
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Genome Assembly of Long Error-Prone Reads Using De Bruijn Graphs and Repeat Graphs

Permalink
https://escholarship.org/uc/item/62v8d30p

Author
Yuan, Jeffrey

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/62v8d30p
https://escholarship.org
http://www.cdlib.org/

	

UNIVERSITY OF CALIFORNIA SAN DIEGO

Genome Assembly of Long Error-Prone Reads Using De Bruijn Graphs and Repeat Graphs

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Bioinformatics and Systems Biology

by

Jeffrey Yuan

Committee in charge:

 Professor Pavel Pevzner, Chair
 Professor Bing Ren, Co-Chair
 Professor Vineet Bafna
 Professor Theresa Gaasterland
 Professor Siavash Mirarab

2019

	

Copyright

Jeffrey Yuan, 2019

All rights reserved.

	 iii

The Dissertation of Jeffrey Yuan is approved, and it is acceptable in quality and form for
publication on microfilm and electronically:

Co-Chair

Chair

University of California San Diego

2019

	 iv

EPIGRAPH

In theory, there is no difference
between theory and practice.

In practice, there is.

Benjamin Brewster

	 v

TABLE OF CONTENTS

SIGNATURE PAGE .. iii

EPIGRAPH ... iv

TABLE OF CONTENTS ... v

LIST OF FIGURES ... vii

LIST OF TABLES .. ix

ACKNOWLEDGEMENTS .. x

VITA .. xii

ABSTRACT OF THE DISSERTATION ... xiii

INTRODUCTION .. 1

References ... 6

CHAPTER 1: Assembly of Long Error-Prone Reads Using De Bruijn Graphs 9

1.1 Abstract ... 9

1.2 Significance Statement .. 9

1.3 Introduction .. 10

1.4 Methods.. 12

1.4.1 The Key Idea of the ABruijn Algorithm ... 12

1.4.2 Assembling Long Error-Prone Reads ... 17

1.4.3 Correcting Errors in the Draft Genome .. 36

1.5 Results .. 51

1.6 Discussion .. 62

1.7 Additional Information .. 63

1.8 Acknowledgements .. 64

	 vi

1.9 References .. 65

CHAPTER 2: Assembly of Long Error-Prone Reads Using Repeat Graphs 70

2.1 Abstract .. 70

2.2 Introduction .. 71

2.3 Results .. 73

2.4 Discussion .. 102

2.5 Methods.. 104

2.6 Additional Information .. 144

2.7 Acknowledgements .. 146

2.8 References .. 147

CHAPTER 3: DiploidFlye: Haplotype Phasing of Long Read Assemblies Using Repeat Graphs...
.. 151

3.1 Abstract .. 151

3.2 Introduction .. 152

3.3 Methods.. 154

3.4 Results .. 159

3.5 Discussion .. 168

3.6 Acknowledgements .. 170

3.7 References .. 171

CONCLUSION .. 173

References .. 176

	 vii

LIST OF FIGURES

Figure 1.1: Constructing the de Bruijn graph (Left) and the A-Bruijn graph (Right) for a circular
𝑆𝑡𝑟𝑖𝑛𝑔	 = 	𝐶𝐴𝑇𝐶𝐴𝐺𝐴𝑇𝐴𝐺𝐺𝐴. ... 14

Figure 1.2: A histogram of the number of 15-mers vs frequency for the ECOLI dataset. 18

Figure 1.3: The pseudocode for hybridSPAdes. ... 20

Figure 1.4: The starting three lines of the pseudocode for longSPAdes. 21

Figure 1.5: A bubble in the A-Bruijn graph of (15, 7)-mers for the ECOLI dataset. 22

Figure 1.6: The pseudocode for ABruijn. ... 23

Figure 1.7: An example of a common jump-subpath from the ECOLI dataset. 25

Figure 1.8: Path support and most-consistent paths. ... 32

Figure 1.9: Support graph examples revealing the absence and presence of repeats. 35

Figure 1.10: Decomposing a multiple alignment into necklaces. ... 38

Figure 1.11: A histogram of necklace lengths. ... 40

Figure 1.12: Match and insertion rate distribution for a simulated corrupted genome. 41

Figure 1.13: Examples of read well-aligned to homonucleotide regions. 45

Figure 1.14: ORF-length histograms for correct and incorrect positions. 50

Figure 1.15: A comparison between ABruijn and CANU assemblies for B. neritina. 58

Figure 2.1: An outline of the Flye assembler workflow. .. 73

Figure 2.2: Constructing the approximate repeat graph from local self-alignments. 75

Figure 2.3: Resolving unbridged repeats. ... 77

Figure 2.4: A comparison of Flye and HINGE assembly graphs on bacterial genomes from the
BACTERIA dataset. ... 80

Figure 2.5: The assembly graph of the YEAST-ONT dataset. ... 88

Figure 2.6: The assembly graph of the WORM dataset. ... 90

	 viii

Figure 2.7: Dot-plots showing the alignment of reads against the Flye assembly, the Miniasm
assembly and the reference C. elegans genome. ... 91

Figure 2.8: The distribution of the lengths and complexities of all SDs from the Flye assembly of
the HUMAN dataset (Right) and a detailed example of one such SD (Left). 97

Figure 2.9: The distribution of lengths of ultra-long SDs (longer than 50 kb) for the assembly
graph constructed for the HUMAN+ dataset (left) and the lengths of all other repeat edges
(right). ... 98

Figure 2.10: Constructing the repeat plot of a tour in the graph (Left) and constructing the repeat
graph from a repeat plot (Right). .. 101

Figure 2.11: Multiple self-alignment defined by the partitioning of A0C1T2G3G4C5T6G7A8C9T10
into six subsets (left) and the corresponding dot-plot (right). ... 111

Figure 2.12: Inconsistent pairwise alignments result in an “incorrect” repeat graph (as compared
to the graph shown in Figure 2.2), thus necessitating an extension of the set of alignment
endpoints. .. 113

Figure 2.13: The pseudocode for the FlyeWalk algorithm. .. 119

Figure 2.14: Separating variable and non-variable positions within repeats using substitution,
deletion, and insertion rates computed for the REP repeat in the EC9964 dataset. 132

Figure 3.1: An overview of how diploidFlye anchors the haplocontig sequences. 156

Figure 3.2: An example of two bulges forming a simple repeat in the F1 repeat graph. 162

Figure 3.3: An example of a cluster dendrogram generated by performing agglomerative
clustering on an edge in the F1 repeat graph. ... 164

Figure 3.4: Haplocontig length versus total edge length. ... 165

Figure 3.5: The counts of COL0 𝑘-mers vs CVI0 𝑘-mers for all haplocontigs with 𝑘 = 25.... 167

	 ix

LIST OF TABLES

Table 1.1: The empirical estimates of 𝑃𝑟1(𝑘, 𝑡, 𝑗𝑢𝑚𝑝) and 𝑃𝑟9(𝑘, 𝑡, 𝑗𝑢𝑚𝑝) under different
choices of parameters 𝑘, 𝑡, and 𝑗𝑢𝑚𝑝. ... 29

Table 1.2: Match, mismatch, insertion, and deletion rates for various Pacific Biosciences
protocols. ... 43

Table 1.3: AAAAAA and AAAAAAA error distributions for ECOLI. 46

Table 1.4: AAAA and AAAAA error distributions for ECOLInano. ... 47

Table 1.5: Total errors remaining for CANU and ABruijn assemblies. 54

Table 1.6: Analysis of errors in down-sampled datasets. ... 55

Table 2.1: A comparison of the Flye and HINGE assemblies of the bacterial genomes in the
BACTERIA dataset. ... 81

Table 2.2: Information about the Flye and Canu assemblies for the METAGENOME dataset... 83

Table 2.3: Analysis of the separate assemblies of 17 genomes from the METAGENOME dataset.
.. 85

Table 2.4: Assembly statistics for the YEAST, WORM, HUMAN and HUMAN+ datasets
generated using QUAST 5.0. .. 87

Table 2.5: Running time and memory usage of various SMS assemblers. 95

Table 2.6: Resolving unbridged repeats of multiplicity two in the assembly graph of the
HUMAN+ dataset. .. 99

Table 2.7: Resolving unbridged repeats of multiplicity two in genomes from the BACTERIA
dataset. .. 137

Table 2.8: Unbridged repeat resolution simulation results. .. 141

Table 2.9: Unbridged repeat resolution low divergence simulation results. 142

Table 2.10: Unbridged repeat resolution low coverage simulation results. 143

Table 3.1: Assembly statistics for Flye assemblies of the COL0, CVI0, and F1 datasets. 159

Table 3.2: Graph statistics for the COL0, CVI0, and F1 datasets. ... 161

	 x

ACKNOWLEDGEMENTS

 I would like to thank my advisor, Professor Pavel Pevzner for his indispensable support

and guidance throughout my graduate career. His understanding of bioinformatics, his

prominence in the bioinformatics world, and his intuition for the next big research topic are only

matched by his kindness, his hospitality, and his dedication to his teaching and to his students.

 I would like to thank Max Shen, Yu Lin, Misha Kolmogorov, Anton Bankevich, and

Andrey Bzikadze for the many discussions we had, the assistance they gave, and the generally

collaborative environment we were able to foster as we worked on our independent projects.

 I would also like to acknowledge Professor Bing Ren and his former student Siddarth

Selveraj for their support and assistance in my NSF Graduate Research Fellowship application in

Fall 2013, despite my having only joined UC San Diego a few months prior.

 I would also like to thank the many friends that I have made in my time at UC San Diego,

whether I met them through the Bioinformatics & Systems Biology Program, Taiwanese

American Professionals, or elsewhere. They gave me encouragement and support when I needed

it.

 I would also like to thank Professor Daniel Weinreich, my Honors Thesis advisor at

Brown University, for inspiring me with his love for research and showing me that having

passion for your work and keeping good company are the secrets to living a happy life.

 I would also like to thank my family including my parents and my brother for believing

in me and providing me support in various ways.

 Chapter 1, in full, is a reformatted reprint of “Assembly of long error-prone reads using

de Bruijn graphs” as it appears in Proceedings of the National Academy of Sciences 2016 by Yu

Lin, Jeffrey Yuan, Mikhail Kolmogorov, Max W. Shen, Mark Chaisson, and Pavel A. Pevzner,

	 xi

with some minor revisions and edits for improved readability. The dissertation author was a

primary author of this material.

 Chapter 2, in full, has been accepted for publication as “Assembly of long error-prone

reads using repeat graphs” as it will appear in Nature Biotechnology by Mikhail Kolmogorov,

Jeffrey Yuan, Yu Lin, and Pavel A. Pevzner. The material has been reformatted with some minor

revisions and edits for improved readability. The dissertation author was a primary author of this

material.

 Chapter 3, in full, is currently being prepared for submission for publication as

“DiploidFlye: haplotype phasing of long read assemblies using repeat graphs” by Jeffrey Yuan

and Pavel A. Pevzner. The dissertation author is a primary author of this material.

	 xii

VITA

2007-2011 Brown University
 Bachelor of Science, Computational Biology, Magna cum Laude with Honors

2011-2012 Japan Exchange & Teaching Program
 Assistant Language Teacher, Yokote City, Akita Prefecture, Japan

2013-2019 University of California San Diego
 Doctor of Philosophy, Bioinformatics & Systems Biology

PUBLICATIONS

Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P.A. Assembly of long error-prone reads using
repeat graphs. Nature Biotechnology. In press.

Lin, Y.*, Yuan, J.*, Kolmogorov, M.*, Shen, M.W., Chaisson, M. & Pevzner, P.A. Assembly of
long error-prone reads using de Bruijn graphs. Proceedings of the National Academy of Sciences
USA. 2016; 113 (52): E8396-E8405.

Brandler, W.M.*, Antaki, D.*, Gujral, M.*, Noor, A., Rosanio, G., Chapman, T.R., Barrera, D.J.,
Lin, G.N., Malhotra, D., Watts, A.C., Wong, L.C., Estabillo, J.A., Gadomski, T.E., Hong, O.,
Fajardo, K.V.F., Bhandari, A., Owen, R., Baughn, M., Yuan, J., Solomon, T., Moyzis, A.G.,
Maile, M.S., Sanders, S.J., Reiner, G.E., Vaux, K.K., Strom, C.M., Zhang, K., Muotri, A.R.,
Akshoomoff, N., Leal, S.M., Pierce, K., Courchesne, E., Iakoucheva, L.M., Corsello, C. & Sebat,
J. Frequency and complexity of de novo structural mutation in autism. American Journal of
Human Genetics. 2016; 98 (4): 667-679.

Baker, C.W.*, Miller, C.R.*, Thaweethai, T., Yuan, J., Baker, M.H., Joyce, P. & Weinreich,
D.M. Genetically determined variation in lysis time variance in the bacteriophage X174. G3:
Genes|Genomes|Genetics. 2016; 6 (4): 939-955.

*These authors contributed equally to this work

	 xiii

ABSTRACT OF THE DISSERTATION

Genome Assembly of Long Error-Prone Reads Using De Bruijn Graphs and Repeat Graphs

by

Jeffrey Yuan

Doctor of Philosophy in Bioinformatics & Systems Biology

University of California San Diego, 2019

Professor Pavel Pevzner, Chair
Professor Bing Ren, Co-Chair

 Genome assembly is the problem of reconstructing genomes from DNA sequence reads.

Even the best assemblies are often fragmented due to the presence of repetitive regions in the

genome. Using long, single molecule sequencing (SMS) reads can improve the contiguity of

these assemblies, but still fail to resolve long repetitive regions. Furthermore, the high error rate

of SMS reads poses additional difficulties for assembly, raising the question of whether the

popular de Bruijn graph (DBG) approach to genome assembly can be applied to SMS reads.

	 xiv

First, I present ABruijn, the first genome assembler for SMS reads that follows the DBG

approach. By modifying the DBG into an A-Bruijn graph, ABruijn is able to produce very

polished assemblies for simple genomes such as E. coli and S. cerevisiae. However, ABruijn has

some difficulties with processing very repetitive regions and very large genomes.

To address ABruijn’s shortcomings, I helped to develop Flye, a DBG-based assembler

for SMS reads that can be applied to large mammalian genomes such as the human genome. Flye

features a much more efficient method for resolving highly repetitive regions and also generates

a repeat graph, which offers a compact representation of all of the repeats in a genome. Flye

further performs steps to resolve those repeats and improve the quality of the assembly, resulting

in a more contiguous assembly of the human genome compared to other state-of-the-art

assemblers.

Finally, I present diploidFlye, a haplotype-aware extension of Flye that is able to phase

the contigs for assemblies of diploid organisms. diploidFlye takes advantage of the repeat graph

generated by Flye to efficiently identify heterozygous variants and generate haplocontigs

(haplotype-specific contigs) from the reads.

Overall, this dissertation presents several novel algorithms for improving the

performance of the de novo genome assembly of long SMS reads, establishing the efficacy of the

DBG approach even for error-prone SMS reads and developing a state-of-the-art assembler

known as Flye with many novel features for improving the overall assembly.

	

	 1

INTRODUCTION

 With the development of new sequencing technologies over the last two decades, there

has been an explosion of sequencing data generated at lower and lower costs (Verma et al. 2016).

In order to utilize this sequencing data, it must be either compared to a reference sequence—a

method called resequencing—or assembled into longer sequences such as genomes, known as de

novo genome assembly. Although resequencing is by far the dominant method, it is not possible

without a reference sequence available and may perform poorly when there are significant

variations between the query and the reference sequence or when the query maps to multiple

repetitive loci in the reference (Chaisson et al. 2015; Mills et al. 2011). In contrast, de novo

genome assembly does not require a reference sequence and would accurately capture any

variations in the sequence data. In fact, genome assembly is often utilized to capture large

structural variations, to reconstruct highly mutated sequences such as in cancer, or to discover

unknown or very diverse datasets such as when sequencing new organisms or complex

metagenomics datasets (Chaisson et al. 2015; Raphael 2012; Saxena et al. 2014). However,

genome assembly is a much more difficult task than resequencing, requiring sophisticated

algorithms, significant computational resources and a long runtime for large genomes.

Furthermore, existing methods still often perform poorly, resulting in very fragmented

assemblies or missing regions of the genome entirely (Chaisson et al. 2015; Raphael 2012).

Thus, new algorithms that can improve on both the quality of the assembly and the time and

memory cost for the assembly are required to improve on existing genome assembly techniques,

which is the focus of this dissertation.

 Most sequencing projects utilize Next Generation Sequencing (NGS) platforms, which

have rapidly increased the throughput and lowered the cost of sequencing by leveraging

	

	 2

massively parallel sequencing techniques. These NGS platforms include Roche/454

pyrosequencing, Applied Biosciences SOLiD sequencing by ligation, Ion Torrent sequencing,

and Illumina sequencing-by-synthesis (Harrington et al. 2013; Shendure et al. 2011; Verma et al.

2016). However, the DNA sequence outputs of these technologies, known as reads, are all short

in length, between 100 – 400 base-pairs (bp) (Van Dijk et al. 2014). These short reads pose a

problem for genome assembly because assemblies are usually limited by the length of genomic

repetitive regions that can be resolved, which in turn depends on the read length; short read

assemblies tend to result in very fragmented assemblies due to the presence of many repeats in

the genome that are longer than the read length (Chaisson et al. 2015). Thus, one way to improve

the quality of assembly is to start with longer reads.

In the past decade, single molecule sequencing (SMS) techniques have been developed

that generate longer reads but have higher error rates. The two main platforms are Pacific

Biosciences’ Single Molecule Real-Time sequencing technology and Oxford Nanopore

Technology’s nanopore sequencing. Currently, SMS reads are on average longer than 10,000 bp

but have very high error rates even exceeding 10% (Jain et al. 2016; Rhoads et al. 2015).

Although these long reads would indeed be able to resolve longer repeats and thus improve

genome assembly, the high error rate makes the assembly process more challenging.

Prior to the advent of SMS reads, there were two main paradigms for genome assembly:

the Overlap-Layout-Consensus (OLC) approach and the de Bruijn graph (DBG) approach (Li et

al. 2012). These approaches offer alternative strategies for performing assembly. The OLC

approach finds all overlaps between reads, then it builds a network of overlapping reads called

the overlap graph to find the structure of the genome, and then constructs the sequence by taking

the consensus of the reads (Li et al. 2012; Pevzner et al. 2001). The DBG approach, on the other

	

	 3

hand, first breaks every read into smaller segments of length 𝑘 called 𝑘-mers, then glues together

identical 𝑘-mers to build a large network called the de Bruijn graph, and finally finds the

sequence of the genome by tracing a path in the graph (Pevzner et al. 2001; Sohn et al. 2016).

Modern NGS short-read assemblers such as the Celera Assembler (Myers et al. 2000),

the JR-Assembler (Chu et al. 2013), and SGA (Simpson et al. 2012) utilize the OLC approach;

however, the DBG approach is much more popular, implemented by many more assemblers such

as Velvet (Zerbino et al. 2008), ABySS (Simpson et al. 2009), AllPaths (Gnerre et al. 2011),

SOAPdenovo (Luo et al. 2012), and SPAdes (Bankevich et al. 2012), to name a few. Therefore,

the DBG approach must offer some advantages over the OLC approach. Indeed, the de Bruijn

graph is simpler and less computationally expensive to construct than the overlap graph (exact 𝑘-

mer matching is significantly easier than computing all pairwise alignments of reads); finding the

path corresponding to the genome is easier in a DBG than in an overlap graph (since the genome

appears as an Eulerian path rather than a Hamiltonian path); and the DBG offers an accurate

representation of the repeat structure and complexity of the genome that the OLC approach does

not (Kamath et al. 2017; Pevzner et al. 2004; Sohn et al. 2016).

Nevertheless, when it comes to long SMS reads, all existing assemblers, such as HGAP

(Chin et al. 2013), FALCON (Chin et al. 2016) and Canu (Koren et al. 2017) rely on the OLC

approach. This may be because the increased length of SMS reads renders the OLC approach

more intuitive since longer reads lead to longer overlaps, but then these assemblers miss out on

the advantages of the DBG approach, which has always been rather counter-intuitive. It may also

be due to the commonly held belief that the high error rate of SMS reads renders the DBG

approach infeasible, since the de Bruijn graph constructed from SMS reads would become very

tangled by the presence of so many erroneous 𝑘-mers. However, Pevzner et al. 2004 showed that

	

	 4

the presence of any similarity between reads is enough to build an A-Bruijn graph, which can be

used for genome assembly in the same way as a de Bruijn graph. The following chapters of this

dissertation discuss how to apply the DBG approach for error-prone SMS reads and illustrate that

the advantages offered by the DBG approach leads to improved genome assemblies.

The first chapter of this dissertation presents the ABruijn assembler, the first nonhybrid

genome assembler for long SMS reads that utilizes the DBG approach. ABruijn builds an A-

Bruijn graph on a subset of the 𝑘-mers in the reads (rather than on all 𝑘-mers as in the de Bruijn

graph) and is thus able to avoid incorporating too many erroneous 𝑘-mers into the graph. Since

ABruijn was developed as an initial proof-of-concept assembler, it is only applied to smaller

genomes such as E. coli, S. cerevisiae, and C. elegans, and it is shown to obtain comparable

results to other state-of-the-art assemblers such as Canu. ABruijn is also shown to perform well

on complex bacterial genomes such as Xanthomonas oryzae as well as on lower coverage

datasets. However, ABruijn runs into computational bottlenecks when it encounters highly

repetitive regions, and its use is limited to relatively small organisms. To overcome these

obstacles and increase the scale of genome sizes that can be assembled, Flye was developed

following the same framework as ABruijn.

The second chapter describes Flye, which also utilizes an A-Bruijn graph to perform a

DBG-based assembly of SMS reads. However, Flye also introduces a novel method for contig

generation: rather than performing a large number of expensive calculations into resolving

difficult repetitive regions like ABruijn, Flye greedily chooses an arbitrary path to produce

disjointigs, which may contain misassemblies (falsely connected sequences). Then Flye

constructs a repeat graph from these disjointigs, which is shown to be equivalent to the repeat

graph constructed from the true genome or from correct contigs (pieces of assembled sequences).

	

	 5

This repeat graph provides a compact representation of all repetitive sequences in the genome,

which is useful for visualizing the structure of the genome and for identifying the remaining

unresolved repeats of the assembly. Flye produces both the repeat graph and a set of contigs

generated from the repeat graph as the assembly output. The remaining unresolved regions can

then be targeted for “finishing” the assembled genome by incorporating other technologies such

as 10X Genomics or BioNano (Mostovoy et al. 2016). Note that the repeat graph is a natural

product of the DBG approach to assembly, representing one of the major advantages of the DBG

approach over the OLC approach.

In addition to constructing the repeat graph, Flye also performs additional repeat

resolution steps, using spanning reads to resolve bridged repeats and using variations between

different copies of the same repeat to resolve unbridged repeats. These additional steps help to

simplify the repeat graph and result in more contiguous assemblies. Flye’s many improvements

(along with several other optimizations) allow it to assemble larger and more difficult datasets

such as the human genome and complex metagenomes, producing comparable or better results

than other SMS assemblers like Canu and FALCON.

Finally, in the third chapter, another method is presented for improving the assemblies

produced by Flye, called diploidFlye. The genomes of more complex organisms are typically

diploid, which means there are two, slightly different versions of the genome present in each

organism, one from each parent (called haplotypes). Flye does not distinguish between the two

parental haplotypes of the genome, but diploidFlye detects the variations between these

haplotypes and constructs a separate sequence for each one, called haplocontigs. diploidFlye

utilizes the structure of the repeat graph produced by Flye to simplify the process of phasing

these haplotypes, producing improved, haplotype-aware assemblies.

	

	 6

References

Bankevich. A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M.,
Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N.,
Tesler, G., Alekseyev, M.A. & Pevzner, P.A. SPAdes: A new genome assembly
algorithm and its applications to single-cell sequencing. Journal of Computational
Biology. 2012; 19 (5): 455-477.

Chaisson, M.J., Wilson, R.K. & Eichler, E.E. Genetic variation and the de novo assembly of

human genomes. Nature Reviews Genetics. 2015; 16 (11): 627-40.

Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A.,

Copeland, A., Huddleston, J., Eichler, E.E., Turner, S.W. & Korlach, J. Nonhybrid,
finished microbial genome assemblies from long-read SMRT sequencing data. Nature
Methods. 2013; 10 (6): 563-569.

Chin, C.S., Peluso, P., Sedlazeck, F.J., Nattestad, M., Concepcion, G.T., Clum, A., Dunn, C.,

O'Malley, R., Figueroa-Balderas, R, Morales-Cruz, A., Cramer, G.R., Delledonne, M.,
Luo, C., Ecker, J.R., Cantu, D., Rank, D.R., & Schatz, M.C. Phased diploid genome
assembly with single-molecule real-time sequencing. Nature Methods. 2016; 13 (12):
1050-1054.

Chu, T.C., Lu, C.H., Liu, T., Lee, G.C., Li, W.H. & Shih, A.C. Assembler for de novo assembly

of large genomes. Proceedings of the National Academy of Sciences USA. 2013; 110
(36): E3417-24.

Gnerre, S., Maccallum, I., Przybylski, D., Ribeiro, F.J., Burton, J.N., Walker, B.J., Sharpe, T.,

Hall, G., Shea, T.P., Sykes, S., Berlin, A.M., Aird, D., Costello, M., Daza, R., Williams,
L., Nicol, R., Gnirke, A., Nusbaum, C., Lander, E.S. & Jaffe, D.B. High-quality draft
assemblies of mammalian genomes from massively parallel sequence data. Proceedings
of the National Academy of Sciences USA. 2011; 108 (4): 1513-8.

Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome

assemblies. Bioinformatics. 2013; 29 (8): 1072-1075.

Harrington, C.T., Lin, E.L., Olson, M.T. & Eshleman, J.R. Fundamentals of pyrosequencing.

Archives of Pathology & Laboratory Medicine. 2013; 137 (9): 1296-303.

Jain, M., Olsen, H.E., Paten, B. & Akeson, M. The Oxford Nanopore MinION: delivery of

nanopore sequencing to the genomics community. Genome Biology. 2016; 17 (1): 239.

Kamath, G.M., Shomorony, I., Xia, F., Courtade, T.A. & David, N.T. HINGE: long-read

assembly achieves optimal repeat resolution. Genome Research. 2017; 27 (5): 747-756.

	

	 7

Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H. & Phillippy, A.M. Canu:
scalable and accurate long-read assembly via adaptive k-mer weighting and repeat
separation. Genome Research. 2017; 27 (5): 722-736.

Kyriakidou, M., Tai, H.H., Anglin, N.L., Ellis, D. & Strömvik, M.V. Current Strategies of

Polyploid Plant Genome Sequence Assembly. Frontiers in Plant Science. 2018; 9: 1660.

Li, Z., Chen, Y., Mu, D., Yuan, J., Shi, Y., Zhang, H., Gan, J., Li, N., Hu, X., Liu, B., Yang, B.

& Fan, W. Comparison of the two major classes of assembly algorithms: overlap-layout-
consensus and de-bruijn-graph. Briefings in Functional Genomics. 2012; 11 (1): 25-37.

Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., Tang,

J., Wu, G., Zhang, H., Shi, Y., Liu, Y., Yu, C., Wang, B., Lu, Y., Han, C., Cheung, D.W.,
Yiu, S.M., Peng, S., Xiaoqian, Z., Liu, G., Liao, X., Li, Y., Yang, H., Wang, J., Lam,
T.W. & Wang, J. SOAPdenovo2: an empirically improved memory-efficient short-read
de novo assembler. 2012; 1 (1): 18.

Mills, R.E., Walter, K., Stewart, C., Handsaker, R.E., Chen, K., Alkan, C., Abyzov, A., Yoon,

S.C., Ye, K., Cheetham, R.K., Chinwalla, A., Conrad, D.F., Fu, Y., Grubert, F.,
Hajirasouliha, I., Hormozdiari, F., Iakoucheva, L.M., Iqbal, Z., Kang, S., Kidd, J.M.,
Konkel, M.K., Korn, J., Khurana, E., Kural, D., Lam, H.Y., Leng, J., Li, R., Li, Y., Lin,
C.Y., Luo, R., Mu, X.J., Nemesh, J., Peckham, H.E., Rausch, T., Scally, A., Shi, X.,
Stromberg, M.P., Stütz, A.M., Urban, A.E., Walker, J.A., Wu, J., Zhang, Y., Zhang, Z.D.,
Batzer, M.A., Ding, L., Marth, G.T., McVean, G., Sebat, J., Snyder, M., Wang, J., Ye,
K., Eichler, E.E., Gerstein, M.B., Hurles, M.E., Lee, C., McCarroll, S.A. & Korbel, J.O.;
1000 Genomes Project. Mapping copy number variation by population-scale genome
sequencing. Nature. 2011; 470: 59-65.

Mostovoy, Y., Levy-Sakin, M., Lam, J., Lam, E.T., Hastie, A.R., Marks, P., Lee, J., Chu, C.,

Lin, C., Džakula, Ž., Cao, H., Schlebusch, S.A., Giorda, K., Schnall-Levin, M., Wall,
J.D. & Kwok, P.Y. A hybrid approach for de novo human genome sequence assembly
and phasing. Nature Methods. 2016; 13 (7): 587-90.

Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P., Flanigan, M.J., Kravitz,

S.A., Mobarry, C.M., Reinert, K.H., Remington, K.A., Anson, E.L., Bolanos, R.A.,
Chou, H.H., Jordan, C.M., Halpern, A.L., Lonardi, S., Beasley, E.M., Brandon, R.C.,
Chen, L., Dunn, P.J., Lai, Z., Liang, Y., Nusskern, D.R., Zhan, M., Zhang, Q., Zheng, X.,
Rubin, G.M., Adams, M.D., Venter, J.C. A whole-genome assembly of
Drosophila. Science. 2000; 287 (5461): 2196-2204.

Pevzner, P.A., Tang, H. & Tesler, G. De novo repeat classification and fragment assembly.

Genome Research. 2004; 14 (9): 1786-1796.

Pevzner, P.A., Tang, H. & Waterman, M.S. An Eulerian path approach to DNA fragment

assembly. Proceedings of the National Academy of Sciences USA. 2001; 98 (17): 9748-
9753.

	

	 8

Raphael, B. Chapter 6: Structural Variation and Medical Genomics. PLoS Computational

Biology. 2012; 8 (12): e1002821.

Rhoads, A. & Au, K.F. PacBio Sequencing and Its Applications. Genomics Proteomics

Bioinformatics. 2015; 13 (5): 278-89.

Saxena, R.K., Edwards, D. & Varshney, R.K. Structural variations in plant genomes. Briefings in

Functional Genomics. 2014; 13 (4): 296-307.

Shendure, J.A., Porreca, G.J., Church, G.M., Gardner, A.F., Hendrickson, C.L., Kieleczawa, J. &

Slatko, B.E. Overview of DNA sequencing strategies. Current Protocols in Molecular
Biology. 2011; Chapter 7: Unit 7.1.

Simpson, J.T., Durbin, R. Efficient de novo assembly of large genomes using compressed data

structures. Genome Research. 2012; 22 (3): 549-56.

Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J. & Birol, I. ABySS: A parallel

assembler for short read sequence data. Genome Research. 2009; 19 (6): 1117-1123.

Sohn, J.I. & Nam, J.W. The present and future of de novo whole-genome assembly. Briefings in

Bioinformatics. 2018; 19 (1): 23-40.

Van Dijk, E.L., Auger, H., Jaszczyszyn, Y. & Thermes, C. Ten years of next-generation

sequencing technology. Trends in Genetics. 2014; 30 (9): 418-26.

Verma, M., Kulshrestha, S. & Puri, A. Genome Sequencing. In: Keith J. Ed. Bioinformatics.

Series: Methods in Molecular Biology. Vol 1525. New York, NY: Humana Press; 2017.

Zerbino, D.R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn

graphs. Genome Research. 2008; 18 (5): 821-9.

	

	 9

CHAPTER 1:

Assembly of Long Error-Prone Reads Using De Bruijn Graphs

1.1 Abstract

The recent breakthroughs in assembling long error-prone reads were based on the

overlap-layout-consensus (OLC) approach and did not utilize the strengths of the alternative de

Bruijn graph approach to genome assembly. Moreover, these studies often assume that the

applications of the de Bruijn graph approach are limited to short and accurate reads and that the

OLC approach is the only practical paradigm for assembling long, error-prone reads. We show

how to generalize de Bruijn graphs for assembling long, error-prone reads and describe the

ABruijn assembler, which combines the de Bruijn graph and OLC approaches and results in

accurate genome reconstructions.

1.2 Significance Statement

 When long reads generated using single-molecule sequencing (SMS) technology were

first made available, most researchers were skeptical about the ability of existing algorithms to

generate high-quality assemblies from long, error-prone reads. Nevertheless, recent algorithmic

breakthroughs resulted in many successful SMS sequencing projects. However, as the recent

assemblies of important plant pathogens illustrate, the problem of assembling long, error-prone

reads is far from being resolved even in the case of relatively short bacterial genomes. We

propose an algorithmic approach for assembling long error-prone reads and describe the ABruijn

assembler, which results in accurate genome reconstructions.

	

	 10

1.3 Introduction

 The key challenge to the success of single-molecule sequencing (SMS) technologies lies

in the development of algorithms for assembling genomes from long but inaccurate reads. Pacific

Biosciences, known as the pioneer in long reads technologies can now produce accurate

assemblies from these long, error-prone reads (Berlin et al. 2015; Chin et al. 2013). Goodwin et

al. (2015) and Loman et al. (2015) demonstrated that high-quality assemblies can even be

obtained from less-accurate Oxford Nanopore reads. Advances in the assembly of long, error-

prone reads also recently resulted in the accurate reconstructions of many different genomes

(Koren et al. 2013; Koren et al. 2015; Lam et al. 2015; Chaisson et al. 2015; Huddleston et al.

2014; Ummat et al. 2014). However, as illustrated in Booher et al. (2015), the problem of

assembling long, error-prone reads is far from being completely solved even in the case of

relatively small bacterial genomes.

Previous studies of SMS assemblies were based on the overlap-layout-consensus (OLC)

approach (Kececioglu et al. 1995) or the similar string graph approach (Myers 2005), which

requires an all-against-all comparison of reads (Myers 2014) and remains computationally

challenging (see Idury et al. 2014, Li et al. 2012, and Pevzner et al. 2001 for a discussion of the

pros and cons of this approach). Moreover, there is an assumption that the de Bruijn graph

approach, which has dominated genome assembly for the last decade, is inapplicable to long

reads. This is a misunderstanding because the de Bruijn graph approach, as well as its variation

called the A-Bruijn graph approach, was originally developed to assemble rather long Sanger

reads (Pevzner et al. 2004). There is also a misunderstanding that the de Bruijn graph approach

can only assemble highly accurate reads and fails when assembling error-prone reads. Although

this is true for the original de Bruijn graph approach to assembly (Idury et al. 1995; Pevzner et al.

	

	 11

2001), the A-Bruijn graph approach was originally designed to assemble inaccurate reads as long

as any similarities between reads can be reliably identified. Moreover, A-Bruijn graphs have

proven to be useful even for assembling mass spectra, which represent highly inaccurate

fingerprints of the amino acid sequences of peptides (Bandeira et al. 2007; Bandeira et al. 2008).

However, although A-Bruijn graphs have proven to be useful in assembling Sanger reads and

mass spectra, the question of how to apply A-Bruijn graphs for assembling long, error-prone

reads remains open.

De Bruijn graphs are a key algorithmic technique in genome assembly (Idury et al. 1995;

Butler et al. 2008; Simpson et al. 2009; Zerbino et al. 2008; Bankevich et al. 2012). In addition,

de Bruijn graphs have been used for sequencing by hybridization (Pevzner 1989), repeat

classification (Pevzner et al. 2004), de novo protein sequencing (Bandeira et al. 2008), synteny

block construction (Pham et al. 2010), genotyping (Iqbal et al. 2012), and Ig classification

(Bonissone et al. 2016). A-Bruijn graphs are even more general than de Bruijn graphs; for

example, they also encompass breakpoint graphs, which is the workhorse of genome-

rearrangement studies (Lin et al. 2014).

However, as discussed in Lin et al. 2014, the original definition of a de Bruijn graph is far

from being optimal for the challenges posed by the assembly problem. Below, we describe the

concept of an A-Bruijn graph, introduce the ABruijn assembler for long error-prone reads, and

demonstrate that it generates accurate genome reconstructions.

	

	 12

1.4 Methods

1.4.1 The Key Idea of the ABruijn Algorithm

The Challenge of Assembling Long Error-Prone Reads.

Given the high error rates of SMS technologies, the accurate assembly of long repeats

remains challenging. Also, frequent k-mers dramatically increase the number of candidate

overlaps, thus complicating how to choose the correct path in the overlap graph. A common

solution is to mask highly repetitive k-mers as done in the Celera Assembler (Myers et al. 2000)

and in Falcon (Chin et al. 2016). However, such masking may lead to the loss of some correct

overlaps. Below, we illustrate these challenges using the Xanthomonas genomes as an example.

Booher et al. (2015) recently sequenced several different strains of the plant pathogen

Xanthomonas oryzae and revealed the striking plasticity of transcription activator-like (tal)

genes, which play a key role in Xanthomonas infections. Each tal gene encodes a TAL protein,

which has a large domain formed by nearly identical TAL repeats. Because variations in tal genes

and TAL repeats are important for understanding the pathogenicity of various Xanthomonas

strains, massive sequencing of these strains is an important task that may lead to the development

of novel measures for plant disease control (Schornack et al. 2013; Doyle et al. 2013). However,

assembling Xanthomonas genomes using SMS reads remains challenging (let alone using short

reads).

Depending on the strain, Xanthomonas genomes may harbor over 20 tal genes with some

tal genes encoding over 30 TAL repeats. Assembling Xanthomonas genomes is further

complicated by the aggregation of various types of repeats into complex regions that may extend

	

	 13

for over 30 kb in length. These repeats render Xanthomonas genomes nearly impossible to

assemble using short reads. Moreover, as Booher et al. (2015) described, existing SMS

assemblers also fail to assemble Xanthomonas genomes. The challenge of finishing draft

genomes assembled from SMS reads also extends beyond these Xanthomonas genomes (e.g.,

many genomes sequenced at the Centers for Disease Control are being finished using optical

mapping; Williams et al. 2016).

Another challenge is using SMS technologies to assemble metagenomics datasets with

highly variable coverage across various bacterial genomes. Because existing assemblers for long,

error-prone reads generate fragmented assemblies of bacterial communities, there are as yet no

publications describing metagenomics applications of SMS technologies. Below we benchmark

ABruijn and other state-of-the-art SMS assemblers on several Xanthomonas genomes as well as

the Bugula neritina metagenome.

From de Bruijn Graphs to A-Bruijn Graphs.

In the A-Bruijn graph framework, the classical de Bruijn graph 𝐷𝐵(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑘) of a

string 𝑆𝑡𝑟𝑖𝑛𝑔 is defined as follows. Let 𝑃𝑎𝑡ℎ(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑘) be a path consisting of 𝑆𝑡𝑟𝑖𝑛𝑔 − 𝑘 +

1 edges, where the 𝑖-th edge of this path is labeled by the 𝑖-th 𝑘-mer in 𝑆𝑡𝑟𝑖𝑛𝑔 and the 𝑖-th

vertex of the path is labeled by the 𝑖-th (𝑘 − 1)-mer in 𝑆𝑡𝑟𝑖𝑛𝑔. The de Bruijn graph

𝐷𝐵(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑘) is formed by gluing together identically labeled vertices in 𝑃𝑎𝑡ℎ(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑘) (see

Figure 1.1). Note that this somewhat unusual definition results in exactly the same de Bruijn

graph as the standard definition (see Compeau et al. 2014 for details).

	

	 14

We now consider an arbitrary substring-free set of strings 𝑉 (which we refer to as a set of

solid strings), where no string in 𝑉 is a substring of another one in 𝑉. The set 𝑉 consists of words

(of any length) and a new concept 𝑃𝑎𝑡ℎ(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑉) is defined as the path through all words

from 𝑉 appearing in 𝑆𝑡𝑟𝑖𝑛𝑔	(in order) as shown in Figure 1.1. Afterward, we glue identically

Figure 1.1: Constructing the de Bruijn graph (Left) and the A-Bruijn graph (Right) for a
circular 𝑺𝒕𝒓𝒊𝒏𝒈 = 𝐂𝐀𝐓𝐂𝐀𝐆𝐀𝐓𝐀𝐆𝐆𝐀 . (Left) From 𝑃𝑎𝑡ℎ(𝑆𝑡𝑟𝑖𝑛𝑔, 3) to 𝐷𝐵(𝑆𝑡𝑟𝑖𝑛𝑔, 3) .
(Right) From 𝑃𝑎𝑡ℎ(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑉) to 𝐴𝐵(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑉) for 𝑉 = {CA, AT, TC, AGA, TA, AC}. The
figure illustrates the process of bringing the vertices with the same label closer to each other
(Middle Row) to eventually glue them into a single vertex (Bottom Row). Note that some
symbols of 𝑆𝑡𝑟𝑖𝑛𝑔	are not covered by strings in 𝑉. We assign integer 𝑠ℎ𝑖𝑓𝑡(𝑣, 𝑤) to the edge
(𝑣, 𝑤) in this path to denote the difference between the positions of 𝑣 and 𝑤 in 𝑆𝑡𝑟𝑖𝑛𝑔 (i.e., it is
the number of symbols between the start of 𝑣 and the start of 𝑤 in 𝑆𝑡𝑟𝑖𝑛𝑔).

	

	 15

labeled vertices as before to construct the A-Bruijn graph 𝐴𝐵(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑉) as shown in Figure 1.1.

Clearly, 𝐷𝐵(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑘) is identical to 𝐴𝐵(𝑆𝑡𝑟𝑖𝑛𝑔, ∑Y9Z), where ∑Y9Z stands for the set of

all (𝑘 − 1)-mers in alphabet ∑.

The definition of 𝐴𝐵(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑉) generalizes to 𝐴𝐵(𝑅𝑒𝑎𝑑𝑠, 𝑉) by constructing a path for

each read in the set 𝑅𝑒𝑎𝑑𝑠	and further gluing all identically labeled vertices in all paths. Because

the draft genome is spelled by a path in 𝐴𝐵(𝑅𝑒𝑎𝑑𝑠, 𝑉) (Pevzner 2004), it seems that the only

thing needed to apply the A-Bruijn graph concept to SMS reads is to select an appropriate set of

solid strings 𝑉, to construct the graph 𝐴𝐵(𝑅𝑒𝑎𝑑𝑠, 𝑉), to select an appropriate path in this graph

as a draft genome, and to correct errors in the draft genome. Below, we show how ABruijn

addresses these tasks.

The Challenge of Selecting Solid Strings.

Different approaches to selecting solid strings affect the complexity of the resulting A-

Bruijn graph and may either enable further assembly using the A-Bruijn graph or make it

impractical. For example, when the set of solid strings 𝑉 = ∑Y9Z consists of all (𝑘 − 1)-mers,

𝐴𝐵(𝑅𝑒𝑎𝑑𝑠, ∑Y9Z) may be either too tangled (if 𝑘 is small) or too fragmented (if 𝑘 is large).

Although this is true for both short accurate reads and long error-prone reads, there is a

key difference between these two technologies with respect to their resulting A-Bruijn graphs. In

the case of Illumina reads, there exists a range of values of 𝑘 such that one can apply various

graph simplification procedures (e.g., bubble and tip removal; Pevzner et al. 2004; Zerbino et al.

2008) to enable further analysis of the resulting graph. However, these graph simplification

procedures were developed for the case when the error rate in the reads does not exceed 1% and

fail for SMS reads where the error rate exceeds 10%.

	

	 16

An Outline of the ABruijn Algorithm.

We classify a 𝑘-mer as genomic if it appears in the genome and non-genomic otherwise.

Ideally, we would like to select a set of solid strings containing all genomic 𝑘-mers and no non-

genomic 𝑘-mers.

Although the set of genomic 𝑘-mers occurring in the set of reads is unknown, we show

how to identify a large set of predominantly genomic 𝑘-mers by selecting sufficiently frequent 𝑘-

mers in reads. However, this is not sufficient for assembly, because some genomic 𝑘-mers are

missing and some non-genomic 𝑘-mers are present in the constructed set of solid 𝑘-mers.

Moreover, even if we were able to construct a very accurate set of genomic 𝑘-mers, the de Bruijn

graph constructed on this set would be too tangled because typical values of 𝑘 range from 15 to

25 (other values make it difficult to construct a good set of solid 𝑘-mers). Instead, we construct

the A-Bruijn graph on the set of identified solid 𝑘-mers rather than the de Bruijn graph on all 𝑘-

mers in reads. Although only a small fraction of the 𝑘-mers in each read are solid (and hence this

is a very incomplete representation of the reads), overlapping reads typically share many solid 𝑘-

mers (as opposed to non-overlapping reads). Therefore, a rough estimate of the overlap between

two reads can be obtained by finding the longest common subpath between the two read-paths

using a fast, dynamic-programming algorithm. Hence, the A-Bruijn graph can function as an

oracle, from which one can efficiently identify the overlaps of a given read with all other reads

by considering all possible overlaps at once. The genome is assembled by repeatedly applying

this procedure and following the path extension paradigm borrowed from some short read

assemblers (Boisvert et al. 2012; Prjibelski et al. 2014; Vasilinetc et al. 2015).

Each assembler should minimize the number of misassemblies and the number of base-

calling errors. The described approach minimizes the number of misassemblies but results in an

	

	 17

inaccurate draft genome with many base-calling errors. We later describe an error-correction

approach, which results in accurate genome reconstructions.

1.4.2 Assembling Long Error-Prone Reads

Selecting Solid Strings for Constructing A-Bruijn Graphs.

We define the frequency of a 𝑘-mer as the number of times this 𝑘-mer appears in the

reads and argue that frequent 𝑘-mers (for sufficiently large 𝑘) are good candidates for the set of

solid strings. We define a (𝑘, 𝑡)-mer as a 𝑘-mer that appears at least 𝑡 times in the set of reads.

We classify a 𝑘-mer as unique if it appears once in the genome and repeated if it appears

multiple times. Figure 1.2 shows a histogram of the number of unique, repeated, and non-

genomic 15-mers for a range of frequencies for the ECOLI SMS dataset (details for this dataset

can be found in the “Datasets” paragraph of the Results section of this chapter). As Figure 1.2

illustrates, the lion’s share of 15-mers with frequencies above a threshold 𝑡 are genomic (𝑡 =

7 for the ECOLI dataset). To automatically select the parameter 𝑡, we compute the number of 𝑘-

mers with frequencies exceeding 𝑡, and select a maximal 𝑡 such that this number exceeds the

estimated genome length. As Figure 1.2 illustrates, this selection results in relatively few non-

genomic k-mers while capturing most genomic 𝑘-mers.

	

	 18

Finding the Genomic Path in an A-Bruijn Graph.

After constructing an A-Bruijn graph, one faces the problem of finding a path in this

graph that corresponds to traversing the genome and then correcting errors in the sequence

spelled by this path (this genomic path does not have to traverse all edges of the graph). Because

the long reads are merely paths in the A-Bruijn graph, one can use the path extension paradigm

(Boisvert et al. 2012; Prjibelski et al. 2014; Vasilinetc et al. 2015) to derive the genomic path

from these (shorter) read-paths. exSPAnder (Prjibelski et al. 2014) is a module of the SPAdes

Figure 1.2: A histogram of the number of 15-mers vs frequency for the ECOLI dataset.
The bars for unique, repeated, and non-genomic 15-mers for the E. coli genome are stacked and
shown in green, red, and blue according to their fractions. ABruijn automatically selects the
parameter 𝑡 and defines solid strings as all 15-mers with frequencies at least 𝑡 = 7 for the
ECOLI dataset. We found that increasing the automatically selected values of 𝑡 by 1 results in
equally accurate assemblies. There exist 4.1, 0.1, and 0.5 million unique, repeated, and non-
genomic 15-mers, respectively, for ECOLI at 𝑡 = 7 (and 3.9, 0.1, and 0.3 million for 𝑡 = 8).
Although larger values of 𝑘 (e.g. 𝑘 = 25) also produce high-quality SMS assemblies, we found
that selecting smaller, rather than larger, values for 𝑘 results in slightly better performance.
	

Frequency

N
um

be
r o

f O
cc

ur
re

nc
es

	

	 19

assembler (Bankevich et al. 2012) that finds a genomic path in the assembly graph constructed

from short reads based either on read-pair-paths, or on read-paths derived from SMS reads in the

case of hybridSPAdes (Antipov et al. 2015). Recent studies of bacterial plankton (Labont et al.

2015), antibiotics resistance (Ashton et al. 2015), and genome rearrangements (Risse et al. 2015)

demonstrated that hybridSPades works well even for coassembly with less-accurate nanopore

reads. Below we sketch the hybridSPAdes algorithm (Antipov et al. 2015) and show how to

modify the path extension paradigm to arrive at the ABruijn algorithm.

hybridSPAdes.

hybridSPAdes uses SPAdes to construct the de Bruijn graph solely from short accurate

reads and transforms it into an assembly graph by removing bubbles and tips (24). It represents

long error-prone reads as read-paths in the assembly graph and uses them for repeat resolution.

A set of paths in a directed graph (referred to as 𝑃𝑎𝑡ℎ𝑠) is consistent if the set of all edges

in 𝑃𝑎𝑡ℎ𝑠	forms a single directed path in the graph. We further refer to this path as

𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠𝑃𝑎𝑡ℎ(𝑃𝑎𝑡ℎ𝑠). The intuition for the notion of a consistent set of paths is that they are

sampled from a single segment of the genomic path in the assembly graph (as opposed to an

inconsistent set of paths that are sampled from multiple segments of the genomic path; see

Antipov et al. 2015).

A path 𝑃′ in a weighted graph overlaps with a path 𝑃 if a sufficiently long suffix of 𝑃 (of

total weight at least 𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝) coincides with a prefix of 𝑃′ and 𝑃 does not contain the entire

path 𝑃′ as a subpath. Given a path 𝑃 and a set of paths 𝑃𝑎𝑡ℎ𝑠, we define 𝑃𝑎𝑡ℎ𝑠defghijklm(𝑃) as

the set of all paths in 𝑃𝑎𝑡ℎ𝑠	that overlap with 𝑃.

	

	 20

Our sketch of hybridSPAdes (Figure 1.3) omits some details and deviates from the

current implementation to make similarities with the A-Bruijn graph approach more apparent

(e.g., it assumes that there are no chimeric reads and only shows an algorithm for constructing a

single contig).

From hybridSPAdes to longSPAdes.

Using the concept of the A-Bruijn graph, a similar approach can be applied to assembling

long reads only. The pseudocode of longSPAdes differs from the pseudocode of hybridSPAdes

by only the top three lines (Figure 1.4).

Figure 1.3: The pseudocode for hybridSPAdes.
This simplified sketch of the hybridSPAdes pseudocode shows how to construct
contigs starting with an assembly graph. It is important to check that 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑃𝑎𝑡ℎ𝑠
is consistent to ensure that they correspond to a single genomic path segment before
including them in the resulting contigs.
	

	

	 21

We note that longSPAdes constructs a path spelling out an error-prone draft genome that

requires further error correction. However, error correction of a draft genome is faster than the

error correction of individual reads required before performing assembly using the OLC

approach (Berlin et al. 2015; Chin et al. 2013; Goodwin et al. 2015; Loman et al. 2015).

Although hybridSPAdes and longSPAdes are similar, longSPAdes is more difficult to

implement because bubbles in the A-Bruijn graph of error-prone long reads are more complex

than bubbles in the de Bruijn graph of accurate short reads (see Figure 1.5 for an example of

bubble in the A-Bruijn graph). As a result, the existing graph simplification algorithms fail to

work for A-Bruijn graphs made from long error-prone reads. Although it is possible to modify

the existing graph simplification procedures for long error-prone reads (to be described

elsewhere), this paper focuses on a different approach that does not require graph simplification.

Figure 1.4: The starting three lines of the pseudocode for longSPAdes.
These are the only lines that differ between the pseudocode for longSPAdes and that
of hybridSPAdes. The rest of the pseudocode is identical to the remaining lines shown
in Figure 1.3.
	

	

	 22

Figure 1.5: A bubble in the A-Bruijn graph of (15, 7)-mers for the ECOLI dataset.
The A-Bruijn graph was constructed using (15, 7)-mers for the ECOLI dataset. This small
subgraph of the A-Bruijn graph shows 82 (15, 7)-mers appearing in segments of 61 reads
covering a short 100-nucleotide region (starting at position 2,000,000 in the E. coli genome).
Three out of 61 read-paths are highlighted in blue, red, and green. The complexity of this small
subgraph illustrates how difficult it would be to correct the A-Bruijn graph.
	

	

	 23

From longSPAdes to ABruijn.

Instead of finding a genomic path in the simplified A-Bruijn graph, ABruijn attempts to

find a corresponding genomic path in the original A-Bruijn graph. This approach leads to an

algorithmic challenge: although it is easy to decide whether two reads overlap given an assembly

graph, it is not clear how to answer the same question in the context of the A-Bruijn graph. Note

that although the ABruijn pseudocode (Figure 1.6) uses the same terms “overlapping” and

“consistent” as longSPAdes, these notions are defined differently in the context of the A-Bruijn

graph. These new notions (as well as the parameters 𝑗𝑢𝑚𝑝	and 𝑚𝑎𝑥𝑂𝑣𝑒𝑟ℎ𝑎𝑛𝑔) are described

below.

Figure 1.6: The pseudocode for ABruijn.
The pseudocode for ABruijn is similar to that of longSPAdes, but there are
significant differences in the definitions for the terms “consistent” and
“overlapping.” Furthermore, there are additional parameters 𝑗𝑢𝑚𝑝 and
𝑚𝑎𝑥𝑂𝑣𝑒𝑟ℎ𝑎𝑛𝑔 specific to ABruijn.
	

	

	 24

The constructed path in the A-Bruijn graph spells out an error-prone draft genome (or one

of the draft contigs). For simplicity, the pseudocode above describes the construction of a single

contig and does not cover the error-correction step. In reality, after a contig is constructed,

ABruijn maps all reads to this contig and uses the remaining reads to iteratively construct other

contigs. Also, ABruijn attempts to extend the path to the “left” if the path extension to the “right”

halts. Other complications such as removing chimeric reads are also omitted.

Common 𝒋𝒖𝒎𝒑-Subpaths.

Given a path 𝑃 in a weighted directed graph (weights correspond to shifts in the A-Bruijn

graph), we refer to the distance 𝑑s(𝑣, 𝑤) along path 𝑃 between vertices 𝑣 and 𝑤 in this path (i.e.,

the sum of the weights of all edges in the path) as the 𝑃-distance. The span of a subpath of a

path 𝑃 is defined as the 𝑃-distance from the first to the last vertex of this subpath.

Given a parameter 𝑗𝑢𝑚𝑝, a 𝑗𝑢𝑚𝑝-subpath of 𝑃 is a subsequence of vertices 𝑣Z …𝑣u in 𝑃 such

that 𝑑s(𝑣e, 𝑣e1Z) ≤ 𝑗𝑢𝑚𝑝 for all 𝑖 from 1 to 𝑡 − 1. We define 𝑃𝑎𝑡ℎwxdm(𝑃) as a 𝑗𝑢𝑚𝑝-subpath

with the maximum span out of all 𝑗𝑢𝑚𝑝-subpaths of a path 𝑃.

A sequence of vertices in a weighted directed graph is called a common 𝑗𝑢𝑚𝑝-subpath of

paths 𝑃Z and 𝑃y if it is a 𝑗𝑢𝑚𝑝-subpath of both 𝑃Z and 𝑃y (Figure 1.7). The span of a

common 𝑗𝑢𝑚𝑝-subpath of 𝑃Z and 𝑃y is defined as its span with respect to path 𝑃Z (note that this

definition is non-symmetric with respect to 𝑃Z and 𝑃y). We refer to a common 𝑗𝑢𝑚𝑝-subpath of

paths 𝑃Z and 𝑃y with the maximum span as 𝑃𝑎𝑡ℎwxdm(𝑃Z, 𝑃y) (with ties broken arbitrarily).

	

	 25

 Below we describe how the ABruijn assembler uses the notion of common 𝑗𝑢𝑚𝑝-

subpaths with maximum span to detect overlapping reads.

Finding a Common 𝒋𝒖𝒎𝒑-Subpath with Maximum Span.

For the sake of simplicity, below we limit our attention to the case when paths 𝑃Z and 𝑃y

traverse each of their shared vertices exactly once.

A vertex 𝑤 is a 𝑗𝑢𝑚𝑝-predecessor of a vertex 𝑣	in a path 𝑃	if 𝑃	traverses 𝑤	before

traversing 𝑣	and 𝑑s(𝑤, 𝑣) ≤ 𝑗𝑢𝑚𝑝.

We define 𝑃(𝑣) as the subpath of 𝑃 from its first vertex to 𝑣. Given a vertex 𝑣 shared

between paths 𝑃Z and 𝑃y, we define 𝑠𝑝𝑎𝑛wxdm(𝑣) as the largest span among all common 𝑗𝑢𝑚𝑝-

subpaths of paths 𝑃Z(𝑣) and 𝑃y(𝑣) ending in 𝑣. The dynamic programming algorithm for finding

a common 𝑗𝑢𝑚𝑝-subpath with the maximum span is based on the following recurrence:

𝑠𝑝𝑎𝑛wxdm 𝑣 = max
}~~	wxdm9������������	�	��	h	��	s�	}��	s�

𝑠𝑝𝑎𝑛wxdm 𝑤 + 𝑑s� 𝑤, 𝑣

Given all paths sharing vertices with a path 𝑃, common 𝑗𝑢𝑚𝑝-subpaths with maximum span

with 𝑃 for all of them can be computed using a single scan of 𝑃. Below we describe a fast

heuristic for this procedure.

18502 634 531 427 585 564 530 901 992 434

425 494 455 475 453 453 721 758 15672

Figure 1.7: An example of a common 𝒋𝒖𝒎𝒑-subpath from the ECOLI dataset.
Two overlapping reads from the ECOLI dataset and their common 𝑗𝑢𝑚𝑝 -subpath with
maximum span that contains 50 vertices and has span 6,714 with respect to the bottom read (for
𝑗𝑢𝑚𝑝	 = 1,000). The left and right overhangs for these reads are 425 and 434. The weights of
the edges in the A-Bruijn graph are shown only if they exceed 400 bp.	

	

	 26

A Fast Heuristic for Finding a Common 𝒋𝒖𝒎𝒑-Subpath with Maximum Span.

We define 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠wxdm(𝑣) as the set of all jump-predecessors of a vertex 𝑣 in

paths 𝑃Z and 𝑃y. A vertex 𝑤 in 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠wxdm(𝑣) is called dominant if it is not a 𝑗𝑢𝑚𝑝-

predecessor of any other vertex in 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠wxdm(𝑣). If paths 𝑃Z and 𝑃y traverse

𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠wxdm(𝑣) in the same order, then there is one dominant vertex in

𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠wxdm(𝑣), denoted as 𝑤, and 𝑠𝑝𝑎𝑛wxdm(𝑣) = 𝑠𝑝𝑎𝑛wxdm 𝑤 +	𝑑s� 𝑤, 𝑣 . To

speed-up the dynamic programming algorithm based on the recurrence in the main text, ABruijn

stores and checks only the dominant vertices in 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠wxdm(𝑣).

Our use of 𝑘-mers to identify overlapping reads has similarities with MHAP (Berlin et al.

2015), which utilizes hashing of all 𝑘-mers on every read as a way to identify overlaps. The key

difference is that, while MHAP is applied to a pair of reads, ABruijn utilizes information from all

reads in order to identify the set of solid 𝑘-mers that one should focus on, make extension

decisions, identify chimeric reads, etc.

(𝒋𝒖𝒎𝒑, ∆)- Subpaths.

ABruijn uses a more restricted notion of the common 𝑗𝑢𝑚𝑝-subpath described below.

Given a parameter ∆ (the default value is 𝑗𝑢𝑚𝑝/2), a sequence of vertices 𝑣Z. . . 𝑣u in a weighted

directed graph is called a common (𝑗𝑢𝑚𝑝, ∆)-subpath of paths 𝑃Z and 𝑃y if it is a 𝑗𝑢𝑚𝑝-subpath

of both 𝑃Z and 𝑃y, and 𝑑s� 𝑣e, 𝑣e1Z − 𝑑s� 𝑣e, 𝑣e1Z ≤ ∆ for 1 ≤ 𝑖 < 𝑡. The concept

𝑃𝑎𝑡ℎwxdm,∆(𝑃Z, 𝑃y) is defined similarly to the concept 𝑃𝑎𝑡ℎwxdm(𝑃Z, 𝑃y).

We found that using (𝑗𝑢𝑚𝑝, ∆)-subpaths results in slightly more accurate assemblies of

highly repetitive genomes. Common (𝑗𝑢𝑚𝑝, ∆)-subpaths with maximum span can be computed

using a recurrence that is similar to the one for common 𝑗𝑢𝑚𝑝-subpaths. Below we will revert to

	

	 27

using common 𝑗𝑢𝑚𝑝-subpaths rather than common (𝑗𝑢𝑚𝑝, ∆)-subpaths for the sake of

simplicity.

Overlapping Paths in A-Bruijn Graphs.

We define the right overhang between paths 𝑃Z and 𝑃y as the minimum of the distances

from the last vertex in 𝑃𝑎𝑡ℎwxdm(𝑃Z, 𝑃y) to the ends of 𝑃Z	and 𝑃y. Similarly, the left overhang

between paths 𝑃Z	and 𝑃y	is the minimum of the distances from the starts of 𝑃Z and 𝑃y	to the first

vertex in 𝑃𝑎𝑡ℎwxdm(𝑃Z, 𝑃y).

Given parameters 𝑗𝑢𝑚𝑝, 𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 and 𝑚𝑎𝑥𝑂𝑣𝑒𝑟ℎ𝑎𝑛𝑔, we say that paths 𝑃Z	and 𝑃y

overlap if they share a common 𝑗𝑢𝑚𝑝-subpath of span at least 𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝	and their right and

left overhangs do not exceed 𝑚𝑎𝑥𝑂𝑣𝑒𝑟ℎ𝑎𝑛𝑔. To decide whether two reads have arisen from two

overlapping regions in the genome, ABruijn checks whether their corresponding read-

paths 𝑃Z	and 𝑃y	overlap (with respect to parameters 𝑗𝑢𝑚𝑝, 𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝, and 𝑚𝑎𝑥𝑂𝑣𝑒𝑟ℎ𝑎𝑛𝑔).

Given overlapping paths 𝑃Z and 𝑃y, we say that 𝑃Z is supported by 𝑃y	if the 𝑃Z-distance from the

last vertex in 𝑃𝑎𝑡ℎwxdm(𝑃Z, 𝑃y) to the end of 𝑃Z	is smaller than the 𝑃y-distance from the last

vertex in 𝑃𝑎𝑡ℎwxdm(𝑃Z, 𝑃y) to the end of 𝑃y.

Choice of Parameters in the ABruijn Algorithm.

 Given parameters 𝑘, 𝑡, 𝑗𝑢𝑚𝑝 and ∆, we define the following statistics (Table 1.1):

• 𝑃𝑟1(𝑘, 𝑡, 𝑗𝑢𝑚𝑝): the probability that two overlapping reads share a (𝑘, 𝑡)-mer along a

region of length 𝑗𝑢𝑚𝑝 in their overlap. To ensure that the notion of a common 𝑗𝑢𝑚𝑝-

	

	 28

subpath indeed detects overlapping reads, ABruijn selects parameters 𝑘, 𝑡, and 𝑗𝑢𝑚𝑝 in

such a way that 𝑃𝑟1(𝑘, 𝑡, 𝑗𝑢𝑚𝑝) is large.

• 𝑃𝑟9(𝑘, 𝑡, 𝑗𝑢𝑚𝑝): the probability that two regions of length jump from two non-

overlapping reads share a (𝑘, 𝑡)-mer. To ensure that the notion of the common 𝑗𝑢𝑚𝑝-

subpath does not detect non-overlapping reads, ABruijn selects parameters 𝑘, 𝑡, and

𝑗𝑢𝑚𝑝 in such a way that 𝑃𝑟9(𝑘, 𝑡, 𝑗𝑢𝑚𝑝) is small.

• 𝑃𝑟∗(𝑗𝑢𝑚𝑝, ∆): the probability that two overlapping reads differ by at most ∆ in length

along a region of length 𝑗𝑢𝑚𝑝 in their overlap.

ABruijn uses the default parameters 𝑘 = 15, 𝑗𝑢𝑚𝑝 = 1500, ∆= 𝑗𝑢𝑚𝑝/2,

𝑚𝑎𝑥𝑂𝑣𝑒𝑟ℎ𝑎𝑛𝑔 = 1500 and 𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 = 5000 for all datasets and automatically selects

parameter 𝑡. For the ECOLI dataset, it results in 𝑃𝑟1(15, 7, 1500) = 0.98, 𝑃𝑟9(15, 7, 1500) =

0.002, and 𝑃𝑟∗(𝑗𝑢𝑚𝑝, ∆) = 0.97. For the ECOLInano dataset, it results in 𝑡 = 4,

𝑃𝑟1(15, 4, 1500) = 0.97, 𝑃𝑟9(15, 4, 1500) = 0.002, and 𝑃𝑟∗(𝑗𝑢𝑚𝑝, ∆) = 1.00. Increasing the

default parameter 𝑘 = 15 to 17 and 19 result in assemblies of similar quality (with the exception

of sequencing projects with low coverage).

	

	 29

Additional Complications with the Implementation of the Path Extension Paradigm.

Although it seems that the notion of overlapping paths allows us to implement the path

extension paradigm for A-Bruijn graphs, there are two complications. First, the path extension

algorithm becomes more complex when the growing path ends in a long repeat (Vasilinetc et al.

2015). Second, chimeric reads may end up in the set of overlapping read-paths extending the

growing path in the ABruijn algorithm. Also, a set of extension candidates may include a small

fraction of spurious reads from other regions of the genome (Table 1.1 describes statistics on

spurious overlaps). Below we describe how ABruijn addresses these complications.

Detecting chimeric reads.

The traditional way to identify a chimeric read in the de Bruijn graph framework (when

the reference genome is not known) is to detect a chimeric junction in this read, i.e., a junction

that improperly connects two non-adjacent segments of the genome. The existing assembly

Table 1.1: The empirical estimates of 𝑷𝒓1(𝒌, 𝒕, 𝒋𝒖𝒎𝒑) and 𝑷𝒓9(𝒌, 𝒕, 𝒋𝒖𝒎𝒑) under
different choices of parameters 𝒌, 𝒕, and 𝒋𝒖𝒎𝒑. The estimates are based on statistics from
10,000 pairs of overlapping reads (to estimate 𝑃𝑟1(𝑘, 𝑡, 𝑗𝑢𝑚𝑝)) and 10,000 pairs of non-
overlapping reads (to estimate 𝑃𝑟9(𝑘, 𝑡, 𝑗𝑢𝑚𝑝)) from the ECOLI dataset and the ECOLInano
dataset.	

	

	 30

algorithms often classify a position in the read as a chimeric junction if it is not covered by (or

poorly covered by) alignments of this read with other reads. However, while this approach works

for accurate reads, it needs to be modified for inaccurate reads since alignment artifacts make it

difficult to identify chimeric junctions.

Traditional de Bruijn graph assemblers classify a read as chimeric if one of the edges in

its read-path in the assembly graph has low coverage. They further remove the chimeric reads

and corresponding edges from the assembly graph (see Nurk et al. 2013 for more advanced

approaches to the detection of chimeric reads). To generalize this approach to A-Bruijn graphs,

we need to redefine the notion of coverage for A-Bruin graphs.

An edge (𝑣, 𝑤) in a path 𝑃 is called internal if the distances from 𝑣 to the start of 𝑃 and

from 𝑤 to the end of 𝑃 exceed 𝑗𝑢𝑚𝑝, and strongly internal if those distances exceed 𝑗𝑢𝑚𝑝 +

𝑚𝑎𝑥𝑂𝑣𝑒𝑟ℎ𝑎𝑛𝑔. Given overlapping paths 𝑃 and 𝑃’, we define the 𝑃-spread of 𝑃’ as the sub-path

of 𝑃 starting and ending at the first and last vertices of 𝑃𝑎𝑡ℎwxdm(𝑃, 𝑃′).

To check if a path 𝑃 in the A-Bruijn graph is chimeric, we consider all paths 𝑃𝑎𝑡ℎ𝑠 that

overlap with this path and further trim the non-internal edges of these paths, resulting in a set of

paths that we refer to as 𝑇𝑟𝑖𝑚𝑚𝑒𝑑𝑃𝑎𝑡ℎ𝑠. The coverage of an edge in path 𝑃 is defined as the

number of paths in 𝑇𝑟𝑖𝑚𝑚𝑒𝑑𝑃𝑎𝑡ℎ𝑠 whose 𝑃-spread contain this edge. A path is called chimeric

if one of its strongly internal edges has coverage below 10% of the coverage of its neighboring

edge.

Most-Consistent Paths.

Given a path 𝑃	in a set of paths 𝑃𝑎𝑡ℎ𝑠, we define 𝑟𝑖𝑔ℎ𝑡𝑆𝑢𝑝𝑝𝑜𝑟𝑡slu��(𝑃) as the number

of paths in 𝑃𝑎𝑡ℎ𝑠	that support 𝑃. 𝑙𝑒𝑓𝑡𝑆𝑢𝑝𝑝𝑜𝑟𝑡slu��(𝑃) is defined as the number of paths

	

	 31

in 𝑃𝑎𝑡ℎ𝑠	that are supported by 𝑃. We also define 𝑆𝑢𝑝𝑝𝑜𝑟𝑡slu��(𝑃) as the minimum of

𝑟𝑖𝑔ℎ𝑡𝑆𝑢𝑝𝑝𝑜𝑟𝑡slu��(𝑃) and 𝑙𝑒𝑓𝑡𝑆𝑢𝑝𝑝𝑜𝑟𝑡slu��(𝑃). A path 𝑃 is most-consistent if it maximizes

𝑆𝑢𝑝𝑝𝑜𝑟𝑡slu��(𝑃) among all paths in 𝑃𝑎𝑡ℎ𝑠 (Figure 1.8, Top).

Given a set of paths 𝑃𝑎𝑡ℎ𝑠	overlapping with 𝑅𝑒𝑎𝑑𝑃𝑎𝑡ℎ, ABruijn selects a most-

consistent path for extending 𝑅𝑒𝑎𝑑𝑃𝑎𝑡ℎ. Our rationale for selecting a most-consistent path is

based on the observation that chimeric and spurious reads usually have either limited support or

themselves support few other reads from the set 𝑃𝑎𝑡ℎ𝑠. For example, a chimeric read

in 𝑃𝑎𝑡ℎ𝑠	with a spurious suffix may support many reads in 𝑃𝑎𝑡ℎ𝑠	but is unlikely to be supported

by any reads in 𝑃𝑎𝑡ℎ𝑠.

	

	 32

Figure 1.8: Path support and most-consistent paths.
(Top) A growing path (shown in green) and a set of five paths 𝑃𝑎𝑡ℎ𝑠	above it (extending this
path). The gray path with 𝑆𝑢𝑝𝑝𝑜𝑟𝑡slu��(𝑃) = 2 is the most-consistent path in the set 𝑃𝑎𝑡ℎ𝑠.
(Middle) A growing path (shown in green) ending in a repeat (represented by the internal edge
in the graph), and eight read-paths that extend this growing path (five correct extensions shown
in blue and three incorrect extensions shown in red. (Bottom) A support graph for the above
eight read-paths. Note that the blue read-path 1 is connected by edges with all red read-paths
because it is supported by all red paths even though these paths do not contain any short suffix
of read-path 1 (the ABruijn graph framework is less sensitive than the de Bruijn graph
framework with respect to overlap detection).	

	

	 33

Support Graphs.

When exSPAnder extends the growing path, it takes into account the local repeat

structure of the de Bruijn graph, resulting in a rather complex decision rule when the growing

path contains a repeat (Prjibelski et al. 2014; Vasilinetc et al. 2015). Figure 1.8, Middle shows a

fragment of the de Bruijn graph with a repeat of multiplicity 2 (internal edge), a growing path

ending in this repeat (shown in green), and eight read-paths that extend this growing path.

exSPAnder analyzes the subgraph of the de Bruijn graph traversed by the growing path, ignores

paths starting in the edges corresponding to repeats, and selects the remaining paths as

candidates for an extension (reads 1, 2, and 3 in Figure 1.8, Middle). Below we show how to

detect that a growing path ends in a repeat in the absence of the de Bruijn graph and how to

analyze read-paths ending/starting in a repeat in the A-Bruijn graph framework.

Figure 1.8, Bottom shows a support graph with eight vertices (each vertex corresponds to

a read-path in Figure 1.8, Middle). There is an edge from a vertex 𝑣	to a vertex 𝑤	in this graph if

read 𝑣	is supported by read 𝑤. The vertex of this graph with maximal indegree corresponds to the

rightmost blue read-path (read 8) and reveals four other blue read-paths as its predecessors, that

is, vertices connected to the vertex 8 (the cluster of blue vertices in Figure 1.8, Bottom). The

remaining three vertices in the graph represent incorrect extensions of the growing path and

reveal that this growing path ends in a repeat (the cluster of red vertices in Figure 1.8, Bottom).

This toy example illustrates that decomposing the vertices of the support graph into clusters

helps to answer the question of whether the growing path ends in a repeat (which would lead to

multiple clusters) or not (which would lead to a single cluster).

Although exSPAnder and ABruijn face a similar challenge when analyzing repeats, the

A-Bruijn graph, in contrast to the de Bruijn graph, does not reveal local repeat structure.

	

	 34

However, it allows one to detect reads ending in long repeats using an approach that is similar to

the approach illustrated in Figure 1.8. Below we show how to detect such reads and how to

incorporate their analysis in the decision rule of ABruijn.

Identifying Reads Ending/Starting in a Repeat.

Given a set of reads 𝑅𝑒𝑎𝑑𝑠	supporting a given read, we construct a support graph

𝐺(𝑅𝑒𝑎𝑑𝑠) on |𝑅𝑒𝑎𝑑𝑠| vertices. We further construct the transitive closure of this graph,

denoted 𝐺 ∗ (𝑅𝑒𝑎𝑑𝑠), using the Floyd–Warshall algorithm. Figure 1.9 presents the

graph 𝐺(𝑅𝑒𝑎𝑑𝑠) for a read that does not end in a long repeat and for another read that ends in a

long repeat.

ABruijn partitions the set of vertices in the graph 𝐺 ∗ (𝑅𝑒𝑎𝑑𝑠) into non-overlapping

clusters as follows. It selects a vertex 𝑣 with maximum indegree in 𝐺 ∗ (𝑅𝑒𝑎𝑑𝑠) and, if this

indegree exceeds a threshold (the default value is 1), it removes this vertex along with all its

predecessors from the graph. We refer to the set of removed vertices as a cluster of reads and

iteratively repeat this procedure on the remaining subgraph until no vertex in the graph has

indegree exceeding the threshold. Figure 1.9 illustrates that this decomposition results in a single

cluster for a read that does not end in a repeat and in two clusters for a read that ends in a repeat.

We classify a read as a read ending in a repeat if the number of clusters in G∗(Reads)

exceeds 1 (the notion of a read starting from a repeat is defined similarly). A set of reads is called

inconsistent if all reads in this set either end or start in a repeat, and consistent otherwise.

ABruijn detects all reads ending and starting in a repeat before the start of the path extension

algorithm; 3.2% and 6.4% of all reads in the ECOLI and BLS datasets, respectively, end in

repeats.

	

	 35

The Path Extension Paradigm and Repeats.

ABruijn attempts to exclude reads ending in repeats while selecting a read that extends

the growing path. Because this is not always possible, below we describe two cases: the growing

path does not end in a repeat and the growing path ends in a repeat.

Figure 1.9: Support graph examples revealing the absence and presence of repeats.
(Left) Support graph 𝐺(𝑅𝑒𝑎𝑑𝑠) for a read in the BLS dataset that does not end in a long repeat
(details for this dataset can be found in the “Datasets” paragraph of the Results section of this
chapter). Reads in the BLS dataset are numbered in order of their appearance along the genome.
The green vertex represents a chimeric read. The blue vertex has maximum degree in
𝐺∗(𝑅𝑒𝑎𝑑𝑠) and reveals a single cluster consisting of all vertices but the green one. A vertex
281 with large indegree (5) and large outdegree (3) in 𝐺∗(𝑅𝑒𝑎𝑑𝑠) is a most-consistent read-
path, and it is selected for path extension (unless it ends in a repeat). (Right) Support graph
𝐺∗(𝑅𝑒𝑎𝑑𝑠) for a read in the BLS dataset that ends in a long repeat. The green vertex represents
a chimeric read. The blue vertex has maximum degree in 𝐺∗(𝑅𝑒𝑎𝑑𝑠) and reveals a cluster
consisting of nine blue vertices. The vertex 4901 with large indegree (4) and large outdegree
(4) in 𝐺∗(𝑅𝑒𝑎𝑑𝑠) is a most-consistent read-path, and it is selected for path extension if it does
not start in a repeat. The red vertex reveals another cluster consisting of five red vertices.
Generally, we expect that a read ending in a long repeat of multiplicity 𝑚 will result
in 𝑚 clusters because reads originating different instances of this repeat are not expected to
support each other and, thus, are not connected by edges in 𝐺∗(𝑅𝑒𝑎𝑑𝑠).	

	

	 36

If the growing path does not end in a repeat, our goal is to exclude chimeric and spurious

reads during the path extension process. ABruijn, thus, selects a read from 𝑅𝑒𝑎𝑑𝑠	that (i) does

not end in a repeat and (ii) supports many reads and is supported by many reads.

Condition ii translates into selecting a vertex whose indegree and outdegree are both large (i.e., a

most-consistent path). In the case that all reads in 𝑅𝑒𝑎𝑑𝑠	end in a repeat, ABruijn selects a read

that satisfies the condition ii but ends in a repeat.

If the growing path ends in a repeat, ABruijn uses a strategy similar to exSPAnder to

avoid reads that start in a repeat as extension candidates (e.g., all reads in Figure 1.8, Middle

except for reads 1, 2, and 3). It thus selects a read from 𝑅𝑒𝑎𝑑𝑠	that (i) does not start in a repeat

and (ii) supports many reads and is supported by many reads. To satisfy condition ii, ABruijn

selects a most-consistent read among all reads in 𝑅𝑒𝑎𝑑𝑠	that do not start in a repeat. If there are

no such reads, ABruijn halts the path extension procedure.

1.4.3 Correcting Errors in the Draft Genome

Matching Reads Against the Draft Genome.

ABruijn uses BLASR (Chaisson et al. 2012) to align all reads against the draft genome. It

further combines pairwise alignments of all reads into a multiple alignment. Because this

alignment against the error-prone draft genome is rather inaccurate, we need to modify it into a

different alignment that we will use for error correction.

Our goal now is to partition the multiple alignment of reads to the entire draft genome

into thousands of short segments (mini-alignments) and to error-correct each segment into the

consensus string of the mini-alignment. The motivation for constructing mini-alignments is to

	

	 37

enable accurate error-correction methods that are fast when applied to short segments of reads

but become too slow in the case of long segments.

The task of constructing mini-alignments is not as simple as it may appear. For example,

breaking the multiple alignment into segments of fixed size will result in inaccurate consensus

sequences because a region in a read aligned to a particular segment of the draft genome has not

necessarily arisen from this segment [e.g., it may have arisen from a neighboring segment or

from a different instance of a repeat (misaligned segments)]. Because many segments in BLASR

alignments are misaligned, the accuracy of our error-correction approach (that is designed for

well-aligned reads) may deteriorate.

We, thus, search for a good partition of the draft genome that satisfies the following

criteria: (i) most segments in the partition are short, so that the algorithm for their error-

correction is fast, and (ii) with high probability, the region of each read aligned to a given

segment in the partition represents an error-prone version of this segment. Below we show how

to construct a good partition by building an A-Bruijn graph.

Defining Solid Regions in the Draft Genome.

We refer to a position (or column) of the alignment with the space symbol “-” in the

reference sequence as a non-reference position (or column) and to all other positions as a

reference position (or column). We refer to the column in the multiple alignment containing

the 𝑖-th position in a given region of the reference genome as the 𝑖-th column. The total number

of reads covering a position 𝑖 in the alignment is referred to as 𝐶𝑜𝑣(𝑖).

A non-space symbol in a reference column of the alignment is classified as a match (or a

substitution) if it matches (or does not match, respectively) the reference symbol in this column.

	

	 38

A space symbol in a reference column of the alignment is classified as a deletion. We refer to the

number of matches, substitutions, and deletions in the 𝑖-th column of the alignment as 𝑀𝑎𝑡𝑐ℎ(𝑖),

𝑆𝑢𝑏(𝑖), and 𝐷𝑒𝑙(𝑖), respectively. We refer to a non-space symbol in a non-reference column as

an insertion and denote 𝐼𝑛𝑠(𝑖) as the number of nucleotides in the non-reference columns

flanked between the reference columns 𝑖 and 𝑖 + 1 (Figure 1.10).

For each reference position 𝑖, 𝐶𝑜𝑣(𝑖) = 𝑀𝑎𝑡𝑐ℎ(𝑖) + 𝑆𝑢𝑏(𝑖) + 𝐷𝑒𝑙(𝑖). We define the

match, substitution, and insertion rates at position 𝑖 as 𝑀𝑎𝑡𝑐ℎ(𝑖)	/	𝐶𝑜𝑣(𝑖), 𝑆𝑢𝑏(𝑖)	/

	𝐶𝑜𝑣(𝑖), 𝐷𝑒𝑙(𝑖)	/	𝐶𝑜𝑣(𝑖), and 𝐼𝑛𝑠(𝑖)	/	𝐶𝑜𝑣(𝑖), respectively. Given an 𝑙-mer in a draft genome,

Figure 1.10: Decomposing a multiple alignment into necklaces.
(Top Left) The pairwise alignments between a reference region 𝑟𝑒𝑓 in the draft genome and
five reads 𝑅𝑒𝑎𝑑𝑠 = {𝑟𝑒𝑎𝑑Z, 𝑟𝑒𝑎𝑑y, 𝑟𝑒𝑎𝑑�, 𝑟𝑒𝑎𝑑�, 𝑟𝑒𝑎𝑑�}. All inserted symbols in these reads
with respect to the region 𝑟𝑒𝑓 are colored in blue. (Bottom Left) The multiple alignment
𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 constructed from the above pairwise alignments along with the values of 𝐶𝑜𝑣(𝑖),
𝑀𝑎𝑡𝑐ℎ(𝑖), 𝐷𝑒𝑙(𝑖), 𝑆𝑢𝑏(𝑖) and 𝐼𝑛𝑠(𝑖). The last row shows the set 𝑉 of (0.8, 0.2)-solid 4-mers.
The nonreference columns in the alignment are not numbered. (Right) Constructing
𝐴𝐵 (𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡), that is, combining all paths 𝑃𝑎𝑡ℎ(𝑟𝑒𝑎𝑑w, 𝑉) into 𝐴𝐵 (𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡). Note that
the 4-mer ATGA corresponds to two different nodes with labels 1 and 13. The three boundaries
of the mini-alignments are between positions 2 and 3, 7 and 8, and 14 and 15. The two resulting
necklaces are made up of segments {GAATCA,GATTCA,GAAACA,GAAACA,GAGGTA}
and {GTCAT,GTTCA,TCCTCGAT,GTATTACAT,GTCTTAAT}.	

	

	 39

we define its local match rate as the minimum match rate among the positions within this 𝑙-mer.

We further define its local insertion rate as the maximum insertion rate among the positions

within this 𝑙-mer.

An 𝑙-mer in the draft genome is called 𝛼, 𝛽 -solid if its local match rate exceeds 𝛼 and

its local insertion rate does not exceed 𝛽. When 𝛼	is large and 𝛽	is small, (𝛼, 𝛽)-solid 𝑙-mers

typically represent the correct 𝑙-mers from the genome. The last row in Figure 1.10, Bottom Left

shows all of the (0.8, 0.2)-solid 4-mers in the draft genome.

The contiguous sequence of (𝛼, 𝛽)-solid 𝑙-mers forms a solid region. There are 139,585

solid regions in the draft assembly of the ECOLI dataset (for 𝑙 = 10). Our goal now is to select a

position within each solid region (referred to as a landmark) and to form mini-alignments from

the segments of reads spanning the intervals between two consecutive landmarks.

Breaking the Multiple Alignment into Mini-Alignments.

Because (𝛼, 𝛽)-solid 𝑙-mers are very accurate (for appropriate choices of 𝛼, 𝛽 and 𝑙), we

use them to construct yet another A-Bruijn graph with much simpler bubbles. Because analyzing

errors in homonucleotide runs is a difficult problem (Chin et al. 2013), we select landmarks

outside of homonucleotide runs.

A 4-mer is called simple if all its consecutive nucleotides are different. For example,

CAGT and ATGA are simple 4-mers, and GTTC is not a simple 4-mer. We select simple 4-mers

that are at least 𝑙 positions away from each other within solid regions as landmarks. We

introduce multiple landmarks (rather than a single one) in some solid regions to minimize the

size of mini-alignments resulting from long solid regions. We further use the middle points (i.e.,

a point between its 2nd and 3rd nucleotides) of selected simple 4-mers as landmarks. This

	

	 40

procedure resulted in 159,142 mini-alignments for the ECOLI dataset. ABruijn analyzes each

mini-alignment and error-corrects each segment between consecutive landmarks (the average

length of these segments is only ≈30 nucleotides). Figure 1.11 shows the distribution of the

lengths of necklaces constructed by aligning all reads in the ECOLI dataset to the draft genome.

To evaluate how errors in the draft genome affect alignments of long error-prone reads,

we corrupted the reference E. coli genome by introducing random single-nucleotide errors at

randomly chosen positions (10,000 mismatches, deletions, and insertions) and aligned all reads

against the corrupted genome. A segment in the corrupted genome is called corrupted if it has

been changed by an error and correct otherwise. Figure 1.12 shows the distribution of the local

Figure 1.11: A histogram of necklace lengths.
A histogram of the lengths of 159,142 necklaces formed by aligning all reads in the ECOLI
dataset to the draft genome and constructing the A-Bruijn graph for this alignment. 3,271
necklaces that are longer than 100 bp are not shown.

	

	 41

match and insertion rates (for both corrupted and correct simple 4-mers) and illustrates that 77%

of all correct simple 4-mers are (0.8, 0.2)-solid. Remarkably, none of the corrupted simple 4-

mers are (0.8, 0.2)-solid.

ABruijn finds all maximal (𝛼, 𝛽)-solid 𝑙-mers (the default value of 𝑙 is 10) and treats

them as solid regions. It further uses the landmarks (the middle points of simple 4-mers) within

the solid regions as the boundaries of necklaces to ensure that single homonucleotide runs in

reads do not split into two consecutive necklaces and are not adjacent to the boundaries of

necklaces. This condition is important for the subsequent genome polishing step.

Constructing the A-Bruijn Graph on Solid Regions in the Draft Genome.

We refer to the multiple alignment of all reads against the draft genome as 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡.

We label each landmark by its landmark position in 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡	and break each read into a

Figure 1.12: Match and insertion rate distribution for a simulated corrupted genome.
Distribution of local match and insertion rates as a 2-D plot for correct simple 4-mers (green),
corrupted simple 4-mers with mismatches (blue), corrupted simple 4-mers with insertions (red)
and corrupted simple 4-mers with deletions (orange).

	

	 42

sequence of segments aligned between consecutive landmarks. We further represent each read as

a directed path through the vertices corresponding to the landmarks that it spans over. To

construct the A-Bruijn graph 𝐴𝐵(𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡), we glue all identically labeled vertices in the set

of paths resulting from the reads (Figure 1.10, Right).

Labeling vertices by their positions in the draft genome (rather than the sequences of

landmarks) distinguishes identical landmarks from different regions of the genome and prevents

excessive gluing of vertices in the A-Bruijn graph 𝐴𝐵(𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡). We note that whereas the

A-Bruijn graph constructed from reads is very complex, the A-Bruijn graph 𝐴𝐵(𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡)

constructed from reads aligned to the draft genome is rather simple. Although there are many

bubbles in this graph, each bubble is simple, making the error correction step fast and accurate.

The edges between two consecutive landmarks (two vertices in the A-Bruijn graph) form a

necklace consisting of segments from different reads that align to the region flanked by these

landmarks (Figure 1.10, Right shows two necklaces). Below we describe how ABruijn constructs

a consensus for each necklace (called the necklace consensus) and transforms the inaccurate

draft genome for the ECOLI dataset into a polished genome to reduce the error rate to 0.0004%

for the ECOLI dataset (only 19 putative errors for the entire genome).

A Probabilistic Model for Necklace Polishing.

Each necklace contains read-segments 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = {𝑠𝑒𝑔Z, 𝑠𝑒𝑔y, … , 𝑠𝑒𝑔d} and our goal

is to find a consensus sequence 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 maximizing 𝑃𝑟(𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠|𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠) =

𝑃𝑟	(𝑠𝑒𝑔e|𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠)d
e£Z , where 𝑃𝑟(𝑠𝑒𝑔e|𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠) is the probability of generating a

segment 𝑠𝑒𝑔e	from a consensus sequence 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠. Given an alignment between a

	

	 43

segment 𝑠𝑒𝑔e	and a consensus 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠, we define 𝑃𝑟(𝑠𝑒𝑔e|𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠) as the product of all

match, mismatch, insertion, and deletion rates for all positions in this alignment.

The match, mismatch, insertion, and deletion rates should be derived using an alignment

of any set of reads to any reference genome. Table 1.2 shows the values for these rates for three

different protocols of Pacific Biosciences reads: P6-C4, P5-C3, and P4-C2. Note that the

parameters for P6-C4 and P5-C3 are nearly identical.

Table 1.2: Match, mismatch, insertion, and deletion rates for various
Pacific Biosciences protocols.
The match, mismatch, insertion, and deletion rates obtained by aligning
datasets from different protocols against the reference genome. The statistical
parameters of the P6-C4 protocol were compared with the statistical
parameters of the older P5-C3 and P4-C2 protocol (derived from the P5-C3
and P4-C2 Pacific Biosciences datasets in Kim et al. 2014). 	

	

	 44

ABruijn selects a segment of median length from each necklace and iteratively checks

whether the consensus sequence for each necklace can be improved by introducing a single

mutation in the selected segment. If there exists a mutation that increases

𝑃𝑟(𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠|𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠), we select the mutation that results in the maximum increase and

iterate until convergence. We further output the final sequence as the error-corrected sequence of

the necklace. As described in Chin et al. (2013), this greedy strategy can be implemented

efficiently because a mutation maximizing 𝑃𝑟(𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠|𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠) among all possible

mutated sequences can be found in a single run of the forward–backward dynamic programming

algorithm for each sequence in 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠. The error rate drops to 0.003% after this step for the

ECOLI dataset.

Error-Correcting Homonucleotide Runs.

The probabilistic approach described above works well for most necklaces but its

performance deteriorates when it faces the difficult problem of estimating the lengths of

homonucleotide runs, which account for 46% of the E. coli genome (see discussion on pulse

merging in Chin et al. 2015). We, thus, complement this approach with a homonucleotide

likelihood function based on the statistics of homonucleotide runs. In contrast to previous

approaches to error-correction of long error-prone reads, this new likelihood function

incorporates all corrupted versions of all homonucleotide runs across the training set of reads and

reduces the error rate sevenfold (from 0.003% to 0.0004% for the ECOLI dataset) compared with

the standard likelihood approach.

	

	 45

To generate the statistics of homonucleotide runs, we need an arbitrary set of reads

aligned against a training reference genome. For each homonucleotide run in the genome and

each read spanning this run, we represent the aligned segment of this read simply as the set of its

nucleotide counts. For example, if a run AAAAAAA in the genome is aligned against

AATTACA in a read, we represent this read-segment as 4A3X, where X stands for any

nucleotide differing from A.

Furthermore, for each run LZ ... ZR, where a nucleotide Z in the genome is flanked by

the nucleotides L (on the left) and R (on the right) distinct from Z, we limit our analysis to only

reads that are well-aligned against LZ ... ZR. A read is well-aligned against LZ ... ZR if the

flanking L and R nucleotides both form either a match with the read or is aligned against a

nucleotide Z in the read (see Figure 1.13). The counts of all read segments well-aligned to each

homonucleotide region are used to calculate the error distributions for all homonucleotide runs.

Table 1.3 presents the frequencies for all read segments covering the homonucleotide

runs AAAAAA and AAAAAAA in the ECOLI dataset. Table 1.4 presents the frequencies for all

read segments covering the homonucleotide runs AAAA and AAAAA for ECOLInano.

Interestingly, when we apply the statistical parameters derived from the older P5-C3 protocol to

our P6-C4 ECOLI dataset, the number of ABruijn errors remains small, illustrating that our

Figure 1.13: Examples of read well-aligned to homonucleotide regions.
Well-aligned reads (the first two examples) and a poorly aligned read (the last
example). The well-aligned reads are represented as 3A1X and 4A1X in the
likelihood estimate (X stands for an arbitrary nucleotide).

	

	 46

probabilistic framework is not subject to over-training. The frequencies in the resulting tables

hardly change when one changes the dataset of reads or the reference genome either.

Table 1.3: AAAAAA and AAAAAAA error distributions for ECOLI.
The frequencies of segments from reads spanning 6-nucleotide runs
AAAAAA (Left) and 7-nucleotide runs AAAAAAA (Right) in the
ECOLI dataset. Only combinations with frequencies exceeding 0.001 are
shown. X stands for an arbitrary nucleotide.

	

	 47

We further use the frequencies in this table for computing the likelihood function as the

product of these frequencies for all reads in each necklace (frequencies below a threshold 0.001

are ignored). To decide on the length of a homonucleotide run, we simply select the length of the

run that maximizes the likelihood function. For example, using the frequencies from Table 1.3, if

𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = {5𝐴, 6𝐴, 6𝐴, 7𝐴, 6𝐴1𝐶}, then

Table 1.4: AAAA and AAAAA error distributions for ECOLInano.
The frequencies of segments from Oxford Nanopore reads spanning 4-
nucleotide runs AAAA (Left) and 5-nucleotide runs AAAAA (Right) in
the ECOLInano dataset. Only combinations with frequencies exceeding
0.001 are shown. X stands for an arbitrary nucleotide.

	

	 48

𝑃𝑟(𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠|6𝐴) = 0.156×0.4392×0.115×0.0740.156×0.4392×0.115×0.074	 >

	𝑃𝑟(𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠|7𝐴) = 0.049×0.1562×0.385×0.0450.049×0.1562×0.385×0.045

and we select AAAAAA over AAAAAAA as the necklace consensus.

Although the described error-correcting approach results in a very low error rate even

after a single iteration, ABruijn realigns all reads and error-corrects the pre-polished genome in

an iterative fashion (three iterations by default). Further improvements on correcting errors was

explored by considering the lengths of Open Reading Frames (ORFs).

ORF-Based Error-Correction of Bacterial Genomes.

While the likelihood-based approaches to error-correction (described in the main text)

corrects the lion’s share of errors in the draft genomes, some errors remain uncorrected,

particularly with respect to the errors in estimating the lengths of homonucleotide runs. We thus

complement the likelihood-based approaches with an ORF-based error-correction approach that

analyzes Open Reading Frames (ORFs).

Note that while the average length of a protein-coding gene in most bacterial genomes

exceeds 800 bp (Brocchieri et al. 2005), the average ORF length in a randomly generated string

of nucleotides is only 64 bp. Thus, every error that represents an indel within a gene (a

frameshift) may introduce a premature stop codon and has the potential to significantly reduce

the length of the ORF corresponding to this gene.

If we are deciding between two alternative lengths of a homonucleotide run within a gene

(correct and incorrect), the correct choice results in an ORF that corresponds to the gene length

while the incorrect choice results in a frameshift that may introduce a premature stop codon.

	

	 49

Such frameshift mutations usually shorten the length of the longest ORF that spans over the

homonucleotide run with incorrectly defined length.

Given a position in the genome, we compute its ORF-length as the maximum length of

all six ORFs covering this position. If the genome is assembled without errors, then ORF-lengths

are large for most positions that belong to genes. Since genes typically cover over 85% of

bacterial genomes, most positions in the entire genome have large ORF-lengths. However, if a

genome is assembled with errors, the ORF-lengths for positions with indels are typically smaller

than the ORF-length of this position in the error-free genome (see Figure 1.14).

Since in some cases, the likelihood values for alternative choices for the length of a

homonucleotide run are nearly the same, we develop an additional decision rule that analyzes the

ORF-lengths between two alternatives and gives preference to the choice that results in a

significantly longer ORF-length.

Given two candidate lengths of a homonucleotide run with a small difference in their

homonucleotide likelihood score (smaller than a threshold ∆), we compute the difference

between their ORF-lengths and select the candidate with larger ORF-length if the difference

between ORF-lengths exceeds a threshold (the default value is 128 bp). If the difference between

the ORF-lengths is smaller than the threshold, we retain the length of the run that maximizes the

homonucleotide likelihood score described in the main text.

	

	 50

Figure 1.14: ORF-length histograms for correct and incorrect positions.
Distribution of ORF-lengths for correct positions in the error-free E. coli genome (top) and
incorrect positions in the error-prone E. coli genome (middle), and the difference between the
ORF-lengths of corresponding correct and incorrect positions (bottom). The error-prone E.
coli genome was generated by deleting or inserting a single (randomly chosen) nucleotide
with probability 0.0005 at each position. The vast majority of indels in the error-prone genome
result in a significant reduction of ORF lengths. On average, there is a 276-nucleotide
reduction in the ORF-length for the error-prone genome.

	

	 51

1.5 Results

Because CANU (Berlin et al. 2015) improved on PBcR (Koren et al. 2012) with respect

to both speed and accuracy, we limited our benchmarking to ABruijn and CANU v1.2 using the

following datasets.

Datasets.

The E. coli K12 dataset (referred to as ECOLI) contains 10,277 reads with ≈ 55×

coverage generated using P6-C4 Pacific Biosciences technology (Kim et al. 2014).

The E. coli K12 Oxford Nanopore dataset (referred to as ECOLInano) contains 22,270

reads with ≈ 29×	coverage (Loman et al. 2015).

The BLS and PXO datasets were derived from X. oryzae strains BLS256 and PXO99A

previously assembled using Sanger reads (Bogdanove et al. 2011; Salzberg et al. 2008) and

reassembled using Pacific Biosciences P6-C4 reads in Booher et al. (2015). The BLS dataset

contains 89,634 reads (≈ 234×	coverage), and the PXO dataset contains 55,808 reads (≈

141×	coverage). The assembly of BLS and PXO datasets is particularly challenging because

these genomes have a large number of tal genes.

The B. neritina dataset (referred to as BNE) contains 1,127,494 reads (estimated

coverage ≈ 25×) generated using the P6-C4 Pacific Biosciences technology. B. neritina is a

microscopic marine eukaryote that forms colonies attached to the wetted surfaces and forms

symbiotic communities with various bacteria. B. neritina is the source of bryostatin, an

anticancer and memory-enhancing compound (Trost et al. 2008). B. neritina is also a model

organism for biofouling, studies of accumulation of various organisms on wetted surfaces that

present a risk to underwater construction.

	

	 52

Symbiotic bacteria live inside of B. neritina, making it impossible to isolate the B.

neritina DNA from the bacterial DNA when performing genome sequencing. As a result, despite

the importance of B. neritina, all attempts to sequence it so far have failed (Lopanik et al. 2008).

The total genome size of the symbiotic bacteria in B. neritina is significantly larger than the

estimated size of the B. neritina genome (135 Mb). Thus, sequencing B. neritina presents a

complex metagenomics challenge.

We have also assembled the S. cerevisiae W303 genome (referred to as SCE), which

contains 232,230 reads with ≈ 117× coverage generated using the P5-C3 Pacific Biosciences

technology (Kim et al. 2014).

The Challenge of Benchmarking SMS Assemblies.

High-quality short-read bacterial assemblies typically have error-rates on the order

of 10−5, which typically result in 50 to 100 errors per assembled genome (Ronen et al. 2012).

Because assemblies of high-coverage SMS datasets are often even more accurate than assemblies

of short reads, short-read assemblies do not represent a gold standard for estimating the accuracy

of SMS assemblies. Moreover, the E. coli K12 strain used for SMS sequencing of the ECOLI

dataset differs from the reference genome. Thus, the standard benchmarking approach based on

comparison with the reference genome (Gurevich et al. 2013) is not applicable to these

assemblies.

We used the following approach to benchmark ABruijn and CANU against the

reference E. coli K12 genome. There are 2,892 and 2,887 positions in E. coli K12 genome where

the reference sequence differs from ABruijn and CANU+Quiver, respectively. However,

ABruijn and CANU+Quiver agree on 2,873 of them, suggesting that most of these positions

	

	 53

represent mutations in E. coli K12 compared with the reference genome. Both CANU+Quiver

and ABruijn suggest that the ECOLI dataset was derived from a strain that differs from the

reference E. coli K12 genome by a 1,798-bp inversion, two insertions (776 and 180 bp), one

deletion (112 bp), and seven other single positions. We, thus, revised the E. coli K12 genome to

account for these variations and classified a position as an ABruijn error if the CANU+Quiver

sequence at this position agreed with the revised reference but not with the ABruijn sequence

(CANU errors are defined analogously).

Assembling the ECOLI Dataset.

ABruijn and CANU assembled the ECOLI dataset into a single circular contig

structurally concordant with the E. coli genome. We further estimated the accuracy of ABruijn

and CANU in projects with lower coverage by down-sampling the reads from ECOLI. For each

value of coverage, we made five independent replicas and analyzed errors in all of them.

In contrast to ABruijn, CANU does not explicitly circularize the reconstructed bacterial

chromosomes but instead outputs each linear contig with an identical (or nearly identical) prefix

and suffix. We used these suffixes and prefixes to circularize bacterial chromosomes and did not

count differences between some of them as potential CANU errors. However, for some replicas

with coverage 40×, 35×, 30×, and 25×, CANU missed short 2-kb to 7-kb fragments of the

genome (possibly due to low coverage in some regions), thus, preventing us from circularization.

To enable benchmarking, we did not count these missing regions as CANU errors. Also, at

coverage 30×, CANU (i) failed to assemble the ECOLI dataset into a single contig for one out of

five replicas and (ii) correctly assembled bacterial chromosome for another replica but also

	

	 54

generated a false contig (probably formed by chimeric reads). In contrast, ABruijn correctly

assembled all replicas for all values of coverage.

Table 1.5 illustrates that, in contrast to ABruijn, CANU generates rather inaccurate

assemblies without Quiver, a tool that uses raw machine-level signals saved in HDF5 files for

polishing: 637 errors (160 insertions and 477 deletions) and 19 errors (12 insertions and 7

deletions) remain for CANU and ABruijn, respectively. However, after applying Quiver, the

number of errors reduces to 14 (1 insertion and 13 deletions) and 15 (2 insertions and 13

deletions) for CANU and ABruijn, respectively. ABruijn assembled the ECOLI dataset in ≈8

min and polished it in ≈36 min (the memory footprint was 2 Gb). ABruijn and CANU have

similar running times: 2,599 s and 2,488 s, respectively (4,873 s and 4,803 s for ABruijn+Quiver

and CANU+Quiver, respectively).

Table 1.5: Total errors remaining for CANU and ABruijn assemblies.
Summary of errors for the CANU and ABruijn assemblies of the ECOLI, BLS, and
PXO datasets as well as for the down-sampled ECOLI datasets with coverage varying
from 50× to 25×. To offset CANU assembly errors in the case of 30× coverage, we
provided the average number of errors for the four replicas with best results (out of
five).

	

	 55

To enable a fair benchmarking and to offset the artifacts of CANU assemblies at 30×

coverage, we collected statistics of errors for the four out of five best assemblies for each value

of coverage. Table 1.5 illustrates that both ABruijn and CANU maintain accuracy even in

relatively low coverage projects but CANU assemblies become fragmented and may miss short

segments when the coverage is low. Table 1.6 illustrates that the lion’s share of ABruijn errors

occur in the low-coverage regions. When the coverage of bubbles drops to at most 15×, the

fraction of bubbles with errors goes up to 1% and then for coverage at most 10× up to 5%.

Assembling the ECOLInano Dataset.

Both the Nanocorrect assembler described in Loman et al. (2015) and ABruijn assembled

the ECOLInano dataset into a single circular contig structurally concordant with the E. coli K12

genome. Nanocorrect and ABruijn runs resulted in assemblies with error rates 1.5% and 1.1%,

respectively (2,475 substitutions, 9,238 insertions, and 40,399 deletions for ABruijn). We note

that, in contrast to the more accurate Pacific Biosciences technology, Oxford Nanopore

Table 1.6: Analysis of errors in down-sampled datasets.
The total number of bubbles/necklaces with errors in them increases as the coverage
of those bubbles/necklaces decreases. Very few errors occur when the coverage is at
above 20×.

	

	 56

technology currently has to be complemented by hybrid co-assembly with short reads to generate

finished genomes (Antipov et al. 2015; Labont et al. 2015; Ashton et al. 2015; Risse et al. 2015).

Although further reduction in the error rate in Oxford Nanopore assemblies can be

achieved by machine-level processing of the signal resulting from DNA translocation (Loman et

al. 2015), it is still two orders of magnitude higher that the error rate for the down-sampled

ECOLI dataset with similar 30× coverage by Pacific Biosciences reads (see Table 1.5) and

below the acceptable standards for finished genomes. Because Oxford Nanopore technology is

rapidly progressing, we decided not to optimize it further using signal processing of raw

translocation signals.

Assembling Xanthomonas Genomes.

Because HGAP 2.0 failed to assemble the BLS dataset, Booher et al. (2015) developed a

special PBS algorithm for local tal gene assembly to address this deficiency in HGAP. They

further proposed a workflow that first launches PBS and uses the resulting local tal gene

assemblies as seeds for a further HGAP assembly with custom adjustment of parameters in

HGAP/Celera workflows. Although HGAP 3.0 resulted in an improved assembly of the BLS

dataset, Booher et al. (2015) commented that the PBS algorithm is still required for assembling

other Xanthomonas genomes. Because PBS represents a customized assembler for tal genes that

is not designed to work with other types of complex repeats, development of a general SMS

assembly tool that accurately reconstructs repeats remains an open problem.

We launched ABruijn with the automatically selected parameters t = 28 and t = 18 for the

BLS and PXO datasets, respectively (all other parameters were the same default parameters that

we used for the ECOLI dataset). ABruijn assembled the BLS dataset into a circular contig

	

	 57

structurally concordant with the BLS reference genome. It also assembled the PXO dataset into a

circular contig structurally concordant with the PXO reference genome but, similarly to the

initial assembly in Booher et al. (2015), it collapsed a 212-kb long tandem repeat.

CANU assembled the BLS dataset into a circular contig structurally concordant with the

BLS reference genome but assembled the PXO dataset into two contigs, a long contig similar to

the reference genome (with a collapsed 212-kb tandem repeat and three large indels of total

length over 1,500 nucleotides) and a short contig. In summary, ABruijn+Quiver and

CANU+Quiver assemblies of the BLS dataset resulted in only 31 and 51 errors, respectively.

Surprisingly, ABruijn without Quiver resulted in a better assembly than ABruijn+Quiver with

only five errors.

To evaluate errors for the PXO dataset, we decided to ignore the short contig generated

by CANU and the collapsed 212-kb repeat (generated by both CANU and ABruijn). The

ABruijn+Quiver assembly of the PXO dataset resulted in only 15 errors whereas the

CANU+Quiver assembly resulted in 130 errors, including one insertion of 100 nucleotides.

Assembling the B. neritina Metagenome.

We have assembled the B. neritina metagenome and further analyzed all long contigs at

least 50 kb in size (1,319 and 1,108 long contigs for CANU and ABruijn, respectively). We

ignored shorter contigs because they are often formed by a few reads or even a single read. The

total length of long contigs was 171 Mb for CANU and 202 Mb for ABruijn. Figure 1.15 shows

the histogram of the total length of contigs with a given coverage. Because the spread of the

distribution of coverage for B. neritina significantly exceeds the spread we observed in other

SMS datasets (typically within 15% of the average coverage), we attribute most bins with

	

	 58

coverage below 20× to contigs from symbiotic bacteria (the tallest peak in the histogram

suggests that the average coverage of B. neritina is 25×). Running AntiSmash (Medema et al.

2011) on the ABruijn assembly revealed nine bacterial biosynthetic gene clusters encoding

natural products that, similarly to bryostatin, may represent new bioactive compounds.

We attribute the large difference in the total contig length to fragmentation in CANU

assemblies for low-coverage datasets, which we had already observed in our analysis of the

down-sampled ECOLI datasets. This fragmentation may have also contributed to differences in

the N50 (98 kb vs. 242 kb) between CANU and ABruijn.

However, differences in N50 are poor indicators of assembly quality in the case when the

reference genome is unknown. We, thus, conducted an additional analysis using the Core

Figure 1.15: A comparison between ABruijn and CANU assemblies for B. neritina.
This histogram shows how the total length of contigs varies with coverage for CANU
(red) and ABruijn (blue) assemblies. ABruijn contig lengths are shown on the left of
the corresponding CANU contig length for each coverage value.

	

	 59

Eukaryotic Genes Mapping Approach (CEGMA) that was used in hundreds of previous studies

for evaluating the completeness of eukaryotic assemblies (Parra et al. 2007). CEGMA evaluates

an assembly by checking whether its contigs encode all 248 ultra-conserved eukaryotic core

protein families. CANU and ABruijn assemblies missed 18 and 11 out of 248 core genes,

respectively (7.3% vs. 4.4%). Thus, although both CANU and ABruijn generated better

assemblies than typical eukaryotic short read assemblers (that often miss over 20% of core

genes), the ABruijn assembly improved on the CANU assembly in this respect.

Assembling the S. cerevisiae W303 Genome.

 Since the S. cerevisiae W303 genome has not been finished using an alternative

sequencing technology yet, we use its closest finished reference S. cerevisiae S288c (12,157,105

nucleotides, NCBI Assembly GCF 000146045.2) for estimating the accuracy of the ABruijn

assembly. We estimated the average percent identity between the S. cerevisiae W303 and S.

cerevisiae S288c genomes by comparing the longest contig assembled by ABruijn and PBcR-

MHAP (Berlin et al. 2015) that is structurally concordant with the entire chromosome IV in S.

cerevisiae S288c. ABruijn and PBcR-MHAP contigs featured 99.92% similarity with each other

but only 97.8% similarity with chromosome IV. This high similarity between the assemblies

suggests that many of the differences between these assemblies and chromosome IV represent

structural variations rather than assembly errors.

Considering only long contigs (longer than 50 Kb), both the PBcR-MHAP assemblies

and ABruijn assemblies of the SCE dataset were largely structurally concordant with the sixteen

chromosomes of the S. cerevisiae S288C genome (Kim et al. 2014). Although QUAST with

default parameters reported 77 and 72 misassemblies for the 20 long contigs in the PBcR-MHAP

	

	 60

assembly and the 24 long contigs in the ABruijn assembly, respectively, most of these

misassemblies represent structural variations or regions of high divergence as compared to the

reference genome (e.g., the PBcR-MHAP and ABruijn assemblies coincided with each other in

most regions where QUAST reported misassemblies). The total contig length for the PBcR-

MHAP assembly was slightly longer than for the ABruijn assembly (12.18 Mb vs. 12.08 Mb) but

its duplication ratio was slightly larger.

It is not clear whether the small difference in the total contig length represents an

improvement in assembly or a reporting artifact. For example, while the longest contig in the

PBcR-MHAP and ABruijn assemblies (1.548 Mb and 1.532 Mb, respectively) are structurally

concordant with chromosome IV in S. cerevisiae S288C, the PBcR-MHAP contig is slightly

longer. However, the 14 kb long suffix of this contig does not align to the reference chromosome

IV, so it remains unclear whether this suffix represents an extension of chromosome IV as

compared to the S. cerevisiae S288C genome or an assembly artifact.

To offset the effect of differences with the reference genome on the number of

misassemblies, we increased the QUAST parameter extensive-mis-size from its default value 1

kb to 40 kb to mask out the large structural variations between the S. cerevisiae S288C and S.

cerevisiae W303 genomes. After this increase, QUAST reported no misassemblies for PBcR-

MHAP and one misassembly for ABruijn. Thus, most of misassemblies reported by QUAST

with the default 1 kb value of the extensive-mis-size parameter likely represent insertions of

mobile elements, large indels (longer than 1 kb), or long regions with high divergence as

compared to the reference.

	

	 61

Running Time and Memory Footprint.

 For the Xanthomonas genomes, which have complex repeat structure and high coverage,

the assembly time and memory footprint increased compared to the ECOLI dataset: 48 minutes

for the assembly step, 125 minutes for the polishing step, and 15 Gb of memory for the PXO

dataset, and 26 minutes for the assembly step, 90 minutes for the polishing step, and 21 Gb of

memory for the BLS dataset [Intel Core i7-4790 3.60 GHz with 4 cores (8 threads), 32Gb of

RAM].

The running time increased to 48 minutes (with a memory footprint of 2 Gb) for the

ECOLInano dataset. The increase in the running time is attributed to the polishing step since

Oxford Nanopore reads are less accurate than Pacific Biosciences reads (the assembly step took

less than 2 minutes).

In contrast, the running time for the SCE dataset was dominated by the assembly step (8

hours and 44 minutes for the assembly step and 2 hours and 30 minutes for the polishing step).

The increase in the running time of the assembly step is explained by the presence of many long

and highly conserved Ty1 - Ty 5 repeats and long segmental duplications.

For the BNE metagenome, the assembly step took 9 hours and 10 minutes, the polishing

step took 19 hours and 21 minutes, and the memory footprint was 278 Gb (64 cores, AMD

Opteron 6376 2.30 GHz, 512 Gb of RAM).

	

	 62

1.6 Discussion

We developed the ABruijn algorithm aimed at assembling bacterial and relatively small

eukaryotic genomes from long error-prone reads. Because the number of bacterial genomes that

are currently being sequenced exceeds the number of all other genome sequencing projects by an

order of magnitude, accurate sequencing of bacterial genomes remains an important goal. Since

short-read technologies typically fail to generate long contiguous assemblies (even in the case of

bacterial genomes), long reads are often necessary to span repeats and to generate accurate

genome reconstructions.

Because traditional assemblers were not designed for working with error-prone reads, the

common view is that OLC is the only approach capable of assembling inaccurate reads and that

these reads must be error-corrected before performing the assembly (Berlin et al. 2015). We have

demonstrated that these assumptions are incorrect and that the A-Bruijn approach can be used for

assembling genomes from long error-prone reads. We believe that initial assembly with ABruijn,

followed by construction of the de Bruijn graph of the resulting contigs, followed by a de Bruijn

graph-aware reassembly with ABruijn may result in even more accurate and contiguous

assemblies of SMS reads.

	

	 63

1.7 Additional Information

Author contributions.

Yu Lin (Y.L.), Jeffrey Yuan (J.Y.), Mikhail Kolmogorov (M.K.), and Pavel A. Pevzner

(P.A.P.) designed research; Y.L., J.Y., M.K., Max W. Shen (M.W.S.), and P.A.P. performed

research; Y.L., M.K., and Mark Chaisson (M.C.) analyzed data; and Y.L., M.K., and P.A.P.

wrote the paper. Y.L., J.Y., and M.K. contributed equally to this work.

Conflict of Interests.

The authors declare no conflict of interest.

Code Availability.

The ABruijn assembler is freely available from

https://sites.google.com/site/abruijngraph.

	

	 64

1.8 Acknowledgements

We thank Dmitry Antipov, Bahar Behsaz, Adam Bogdanove, Anton Korobeinikov, Mihai

Pop, Steven Salzberg, and Glenn Tesler for their many useful comments; Mike Rayko for his

help with analyzing the B. neritina assemblies; and Alexey Gurevich for his help with QUAST

and AntiSmash.

Chapter 1, in full, is a reformatted reprint of “Assembly of long error-prone reads using

de Bruijn graphs” as it appears in Proceedings of the National Academy of Sciences USA 2016

by Yu Lin, Jeffrey Yuan, Mikhail Kolmogorov, Max W. Shen, Mark Chaisson, and Pavel A.

Pevzner, with some minor revisions and edits for improved readability. The dissertation author

was a primary author of this material.

	

	 65

1.9 References

Antipov, D., Korobeynikov, A. & Pevzner, P.A. hybridSPAdes: An algorithm for hybrid

assembly of short and long reads. Bioinformatics. 2015; 32 (7): 1009-1115.

Ashton, P.M., Nair, S., Dallman, T., Rubino, S., Rabsch, W., Mwaigwisya, S., Wain, J. &

O'Grady, J. Minion nanopore sequencing identifies the position and structure of a
bacterial antibiotic resistance island. Nature Biotechnology. 2015; 33 (3): 296-300.

Bandeira, N., Clauser, K.R. & Pevzner, P.A. Shotgun protein sequencing: Assembly of peptide

tandem mass spectra from mixtures of modified proteins. Molecular & Cellular
Proteomics. 2007; 6 (7): 1123-1134.

Bandeira, N., Pham, V., Pevzner, P., Arnott, D. & Lill, J.R. Automated de novo protein

sequencing of monoclonal antibodies. Nature Biotechnology. 2008; 26 (12): 1336-1338.

Bankevich. A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M.,

Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N.,
Tesler, G., Alekseyev, M.A. & Pevzner, P.A. SPAdes: A new genome assembly
algorithm and its applications to single-cell sequencing. Journal of Computational
Biology. 2012; 19 (5): 455-477.

Berlin, K., Koren, S., Chin, C.S., Drake, J.P., Landolin, J.M. & Phillippy, A.M. Assembling

large genomes with single-molecule sequencing and locality-sensitive hashing. Nature
Biotechnology. 2015; 33 (6): 623-630.

Bogdanove, A.J., Koebnik, R., Lu, H., Furutani, A., Angiuoli, S.V., Patil, P.B., Van Sluys, M.A.,

Ryan, R.P., Meyer, D.F., Han, S.W., Aparna, G., Rajaram, M., Delcher, A.L., Phillippy,
A.M., Puiu, D., Schatz, M.C., Shumway, M., Sommer, D.D., Trapnell, C., Benahmed, F.,
Dimitrov, G., Madupu, R., Radune, D., Sullivan, S., Jha, G., Ishihara, H., Lee, S.W.,
Pandey, A., Sharma, V., Sriariyanun, M., Szurek, B., Vera-Cruz, C.M., Dorman, K.S.,
Ronald, P.C., Verdier, V., Dow, J.M., Sonti, R.V., Tsuge, S., Brendel, V.P., Rabinowicz,
P.D., Leach, J.E., White, F.F. & Salzberg, S.L. Two new complete genome sequences
offer insight into host and tissue specificity of plant pathogenic Xanthomonas
spp. Journal of Bacteriology. 2011; 193 (19): 5450–5464.

Boisvert, S., Raymond, F., Godzaridis, E., Laviolette, F. & Corbeil, J. Ray meta: Scalable de

novo metagenome assembly and profiling. Genome Biology. 2012; 13 (12): R122.

Bonissone, S.R. & Pevzner, P.A. Immunoglobulin classification using the colored antibody

graph. Journal of Computational Biology. 2016; 23 (6): 483-494.

Booher, N.J., Carpenter, S.C., Sebra, R.P., Wang, L., Salzberg, S.L., Leach, J.E. & Bogdanove,

A.J. Single molecule real-time sequencing of Xanthomonas oryzae genomes reveals a
dynamic structure and complex TAL (transcription activator-like) effector gene
relationships. Microbial Genomics. 2015; 1 (4): 1-22.

	

	 66

Brocchieri, L. & Karlin, S. Protein length in eukaryotic and prokaryotic proteomes. Nucleic

Acids Research. 2005; 33 (10): 3390-400.

Butler, J., MacCallum, I., Kleber, M., Shlyakhter, I.A., Belmonte, M.K., Lander, E.S., Nusbaum,

C. & Jaffe, D.B. ALLPATHS: De novo assembly of whole-genome shotgun microreads.
Genome Research. 2008; 18 (5): 810-820.

Chaisson, M.J., Huddleston, J., Dennis, M.Y., Sudmant, P.H., Malig, M., Hormozdiari, F.,

Antonacci, F., Surti, U., Sandstrom, R., Boitano, M., Landolin, J.M.,
Stamatoyannopoulos, J.A., Hunkapiller, M.W., Korlach, J. & Eichler, E.E. Resolving the
complexity of the human genome using single-molecule sequencing. Nature. 2015; 517
(7536): 608-611.

Chaisson, M.J. & Tesler, G. Mapping single molecule sequencing reads using basic local

alignment with successive refinement (BLASR): Application and theory. BMC
Bioinformatics. 2012; 13: 238.

Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A.,

Copeland, A., Huddleston, J., Eichler, E.E., Turner, S.W. & Korlach, J. Nonhybrid,
finished microbial genome assemblies from long-read SMRT sequencing data. Nature
Methods. 2013; 10 (6): 563-569.

Chin, C.S., Peluso, P., Sedlazeck, F.J., Nattestad, M., Concepcion, G.T., Clum, A., Dunn, C.,

O'Malley, R., Figueroa-Balderas, R, Morales-Cruz, A., Cramer, G.R., Delledonne, M.,
Luo, C., Ecker, J.R., Cantu, D., Rank, D.R., & Schatz, M.C. Phased diploid genome
assembly with single molecule real-time sequencing. bioRxiv. 2016; doi: 056887.

Compeau, P.E.C. & Pevzner, P.A. Bioinformatics Algorithms: An Active-Learning Approach.

Victoria, BC, Canada: Active Learning Publishers; 2014.

Doyle, E.L., Stoddard, B.L., Voytas, D.F., & Bogdanove, A.J. TAL effectors: Highly adaptable

phytobacterial virulence factors and readily engineered DNA-targeting proteins. Trends
in Cell Biology. 2013; 23 (8): 390-398.

Goodwin, S., Gurtowski, J., Ethe-Sayers, S., Deshpande, P., Schatz, M.C. & McCombie, W.R.

Oxford nanopore sequencing and de novo assembly of a eukaryotic genome. Genome
Research. 2015; 25 (11): 1758-1756.

Gurevich, A., Savaliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment tool for

genome assemblies. Bioinformatics. 2013; 29 (8): 1072-1075.

Huddleston, J., Ranade, S., Malig, M., Antonacci, F., Chaisson, M., Hon, L., Sudmant, P.H.,

Graves, T.A., Alkan, C., Dennis, M.Y., Wilson, R.K., Turner, S.W., Korlach, J. &
Eichler, E.E. Reconstructing complex regions of genomes using long-read sequencing
technology. Genome Research. 2014; 24 (4): 688-696.

	

	 67

Idury, R.M. & Waterman, M.S. A new algorithm for DNA sequence assembly. Journal of

Computational Biology. 1995; 2 (2): 291-306.

Iqbal, Z., Caccamo, M., Turner, I., Flicek, P. & McVean, G. De novo assembly and genotyping

of variants using colored de Bruijn graphs. Nature Genetics. 2012; 44 (2): 226-232.

Kececioglu, J.D. & Myers, E.W. Combinatorial algorithms for DNA sequence assembly.

Algorithmica. 1995; 13: 7-51.

Kim, K.E., Peluso, P., Babayan, P., Yeadon, P.J., Yu, C., Fisher, W.W., Chin, C.S., Rapicavoli,

N.A., Rank, D.R., Li, J., Catcheside, D.E., Celniker, S.E., Phillippy, A.M., Bergman,
C.M. & Landolin, J.M. Long-read, whole-genome shotgun sequence data for five model
organisms. Scientific Data. 2014; 1: 140045.

Koren, S., Harhay, G.P., Smith, T.P., Bono, J.L., Harhay, D.M., Mcvey, S.D., Radune, D.,

Bergman, N.H. & Phillippy, A.M. Reducing assembly complexity of microbial genomes
with single-molecule sequencing. Genome Biology. 2013; 14 (9) 101.

Koren, S. & Phillippy, A.M. One chromosome, one contig: Complete microbial genomes from

long-read sequencing and assembly. Current Opinion in Microbiology. 2015; 23: 110-
120.

Koren, S., Schatz, M.C., Walenz, B.P., Martin, J., Howard, J.T., Ganapathy, G., Wang, Z.,

Rasko, D.A., McCombie, W.R., Jarvis, E.D. & Phillippy, A.M. Hybrid error correction
and de novo assembly of single-molecule sequencing reads. Nature Biotechnology.
2012; 30 (7): 693–700.

Labonté, J.M., Swan, B.K., Poulos, B., Luo, H., Koren, S., Hallam, S.J., Sullivan, M.B., Woyke,

T., Wommack, K.E. & Stepanauskas, R. Single-cell genomics-based analysis of virus-
host interactions in marine surface bacterioplankton. ISME Journal. 2015; 9 (11): 2386-
2399.

Lam, K.K., LaButti, K., Khalak, A. & Tse, D. FinisherSC: A repeat-aware tool for upgrading de-

novo assembly using long reads. Bioinformatics. 2015; 31 (19): 3207-3209.

Li, Z., Chen, Y., Mu, D., Yuan, J., Shi, Y., Zhang, H., Gan, J., Li, N., Hu, X., Liu, B., Yang, B.

& Fan, W. Comparison of the two major classes of assembly algorithms: Overlap–
layout–consensus and de-Bruijn-graph. Briefings in Functional Genomics. 2012; 11 (1):
25-37.

Lin, Y., Nurk, S., Pevzner, P.A. What is the difference between the breakpoint graph and the de

Bruijn graph? BMC Genomics. 2014; 15: S6.

Lin, Y. & Pevzner, P.A. Manifold de Bruijn graphs. Algorithm Bioinformatics. 2014; 8701: 296-

310.

	

	 68

Loman, N.J., Quick, J. & Simpson, J.T. A complete bacterial genome assembled de novo using

only nanopore sequencing data. Nature Methods. 2015; 12 (8): 733-735.

Lopanik, N.B., Shields, J.A., Buchholz, T.J., Rath, C.M., Hothersall, J., Haygood, M.G.,

Håkansson, K., Thomas, C.M. & Sherman, D.H. In vivo and in vitro trans-acylation by
BryP, the putative bryostatin pathway acyltransferase derived from an uncultured marine
symbiont. Chemistry & Biology. 2008; 15 (11): 1175-1186.

Medema, M.H., Blin, K., Cimermancic, P., de Jager, V., Zakrzewski, P., Fischbach, M.A.,

Weber, T., Takano, E. & Breitling, R. antiSMASH: Rapid identification, annotation and
analysis of secondary metabolite biosynthesis gene clusters. Nucleic Acids Research. 39:
w339.

Myers, E.W. The fragment assembly string graph. Bioinformatics. 2005; 21: 79-85.

Myers, E.W. Efficient local alignment discovery amongst noisy long reads. Algorithms in

Bioinformatics. Lecture Notes in Computer Science. Eds Brown D, Morgenstern B. 2014;
8701: 52–67.

Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P., Flanigan, M.J., Kravitz,

S.A., Mobarry, C.M., Reinert, K.H., Remington, K.A., Anson, E.L., Bolanos, R.A.,
Chou, H.H., Jordan, C.M., Halpern, A.L., Lonardi, S., Beasley, E.M., Brandon, R.C.,
Chen, L., Dunn, P.J., Lai, Z., Liang, Y., Nusskern, D.R., Zhan, M., Zhang, Q., Zheng, X.,
Rubin, G.M., Adams, M.D., Venter, J.C. A whole-genome assembly of
Drosophila. Science. 2000; 287 (5461): 2196-2204.

Nurk, S., Bankevich, A., Antipov, D., Gurevich, A.A., Korobeynikov, A., Lapidus, A.,

Prjibelski, A.D., Pyshkin, A., Sirotkin, A., Sirotkin, Y., Stepanauskas, R., Clingenpeel,
S.R., Woyke, T., McLean, J.S., Lasken, R., Tesler, G., Alekseyev, M.A. & Pevzner, P.A.
Assembling single-cell genomes and mini-metagenomes from chimeric MDA products.	
Journal of Computational Biology. 2013; 20 (10): 714-37.

Parra, G., Bradnam, K. & Korf, I. CEGMA: A pipeline to accurately annotate core genes in

eukaryotic genomes. Bioinformatics. 2007; 23 (9): 1061-1067.

Pevzner, P.A. 1-Tuple DNA sequencing: computer analysis. Journal of Biomolecular Structure

& Dynamics. 1989; 7 (1): 63-73.

Pevzner, P.A., Tang, H. & Tesler, G. De novo repeat classification and fragment assembly.

Genome Research. 2004; 14 (9): 1786-1796.

Pevzner, P.A., Tang, H., Waterman, M.S. An Eulerian path approach to DNA fragment

assembly. Proceedings of the National Academy of Sciences of the USA. 2001; 98 (17):
9748-9753.

	

	 69

Pham, S.K. & Pevzner, P.A. DRIMM-Synteny: Decomposing genomes into evolutionary
conserved segments. Bioinformatics. 2010; 26 (20): 2509-2516.

Prjibelski, A.D., Vasilinetc, I., Bankevich, A., Gurevich, A., Krivosheeva, T., Nurk, S., Pham, S.,

Korobeynikov, A., Lapidus, A. & Pevzner, P.A. ExSPAnder: A universal repeat resolver
for DNA fragment assembly. Bioinformatics. 2014; 30 (12): 293–301.

Risse, J., Thomson, M., Patrick, S., Blakely, G., Koutsovoulos, G., Blaxter, M., & Watson, M. A

single chromosome assembly of Bacteroides fragilis strain BE1 from Illumina and
MinION nanopore sequencing data. Gigascience. 2015; 4: 60.

Ronen, R., Boucher, C., Chitsaz, H., Pevzner, P. SEQuel: Improving the accuracy of genome

assemblies. Bioinformatics. 2012; 28 (12): 188-196.

Salzberg, S.L., Sommer, D.D., Schatz, M.C., Phillippy, A.M., Rabinowicz, P.D., Tsuge, S.,

Furutani, A., Ochiai, H., Delcher, A.L., Kelley, D., Madupu, R., Puiu, D., Radune, D.,
Shumway, M., Trapnell, C., Aparna, G., Jha, G., Pandey, A., Patil, P.B., Ishihara, H.,
Meyer, D.F., Szurek, B., Verdier, V., Koebnik, R., Dow, J.M., Ryan, R.P., Hirata, H.,
Tsuyumu, S., Won Lee, S., Seo, Y.S., Sriariyanum, M., Ronald, P.C., Sonti, R.V., Van
Sluys, M.A., Leach, J.E., White, F.F. & Bogdanove, A.J. Genome sequence and rapid
evolution of the rice pathogen Xanthomonas oryzae PXO99A. BMC Genomics. 2008; 9:
204.

Schornack, S., Moscou, M.J., Ward, E.R., Horvath, D.M. Engineering plant disease resistance

based on TAL effectors. Annual Review of Phytopathology. 2013; 51: 383-406.

Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J. & Birol, I. ABySS: A parallel

assembler for short read sequence data. Genome Research. 2009; 19 (6): 1117-1123.

Trost, B.M. & Dong G. Total synthesis of bryostatin 16 using atom-economical and

chemoselective approaches. Nature. 2008; 456 (7221): 485-488.

Ummat, A. & Bashir A. Resolving complex tandem repeats with long reads. Bioinformatics.

2014; 30 (24): 3491-3498.

Vasilinetc, I., Prjibelski, A.D., Gurevich, A., Korobeynikov, A. & Pevzner, P.A. Assembling

short reads from jumping libraries with large insert sizes. Bioinformatics. 2015; 31 (20):
3261-3268.

Williams, M.M., Sen, K., Weigand, M.R., Skoff, T.H., Cunningham, V.A., Halse, T.A. &

Tondella, M.L.; CDC Pertussis Working Group. Bordetella pertussis strain lacking
pertactin and pertussis toxin. Emerging Infectious Diseases. 2016; 22 (2): 319-322.

Zerbino, D.R. & Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn

graphs. Genome Research. 2008; 18 (5): 821-829.

	

	 70

CHAPTER 2:

Assembly of Long Error-Prone Reads Using Repeat Graphs

2.1 Abstract

 Accurate genome assembly is hampered by repetitive regions. Although long single

molecule sequencing reads are better able to resolve genomic repeats than short read data, most

long read assembly algorithms do not provide the repeat characterization necessary for producing

optimal assemblies. Here, we present Flye, a long-read assembly algorithm that generates

arbitrary paths from an unknown repeat graph, called disjointigs, and constructs an accurate

repeat graph from these error-riddled disjointigs. We benchmark Flye against five state-of-the-art

assemblers and show that it generates better or comparable assemblies, while being an order of

magnitude faster. Flye nearly doubled the contiguity of the human genome assembly (as

measured by the NGA50 assembly quality metric) compared to existing assemblers.

	

	 71

2.2 Introduction

 Genome assembly is the problem of reconstructing genomes from DNA sequence reads.

In repetitive regions of the genome, accurately assembling short reads is challenging and can

lead to inaccurate or unresolved assemblies. Single molecule sequencing (SMS) long read

technologies (such as Pacific Biosciences or Oxford Nanopore) have been used to improve the

resolution of repetitive genomic regions, but many long stretches of repetitive DNA remain

intractable to these approaches. Current SMS assemblers, such as PBcR (Koren et al. 2012; Chin

et al. 2013; Berlin et al. 2015), Falcon (Chin et al. 2016), Miniasm (Li 2016), ABruijn (Lin et al.

2016), HINGE (Kamath et al. 2017), Canu (Koren et al. 2017), and Marvel (Nowoshilow, et al.

2018) have been used to successfully resolve some repeat regions across complex genomes, but

correct assembly of long reads in long and highly repetitive genomic regions remains

challenging. As a result, long read technologies are often complemented by Hi-C (Ghurye, et al.

2017) and optical mapping data (Weissensteiner et al. 2017) to improve the contiguity of

assemblies.

The de Bruijn (DB) graph has been used by short read assembly approaches to represent

genomic repeats as a repeat graph. Previous studies have demonstrated the value of this

approach for improving the accuracy of genome assembly (Pevzner et al. 2004). Recently, long

read assemblers such as ABruijn (Lin et al. 2016) and HINGE (Kamath et al. 2017), that

capitalize on a similar DB graph-based approach, have also been developed. Most short read

assemblers construct the DB graph based on all 𝑘-mers in reads and further transform it into a

simpler DB assembly graph (Bankevich et al. 2012). This approach collapses multiple instances

of the same repeat into a single path in the assembly graph and represents the genome as a

genome tour that visits each edge in the assembly graph. However, in the case of SMS reads, the

	

	 72

key assumption of the DB graph approach—that most 𝑘-mers from the genome are preserved in

multiple reads—does not hold. As a result, various challenges that have been addressed for short

read assembly, such as how to deal with the fragmented DB graph and how to transform it into

an assembly graph, remain largely unaddressed in long read assemblers.

Here, we describe the Flye algorithm for accurately assembling long reads. Unlike

existing assemblers that attempt to generate contigs, Flye initially generates disjointigs that

represent concatenations of multiple disjoint genomic segments, concatenates all error-prone

disjointigs into a single string (in an arbitrary order), constructs an accurate assembly graph from

the resulting concatenate, uses reads to untangle this graph, and resolves bridged repeats (that are

bridged by some reads in the repeat graph). Afterwards, it uses the repeat graph to resolve

unbridged repeats (that are not bridged by any reads) using small differences between repeat

copies and then outputs accurate contigs formed by paths in this graph.

We benchmark Flye against five state-of-the-art SMS assemblers (Falcon, Miniasm,

HINGE, Canu, and MaSuRCA), and show that it generates more accurate and contiguous

assemblies and provides valuable information to aid in assembly finishing. Flye also reconstructs

the mosaic structure of segmental duplications—a difficult problem even for finished genomes

(Jiang et al. 2007; Pu et al. 2018).

	

	 73

2.3 Results

Figure 2.1 outlines the various steps of the Flye assembler (see the Methods section for

further details).

(a) Genome

(b) Reads

(c) Generating disjointigs

(d) Concatenated disjointigs

(f) Repeat graph of the concatenate

R1 R2 R1 R2

R1

R2

A

B C D

A R1 D R2 C R1 B R2

AC B D

R'1

R2

A
C D

B

R''1

(h) Resolving bridged repeats

R1

R2

AC B D

(g) Aligning reads to the repeat graph

R'1

R'2
A

C
DB

R''1

(i) Resolving unbridged repeats

R''2

A R2 C

(e) Repeat plot of the concatenate

Figure 2.1: An outline of the Flye assembler workflow.
(a) A “genome” with two 99% identical copies of a repeat R1 and two 99% identical
copies of a repeat R2. Segments A, B, C, and D represent non-repetitive regions. (b) A
set of reads sampled from the genome. (c) Two (misassembled) disjointigs AR1DR2A
and R2CR1BR2C derived from reads. (d) Concatenate of disjointigs. (e) Repeat plot of
the concatenate. (f) Repeat graph constructed by “gluing” vertices in the concatenate
according to the repeat-plot. For each 2-dimensional point (x, y) in the repeat-plot, we
glue vertices x and y in the concatenate. (g) Aligning reads against the repeat graph. (h)
Resolving the bridged repeat R1 and reconstructing its two copies R1’ and R1’’. The
differences between each copy of this repeat and the consensus of this repeat are shown
as small diamonds. (i) Resolving the unbridged repeat R2 with two slightly diverged
copies.

	

	 74

Repeat Graph Construction.

Repeats in a genome are often represented as pairwise local alignments and visualized as

alignment-paths in a two-dimensional dot plot of a genome. This pairwise representation is

limited since it does not contribute to solving the repeat characterization problem (Bao et al.

2002). In contrast, the repeat graph compactly represents all repeats in a genome and reveals

their mosaic structure (Pevzner et al. 2004; Jiang et al. 2007). Assembly graph construction

represents a special case of the repeat graph construction problem.

Figure 2.2 outlines the algorithm for constructing the repeat graph of a finished

(complete) genome. Flye applies this algorithm to construct the repeat graph of a pseudo-genome

formed by concatenating all disjointigs (formed at the previous stage of the pipeline) in an

arbitrary order. The Methods section explains why the resulting graph provides the correct

representation of the assembled genome (as if it had been constructed from a complete genome)

and describes additional algorithmic details.

	

	 75

X A A

A

X
B B B

B

B

B

A

Y Z U

Z

U

Y

X A AB B BY Z U

X
A B

A
B

B

Y

Z

U

X
A B

Y

Z

U

Figure 2.2: Constructing the approximate repeat graph from local self-alignments.
(Left) Alignment-paths for all local self-alignments within a genome XABYABZBU formed
by segments X, A, B, Y, Z, and U. Three instances of a mosaic repeat (AB, AB, and B) are
represented as diagonal alignment-paths in the repeat plot. The self-alignment of the entire
genome is shown by the main (dotted) diagonal. Alignment endpoints are clustered together if
their projections on the main diagonal coincide or are close to each other (clusters of closely
located endpoints for the distance threshold 𝑑 = 0 are painted with the same color). For
example, the rightmost endpoints (shown in blue) of all three alignments form a single cluster
because two of them have the same vertical projection and two of them have the same
horizontal projection on the main diagonal. This clustering reveals three clusters (yellow,
purple, and blue) with eight projections to the main diagonal. (Top Right) Projections of the
clustered endpoints on the main diagonal define eight vertices (breakpoints) that will be used
for constructing the approximate repeat graph. (Middle Right) Breakpoints that belong to the
same clusters are glued together. (Bottom Right) Gluing parallel edges in the resulting graph
produces the approximate repeat graph.

	

	 76

Resolving Unbridged Repeats with Flye.

Flye utilizes the constructed repeat graph for the resolution of unbridged repeats.

Resolving unbridged and nearly identical repeats using SMS reads is a difficult problem since

error-prone SMS reads make it difficult to distinguish repeat copies with divergence below 10%.

As a result, SMS assemblers often fail to resolve unbridged repeats, which are common even in

bacterial genomes (Kamath et al. 2017; Schmid et al. 2018). This challenge is related to the

challenge of constructing phased diploid genome assemblies (Chin et al. 2016) and overlap-

filtering for repeat resolution (Koren et al. 2017; Tischler et al. 2017). The repeat graph

constructed by Flye offers a new approach for resolving unbridged repeats based on analyzing

the topology of the repeat graph.

Figure 2.3 shows an unbridged repeat with a consensus sequence 𝑅𝐸𝑃 as an edge in the

assembly graph. It would be impossible to resolve this repeat (i.e., to pair each incoming edge

into the initial vertex of 𝑅𝐸𝑃 with the corresponding outgoing edge from the terminal vertex of

𝑅𝐸𝑃) if its two copies were identical. However, since there exist variations between these copies,

it becomes possible to transform the single sequence 𝑅𝐸𝑃 into two different repeat instances

𝑅𝐸𝑃Z and 𝑅𝐸𝑃y as shown in Figure 2.3. The Methods section describes how Flye resolves

unbridged repeats by (i) identifying variations between repeat copies, (ii) matching each read

with a specific repeat copy using these variations, and (iii) using these reads to derive a distinct

consensus sequence for each repeat copy.

	

	 77

Benchmarking Flye.

We benchmarked Flye against various SMS assemblers using six datasets. We used

QUAST to evaluate all assemblers (Mikheenko et al. 2018). Since Miniasm returns assemblies

with a much larger number of mismatches and indels than other assemblers, it is not well suited

for a reference-based quality evaluation with QUAST. To make a fair comparison, we ran the

REP'

REP

22kb

22kb

4.4mb 4.4mb
IN1 IN2

0.5mb
OUT1

0.5mb
OUT2

REP1

REP2

IN1

IN2

OUT1

OUT2

OUT1

OUT2

IN1

IN2

REP

OUT1

OUT2

IN1

IN2

REP

383 76

7193

75

29

89

102 83

79

18

13

Figure 2.3: Resolving unbridged repeats.
(Left) An assembly graph of SMS reads from the E. coli strain EC9964 genome visualized
with Bandage (Wick et al. 2015). (Middle) The untangled assembly graph (after resolving
bridged repeats in the graph on the left) contains a single unbridged repeat 𝑅𝐸𝑃 (and its
complement 𝑅𝐸𝑃’) of length 22 kb. The incoming edges into the initial vertex of edge 𝑅𝐸𝑃
are denoted 𝐼𝑁Z and 𝐼𝑁y; the outgoing edges from the terminal vertex are denoted 𝑂𝑈𝑇Z and
𝑂𝑈𝑇y. Two complementary strands are fused together into a single connected component. It
is unclear whether the genome traverses the assembly graph as 𝐼𝑁Z → 𝑅𝐸𝑃 → 𝑂𝑈𝑇Z → 𝑅𝐸𝑃’
or as 𝐼𝑁Z → 𝑅𝐸𝑃 → 𝑂𝑈𝑇y → 𝑅𝐸𝑃’. (Top Right) 93, 71, 75, and 76 reads traverse both 𝐼𝑁Z
and 𝑅𝐸𝑃, 𝐼𝑁y and 𝑅𝐸𝑃, 𝑅𝐸𝑃 and 𝑂𝑈𝑇Z, and 𝑅𝐸𝑃 and 𝑂𝑈𝑇y, respectively. The span of 383
reads falls entirely within edge 𝑅𝐸𝑃. (Middle Right) After assigning 93 reads that traverse
both 𝐼𝑁Z and 𝑅𝐸𝑃 to the first repeat copy, and 71 reads that traverse both 𝐼𝑁y and 𝑅𝐸𝑃 to the
second repeat copy, we “move forward” into the repeat and construct two differing consensus
sequences for an 8.6 kb long prefix of 𝑅𝐸𝑃 with divergence 9.8%; we also construct two
consensus sequences for a 6.8 kb long suffix of 𝑅𝐸𝑃 when we “move backward” into the
repeat. The length of the repeat edge is reduced to 22.0– 8.6– 6.8 = 6.6	kb, resulting in the
emergence of 13 + 18 = 31 spanning reads for this repeat, all of them supporting a cis
transition (𝐼𝑁Z with 𝑂𝑈𝑇Z and 𝐼𝑁y with 𝑂𝑈𝑇y). (Bottom Right) The resulting resolved
instances of the repeat with consensus sequences 𝑅𝐸𝑃Z and 𝑅𝐸𝑃y and divergence 6.9%.

	

	 78

ABruijn contig polishing module (Lin et al. 2016) on the Miniasm output to improve the

accuracy of its contigs (referred to as Miniasm+ABruijn).

Benchmarking Flye on a Simple Simulated Genome.

We simulated the “genome” shown in Figure 2.1 with two 99% identical copies of repeat

R1 of length 10 kb and two 99% identical copies of repeat R2 of length 30 kb. The unique

segments A, B, C, and D were simulated as random strings of length ≈250 kb each so that the

total genome length is 1 Mb. Afterwards, we simulated reads of length 𝑁 randomly sampled

from this genome at coverage 100× using the PBSIM tool (Ono et al. 2013) and assembled them

with Flye. We simulated two sets of reads, one with 𝑁 = 12	kb (slightly larger than the length of

the repeat R1 but shorter than the length of the repeat R2) and another with 𝑁 = 10	kb.

In the case of 𝑁 = 12	kb, Flye constructed the repeat graph (Figure 2.1f), identified the

bridged repeat R1, and resolved it as shown in Figure 2.1h. Afterwards, it resolved the unbridged

repeat R2 and reconstructed its two 99% identical copies (Figure 2.1i), assembling the entire

genome into a single circular contig.

In the case 𝑁 = 10	kb, Flye constructed the repeat graph (Figure 2.1f), identified both R1

and R2 as unbridged repeats and resolved them as shown in Figure 2.1i. As the result, it

assembled the entire genome into a single circular contig.

Benchmarking with the BACTERIA Dataset.

The dataset consists of 21 sets of Pacific Biosciences (PacBio) reads from the National

Collection of Type Cultures (NCTC). These NCTC sets were studied in detail in Kamath et al.

2017 and used to benchmark various assemblers. We only benchmarked Flye against HINGE on

	

	 79

these datasets, since HINGE outperformed the other assemblers on these bacterial genomes

(Kamath et al. 2017).

We ignored small connected components in the bacterial assembly graphs (representing

plasmids that do not share repeats with chromosomes) and classified an assembly as (i) complete

if the assembly graph consists of a single loop-edge representing a circular chromosome, (ii)

semi-complete if the assembly graph contains multiple edges but there exists a single Chinese

postman tour in this graph (Edmonds et al. 1973), and (iii) tangled if the assembly graph is

neither complete nor semi-complete.

While HINGE does not distinguish between complete and semi-complete assemblies, we

argue that ignoring this separation may lead to assembly errors. Indeed, a single Chinese

postman tour in a semi-complete assembly graph results in a unique assembly only in the case of

unichromosomal genomes without any plasmids that share repeats with the chromosome (repeat-

sharing plasmids). In the case of multichromosomal genomes or in the case of repeat-sharing

plasmids, there exist multiple possible assemblies from a semi-complete assembly graph. Since

≈10% of known bacterial genomes are multichromosomal and since a large fraction of

unichromosomal genomes have repeat-sharing plasmids (Antipov et al. 2015), the assumption

that a semi-complete assembly graph results in a complete genome reconstruction may lead to

errors.

Before resolving unbridged repeats, Flye assembled genomes from the BACTERIA

dataset into four complete, one semi-complete, and 16 tangled assembly graphs. After resolving

unbridged repeats, Flye assemblies resulted in eight complete, five semi-complete, and eight

tangled assembly graphs with the number of edges varying from 3 to 25. Figure 2.4 shows

	

	 80

examples of assembly graphs generated by Flye and HINGE, and Table 2.1 illustrates that Flye

and HINGE generated very similar assemblies.

Flye HINGE

KP9657 EC10864

Flye HINGE

Figure 2.4: A comparison of Flye and HINGE assembly graphs on bacterial genomes
from the BACTERIA dataset.
(Left) Flye and Hinge assembly graphs of the KP9657 dataset. There is a single unique edge
entering into (and exiting) the unresolved “yellow” repeat and connecting it to the rest of the
graph. Thus, this repeat can be resolved if one excludes the possibility that it is shared
between a chromosome and a plasmid. In contrast to HINGE, Flye does not rule out this
possibility and classifies the yellow repeat as unresolved. (Right) The Flye and Hinge
assembly graphs of the EC10864 dataset show a mosaic repeat of multiplicity four formed
by yellow, blue, red and green edges (the two copies of each edge represent complementary
strands). HINGE reports a complete assembly into a single chromosome.

	

	 81

Dataset	 Bacterial Species	 Flye	 Flye + Unbridged
Repeat Resolution	

HINGE	

EC4450	 Escherichia coli	 Tangled	 n/a	 Tangled	
KP5052	 Klebsiella

pneumoniae	
Tangled	 Tangled	 Tangled	

SA6134	 Staphylococcus
aureus	

Complete	 n/a	 Complete	

EC7921	 Escherichia coli	 Tangled	 Complete	 Complete	
EC8333	 Escherichia coli	 Tangled*	 n/a	 Tangled	
EC8781	 Escherichia coli	 Tangled	 n/a	 Tangled	
EC9002	 Escherichia coli	 Complete	 n/a	 Complete	
EC9006	 Escherichia coli	 Tangled	 Tangled	 Tangled	
EC9007	 Escherichia coli	 Tangled	 Tangled	 Tangled	
EC9012	 Escherichia coli	 Tangled	 Tangled	 Complete	
EC9016	 Escherichia coli	 Tangled	 Tangled	 Tangled	
EC9024	 Escherichia coli	 Tangled	 n/a	 Tangled	
EC9103	 Escherichia coli	 Complete	 n/a	 Complete	
KP9657	 Klebsiella

pneumoniae	
Tangled	 n/a	 Tangled	

EC9664	 Escherichia coli	 Tangled	 Complete	 Tangled	
EC10864	 Escherichia coli	 Tangled	 n/a	 Complete	
EC11022	 Escherichia coli	 Tangled	 Semi-complete	 Complete	
KS11692	 Klebsiella sp	 Tangled	 n/a	 Complete	
SA11962	 Staphylococcus

aureus	
Tangled	 Tangled	 Tangled	

KP12158	 Klebsiella planticola	 Semi-complete	 n/a	 Complete	
KC12993	 Kluyvera

cryocrescens	
Complete	 n/a	 Complete	

Table 2.1: A comparison of the Flye and HINGE assemblies of the bacterial genomes
in the BACTERIA dataset.
HINGE results were reproduced from Kamath et al. 2017. “Tangled*” means that the
assembly remained tangled and lacked circularization. “n/a” indicates that the assembly
graph is not complete and has no unbridged repeats of multiplicity two. “Complete,” “Semi-
complete” and “Tangled” are defined in the main text.

	

	 82

Benchmarking with the METAGENOME Dataset.

The dataset consists of PacBio reads from a synthetic community of 20 bacteria. Since 3

out of 20 bacterial genomes in the metagenomic sample had coverage below 1× (M. smithii, C.

albicans and S. pneumoniae), they were excluded from the benchmarking analysis. Since other

assemblers performed poorly on the METAGENOME dataset, we limited our benchmarking to

Flye and Canu, which assembled the METAGENOME dataset with an NA50 = 1,064 kb (84

misassemblies) and an NA50 = 969 kb (99 misassemblies), respectively. Table 2.2 presents

information about the Flye and Canu assemblies of the METAGENOME dataset.

	

	 83

 Flye Canu
Bacteria Length

(kb)
 Cov % Assembled NGA50

(kb)
#Mis % Assembled NGA50

(kb)
#Mis

A. baumannii 3,976 40 99.8% 906 18 99.8% 906 19	
A. odontolyticus 2,393 41 99.5% 622 6 99.8% 1,285 5	

B. cereus 5,224 25 99.8% 2,716	 4	 99.5% 581 4	
B. vulgatus 5,163 46 99.6 832	 18	 98.9% 539	 20	

D. radiodurans 3,060 52 99.5% 253	 25	 99.6% 224 27	
E. faecalis 2,793 43 99.9% 2,738 0 99.9% 2,747	 0

E. coli 4,640 46 99.9% 4,637 0 99.9% 4,643 0
H. pylori 1,667 317 100% 165	 2 100% 1,314 3	
L. gasseri 1,894 83 97.9% 898	 1 97.7% 969	 1	

L. monocytogenes 2,944 98 96.4%	 2,008	 0 100% 1,507 1	
P. acnes 2,560 65 100% 2,560 0 100% 2,566 0

P. aeruginosa 6,264 55 99.9% 4,001 3	 99.9% 3,998	 9	
R. sphaeroides 4,131 24 99.4% 2,006	 1	 90.1% 54 0	

S. aureus 2,872 66 98.2% 1,003	 0 100% 1,543 2	
S. epidermidis 2,499 59 99.7% 1,276	 1	 100% 2,465 2	
S. agalactiae 2,160 42 98.8% 1,836	 0 99.9% 2,159 0

S. mutans 2,032 82 99.9% 1,554	 0 99.9% 1,085 3	

Flye performed better than Canu for five genomes and Canu performed better than Flye

for four genomes. In particular, Flye produced a better assembly of R. sphaeroides, which has

the lowest coverage (24×) among the 17 analyzed genomes (NGA50 = 2 Mb for Flye as

compared to 54 kb for Canu). Comparison between the metagenome assemblies and the inferred

Table 2.2: Information about the Flye and Canu assemblies for the METAGENOME
dataset.
Statistics were computed using MetaQUAST v5.0 with default parameters for the bacterial
genomes. Entries in bold highlight five assemblies where Flye significantly improved on Canu
and four assemblies where Canu significantly improved on Flye. Flye and Canu produced 84
and 99 misassemblies in total, respectively. “Length” refers to the length of the genome, “Cov”
refers to coverage, “#Mis” refers to the number of misassemblies, and “% Assembled” refers
to the percent of the genome that was assembled.

	

	 84

isolate assemblies (from reads matched to the reference genomes) suggests that our

metagenomics assemblies could be further improved by better handling datasets with uneven

coverage.

Synthetic metagenomic datasets often contain genomes with inaccurate references that

present problems for follow-up benchmarking efforts (Nurk et al. 2017). To estimate the

expected number of misassemblies caused by the differences between the assembled and

reference bacterial strains, we performed assembly on each of the 17 bacteria separately

(separate assemblies) by first binning the initial reads using alignments to the references and then

running Flye and Canu on the resulting set of reads (see Table 2.3). Six out of the 17 separate

assemblies (R. sphaeroides, A. baumannii, B. cereus and B. vulgatus) were fragmented into 2-4

contigs per chromosome (by both Flye and Canu), while the remaining 11 resulted in a single

contig per chromosome. Nevertheless, metaQUAST reported 92 misassemblies in total for the

Flye separate assemblies (and 103 misassemblies for Canu). The misassemblies reported for Flye

and Canu were highly correlated: 80% of Flye misassembly breakpoints had a matching

breakpoint in the Canu contigs, whereas 70% of Canu breakpoints had a matching one in the

Flye contigs (two breakpoints are matching if their reference coordinates are within 1 kb; note

that a single misassembly might have two breakpoints). We thus concluded that the

misassemblies reported by metaQUAST were mainly caused by differences between the

genomes in the METAGENOME sample and the reference genomes rather than assembly

artifacts.

	

	 85

 Flye Canu
Bacteria Length

(kb)
 Cov % Assembled NGA50

(kb)
#Mis % Assembled NGA50

(kb)
#Mis

A. baumannii* 3,976 40 99.8% 906 21 99.8% 906 18	
A. odontolyticus 2,393 41 99.8% 1,286 4 99.8% 1,285 5	

B. cereus* 5,224 25 99.6% 4,948	 3	 99.8% 4,625 3	
B. vulgatus* 5,163 46 99.3% 832	 21	 99.2% 1,112	 28	

D. radiodurans* 3,060 52 99.6% 253	 31	 99.5% 222 31	
E. faecalis+ 2,793 43 99.9% 2,738 0 99.9% 2,745	 0

E. coli+ 4,640 46 99.9% 4,638 0 99.9% 4,643 0
H. pylori 1,667 317 100% 1,123	 2 100% 1,617 2	
L. gasseri 1,894 83 97.9% 1,729	 1 97.8% 961	 4	

L. monocytogenes+ 2,944 98 100%	 2,944	 0 100% 2,151 1	
P. acnes+ 2,560 65 100% 2,560 0 100% 2,566 0

P. aeruginosa* 6,264 55 99.8% 1,982 2	 99.9% 3,998	 6	
R. sphaeroides* 4,131 24 99.9% 2,669	 2	 99.9% 2,578 0	

S. aureus 2,872 66 99.8% 2,665	 1 100% 1,571 2	
S. epidermidis 2,499 59 100% 2,498	 1	 100% 1,319 2	
S. agalactiae+ 2,160 42 99.7% 2,155	 0 99.9% 1,602 1

S. mutans+ 2,032 82 99.9% 2,032	 0 99.9% 1,546 1	

Table 2.3: Analysis of the separate assemblies of 17 genomes from the METAGENOME
dataset.
Initial reads were binned into 17 groups using alignments to their respective references. Flye
and Canu produced 92 and 104 misassemblies in total, respectively. Statistics were computed
using MetaQUAST v5.0. All genomes but the six marked with “*” (R. sphaeroides, A.
baumannii, B. cereus, B. vulgatus, D. radiodurans and P. aeruginosa) were assembled into a
single contig per chromosome. Six of the remaining 11 Flye assemblies (marked with “+”) had
no misassemblies compared to the reference. Canu generated four assemblies without reported
errors. “Length” refers to the length of the genome, “Cov” refers to coverage, “#Mis” refers to
the number of misassemblies, and “% Assembled” refers to the percent of the genome that was
assembled. Bolded numbers indicate significant improvement over the other assembler.

	

	 86

Benchmarking with the YEAST Dataset.

The YEAST dataset contains PacBio and Oxford Nanopore Technology (ONT) reads

from the S. cerevisiae S288c genome of length 12.1 Mb at 30× coverage (Giordano et al. 2017).

Similarly to the original study, we used the full set of ONT reads in the YEAST-ONT dataset

(30× coverage) but down-sampled the PacBio reads from the original 120× coverage to 30× in

the YEAST-PB dataset to have their coverage distribution be similar to the ONT data.

Assembling this dataset with the original 120× coverage results in better assemblies; e.g., the

NGA50 increased from 560 kb to 732 kb for the Flye assembly (Flye fully assembled 14 out of

16 yeast chromosomes). Table 2.4 illustrates that all of the assemblers tested except HINGE

produced YEAST-PB assemblies with similar NGA50 values ranging from 560 kb for Flye to

603 kb for Canu. (HINGE resulted in a lower NGA50 of 361 kb). Flye generated the most

accurate assembly with 5 errors (vs 13 errors for Canu). Although Miniasm generated an

assembly with only ≈90% sequence identity, Miniasm+ABruijn contigs had 99.93% accuracy.

Canu and Flye resulted in assemblies with the highest sequence identity (above 99.95%).

	

	 87

Dataset	 Assembler	 Len
(Mb)	

#Contigs	 NG50
(kb)	

Reference
Coverage	

Reference
% Identity	

#Mis	 NGA50
(kb)	

YEAST	
PB 	

Flye	 12.1	 28	 670	 98.3%	 99.95%	 5	 560	
Canu	 12.4	 33	 708	 99.5%	 99.95%	 13	 603	

Falcon	 12.1	 42	 562	 97.5%	 99.81%	 27	 562	
HINGE	 12.2	 45	 440	 91.9%	 98.81%	 19	 361	

Miniasm+ABruijn	 12.2	 36	 600	 98.2%	 99.93%	 11	 592	
YEAST	

ONT	
Flye	 12.1	 28	 810	 98.7%	 99.04%	 9	 660	

Canu	 12.2	 41	 800	 99.1%	 98.96%	 18	 655	
Falcon	 11.9	 41	 662	 97.4%	 98.81%	 17	 637	
HINGE	 12.2	 64	 309	 92.5%	 97.94%	 59	 292	

Miniasm+ABruijn	 11.6	 24	 723	 98.8%	 99.03%	 12	 723	
WORM	 Flye	 103	 85	 3,256	 99.5%	 99.93%	 111	 1,893	

Canu	 108	 175	 2,954	 99.7%	 99.93%	 190	 1,974	

Falcon	 101	 106	 2,291	 98.7%	 99.78%	 118	 1,242	
HINGE	 103	 64	 2,710	 98.0%	 99.40%	 174	 1,441	

Miniasm+ABruijn	 108	 178	 2,314	 99.6%	 99.93%	 181	 1,437	
HUMAN	 Flye+Pilon	 2,776	 1,069	 7,886	 96.4%	 99.70%	 879	 6,349	

Canu+Pilon	 2,730	 2,195	 3,209	 95.4%	 99.49%	 1,200	 2,870	
MaSuRCA	 2,768	 1,269	 4,670	 95.1%	 99.84%	 1,500	 3,812	

HUMAN+ 	 Flye+Pilon	 2,823	 782	 18,181	 97.0%	 99.69%	 1,487	 11,800	
Canu+Pilon	 2,815	 798	 10,410	 96.8%	 99.81%	 1,455	 7,007	
MaSuRCA	 2,876	 1,111	 8,425	 97.5%	 99.80%	 2,101	 5,581	

Table 2.4: Assembly statistics for the YEAST, WORM, HUMAN and HUMAN+ datasets
generated using QUAST 5.0.
The NG50 of an assembly is the largest possible number 𝐿, such that all contigs of length 𝐿 or
longer cover at least 50% of the genome. Given an assembled set of contigs and a reference
genome, the corrected assembly is formed after breaking each erroneously assembled contig at
its breakpoints resulting in shorter contigs (Mikheenko et al. 2018). The NGA50 of an assembly
is defined as the NG50 of its corrected assembly. The minimum contig size was set to 5 kb for
the YEAST and WORM assemblies and to 50 kb for the HUMAN assemblies. The human
reference was modified by masking the low-complexity centromere regions of the
chromosomes. “Len” is the total length assembled, “#Mis” is the number of misassemblies,
and “Reference coverage” is how much of the reference is found in the assembly.

	

	 88

The YEAST-ONT assemblies show a similar trend, with all assemblers except HINGE

producing similar NGA50 values ranging from 637 kb (Falcon) to 723 kb (Miniasm). Flye

generated the most accurate assembly with 9 errors (Canu resulted in 18 errors). Figure 2.5

shows the assembly graph generated by Flye.

id -22

5k 452x

id -54

0.6k 1090x

id -8

404k 27x

id 2

1038k 25x

id 14

278k 22x

id 37

142k 26x

id -4

1034k 24x

id -34

10k 33x

id 44

234k 25x

id -38

635k 24x

id -6

245k 23x

id -12

231k 24x

id 22

5k 452x

id 54

0.6k 1090x

id 20

115k 25x

id -28

419k 26x

id 48

6k 26x

id -46

82k 24x

id -35

2.1k 97x

id 49

1.7k 169x

id -45

9k 35x

id -36

6k 36x

id 28

419k 26x

id 46

82k 24x

id -20

115k 25x

id -48

6k 26x

id -37

142k 26x

id -14

278k 22x

id 21

93k 21x

id 40

1.3k 813x

id 41

0.7k 6140x

id -21

93k 21x

id 42

1.0k 819x

id -42

1.0k 819x

id 43

0.7k 1318x

id -43

0.7k 1318x

id -40

1.3k 813x

id 3

796k 25x

id -5

166k 24x

id 23

21k 20x

id 18

321k 22x

id -17

484k 24x

id -26

17k 59x

id -50

6k 57x

id 4

1034k 24x

id -3

796k 25x

id 38

635k 24x

id 5

166k 24x

id 6

245k 23x

id 17

484k 24x

id 53

6k 36x

id 7

882k 24x

id 36

6k 36x

id -33

198k 27x

id -47

4.1k 68x

id -2

1038k 25x

id 16

766k 25x

id 34

10k 33x

id 8

404k 27x

id -10

680k 24x

id -15

11k 52x

id -44

234k 25x

id -16

766k 25x

id 15

11k 52x

id 9

421k 25x

id 11

558k 23x

id 47

4.1k 68x

id 27

3.5k 103x

id -11

558k 23x

id -25

2.3k 5373x

id -27

3.5k 103x

id -9

421k 25x

id 52

4.9k 5406x

id -49

1.7k 169x

id 10

680k 24x

id -13

491k 23x

id 12

231k 24x

id -51

2.6k 15x

id -23

21k 20x

id 51

2.6k 15x

id 13

491k 23x

id 30

0.7k 72x

id 45

9k 35x

id 50

6k 57x

id -7

882k 24x

id 35

2.1k 97x

id -29

3.1k 100x

id -18

321k 22x

id -30

0.7k 72x

id -53

6k 36x

id 19

169k 24x

id -19

169k 24x

id 32

297k 25x

id 26

17k 59x

id 25

2.3k 5373x

id 55

0.5k 10105x

id 56

0.6k 5071x

id 29

3.1k 100x

id 33

198k 27x

id -39

1.9k 287x

id -32

297k 25x

id 39

1.9k 287x

id -52

4.9k 5406x

id -55

0.5k 10105x

id -56

0.6k 5071x

Figure 2.5: The assembly graph of the YEAST-ONT dataset.
Edges that were classified as repetitive by Flye are shown in color, while unique edges are
black. Flye assembled the YEAST-ONT dataset into a graph with 21 unique and 34 repeat
edges and generated 21 contigs as unambiguous paths in the assembly graph. A path
𝑣Z …𝑣e, 𝑣e1Z …𝑣f in the graph is called unambiguous if there exists a single incoming edge
into each vertex of this path before 𝑣e1Z and a single outgoing edge from each vertex after
𝑣e. Each unique contig is formed by a single unique edge and possibly multiple repeat edges,
while repetitive contigs consist of repetitive edges which were not covered by any unique
contigs. This visualization was generated using the graphviz tool (Ellson et al. 2003).

	

	 89

Analyzing the WORM Dataset.

The WORM dataset contains PacBio reads from the C. elegans genome of length 100 Mb

at 40× coverage. Flye and Canu produced the most contiguous assemblies (NGA50 = 1,893 kb

and 1,974 kb, respectively). However, Canu showed an increased number of misassemblies

(190), compared to Flye (111) and Falcon (118). Flye was faster than Canu and Falcon in

assembling the WORM dataset (128, 780 and 945 minutes of wall clock time, respectively; see

the “Information about running time and memory usage” section for more details). With an

increase in genome size, Flye achieves close to an order of magnitude speed-up as compared to

Canu: e.g., 140 vs. 1100 hours to assemble the D. melanogaster genome. This speed-up

highlights the advantages of skipping the time-consuming read-correction step and replacing

conventional contig generation with the much more rapid generation of disjointigs. Figure 2.6

shows the C. elegans assembly graph generated by Flye.

	

	 90

Since inferring the length of long tandem repeats is a difficult problem in short read

assembly, tandem repeats in many reference genomes might be misassembled. Figure 2.7

demonstrates that Flye improves on other long read assemblers in reconstructing tandem repeats

and reveals that some differences between the Flye assembly and the reference C. elegans

genome likely represent differences with the reference rather than misassemblies by Flye.

id 113

0.5k 5243x

id 1

2238k 37x

id 61

139k 38x

id -114

0.5k 2891x

id -116

3.4k 17x

id 150

1.4k 31x

id 127

0.6k 4168x

id 2

433k 37x

id 80

1.3k 135x

id -127

0.6k 4168x

id 3

648k 36x

id -126

8k 108x

id -53

654k 39x

id 4

1944k 38x

id 23

1166k 36x

id 7

1568k 38x

id -174

94k 39x

id 119

1191k 38x

id 120

0.6k 52348x

id 121

0.8k 624x

id -121

0.8k 624x

id -119

1191k 38x

id 186

7k 53x

id -186

7k 53x

id -4

1944k 38x

id 60

438k 36x

id 13

89k 41x

id 167

394k 39x

id 176

32k 39x

id 68

83k 38x

id 81

105k 36x

id 16

338k 36x

id 35

2759k 37x

id -33

2458k 36x

id 37

174k 38x

id 40

4128k 37x

id 32

1051k 38x

id -9

639k 41x

id -50

2583k 38x

id 45

2066k 38x

id 82

1090k 39x

id -38

2815k 39x

id 52

937k 37x

id -65

590k 42x

id 115

604k 39x

id 59

179k 42x

id -49

3101k 37x

id 73

1981k 38x

id 171

37k 73x

id 69

7k 3029x

id 5

1800k 37x

id 89

1.0k 123x

id -5

1800k 37x

id 188

71k 81x

id -69

7k 3029x

id -13

89k 41x

id 6

1452k 36x

id 164

1.7k 209x

id -6

1452k 36x

id 157

2.2k 190x

id -60

438k 36x

id 144

29k 114x

id -68

83k 38x

id 125

0.7k 1701x

id 152

0.5k 9903x

id 8

4144k 37x

id -118

1851k 39x

id 67

489k 38x

id -169

51k 39x

id -16

338k 36x

id -54

1252k 38x

id -48

1006k 39x

id 9

639k 41x

id 142

3.8k 131x

id 10

224k 39x

id 100

8k 134x

id -167

394k 39x

id 47

2794k 39x

id -47

2794k 39x

id -125

0.7k 1701x

id -152

0.5k 9903x

id -10

224k 39x

id -27

1589k 38x

id -176

32k 39x

id -100

8k 134x

id -104

5k 99x

id -103

0.7k 84x

id 11

531k 38x

id 105

8k 107x

id 54

1252k 38x

id -8

4144k 37x

id 192

0.5k 9524x

id 168

217k 38x

id 153

999k 36x

id 12

897k 39x

id 63

20k 123x

id 128

10k 81x

id -19

1268k 38x

id 14

1432k 37x

id -23

1166k 36x

id -133

0.6k 1704x

id -196

0.8k 73x

id 193

1.2k 0x

id 133

0.6k 1704x

id 196

0.8k 73x

id -14

1432k 37x

id 112

0.5k 18045x

id 15

1887k 38x

id 175

41k 25x

id 43

781k 39x

id 71

85k 36x

id -96

19k 76x

id -15

1887k 38x

id -44

53k 30x

id -188

71k 81x

id 17

1712k 37x

id -180

137k 42x

id 138

1.0k 944x

id 18

3057k 38x

id -97

0.5k 4057x

id -21

1581k 39x

id 24

1730k 38x

id -7

1568k 38x

id 174

94k 39x

id -113

0.5k 5243x

id -31

723k 39x

id 19

1268k 38x

id -128

10k 81x

id -12

897k 39x

id 117

1.0k 882x

id 20

2340k 37x

id -175

41k 25x

id 123

2.3k 116x

id -122

1.7k 107x

id -2

433k 37x

id 79

2.2k 97x

id 122

1.7k 107x

id -123

2.3k 116x

id -20

2340k 37x

id 42

1819k 37x

id -117

1.0k 882x

id 21

1581k 39x

id 97

0.5k 4057x

id 29

910k 36x

id -18

3057k 38x

id 22

4324k 37x

id -76

2.1k 530x

id -22

4324k 37x

id 83

0.7k 465x

id 132

0.8k 984x

id 191

75k 39x

id -24

1730k 38x

id -132

0.8k 984x

id 131

0.6k 2124x

id 25

1021k 37x

id 165

8k 62x

id 44

53k 30x

id 26

1540k 38x

id -102

0.8k 865x

id 178

529k 35x

id 27

1589k 38x

id 136

0.6k 4882x

id -30

1750k 38x

id -29

910k 36x

id 148

2.8k 45x

id 30

1750k 38x

id -137

0.7k 2144x

id -3

648k 36x

id 126

8k 108x

id -105

8k 107x

id -11

531k 38x

id -81

105k 36x

id 103

0.7k 84x

id 104

5k 99x

id 31

723k 39x

id -197

8k 162x

id 130

0.6k 1339x

id 46

1233k 39x

id -32

1051k 38x

id -130

0.6k 1339x

id -85

1.9k 8x

id -199

1.3k 157x

id 33

2458k 36x

id -138

1.0k 944x

id -35

2759k 37x

id -17

1712k 37x

id -89

1.0k 123x

id -157

2.2k 190x

id 34

836k 38x

id 189

27k 80x

id -34

836k 38x

id -164

1.7k 209x

id -142

3.8k 131x

id 51

285k 35x

id 36

4594k 38x

id 65

590k 42x

id 141

0.8k 672x

id 38

2815k 39x

id -124

0.5k 5667x

id -134

0.7k 406x

id 41

817k 37x

id -101

0.6k 4401x

id 77

260k 43x

id -37

174k 38x

id -136

0.6k 4882x

id -1

2238k 37x

id -42

1819k 37x

id 114

0.5k 2891x

id 116

3.4k 17x

id 102

0.8k 865x

id -26

1540k 38x

id 96

19k 76x

id -191

75k 39x

id -129

0.5k 3213x

id -66

969k 39x

id -43

781k 39x

id 85

1.9k 8x

id 129

0.5k 3213x

id -73

1981k 38x

id 109

0.8k 986x

id -110

1.0k 30x

id -71

85k 36x

id 98

0.6k 2876x

id 101

0.6k 4401x

id -41

817k 37x

id -178

529k 35x

id 134

0.7k 406x

id -40

4128k 37x

id 137

0.7k 2144x

id 48

1006k 39x

id 106

0.6k 2630x

id 166

21k 11x

id 49

3101k 37x

id -108

0.8k 3071x

id 50

2583k 38x

id 124

0.5k 5667x

id -58

1390k 37x

id -51

285k 35x

id 180

137k 42x

id -25

1021k 37x

id -131

0.6k 2124x

id -55

46k 43x

id 53

654k 39x

id -63

20k 123x

id 55

46k 43x

id 181

0.5k 9619x

id -159

1.1k 43x

id 56

3.9k 117x

id -141

0.8k 672x

id -36

4594k 38x

id 162

9k 9x

id 58

1390k 37x

id -139

1.7k 30x

id 140

7k 50x

id 76

2.1k 530x

id -82

1090k 39x

id 108

0.8k 3071x

id 99

0.5k 1853x

id 62

387k 35x

id -62

387k 35x

id 159

1.1k 43x

id 199

1.3k 157x

id -61

139k 38x

id -99

0.5k 1853x

id -106

0.6k 2630x

id 182

1.5k 16x

id 172

48k 34x

id 118

1851k 39x

id 197

8k 162x

id 66

969k 39x

id 111

0.6k 1218x

id 107

0.8k 1072x

id -70

175k 36x

id 70

175k 36x

id -75

3.5k 281x

id -67

489k 38x

id -107

0.8k 1072x

id -46

1233k 39x

id -98

0.6k 2876x

id 72

111k 14x

id -72

111k 14x

id 146

16k 14x

id -45

2066k 38x

id 110

1.0k 30x

id -109

0.8k 986x

id 75

3.5k 281x

id 92

0.9k 320x

id 200

1.5k 276x

id 78

2.5k 0x

id 202

1.1k 0x

id -168

217k 38x

id 135

13k 70x

id -115

604k 39x

id 139

1.7k 30x

id -140

7k 50x

id -59

179k 42x

id -83

0.7k 465x

id 84

36k 14x

id 163

26k 11x

id -182

1.5k 16x

id -111

0.6k 1218x

id 87

14k 14x

id -52

937k 37x

id -87

14k 14x

id 94

23k 16x

id 90

7k 0x

id -95

1.3k 0x

id -77

260k 43x

id 91

10k 0x

id 95

1.3k 0x

id -79

2.2k 97x

id 169

51k 39x

id 143

8k 135x

id 184

1.0k 39x

id 149

6k 9x

id -150

1.4k 31x

id 183

0.9k 189x

id 151

46k 15x

id -56

3.9k 117x

id 155

5k 102x

id 156

4.1k 97x

id 158

509k 39x

id -158

509k 39x

id -171

37k 73x

id -84

36k 14x

id -155

5k 102x

id -148

2.8k 45x

id 177

6k 10x

id 198

12k 0x

id 179

57k 15x

id -156

4.1k 97x

id -172

48k 34x

id -143

8k 135x

id -149

6k 9x

id 185

8k 0x

id 187

9k 0x

id 190

8k 8x

id 195

38k 12x

id -179

57k 15x

id -166

21k 11x

id -153

999k 36x

Figure 2.6: The assembly graph of the WORM dataset.
Edges that were classified as repetitive by Flye are shown in color, while unique edges are
black. Flye assembled the WORM dataset into a graph with 127 unique and 61 repeat edges
and generated 127 contigs as unambiguous paths in the assembly graph. This visualization
was generated using the graphviz tool (Ellson et al. 2003).

	

	 91

Read from ChrX Read from ChrXRead from Chr1 Read from Chr5

Fl
ye Fl
ye Fl
ye

Fl
ye

M
in

ia
sm

M
in

ia
sm

M
in

ia
sm

M
in

ia
sm

R
ef

er
en

ce

R
ef

er
en

ce

R
ef

er
en

ce

R
ef

er
en

ce

(a) (b) (c) (d)

Figure 2.7: Dot-plots showing the alignment of reads against the Flye assembly, the
Miniasm assembly and the reference C. elegans genome.
(a) The reference genome contains a tandem repeat of length 1.9 kb (10 copies) on chromosome
X with the repeated unit having length ≈190 nucleotides. In contrast, the Flye and Miniasm
assemblies of this region suggest a tandem repeat of length 5.5 kb (27 copies) and 2.8 kb (13
copies), respectively. 15 reads that span over the tandem repeat support the Flye assembly (the
mean length between the flanking unique sequence matches the repeat length reconstructed by
Flye) and suggests that the Flye length estimate is more accurate. (b) The reference genome
contains a tandem repeat of length 2 kb on chromosome 1. In contrast, the Flye and Miniasm
assemblies of this region suggest a tandem repeat of length 10 kb and 5.6 kb, respectively. A
single read that spans over the tandem repeat supports the Flye assembly. Since the mean read
length in the WORM dataset is 11 kb, it is expected to have a single read spanning a given 10.0
kb region but many more reads spanning any 5.6 kb region (as implied by the Miniasm
assembly) or 2.0 kb region (as implied by the reference genome). Six out of 23 reads cross the
“left” border (two out of 18 reads cross the “right” border) of this tandem repeat by more than
5.6 kb, thus contradicting the length estimate given by Miniasm and suggesting that the Flye
length estimate is more accurate. (c) The reference genome contains a tandem repeat of length
3 kb on chromosome X. In contrast, the Flye and Miniasm assemblies of this region suggest a
tandem repeat of lengths 13.6 kb and 8 kb, respectively. A single read that spans over the tandem
repeat reveals the repeat cluster to be of length 12.2k, which suggests that the Flye length
estimate is more accurate. (d) The reference genome contains a tandem repeat of length 1.5 kb
on chromosome 1. In contrast, the Flye and Miniasm assemblies of this region suggest tandem
repeats of length 17 kb and 4.3 kb, respectively. One read that spans over the tandem repeat
reveals the repeat cluster to be of length 18.0 kb, which suggests that the Flye length estimate
is more accurate.

	

	 92

Analyzing the HUMAN and HUMAN+ Datasets.

The HUMAN dataset contains ONT reads from the GM12878 human cell line at 30×

coverage complemented by a set of short Illumina reads at 50× coverage. The HUMAN+ dataset

combines the HUMAN dataset with a dataset of ultra-long ONT reads (with reads N50 = 100 kb)

at 5× coverage (Jain et al. 2018). Since Canu improved on Falcon and Miniasm in assembling

large genomes (Koren et al. 2017), we only benchmarked Flye against Canu for the human

genome datasets. The Canu HUMAN assembly was generated in Jain et al. 2018, and the

assembly of the HUMAN+ dataset was later updated by the authors using the latest Canu 1.7

version. We also analyzed hybrid MaSuRCA assemblies of both the HUMAN and HUMAN+

datasets (Zimin et al. 2017), which are available from the MaSuRCA website.

Currently, the ONT assemblies have rather high base-calling error rates (the Flye and

Canu HUMAN assemblies had 1.2% and 2.8% error, respectively) because of the biased error

pattern in ONT reads. Although the Nanopolish tool contributed to a reduction in the base-

calling error rates of the ONT assemblies (Simpson et al. 2017), the resulting error rate is still an

order of magnitude higher than the error rates of Illumina or PacBio assemblies. Since most

errors in the ONT assemblies are frameshift-introducing indels, they are particularly problematic

for downstream applications.

To mitigate the high error rates of these ONT assemblies, we used Pilon (Walker et al.

2014) in the indel correction mode to polish Flye and Canu assemblies using Illumina reads.

Although such polishing reduced the error rates (to 0.30% for Flye+Pilon and to 0.51% for

Canu+Pilon), we note that Illumina-based read correction of ONT assemblies has limitations,

especially for repetitive regions with low short-read mappability.

	

	 93

It turns out that Flye assembled a larger fraction of the human genome (96.4%) than Canu

(95.4%) and MaSuRCA (95.1%). Interestingly, Flye and MaSuRCA, in contrast to Canu,

assembled some difficult-to-assemble, low-complexity centromeric chromosome regions, which

are hard to benchmark using reference-based methods. To provide a fair comparison between all

three assemblers using QUAST, we thus modified the hg38 reference by masking the

centromeric regions using their coordinates from the UCSC Genome Browser.

For the HUMAN dataset, Flye, MaSuRCA and Canu generated assemblies with NGA50

values equal to 6.35 Mb (879 assembly errors), 3.81 Mb (1500 assembly errors) and 2.87 Mb

(1200 assembly errors), respectively. The MaSuRCA assembly had slightly higher percent

identity with the reference (99.84% as compared to 99.70% for Flye+Pilon and 99.49% for

Canu+Pilon).

For the HUMAN+ dataset, Flye, Canu and MaSuRCA generated assemblies with NGA50

values equal to 11.8 Mb (1,487 assembly errors), 7 Mb (1,455 assembly errors) and 5.6 Mb

(2,101 assembly errors), respectively. As expected, incorporating ultra-long ONT reads resulted

in a more contiguous assembly for all assemblers.

Running QUAST.

QUAST 5.0 was run using the ‘--large’ option for all eukaryotic genomes, which is

recommended for the analysis of large genomes with complex repeat structures. The minimum

alignment identity was set to a low 90% to account for the higher error rate in some regions of

SMS assemblies. The minimum contig length was set to 50 kb for the HUMAN/HUMAN+

assemblies and 5 kb for all of the other assemblies.

	

	 94

Software Versions Used.

All assemblies were run with the default parameters. The exact command lines (and the

Falcon configuration script) can be found in the supplementary data archive.

• Flye – 2.3.5 (commit 20afeda)

• Canu – 1.7.1 (commit dfa60b8)

• Falcon - 0.3.0 (FALCON-Integrate commit 7498ef9)

• HINGE - 0.5.0 (commit 79fdf66)

• Miniasm - 0.2-r168-dirty (commit 40ec280) / Minimap2 2.8-r711 (commit 8fc5f8d)

• QUAST 5.0.0 (commit de6973bb)

The HUMAN (but not the HUMAN+) assembly was generated with the earlier Flye

version 2.3.2 (released on Feb 20th, 2018) to provide a fair comparison with the Canu and

MaSuRCA assemblies (which were not updated since the release of Flye 2.3.2). We note that the

HUMAN assembly using the latest Flye version 2.3.5 has NGA50 = 7.3 Mb and improves over

the Flye 2.3.2 assembly (NGA50 = 6.3Mb). HUMAN+ was assembled using the latest Flye and

Canu versions (as of September 2018).

Information about running time and memory usage.

Table 2.5 provides information on the running time and memory usage of various SMS

assemblers for the YEAST and WORM datasets.

Flye took ≈5,000 CPU hours to generate assemblies of the HUMAN+ dataset using an

Intel(R) Xeon(R) 8164 CPU @ 2.00 GHz. RAM usage was 500 GB at peak. The Canu authors

	

	 95

reported ≈30,000 CPU hours of run-time using a cluster with 48-core Intel(R) Xeon(R) CPU @

2.5 GHz with 128 GB of RAM each (24 nodes) and two 80-core 1 TB machines. The memory

usage of a single job did not exceed 120 GB. The MaSuRCA authors reported needing

approximately 50,000 CPU hours.

Dataset Assembler Wall clock
time

Peak memory
usage

YEAST-PB
 	

Size: 12 Mb
Cov: 31×

Max threads: 8

Flye (w/o polishing) 20m (9m)	 7G

Canu 80m	 5G

Falcon 62m 10G
HINGE 9m 5G

Miniasm+ABruijn (Miniasm) 16m (1m) 5G

YEAST-ONT
	

Size: 12 Mb
Cov: 31×

Max threads: 8

Flye (w/o polishing) 19m (12m)	 7G

Canu 184m	 6G	
Falcon 103m 11G

HINGE 11m 8G

Miniasm+ABruijn (Miniasm) 31m (3m) 5G
WORM

Size: 100 Mb

Cov: 40×
Max threads: 24

Flye (w/o polishing) 128 m (77 m)	 30G	
Canu 780 m	 41G	

Falcon 945m 18G
HINGE 803m 52G

Miniasm+ABruijn (Miniasm) 290m (10m) 23G

Table 2.5: Running time and memory usage of various SMS assemblers.
We used a desktop machine with an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz (up to 8
threads available) for the YEAST dataset assemblies and a single computational node with
an Intel(R) Xeon(R) CPU X5680 @ 3.33GHz for the WORM dataset assemblies (up to 24
threads available). Since we performed the ABruijn polishing step on the Miniasm output,
the running time for Flye and Miniasm are given for runs with and without contig polishing;
e.g., 25m (9m) for Flye in the case of YEAST-PB dataset indicates 9 minutes without
polishing and 25 minutes with polishing. “Size” refers to genome size, “Cov” refers to
sequencing coverage, “Max threads” is the maximum threads used during assembly, “Mb”
indicates megabase-pairs, “G” indicates gigabytes, and “m” indicates minutes.

	

	 96

Segmental Duplications in the Human Genome.

The repeat graph constructed by Flye reveals the complex mosaic structure of segmental

duplications (SDs). Flye classifies all edges in the graph into unique and repeat edges by

analyzing how reads traverse the graph and by using coverage-based arguments (details in the

Methods section). After removing all of the unique edges from the assembly graph, only

connected components made up of repeat edges remain, each of which encodes an SD. We

define the complexity of an SD as the number of edges in its connected component, and the

length as the total length of all edges in its connected component. Figure 2.8, Left illustrates a

mosaic SD of complexity 7 and length 25.7 kb (the seven colored repeat edges form a connected

component in the Flye assembly graph after removing all unique edges). An SD is classified as

simple if its complexity is 1 and mosaic otherwise (Jiang et al. 2007; Pu et al. 2018). Figure 2.8,

Right shows the distributions of lengths and complexities of SDs identified by Flye and

illustrates the power of the assembly graph for repeat resolution.

	

	 97

There are 1,748 repeat edges longer than 5 kb, forming 749 connected components in the

Flye assembly graph of the HUMAN dataset before performing repeat resolution. After repeat

B (8kb, 112x)

D (3.5kb, 114x)

E (1.4kb, 75x)

F (5kb, 118x)G (1.7kb, 75x)

C (1.3kb, 473x)

A (5kb, 50x)

chr7:57mb

chr20:47mb

chr7:57mb

chr20:48mb

chr20:47mb

chr20:48mb

A B C* D E F
chr7:57mb

A B C* D E F G
chr20:47mb

B C* D E F GF G B C* D
chr20:48mb

Figure 2.8: The distribution of the lengths and complexities of all SDs from the Flye
assembly of the HUMAN dataset (Right) and a detailed example of one such SD (Left).
(Left) A mosaic SD of complexity 7 is represented as a connected component formed by repeat
edges (there are seven colored edges of total length 25.7 kb) in the assembly graph of the
HUMAN dataset (flanking unique edges are shown in black). Loop-edge C with coverage 473×
represents a tandem repeat C* with unit length 1.3 kb that is repeated ≈19 times. The colored
edges of the assembly graph align to a region on chromosome 7 of length 31 kb and two regions
on chromosome 20 of lengths 30 kb and 46 kb. These three instances of SDs were not resolved
using standard ONT reads but were resolved using ultra-long reads in a way that is consistent
with the reference human genome. (Right) Statistics are given before resolving bridged repeats
(green), after resolving bridged repeats with standard ONT reads (orange), and with standard
and ultra-long ONT reads (blue). Only SDs between 5 kb and 50 kb in length and with
complexity between 2 and 50 contributed to the “SD length” and “SD complexity” histograms.
Only two SDs have complexity exceeding 50 before repeat resolution. 545 out of 688 of SDs
between 5 kb and 50 kb were resolved using the standard ONT reads, and the ultra-long reads
resolved an additional 58 SDs. There were 1,256 simple SDs before repeat resolution and 143
after repeat resolution with ultra-long reads. Since Flye already normally resolves SDs shorter
than the typical read length, these identified SDs do not include many known human SDs.

	

	 98

resolution with ultra-long reads, there are only 765 repeat edges, forming 107 connected

components in the assembly graph. 73 of them represent mosaic SDs, and 34 of them represent

simple SDs (most simple SDs represent isolated edges and loop-edges).

A similar procedure is applied to the HUMAN+ dataset where unique edges are removed

and connected components formed by repeat edges remain. These connected components

correspond to putative SDs, though they might also include short edges corresponding to

unresolved common repeats. Figure 2.9 shows the distribution of lengths of repeat edges

exceeding 5 kb and the distributions of lengths of ultra-long SDs (longer than 50 kb) for the

HUMAN+ dataset.

Figure 2.9: The distribution of lengths of ultra-long SDs (longer than 50 kb) for the
assembly graph constructed for the HUMAN+ dataset (left) and the lengths of all other
repeat edges (right).
(Left) 39 out of 81 SDs (48%) longer than 50 kb were resolved using standard ONT reads to
bridge repeats. Ultra-long reads resolved an additional 20 SDs (28%) in this range of SD
lengths. (Right) Only edges varying in length from 5 kb to 50 kb contributed to the histogram.
In addition to these edges, there are 213 repeat edges with length exceeding 50 kb before repeat
resolution, and 90 repeat edges of this length remaining after repeat resolution with ultra-long
reads. Note that while a similar figure in the main text describes the lengths of SDs (the total
length of edges in the connected components of the SDs), this figure describes the length of
individual repeat edges.

	

	 99

We illustrate how Flye resolves unbridged repeats using all five unbridged repeats of

multiplicity two in the assembly graph of the HUMAN+ dataset constructed by Flye (Table 2.6).

Flye resolved all five repeats, which range in length from 37 kb to 152 kb, in coverage from 26×

to 31×, and in divergence from 1.77% to 7.76%.

Rep
ID

Rep
Len
(kb)

Cov Div #Tentative
Divergent
Positions

#Confirmed
Divergent
Positions

Max
Dist
btw
Pos
(kb)

Remaining
Gap
(kb)

#cis
Linking
Reads	

#trans
Linking
Reads	

625 152 27× 5.36% 29713 3256 79.2 32.2 2 12
902 51 28× 1.77% 5694 1541 0.7 0 43 13
1018 86 26× 6.77% 17509 11360 0.7 0 17 154
1075 37 28× 3.05% 4379 1406 0.3 0 38 136
1233 49 31× 7.76% 11786 8590 0.3 0 45 2

All resolved repeats correspond to known segmental duplications in the human genome.

The sequences of the constructed repeat copies preferentially map to specific copies of segmental

duplications, showing that our method is successful even in the presence of Single Nucleotide

Table 2.6: Resolving unbridged repeats of multiplicity two in the assembly graph of the
HUMAN+ dataset.
The assembly graph of the HUMAN+ dataset has five unbridged repeats of multiplicity two.
The identifier of each unbridged repeat (Rep ID) is given by its edge id in the assembly graph.
All repeats have been resolved. “Rep Len” refers to the estimated repeat length of the repeat.
The “Cov” or coverage is calculated as the total length of reads covering the repeat divided by
the repeat length, divided by the multiplicity of the repeat. The “Div” or divergence is
calculated based on the alignment of constructed repeat consensus sequences, dividing the total
number of substitutions and indels by the total number of matches, substitutions, and indels (if
the forward and reverse consensus sequences do not overlap, then the mean divergence of the
forward and reverse sequences is calculated, weighted by the length of the sequences). “Max
Dist btw Pos” refers to the maximum of all distances between adjacent confirmed divergent
positions. “Remaining gap” refers to the length of the repeat remaining without separate
consensus sequences for each copy after Flye has “moved into the repeat” from both the
forward and reverse directions. In the case that the forward and reverse consensus sequences
overlap, the remaining gap is set to 0. See the Methods section for more details.

	

	 100

Variants (SNVs). For example, repeat 902 aligns to two ≈50 kb regions of chromosome X

(separated by ≈65 kb), which are annotated as segmental duplications.

The diploid nature of the human genome may add some complications to the repeat

resolution procedure, especially if many SNVs are present in the repeat. However, if the

divergence of the repeat significantly exceeds the fraction of SNVs, the described algorithm will

still be able to resolve the unbridged repeat. Since the divergence of repeats analyzed in Table

2.6 (above 4%) significantly exceeds the fraction of SNVs in the human genome (≈0.1%), SNVs

do not significantly affect our approach. However, in the case of unbridged repeats with low

divergence (e.g., below 1%), our algorithm has to be modified to take SNVs into account. When

the algorithm is extended to repeats of higher multiplicity, it will automatically resolve

haplotypes for diploid and polyploid genomes since they will simply be treated as additional

repeat copies.

A Theoretical Framework for Repeat Graph Construction.

In addition to the described Flye algorithm, we provide a mathematical formulation of the

repeat characterization problem and describe an alternative algorithm for the repeat graph

construction (Figure 2.10). The Methods section provides additional details and explains the

relation between the theoretical framework and the implementation in Flye.

	

	 101

A1 B2 C3 D4

B5 C6 D7 E8 A9 B10 C11 D12 E13

A1 B E8

A9 B10 C11 D12 E13

A B

A1 B2 C3 D4 B5 C6 D7 E8 A9 B10 C11 D12 E13

A B C D

A1 B2 C3 D4 B5 C6 D7 E8 A9 B10 C11 D12 E13

D12

C11

B10

A9

D4

C3

B2

A1

E8

D7

C6

B5

E13

E

C D

C D E

A B D E

A/B D/E

Tour T

Graph G

Repeat plot PlotT(G)

Repeat graph construction

Punctilious repeat graph

Repeat graph

Figure 2.10: Constructing the repeat plot of a tour in the graph (Left) and constructing
the repeat graph from a repeat plot (Right).
(Left) A tour 𝑇 =	…𝐴Z𝐵y𝐶�𝐷� …𝐵�𝐶°𝐷±𝐸² …𝐴³𝐵Z´𝐶ZZ𝐷Zy𝐸Z� … in a graph 𝐺 with red,
green, and blue instances of a repeat that includes two copies of vertices 𝐴 and 𝐸 and three
copies of vertices 𝐵, 𝐶, and 𝐷. Dots represent multiple vertices that appear before, between,
and after these three instances of the repeat. The repeat plot 𝑃𝑙𝑜𝑡µ(𝐺) consists of three
diagonals representing the three instances of the repeat in the tour. The trivial self-alignment of
the entire genome against itself is shown by the main dotted diagonal (the points below this
diagonal are not shown). Since vertex 𝐴 in the graph is visited twice in tour 𝑇, it results in a
single point (1, 9) in 𝑃𝑙𝑜𝑡µ(𝐺). Vertex 𝐵 results in points (2, 5), (2, 10), and (5, 10); vertex 𝐶
results in points (3, 6), (3, 11), and (6, 11); vertex 𝐷 results in points (4, 7), (4, 12), and (7, 12);
and vertex 𝐸 results in the point (8, 13). (Right) Constructing the punctilious repeat graph from
the repeat plot by gluing vertices with indices 𝑖 and 𝑗 for each point (𝑖, 𝑗) in the repeat plot.
Each non-branching path in the graph is substituted by a single edge with length equal to the
number of edges in this path. The lengths of the short edges (𝐴, 𝐵) and (𝐷, 𝐸) in the resulting
graph are equal to 1 and the length of the long edge (𝐵, 𝐷) is equal to 2 (for edge length
threshold 𝑑 = 1). The punctilious repeat graph (Upper Bottom Right) is transformed into the
repeat graph (Lower Bottom Right) by contracting short edges (𝐴, 𝐵) and (𝐷, 𝐸).

	

	 102

2.4 Discussion

We describe the Flye algorithm for constructing the assembly graph of SMS reads and

demonstrate that repeat characterization improves genome assembly. We show how to use the

assembly graph to resolve unbridged repeats using variations between repeat copies and

compared Flye with the Canu, Falcon, HINGE, Miniasm and MaSuRCA assemblers.

For the BACTERIA datasets, Flye and HINGE showed good agreement in the structure

of constructed assembly graphs. Flye showed substantial improvement over HINGE on more

complex eukaryotic datasets and generated the most accurate assemblies of the YEAST and

WORM datasets; Flye and Canu also produced the best assembly contiguity for the WORM

dataset. For the more complex HUMAN and HUMAN+ datasets, Flye generated more

contiguous and accurate assemblies than Canu and MaSuRCA while being notably faster.

Although assemblies of ONT reads feature rather high base-calling error rates (1.2% for the Flye

HUMAN assembly), polishing the Flye assembly graph using Illumina reads has the potential to

reduce the error rates by an order of magnitude.

The fact that Flye substantially improved on the Canu and MaSuRCA assemblies of the

human genome suggests that there are still unexplored avenues for increasing the contiguity of

SMS assemblies. We believe that better algorithms for resolving unbridged repeats in assembly

graphs have the potential to greatly improve SMS assemblies, potentially increasing their

NGA50 values by an order of magnitude. Flye constructed a repeat graph of the human genome

with only 765 repeat edges representing various long SDs. Our algorithm for resolving unbridged

repeats resolved only a small fraction of these SDs since it is currently limited to simple SDs (the

vast majority of human SDs are mosaic and complex). Moreover, it currently has difficulties

resolving highly similar SDs, e.g. SDs with ~1% divergence. Although we reported the

	

	 103

resolution of highly similar SDs on simulated datasets (as did a previous study; Tischler et al.

2017), most unbridged repeats resolved by Flye and Canu are simple repeats with divergence

exceeding 3%. Extending Flye to mosaic SDs and highly similar SDs has the potential to resolve

most of the remaining unbridged repeats, since the vast majority of SDs in the human genome

diverged by more than 1% (Pu et al. 2018). Since there are only 53 long SDs (with length

exceeding 15 kb) in the human genome that diverged by less than 1%, an SMS assembler that

accurately resolves highly similar unbridged repeats will result in highly contiguous human

genome assemblies, thus reducing the need for additional genome finishing experiments (such as

using Hi-C and/or optical maps).

Assembly graphs represent a special case of breakpoint graphs (Lin et al. 2014), and they

are therefore well suited for analyzing structural variations (Chaisson et al. 2015; Nattestad et al.

2018) and SDs (Jiang et al. 2007; Pu et al. 2018). Flye assembly graphs provide a useful

framework for reconstructing SDs and planning additional genome finishing experiments.

	

	 104

2.5 Methods

The Repeat Characterization Problem.

Below we describe the abstract repeat characterization problem and explain how it relates

to genome assembly. Consider a tour 𝑇 = 𝑣Z, 𝑣y, … 𝑣f of length 𝑛 visiting all vertices of a

directed graph 𝐺. We say that the 𝑖-th and 𝑗-th vertices in the tour 𝑇 are equivalent if they

correspond to the same vertex of the graph, i.e., 𝑣e = 𝑣w. The set of all pairs of equivalent

vertices forms a set of points (𝑖, 𝑗) in a two-dimensional grid that we refer to as the repeat plot

𝑃𝑙𝑜𝑡µ(𝐺) of the tour 𝑇 (Figure 2.10). The transformation of a tour 𝑇 traversing a known graph 𝐺

into the repeat plot 𝑃𝑙𝑜𝑡µ(𝐺) is a simple procedure. Below, we address the reverse problem,

which is at the heart of genome assembly, repeat characterization and synteny block

construction: given an arbitrary set of points 𝑃𝑙𝑜𝑡, in a two-dimensional grid, find a graph 𝐺	 =

	𝐺(𝑃𝑙𝑜𝑡) and a tour 𝑇 in this graph such that 𝑃𝑙𝑜𝑡 = 𝑃𝑙𝑜𝑡µ(𝐺).

A dot-plot of a genome is a matrix that graphically represents all repeats in a genome

(Gibbs et al. 1970). In the case of repeat characterization, we are interested in the dot-plot 𝑃𝑙𝑜𝑡

formed by the non-overlapping alignment-paths representing all high-scoring local self-

alignments of a genome against itself (below, we refer to these alignments as simply self-

alignments). Each self-alignment reveals two instances of a repeat corresponding to contiguous

segments 𝑥 and 𝑦 in the genome (𝑥 and 𝑦 are called the spans of the alignment). Given a genome

of length 𝑛 and a set of its self-alignments 𝑃𝑙𝑜𝑡, the repeat characterization problem amounts to

constructing a graph 𝐺 and a tour 𝑇 of length 𝑛 in this graph (where each segment of the genome

corresponds to a subpath of the graph traversed by the tour) such that 𝑃𝑙𝑜𝑡 = 𝑃𝑙𝑜𝑡µ(𝐺) and the

tour 𝑇 is alignment-compatible. A tour is alignment-compatible with respect to the dot-plot 𝑃𝑙𝑜𝑡

	

	 105

if, for each alignment with spans 𝑥 and 𝑦 in 𝑃𝑙𝑜𝑡, paths in the graph corresponding to segments

𝑥 and 𝑦 coincide.

Generating the Repeat Plot of a Genome.

Our goal is to construct both the repeat graph of a genome and an alignment-compatible

tour in this graph. Constructing the de Bruijn graph of a genome based on long 𝑘-mers will not

solve this problem since the differences between imperfect repeat copies mask the repeat

structure of the genome. Constructing the de Bruijn graph based on short 𝑘-mers will not solve

this problem due to the presence of repeating short 𝑘-mers within long repeats (these 𝑘-mers lead

to a tangled repeat graph). Thus, at the initial stage, Flye generates all self-alignments (repeats)

of a genome and combines them into a repeat plot 𝑃𝑙𝑜𝑡. However, it is unclear how to solve the

reverse problem of generating the repeat graph 𝐺(𝑃𝑙𝑜𝑡) of the genome.

To address this problem for a “genome” representing a concatenate of accurate short

reads, a previous study (Pevzner et al. 2004) described various graph simplification procedures,

e.g., bubble and whirl removals, that are now at the heart of various short read assemblers such

as SPAdes (Bankevich et al. 2012). However, it is not clear how to generalize these procedures

to make them applicable to error-prone SMS reads. Below we show how to modify the concept

of a punctilious repeat graph (Pevzner et al. 2004) so it can be applied to assembling SMS reads.

Constructing a Punctilious Repeat Graph.

Let 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 = 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠(𝐺𝑒𝑛𝑜𝑚𝑒,𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝) be the set of all sufficiently

long (of length at least 𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝) self-alignments of a genome 𝐺𝑒𝑛𝑜𝑚𝑒. Flye sets the

𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 parameter as the N90 of the read-set; i.e., reads longer than N90 account for ≈90%

	

	 106

of the total read length (𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 varies from 3000 to 5000 nucleotides for the SMS datasets

analyzed in this paper).

Given a set of self-alignments 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 of a genome 𝐺𝑒𝑛𝑜𝑚𝑒, we construct the

punctilious repeat graph 𝑅𝑒𝑝𝑒𝑎𝑡𝐺𝑟𝑎𝑝ℎ(𝐺𝑒𝑛𝑜𝑚𝑒, 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠) by representing 𝐺𝑒𝑛𝑜𝑚𝑒 as a

path consisting of |𝐺𝑒𝑛𝑜𝑚𝑒| vertices (Figure 2.10) and by “gluing” each pair of vertices

(positions in the genome) that are aligned against each other in one of the alignments in

𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 (Pevzner et al. 2004). Gluing vertices 𝑣 and 𝑤 amounts to substituting them by a

single vertex that is connected by edges to all vertices that either vertex 𝑣 or vertex 𝑤 was

connected to. We consider branching vertices (i.e., vertices with either in-degree or out-degree

not equal to one) in the resulting graph and substitute each non-branching path between them by

a single edge of length equal to the number of original edges in this path. Edges in the

punctilious repeat graph are classified as long (longer than a predefined threshold 𝑑 with default

value 500 nucleotides) and short (Figure 2.10).

The punctilious repeat graphs of real genomes are very complex due to various artifacts

(Pevzner et al. 2004; Jiang et al. 2007). For example, the starting/ending points of alignment-

paths corresponding to three repeat copies starting at positions 𝑥, 𝑦, and 𝑧 in the genome hardly

ever start at points (𝑥, 𝑦), (𝑥, 𝑧), and (𝑦, 𝑧) in the repeat plot. Because each repeat with 𝑚 copies

in the genome results in d
y pairwise alignments and each of the corresponding d

y alignment-

paths may have unique starting and/or ending vertices that differ from all other starting/ending

positions, there will be many gluing operations for the starting and/or ending positions of this

repeat. Note that each of these operations may form a new branching vertex in the punctilious

repeat graph. For example, gluing the endpoints of the three diagonals in Figure 2.10 results in

the branching vertices 𝐴, 𝐵, 𝐷, and 𝐸 in the graph. Punctilious repeat graphs of real genomes

	

	 107

often contain many branching vertices making it difficult to compactly represent repeats. We

address this challenge by transforming the punctilious repeat graph into a simpler graph.

From Punctilious Repeat Graph to Repeat Graph.

As described before, the endpoints of alignment-paths representing the same repeat might

not be coordinated among all pairwise alignments of this repeat. These uncoordinated alignments

result in a complex repeat graph with an excessive number of branching vertices and many short

edges (shorter than a threshold 𝑑). The repeat graph 𝑅𝑒𝑝𝑒𝑎𝑡𝐺𝑟𝑎𝑝ℎ(𝐺𝑒𝑛𝑜𝑚𝑒, 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠, 𝑑) is

defined as the result of contracting all short edges in the punctilious repeat graph (Figure 2.10).

The contraction of an edge is the gluing of the endpoints of this edge, followed by the removal of

the loop-edge resulting from this gluing. Since the genome represents a tour visiting all edges in

the repeat graph, we define the multiplicity of an edge in the repeat graph as the number of times

this edge is traversed in the tour. Edges of multiplicity one are called unique edges and all other

edges are called repeats.

Approximate Repeat Graphs.

The described approach, although simple in theory, results in various complications in the

case of real genomes, particularly in the case of inconsistent pairwise alignments. In the case of

short reads, various graph simplification procedures (Pevzner et al. 2004; Bankevich et al. 2012)

result in a modified repeat graph that represents a more sensible repeat characterization, but

sacrifice the fine details of some repeats in favor of revealing the mosaic structure shared by

different repeat copies. However, in the case of SMS assemblies, repeat graph (and A-Bruijn

graph) construction results in excessively complex graphs that make the previously proposed

	

	 108

graph simplification algorithm (Pevzner et al. 2004) inefficient and make it difficult to select

sensible parameters for graph simplification. For example, it is unclear how to select an adequate

𝑏𝑢𝑏𝑏𝑙𝑒_𝑠𝑖𝑧𝑒 parameter for bubble removal (small values of this parameter result in complex A-

Bruijn graphs while large values result in oversimplified A-Bruijn graphs). While there exists a

“sweet spot” for this parameter in short read assembly, we were not able to find such a spot for

long read assembly. That is why we departed from the original A-Bruijn framework and opted to

construct a different version of the repeat graph (called the approximate repeat graph) based only

on the endpoints of diagonals in the genomic dot-plot rather than the entire diagonals as in a

previous study (Pevzner et al. 2004). This approach led to a great reduction in running time and

allowed us to bypass the bubble/whirl-removal steps (and the challenge of choosing parameters

for these operations) altogether.

Some branching vertices in the repeat graph arise from the contraction of multiple

vertices in the punctilious repeat graph; e.g., vertices 𝐴 and 𝐵 were contracted into a single

vertex 𝐴/𝐵 in the repeat graph in Figure 2.10. Consider the set of all vertices in the punctilious

repeat graph that gave rise to branching vertices in the repeat graph (vertices 𝐴, 𝐵, 𝐷 and 𝐸 in

Figure 2.10) and let 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 = 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠(𝐺𝑒𝑛𝑜𝑚𝑒, 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠, 𝑑) be the set of all

positions in the genome that gave rise to these vertices (𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠	 =

	{1, 2, 4, 5, 7, 8, 9, 10, 12, 13} in Figure 2.10). This set of vertices forms a set of short, contiguous

genomic segments (segments [1, 2], [4, 5], [7, 8, 9, 10], and [12, 13] in Figure 2.10) that contain

all horizontal and vertical projections of the endpoints of all alignments in Alignments.

Flye approximates the set 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 by recruiting all horizontal and vertical

projections of the endpoints of alignments from Alignments to the main diagonal in the repeat

plot. Figure 2.2 presents three alignments, resulting in eight projected points on the main

	

	 109

diagonal. Two alignment endpoints are close if either of their projections on the main diagonal

are located within distance threshold 𝑑 (including the case when a vertical projection of one

endpoint coincides with or is close to a horizontal projection of another endpoint).

Flye Clusters Close Endpoints Together Based on Single Linkage Clustering.

Applying this procedure (with 𝑑 = 0) to eight breakpoints (projected endpoints) in Figure

2.2 results in three clusters (breakpoints in the same cluster are painted with the same color).

Figure 2.2 illustrates that gluing breakpoints that belong to the same clusters (and further

collapsing parallel edges) results in an approximate repeat graph of the genome. However,

although this procedure led to the correct repeat graph in the simple case shown in Figure 2, the

approximate repeat graph constructed based on the clustering of closely located breakpoints may

differ from the repeat graph constructed based on the punctilious repeat graph. Below, we

describe how pairwise alignments may be inconsistent and explain how mosaic repeats and

inconsistencies of local alignments may result in an “incorrect” clustering-based repeat graph.

Inconsistent Pairwise Alignments.

 Pevzner et al. 2004 introduced the concept of alignment-based de Bruijn graphs known as

A-Bruijn graphs and applied them to the problems of repeat characterization and genome

assembly. They further described the transformation of an A-Bruijn graph into a repeat graph

that is particularly simple in the case of consistent alignments as described below.

Each multiple alignment of 𝑚 sequences induces 𝑚
2 pairwise alignments. A set of

pairwise alignments (described by the repeat plot) is consistent if its alignments can be combined

into a single multiple alignment that induces each pairwise alignment in the set. The concept of

	

	 110

multiple alignment is usually defined for the case of aligning multiple sequences rather than for

aligning a sequence against itself. Below, we describe the concept of a multiple self-alignment of

a genome and define the notion of consistent pairwise self-alignments. This notion is important

since A-Bruijn graphs result in a simple repeat graph in the case of consistent self-alignments but

in a more complex graph in the case of inconsistent self-alignments (see Pevzner et al. 2004 for a

discussion of complications arising from inconsistent self-alignments).

A multiple self-alignment of a single sequence is a partition of its positions into non-

overlapping subsets, with each subset corresponding to a column of the multiple self-alignment.

For example, a multiple self-alignment of the sequence ACTGGCTGACT can be represented as

a partition of its 11 positions into six “painted” subsets: A0C1T2G3G4C5T6G7A8C9T10 (A0 and

A8 share the same color; C1, C5, and C9 share the same color, and T3, T6, and T10 share the same

color). Figure 2.11 visualizes such a partitioning as a multiple self-alignment where each column

represents positions from the same subset.

	

	 111

	

	

Every pair of numbers 𝑖 < 𝑗 in the same column of the multiple self-alignment defines a

point (𝑖, 𝑗) in the two-dimensional plot. For example, the leftmost column in Figure 2.11

corresponds to a point (0, 8) and the rightmost column corresponds to points (2, 6), (2, 10), and

(6, 10). The collection of all such points defines the dot plot of the multiple self-alignment. We

refer to a rectangle in the dot plot with lower left corner (𝑥, 𝑦) and upper right corner (𝑥’, 𝑦’) as

(𝑥, 𝑦, 𝑥’, 𝑦’). A pairwise alignment between segments (𝑥, 𝑥’) and (𝑦, 𝑦’) of a genome defines a

set of two-dimensional points in the rectangle (𝑥, 𝑦, 𝑥’, 𝑦’) corresponding to matches in this

alignment. A multiple self-alignment and a pairwise alignment between segments (𝑥, 𝑥’) and (𝑦,

𝑦’) are consistent if the dot plot of the multiple self-alignment coincides with the dot plot of the

pairwise alignment within the rectangle (𝑥, 𝑦, 𝑥’, 𝑦’). A set of pairwise alignments is consistent if

Figure 2.11: Multiple self-alignment defined by the partitioning of
A0C1T2G3G4C5T6G7A8C9T10 into six subsets (left) and the corresponding dot-plot (right).
In contrast to the traditional representation of a multiple alignment (where each entry represents
a nucleotide or a dash in the multiple alignment matrix), each entry in the multiple self-
alignment matrix represents a position in the sequence or a dash.

	

	 112

there exists a multiple self-alignment that is consistent with all pairwise alignments in this set,

and inconsistent otherwise.	

Inconsistent Alignments Result in Excessively Complex Repeat Graphs.

Figure 2.12 presents an example of inconsistent pairwise alignments and illustrates that

they result in a repeat graph that differs from the repeat graph shown in Figure 2.2. In contrast to

the graph in Figure 2.2, the graph in Figure 2.12 is not alignment-compatible; e.g., the repeat

A+B corresponds to a single path in Figure 2.2 but two paths in Figure 2.12. Although it may

appear to be a minor annoyance in the case of the toy example in Figure 2.12, inconsistent

alignments may result in excessively complex repeat graphs for real genomes, making it difficult

to analyze repeats in the genome. While it is easy to make the pairwise alignments consistent in

the simple case shown in Figure 2.12 (by adding the missing diagonal), transforming inconsistent

pairwise alignments into consistent ones is a challenging task in the case of real genomes.

The approximate repeat graph in Figure 2.12 has seven vertices (since there exist seven

projections of alignment endpoints to the main diagonal), in contrast to the approximate repeat

graph in Figure 2.2 of the main text that has eight vertices. This deficiency of the approximate

repeat graph in Figure 2.12 motivates us to develop a new algorithm for extending the set

𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 described below. Note that the middle point of the long diagonal in Figure 2.12

represents an invalid point since only one of its projections (shown as a purple point) belongs to

the set of seven endpoint projections on the main diagonal. The algorithm described below adds

the missing projection to the set 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 and results in the same approximate repeat graph

as shown in Figure 2.2 (Figure 2.12, bottom panel).

	

	 113

Extending the Set of Breakpoints.

As described above, Flye constructs the initial set 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 by projecting all

endpoints of the alignments (in the set of self-alignments 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠) onto the main diagonal

in the repeat plot. Each point in an alignment-path in the |𝐺𝑒𝑛𝑜𝑚𝑒|×|𝐺𝑒𝑛𝑜𝑚𝑒| grid has two

projections (horizontal and vertical) on the main diagonal. Note that projections of some internal

Figure 2.12: Inconsistent pairwise alignments result in an “incorrect” repeat graph (as
compared to the graph shown in Figure 2.2), thus necessitating an extension of the set of
alignment endpoints.
(Left) Alignment-paths for two pairwise self-alignments within a genome XABYABZBU.
Only two out of three pairwise alignments between instances of a mosaic repeat (AB, AB, and
B) are shown since the third alignment did not pass the percent identity threshold, resulting in
an inconsistent set of pairwise alignments. Alignment endpoints are clustered together if their
projections on the main diagonal coincide or are close to each other (clusters of closely located
endpoints for 𝑑 = 0 are painted with the same color). This clustering reveals three clusters with
seven breakpoints on the main diagonal. (Top Right of Left Half) Projections of the clustered
endpoints on the main diagonal define seven vertices of the approximate repeat graph. (Middle
Right of Left Half) Gluing breakpoints that belong to the same clusters. (Bottom Right of
Left Half) Gluing parallel edges in the resulting graph (parallel edges are glued if there exists
an alignment between their sequences), which results in an approximate repeat graph that is not
alignment-compatible. (Right) Extending the set 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 by adding an additional point
to the longest diagonal (shown as a star). Since the middle point of the longer alignment-path
is invalid (its vertical projection on the main diagonal belongs to the set 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 but its
horizontal projection does not), we have added the missing projection to the set 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠
(shown as a purple square). Adding this breakpoint is equivalent to breaking the longer
alignment-path into two subpaths (the breakage position is shown as a purple star). As a result
of the breakpoint extension procedure, the approximate repeat graph constructed based on the
extended set 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 coincides with the approximate repeat graph shown in Figure 2.2.

	

	 114

points in an alignment-path may belong to 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠; for example, both projections of the

middle-point of the longest alignment-path in Figure 2.2 (shown in purple) belong to

𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠. Such internal points should be re-classified as new alignment endpoints (by

breaking the alignment-path into two parts) to avoid inconsistencies during the construction of

the repeat graph. However, for some internal points, only one of their two projections belongs to

𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠, leading to complications in the path-breaking process. Below we explain how to

break the alignment-paths into subpaths (and, at the same time, extend the set 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠) to

address this complication.

A point in an alignment-path is called valid if both its projections belong to

𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠, and invalid if only one of its projections belongs to 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠. A set

𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 is called valid if all points in all alignment-paths are valid, and invalid otherwise.

In the case that the constructed set 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 is invalid, our goal is to add the minimum

number of points to this set to make it valid. Figure 2.12 provided an example of an invalid point

and how it affects the resulting repeat graph.

Flye iteratively adds the missing projection for each invalid point to the set 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠

on the main diagonal until there are no invalid points left. Afterwards, it combines close points in

𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 into segments using single linkage clustering (as described above). The set of

resulting segments (defined by their minimal and maximal positions on the main diagonal) forms

a set 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠. Two segments from 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 are equivalent if there

exists a point in one of the alignment-paths such that one of its projections to the main diagonal

falls into the first segment and another falls into the second segment.

Each repeat of multiplicity 𝑚 typically corresponds to 𝑚 segments in

𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 corresponding to 𝑚 starting positions of this repeat in the genome (and

	

	 115

the same number of segments corresponding to its ending positions). Note that the number of

breakpoint segments resulting from this repeat is reduced as compared to the number of

breakpoints, which can be as large as 𝑚2 for the starting positions of the repeat (and the same

number for its ending positions). Flye takes advantage of this reduction by selecting middle

points of each breakpoint segment and only gluing these middle points rather than all

breakpoints. Essentially, it redefines the endpoints of each alignment-path as the middle points of

corresponding breakpoint segments.

Specifically, Flye constructs the approximate repeat graph by generating the set

𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠, selecting a middle point from each segment in 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠,

and gluing the two middle points for every pair of equivalent segments. Afterwards, it glues

together parallel edges (edges that start and end at the same vertices) if the genome segments

corresponding to these edges are aligned in 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠, i.e., if there exists an alignment with

its 𝑥- and 𝑦-spans overlapping both these segments. For brevity, below we refer to the

approximate repeat graph resulting from this procedure simply as the repeat graph.

The Challenge of Assembling Contigs into a Repeat Graph.

The ABruijn algorithm constructs a set of contigs but does not attempt to assemble them

into even longer contigs (e.g. by utilizing ultra-long reads) and stops short of constructing the

repeat graph of the genome (Lin et al. 2016). We note that contig assembly (let alone

constructing the repeat graph based on contigs) is a non-trivial problem. Although it may appear

that contig assembly can be achieved by simply utilizing existing long read assemblers,

Bankevich et al. 2015 reported that the Celera (Myers et al., 2000), Minimus (Treangen et al.,

2013), and Lola (Sharon et al., 2015) assemblers produced suboptimal assemblies of contigs

	

	 116

generated using the TruSeq Synthetic Long Reads (TSLR) technology. Their attempts to modify

the short read assembler SPAdes (Bankevich et al. 2012) for TSLR assembly improved on the

results of Celera, Minimus, and Lola but stopped short of constructing the contig-based repeat

graph.

Similar challenges remain unresolved for short reads as well. Although popular short read

assemblers construct the assembly graph of single reads (before resolving repeats using paired

reads), they output a set of contigs (after the repeat resolution step) rather than an assembly

graph that utilizes information about paired reads. For example, SPAdes (Bankevich et al. 2012)

constructs the assembly graph of single reads, uses it together with paired reads for repeat

resolution, and outputs the resulting contigs (Prjibelsky et al. 2014). A better option would be to

construct the assembly graph of these contigs (which is less tangled than the assembly graph of

individual reads) and to apply the repeat resolution step to this graph again. Another advantage

of this (less tangled) contig-based assembly graph lies in applications relating to hybrid

assembly, e.g., the co-assembly of short and long reads (Antipov et al. 2015; Wick et al. 2017).

However, although some studies attempted to construct the assembly graph from contigs or

directly from paired reads (Vyahhi et al. 2012), the popular short read assemblers have failed to

incorporate this approach into their pipelines thus far.

From the Repeat Graph of a Genome to the Assembly Graph of Contigs.

Due to the challenges described above, the ABruijn assembler (Lin et al. 2016) opted to

output a set of contigs rather than constructing the repeat graph of a genome based on these

contigs. The contig construction in ABruijn essentially amounts to finding extension reads for

extending paths in the (unknown) repeat graph of the genome. Each extension read increases the

	

	 117

length of the growing path until the extension process becomes ambiguous, i.e., when it reaches

a branching vertex in the (unknown) repeat graph. Afterwards, ABruijn decides whether to

continue or to stop the path extension in order to avoid assembly errors. Since ABruijn does not

know the exact locations of branching vertices, it uses the last extension read to extend the path

beyond the branching vertex by at least 𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 nucleotides. As a result, each linear contig

constructed by ABruijn satisfies the overhang property: it extends at least 𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝

nucleotides in front of the first branching vertex and behind the last branching vertex it traverses.

Note that the same 𝑚𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 value is used during repeat graph construction.

Constructing Disjointigs.

ABruijn and other existing SMS assemblers invest significant effort into making sure that

the generated contigs are correctly assembled (that they represent subpaths of the genomic tour

in the repeat graph). In contrast to ABruijn, Flye does not attempt to construct accurate contigs at

the initial assembly stage but instead generates disjointigs as arbitrary paths in the (unknown)

repeat graph of the genome. However, it constructs an accurate repeat graph from error-prone

disjointigs (also known as an assembly graph).

Flye randomly walks in the (unknown) assembly graph to generate random paths from

this graph. Each non-chimeric read from 𝑅𝑒𝑎𝑑𝑠 defines a subpath of a genomic tour in an

assembly graph. Flye extends this path by switching from the current read to any other

overlapping read (which has a sufficiently long common 𝑗𝑢𝑚𝑝-subpath) rather than a carefully

chosen overlapping read (Lin et al. 2016), avoiding a time-consuming test to check whether this

selection triggers an assembly error.

	

	 118

Since the resulting 𝐹𝑙𝑦𝑒𝑊𝑎𝑙𝑘 algorithm does not invoke the contig correctness check, it

constructs paths (chains of overlapping reads) that do not necessarily follow the genome tour

through the assembly graph. Although it may appear counter-intuitive that inaccurate disjointigs

constructed by 𝐹𝑙𝑦𝑒𝑊𝑎𝑙𝑘 result in an accurate assembly graph, note that inaccurate paths

(disjointigs) in the de Bruijn graph (a special case of the assembly graph) certainly result in an

accurate assembly graph. Indeed, an assembly graph constructed from arbitrary paths in a de

Bruijn graph is the same as the original de Bruijn graph (as long as these paths include all 𝑘-mers

from the assembly graph).

The FlyeWalk Algorithm.

 The FlyeWalk algorithm (Figure 2.13) computes alignments (within the Overlap,

MapReads, and ExtendRead procedures) using the longest 𝑗𝑢𝑚𝑝-subpath approach described

in Lin et al. 2016. In contrast to other SMS assemblers, FlyeWalk does not generate all-versus-

all pairwise alignments between reads (a major time bottleneck) since reads that align to a newly

assembled disjointig are removed from the set UnprocessedReads.

	

	 119

Given a chain of reads 𝐶ℎ𝑎𝑖𝑛𝑂𝑓𝑅𝑒𝑎𝑑𝑠 formed by reads 𝑅𝑒𝑎𝑑Z …𝑅𝑒𝑎𝑑f, we define

𝑝𝑟𝑒𝑓𝑖𝑥(𝑅𝑒𝑎𝑑e) as the overlapping region between consecutive reads 𝑅𝑒𝑎𝑑e9Z and 𝑅𝑒𝑎𝑑e in the

chain and 𝑠𝑢𝑓𝑓𝑖𝑥(𝑅𝑒𝑎𝑑e) as the suffix of the 𝑖-th read after the removal of 𝑝𝑟𝑒𝑓𝑖𝑥(𝑅𝑒𝑎𝑑e)

(note that 𝑠𝑢𝑓𝑓𝑖𝑥(𝑅𝑒𝑎𝑑Z) coincides with 𝑅𝑒𝑎𝑑Z). We define 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝐶ℎ𝑎𝑖𝑛𝑂𝑓𝑅𝑒𝑎𝑑𝑠) as

the concatenate 𝑠𝑢𝑓𝑓𝑖𝑥(𝑅𝑒𝑎𝑑Z) ∗ … ∗ 	𝑠𝑢𝑓𝑓𝑖𝑥(𝑅𝑒𝑎𝑑f) of read suffixes in this chain. The

Consensus procedure constructs an initial draft sequence (disjointig) of the chain

Figure 2.13: The pseudocode for the FlyeWalk algorithm.
FlyeWalk iteratively extends each unprocessed read and organizes the selected reads into a
chain. Each such chain contributes to a disjointig, and FlyeWalk outputs the set of all
disjointigs resulting from such extensions. ExtendRead generates a random walk in the
assembly graph, which starts at a given read and constructs a chain of overlapping reads that
contribute to a constructed disjointig. It terminates when there are no unprocessed reads
overlapping the current read by at least 𝑀𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 nucleotides. FindNextRead finds an
unprocessed read that overlaps with the given read by at least 𝑀𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 nucleotides and
returns an empty string if there are no such reads. MapReads finds all reads that align to a
given chain of reads over their entire length with the possible exception of a short suffix and/or
prefix of length at most 𝑀𝑖𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝. Consensus constructs the consensus of all reads that
contribute to a given disjointig.

	

	 120

𝐶ℎ𝑎𝑖𝑛𝑂𝑓𝑅𝑒𝑎𝑑𝑠 by constructing 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝐶ℎ𝑎𝑖𝑛𝑂𝑓𝑅𝑒𝑎𝑑𝑠). Afterwards, all reads from the

dataset are aligned to the draft disjointig sequence using minimap2 (Li 2017) and the consensus

of the aligned reads is formed by taking the majority vote. This procedure reduces the error rate

in the draft disjointig sequence from ≈13% to 1-5%, depending on the contig coverage. The

follow-up polishing step reduces the error rate to ≈0.1% when the coverage exceeds 30×.

ExtendRead is run in a single thread but multiple ExtendRead procedures are run in

parallel for each read that is not in 𝑈𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝑅𝑒𝑎𝑑𝑠. When one of the ExtendRead

procedures finishes, the algorithm checks if the returned disjointig has a significant overlap (by

more than 10% of its length) with one of the previously constructed disjointigs from

𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑖𝑔𝑠. If such an overlap is found, the new disjointig is discarded and the reads from this

disjointig are returned to the set 𝑈𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝑅𝑒𝑎𝑑𝑠. This parallelization significantly speeds

up FlyeWalk for assemblies that contain many contigs.

Constructing assembly graph from disjointigs.

Similarly to ABruijn, Flye generates disjointigs satisfying the overhang property, which,

as will be explained below, represents an important condition for constructing the repeat graph.

Flye further concatenates all disjointigs (separated by delimiters) in an arbitrary order into a

single string 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒. It further uses the longest 𝑗𝑢𝑚𝑝-subpath approach (Lin et al. 2016)

to generate the set 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 of all sufficiently long self-alignments within the resulting

concatenate and constructs the assembly graph as the repeat graph of the concatenate

𝑅𝑒𝑝𝑒𝑎𝑡𝐺𝑟𝑎𝑝ℎ(𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒, 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠, 𝑑).

It has been shown that the repeat graph of concatenated accurate reads (where alignments

between reads do not extend beyond delimiters in the concatenate of all reads) approximates the

	

	 121

repeat graph of the genome (Pevzner et al. 2004). Thus, the assembly graph constructed from

accurate contigs (which can be viewed as virtual reads) also approximates the repeat graph of the

genome. This is explained in further detail below.

Flye Constructs an Accurate Assembly Graph from Error-Prone Disjointigs.

There exist two tours in the assembly graph for the E. coli strain NCTC9964 shown in

Figure 2.3, Middle: the correct genomic tour formed by edges 𝐼𝑁Z, 𝑅𝐸𝑃, 𝑂𝑈𝑇Z, and 𝑅𝐸𝑃’ (the

corresponding complementary tour is formed by the complementary edges 𝑅𝐸𝑃, 𝑂𝑈𝑇y, 𝑅𝐸𝑃’,

and 𝐼𝑁y) and the incorrect tour formed by edges 𝐼𝑁Z, 𝑅𝐸𝑃, 𝑂𝑈𝑇y, and 𝑅𝐸𝑃’ (the corresponding

complementary tour is formed by edges 𝐼𝑁y, 𝑅𝐸𝑃, 𝑂𝑈𝑇Z, and 𝑅𝐸𝑃’).

Although paths 𝐼𝑁Z → 𝑅𝐸𝑃 → 𝑂𝑈𝑇y → 𝑅𝐸𝑃’ and 𝐼𝑁y → 𝑅𝐸𝑃 → 𝑂𝑈𝑇Z → 𝑅𝐸𝑃’ form

incorrect disjointigs, they are however assembled in the correct assembly graph by Flye. Below

we explain why an arbitrary set of paths (disjointigs) constructed by FlyeWalk results in a

correct assembly graph. Although our arguments apply to the punctilious repeat graph, the

construction of the approximate repeat graph follows a similar logic, and the Results section

demonstrates that these graphs constructed by Flye also result in accurate assemblies.

Let 𝐺𝑒𝑛𝑜𝑚𝑒 be an (unknown) genomic sequence of an (unknown) length with an

(unknown) alignment matrix 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠. Let 𝑆𝑡𝑟𝑖𝑛𝑔𝑠 = 𝑠 1 ,… , 𝑠 𝑡 be a covering set of

strings for 𝐺𝑒𝑛𝑜𝑚𝑒, and 𝐴(𝑖, 𝑗) be the alignment snapshot, i.e., the sub-matrix of 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠

for substrings 𝑠(𝑖) and 𝑠(𝑗). Given a concatenate 𝑆𝑡𝑟𝑖𝑛𝑔𝑠∗ = 𝑠(1) ∗ 𝑠(2) ∗ … ∗ 𝑠(𝑡) of all 𝑡

substrings (with delimiters), their 𝑡 ∗ (𝑡 − 1)/2 pairwise alignment snapshots 𝐴(𝑖, 𝑗) can be

combined together to form the alignment matrix 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡∗ of the entire concatenate. We

	

	 122

emphasize that the coordinates of the strings 𝑠 1 , … , 𝑠(𝑡) and their ordering in the sequence

𝐺𝑒𝑛𝑜𝑚𝑒 are unknown.

Pevzner et al. 2004 demonstrated that 𝑅𝑒𝑝𝑒𝑎𝑡𝐺𝑟𝑎𝑝ℎ(𝐺𝑒𝑛𝑜𝑚𝑒, 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠) coincides

with the repeat graph 𝑅𝑒𝑝𝑒𝑎𝑡𝐺𝑟𝑎𝑝ℎ(𝑆𝑡𝑟𝑖𝑛𝑔𝑠∗, 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠∗) of a concatenate of all substrings

(in any order) for any covering set of substrings. As we explain below, this result implies that the

Flye assembly of inaccurate disjointigs generated by FlyeWalk results in an accurate assembly

graph. For simplicity, we assume that chimeric reads have been removed and that no read is

contained within another read.

Consider the set of disjointigs 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑖𝑔Z, 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑖𝑔y, … , 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑖𝑔u constructed by

FlyeWalk and map all reads to all these disjointigs. Since FlyeWalk utilizes all reads, each read

will be mapped to one or more disjointigs. We now concatenate all reads starting from reads in

the first disjointig, followed by reads in the second disjointig, etc., resulting in the sequence of

reads:

{𝑠(1, 1), 𝑠(1, 2), … , 𝑠(1, 𝑛Z)}, {𝑠(1, 1), 𝑠(2, 1), … , 𝑠(2, 𝑛y)}, …	, 𝑠 𝑡, 1 , 𝑠 𝑡, 1 , … , 𝑠 𝑡, 𝑛u

where 𝑠(𝑖, 𝑗) stands for the 𝑗-th read in the 𝑖-th disjointig (reads are ordered in increasing order

based on their starting positions in each disjointig).

 Since all reads are included in this concatenate, the repeat graph constructed from this

concatenate coincides with the repeat graph of the genome (Pevzner et al. 2004). Since the repeat

graph does not depend on the order in which the reads are glued, we will perform gluing in two

stages. At the first stage, we will perform some (but not all) gluing operations on reads from the

first disjointig, followed by some gluing operations on reads from the second disjointig, etc.

Specifically, with respect to the 𝑖-th disjointig, we will only glue overlapping reads within this

disjointig (i.e., reads 𝑠(𝑖, 𝑛) and 𝑠(𝑖,𝑚) if 𝑛 < 𝑚 and read 𝑠(𝑖,𝑚) starts before read 𝑠(𝑖, 𝑛) ends)

	

	 123

and will only apply gluing operations to their overlap. Note that the first gluing stage does not

necessarily includes all gluing operations applicable to reads from the 𝑖-th disjointig; i.e., non-

overlapping reads within this disjointig may share sufficiently long alignments that however do

not contribute to first-stage gluing.

The first-stage gluing of reads that were sampled from a single disjointig results in the

same consensus of this disjointig that is constructed by FlyeWalk. Thus, the application of such

“intra-disjointig” gluing operations to all disjointigs results in the set of disjointigs

𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑖𝑔Z, 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑖𝑔y, … , 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑖𝑔u . Note that only some but not all gluing operations

have been performed at this point; e.g., inter-disjointig gluing has not been applied yet.

Therefore, the second-stage gluing of all of the disjointigs constructed by FlyeWalk (some of

them may be misassembled) results in the same assembly graph as the gluing of all of the reads,

and thus results in the repeat graph of the genome.

Constructing the Repeat Graph from Substrings of a Genome.

 The repeat graph construction algorithm assumes that the genome 𝐺𝑒𝑛𝑜𝑚𝑒 and the two-

dimensional matrix 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 (defining the pairwise alignments between similar substrings of

the genome) are given. Any two substrings of the genome define a rectangle in the matrix

𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 that we refer to as an alignment snapshot imposed by these substrings. Given a set

of substrings from 𝐺𝑒𝑛𝑜𝑚𝑒, Pevzner et al. 2004 asked whether the repeat graph can be

constructed from their pairwise snapshots without knowing 𝐺𝑒𝑛𝑜𝑚𝑒 and the entire matrix

𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠. This question is relevant to genome assembly when 𝐺𝑒𝑛𝑜𝑚𝑒 and 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 are

unknown but the alignments between substrings of the genome (i.e. the reads) can be computed

as an approximation of alignment snapshots.

	

	 124

A set of substrings of a genome forms a covering set if, for every pair of consecutive

positions in 𝐺𝑒𝑛𝑜𝑚𝑒, there exists a substring containing these positions. Pevzner et al. 2004

demonstrated that if substrings of a genome (i.e. the reads) form a covering set, then gluing an

arbitrary concatenate of these substrings (separated by delimiters), according to their alignment

snapshots, produces the same repeat graph as gluing all of 𝐺𝑒𝑛𝑜𝑚𝑒.

This result holds for the ideal case when the alignment snapshots are inherited from the

matrix 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 representing all self-alignments of 𝐺𝑒𝑛𝑜𝑚𝑒. Since 𝐺𝑒𝑛𝑜𝑚𝑒 and the matrix

𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 are unknown in the case of genome assembly, the alignment snapshot between two

substrings (i.e. reads) is computed as their pairwise alignment rather than derived as the

corresponding rectangle in the 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 matrix. This pairwise alignment may differ from the

alignment snapshot; for example, an alignment between two reads overlapping by a single

nucleotide will be captured in their alignment snapshot (since it is a part of the larger matrix

𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠) but not in their pairwise alignment since it does not pass a statistical significance

threshold. That is why Pevzner et al. 2004 introduced a more stringent condition for the concept

of the covering set of substrings: for each 𝑚 consecutive positions in 𝐺𝑒𝑛𝑜𝑚𝑒 (where 𝑚 is a pre-

defined threshold), there must exist a substring (i.e. a read) spanning all these positions. This

condition explains why it is important that Flye generates disjointigs satisfying the overhang

property.

After constructing the repeat graph, Flye proceeds to simplify this graph to improve the

assembly. Figure 2.3, Left presents the assembly graph of the SMS reads from an E. coli

genome. Flye further untangles this graph into a graph with just six edges (Figure 2.3, Middle)

following the procedure described below.

	

	 125

Aligning Reads to the Assembly Graph.

 Flye aligns all reads to the constructed assembly graph using the concept of common

𝑗𝑢𝑚𝑝-subpaths (Lin et al., 2016). First, each read is matched against the edges of the assembly

graph. For each repeat edge in the assembly graph, we store all copies of the corresponding

repeat (from the original disjointigs), rather than a single consensus of all sequences contributing

to this repeat edge. We then match a read to all these copies and select the best alignment to

improve the recruitment of reads to the edges of the assembly graph. If a read is aligned to

multiple edges in the assembly graph, we find a maximum scoring path in the graph formed by

these edges using dynamic programming.

Identifying Repeat Edges in the Assembly Graph.

 After constructing the assembly graph, Flye aligns all reads to this graph and forms a

read-path for each read. Given the alignments of all reads against the assembly graph, Flye

computes the mean depth of coverage 𝑐𝑜𝑣 across the entire assembly graph and classifies an

edge as low-coverage (if its coverage is below 2 ∗ 𝑐𝑜𝑣) and high-coverage (if its coverage is at

least 2 ∗ 𝑐𝑜𝑣). While most low-coverage edges are unique (traversed only once in the genomic

tour), some of them are repetitive since the coverage varies along the genome.

To improve the classification of unique and repetitive edges in the assembly graph, Flye

reclassifies some edges using information about the read-paths. An edge 𝑒’ in the assembly graph

is a successor of an edge 𝑒 if it follows 𝑒 in one of the read-paths. A low-coverage edge is

classified as unique if it has a single successor. All other edges (i.e., high-coverage edges and

low-coverage edges with multiple successors) are classified as repetitive.

	

	 126

To avoid classifying chimeric connections in the assembly graph as successor edges and

to minimize the influence of misaligned reads, Flye imposes an additional restriction on

candidate successor edges: a fraction of the reads supporting a successor (among all reads

contributing to the successor of a given edge) should exceed 𝑁 percent of the fraction of the

reads supporting the most frequent successor (the default value is 𝑁 = 20%).

We used the Flye C. elegans assembly to estimate the accuracy of Flye’s classification of

unique and repetitive edges. For each edge in the C. elegans assembly graph, we found whether

it is unique or repetitive in the reference genome by aligning the edge to the entire reference

genome and checking whether there exists a single alignment for unique edges or multiple

alignments for repetitive edges. This analysis revealed that the C. elegans assembly graph has

339 unique and 219 repetitive edges. Flye misclassified 5 out of 219 repetitive edges as unique

(2%) and 22 out of 339 unique edges as repetitive (6%). Note that only errors of the first type

(misclassifying repeat edges as unique) lead to potential misassemblies during the repeat

resolution step. Errors of the second type (misclassifying unique edges as repeat edges) do not

lead to misassemblies but may potentially negatively affect the contiguity of the assembly since

misclassified unique edges do not contribute to repeat resolution. This is however not a critical

shortcoming in practice since long reads often bridge these misclassified edges.

Resolving Bridged Repeats in the Assembly Graph.

As described above, Flye aligns all reads to the constructed assembly graph and uses

them to identify the repeat edges in this graph. It further transforms the assembly graph into the

condensed assembly graph by contracting all its repeat edges. Aligning a read to the assembly

graph induces its alignment to the condensed assembly graph, and we focus on bridging reads

	

	 127

that align to multiple edges from the condensed assembly graph. Untangling incident edges 𝑒 =

(𝑤, 𝑣) and 𝑓 = (𝑣, 𝑢) in the condensed assembly graph amounts to substituting them by a single

edge (𝑤, 𝑢). Below we describe how Flye uses bridging reads to untangle the condensed

assembly graph and how this untangling contributes to resolving repeats in the assembly graph.

A bridging read in the condensed assembly graph is called an (𝑒, 𝑓)-read if it traverses

two consecutive edges 𝑒 and 𝑓 in this graph. For each pair of incident edges 𝑒 and 𝑓 in the

condensed assembly graph, we define 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑒, 𝑓) as the number of (𝑒, 𝑓)-reads plus the

number of (𝑓’, 𝑒’)-reads, where 𝑒’ and 𝑓’ are the complementary edges of 𝑒 and 𝑓, i.e., edges

representing a complementary strand.

Given a set of bridging reads in the condensed assembly graph, we construct a transition

graph as follows. Each edge 𝑒 in the condensed assembly graph corresponds to vertices 𝑒� and

𝑒u in the transition graph, representing the head (start) and tail (end) of 𝑒, respectively. A

complementary edge for 𝑒 corresponds to the same vertices, but in the opposite order. Each

(𝑒, 𝑓)-read defines an undirected edge between 𝑒u and 𝑓� in the transition graph with weight

equal to 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑒, 𝑓).

Note that the transition graph is bipartite for the simple case when the two subgraphs of

the condensed assembly graphs, corresponding to complementary strands, do not share vertices.

However, it is not necessarily bipartite in the case of genomes that contain long inverted repeats.

Flye thus applies Edmonds’ algorithm (Edmonds 1965) to find a maximum weight matching in

the transition graph and uses this matching for untangling the condensed assembly graph. For

each edge (𝑒u, 𝑓�) in the constructed matching, Flye additionally checks the confidence of the

transition between edges 𝑒 and 𝑓 (explained further, below) and untangles 𝑒 and 𝑓 for each edge

(𝑒u, 𝑓�) in the transition graph that passes this check. Flye iteratively untangles edges in the

	

	 128

condensed assembly graph and performs the corresponding iterative repeat resolution in the

assembly graph.

Note that consecutive edges 𝑒 and 𝑓 in the condensed assembly graph are not necessarily

consecutive in the assembly graph. Thus, after Flye untangles 𝑒 and 𝑓, it uses one of the bridging

(𝑒, 𝑓)-reads to fill the gap between the end of 𝑒 and the start of 𝑓 in the assembly graph.

Afterwards, most repeat edges in the assembly graph either represent long unbridged repeat

edges (that are not bridged by any reads) or form paths consisting of repeat edges with total

lengths typically exceeding the median read length.

Additional details on untangling assembly graphs.

 The maximum-weight-matching defines the set of edges in the transition graph; Flye

additionally checks each of the inferred edges as follows. For each edge (𝑢, 𝑣) from the

matching, it computes the total weight 𝑇𝑜𝑡𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 of all edges in the transition graph adjacent

to 𝑢 or 𝑣. If 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑢, 𝑣) < 𝑇𝑜𝑡𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡/2, the edge is classified as weak and is

consequently ignored. Weak edges typically arise from long repeats that may be bridged by a

few reads in an ambiguous way.

Flye iteratively untangles edges and finds maximum-weight-matchings until no extra

repeats can be resolved. Note that a repeat of multiplicity 𝑡 may require less than 𝑡 untangling

operations to be completely resolved. For example, a repeat edge 𝑅𝐸𝑃 of multiplicity two in the

assembly graph (with incoming edges 𝐼𝑁Z and 𝐼𝑁y and outgoing edges 𝑂𝑈𝑇Z and 𝑂𝑈𝑇y) may

only have bridging reads traversing 𝐼𝑁Z, 𝑅𝐸𝑃, and 𝑂𝑈𝑇Z but not 𝐼𝑁y, 𝑅𝐸𝑃, and 𝑂𝑈𝑇y. However,

using bridging reads to untangle 𝐼𝑁Z and 𝑂𝑈𝑇Z (essentially forming a single edge from edges

	

	 129

𝐼𝑁Z, 𝑅𝐸𝑃, and 𝑂𝑈𝑇Z), turns the sequence of edges 𝐼𝑁y, 𝑅𝐸𝑃, and 𝑂𝑈𝑇y into a non-branching

path and thus completely untangles the repeat.

Note that some short edges are reclassified as long during this process and that some

repetitive edges are reclassified as unique during the next iteration of the algorithm (for example,

if they had been a part of a bigger mosaic repeat that was partially resolved).

Resolving Unbridged Repeats in the Assembly Graph.

Flye takes advantage of the small variations between different repeat copies to resolve

unbridged repeats. It identifies the variations between repeat copies, matches each read with a

specific repeat copy using these variations, and uses these matched reads to derive a distinct

consensus sequence for each repeat copy. The success of this approach is contingent upon the

presence of a sufficiently large number of variations between the different repeat copies.

Therefore, the first step is to estimate the number and positions of variations between the repeat

copies and to calculate the divergence of the various repeat copies from reads alone (described in

further detail below). The current version of Flye is limited to resolving unbridged repeats of

multiplicity two in both haploid (e.g., bacterial) and diploid (e.g., human) genomes.

The idea of the algorithm is to assign each read to a specific repeat copy and then use the

assigned reads to derive a distinct consensus sequence for each repeat copy. For example, the 93

reads that traverse edges 𝐼𝑁Z and 𝑅𝐸𝑃 (Figure 2.3) can be assigned to one repeat copy and the 75

reads that traverse edges 𝐼𝑁y and 𝑅𝐸𝑃 can be assigned to another repeat copy. However, it is

unclear how to assign other reads mapping to the edge 𝑅𝐸𝑃 to a specific repeat copy. Flye uses

reads starting from the incoming edges (93 and 75 reads in Figure 2.3) to “move forward” into

the repeat and construct two different prefixes of the repeat 𝑅𝐸𝑃 corresponding to the two copies

	

	 130

of the repeat. In parallel, it uses reads ending in the outgoing edges (71 and 76 reads in Figure

2.3) to “move backward” into the repeat and construct two different suffixes of this repeat.

In each iteration of the algorithm, reads are assigned to a specific repeat copy, and then

all the reads assigned to each repeat copy are used to construct a consensus sequence for that

copy. Thus, as the algorithm proceeds, more reads are assigned to specific repeat copies and the

consensus sequence for each repeat copy grows longer. The algorithm terminates when no new

reads can be assigned to read copies and the consensus sequences stop growing in length. There

are two goals: to obtain distinct consensus sequences for each repeat copy and to determine the

correct pairings of incoming and outgoing edges for each repeat copy.

Revealing Variable Positions Within Repeats.

 To reveal the variable positions within a repeat (which corresponds to a repeat edge in the

assembly graph), we map all reads to the consensus sequence of the repeat and generate a

multiple alignment of all reads that are contained within or overlap with the repeat. Afterwards,

we determine the second most frequent nucleotide in each column of the multiple alignment and

define the substitution rate in this column as the number of occurrences of the second most

frequent nucleotide divided by the total number of reads covering this column (note the

difference between the concepts of substitution rate here and in Lin et al., 2016). We define the

deletion and insertion rates in each column as in Lin et al., 2016. If the substitution, deletion, or

insertion rate for a column exceeds a predefined threshold, the corresponding position is called a

tentative divergent position. The repeat divergence is estimated by dividing the total number of

tentative divergent positions by the length of the repeat. (The earlier section titled “Human

	

	 131

Segmental Duplications Identified by Flye” discussed how repeat divergence can be affected by

diploidy.)

Below, we construct the distribution of substitution, deletion, and insertion rates in non-

divergent positions, compare it with the distribution of substitution, deletion, and insertion rates

in divergent positions, and select a threshold that separates these two distributions. To construct

these distributions, we selected the 22 kb long repeat (repeat 𝑅𝐸𝑃 in Figure 2.3) in the assembly

graph of the EC9964 dataset (other repeats result in very similar distributions). Since this repeat

has many variations between its two repeat copies [943 substitutions (4.3%), 346 deletions

(1.6%), and 226 insertions (1.0%)], we manually resolved it with high confidence. A position in

this repeat is classified as variable if it corresponds to a substitution, deletion, or insertion, and

non-variable otherwise.

We mapped reads from the EC9964 dataset to the consensus of the 𝑅𝐸𝑃 repeat and

calculated its substitution, deletion, and insertion rates. Figure 2.14 illustrates that variable

positions feature higher substitution, deletion, and insertion rates than non-variable positions

within a repeat. We thus identify tentative divergent positions based on mutation rates by

selecting a mutation rate threshold that provides a good separation between the two distributions

(0.1, 0.2, and 0.3 for substitutions, deletions, and insertions, respectively). This results in the

identification of 924 out of 943 substitutions, 270 out of 346 deletions and 54 out of 226

insertions for the 𝑅𝐸𝑃 repeat. At the same time, we misclassified 81 non-variable positions as

divergent (61 substitutions, 5 deletions, and 15 insertions), resulting in a false positive rate of

0.4%. In all, we identified 1329 tentative divergent positions, which leads to a divergence

estimate of 6.0%, a slight underestimation of the true divergence rate of 6.9%.

	

	 132

Additional Details for the Unbridged Repeat Resolution Approach.

 Initially, the unbridged repeat resolution algorithm recruits all reads traversing edges 𝐼𝑁Z

and 𝑅𝐸𝑃 to the first repeat copy and all reads traversing 𝐼𝑁y and 𝑅𝐸𝑃 to the second repeat copy,

and then it computes the consensus of each repeat copy using these recruited reads. Since the

recruited reads do not span the entire edge 𝑅𝐸𝑃, we only construct two consensus sequences

corresponding to prefixes of 𝑅𝐸𝑃 where there is substantial read coverage by the recruited reads.

We require at least 𝑚𝑖𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 for each repeat copy to ensure that consensus sequences are

Figure 2.14: Separating variable and non-variable positions within repeats
using substitution, deletion, and insertion rates computed for the 𝑹𝑬𝑷 repeat
in the EC9964 dataset.
Substitution (Top), deletion (Middle), and insertion (Bottom) rates at each position
in the multiple alignment of reads. Blue bars represent mutation rates for non-
variable positions, and red bars represent rates for variable positions. The number of
positions with a given mutation rate (shown on the y-axis) is shown in a logarithmic
scale. The cutoffs 0.1, 0.2, and 0.3 result in a good separation between variable and
non-variable positions for substitutions, deletions, and insertions, respectively.

	

	 133

sufficiently accurate (the default value of 𝑚𝑖𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒	 = 	10×). Both consensus sequences

are truncated to the length of the shortest consensus sequence to prevent bias in the read

recruitment process in future iterations. In the case of the 𝑅𝐸𝑃 repeat in the EC9964 dataset, we

constructed two consensus sequences corresponding to 8.6 kb long prefixes of 𝑅𝐸𝑃 with

divergence 9.8% (Figure 2.3). As a result, we now have two consensus sequences for the entire

edge 𝑅𝐸𝑃 that differ in some of the first 8.6 kb but coincide in the remaining part. The two

constructed consensus sequences serve as two templates for recruiting reads to specific repeat

copies in successive iterations. In this way, we gradually construct the consensus sequences from

only reads that have been assigned to a specific repeat copy with high confidence.

This brief description hides some details; e.g., it is not clear why we identified the set of

putative divergent positions since these positions have not been mentioned in the description of

the algorithm. In reality, the constructed consensus sequences of the prefixes of the two repeat

copies may have errors since the read coverage of these prefixes may be as low as the default

parameter 𝑚𝑖𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒	 = 	10×. Indeed, the consensus sequences are expected to have a high

error rate when the coverage is as low as 5-10× (Lin et al., 2016). Since these error-prone

consensus sequences serve as two templates for recruiting reads to specific repeat copies in

successive iterations, the read recruitment is compromised. We thus recruit reads to specific

repeat copies based only on tentative divergent positions in the repeat. Since these positions were

identified based on all reads (using full coverage) rather than only reads contributing to a given

template (which have coverage as low as 𝑚𝑖𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒), they provide a more reliable standard

for read recruitment.

Below we provide a description of the various steps of the unbridged repeat resolution

algorithm:

	

	 134

• Evaluating the tentative divergent positions. We map all classified reads again, this time

to two consensus copies of the repeat (rather than to a single consensus copy as in the

initial iteration) to construct a more accurate alignment. We further utilize the set of

tentative divergent positions that were identified at the initial stage of the algorithm. We

consider the consensus sequence of each repeat copy and compare the most frequent

symbols (A, C, G, T, –) occurring in the set of already classified reads for each repeat

copy at each tentative divergent position. If the most frequent symbol at a position differs

for the two repeat copies, then that position is called a confirmed divergent position. The

most frequent symbols of all the confirmed divergent positions for a certain repeat copy

represent a “signature” of this copy. Since some positions within a repeat may not have

been reached by the two consensus sequences yet, they remain classified as tentative

divergent positions.

• Assigning reads to various repeat copies. We now map all unclassified reads to the two

consensus copies of the repeat and utilize the confirmed divergent positions to assign

unclassified reads to a specific repeat copy. For each read, we compute its vote for each

repeat copy as the number of confirmed divergent positions at which the symbol of the

read agrees with the consensus of this repeat copy (all other positions are ignored). The

read is assigned to a specific repeat copy if its vote for this copy is larger than its vote for

another copy by at least a minimum threshold (the default value is three). The read

remains unassigned in the case of ties.

• Constructing new consensus sequences for each repeat copy. We use all reads that have

been assigned to a specific repeat copy to construct a new consensus sequence for this

	

	 135

copy. The consensus is only constructed up to where the coverage of the reads is at least

𝑚𝑖𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 in both repeat copies to ensure that the generated consensus sequences are

accurate, and then both consensus sequences are truncated to the length of the shortest

consensus sequence. The algorithm then proceeds to the next iteration unless no new

reads mapping to the original repeat consensus were classified or all of the consensus

sequences are identical to those in the previous iteration, in which cases it terminates.

Although we discussed the algorithm as “moving forward” into the repeat (e.g., moving

ahead from edges 𝐼𝑁Z and 𝐼𝑁y in Figure 2.3), the same procedure is performed while “moving

backward” in the opposite direction (e.g., moving backwards from edges 𝑂𝑈𝑇Z and 𝑂𝑈𝑇y in

Figure 2.3), or equivalently, moving forward along the reverse complement of the repeat. There

are two stopping rules for the described algorithm: (i) when the constructed prefix of the repeat

resulting from “moving forward” overlaps with the constructed suffix of the repeat resulting

from “moving backward” and (ii) when the prefix and the suffix both stop extending but still do

not overlap. At this point, a consensus sequence has been constructed for both prefix and suffix

of each repeat copy and a set of confirmed divergent positions for each repeat copy has been

obtained.

As the repeat consensus sequences have been extended forward and backward (Figure

2.3), this procedure may also result in the emergence of linking reads, i.e., reads that are assigned

to both a repeat copy originating from one of the incoming edges (𝐼𝑁Z or 𝐼𝑁y) and a repeat copy

originating from one of the outgoing edges (𝑂𝑈𝑇Z or 𝑂𝑈𝑇y). Linking reads are grouped

depending on which incoming/outgoing edges they are assigned to: 𝐼𝑁Z and 𝑂𝑈𝑇Z, 𝐼𝑁y and

𝑂𝑈𝑇y, 𝐼𝑁Z and 𝑂𝑈𝑇y, or 𝐼𝑁y and 𝑂𝑈𝑇Z. We further classify all linking reads into one of two

	

	 136

categories called cis (𝐼𝑁Z/𝑂𝑈𝑇Z and 𝐼𝑁y/𝑂𝑈𝑇y) and trans (𝐼𝑁Z/𝑂𝑈𝑇y and 𝐼𝑁y/𝑂𝑈𝑇Z) since there

are only two ways to resolve the repeat: pairing 𝐼𝑁Z/𝑂𝑈𝑇Z with 𝐼𝑁y/𝑂𝑈𝑇y, or pairing 𝐼𝑁Z/𝑂𝑈𝑇y

with 𝐼𝑁y/𝑂𝑈𝑇Z.

If the number of linking reads in one of the categories exceeds a threshold (the default

value is five) and exceeds the number of linking reads in another category by at least a factor of

two, all reads in the “winning” category are assigned to the corresponding repeat copies and the

consensus of each repeat copy is computed based on all reads assigned to this copy.

If our attempts to resolve the repeat did not result in the emergence of linking reads or if

the conditions above on the number of linking reads do not hold, the repeat is classified as

unresolved (though some resolvable repeats may still be classified as unresolved). Note that even

in the case of unresolved repeats, this algorithm still finds more accurate consensus sequences

for the prefixes and suffixes of the repeat. Table 2.7 presents the results of running the

unbridged repeat resolution algorithm on 22 unbridged repeats of multiplicity two from 11

genomes in the BACTERIA dataset.

	

	 137

Dataset Rep

Len
(kb)

Cov
(×)

Div #Tent
Div Pos

#Conf
Div Pos

Max Dist
btw Pos

(kb)

Rem
Gap
(kb)

#cis
Linking
Reads	

#trans
Linking
Reads	

EC4450-29 11 159 7.33% 657 594 0.4 0 1219 42
KN5052-10 38 98 1.12% 376 250 20.8 0 0 0
KN5052-20 31 96 2.67% 826 676 17.3 0 1 0
EC7921-6 13 82 11.51% 1629 1338 0.3 0 215 814
EC9002-3 50 137 5.91% 3401 3064 0.9 0 2460 437
EC9006-8 22 94 1.24% 218 131 11.7 0 0 0
EC9006-9 14 78 2.81% 676 597 1.8 0 256 15
EC9006-10 16 93 5.25% 2843 2610 0.8 0 912 80
EC9007-5 24 140 0.33% 2467 37 14.6 5.0 0 0
EC9012-7 14 63 19.22% 2784 2552 1.3 0 599 42
EC9012-12 37 74 3.12% 1973 1601 2.0 0 1126 13
EC9016-4 17 47 8.45% 2586 2340 2.4 0 462 34
EC9016-5 24 58 1.30% 1210 203 21.5 0.3 0 0
EC9103-4 4 131 6.62% 340 314 0.4 0 135 87
KN9657-9 36 61 0.08% 186 3 35.7 4.3 0 0
EC9964-5 34 73 6.20% 2333 2179 0.9 0 64 892
EC9964-6 22 80 4.17% 1675 1522 1.7 0 12 649
EC11022-7 30 60 1.44% 1661 1491 6.3 0 2 602
EC11022-8 25 64 0.37% 165 17 10.1 0 0 0
SA11962-6 8 159 11.39% 613 562 0.5 0 1089 16
SA11962-8* 13 214 0.77% 154 100 4.1 0 40 42
KL12158-7 13 46 0.06% 50 0 12.7 0 0 0

Table 2.7: Resolving unbridged repeats of multiplicity two in genomes from the
BACTERIA dataset.
The results of repeat resolution after running Flye for 11 out of 21 genomes from the
BACTERIA datasets that contain repeats of multiplicity two. The label of each dataset denotes
the bacterial species, its strain, and the ID number of the repeat edge found in the assembly
graph (e.g. EC5052-7, EC5052-8, and EC5052-9 refer to 3 repeats with IDs “7”, “8”, and “9”
present in the assembly graph for the E. coli NCTC5052 dataset). Bolded labels refer to repeats
resolved by Flye. * indicates a repeat of multiplicity 3. “Cov” or coverage is calculated as the
total read length divided by the repeat length, divided by the multiplicity of the repeat
(comparable to the coverage of a normal genomic sequence of multiplicity one). “Div” or
divergence is calculated based on the alignment of constructed repeat consensus sequences,
dividing the total number of substitutions and indels by the total number of matches,
substitutions, and indels (if the forward and reverse consensus sequences do not overlap, then
the mean divergence of the forward and reverse sequences is calculated, weighted by the length
of the sequences). “Max Dist btw Pos” refers to the maximal distance between adjacent
confirmed divergent positions. “Rem Gap” refers to the length of the repeat remaining without
separate consensus sequences for each copy after we have “moved into the repeat” from both
the forward and reverse directions. In the case that the forward and reverse consensus
sequences overlap, the remaining gap is set to 0. “#Tent Div Pos” is the number of tentative
divergent positions, and “#Conf Div Pos” is the number of confirmed divergent positions.

	

	 138

 Our analysis of the BACTERIA dataset suggests that a repeat can usually be classified as

resolvable based on the following two criteria:

• The divergence rate exceeds a minimum divergence threshold. Based on simulated data,

we set up a minimum 0.1% divergence threshold, i.e. at least one divergent position per

each 1000 nucleotides on average. When the divergence rate falls below 0.1%, there is

often a shortage of reads covering multiple divergent positions, which is necessary for

successful repeat resolution. To determine the minimum divergence threshold for which

the repeat resolution algorithm can be applied successfully, we simulated several repeats

of multiplicity two of length 10 kb, 20 kb, and 40 kb, with divergence rates ranging from

0.01% to 0.45%. Variations between the different copies of these repeats were introduced

by adding substitutions and indels randomly to both copies until the desired divergence

rate was reached. Next, we simulated PacBio reads from these repeats with coverage

100×, mean error rates of 15%, and read lengths between 5 kb and 15 kb. When the

repeat resolution algorithm was applied to these datasets, we found that all simulated

repeats with divergence rate greater than 0.1% were successfully resolved. We thus chose

0.1% to be the minimum divergence threshold.

• The distance between consecutive putative divergent positions does not exceed the

maximum distance threshold. If consecutive divergent positions are 15 kb apart but the

maximal read length is 10 kb, there will be no reads spanning these positions that can be

used for repeat resolution. Moreover, it turns out that the maximal read length is too

optimistic to use as the maximum distance threshold, since the repeat may still be

unresolvable even if consecutive divergent positions are less than the length of a read

	

	 139

away. For example, although there are many divergent positions in a 24 kb long repeat of

multiplicity two in the EC9007 dataset, there exists a 8 kb gap between consecutive

divergent positions (located at positions 15,002 and 23,150 from the start of the repeat).

The repeat is classified as unresolved since there is only one read spanning this gap,

which does not provide a confident pairing of the incoming and outgoing edges for this

repeat. On the other hand, we found that selecting the average read length as the

threshold is too lenient. Based on our analysis of the BACTERIA dataset, we set the

default threshold for the maximal distance between consecutive divergent positions as

twice the average read length, which varies from 12 kb to 20 kb in the BACTERIA

datasets.

If either of the above criteria does not hold, the repeat is classified as unresolvable.

Evaluating the Accuracy of the Unbridged Repeat Resolution Approach.

 To evaluate the accuracy of the unbridged repeat resolution approach, we simulated a 1

Mb genome which contains two copies of a single repeat of length 𝐿 (for 𝐿 = 10 kb, 20 kb, and

40 kb) with divergence 𝑥% (for 𝑥 = 0.05%, 0.15%, and 0.45%). We further used the PBSim tool

(Ono et al. 2013) to simulate PacBio reads from this genome with coverage 100× and length

varying from 5 kb to 15 kb. The PBSim tool generated reads with an insertion rate of 9%, a

deletion rate of 4.5%, and a substitution rate of 1.5%. We also generated two replicates for each

simulation, performing 3 ∗ 3 ∗ 2 = 18 simulations in total.

All repeats of length 10 kb were resolved by Flye prior to unbridged repeat resolution, so

they were not included in this analysis. Of the remaining repeats, all repeats with divergence

	

	 140

0.15% and 0.45% were resolved correctly with overwhelming support from linking reads, and

the repeat copy sequence reconstructions had accuracy >99.95%. All repeats with divergence

0.05% were not resolved due to the scarcity of divergent positions, but over half of the sequences

of each repeat copy were reconstructed with accuracy exceeding 99.8%.

We further lowered the divergence rate to 0.01%, 0.02%, 0.03%, and 0.04% and repeated

the experiment. With such low divergence rates, the repeat sequences could not be fully

reconstructed, but all reconstructed sequences still had ≥99.9% accuracy. We also lowered the

coverage to 30× and 50× and repeated the experiment with similar results (Tables 2.8 − 2.10).

Based on these simulations, we conclude that our unbridged repeat resolution approach

correctly links incoming and outgoing edges using the evidence from linking reads, and it can

successfully reconstruct the sequences of distinct repeat copies. Even at low divergence rates and

low coverage, our reconstructions are very accurate though we may only reconstruct partial

sequences due to regions with no divergent positions or low coverage.

	

	 141

Len
(kb)

Cov
(×)

Div
(%)

Rep #Corr
Div
Pos

#Conf
Div
Pos

Max
Dist btw
Pos (kb)

#Linking
Reads

Resolved Mean
Rec Seq
Len (kb)

Mean
Rec Seq

Acc

20 100

0.05 A 7 7 5.0 0 NO 14 99.93%
B 9 10 10.0 0 NO 20 99.79%

0.15 A 32 40 2.8 439 YES 20 99.98%
B 35 41 2.3 462 YES 20 99.97%

0.45 A 103 109 0.87 471 YES 20 99.96%
B 81 88 1.5 552 YES 20 99.98%

40 100

0.05 A 19 8 28.0 0 NO 40 99.88%
B 18 6 32.9 0 NO 15 99.94%

0.15 A 68 82 2.8 840 YES 40 99.95%
B 64 73 2.9 788 YES 40 99.97%

0.45 A 194 215 1.0 842 YES 40 99.97%
B 169 188 1.5 861 YES 40 99.97%

Table 2.8: Unbridged repeat resolution simulation results.
Genomes containing repeats of multiplicity two were simulated for repeat lengths 20 kb and
40 kb, and divergence rates 0.05%, 0.15%, and 0.45%. PacBio reads were simulated for these
genomes with a mean error rate of 15% and lengths ranging from 5 kb to 15 kb. Our unbridged
repeat resolution approach was applied to these reads to determine how these repeats should be
resolved (by pairing incoming with outgoing edges) and to reconstruct the distinct repeat copy
sequences for each of these simulations. “Len,” “Cov” and “Div” are the length, coverage, and
divergence rates of the simulations, respectively. “Rep” is the replicate. “#Corr Div Pos” and
“#Conf Div Pos” are the number of correct confirmed divergent positions and the total number
of confirmed divergent positions found by Flye. “Max Dist btw Pos” refers to the maximal
distance between adjacent confirmed divergent positions. “Mean Rec Seq Len” and “Mean Rec
Seq Acc” are the mean reconstructed sequence length and accuracy, respectively.

	

	 142

Len
(kb)

Cov
(×)

Div
(%)

Rep #Corr
Div
Pos

#Conf
Div
Pos

Max
Dist btw
Pos (kb)

#Linking
Reads

Resolved Mean
Rec Seq
Len (kb)

Mean
Rec Seq

Acc

20 100

0.01 A 1 1 19.5 0 NO 11 99.96%
B 2 2 17.7 0 NO 11 99.95%

0.02 A 2 2 13.0 0 NO 12 99.93%
B 3 5 10.2 0 NO 16 99.96%

0.03 A 6 8 7.8 0 NO 13 99.92%
B 4 5 13.5 0 NO 12 99.94%

0.04 A 7 7 7.8 0 NO 14 99.96%
B 7 6 13.4 0 NO 11 99.92%

40 100

0.01 A 5 4 34.2 0 NO 13 99.94%
B 3 4 33.3 0 NO 12 99.94%

0.02 A 7 8 26.3 0 NO 15 99.96%
B 6 1 38.0 0 NO 15 99.91%

0.03 A 14 5 28.0 0 NO 16 99.93%
B 8 2 31.3 0 NO 14 99.94%

0.04 A* 17 4 29.7 0 NO 13 99.89%

Table 2.9: Unbridged repeat resolution low divergence simulation results.
Genomes containing repeats of multiplicity two were simulated for very low divergence rates
from 0.01% to 0.04%. Although our unbridged repeat resolution approach was not able to
resolve these repeats, we still partially reconstructed the repeat copy sequence with high
accuracy. *One simulation with repeat length 40 kb and divergence 0.04% did not generate
repeat sequences for the unbridged repeat resolution tool to be applied so no results are shown.
“Len,” “Cov” and “Div” are the length, coverage, and divergence rates of the simulations,
respectively. “Rep” is the replicate. “#Corr Div Pos” and “#Conf Div Pos” are the number of
correct confirmed divergent positions and the total number of confirmed divergent positions
found by Flye. “Max Dist btw Pos” refers to the maximal distance between adjacent confirmed
divergent positions. “Mean Rec Seq Len” and “Mean Rec Seq Acc” are the mean reconstructed
sequence length and accuracy, respectively.

	

	 143

Len
(kb)

Cov
(×)

Div
(%)

Rep #Corr
Div
Pos

#Conf
Div
Pos

Max
Dist btw
Pos (kb)

#Linking
Reads

Resolved Mean
Rec Seq
Len (kb)

Mean
Rec Seq

Acc

20 50

0.05 A 7 2 19.4 0 NO 13 99.92%
B 9 11 11.9 0 NO 10 99.87%

0.15 A 32 34 3.8 20 YES 20 99.97%
B 35 42 2.3 21 YES 20 99.94%

0.45 A 103 113 0.9 252 YES 20 99.95%
B 81 90 1.5 289 YES 20 99.97%

40 50

0.05 A 19 6 30.6 0 NO 8 99.87%
B 18 4 34.8 0 NO 12 99.88%

0.15 A 68 81 3.8 13 YES 40 99.95%
B 64 75 2.9 35 YES 40 99.95%

0.45 A 194 213 0.9 425 YES 40 99.96%
B 169 189 1.5 411 YES 40 99.97%

20 30

0.05 A 7 4 17.4 0 NO 10 99.87%
B 9 6 16.9 0 NO 6 99.82%

0.15 A 32 36 7.6 2 NO 19 99.89%
B 35 39 2.9 7 YES 18 99.91%

0.45 A 103 117 0.9 30 YES 20 99.93%
B 81 94 1.5 23 YES 20 99.89%

40 30

0.05 A 19 2 37.2 0 NO 5 99.85%
B 18 4 36.7 0 NO 9 99.80%

0.15 A 68 46 19.3 0 NO 23 99.90%
B 64 9 36.9 0 NO 12 99.68%

0.45 A 194 220 0.9 175 YES 40 99.91%
B 169 192 1.0 208 YES 40 99.92%

Table 2.10: Unbridged repeat resolution low coverage simulation results.
Genomes containing repeats of multiplicity two were simulated for low coverage rates of 50×
and 30×. The other conditions were kept the same as Table 2.8. Even at lower coverage, most
repeats above 0.1% divergence were able to be resolved. “Len,” “Cov” and “Div” are the
length, coverage, and divergence rates of the simulations, respectively. “Rep” is the replicate.
“#Corr Div Pos” and “#Conf Div Pos” are the number of correct confirmed divergent positions
and the total number of confirmed divergent positions found by Flye. “Max Dist btw Pos”
refers to the maximal distance between adjacent confirmed divergent positions. “Mean Rec Seq
Len” and “Mean Rec Seq Acc” are the mean reconstructed sequence length and accuracy,
respectively.

	

	 144

2.6 Additional Information

Author Contributions.

All authors contributed to developing the Flye algorithms and writing the paper. Mikhail

Kolmogorov, Yu Lin, and Jeffrey Yuan implemented the Flye algorithm. Mikhail Kolmogorov

benchmarked Flye and other assembly tools. Pavel A. Pevzner directed the work.

Competing Financial Interests.

The authors declare no competing financial interests

Code Availability.

The Flye code used in this study is available in the online version of the paper. The most

recent Flye version is freely available at http://github.com/fenderglass/Flye.

Data Availability.

All described datasets are publicly available through the corresponding repositories:

• The supplementary files, including the assemblies generated by Flye, are available at

https://doi.org/10.5281/zenodo.1143753/.

• NCTC PacBio reads: http://www.sanger.ac.uk/resources/downloads/bacteria/nctc/.

• PacBio metagenome dataset:

https://github.com/PacificBiosciences/DevNet/wiki/Human_Microbiome_Project_MockB

_Shotgun/.

	

	 145

• PacBio C. elegans dataset: https://github.com/PacificBiosciences/DevNet/wiki/C.-

elegans-data-set/.

• PacBio / ONT S. cerevisiae dataset: https://github.com/fg6/YeastStrainsStudy/.

• The ONT reads from the HUMAN/HUMAN+ datasets are available at:

https://github.com/nanopore-wgs-consortium/NA12878/. The matching Illumina reads are

available as SRA project ERP00122.

• The Canu HUMAN+ assembly was downloaded from:

https://genomeinformatics.github.io/na12878update/.

• MaSuRCA assemblies for HUMAN and HUMAN+ are available from:

http://masurca.blogspot.com/.

	

	 146

2.7 Acknowledgements

We are indebted to Sergey Nurk for his multiple rounds of critique and suggestions that

have greatly improved the paper. We are also grateful to Alla Mikheenko, Bahar Behsaz,

Lianrong Pu, and Glenn Tesler for their insightful comments. This work is supported by

NSF/MCB-BSF grant 1715911.

Chapter 2, in full, has been accepted for publication as “Assembly of long error-prone

reads using repeat graphs” as it will appear in Nature Biotechnology by Mikhail Kolmogorov,

Jeffrey Yuan, Yu Lin, and Pavel A. Pevzner. The material has been reformatted with some minor

revisions and edits for improved readability. The dissertation author was a primary author of this

material.

	

	 147

2.8 References

Antipov, D., Korobeynikov, A., McLean, J. S., & Pevzner, P. A. hybridSPAdes: an algorithm for
hybrid assembly of short and long reads. Bioinformatics. 2015; 32 (7): 1009-1015.

	
Bankevich. A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M.,

Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N.,
Tesler, G., Alekseyev, M.A. & Pevzner, P.A. SPAdes: A new genome assembly
algorithm and its applications to single-cell sequencing. Journal of Computational
Biology. 2012; 19 (5): 455-477.

Bankevich A. & Pevzner, P.A. TruSPAdes: barcode assembly of TruSeq synthetic long reads.

Nature Methods. 2015; 13 (3): 248-250.

Bao, Z. & Eddy, S.R. Automated de novo identification of repeat sequence families in sequenced

genomes. Genome Research. 2002; 12 (8): 1269-1276.
	
Berlin, K., Koren, S., Chin, C.S., Drake, J.P., Landolin, J.M. & Phillippy, A.M. Assembling

large genomes with single-molecule sequencing and locality-sensitive hashing. Nature
Biotechnology. 2015; 33 (6): 623-630.

Chaisson, M.J., Huddleston, J., Dennis, M.Y., Sudmant, P.H., Malig, M., Hormozdiari, F.,

Antonacci, F., Surti, U., Sandstrom, R., Boitano, M., Landolin, J.M.,
Stamatoyannopoulos, J.A., Hunkapiller, M.W., Korlach, J. & Eichler, E.E. Resolving the
complexity of the human genome using single-molecule sequencing. Nature. 2015; 517
(7536): 608-611.

Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A.,

Copeland, A., Huddleston, J., Eichler, E.E., Turner, S.W. & Korlach, J. Nonhybrid,
finished microbial genome assemblies from long-read SMRT sequencing data. Nature
Methods. 2013; 10 (6): 563-569.

Chin, C.S., Peluso, P., Sedlazeck, F.J., Nattestad, M., Concepcion, G.T., Clum, A., Dunn, C.,

O'Malley, R., Figueroa-Balderas, R, Morales-Cruz, A., Cramer, G.R., Delledonne, M.,
Luo, C., Ecker, J.R., Cantu, D., Rank, D.R., & Schatz, M.C. Phased diploid genome
assembly with single-molecule real-time sequencing. Nature Methods. 2016; 13 (12):
1050-1054.

	
Edmonds, J. Paths, trees, and flowers. Canadian Journal of Mathematics. 1965; 17: 449-467.

Edmonds, J. & Johnson, E.L. Matching, Euler tours and the Chinese postman. Mathematical

Programming. 1973; 5 (1): 88-124.
	
Ellson, J., Gansner, E.R., Koutsofios, L., North, S.C. & Woodhull, G. Graphviz and Dynagraph –

static and dynamic graph drawing tools. Florham Park, NJ: AT&T Labs – Research;
2003: 127-148. http://graphviz.org.

	

	 148

Ghurye, J., Pop, M., Koren, S., Bickhart, D. & Chin, C.S. Scaffolding of long read assemblies

using long range contact information. BMC Genomics. 2017; 18 (1): 527.
	
Gibbs, A.J. & McIntyre, G.A. The Diagram, a Method for Comparing Sequences. Its Use with

Amino Acid and Nucleotide Sequences. European Journal of Biochemistry. 1970; 16 (1):
1-11.

Giordano, F., Aigrain, L., Quail, M.A., Coupland, P., Bonfield, J.K., Davies, R.M., Tischler, G.,

Jackson, D.K., Keane, T.M., Li, J., Yue, J.X., Liti, G., Durbin, R. & Ning, Z. De novo
yeast genome assemblies from MinION, PacBio and MiSeq platforms. Scientific Reports.
2017; 7 (1): 3935.

	
Jain, M., Koren, S., Miga, K.H., Quick, J., Rand, A.C., Sasani, T.A., Tyson, J.R., Beggs, A.D.,

Dilthey, A.T., Fiddes, I.T., Malla, S., Marriott, H., Nieto, T., O'Grady, J., Olsen, H.E.,
Pedersen, B.S., Rhie, A., Richardson, H., Quinlan, A.R., Snutch, T.P., Tee, L., Paten, B.,
Phillippy, A.M., Simpson, J.T., Loman, N.J. & Loose, M. Nanopore sequencing and
assembly of a human genome with ultra-long reads. Nature Biotechnology. 2018; 36 (4):
338-345.

	
Jiang, Z., Tang, H., Ventura, M., Cardone, M.F., Marques-Bonet, T., She, X., Pevzner, P.A. &

Eichler, E.E. Ancestral reconstruction of segmental duplications reveals punctuated cores
of human genome evolution. Nature Genetics. 2007; 39 (11): 1361-1368.

	
Kamath, G.M., Shomorony, I., Xia, F., Courtade, T.A. & David, N.T. HINGE: long-read

assembly achieves optimal repeat resolution. Genome Research. 2017; 27 (5): 747-756.

Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H. & Phillippy, A.M. Canu:

scalable and accurate long-read assembly via adaptive k-mer weighting and repeat
separation. Genome Research. 2017; 27 (5): 722-736.

	
Koren, S., Schatz, M.C., Walenz, B.P., Martin, J., Howard, J.T., Ganapathy, G., Wang, Z.,

Rasko, D.A., McCombie, W.R., Jarvis, E.D. & Phillippy, A.M. Hybrid error correction
and de novo assembly of single-molecule sequencing reads. Nature Biotechnology.
2012; 30 (7): 693–700.

Li, H. Minimap and miniasm: fast mapping and de novo assembly for noisy long

sequences. Bioinformatics. 2016; 32 (14): 2103-2110.
	
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018; 34 (18):

3094-3100.

Lin, Y., Yuan, J., Kolmogorov, M., Shen, M.W., Chaisson, M. & Pevzner, P.A. Assembly of

long error-prone reads using de Bruijn graphs. Proceedings of the National Academy of
Sciences USA. 2016; 113 (52): E8396-E8405.

	

	

	 149

Lin, Y., Nurk, S., Pevzner, P.A. What is the difference between the breakpoint graph and the de
Bruijn graph? BMC Genomics. 2014; 15: S6.

Mikheenko A., Prjibelski A., Saveliev V., Antipov D. & Gurevich A. Versatile genome assembly

evaluation with QUAST-LG. Bioinformatics. 2018; 34 (13): i142-i150.
	
Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P., Flanigan, M.J., Kravitz,

S.A., Mobarry, C.M., Reinert, K.H., Remington, K.A., Anson, E.L., Bolanos, R.A.,
Chou, H.H., Jordan, C.M., Halpern, A.L., Lonardi, S., Beasley, E.M., Brandon, R.C.,
Chen, L., Dunn, P.J., Lai, Z., Liang, Y., Nusskern, D.R., Zhan, M., Zhang, Q., Zheng, X.,
Rubin, G.M., Adams, M.D., Venter, J.C. A whole-genome assembly of
Drosophila. Science. 2000; 287 (5461): 2196-2204.

Nattestad, M., Goodwin, S., Ng, K., Baslan, T., Sedlazeck, F.J., Rescheneder, P., Garvin, T.,

Fang, H., Gurtowski, J., Hutton, E., Tseng, E., Chin, C.S., Beck, T., Sundaravadanam, Y.,
Kramer, M., Antoniou, E., McPherson, J.D., Hicks, J., McCombie, W.R. & Schatz, M.C.
Complex rearrangements and oncogene amplifications revealed by long-read DNA and
RNA sequencing of a breast cancer cell line. Genome Research. 2018; 28 (8): 1126-1135.

	
Nowoshilow, S., Schloissnig, S., Fei, J.F., Dahl, A., Pang, A.W.C., Pippel, M., Winkler, S.,

Hastie, A.R., Young, G., Roscito, J.G., Falcon, F., Knapp, D., Powell, S., Cruz, A., Cao,
H., Habermann, B., Hiller, M., Tanaka, E.M. & Myers, E.W. The axolotl genome and the
evolution of key tissue formation regulators. Nature. 2018; 554 (7690): 50-55.

	
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P.A. metaSPAdes: a new versatile

metagenomic assembler. Genome Research. 2017; 27 (5): 824-834.

Ono, Y., Asai, K. & Hamada, M. PBSIM: PacBio reads simulator—toward accurate genome

assembly. Bioinformatics. 2013; 29 (1): 119-121.

Pevzner, P.A., Tang, H. & Tesler, G. De novo repeat classification and fragment assembly.

Genome Research. 2004; 14 (9): 1786-1796.

Prjibelski, A.D., Vasilinetc, I., Bankevich, A., Gurevich, A., Krivosheeva, T., Nurk, S., Pham, S.,

Korobeynikov, A., Lapidus, A. & Pevzner, P.A. ExSPAnder: A universal repeat resolver
for DNA fragment assembly. Bioinformatics. 2014; 30 (12): 293–301.

Pu. L., Lin, Y. & Pevzner P.A. Detection and analysis of ancient segmental duplications in

mammalian genomes. Genome Research. 2018; 28 (6): 901-909.
	
Schmid, M., Frei, D., Patrignani, A., Schlapbach, R., Frey, J.E., Remus-Emsermann, M.N.P. &

Ahrens, C.H. Pushing the limits of de novo genome assembly for complex prokaryotic
genomes harboring very long, near identical repeats. Nucleic Acids Research. 2018; 46
(17): 8953-8965.

	
Sharon, I., Kertesz, M., Hug, L.A., Pushkarev, D., Blauwkamp, T.A., Castelle, C.J.,

	

	 150

Amirebrahimi, M., Thomas, B.C., Burstein, D., Tringe, S.G., Williams, K.H. & Banfield,
J.F. Accurate, multi-kb reads resolve complex populations and detect rare
microorganisms. Genome Research. 2015; 25 (4): 534-543.

Simpson, J.T., Workman, R.E., Zuzarte, P.C., David, M., Dursi, L.J. & Timp, W. Detecting

DNA cytosine methylation using nanopore sequencing. Nature Methods. 2017; 14 (4):
407-410.

Tischler, G. Haplotype and Repeat Separation in Long Reads. Preprint at bioRxiv. 2017; doi:

https://doi.org/10.1101/145474.
	
Treangen, T.J., Koren, S., Sommer, D.D., Liu, B., Astrovskaya, I., Ondov, B., Darling, A.E.,

Phillippy, A.M. & Pop, M. MetAMOS: a modular and open source metagenomic
assembly and analysis pipeline. Genome Biology. 2013; 14 (1): R2.

Vyahhi, N., Pyshkin, A., Pham, S. & Pevzner, P.A. From de Bruijn graphs to rectangle graphs

for genome assembly. Lecture Notes in Computer Science. 2012; 7534: 249-261.

Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C.A.,

Zeng, Q., Wortman, J., Young, S.K. & Earl, A.M. Pilon: an integrated tool for
comprehensive microbial variant detection and genome assembly improvement. PloS
One. 2014; 9 (11): e112963.

	
Weissensteiner, M.H., Pang, A.W.C., Bunikis, I., Höijer, I., Vinnere-Petterson, O., Suh, A. &

Wolf, J.B.W. Combination of short-read, long-read, and optical mapping assemblies
reveals large-scale tandem repeat arrays with population genetic implications. Genome
Research. 2017; 27 (5): 697-708.

	
Wick R. R., Judd L. M., Gorrie C. L. & Holt K.E. Unicycler: Resolving bacterial genome

assemblies from short and long sequencing reads. PLoS Computational Biology. 2017; 13
(6): e1005595.

Wick, R.R., Schultz, M.B., Zobel, J. & Holt, K.E. Bandage: interactive visualization of de novo

genome assemblies. Bioinformatics. 2015; 31 (20): 3350-3352.

Zimin, A.V., Puiu, D., Luo, M.C., Zhu, T., Koren, S., Marçais, G., Yorke, J.A., Dvořák, J. &

Salzberg, S.L. Hybrid assembly of the large and highly repetitive genome of Aegilops
tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome
Research. 2017; 27 (5): 787-792.	

	

	 151

CHAPTER 3:

DiploidFlye: Haplotype Phasing of

Long Read Assemblies Using Repeat Graphs

3.1 Abstract

 With the recent advancements in long single molecule sequencing reads, genome

assemblers have been able to produce high-quality assemblies for large, complex organisms such

as humans. However, these assemblers often fail to account for the increased complexity of these

diploid genomes, either ignoring or collapsing the differences between heterozygous sequences.

To address this problem, we developed diploidFlye, an extension of the Flye assembler that

detects heterozygous variations and generates haplotype-aware contigs called haplocontigs.

DiploidFlye utilizes the Flye repeat graph to simplify and accelerate this process, phasing each

unique edge of the graph into two haplocontigs. We show that diploidFlye can accurately phase a

large fraction of the Arabidopsis thaliana genome, producing correct haplocontigs for these

regions.

	

	 152

3.2 Introduction

 Recent experimental and computational advances in generating and analyzing single

molecule sequencing (SMS) reads have improved the contiguity of de novo genome assemblies

(Mostovoy et al. 2016). Long read SMS technologies (like Pacific Biosciences and Oxford

Nanopore) have enabled the assembly of large, complex genomes, primarily because the long

reads can span difficult repeat regions in these genomes (Chin et al. 2013; Koren et al. 2017).

Although SMS assemblers have a better ability to resolve the difficult repeats found in complex

genomes, they often neglect another feature of these larger genomes, namely, their diploidy.

Most SMS assemblers fail to distinguish variations between the haplotypes of diploid

genomes, usually generating mosaic contigs representing a mixture of haplotype alleles

(Chaisson et al. 2015; Chin et al. 2016). Thus, the heterozygosity of these assemblies is unknown

and variations in sequence, structure, and gene presence between homologous chromosomes are

lost. This is a significant problem because haplotype information plays a crucial role in various

areas such as linkage analysis, association studies, population genetics, and clinical genetics

(Snyder et al. 2015; Brown et al. 2017). For example, if the haplotypes of a transplant donor’s

human leukocyte antigen (HLA) region closely matches those of the recipient, then the transplant

usually has improved outcomes (Crawford et al. 2005).

We present diploidFlye, a haplotype-aware extension of the Flye assembler (Kolmogorov

et al. in press) that generates haplocontigs (contigs whose sequence is derived from individual

haplotypes) from the Flye assembly graph. DiploidFlye identifies variations between

homologous chromosome sequences, separates reads into haplotypes based on these variations,

and then constructs the sequence of the haplocontigs from these reads, repeating these steps in an

iterative fashion. This procedure follows a similar approach to the Flye algorithm for resolving

	

	 153

unbridged repeats in the assembly graph laid out in Kolmogorov et al. (in press). DiploidFlye

takes advantage of the repeat graph constructed by Flye to only focus on the unique (i.e. non-

repetitive) edges in the graph, which greatly simplifies the problem. These edges form the lion’s

share of the assembly for most genomes and are much easier to phase than the difficult repetitive

edges. Furthermore, diploidFlye is able to phase all of the unique edges of the assembly graph in

parallel, greatly speeding up this procedure.

Currently, the FALCON assembler along with FALCON-Unzip, the associated

haplotype-resolving tool, is the most widely used SMS assembler for generating haplotype-aware

contigs (Chin et al. 2016). FALCON follows the string graph approach, first building a string

graph from reads, separating reads into haplotypes based on bubbles in the string graph caused

by variations between homologous chromosomes, and finally assembling primary contigs and

alternative haplotigs (contigs containing alternative haplotype alleles). However, it is difficult to

distinguish repetitive regions from homologous chromosomes in the string graph approach. The

variations that FALCON uses to construct alternative haplotigs could in reality represent

differences between long repeats in the genome that are from the same haplotype. In this case,

FALCON may be confounding variations in haplotypes with variations in repeats and outputting

alternative repeat sequences from the same haplotype rather than alternative haplotigs. In

contrast, Flye follows the de Bruijn graph (DBG) approach, so it constructs the repeat graph

(also known as the assembly graph) that distinguishes between repetitive and non-repetitive

edges. Thus, diploidFlye is able to use the assembly graph to avoid confounding variations in

haplotypes with variations in repeats. Furthermore, by using the assembly graph, diploidFlye is

able to separate the phasing procedure into hundreds of smaller, independent runs, greatly

simplifying and accelerating the process in comparison to FALCON.

	

	 154

3.3 Methods

Overview.

 DiploidFlye considers all of the unique edges of the Flye assembly graph and attempts to

phase each edge into two haplotypes in parallel. The process of phasing each unique edge occurs

through several steps. First, tentative variant positions are identified based on the multiple

alignment of all reads against the edge. Based on these tentative positions, regions with the

highest divergence are found that act as anchor regions for constructing the two distinct

haplocontigs for this edge. All reads that map to these anchor regions are assigned to one of the

two haplotypes based on the variant positions, and then the prefix of each haplocontig sequence

is constructed from the consensus of these reads.

Now begins an iterative procedure to extend the haplocontig prefixes to the right, where

new reads are recruited to each haplotype based on the variant positions in the prefix, the

haplocontig prefixes are extended based on the consensus of these new reads, and then more

reads are recruited to the haplotypes based on the extended prefix sequences, etc. This iterative

procedure terminates when the rest of the edge has been phased or when we fail to continue

extending the haplocontig sequences to the right. The same procedure also extends the

haplocontig prefixes to the left in parallel. After processing all unique edges in the assembly

graph, diploidFlye outputs a pair of haplocontigs for each edge that was successfully phased.

Additionally, diploidFlye also outputs the sequences of all haploid edges present in the repeat

graph after Flye’s repeat resolution procedures.

	

	 155

Identifying Heterozygous Positions.

 Similar to the unbridged repeat resolution approach from the Flye assembler

(Kolmogorov et al. in press), we identify heterozygous positions for each unique edge by first

mapping reads to the edge and generating a multiple alignment of all reads that overlap with the

unique edge. We proceed to calculate the substitution, deletion, and insertion rates of each

column using the second most frequent nucleotide in the same way as Flye as well. If the

mutation rate of a specific position exceeds certain thresholds (0.1, 0.2, and 0.3 for substitutions,

deletions, and insertions, respectively), then that position is identified as a heterozygous position.

If the rate of heterozygosity is too low (below 0.01%), then the edge is considered haploid and

the algorithm halts for this edge.

Anchoring the Haplocontig Sequences.

 Before diploidFlye can begin to construct the haplocontig sequences, it must find a high

confidence anchor region to start from. Regions that have higher heterozygosity usually indicate

a larger structural variation such as a long indel, from which reads can be recruited to different

haplotypes with higher confidence. To locate these regions, we split the edge into 1 kb non-

overlapping windows and simply find a window with the highest heterozygosity rate, which we

call the distinguishing window. If the heterozygosity rate of the distinguishing window is below

a certain threshold (1% by default), we have low confidence that we will be able to distinguish

between the haplotype sequences using this window, so we simply stop and label the edge as

unable to be phased.

Figure 3.1 illustrates how we recruit reads to different haplotypes for the distinguishing

window. We take the segments of all reads that map to and span the entire window, and for each

	

	 156

read segment we calculate its distance from the consensus sequence: The match rate of a read

segment aligned to the consensus is the number of matches in the alignment divided by the total

length of the alignment for this window, and the distance is the complement of the match rate

(one minus the match rate). Then we cluster the reads into two groups (one for each haplotype),

using agglomerative clustering on the distances of each read. Finally, we construct an initial

haplocontig prefix for each group using the consensus of all of the reads in each group.

Figure 3.1: An overview of how diploidFlye anchors the haplocontig sequences.
(a) The edge is split into 1 kb windows and the distinguishing window with highest divergence
is identified (shown in red). Then segments of reads that map to and span the distinguishing
window are extracted. These read segments will be used as anchors for the initial haplocontig
sequences. (b) The distance between each read segment and the edge consensus sequence is
calculated, here represented by different symbols on the read segments. (c) A sample
dendrogram produced by running agglomerative clustering using the distances of the read
segments. Two distinct clusters can be seen in the dendrogram (green and red). (d) The two
resulting groups of reads represent different haplotype sequences. The consensus of the reads
in each group is used as the initial haplocontig prefix for each haplotype. (Note: the entire
length of the reads in each group is used to generate the haplocontig prefixes rather than only
the read segments as shown here).

	

	 157

Iteratively Extending Haplocontigs.

 Now that we have haplocontig prefix sequences, we can attempt to extend them to the

right (extension to the left occurs analogously, in parallel). This process is similar to the Flye

algorithm for “moving forward” into the repeat (Kolmogorov et al. in press). Since we will

utilize the heterozygous positions identified earlier, we want to evaluate their reliability first. At

each position, we simply consider the symbol (A, C, G, T, -) occurring at that position for each

haplocontig prefix. If the two symbols match, then that position is rejected as homozygous, but if

they disagree, then that position becomes a confirmed heterozygous position. Positions that are

not yet covered by the haplocontig prefixes remain tentative heterozygous positions; we only use

confirmed heterozygous positions for read assignment.

Next, we map all reads to the two haplocontig prefixes to construct a more accurate

alignment. For each read, we compute its vote for each haplotype based on the number of

confirmed heterozygous positions for which the symbol of the read agrees with the symbol of the

haplocontig prefix (ignoring all other positions). The read is assigned to a haplotype if its vote

for this haplotype is larger than its vote for the other haplotype by at least a minimum threshold

(the default value is three), and it remains unassigned otherwise.

Afterwards, we use all reads that have been assigned to a haplotype to construct a new

consensus haplocontig sequence. Since the newly assigned reads come from the right end of the

haplocontig, constructing a new haplocontig sequence with these reads corresponds to extending

the haplocontig prefix to the right. Note that we only construct haplocontigs up to where the

coverage of reads is at least 𝑚𝑖𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 in both haplocontigs to ensure that the generated

consensus sequences are accurate. Furthermore, both haplocontigs are then truncated to the

length of the shortest haplocontig to ensure consistency in comparison during read assignment.

	

	 158

The process of confirming heterozygous positions, assigning reads, and then constructing

haplocontig consensus sequences is then repeated in an iterative fashion to extend the

haplocontig further and further to the right. The iteration ends when the haplocontig sequences

cannot extend any further, either when the end of the edge has been reached or when there is a

large gap before the next confirmed heterozygous position. If the ends of the edge are reached

after extending both to the right and to the left, then we have successfully phased the edge. As

long as the haplocontig is above a minimum length (the default value is 5 kb), then diploidFlye

will output whatever haplocontigs have been constructed for the edge regardless of if it has been

entirely phased.

Heterozygous Bulges Resolved by Flye.

 When the heterozygosity rate is sufficiently high, sometimes heterozygous regions will

be detected by the repeat graph and appear as bulges. If this happens, then diploid edges between

bulges will appear to be repeats of multiplicity two (which we call simple repeats). In this case,

Flye will perform its algorithms for resolving bridged repeats and simple unbridged repeats. If

either of these two algorithms are successful, then the diploid edges will become haplotype-

separated unique edges, which is exactly what diploidFlye is trying to produce. Thus, diploidFlye

does not attempt to phase these unique edges and simply includes them in the set of haplocontigs

that it outputs. There may also be unique edges present in the repeat graph that do not appear as

simple repeats. Since these unique edges also correspond to haplotype-specific sequences,

diploidFlye will detect and output them as haplocontigs as well.

	

	 159

3.4 Results

 To ensure that we have a gold standard for validation, we use a set of Arabidopsis

thaliana datasets presented in the FALCON paper (Chin et al. 2016). These datasets are

sequenced from a plant trio: an inbred Col-0 parent (called the COL0 dataset), an inbred Cvi-0

parent (called the CVI0 dataset), and the F1 progeny resulting from a cross of these parents

(called the F1 dataset). The total genome size is 135 Mb for each of these datasets, though the so-

called “golden path” reference length is only 120 Mb (Arabidopsis Genome Initiative 2000).

Pacific Biosciences reads with P4-C2 sequencing chemistry were generated from these genomes

at coverages of 115×, 110× and 140× for COL0, CVI0, and F1, respectively. The reads from

both the COL0 and CVI0 datasets had an average length of ~6 kb and an N50 of ~9 kb. The

reads from the F1 dataset had an average length of ~11.5 kb and an N50 of ~17.5 kb (see Chin et

al. 2016 for further details). Table 3.1 presents the results of running Flye on each of these

datasets.

Dataset	 Len

(Mb)	
#Contigs	 NG50

(kb)	
Reference
Coverage	

Reference
% Identity	

#Mis	 NGA50
(kb)	

COL0	 117	 472	 6,051	 97.0%	 99.91%	 251	 1,818	
CVI0	 118	 420	 6,290	 89.0%	 98.81%	 4977	 67	

F1	 137	 1246	 437	 96.8%	 99.17%	 3664	 137	

Table 3.1: Assembly statistics for Flye assemblies of the COL0, CVI0, and F1 datasets.
The assembly quality was evaluated using the QUAST 5.0 tool (Mikheenko et al. 2018) with
the TAIR10 genome (Lamesch et al. 2012) as a reference. The NG50 of an assembly is the
largest possible number 𝐿, such that all contigs of length 𝐿 or longer cover at least 50% of the
genome. Given an assembled set of contigs and a reference genome, the corrected assembly is
formed after breaking each erroneously assembled contig at its breakpoints resulting in shorter
contigs. The NGA50 of an assembly is defined as the NG50 of its corrected assembly
(Mikheenko et al. 2018). “Len” is the total length assembled, “#Mis” is the number of
misassemblies, and “Reference coverage” is the percentage of the total reference length found
in the assembly.

	

	 160

These datasets were compared to the TAIR10 Arabidopsis reference genome (Lamesch et

al. 2012), which was assembled from the Col-0 strain. Thus, the differences in NGA50 values

and the number of misassemblies illustrate that the COL0 and CVI0 datasets are highly

divergent, rather than indicating problems with the assembly. We calculated the divergence rate

by aligning the COL0 and CVI0 assemblies to each other and dividing the total error count

(number of substitutions, insertions and deletions) by the sum of the match count and error count

(note that a long insertion or deletion counts as a single error). Using this method, we found that

there is a high 1.7% divergence rate between the genomes.

As expected, the quality of the F1 dataset exhibits intermediate values between the COL0

and CVI0 datasets since it contains sequences from both. However, the presence of two highly

divergent strains in a single assembly also caused difficulties for the assembler, which is shown

by the greater number of contigs and the lower NG50 value for the F1 assembly. This effect can

be seen more clearly when comparing the repeat graphs constructed during the Flye assembly for

these three datasets. Table 3.2 presents some graph statistics for these repeat graphs (the graphs

are too large and tangled to display here), illustrating that the F1 repeat graph is significantly

larger and more disconnected than the COL0 and CVI0 graphs, likely due to its high

heterozygosity.

	

	 161

Dataset # Nodes # Unique Edges # Repetitive
Edges

Connected
Components

COL0 371 624 945 32

CVI0 321 476 939 26

F1 2003 2262 1409 343

The high heterozygosity of the F1 dataset causes complications for the application of

diploidFlye. Highly heterozygous regions may appear as “bulges” in the repeat graph, made up

of edges that have roughly half the expected coverage of unique edges (see Figure 3.2 for an

example).

Table 3.2: Graph statistics for the COL0, CVI0, and F1 datasets.
Basic graph statistics are presented for the repeat graphs constructed by Flye when assembling
the COL0, CVI0, and F1 datasets. The total number of nodes, unique edges, repetitive edges
and connected components are shown for each dataset.

	

	 162

These edges correspond to haplotype-resolved sequences and should simply be reported

by diploidFlye as haplocontigs. Furthermore, these bulges often produce simple unbridged

repeats of multiplicity two and so are resolved by the unbridged repeat resolution algorithm in

Flye. Flye reports 55 simple unbridged repeats for the F1 repeat graph, 47 of which were

resolved successfully (as opposed to only 4 simple unbridged repeats appearing in the COL0 and

CVI0 repeat graphs).

After both repeat resolution algorithms have finished, there exist 1104 unique edges in

the F1 repeat graph (forward and reverse strands count as a single edge, and self-complementary

Figure 3.2: An example of two bulges forming a simple repeat in the F1 repeat graph.
A simple repeat is formed in the graph (with ID -816) when two bulges appear in the graph.
The average coverage of the dataset is around 120× so the bulges represent haploid edges
formed by heterozygous variants. This simple repeat will be processed by Flye’s algorithm for
resolving simple unbridged repeats.

	

	 163

edges were omitted for simplicity). These edges sum to a total length of 122 Mb, 90% of the

expected total length of the Arabidopsis thaliana genome (135 Mb). For the purposes of this

dissertation, we will confine our attention to only 541 edges (with total length 66 Mb) which will

be sufficient to demonstrate the efficacy of diploidFlye. Of these edges, 238 have low coverage

corresponding to haploid edges, which accounts for 2.7 Mb of sequence (a simple threshold of

80× was used, equal to two-thirds of the average aligned coverage of 120×, based on an

apparent separation in the distribution of edge coverages). DiploidFlye thus will not attempt to

phase these edges, simply outputting them as haplocontigs.

DiploidFlye was run on the remaining 303 edges. For 89 of these edges, diploidFlye was

either unable to find a distinguishing window with sufficient heterozygosity to cluster reads or

the clustered reads had insufficient coverage to generate reliable haplocontig prefixes. Initial

reads were clustered and haplocontig prefix sequences were generated for the remaining 214

edges. Figure 3.3 presents the cluster dendrogram of an edge where diploidFlye successfully

clustered the 101 initial read segments from the distinguishing window into a group with 49

reads (green) and a group with 52 reads (red).

	

	 164

For these remaining 214 edges, diploidFlye attempted to iteratively extend the

haplocontigs to the left and to the right by confirming heterozygous positions, assigning reads to

haplotypes, and constructing consensus sequences as described in the Methods section. Figure

3.4 shows the lengths of all haplocontigs that diploidFlye generated relative to the total lengths

of each edge (as reported by the Flye repeat graph). DiploidFlye produced haplocontigs of at

least half the edge length for 186 edges (87% of the remaining edges), haplocontigs of at least

90% of the edge length for 151 edges (71%), and haplocontigs for the entire edge (≥99%) for

Figure 3.3: An example of a cluster dendrogram generated by performing agglomerative
clustering on an edge in the F1 repeat graph.
This cluster dendrogram was generated while running agglomerative clustering on edge 1130
of the repeat graph from the F1 assembly. The 101 initial read segments are clustered into a
group with 49 reads (green) and a group with 52 reads (red). The long length of the blue edges
indicates that the two clusters (green and red) are well separated.

	

	 165

106 edges (50%). However, the haplocontigs of the longest edges failed to extend to the end of

the edge (as shown on the right end of Figure 3.4), so the total haplocontig sequence length only

constitutes 59% of the total edge sequence length.

In order to evaluate the performance of diploidFlye, we utilized the Flye assemblies of

the parental COL0 and CVI0 datasets. We refer to 𝑘-mers that are present in the COL0 assembly

but absent in the CVI0 assembly as COL0 𝑘-mers, and similarly, 𝑘-mers that occur in the CVI0

assembly but not in the COL0 one are CVI0 𝑘-mers (we arbitrarily select 𝑘 = 25 for this test).

For each phased haplocontig generated by diploidFlye, we count the number of COL0 𝑘-mers

and the number of CVI0 𝑘-mers.

Figure 3.4: Haplocontig length versus total edge length.
A plot of the mean haplocontig lengths generated by diploidFlye and the total edge length for
each of the 214 edges for which diploidFlye was able to produce haplocontig sequences. Note
that the 𝑦-axis is on a log scale, indicating that the haplocontigs generated for the longest edges
were significantly shorter than the edge length.

	

	 166

Figure 3.5 presents a plot of the proportion of COL0 𝑘-mers vs the proportion of CVI0 𝑘-

mers for every phased haplocontig. If the haplocontigs correctly correspond to specific

haplotypes, then we expect the points to occur close to the 𝑥-axis or close to the 𝑦-axis. For the

purposes of evaluation, a threshold of two-thirds was chosen to distinguish between haplocontigs

that were correctly phased and those that were not (as shown by the dotted blue lines). Two

haplocontigs are generated for each edge: If either of its haplocontigs falls below this threshold

(lies between the dotted blue lines), then that edge is considered incorrectly phased and both of

its edges are colored green in Figure 3.5. Based on these criteria, 193 edges (90%) were correctly

phased by diploidFlye.

	

	 167

 The correctly phased haplocontigs sum to a total length of 27.7 Mb, 59% of the total

length of these 193 edges. The incorrectly phased haplocontigs sum to a total length of 3.0 Mb,

69% of the total length of the 21 edges they were generated from. Overall, combining the

correctly phased haplocontigs with the haploid edges detected by diploidFlye, we obtained

correct haplocontig sequences for 431 out of 541 edges considered (80%) with a combined

length of 30.4 Mb out of 66 Mb (46%).

Figure 3.5: The counts of COL0 𝒌-mers vs CVI0 𝒌-mers for all haplocontigs with 𝒌 = 𝟐𝟓.
A plot of the COL0 𝑘-mers and the CVI0 𝑘-mers for each haplocontig produced by diploidFlye
with 𝑘 = 25. Each point represents a single haplocontig, so each edge corresponds to two
points, one for each of its haplocontigs. The dotted blue lines indicate the threshold (two-thirds)
used to determine whether or not a haplocontig was correctly phased. Incorrectly phased
haplocontigs that lie between the blue lines are colored green. Haplocontigs generated from the
same edge as incorrectly phased haplocontigs are also colored green.

	

	 168

3.5 Discussion

 This chapter presents a novel method for producing haplocontigs (i.e. haplotype-specific

contigs) from the assembly of a genome. DiploidFlye relies on the Flye repeat graph to

distinguish between unique and repetitive edges of the assembly to simplify the problem, and

then it attempts to phase each unique edge by identifying heterozygous positions, assigning reads

to haplotypes, and constructing haplocontig sequences in an iterative fashion.

It is important for diploidFlye to only consider unique edges in the Flye repeat graph so

that it does not confound variations between repetitive regions of the genome with heterozygous

positions. However, the classification of unique and repetitive edges in the repeat graph is a

difficult problem due to high variance in coverage and imprecision in detecting overlaps between

long reads. Furthermore, highly heterozygous regions may also split unique edges into pairs of

separate haploid unique edges, causing some truly unique edges to be classified as repetitive.

Flye will resolve many of these misclassified edges using its bridged and unbridged repeat

resolution procedures (as seen in the 47 simple unbridged repeats in the F1 repeat graph resolved

by Flye), but some may still be erroneously labeled repetitive. Currently, diploidFlye utilizes a

makeshift strategy to distinguish between haploid and diploid unique edges based on coverage

and heterozygosity rate. However, a comprehensive approach to standardize the classification of

unique edges and distinguish between haploid and diploid edges would improve diploidFlye.

Currently, this chapter simply establishes that diploidFlye’s novel approach was able to

successfully phase 431 out of 541 edges, 80% of the edges that were considered, making up 30.4

Mb of the 66 Mb considered. If this proportion holds true for the rest of the F1 dataset, then we

can expect 883 edges and 63 Mb of the genome to be phased by diploidFlye. In comparison,

	

	 169

FALCON is able to produce primary contigs of total length 140 Mb and alternative haplotigs

with total length 105 Mb for the F1 dataset.

Thus far, diploidFlye is not yet able to produce haplocontigs at the same scale as

FALCON. Although most of the edges considered were correctly phased, we still failed to

produce haplocontigs for the majority of the sequence length considered because haploid edges

tend to be short and the generated haplocontigs failed to span entire edges. The results could thus

be improved in two ways: by generating correct haplocontigs for more edges and by extending

the length of haplocontigs for correctly phased edges. The former can be addressed by modifying

the criteria used to find distinguishing windows, cluster initial reads, and utilize heterozygous

positions. The latter can be addressed by confirming more heterozygous positions, allowing a

greater number of iterations, or modifying the stopping criteria when extending haplocontigs.

Additionally, diploidFlye currently takes a longer time to run than expected, mostly due

to the bottleneck of iteratively polishing very long, unique edges (polishing is often the

bottleneck of Flye assemblies). This can be addressed by further optimizing the speed of

generating polished consensus sequences.

Furthermore, the range of heterozygosity rates at which diploidFlye can be applied must

be further explored, especially its applicability to haplotyping the human genome. Nevertheless,

diploidFlye is already able to phase 80% of the edges considered, producing haplocontigs for a

significant fraction of the assembly. Therefore in its current state, diploidFlye already serves an

important role as an extension to the Flye assembler by accounting for the heterozygosity of

diploid genomes and producing suitable haplocontigs to improve their assemblies.

	

	 170

3.6 Acknowledgements

 We would like to thank Misha Kolmogorov, Anton Bankevich, and Andrey Bzikadze for

the many fruitful discussions we had related to this material.

Chapter 3, in full, is currently being prepared for submission for publication as

“DiploidFlye: haplotype phasing of long read assemblies using repeat graphs” by Jeffrey Yuan

and Pavel A. Pevzner. The dissertation author is a primary author of this material.

	

	 171

3.7 References

Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant
Arabidopsis thaliana. Nature. 2000; 408 (6814): 796-815.

Brown, R., Kichaev, G., Mancuso, N., Boocock, J. & Pasaniuc, B. Enhanced methods to detect

haplotypic effects on gene expression. Bioinformatics. 2017; 33 (15): 2307-2313.

Chaisson, M.J., Wilson, R.K. & Eichler, E.E. Genetic variation and the de novo assembly of

human genomes. Nature Reviews Genetics. 2015; 16 (11): 627-40.

Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A.,

Copeland, A., Huddleston, J., Eichler, E.E., Turner, S.W. & Korlach, J. Nonhybrid,
finished microbial genome assemblies from long-read SMRT sequencing data. Nature
Methods. 2013; 10 (6): 563-569.

Chin, C.S., Peluso, P., Sedlazeck, F.J., Nattestad, M., Concepcion, G.T., Clum, A., Dunn, C.,

O'Malley, R., Figueroa-Balderas, R, Morales-Cruz, A., Cramer, G.R., Delledonne, M.,
Luo, C., Ecker, J.R., Cantu, D., Rank, D.R., & Schatz, M.C. Phased diploid genome
assembly with single molecule real-time sequencing. Nature Methods. 2016; 13 (12):
1050-1054.

Crawford, D.C. & Nickerson, D.A. Definition and clinical importance of haplotypes. Annual

Review of Medicine. 2005; 56: 303-20.

Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P.A. Assembly of long error-prone reads using

repeat graphs. Nature Biotechnology. In press.

Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H. & Phillippy, A.M. Canu:

scalable and accurate long-read assembly via adaptive k-mer weighting and repeat
separation. Genome Research. 2017; 27 (5): 722-736.

Lamesch, P., Berardini, T.Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., Muller, R.,

Dreher, K., Alexander, D.L., Garcia-Hernandez, M., Karthikeyan, A.S., Lee, C.H.,
Nelson, W.D., Ploetz, L., Singh, S., Wensel, A. & Huala, E. The Arabidopsis Information
Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Research.
2012; 40 (Database issue): D1202-10.

Mikheenko A., Prjibelski A., Saveliev V., Antipov D. & Gurevich A. Versatile genome assembly

evaluation with QUAST-LG. Bioinformatics. 2018; 34 (13): i142-i150.

Mostovoy, Y., Levy-Sakin, M., Lam, J., Lam, E.T., Hastie, A.R., Marks, P., Lee, J., Chu, C.,

Lin, C., Džakula, Ž., Cao, H., Schlebusch, S.A., Giorda, K., Schnall-Levin, M., Wall,
J.D. & Kwok, P.Y. A hybrid approach for de novo human genome sequence assembly
and phasing. Nature Methods. 2016; 13 (7): 587-90.

	

	 172

Snyder, M.W., Adey, A., Kitzman, J.O. & Shendure, J. Haplotype-resolved genome sequencing:
experimental methods and applications. Nature Reviews Genetics. 2015; 16 (6): 344-58.

	

	 173

CONCLUSION

 De novo genome assemblies have greatly improved with the development of long single

molecule sequencing (SMS) reads and other technologies such as 10X genomics, BioNano, and

Hi-C sequencing techniques (Li et al. 2017; Mostovoy et al. 2016). Larger and more complex

genomes can now be assembled almost at the resolution of entire chromosomes (Pendleton et al.

2015). However, there are still two main challenges hindering the complete assembly of complex

genomes: repetitive regions and variations between similar sequences, such as variations

between different instances of a repeat or between parental haplotypes (Chaisson et al. 2015).

This dissertation has focused on developing new methods to address both of these challenges.

 First of all, we limited our attention to only long SMS reads because they greatly improve

the scale of the repeats that are resolved in the course of assembly. Although repeats that are

longer than the average length of a read still remain unresolved, a large proportion of them that

are shorter than 1-2 kb are easily resolved by simply using SMS reads. Next, we developed a de

Bruijn graph (DBG) assembler for SMS reads because the DBG approach naturally reveals the

repetitive regions in the course of assembly, whereas the overlap-layout-consensus approach

does not. Thus, we developed ABruijn, which modifies the DBG approach by building an A-

Bruijn graph from only frequent 𝑘-mers in the reads rather than all 𝑘-mers as in the DBG. We

showed that ABruijn performs especially well on difficult repetitive genomes such as

Xanthomonas oryzae compared to other OLC assemblers. However, complex repetitive regions

especially in large genomes also turned out to be a major computational bottleneck for ABruijn,

limiting its scalability, leading us to develop Flye.

 As described in Chapter 2, Flye avoids the difficulty of considering all possible paths

through repetitive regions by greedily choosing a path and generating disjointigs. Fortunately,

	

	 174

these disjointigs can be used to construct an accurate repeat graph, which can then be used to

finish the assembly process and produce contigs. The remarkable thing about the repeat graph is

that it provides a visualization of all remaining unresolved repeats in the genome, laying out

everything that needs to be done to solve the first challenge of resolving long repetitive regions.

This visualization is incredibly useful not only for understanding the current state of the

assembly but also for determining the best method for proceeding to “finish” the assembly. Flye

then proceeds to exploit the repeat graph to improve the assembly as much as possible, first

resolving any bridged repeats using bridging reads, and then resolving unbridged simple repeats

using variations between repeats. Using these methods, Flye is able to produce more contiguous

assemblies of the human genome than other state-of-the-art assemblers such as Canu and

MaSuRCA. To further improve the assembly, the repeat graph generated by Flye can be used to

target the remaining unresolved repeats using other technologies such as 10X genomics,

BioNano and Hi-C (Li et al. 2017).

 The second challenge hindering genome assembly is variations between similar

sequences. These variations include differences between instances of the same repeat (e.g.

polymorphisms in segmental duplications), differences in how many times a sequence is

repeated (the copy number), and differences between haplotypes of diploid or polyploid

organisms (heterozygosity) (Chaisson et al. 2015). Due to the similarity of the sequences, these

variations are often undetected or collapsed into consensus sequences that do not represent any

single genomic sequence, and thus pose a major source of (often undetected) error in genome

assembly (Chaisson et al. 2015). Flye attempts to address this issue in the case of simple

unbridged repeats of multiplicity two. The Flye approach for resolving these unbridged repeats

represents the first method for using the variation between repeats to resolve long repeats, and it

	

	 175

also generates a distinct sequence for each instance of the repeat. Thus, if Flye is able to resolve

unbridged repeats, it produces output sequences that are sensitive to the small variations between

repeat copies, addressing this challenge, albeit only for this limited case.

 In Chapter 3, we discussed how diploidFlye also attempts to address the challenge of

variations between similar sequences by producing haplocontigs that are sensitive to the

differences between the parental haplotypes. To this end, diploidFlye utilizes the Flye repeat

graph to simplify and parallelize the problem of phasing haplotypes. The unique edges in the

graph represent regions where variation in the sequence must be due to heterozygosity and thus

can easily be phased, so diploidFlye focuses on these regions. Of course, diploidFlye only

addresses the problem for these relatively simple regions. Further work is required to deal with

the more difficult case of phasing repetitive regions, in which case the variations due to

heterozygosity must be distinguished from the variations between repeat copies.

Despite the advances made by ABruijn, Flye, and diploidFlye, there are still many

obstacles to overcome regarding repetitive regions and variations between similar sequences.

Very long, identical repeats still cannot be resolved by Flye and must be spanned by technologies

that produce longer reads. More sophisticated algorithms must be developed to resolve and

reconstruct more complex repetitive regions such as long tandem repeats and mosaic repeats of

higher multiplicity; these reconstructions must be sensitive to variations between repeat copies

and copy number. New algorithms are also needed to address these difficulties for diploid or

other polyploid organisms such as plants. Thus, despite the progress made by recent

developments in sequencing technologies and assembly algorithms, there is still a long way to go

before entire finished genomes can be assembled de novo, but each technological advance and

every new algorithm brings us a little closer to that goal.

	

	 176

References

Chaisson, M.J., Wilson, R.K. & Eichler, E.E. Genetic variation and the de novo assembly of
human genomes. Nature Reviews Genetics. 2015; 16 (11): 627-40.

Li, C., Lin, F., An, D., Wang, W. & Huang, R. Genome sequencing and assembly by long reads

in plants. Genes. 2018; 9 (1): 6.

Mostovoy, Y., Levy-Sakin, M., Lam, J., Lam, E.T., Hastie, A.R., Marks, P., Lee, J., Chu, C.,

Lin, C., Džakula, Ž., Cao, H., Schlebusch, S.A., Giorda, K., Schnall-Levin, M., Wall,
J.D. & Kwok, P.Y. A hybrid approach for de novo human genome sequence assembly
and phasing. Nature Methods. 2016; 13 (7): 587-90.

Pendleton, M., Sebra, R., Pang, A.W., Ummat, A., Franzen, O., Rausch, T., Stütz, A.M.,

Stedman, W., Anantharaman, T., Hastie, A., Dai, H., Fritz, M.H., Cao, H., Cohain, A.,
Deikus, G., Durrett, R.E., Blanchard, S.C., Altman, R., Chin, C.S., Guo, Y., Paxinos,
E.E., Korbel, J.O., Darnell, R.B., McCombie, W.R., Kwok, P.Y., Mason, C.E., Schadt,
E.E. & Bashir, A. Assembly and diploid architecture of an individual human genome via
single-molecule technologies. Nature Methods. 2015; 12 (8): 780-6.

