑁y, 𝑅𝐸𝑃, and 𝑂𝑈𝑇y. However, 

using bridging reads to untangle 𝐼𝑁Z and 𝑂𝑈𝑇Z (essentially forming a single edge from edges 
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𝐼𝑁Z, 𝑅𝐸𝑃, and 𝑂𝑈𝑇Z), turns the sequence of edges 𝐼𝑁y, 𝑅𝐸𝑃, and 𝑂𝑈𝑇y into a non-branching 

path and thus completely untangles the repeat.   

Note that some short edges are reclassified as long during this process and that some 

repetitive edges are reclassified as unique during the next iteration of the algorithm (for example, 

if they had been a part of a bigger mosaic repeat that was partially resolved).  

 

Resolving Unbridged Repeats in the Assembly Graph. 

Flye takes advantage of the small variations between different repeat copies to resolve 

unbridged repeats. It identifies the variations between repeat copies, matches each read with a 

specific repeat copy using these variations, and uses these matched reads to derive a distinct 

consensus sequence for each repeat copy. The success of this approach is contingent upon the 

presence of a sufficiently large number of variations between the different repeat copies. 

Therefore, the first step is to estimate the number and positions of variations between the repeat 

copies and to calculate the divergence of the various repeat copies from reads alone (described in 

further detail below). The current version of Flye is limited to resolving unbridged repeats of 

multiplicity two in both haploid (e.g., bacterial) and diploid (e.g., human) genomes. 

The idea of the algorithm is to assign each read to a specific repeat copy and then use the 

assigned reads to derive a distinct consensus sequence for each repeat copy. For example, the 93 

reads that traverse edges 𝐼𝑁Z and 𝑅𝐸𝑃 (Figure 2.3) can be assigned to one repeat copy and the 75 

reads that traverse edges 𝐼𝑁y and 𝑅𝐸𝑃 can be assigned to another repeat copy. However, it is 

unclear how to assign other reads mapping to the edge 𝑅𝐸𝑃 to a specific repeat copy. Flye uses 

reads starting from the incoming edges (93 and 75 reads in Figure 2.3) to “move forward” into 

the repeat and construct two different prefixes of the repeat 𝑅𝐸𝑃 corresponding to the two copies 
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of the repeat. In parallel, it uses reads ending in the outgoing edges (71 and 76 reads in Figure 

2.3) to “move backward” into the repeat and construct two different suffixes of this repeat.  

In each iteration of the algorithm, reads are assigned to a specific repeat copy, and then 

all the reads assigned to each repeat copy are used to construct a consensus sequence for that 

copy. Thus, as the algorithm proceeds, more reads are assigned to specific repeat copies and the 

consensus sequence for each repeat copy grows longer. The algorithm terminates when no new 

reads can be assigned to read copies and the consensus sequences stop growing in length. There 

are two goals: to obtain distinct consensus sequences for each repeat copy and to determine the 

correct pairings of incoming and outgoing edges for each repeat copy. 

 

Revealing Variable Positions Within Repeats. 

 To reveal the variable positions within a repeat (which corresponds to a repeat edge in the 

assembly graph), we map all reads to the consensus sequence of the repeat and generate a 

multiple alignment of all reads that are contained within or overlap with the repeat. Afterwards, 

we determine the second most frequent nucleotide in each column of the multiple alignment and 

define the substitution rate in this column as the number of occurrences of the second most 

frequent nucleotide divided by the total number of reads covering this column (note the 

difference between the concepts of substitution rate here and in Lin et al., 2016). We define the 

deletion and insertion rates in each column as in Lin et al., 2016. If the substitution, deletion, or 

insertion rate for a column exceeds a predefined threshold, the corresponding position is called a 

tentative divergent position. The repeat divergence is estimated by dividing the total number of 

tentative divergent positions by the length of the repeat. (The earlier section titled “Human 
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Segmental Duplications Identified by Flye” discussed how repeat divergence can be affected by 

diploidy.) 

Below, we construct the distribution of substitution, deletion, and insertion rates in non-

divergent positions, compare it with the distribution of substitution, deletion, and insertion rates 

in divergent positions, and select a threshold that separates these two distributions. To construct 

these distributions, we selected the 22 kb long repeat (repeat 𝑅𝐸𝑃 in Figure 2.3) in the assembly 

graph of the EC9964 dataset (other repeats result in very similar distributions). Since this repeat 

has many variations between its two repeat copies [943 substitutions (4.3%), 346 deletions 

(1.6%), and 226 insertions (1.0%)], we manually resolved it with high confidence. A position in 

this repeat is classified as variable if it corresponds to a substitution, deletion, or insertion, and 

non-variable otherwise.  

We mapped reads from the EC9964 dataset to the consensus of the 𝑅𝐸𝑃 repeat and 

calculated its substitution, deletion, and insertion rates. Figure 2.14 illustrates that variable 

positions feature higher substitution, deletion, and insertion rates than non-variable positions 

within a repeat. We thus identify tentative divergent positions based on mutation rates by 

selecting a mutation rate threshold that provides a good separation between the two distributions 

(0.1, 0.2, and 0.3 for substitutions, deletions, and insertions, respectively). This results in the 

identification of 924 out of 943 substitutions, 270 out of 346 deletions and 54 out of 226 

insertions for the 𝑅𝐸𝑃 repeat. At the same time, we misclassified 81 non-variable positions as 

divergent (61 substitutions, 5 deletions, and 15 insertions), resulting in a false positive rate of 

0.4%. In all, we identified 1329 tentative divergent positions, which leads to a divergence 

estimate of 6.0%, a slight underestimation of the true divergence rate of 6.9%. 
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Additional Details for the Unbridged Repeat Resolution Approach.  

 Initially, the unbridged repeat resolution algorithm recruits all reads traversing edges 𝐼𝑁Z 

and 𝑅𝐸𝑃 to the first repeat copy and all reads traversing 𝐼𝑁y and 𝑅𝐸𝑃 to the second repeat copy, 

and then it computes the consensus of each repeat copy using these recruited reads. Since the 

recruited reads do not span the entire edge 𝑅𝐸𝑃, we only construct two consensus sequences 

corresponding to prefixes of 𝑅𝐸𝑃 where there is substantial read coverage by the recruited reads. 

We require at least 𝑚𝑖𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 for each repeat copy to ensure that consensus sequences are 

Figure 2.14: Separating variable and non-variable positions within repeats 
using substitution, deletion, and insertion rates computed for the 𝑹𝑬𝑷 repeat 
in the EC9964 dataset. 
Substitution (Top), deletion (Middle), and insertion (Bottom) rates at each position 
in the multiple alignment of reads. Blue bars represent mutation rates for non-
variable positions, and red bars represent rates for variable positions. The number of 
positions with a given mutation rate (shown on the y-axis) is shown in a logarithmic 
scale. The cutoffs 0.1, 0.2, and 0.3 result in a good separation between variable and 
non-variable positions for substitutions, deletions, and insertions, respectively. 
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sufficiently accurate (the default value of 𝑚𝑖𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒	 = 	10×). Both consensus sequences 

are truncated to the length of the shortest consensus sequence to prevent bias in the read 

recruitment process in future iterations. In the case of the 𝑅𝐸𝑃 repeat in the EC9964 dataset, we 

constructed two consensus sequences corresponding to 8.6 kb long prefixes of 𝑅𝐸𝑃 with 

divergence 9.8% (Figure 2.3). As a result, we now have two consensus sequences for the entire 

edge 𝑅𝐸𝑃 that differ in some of the first 8.6 kb but coincide in the remaining part.  The two 

constructed consensus sequences serve as two templates for recruiting reads to specific repeat 

copies in successive iterations. In this way, we gradually construct the consensus sequences from 

only reads that have been assigned to a specific repeat copy with high confidence.  

This brief description hides some details; e.g., it is not clear why we identified the set of 

putative divergent positions since these positions have not been mentioned in the description of 

the algorithm. In reality, the constructed consensus sequences of the prefixes of the two repeat 

copies may have errors since the read coverage of these prefixes may be as low as the default 

parameter 𝑚𝑖𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒	 = 	10×. Indeed, the consensus sequences are expected to have a high 

error rate when the coverage is as low as 5-10× (Lin et al., 2016). Since these error-prone 

consensus sequences serve as two templates for recruiting reads to specific repeat copies in 

successive iterations, the read recruitment is compromised. We thus recruit reads to specific 

repeat copies based only on tentative divergent positions in the repeat. Since these positions were 

identified based on all reads (using full coverage) rather than only reads contributing to a given 

template (which have coverage as low as 𝑚𝑖𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒), they provide a more reliable standard 

for read recruitment.    

Below we provide a description of the various steps of the unbridged repeat resolution 

algorithm:  
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• Evaluating the tentative divergent positions. We map all classified reads again, this time 

to two consensus copies of the repeat (rather than to a single consensus copy as in the 

initial iteration) to construct a more accurate alignment. We further utilize the set of 

tentative divergent positions that were identified at the initial stage of the algorithm. We 

consider the consensus sequence of each repeat copy and compare the most frequent 

symbols (A, C, G, T, –) occurring in the set of already classified reads for each repeat 

copy at each tentative divergent position. If the most frequent symbol at a position differs 

for the two repeat copies, then that position is called a confirmed divergent position. The 

most frequent symbols of all the confirmed divergent positions for a certain repeat copy 

represent a “signature” of this copy. Since some positions within a repeat may not have 

been reached by the two consensus sequences yet, they remain classified as tentative 

divergent positions.  

• Assigning reads to various repeat copies.  We now map all unclassified reads to the two 

consensus copies of the repeat and utilize the confirmed divergent positions to assign 

unclassified reads to a specific repeat copy. For each read, we compute its vote for each 

repeat copy as the number of confirmed divergent positions at which the symbol of the 

read agrees with the consensus of this repeat copy (all other positions are ignored). The 

read is assigned to a specific repeat copy if its vote for this copy is larger than its vote for 

another copy by at least a minimum threshold (the default value is three). The read 

remains unassigned in the case of ties. 

• Constructing new consensus sequences for each repeat copy.  We use all reads that have 

been assigned to a specific repeat copy to construct a new consensus sequence for this 
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copy. The consensus is only constructed up to where the coverage of the reads is at least 

𝑚𝑖𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 in both repeat copies to ensure that the generated consensus sequences are 

accurate, and then both consensus sequences are truncated to the length of the shortest 

consensus sequence. The algorithm then proceeds to the next iteration unless no new 

reads mapping to the original repeat consensus were classified or all of the consensus 

sequences are identical to those in the previous iteration, in which cases it terminates.  

 

Although we discussed the algorithm as “moving forward” into the repeat (e.g., moving 

ahead from edges 𝐼𝑁Z and 𝐼𝑁y in Figure 2.3), the same procedure is performed while “moving 

backward” in the opposite direction (e.g., moving backwards from edges 𝑂𝑈𝑇Z and 𝑂𝑈𝑇y in 

Figure 2.3), or equivalently, moving forward along the reverse complement of the repeat. There 

are two stopping rules for the described algorithm: (i) when the constructed prefix of the repeat 

resulting from “moving forward” overlaps with the constructed suffix of the repeat resulting 

from “moving backward” and (ii) when the prefix and the suffix both stop extending but still do 

not overlap. At this point, a consensus sequence has been constructed for both prefix and suffix 

of each repeat copy and a set of confirmed divergent positions for each repeat copy has been 

obtained.  

As the repeat consensus sequences have been extended forward and backward (Figure 

2.3), this procedure may also result in the emergence of linking reads, i.e., reads that are assigned 

to both a repeat copy originating from one of the incoming edges (𝐼𝑁Z or 𝐼𝑁y) and a repeat copy 

originating from one of the outgoing edges (𝑂𝑈𝑇Z or 𝑂𝑈𝑇y). Linking reads are grouped 

depending on which incoming/outgoing edges they are assigned to: 𝐼𝑁Z and 𝑂𝑈𝑇Z, 𝐼𝑁y and 

𝑂𝑈𝑇y, 𝐼𝑁Z and 𝑂𝑈𝑇y, or 𝐼𝑁y and 𝑂𝑈𝑇Z. We further classify all linking reads into one of two 
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categories called cis (𝐼𝑁Z/𝑂𝑈𝑇Z and 𝐼𝑁y/𝑂𝑈𝑇y) and trans (𝐼𝑁Z/𝑂𝑈𝑇y and 𝐼𝑁y/𝑂𝑈𝑇Z) since there 

are only two ways to resolve the repeat: pairing 𝐼𝑁Z/𝑂𝑈𝑇Z with 𝐼𝑁y/𝑂𝑈𝑇y, or pairing 𝐼𝑁Z/𝑂𝑈𝑇y 

with 𝐼𝑁y/𝑂𝑈𝑇Z.  

If the number of linking reads in one of the categories exceeds a threshold (the default 

value is five) and exceeds the number of linking reads in another category by at least a factor of 

two, all reads in the “winning” category are assigned to the corresponding repeat copies and the 

consensus of each repeat copy is computed based on all reads assigned to this copy.  

If our attempts to resolve the repeat did not result in the emergence of linking reads or if 

the conditions above on the number of linking reads do not hold, the repeat is classified as 

unresolved (though some resolvable repeats may still be classified as unresolved). Note that even 

in the case of unresolved repeats, this algorithm still finds more accurate consensus sequences 

for the prefixes and suffixes of the repeat.  Table 2.7 presents the results of running the 

unbridged repeat resolution algorithm on 22 unbridged repeats of multiplicity two from 11 

genomes in the BACTERIA dataset.  
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Dataset Rep 

Len 
(kb) 

Cov 
(×) 

Div  #Tent 
Div Pos 

#Conf 
Div Pos 

Max Dist 
btw Pos 

(kb) 

Rem 
Gap 
(kb) 

#cis 
Linking 
Reads	

#trans 
Linking 
Reads	

EC4450-29 11 159 7.33% 657 594 0.4 0 1219 42 
KN5052-10 38 98 1.12% 376 250 20.8 0 0 0 
KN5052-20 31 96 2.67% 826 676 17.3 0 1 0 
EC7921-6 13 82 11.51% 1629 1338 0.3 0 215 814 
EC9002-3 50 137 5.91% 3401 3064 0.9 0 2460 437 
EC9006-8 22 94 1.24% 218 131 11.7 0 0 0 
EC9006-9 14 78 2.81% 676 597 1.8 0 256 15 
EC9006-10 16 93 5.25% 2843 2610 0.8 0 912 80 
EC9007-5 24 140 0.33% 2467 37 14.6 5.0 0 0 
EC9012-7 14 63 19.22% 2784 2552 1.3 0 599 42 
EC9012-12 37 74 3.12% 1973 1601 2.0 0 1126 13 
EC9016-4 17 47 8.45% 2586 2340 2.4 0 462 34 
EC9016-5 24 58 1.30% 1210 203 21.5 0.3 0 0 
EC9103-4 4 131 6.62% 340 314 0.4 0 135 87 
KN9657-9 36 61 0.08% 186 3 35.7 4.3 0 0 
EC9964-5 34 73 6.20% 2333 2179 0.9 0 64 892 
EC9964-6 22 80 4.17% 1675 1522 1.7 0 12 649 
EC11022-7 30 60 1.44% 1661 1491 6.3 0 2 602 
EC11022-8 25 64 0.37% 165 17 10.1 0 0 0 
SA11962-6 8 159 11.39% 613 562 0.5 0 1089 16 
SA11962-8* 13 214 0.77% 154 100 4.1 0 40 42 
KL12158-7 13 46 0.06% 50 0 12.7 0 0 0 

Table 2.7: Resolving unbridged repeats of multiplicity two in genomes from the 
BACTERIA dataset. 
The results of repeat resolution after running Flye for 11 out of 21 genomes from the 
BACTERIA datasets that contain repeats of multiplicity two. The label of each dataset denotes 
the bacterial species, its strain, and the ID number of the repeat edge found in the assembly 
graph (e.g. EC5052-7, EC5052-8, and EC5052-9 refer to 3 repeats with IDs “7”, “8”, and “9” 
present in the assembly graph for the E. coli NCTC5052 dataset). Bolded labels refer to repeats 
resolved by Flye. * indicates a repeat of multiplicity 3. “Cov” or coverage is calculated as the 
total read length divided by the repeat length, divided by the multiplicity of the repeat 
(comparable to the coverage of a normal genomic sequence of multiplicity one). “Div” or 
divergence is calculated based on the alignment of constructed repeat consensus sequences, 
dividing the total number of substitutions and indels by the total number of matches, 
substitutions, and indels (if the forward and reverse consensus sequences do not overlap, then 
the mean divergence of the forward and reverse sequences is calculated, weighted by the length 
of the sequences). “Max Dist btw Pos” refers to the maximal distance between adjacent 
confirmed divergent positions. “Rem Gap” refers to the length of the repeat remaining without 
separate consensus sequences for each copy after we have “moved into the repeat” from both 
the forward and reverse directions. In the case that the forward and reverse consensus 
sequences overlap, the remaining gap is set to 0. “#Tent Div Pos” is the number of tentative 
divergent positions, and “#Conf Div Pos” is the number of confirmed divergent positions. 
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  Our analysis of the BACTERIA dataset suggests that a repeat can usually be classified as 

resolvable based on the following two criteria:  

 

• The divergence rate exceeds a minimum divergence threshold. Based on simulated data, 

we set up a minimum 0.1% divergence threshold, i.e. at least one divergent position per 

each 1000 nucleotides on average. When the divergence rate falls below 0.1%, there is 

often a shortage of reads covering multiple divergent positions, which is necessary for 

successful repeat resolution. To determine the minimum divergence threshold for which 

the repeat resolution algorithm can be applied successfully, we simulated several repeats 

of multiplicity two of length 10 kb, 20 kb, and 40 kb, with divergence rates ranging from 

0.01% to 0.45%. Variations between the different copies of these repeats were introduced 

by adding substitutions and indels randomly to both copies until the desired divergence 

rate was reached. Next, we simulated PacBio reads from these repeats with coverage 

100×, mean error rates of 15%, and read lengths between 5 kb and 15 kb. When the 

repeat resolution algorithm was applied to these datasets, we found that all simulated 

repeats with divergence rate greater than 0.1% were successfully resolved. We thus chose 

0.1% to be the minimum divergence threshold.  

• The distance between consecutive putative divergent positions does not exceed the 

maximum distance threshold. If consecutive divergent positions are 15 kb apart but the 

maximal read length is 10 kb, there will be no reads spanning these positions that can be 

used for repeat resolution. Moreover, it turns out that the maximal read length is too 

optimistic to use as the maximum distance threshold, since the repeat may still be 

unresolvable even if consecutive divergent positions are less than the length of a read 
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away.  For example, although there are many divergent positions in a 24 kb long repeat of 

multiplicity two in the EC9007 dataset, there exists a 8 kb gap between consecutive 

divergent positions (located at positions 15,002 and 23,150 from the start of the repeat). 

The repeat is classified as unresolved since there is only one read spanning this gap, 

which does not provide a confident pairing of the incoming and outgoing edges for this 

repeat. On the other hand, we found that selecting the average read length as the 

threshold is too lenient. Based on our analysis of the BACTERIA dataset, we set the 

default threshold for the maximal distance between consecutive divergent positions as 

twice the average read length, which varies from 12 kb to 20 kb in the BACTERIA 

datasets.  

 

If either of the above criteria does not hold, the repeat is classified as unresolvable. 

 

Evaluating the Accuracy of the Unbridged Repeat Resolution Approach. 

 To evaluate the accuracy of the unbridged repeat resolution approach, we simulated a 1 

Mb genome which contains two copies of a single repeat of length 𝐿 (for 𝐿 = 10 kb, 20 kb, and 

40 kb) with divergence 𝑥% (for 𝑥 = 0.05%, 0.15%, and 0.45%). We further used the PBSim tool 

(Ono et al. 2013) to simulate PacBio reads from this genome with coverage 100× and length 

varying from 5 kb to 15 kb. The PBSim tool generated reads with an insertion rate of 9%, a 

deletion rate of 4.5%, and a substitution rate of 1.5%. We also generated two replicates for each 

simulation, performing 3 ∗ 3 ∗ 2 = 18 simulations in total.  

All repeats of length 10 kb were resolved by Flye prior to unbridged repeat resolution, so 

they were not included in this analysis. Of the remaining repeats, all repeats with divergence 
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0.15% and 0.45% were resolved correctly with overwhelming support from linking reads, and 

the repeat copy sequence reconstructions had accuracy >99.95%. All repeats with divergence 

0.05% were not resolved due to the scarcity of divergent positions, but over half of the sequences 

of each repeat copy were reconstructed with accuracy exceeding 99.8%.  

We further lowered the divergence rate to 0.01%, 0.02%, 0.03%, and 0.04% and repeated 

the experiment. With such low divergence rates, the repeat sequences could not be fully 

reconstructed, but all reconstructed sequences still had ≥99.9% accuracy. We also lowered the 

coverage to 30× and 50× and repeated the experiment with similar results (Tables 2.8 − 2.10). 

Based on these simulations, we conclude that our unbridged repeat resolution approach 

correctly links incoming and outgoing edges using the evidence from linking reads, and it can 

successfully reconstruct the sequences of distinct repeat copies. Even at low divergence rates and 

low coverage, our reconstructions are very accurate though we may only reconstruct partial 

sequences due to regions with no divergent positions or low coverage. 
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Len 
(kb) 

Cov 
(×) 

Div 
(%) 

Rep #Corr 
Div 
Pos 

#Conf 
Div 
Pos 

Max 
Dist btw 
Pos (kb) 

#Linking 
Reads 

Resolved Mean 
Rec Seq 
Len (kb) 

Mean 
Rec Seq 

Acc 

20 100 

0.05 A 7 7 5.0 0 NO 14 99.93% 
B 9 10 10.0 0 NO 20 99.79% 

0.15 A 32 40 2.8 439 YES 20 99.98% 
B 35 41 2.3 462 YES 20 99.97% 

0.45 A 103 109 0.87 471 YES 20 99.96% 
B 81 88 1.5 552 YES 20 99.98% 

40 100 

0.05 A 19 8 28.0 0 NO 40 99.88% 
B 18 6 32.9 0 NO 15 99.94% 

0.15 A 68 82 2.8 840 YES 40 99.95% 
B 64 73 2.9 788 YES 40 99.97% 

0.45 A 194 215 1.0 842 YES 40 99.97% 
B 169 188 1.5 861 YES 40 99.97% 

 

  

Table 2.8: Unbridged repeat resolution simulation results. 
Genomes containing repeats of multiplicity two were simulated for repeat lengths 20 kb and 
40 kb, and divergence rates 0.05%, 0.15%, and 0.45%. PacBio reads were simulated for these 
genomes with a mean error rate of 15% and lengths ranging from 5 kb to 15 kb. Our unbridged 
repeat resolution approach was applied to these reads to determine how these repeats should be 
resolved (by pairing incoming with outgoing edges) and to reconstruct the distinct repeat copy 
sequences for each of these simulations. “Len,” “Cov” and “Div” are the length, coverage, and 
divergence rates of the simulations, respectively. “Rep” is the replicate. “#Corr Div Pos” and 
“#Conf Div Pos” are the number of correct confirmed divergent positions and the total number 
of confirmed divergent positions found by Flye. “Max Dist btw Pos” refers to the maximal 
distance between adjacent confirmed divergent positions. “Mean Rec Seq Len” and “Mean Rec 
Seq Acc” are the mean reconstructed sequence length and accuracy, respectively. 



	

	 142 

 

Len 
(kb) 

Cov 
(×) 

Div 
(%) 

Rep #Corr 
Div 
Pos 

#Conf 
Div 
Pos 

Max 
Dist btw 
Pos (kb) 

#Linking 
Reads 

Resolved Mean 
Rec Seq 
Len (kb) 

Mean 
Rec Seq 

Acc 

20 100 

0.01 A 1 1 19.5 0 NO 11 99.96% 
B 2 2 17.7 0 NO 11 99.95% 

0.02 A 2 2 13.0 0 NO 12 99.93% 
B 3 5 10.2 0 NO 16 99.96% 

0.03 A 6 8 7.8 0 NO 13 99.92% 
B 4 5 13.5 0 NO 12 99.94% 

0.04 A 7 7 7.8 0 NO 14 99.96% 
B 7 6 13.4 0 NO 11 99.92% 

40 100 

0.01 A 5 4 34.2 0 NO 13 99.94% 
B 3 4 33.3 0 NO 12 99.94% 

0.02 A 7 8 26.3 0 NO 15 99.96% 
B 6 1 38.0 0 NO 15 99.91% 

0.03 A 14 5 28.0 0 NO 16 99.93% 
B 8 2 31.3 0 NO 14 99.94% 

0.04 A* 17 4 29.7 0 NO 13 99.89% 
 

  

Table 2.9: Unbridged repeat resolution low divergence simulation results. 
Genomes containing repeats of multiplicity two were simulated for very low divergence rates 
from 0.01% to 0.04%. Although our unbridged repeat resolution approach was not able to 
resolve these repeats, we still partially reconstructed the repeat copy sequence with high 
accuracy. *One simulation with repeat length 40 kb and divergence 0.04% did not generate 
repeat sequences for the unbridged repeat resolution tool to be applied so no results are shown. 
“Len,” “Cov” and “Div” are the length, coverage, and divergence rates of the simulations, 
respectively. “Rep” is the replicate. “#Corr Div Pos” and “#Conf Div Pos” are the number of 
correct confirmed divergent positions and the total number of confirmed divergent positions 
found by Flye. “Max Dist btw Pos” refers to the maximal distance between adjacent confirmed 
divergent positions. “Mean Rec Seq Len” and “Mean Rec Seq Acc” are the mean reconstructed 
sequence length and accuracy, respectively. 
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Len 
(kb) 

Cov 
(×) 

Div 
(%) 

Rep #Corr 
Div 
Pos 

#Conf 
Div 
Pos 

Max 
Dist btw 
Pos (kb) 

#Linking 
Reads 

Resolved Mean 
Rec Seq 
Len (kb) 

Mean 
Rec Seq 

Acc 

20 50 

0.05 A 7 2 19.4 0 NO 13 99.92% 
B 9 11 11.9 0 NO 10 99.87% 

0.15 A 32 34 3.8 20 YES 20 99.97% 
B 35 42 2.3 21 YES 20 99.94% 

0.45 A 103 113 0.9 252 YES 20 99.95% 
B 81 90 1.5 289 YES 20 99.97% 

40 50 

0.05 A 19 6 30.6 0 NO 8 99.87% 
B 18 4 34.8 0 NO 12 99.88% 

0.15 A 68 81 3.8 13 YES 40 99.95% 
B 64 75 2.9 35 YES 40 99.95% 

0.45 A 194 213 0.9 425 YES 40 99.96% 
B 169 189 1.5 411 YES 40 99.97% 

20 30 

0.05 A 7 4 17.4 0 NO 10 99.87% 
B 9 6 16.9 0 NO 6 99.82% 

0.15 A 32 36 7.6 2 NO 19 99.89% 
B 35 39 2.9 7 YES 18 99.91% 

0.45 A 103 117 0.9 30 YES 20 99.93% 
B 81 94 1.5 23 YES 20 99.89% 

40 30 

0.05 A 19 2 37.2 0 NO 5 99.85% 
B 18 4 36.7 0 NO 9 99.80% 

0.15 A 68 46 19.3 0 NO 23 99.90% 
B 64 9 36.9 0 NO 12 99.68% 

0.45 A 194 220 0.9 175 YES 40 99.91% 
B 169 192 1.0 208 YES 40 99.92% 

 

 

 

  

Table 2.10: Unbridged repeat resolution low coverage simulation results. 
Genomes containing repeats of multiplicity two were simulated for low coverage rates of 50× 
and 30×. The other conditions were kept the same as Table 2.8. Even at lower coverage, most 
repeats above 0.1% divergence were able to be resolved.  “Len,” “Cov” and “Div” are the 
length, coverage, and divergence rates of the simulations, respectively. “Rep” is the replicate. 
“#Corr Div Pos” and “#Conf Div Pos” are the number of correct confirmed divergent positions 
and the total number of confirmed divergent positions found by Flye. “Max Dist btw Pos” 
refers to the maximal distance between adjacent confirmed divergent positions. “Mean Rec Seq 
Len” and “Mean Rec Seq Acc” are the mean reconstructed sequence length and accuracy, 
respectively. 
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recent Flye version is freely available at http://github.com/fenderglass/Flye. 

 

Data Availability. 

All described datasets are publicly available through the corresponding repositories: 

• The supplementary files, including the assemblies generated by Flye, are available at 

https://doi.org/10.5281/zenodo.1143753/. 

• NCTC PacBio reads: http://www.sanger.ac.uk/resources/downloads/bacteria/nctc/.  

• PacBio metagenome dataset: 

https://github.com/PacificBiosciences/DevNet/wiki/Human_Microbiome_Project_MockB

_Shotgun/. 
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• PacBio C. elegans dataset: https://github.com/PacificBiosciences/DevNet/wiki/C.-

elegans-data-set/. 

• PacBio / ONT S. cerevisiae dataset: https://github.com/fg6/YeastStrainsStudy/. 

• The ONT reads from the HUMAN/HUMAN+ datasets are available at: 

https://github.com/nanopore-wgs-consortium/NA12878/. The matching Illumina reads are 

available as SRA project ERP00122. 

• The Canu HUMAN+ assembly was downloaded from: 

https://genomeinformatics.github.io/na12878update/. 

• MaSuRCA assemblies for HUMAN and HUMAN+ are available from: 

http://masurca.blogspot.com/. 
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CHAPTER 3: 

DiploidFlye: Haplotype Phasing of  

Long Read Assemblies Using Repeat Graphs 

 

3.1 Abstract 

 With the recent advancements in long single molecule sequencing reads, genome 

assemblers have been able to produce high-quality assemblies for large, complex organisms such 

as humans. However, these assemblers often fail to account for the increased complexity of these 

diploid genomes, either ignoring or collapsing the differences between heterozygous sequences. 

To address this problem, we developed diploidFlye, an extension of the Flye assembler that 

detects heterozygous variations and generates haplotype-aware contigs called haplocontigs. 

DiploidFlye utilizes the Flye repeat graph to simplify and accelerate this process, phasing each 

unique edge of the graph into two haplocontigs. We show that diploidFlye can accurately phase a 

large fraction of the Arabidopsis thaliana genome, producing correct haplocontigs for these 

regions. 

  



	

	 152 

3.2 Introduction 

 Recent experimental and computational advances in generating and analyzing single 

molecule sequencing (SMS) reads have improved the contiguity of de novo genome assemblies 

(Mostovoy et al. 2016). Long read SMS technologies (like Pacific Biosciences and Oxford 

Nanopore) have enabled the assembly of large, complex genomes, primarily because the long 

reads can span difficult repeat regions in these genomes (Chin et al. 2013; Koren et al. 2017). 

Although SMS assemblers have a better ability to resolve the difficult repeats found in complex 

genomes, they often neglect another feature of these larger genomes, namely, their diploidy. 

Most SMS assemblers fail to distinguish variations between the haplotypes of diploid 

genomes, usually generating mosaic contigs representing a mixture of haplotype alleles 

(Chaisson et al. 2015; Chin et al. 2016). Thus, the heterozygosity of these assemblies is unknown 

and variations in sequence, structure, and gene presence between homologous chromosomes are 

lost. This is a significant problem because haplotype information plays a crucial role in various 

areas such as linkage analysis, association studies, population genetics, and clinical genetics 

(Snyder et al. 2015; Brown et al. 2017). For example, if the haplotypes of a transplant donor’s 

human leukocyte antigen (HLA) region closely matches those of the recipient, then the transplant 

usually has improved outcomes (Crawford et al. 2005). 

We present diploidFlye, a haplotype-aware extension of the Flye assembler (Kolmogorov 

et al. in press) that generates haplocontigs (contigs whose sequence is derived from individual 

haplotypes) from the Flye assembly graph. DiploidFlye identifies variations between 

homologous chromosome sequences, separates reads into haplotypes based on these variations, 

and then constructs the sequence of the haplocontigs from these reads, repeating these steps in an 

iterative fashion. This procedure follows a similar approach to the Flye algorithm for resolving 



	

	 153 

unbridged repeats in the assembly graph laid out in Kolmogorov et al. (in press). DiploidFlye 

takes advantage of the repeat graph constructed by Flye to only focus on the unique (i.e. non-

repetitive) edges in the graph, which greatly simplifies the problem. These edges form the lion’s 

share of the assembly for most genomes and are much easier to phase than the difficult repetitive 

edges. Furthermore, diploidFlye is able to phase all of the unique edges of the assembly graph in 

parallel, greatly speeding up this procedure. 

Currently, the FALCON assembler along with FALCON-Unzip, the associated 

haplotype-resolving tool, is the most widely used SMS assembler for generating haplotype-aware 

contigs (Chin et al. 2016). FALCON follows the string graph approach, first building a string 

graph from reads, separating reads into haplotypes based on bubbles in the string graph caused 

by variations between homologous chromosomes, and finally assembling primary contigs and 

alternative haplotigs (contigs containing alternative haplotype alleles). However, it is difficult to 

distinguish repetitive regions from homologous chromosomes in the string graph approach. The 

variations that FALCON uses to construct alternative haplotigs could in reality represent 

differences between long repeats in the genome that are from the same haplotype. In this case, 

FALCON may be confounding variations in haplotypes with variations in repeats and outputting 

alternative repeat sequences from the same haplotype rather than alternative haplotigs. In 

contrast, Flye follows the de Bruijn graph (DBG) approach, so it constructs the repeat graph 

(also known as the assembly graph) that distinguishes between repetitive and non-repetitive 

edges. Thus, diploidFlye is able to use the assembly graph to avoid confounding variations in 

haplotypes with variations in repeats. Furthermore, by using the assembly graph, diploidFlye is 

able to separate the phasing procedure into hundreds of smaller, independent runs, greatly 

simplifying and accelerating the process in comparison to FALCON.  
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3.3 Methods 

Overview. 

 DiploidFlye considers all of the unique edges of the Flye assembly graph and attempts to 

phase each edge into two haplotypes in parallel. The process of phasing each unique edge occurs 

through several steps. First, tentative variant positions are identified based on the multiple 

alignment of all reads against the edge. Based on these tentative positions, regions with the 

highest divergence are found that act as anchor regions for constructing the two distinct 

haplocontigs for this edge. All reads that map to these anchor regions are assigned to one of the 

two haplotypes based on the variant positions, and then the prefix of each haplocontig sequence 

is constructed from the consensus of these reads. 

Now begins an iterative procedure to extend the haplocontig prefixes to the right, where 

new reads are recruited to each haplotype based on the variant positions in the prefix, the 

haplocontig prefixes are extended based on the consensus of these new reads, and then more 

reads are recruited to the haplotypes based on the extended prefix sequences, etc. This iterative 

procedure terminates when the rest of the edge has been phased or when we fail to continue 

extending the haplocontig sequences to the right. The same procedure also extends the 

haplocontig prefixes to the left in parallel. After processing all unique edges in the assembly 

graph, diploidFlye outputs a pair of haplocontigs for each edge that was successfully phased. 

Additionally, diploidFlye also outputs the sequences of all haploid edges present in the repeat 

graph after Flye’s repeat resolution procedures. 
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Identifying Heterozygous Positions. 

 Similar to the unbridged repeat resolution approach from the Flye assembler 

(Kolmogorov et al. in press), we identify heterozygous positions for each unique edge by first 

mapping reads to the edge and generating a multiple alignment of all reads that overlap with the 

unique edge. We proceed to calculate the substitution, deletion, and insertion rates of each 

column using the second most frequent nucleotide in the same way as Flye as well. If the 

mutation rate of a specific position exceeds certain thresholds (0.1, 0.2, and 0.3 for substitutions, 

deletions, and insertions, respectively), then that position is identified as a heterozygous position. 

If the rate of heterozygosity is too low (below 0.01%), then the edge is considered haploid and 

the algorithm halts for this edge. 

 

Anchoring the Haplocontig Sequences. 

 Before diploidFlye can begin to construct the haplocontig sequences, it must find a high 

confidence anchor region to start from. Regions that have higher heterozygosity usually indicate 

a larger structural variation such as a long indel, from which reads can be recruited to different 

haplotypes with higher confidence. To locate these regions, we split the edge into 1 kb non-

overlapping windows and simply find a window with the highest heterozygosity rate, which we 

call the distinguishing window. If the heterozygosity rate of the distinguishing window is below 

a certain threshold (1% by default), we have low confidence that we will be able to distinguish 

between the haplotype sequences using this window, so we simply stop and label the edge as 

unable to be phased. 

Figure 3.1 illustrates how we recruit reads to different haplotypes for the distinguishing 

window. We take the segments of all reads that map to and span the entire window, and for each 
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read segment we calculate its distance from the consensus sequence: The match rate of a read 

segment aligned to the consensus is the number of matches in the alignment divided by the total 

length of the alignment for this window, and the distance is the complement of the match rate 

(one minus the match rate). Then we cluster the reads into two groups (one for each haplotype), 

using agglomerative clustering on the distances of each read. Finally, we construct an initial 

haplocontig prefix for each group using the consensus of all of the reads in each group. 

 

 

 

Figure 3.1: An overview of how diploidFlye anchors the haplocontig sequences. 
(a) The edge is split into 1 kb windows and the distinguishing window with highest divergence 
is identified (shown in red). Then segments of reads that map to and span the distinguishing 
window are extracted. These read segments will be used as anchors for the initial haplocontig 
sequences. (b) The distance between each read segment and the edge consensus sequence is 
calculated, here represented by different symbols on the read segments. (c) A sample 
dendrogram produced by running agglomerative clustering using the distances of the read 
segments. Two distinct clusters can be seen in the dendrogram (green and red). (d) The two 
resulting groups of reads represent different haplotype sequences. The consensus of the reads 
in each group is used as the initial haplocontig prefix for each haplotype. (Note: the entire 
length of the reads in each group is used to generate the haplocontig prefixes rather than only 
the read segments as shown here). 
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Iteratively Extending Haplocontigs. 

 Now that we have haplocontig prefix sequences, we can attempt to extend them to the 

right (extension to the left occurs analogously, in parallel). This process is similar to the Flye 

algorithm for “moving forward” into the repeat (Kolmogorov et al. in press). Since we will 

utilize the heterozygous positions identified earlier, we want to evaluate their reliability first. At 

each position, we simply consider the symbol (A, C, G, T, -) occurring at that position for each 

haplocontig prefix. If the two symbols match, then that position is rejected as homozygous, but if 

they disagree, then that position becomes a confirmed heterozygous position. Positions that are 

not yet covered by the haplocontig prefixes remain tentative heterozygous positions; we only use 

confirmed heterozygous positions for read assignment. 

Next, we map all reads to the two haplocontig prefixes to construct a more accurate 

alignment. For each read, we compute its vote for each haplotype based on the number of 

confirmed heterozygous positions for which the symbol of the read agrees with the symbol of the 

haplocontig prefix (ignoring all other positions). The read is assigned to a haplotype if its vote 

for this haplotype is larger than its vote for the other haplotype by at least a minimum threshold 

(the default value is three), and it remains unassigned otherwise. 

Afterwards, we use all reads that have been assigned to a haplotype to construct a new 

consensus haplocontig sequence. Since the newly assigned reads come from the right end of the 

haplocontig, constructing a new haplocontig sequence with these reads corresponds to extending 

the haplocontig prefix to the right. Note that we only construct haplocontigs up to where the 

coverage of reads is at least 𝑚𝑖𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 in both haplocontigs to ensure that the generated 

consensus sequences are accurate. Furthermore, both haplocontigs are then truncated to the 

length of the shortest haplocontig to ensure consistency in comparison during read assignment. 
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The process of confirming heterozygous positions, assigning reads, and then constructing 

haplocontig consensus sequences is then repeated in an iterative fashion to extend the 

haplocontig further and further to the right. The iteration ends when the haplocontig sequences 

cannot extend any further, either when the end of the edge has been reached or when there is a 

large gap before the next confirmed heterozygous position. If the ends of the edge are reached 

after extending both to the right and to the left, then we have successfully phased the edge. As 

long as the haplocontig is above a minimum length (the default value is 5 kb), then diploidFlye 

will output whatever haplocontigs have been constructed for the edge regardless of if it has been 

entirely phased. 

 

Heterozygous Bulges Resolved by Flye. 

 When the heterozygosity rate is sufficiently high, sometimes heterozygous regions will 

be detected by the repeat graph and appear as bulges. If this happens, then diploid edges between 

bulges will appear to be repeats of multiplicity two (which we call simple repeats). In this case, 

Flye will perform its algorithms for resolving bridged repeats and simple unbridged repeats. If 

either of these two algorithms are successful, then the diploid edges will become haplotype-

separated unique edges, which is exactly what diploidFlye is trying to produce. Thus, diploidFlye 

does not attempt to phase these unique edges and simply includes them in the set of haplocontigs 

that it outputs. There may also be unique edges present in the repeat graph that do not appear as 

simple repeats. Since these unique edges also correspond to haplotype-specific sequences, 

diploidFlye will detect and output them as haplocontigs as well.  
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3.4 Results 

 To ensure that we have a gold standard for validation, we use a set of Arabidopsis 

thaliana datasets presented in the FALCON paper (Chin et al. 2016). These datasets are 

sequenced from a plant trio: an inbred Col-0 parent (called the COL0 dataset), an inbred Cvi-0 

parent (called the CVI0 dataset), and the F1 progeny resulting from a cross of these parents 

(called the F1 dataset). The total genome size is 135 Mb for each of these datasets, though the so-

called “golden path” reference length is only 120 Mb (Arabidopsis Genome Initiative 2000). 

Pacific Biosciences reads with P4-C2 sequencing chemistry were generated from these genomes 

at coverages of 115×, 110× and 140× for COL0, CVI0, and F1, respectively. The reads from 

both the COL0 and CVI0 datasets had an average length of ~6 kb and an N50 of ~9 kb. The 

reads from the F1 dataset had an average length of ~11.5 kb and an N50 of ~17.5 kb (see Chin et 

al. 2016 for further details). Table 3.1 presents the results of running Flye on each of these 

datasets.  

 

 
Dataset	 Len 

(Mb)	
#Contigs	 NG50 

(kb)	
Reference 
Coverage	

Reference        
% Identity	

#Mis	 NGA50 
(kb)	

COL0	 117	 472	 6,051	 97.0%	 99.91%	 251	 1,818	
CVI0	 118	 420	 6,290	 89.0%	 98.81%	 4977	 67	

F1	 137	 1246	 437	 96.8%	 99.17%	 3664	 137	

Table 3.1: Assembly statistics for Flye assemblies of the COL0, CVI0, and F1 datasets. 
The assembly quality was evaluated using the QUAST 5.0 tool (Mikheenko et al. 2018) with 
the TAIR10 genome (Lamesch et al. 2012) as a reference. The NG50 of an assembly is the 
largest possible number 𝐿, such that all contigs of length 𝐿 or longer cover at least 50% of the 
genome. Given an assembled set of contigs and a reference genome, the corrected assembly is 
formed after breaking each erroneously assembled contig at its breakpoints resulting in shorter 
contigs. The NGA50 of an assembly is defined as the NG50 of its corrected assembly 
(Mikheenko et al. 2018). “Len” is the total length assembled, “#Mis” is the number of 
misassemblies, and “Reference coverage” is the percentage of the total reference length found 
in the assembly. 
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These datasets were compared to the TAIR10 Arabidopsis reference genome (Lamesch et 

al. 2012), which was assembled from the Col-0 strain. Thus, the differences in NGA50 values 

and the number of misassemblies illustrate that the COL0 and CVI0 datasets are highly 

divergent, rather than indicating problems with the assembly. We calculated the divergence rate 

by aligning the COL0 and CVI0 assemblies to each other and dividing the total error count 

(number of substitutions, insertions and deletions) by the sum of the match count and error count 

(note that a long insertion or deletion counts as a single error). Using this method, we found that 

there is a high 1.7% divergence rate between the genomes. 

As expected, the quality of the F1 dataset exhibits intermediate values between the COL0 

and CVI0 datasets since it contains sequences from both. However, the presence of two highly 

divergent strains in a single assembly also caused difficulties for the assembler, which is shown 

by the greater number of contigs and the lower NG50 value for the F1 assembly. This effect can 

be seen more clearly when comparing the repeat graphs constructed during the Flye assembly for 

these three datasets. Table 3.2 presents some graph statistics for these repeat graphs (the graphs 

are too large and tangled to display here), illustrating that the F1 repeat graph is significantly 

larger and more disconnected than the COL0 and CVI0 graphs, likely due to its high 

heterozygosity. 
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Dataset # Nodes # Unique Edges # Repetitive 
Edges 

# Connected 
Components 

COL0 371 624 945 32 

CVI0 321 476 939 26 

F1 2003 2262 1409 343 
 

The high heterozygosity of the F1 dataset causes complications for the application of 

diploidFlye. Highly heterozygous regions may appear as “bulges” in the repeat graph, made up 

of edges that have roughly half the expected coverage of unique edges (see Figure 3.2 for an 

example).  

 

 

 

Table 3.2: Graph statistics for the COL0, CVI0, and F1 datasets. 
Basic graph statistics are presented for the repeat graphs constructed by Flye when assembling 
the COL0, CVI0, and F1 datasets. The total number of nodes, unique edges, repetitive edges 
and connected components are shown for each dataset. 
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These edges correspond to haplotype-resolved sequences and should simply be reported 

by diploidFlye as haplocontigs. Furthermore, these bulges often produce simple unbridged 

repeats of multiplicity two and so are resolved by the unbridged repeat resolution algorithm in 

Flye. Flye reports 55 simple unbridged repeats for the F1 repeat graph, 47 of which were 

resolved successfully (as opposed to only 4 simple unbridged repeats appearing in the COL0 and 

CVI0 repeat graphs). 

After both repeat resolution algorithms have finished, there exist 1104 unique edges in 

the F1 repeat graph (forward and reverse strands count as a single edge, and self-complementary 

Figure 3.2: An example of two bulges forming a simple repeat in the F1 repeat graph. 
A simple repeat is formed in the graph (with ID -816) when two bulges appear in the graph. 
The average coverage of the dataset is around 120× so the bulges represent haploid edges 
formed by heterozygous variants. This simple repeat will be processed by Flye’s algorithm for 
resolving simple unbridged repeats. 



	

	 163 

edges were omitted for simplicity). These edges sum to a total length of 122 Mb, 90% of the 

expected total length of the Arabidopsis thaliana genome (135 Mb). For the purposes of this 

dissertation, we will confine our attention to only 541 edges (with total length 66 Mb) which will 

be sufficient to demonstrate the efficacy of diploidFlye. Of these edges, 238 have low coverage 

corresponding to haploid edges, which accounts for 2.7 Mb of sequence (a simple threshold of 

80× was used, equal to two-thirds of the average aligned coverage of 120×, based on an 

apparent separation in the distribution of edge coverages). DiploidFlye thus will not attempt to 

phase these edges, simply outputting them as haplocontigs. 

DiploidFlye was run on the remaining 303 edges. For 89 of these edges, diploidFlye was 

either unable to find a distinguishing window with sufficient heterozygosity to cluster reads or 

the clustered reads had insufficient coverage to generate reliable haplocontig prefixes. Initial 

reads were clustered and haplocontig prefix sequences were generated for the remaining 214 

edges. Figure 3.3 presents the cluster dendrogram of an edge where diploidFlye successfully 

clustered the 101 initial read segments from the distinguishing window into a group with 49 

reads (green) and a group with 52 reads (red). 
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For these remaining 214 edges, diploidFlye attempted to iteratively extend the 

haplocontigs to the left and to the right by confirming heterozygous positions, assigning reads to 

haplotypes, and constructing consensus sequences as described in the Methods section. Figure 

3.4 shows the lengths of all haplocontigs that diploidFlye generated relative to the total lengths 

of each edge (as reported by the Flye repeat graph). DiploidFlye produced haplocontigs of at 

least half the edge length for 186 edges (87% of the remaining edges), haplocontigs of at least 

90% of the edge length for 151 edges (71%), and haplocontigs for the entire edge (≥99%) for 

Figure 3.3: An example of a cluster dendrogram generated by performing agglomerative 
clustering on an edge in the F1 repeat graph. 
This cluster dendrogram was generated while running agglomerative clustering on edge 1130 
of the repeat graph from the F1 assembly. The 101 initial read segments are clustered into a 
group with 49 reads (green) and a group with 52 reads (red). The long length of the blue edges 
indicates that the two clusters (green and red) are well separated. 
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106 edges (50%). However, the haplocontigs of the longest edges failed to extend to the end of 

the edge (as shown on the right end of Figure 3.4), so the total haplocontig sequence length only 

constitutes 59% of the total edge sequence length. 

 

 

 

 

In order to evaluate the performance of diploidFlye, we utilized the Flye assemblies of 

the parental COL0 and CVI0 datasets. We refer to 𝑘-mers that are present in the COL0 assembly 

but absent in the CVI0 assembly as COL0 𝑘-mers, and similarly, 𝑘-mers that occur in the CVI0 

assembly but not in the COL0 one are CVI0 𝑘-mers (we arbitrarily select 𝑘 = 25 for this test). 

For each phased haplocontig generated by diploidFlye, we count the number of COL0 𝑘-mers 

and the number of CVI0 𝑘-mers. 

Figure 3.4: Haplocontig length versus total edge length. 
A plot of the mean haplocontig lengths generated by diploidFlye and the total edge length for 
each of the 214 edges for which diploidFlye was able to produce haplocontig sequences. Note 
that the 𝑦-axis is on a log scale, indicating that the haplocontigs generated for the longest edges 
were significantly shorter than the edge length. 
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Figure 3.5 presents a plot of the proportion of COL0 𝑘-mers vs the proportion of CVI0 𝑘-

mers for every phased haplocontig. If the haplocontigs correctly correspond to specific 

haplotypes, then we expect the points to occur close to the 𝑥-axis or close to the 𝑦-axis. For the 

purposes of evaluation, a threshold of two-thirds was chosen to distinguish between haplocontigs 

that were correctly phased and those that were not (as shown by the dotted blue lines). Two 

haplocontigs are generated for each edge: If either of its haplocontigs falls below this threshold 

(lies between the dotted blue lines), then that edge is considered incorrectly phased and both of 

its edges are colored green in Figure 3.5. Based on these criteria, 193 edges (90%) were correctly 

phased by diploidFlye. 
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 The correctly phased haplocontigs sum to a total length of 27.7 Mb, 59% of the total 

length of these 193 edges. The incorrectly phased haplocontigs sum to a total length of 3.0 Mb, 

69% of the total length of the 21 edges they were generated from. Overall, combining the 

correctly phased haplocontigs with the haploid edges detected by diploidFlye, we obtained 

correct haplocontig sequences for 431 out of 541 edges considered (80%) with a combined 

length of 30.4 Mb out of 66 Mb (46%). 

 

  

Figure 3.5: The counts of COL0 𝒌-mers vs CVI0 𝒌-mers for all haplocontigs with 𝒌 = 𝟐𝟓. 
A plot of the COL0 𝑘-mers and the CVI0 𝑘-mers for each haplocontig produced by diploidFlye 
with 𝑘 = 25. Each point represents a single haplocontig, so each edge corresponds to two 
points, one for each of its haplocontigs. The dotted blue lines indicate the threshold (two-thirds) 
used to determine whether or not a haplocontig was correctly phased. Incorrectly phased 
haplocontigs that lie between the blue lines are colored green. Haplocontigs generated from the 
same edge as incorrectly phased haplocontigs are also colored green. 
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3.5 Discussion 

 This chapter presents a novel method for producing haplocontigs (i.e. haplotype-specific 

contigs) from the assembly of a genome. DiploidFlye relies on the Flye repeat graph to 

distinguish between unique and repetitive edges of the assembly to simplify the problem, and 

then it attempts to phase each unique edge by identifying heterozygous positions, assigning reads 

to haplotypes, and constructing haplocontig sequences in an iterative fashion. 

It is important for diploidFlye to only consider unique edges in the Flye repeat graph so 

that it does not confound variations between repetitive regions of the genome with heterozygous 

positions. However, the classification of unique and repetitive edges in the repeat graph is a 

difficult problem due to high variance in coverage and imprecision in detecting overlaps between 

long reads. Furthermore, highly heterozygous regions may also split unique edges into pairs of 

separate haploid unique edges, causing some truly unique edges to be classified as repetitive. 

Flye will resolve many of these misclassified edges using its bridged and unbridged repeat 

resolution procedures (as seen in the 47 simple unbridged repeats in the F1 repeat graph resolved 

by Flye), but some may still be erroneously labeled repetitive. Currently, diploidFlye utilizes a 

makeshift strategy to distinguish between haploid and diploid unique edges based on coverage 

and heterozygosity rate. However, a comprehensive approach to standardize the classification of 

unique edges and distinguish between haploid and diploid edges would improve diploidFlye. 

Currently, this chapter simply establishes that diploidFlye’s novel approach was able to 

successfully phase 431 out of 541 edges, 80% of the edges that were considered, making up 30.4 

Mb of the 66 Mb considered. If this proportion holds true for the rest of the F1 dataset, then we 

can expect 883 edges and 63 Mb of the genome to be phased by diploidFlye. In comparison, 
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FALCON is able to produce primary contigs of total length 140 Mb and alternative haplotigs 

with total length 105 Mb for the F1 dataset. 

Thus far, diploidFlye is not yet able to produce haplocontigs at the same scale as 

FALCON. Although most of the edges considered were correctly phased, we still failed to 

produce haplocontigs for the majority of the sequence length considered because haploid edges 

tend to be short and the generated haplocontigs failed to span entire edges. The results could thus 

be improved in two ways: by generating correct haplocontigs for more edges and by extending 

the length of haplocontigs for correctly phased edges. The former can be addressed by modifying 

the criteria used to find distinguishing windows, cluster initial reads, and utilize heterozygous 

positions. The latter can be addressed by confirming more heterozygous positions, allowing a 

greater number of iterations, or modifying the stopping criteria when extending haplocontigs. 

Additionally, diploidFlye currently takes a longer time to run than expected, mostly due 

to the bottleneck of iteratively polishing very long, unique edges (polishing is often the 

bottleneck of Flye assemblies). This can be addressed by further optimizing the speed of 

generating polished consensus sequences. 

Furthermore, the range of heterozygosity rates at which diploidFlye can be applied must 

be further explored, especially its applicability to haplotyping the human genome. Nevertheless, 

diploidFlye is already able to phase 80% of the edges considered, producing haplocontigs for a 

significant fraction of the assembly. Therefore in its current state, diploidFlye already serves an 

important role as an extension to the Flye assembler by accounting for the heterozygosity of 

diploid genomes and producing suitable haplocontigs to improve their assemblies. 
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CONCLUSION 

 De novo genome assemblies have greatly improved with the development of long single 

molecule sequencing (SMS) reads and other technologies such as 10X genomics, BioNano, and 

Hi-C sequencing techniques (Li et al. 2017; Mostovoy et al. 2016). Larger and more complex 

genomes can now be assembled almost at the resolution of entire chromosomes (Pendleton et al. 

2015). However, there are still two main challenges hindering the complete assembly of complex 

genomes: repetitive regions and variations between similar sequences, such as variations 

between different instances of a repeat or between parental haplotypes (Chaisson et al. 2015). 

This dissertation has focused on developing new methods to address both of these challenges. 

 First of all, we limited our attention to only long SMS reads because they greatly improve 

the scale of the repeats that are resolved in the course of assembly. Although repeats that are 

longer than the average length of a read still remain unresolved, a large proportion of them that 

are shorter than 1-2 kb are easily resolved by simply using SMS reads. Next, we developed a de 

Bruijn graph (DBG) assembler for SMS reads because the DBG approach naturally reveals the 

repetitive regions in the course of assembly, whereas the overlap-layout-consensus approach 

does not. Thus, we developed ABruijn, which modifies the DBG approach by building an A-

Bruijn graph from only frequent 𝑘-mers in the reads rather than all 𝑘-mers as in the DBG. We 

showed that ABruijn performs especially well on difficult repetitive genomes such as 

Xanthomonas oryzae compared to other OLC assemblers. However, complex repetitive regions 

especially in large genomes also turned out to be a major computational bottleneck for ABruijn, 

limiting its scalability, leading us to develop Flye. 

 As described in Chapter 2, Flye avoids the difficulty of considering all possible paths 

through repetitive regions by greedily choosing a path and generating disjointigs. Fortunately, 
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these disjointigs can be used to construct an accurate repeat graph, which can then be used to 

finish the assembly process and produce contigs. The remarkable thing about the repeat graph is 

that it provides a visualization of all remaining unresolved repeats in the genome, laying out 

everything that needs to be done to solve the first challenge of resolving long repetitive regions. 

This visualization is incredibly useful not only for understanding the current state of the 

assembly but also for determining the best method for proceeding to “finish” the assembly. Flye 

then proceeds to exploit the repeat graph to improve the assembly as much as possible, first 

resolving any bridged repeats using bridging reads, and then resolving unbridged simple repeats 

using variations between repeats. Using these methods, Flye is able to produce more contiguous 

assemblies of the human genome than other state-of-the-art assemblers such as Canu and 

MaSuRCA. To further improve the assembly, the repeat graph generated by Flye can be used to 

target the remaining unresolved repeats using other technologies such as 10X genomics, 

BioNano and Hi-C (Li et al. 2017). 

 The second challenge hindering genome assembly is variations between similar 

sequences. These variations include differences between instances of the same repeat (e.g. 

polymorphisms in segmental duplications), differences in how many times a sequence is 

repeated (the copy number), and differences between haplotypes of diploid or polyploid 

organisms (heterozygosity) (Chaisson et al. 2015). Due to the similarity of the sequences, these 

variations are often undetected or collapsed into consensus sequences that do not represent any 

single genomic sequence, and thus pose a major source of (often undetected) error in genome 

assembly (Chaisson et al. 2015). Flye attempts to address this issue in the case of simple 

unbridged repeats of multiplicity two. The Flye approach for resolving these unbridged repeats 

represents the first method for using the variation between repeats to resolve long repeats, and it 
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also generates a distinct sequence for each instance of the repeat. Thus, if Flye is able to resolve 

unbridged repeats, it produces output sequences that are sensitive to the small variations between 

repeat copies, addressing this challenge, albeit only for this limited case. 

 In Chapter 3, we discussed how diploidFlye also attempts to address the challenge of 

variations between similar sequences by producing haplocontigs that are sensitive to the 

differences between the parental haplotypes. To this end, diploidFlye utilizes the Flye repeat 

graph to simplify and parallelize the problem of phasing haplotypes. The unique edges in the 

graph represent regions where variation in the sequence must be due to heterozygosity and thus 

can easily be phased, so diploidFlye focuses on these regions. Of course, diploidFlye only 

addresses the problem for these relatively simple regions. Further work is required to deal with 

the more difficult case of phasing repetitive regions, in which case the variations due to 

heterozygosity must be distinguished from the variations between repeat copies.  

Despite the advances made by ABruijn, Flye, and diploidFlye, there are still many 

obstacles to overcome regarding repetitive regions and variations between similar sequences. 

Very long, identical repeats still cannot be resolved by Flye and must be spanned by technologies 

that produce longer reads. More sophisticated algorithms must be developed to resolve and 

reconstruct more complex repetitive regions such as long tandem repeats and mosaic repeats of 

higher multiplicity; these reconstructions must be sensitive to variations between repeat copies 

and copy number. New algorithms are also needed to address these difficulties for diploid or 

other polyploid organisms such as plants. Thus, despite the progress made by recent 

developments in sequencing technologies and assembly algorithms, there is still a long way to go 

before entire finished genomes can be assembled de novo, but each technological advance and 

every new algorithm brings us a little closer to that goal.   
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