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EPIGRAPH

Folk in these stories had lots of chances of turning

back, only they didn’t. Because they were holding

onto something.

What are we holding onto, Sam?

That there’s some good in this world, Mr. Frodo.

And it’s worth fighting for.

—J.R.R. Tolkien
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Phylogenetic trees can be used to study the evolution of any sequence that evolves,

including viruses. In a viral epidemic, the history of transmission events defines constraints

on the evolutionary history of the viral population. The spread of many viruses is driven by

social and sexual networks, and because of the relationship between their evolutionary and

transmission histories, phylogenetic inference from viral sequences can be used to improve the

inference of patterns of the epidemic, which in turn may be able to enhance epidemiological

intervention. The simultaneous simulation of viral transmission networks, phylogenetic trees,

and sequences can provide a method to observe the effects of virus model parameters on the
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epidemic as well as to study the accuracies and errors of transmission inference tools, but

the success of such simulations relies on the existence of appropriate models. Further, the

development of massively-scalable tools to analyze ultra-large datasets of viral sequences can aid

epidemiologists in the real-time surveillance of the spread of disease. To enable viral epidemic

simulation analyses, I developed FAVITES: a novel framework to simulate viral transmission

networks, phylogenetic trees, and sequences, and I used FAVITES to study the effects of model

parameters on epidemic outcomes. In an effort to better capture the unbalanced topologies

commonly observed in retroviral phylogenies, I developed a novel evolutionary model (dual-

birth), derived probabilistic distributions and theoretical expectations of trees sampled under the

model, developed an approach to estimate model parameters given real data, and used the model

to analyze Alu retrotransposons in the human genome. In order to potentially aid public health

officials, I developed a scalable and non-parametric phylogenetic method of viral transmission

risk prioritization, which I evaluated against current best-practice methods via simulation and real

data. Lastly, I contributed to Bioinformatics education by developing multiple publicly-accessible

adaptive online interactive texts.
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Although they are typically associated with the study of the evolution of species, phy-

logenetic trees can be used to study the evolution of any sequence that evolves. For example,

phylogenetic methods have been used to study the evolution of multicopy gene families [1],

cancer genomes [2, 3], antibodies [4, 5, 6], segmental duplicates [7, 8], and transposable genomic

elements [9, 10], which are all entities that evolve within the genome of a single species. Further,

they can be used to study the evolution of viruses, both within and across hosts [11, 12, 13]. In

the case of viruses, the history of transmission events constrains the evolutionary history, such as

imposing a bottleneck at the time of each transmission [14].

The spread of many infectious diseases is driven by social and sexual networks [15], and

reconstruction of their transmission histories from molecular data can greatly enhance intervention.

For example, network-based statistics for measuring Human Immunodeficiency Virus (HIV)

treatment effects can yield increased statistical power [16]; the analysis of the growth of HIV

infection clusters can yield actionable epidemiological information for disease treatment and

prevention [17, 18]; transmission-aware models can be used to infer rates of HIV evolution [13].

The ability to infer properties and patterns of the transmission history of a viral epidemic allows

public health officials to intervene and attempt to prevent the spread of the virus. In the case

of HIV, patients who adhere to Antiretroviral Therapy (ART) can become “virally suppressed,”

meaning the virus is kept at bay, resulting in slower progression of the HIV disease as well as a

significant reduction in transmission risk [19]. Thus, the ability to predict which individuals are

most at-risk of transmitting the virus would provide public health officials actionable information:

they can take measures to ensure high-risk individuals are able to continuously adhere to ART.

The ability to infer and reconstruct properties of a transmission network has been re-

searched extensively in recent years [20, 21], and many tools exist that attempt to use molecular

data to try to perform this inference [22]. For example, PhyloPart [23], Cluster Picker [24], and

TreeCluster [25] infer transmission clusters using phylogenies inferred from viral sequences.

HIV-TRACE, on the other hand, infers transmission clusters directly from sequences [26]. While
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these tools have been used to analyze real datasets [27], the accuracies, errors, and limitations of

these methods are still poorly understood.

By utilizing models of social contact networks, viral transmission, tree evolution, and

sequence evolution together, epidemiologists can define complex probabilistic distributions com-

posed of sub-models. These complex distributions can be sampled to simulate data representative

of a virus of interest as it spreads through a population of interest, and the resulting data can be

used to evaluate the accuracies of transmission network inference methods as well as to study

trends and patterns of an epidemic as a function of the various model parameters to gain insights

into the mechanisms driving the epidemic of interest [28]. However, many existing tools to

perform such epidemic simulations have model assumptions that the user cannot relax or change.

In Chapter 1, I will discuss FAVITES: a novel epidemic simulation framework I developed that

provides flexibility in terms of the model assumptions about the epidemic, allowing the user to

control the generative model in minute detail. The framework is defined by a series of interactions

of abstract modules, and each implementation of a module defines the model assumptions. Thus,

users are free to select whichever module implementations (and thus model assumptions) that

best fit their epidemic of interest. In addition to presenting the tool, I will describe in detail

a simulation experiment designed to emulate the San Diego HIV epidemic between 2005 and

2014, and I will use the simulated data to compare and contrast existing transmission clustering

methods.

Of course, the ability to simulate an epidemic depends entirely on the existence of

statistical models that appropriately describe the processes of the epidemic of interest. Models of

tree evolution describe probability distributions over the space of tree shapes [29, 30], which can

be used as the prior distribution in a Bayesian inference [31, 32, 33], to generate null distributions

describing certain neutral processes [34, 35, 36], or to infer evolutionary parameters inherently

of interest to the biologist [37]. Similarly, generalized epidemic models describe probability

distributions over the space of transmission networks [38], and simulations that sample the
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distributions defined by these stochastic models allows epidemiologists to study infection patterns

of disease epidemics [39]. Further, network models describe probability distributions over graphs,

and they can be used to capture features of networks of interactions (e.g. social interactions

between humans) [40, 41, 42, 43]. Lastly, models of sequence evolution describe the mutation

of a sequence over time [44, 45, 46, 47, 48], and they can be used to simulate the evolution

of a sequence down a phylogeny [49] as well as to infer the evolutionary history of a set of

sequences [50]. In the case of retroviruses and retrotransposons, which replicate via reverse

transcription [51] and may undergo significant selection pressure [52], a neutral model of tree

evolution like the Yule [29] or Coalescent [53] may not be appropriate. In Chapter 2, I will discuss

the dual-birth model, a novel model of tree evolution that is motivated by the retrotransposition

of Alu elements in the human genome [54]. I will derive various probabilistic distributions and

theoretical expectations of trees sampled under the model, and I will then present two approaches

for estimating model parameters from a given phylogeny. I will then present the results of an

analysis of close to one million Alu sequences from the human genome in which I infer the

dual-birth model parameters and present an estimate of the number of active Alu elements, a topic

of much debate [55, 56, 57].

The goal of many transmission clustering analyses is to learn about the dynamics of a

virus through a given population, often to try to predict which sub-populations may be spreading

the virus more rapidly [16, 20, 58]. However, transmission clustering is essentially a way of

summarizing the relationships between the sampled viral sequences, and instead of performing

predictions and inferences on these summaries, what if we were able to infer properties of interest

directly from the evolutionary relationships of the viruses? In Chapter 3, I investigate a single

specific question: Given a set of viral sequences sampled from people living with HIV, can I

predict which individuals are most at-risk of transmitting the virus in the future? In an attempt to

address this question, I present ProACT, a tool that attempts to prioritize people living with HIV

based on risk of future transmissions. ProACT depends only on the viral phylogeny and does not
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require any demographic information from the patients, meaning it is not sensitive to error-prone

survey data, and most importantly, it is less prone to bias.

A primary focus of mine is the ability to execute phylogenetic methods like ProACT

in a massively-scalable fashion. The scalability of a computational tool is primarily dependant

on two things: (1) the theoretical time complexity of the algorithm, and (2) the efficiency of

the implementation of the algorithm. While developing FAVITES and ProACT, I found that,

although the phylogenetic algorithms I designed were quite fast in theory, my implementations

using existing tree-manipulation packages were much slower than I anticipated due to significant

overhead in loading and initializing my ultra-large phylogenies. In Chapter 4, I will present

TreeSwift, a new Python package for traversing and manipulating trees. I will describe its

implementation design, demonstrate some of its features, and compare its execution time for

various common tree algorithms against existing packages.

As can be seen, as the cost of sequencing decreases, the amount of viral sequence data

available to researchers is growing rapidly, and as a result, the field of Epidemiology is becoming

increasingly dependent on scalable computational methods. However, many researchers in

the fields of Epidemiology and Molecular Biology have never received formal education in

computation. In recent years, computational courses have started appearing in undergraduate

Biology major curricula, and while this will provide computational skills to the next generation

of biomedical and epidemiological researchers, it does not benefit the current generation of

professionals. In Chapter 5, I will present my contributions to Bioinformatics education in

the form of developing novel Massive Open Online Courses (MOOCs) and Massive Adaptive

Interactive Texts (MAITs), and I will discuss the pedagogical philosophy I employed in developing

my learning materials.

In summary, I show that modern studies in viral epidemiology require the ability to

perform simulation experiments that can appropriately capture the virus and population of interest,

which thus requires tools to run such simulations efficiently as well as statistical models that make
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realistic assumptions. I also show that the ability to infer actionable epidemiological information

from molecular data is an open problem. In this dissertation, I present a novel framework for

epidemic simulations, provide a novel model of phylogenetic evolution (and derive probabilistic

distributions and theoretical expectations of trees sampled under the model), demonstrate the

effectiveness of a novel phylogenetic tool for prioritizing people living with HIV based on

their risk of future transmissions, and introduce a novel package for performing tree traversals

and manipulations efficiently on ultra-large phylogenies. I also discuss my contributions to

Bioinformatics education.
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Chapter 1

FAVITES: Simultaneous Simulation of

Transmission Networks, Phylogenetic

Trees, and Sequences
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Motivation — The ability to simulate epidemics as a function of model parameters allows

insights that are unobtainable from real datasets. Further, reconstructing transmission networks

for fast-evolving viruses like HIV may have the potential to greatly enhance epidemic intervention,

but transmission network reconstruction methods have been inadequately studied, largely because

it is difficult to obtain “truth” sets on which to test them and properly measure their performance.

Results — We introduce FAVITES, a robust framework for simulating realistic datasets

for epidemics that are caused by fast-evolving pathogens like HIV. FAVITES creates a generative

model to produce contact networks, transmission networks, phylogenetic trees, and sequence

datasets, and to add error to the data. FAVITES is designed to be extensible by dividing the

generative model into modules, each of which is expressed as a fixed Application Program

Interface (API) that can be implemented using various models. We use FAVITES to simulate HIV

datasets and study the realism of the simulated datasets. We then use the simulated data to study

the impact of the increased treatment efforts on epidemiological outcomes. We also study two

transmission network reconstruction methods and their effectiveness in detecting fast-growing

clusters.

Availability and implementation — FAVITES is available at https://github.com/niemasd/

FAVITES, and a Docker image can be found on DockerHub (https://hub.docker.com/r/niemasd/

favites).

1.1 Introduction

The spread of many infectious diseases is driven by social and sexual networks [59],

and reconstructing their transmission histories from molecular data may be able to enhance

intervention. For example, network-based statistics for measuring the effects of ART in HIV can

yield increased statistical power [16]; the analysis of the growth of HIV infection clusters can

yield actionable epidemiological information for disease control [60]; transmission-aware models
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can be used to infer HIV evolutionary rates [13].

A series of events in which an infected individual infects another individual can be

shown as a transmission network, which itself is a subset of a contact network, a graph in

which nodes represent individuals and edges represent contacts (e.g. sexual) between pairs of

individuals. If the pathogens of the infected individuals are sequenced, which is the standard of

HIV care in many developed countries, one can attempt to reconstruct the transmission network

(or its main features) using molecular data. Some viruses, such as HIV, evolve quickly, and the

phylogenetic relationships between viruses are reflective of transmission histories [61], albeit

imperfectly [62, 63, 64].

Recently, multiple methods have been developed to infer properties of transmission

networks from molecular data [23, 24, 26]. Efforts have been made to characterize and understand

the promise and limitations of these methods: it is suggested that, when combined with clinical

and epidemiological data, these methods can provide critical information about drug resistance,

associations between sociodemographic characteristics, viral spread within populations, and the

time scales over which viral epidemics occur [65]. More recently, these methods have become

widely used at both local [27] and global scale [66]. Nevertheless, several questions remain to

be fully answered regarding the performance of these methods. It is not always clear which

method/setting combination performs best for a specific downstream use-case or for specific

epidemiological conditions. More broadly, the effectiveness of these methods in helping achieve

public health goals is the subject of ongoing clinical and theoretical research.

Accuracy of transmission networks is difficult to assess because the true order of trans-

missions is not known. Moreover, predicting the impact of parameters of interest (e.g. rate of

treatment) on the epidemiological outcomes is difficult. In simulations, in contrast, the ground

truth is known and parameters can be easily controlled. The simulation of transmission networks

needs to combine models of social network, transmission, evolution, and ideally sampling biases

and errors [67].
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We introduce FAVITES (FrAmework for VIral Transmission and Evolution Simulation),

which can simulate numerous models of contact networks, viral transmission, phylogenetic and

sequence evolution, data (sub)sampling, and real-world data perturbations, and which was built to

be flexible such that users can seamlessly plug in statistical models at every step of the simulation

process. Previous attempts to create an epidemic simulation tool include epinet [68], TreeSim [69],

outbreaker [70], seedy [71], and PANGEA.HIV.sim [28]. A detailed comparison of FAVITES

with these tools can be found in Table A.1. One key distinction is that FAVITES simulates the full

end-to-end epidemic dataset (social contact network, transmission history, incomplete sampling,

viral phylogeny, error-free sequences, and real-world sequencing imperfections), whereas each

existing tool simulates only a subset of these steps. Another key distinction is that FAVITES

allows the user to choose among several models at each step of the simulation, whereas the

existing tools are restricted to specific models. After describing the FAVITES framework, we

compare its output to real data on a series of experiments, study the properties of HIV epidemics

as functions of various model and parameter choices, and finally perform simulation experiments

to study two transmission network reconstruction methods.

1.2 Materials and Methods

1.2.1 FAVITES Simulation Process

FAVITES provides a workflow for the simulation of viral transmission networks, phy-

logenetic trees, and sequence data (Fig. 1.1). It breaks the simulation process into a series of

interactions between abstract modules, and users can select the module implementations appro-

priate to their specific context. In the statistical sense, the end-to-end process creates a complex

composite generative model, each module is a template for a sub-model of a larger model, and

different implementations of each module correspond to different statistical sub-models. Thus,

the FAVITES workflow does not explicitly make model choices: each module implementation

10



1

2

3a-b

3c-e

4a

4b 4c

5

6

7

8

ForwardBackward

1
2a

2b
AA CC 𝑡"

7>RED1
ACGTACGTCC
>RED2
ACGTACGTTT
>PURPLE
ACGTACGTGC
>ORANGE1
ACGTACGTAC
>ORANGE2
ACGTACGTCG8a

8b

@PURPLE
ACATACGTGC
+
!''*((((**
@ORANGE2
ACGTGCGTCG
+
!''*((((**

4a 𝑡"

𝑡#

𝑡$

4b 𝑡"

𝑡#

AC
𝑡$CCGCTT CG

4c 𝑡"

𝑡#

𝑡$

5
𝜇& 𝜇'

𝜇( 𝜇)

𝜇*

𝜇+ 𝜇,

𝜇-6

Contact Network
Seeds

Transmissions Time Sampling and Tree Update

Mutation RatesFinalize Tree
Finalize SequencesErrors

3a-b
3c-e

𝑡"

𝑡#
ACACTA

CC

Figure 1.1: FAVITES workflow. (1) The contact network is generated (nodes: individuals;
edges: contacts). (2) Seed individuals who are infected at time 0 are selected (2a), and a viral
sequence is chosen for each (2b). (3) The epidemic yields a series of transmission events
in which the time of the next transmission is chosen (3a), the source and target individuals
are chosen (3b), the viral phylogeny in the source node is evolved to the transmission time
(3c), viral sequences in the source node are evolved to the transmission time (3d), and a viral
lineage is chosen to be transmitted from source to destination (3e). Step (3) repeats until the
end criterion is met. Step 3c–e are optional, as tree and sequence generation can be delayed to
later steps. (4) Infected individuals are sampled such that viral sequencing times are chosen
for each infected individual (4a), viral phylogenies (one per seed) are evolved to the end time
of the simulation (4b), and viral phylogenies (one per seed) are pruned to reflect the viral
sequencing times selected (4c). (5) Mutation rates are introduced along the branches of the viral
phylogenies and the tree is scaled to the unit of expected mutations. (6) The seed trees are
merged using a seed tree (cyan). (7) Viral sequences obtained from each infected individual are
finalized. (8) Real-world errors are introduced on the error-free data, such as subsampling of the
sequenced individuals (marked as green) (8a) and the introduction of sequencing errors (8b).
The workflows of a typical forward (blue) and backward (green) simulation are shown as well.

makes those choices. The model for a FAVITES execution is defined by the set of module

implementations chosen by the user.

FAVITES defines APIs for each module and lets implementation decide how to achieve

the goal of the module. The APIs allow various forms of interaction between modules, which

enable sub-models that are described as conditional distributions (via dependence on preceding

steps) or as joint distributions (via joint implementation). Module implementations can simply

wrap around existing tools, allowing for significant code reuse. The available implementations

for each step are continuously updated; the full documentation of these implementations can be
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found online.

Simulations start at time zero and continue until a user-specified stopping criterion is

met. Error-free and error-prone transmission networks, phylogenetic trees, and sequences are

output at the end. FAVITES has eight steps (Fig. 1.1) detailed below. Depending on the specific

implementations, some of the steps may not be needed (we mark these with an asterisk), especially

when the phylogeny is simulated backward in time. Also note that steps and modules are not the

same; a module may be used in several steps and a step may require multiple modules.

Step 1: Contact Network

The ContactNetworkGenerator module generates a contact network; vertices represent

individuals, and edges represent contacts between them that can lead to disease transmission (e.g.

sexual). Graphs can be created stochastically using existing models [72], including those that

capture properties of real social networks [40, 42, 73] and those that include communities [41, 74].

For example, the Erdős–Rényi (ER) model [75] generates graphs with randomly-placed edges,

the Random Partition model [74] generates communities, the Barabási–Albert (BA) model [42]

generates scale-free networks whose degree distributions follow power-law (suitable for social

and sexual contact networks), the Caveman model [41] and its variations [74] generate small-

world networks, the Watts–Strogatz (WS) model [40] generates small-world networks with short

average path lengths, and Complete graphs connect all pairs of individuals (suitable for some

communicable diseases). We currently have many models implemented by wrapping around the

NetworkX package [76]. In addition, a user-specified network can be used.

Step 2: Seeds

The transmission network is initialized in two steps. a) The SeedSelection module chooses

the “seed” nodes: individuals who are infected at time zero of the simulation. b∗) For each selected

seed node, the SeedSequence module can generate an initial viral sequence.
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Seed selection has many implemented models, including uniform random selection,

degree-weighted random selection, and models that place seeds in close proximity. Seed se-

quences can be user-specified or randomly sampled from probabilistic distributions. To enable

seed sequences that emulate the virus of interest, we implement a model that uses HMMER [77]

to sample each seed sequence from a profile Hidden Markov Model (HMM) specific to the virus

of interest. Profile HMMs are appropriate for sampling random sequences that are intended to re-

semble real sequences because they define a probabilistic distribution over the space of sequences,

they can be flexible to insertions and deletions, and they can be sampled in a computationally

efficient manner. We provide a set of such prebuilt profile HMMs constructed from Multiple

Sequence Alignments (MSAs) of viral sequences.

When multiple seeds are chosen, we need to model their phylogenetic relationship as

well. Thus, we also have a model that samples a single sequence from a viral profile HMM

using HMMER, simulates a seed tree with a single leaf per seed individual (e.g. using Kingman

coalescent or birth-death models using DendroPy [78]), and then evolves the viral sequence down

the tree to generate seed sequences using Seq-Gen [49].

Step 3: Transmissions

An iterative series of transmission events occurs under a transmission model until the

EndCriteria module triggers termination (e.g. after a user-specified time or a user-specified

number of transmission events). Each transmission event has five components.

a) The TransmissionTimeSample module chooses the time at which the next transmission

event will occur and advances the current time accordingly, and b) the TransmissionNodeSample

module chooses a source node and target node to be involved in the next transmission event. These

two modules are often jointly implemented. Some of the current implementations use simple

models such as drawing transmission times from an exponential distribution and selecting nodes

uniformly at random. Others are more realistic and use Markov processes in which individuals
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start in some state (e.g. Susceptible) and transition between states of the model (e.g. Infected)

over time. These Markov models are defined by two sets of transition rates: nodal and edge-based.

Nodal transition rates are rates that are independent of interactions with neighbors (e.g. the

transition rate from Infected to Recovered), whereas edge-based transition rates are the rate of

transitioning from one state to another given that a single neighbor is in a given state (e.g. the

transition rate from Susceptible to Infected given that a neighbor is Infected). The rate at which

a specific node u transitions from state a to state b is the nodal transition rate from a to b plus

the sum of the edge-based transition rate from a to b given neighbor v’s state for all neighbors v.

We use GEMF [39] to implement many compartmental epidemiological models in this manner,

including sophisticated HIV models like the Granich et al. (2009) model [79] and the HPTN 071

(PopART) model [80].

c∗) The NodeEvolution module evolves viral phylogenetic trees of the source node to the

current time using stochastic models of tree evolution [81]. We use DendroPy [78] for birth-death

and use our own implementation of dual-birth [10] and Yule.

d∗) If models of the tree evolution or transmission models are dependent on sequences,

the SequenceEvolution module is invoked here to evolve all viral sequences in the source node to

the current time. Otherwise, sequence evolution is delayed until Step 7 (we assume this scenario).

e∗) The SourceSample module chooses the viral lineage(s) in the source node to be

transmitted.

Step 4: Time Sampling and Tree Update

The patient sampling (i.e., sequencing) events are determined and phylogenetic trees are

updated accordingly. Three sub-steps are involved.

a) For each individual, the NumTimeSample module chooses the number of sequencing

times (e.g. a fixed number or a number sampled from a Poisson distribution), the TimeSample

module chooses the corresponding sequencing time(s) (e.g. by draws from uniform or truncated
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Gaussian or Exponential distributions, or by sampling right before the first transition of a person

to a treated state), and the NumBranchSample module chooses how many viral lineages will be

sampled at each sequencing time (e.g. single). A given individual may not be sampled at all, thus

simulating incomplete epidemiological sampling efforts.

b∗/c∗) The NodeEvolution module is called to simulate the phylogenetic trees given

sampling times. This step can be used instead of Step 3c to evolve only lineages that are sampled,

thereby reducing computational overhead. If the tree is simulated in Step 3c, it will be pruned

here to only include lineages that are sampled.

Step 5: Mutation Rates

To generate sequences, rates of evolution must be assumed and in this step, the TreeUnit

module determines such rates. For example, it may use constant rates or may draw from a

distribution (e.g. Gamma). Applying rates on the tree from Step 4 yields a tree with branch

lengths in units of per-site expected number of mutations.

Step 6∗: Finalize Tree

We now have a single tree per seed. Some implementations of SeedSequence also simulate

a tree connecting seeds, so the roots of per-seed trees have a phylogenetic relationship. In this

case, this step merges all phylogenetic trees into a single global tree by placing each individual

tree’s root at its corresponding leaf in the seed tree (Fig. 1.1).

Step 7: Finalize Sequences

The SequenceEvolution module is called to simulate sequences on the final tree(s).

Commonly-used models of Deoxyribonucleic Acid (DNA) evolution including General Time-

Reversible (GTR) model [48], and its reductions such as Jukes and Cantor (1969) (JC69) [44],

Kimura (1980) (K80) [45], Felsenstein (1981) (F81) [46], and Tamura and Nei (1993) (TN93) [47],
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are currently available as implementations of SequenceEvolution. FAVITES also includes the

GTR+Γ model, which incorporates rates-across-sites variation [82]. It also includes multiple

codon-aware extensions of the GTR model, such as mechanistic [83] and empirical [84] codon

models. These modules internally use Seq-Gen [49] and Pyvolve [85].

Step 8: Errors

Error-free data are now at hand. Noise is introduced onto the complete error-free data in

two ways.

a∗) The NodeAvailability module further subsamples the individuals to simulate lack of

accessibility to certain datasets. Note that whether or not an individual is sampled is a function of

two different modules: NodeAvailability and NumTimeSample (if NumTimeSample returned 0, the

individual is not sampled). Conceptually, NumTimeSample can be used to model when people are

sequenced, while NodeAvailability can be used to model patterns of data availability (e.g. sharing

of data between clinics).

b) The Sequencing module simulates sequencing error on the simulated sequences. In

addition to sequencing machine errors, this can incorporate other real-world sequencing issues, e.g.

taking the consensus sequence of a sample and introducing of ambiguous characters. FAVITES

currently uses existing tools to simulate Illumina, Roche 454, SOLiD, Ion Torrent, and Sanger

sequencing [86, 87], including support for ambiguous characters.

Backward-in-Time Simulation

Thus far, we have assumed that trees are evolved forward-in-time: they begin with a single

root lineage, and as time progresses, lineages split. However, backward-in-time models of tree

evolution (e.g. coalescent) begin with k leaves, and as time regresses, these lineages coalesce.

In FAVITES, if a backward-in-time model of tree evolution is chosen, Steps 3c–e and 4c can

be skipped, and the full backward simulation can be performed at once in Step 4b (Fig. 1.1).
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We use VirusTreeSimulator [28] for coalescent models with constant, exponentially-growing, or

logistically-growing population size.

Sequence-Dependent Transmissions

Steps 3c–e are required only if the choice of transmission events after time t depends on

the past phylogeny or sequences up to time t. If the choice of future transmission recipients/donors

and transmission times are agnostic to past phylogenies and sequences, these steps can be skipped

and the tasks are delayed to Steps 4b and 7. Note also that if sequences are simulated in Step 3d,

a mutation rate needs to be assumed early. In this case, a joint implementation of the TreeUnit

and SequenceEvolution modules must be used such that per-time mutation rates are chosen in

Step 3d, and the same mutation rates are used to scale the tree in Step 5.

Model Validation

We provide tools to validate FAVITES outputs, by comparing the simulation results against

real data the user may have (e.g. networks, phylogenetic trees, or sequence data) using various

summary statistics (Table A.2). In addition to validation scripts, we have several helper scripts to

implement tasks that are likely common to downstream use of FAVITES output (Table A.3).

1.2.2 Experimental Setup

We have performed a set of simulations using the FAVITES framework. In these studies,

we compare the simulated data against real HIV datasets, study properties of the epidemic as a

function of the parameters of the underlying generative models, and compare two transmission

cluster inference tools when applied to sequence data generated by FAVITES. All datasets can be

found at https://gitlab.com/niemasd/favites-paper-final.
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The Simulation Model

We selected a set of “base” simulation models and parameters and also performed experi-

ments in which they were varied. For each parameter set, we ran 10 simulation replicates. The

base simulation parameters were chosen to emulate HIV transmission in San Diego from 2005 to

2014 to the extent possible. In addition, to show the applicability of FAVITES to other settings,

we also performed a simulation with parameters learned from the HIV epidemic in Uganda from

2005 to 2014. For both datasets, we estimate some parameters from real datasets while we rely on

the literature where such data are not available. We first describe base parameters for San Diego

and then present changing parameters and Uganda parameters (see Tables A.4 and A.5 for the

full list of parameters).

Contact Network

The contact network includes 100,000 individuals to approximate the at-risk community

of San Diego. We set the base expected degree (Ed) to 4 edges (i.e., sexual partners over 10 years).

This number is motivated by estimates from the literature (e.g. ≈3 in Wertheim et al., 2017 [20]

and 3–4 in Rosenberg et al., 2011 [88]), and it is varied in the experiments. We chose the BA

model as the base network model because it can generate power-law degree distributions [42], a

property commonly assumed of sexual networks [89].

Seeds

We chose 15,000 total infected seed individuals uniformly at random based on the estimate

of total HIV cases in San Diego as of 2004 [90].

Epidemiological Model

We model HIV transmission as a Markov chain epidemic model (see Section 1.2.1) with

states Susceptible (S), Acute Untreated (AU), Acute Treated (AT), Chronic Untreated (CU), and
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Figure 1.2: Epidemiological model of HIV transmission with states Susceptible (S), Acute
Untreated (AU), Acute Treated (AT), Chronic Untreated (CU), and Chronic Treated (CT). The
model is parameterized by the rates of infectiousness of AU (λS,AU), AT (λS,AT ), CU (λS,CU),
CT (λS,CT ) individuals, and by the rate to transition from AU to CU (λAU→CU), the rate to
transition from AT to CT (λAT→CT ), the rate to start ART (λU→T ), and the rate to stop ART
(λT→U).

Chronic Treated (CT). All seed individuals start in AU, and transmissions occur with rates that

depend for each individual on the number of neighbors it has in each state (Fig. 1.2). Note that

this model is a simplification of the model used by Granich et al. (2009) [79].

We set λAU→CU such that the expected time to transition from AU to CU is 6 weeks [91]

and set λAT→CT such that the expected time to transition from AT to CT is 12 weeks [92]. We set

λU→T such that the expected time to start ART is 1 year from initial infection [93], and we define

EART= 1/λU→T . We set λT→U such that the expected time to stop ART is 25 months from initial

treatment [94]. For the rates of infection λS, j for j ∈ {AU,CU,AT,CT}, using the infectiousness

of CU individuals as a baseline, we set the parameters such that AU individuals are 5 times as

infectious [95] and CT individuals are not infectious (i.e., rate of 0). Cohen et al. (2011) found

a 0.04 hazard ratio when comparing linked HIV transmissions between an early-therapy group

and a late-therapy group [92], so we estimated AT individuals to be 1⁄20 the infectiousness of CU

individuals. We then scaled these relative rates so that the total number of new cases over the

span of the 10 years was roughly 6,000 [90], yielding λS,AU = 0.1125.
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Phylogeny

We estimate parameters related to phylogeny and sequences from real data. We used a

MSA of 674 HIV-1 subtype B Polymerase (pol) sequences from San Diego [58] and a subset

containing the 344 sequences that were obtained between 2005 and 2014. For both of these

datasets, we inferred Maximum-Likelihood (ML) phylogenetic trees using the ModelFinder Plus

feature [96] of IQ-TREE [97]. We then removed outgroups from the tree inferred from the full

674 sequence dataset and used LSD [98] to estimate the Time of the Most Recent Common

Ancestor (tMRCA) and the per-year mutation rate distribution. The tMRCA was estimated at

1980. The mutation rate was estimated as 0.0012 with a standard deviation of roughly 0.0003,

so to match these properties, we sampled mutation rates for each branch independently from a

truncated Normal random variable from 0 to infinity with a location parameter of 0.0008 and

a scale parameter of 0.0005 to scale branch lengths from years to expected number of per-site

mutations.

In our simulations, a single viral lineage from each individual was sampled at the end

time of the epidemic (10 years). The viral phylogeny in unit of time (years) was then sampled

under a coalescent model with logistic viral population growth using the same approach as the

the PANGEA-HIV methods comparison exercise, setting the initial population to 1, the per-year

growth rate to 2.851904, and the time back from present at which the population is at half the

carrying capacity (v.T50) to -2 [28]. Each seed individual is the root of an independent viral

phylogenetic tree, and these trees were merged by simulating a seed tree with one leaf per seed

node under a non-homogeneous Yule model [99] scaled such that its height equals 25 years to

match the 1980 estimate using SD. The rate function of the non-homogeneous Yule model was

set to λ (t) = e−t2
+1 to emulate short branches close to the base of the tree (see comparison to

other functions in Fig. A.1).
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Sequence Data

We sampled a root sequence from a profile HMM generated from the San Diego MSA

using HMMER [77]. We evolved it down the scaled viral phylogenetic tree under the GTR+Γ

model using Seq-Gen [49] with parameters inferred by IQ-TREE (Table A.5).

Varying Parameters

For San Diego, we explore four parameters (Table 1.1). For the contact network, in

addition to the BA model, we used the ER [75] and WS [40] models. We also varied the expected

degree (Ed) of individuals in the contact network between 2 and 16 (Table 1.1). For seed selection,

we also used “Edge-Weighted,” where the probability that an individual is chosen is weighted

by the individual’s degree. For each selection of contact network model, Ed , and seed selection

method, we study multiple rates of starting ART (expressed as EART ). In our discussions, we

focus on EART , a factor that the public health departments can try to impact. Increased effort

in testing at-risk populations can decrease the diagnosis time, and the increased diagnosis rate

coupled with high standards of care can lead to faster ART initiation. Behavioral intervention

could in principle also impact degree distribution, another factor that we vary, but the extent of

the effectiveness of behavioral interventions is unclear [59].

Table 1.1: Simulation parameters (base parameters in bold)

Parameter Values
Contact Network Model BA, ER, WS
Expected Degree (Ed) 2, 4, 8, 16

Seed Selection Random, Edge-Weighted
Mean Time to ART (EART ) 1⁄8, 1⁄4, 1⁄2, 1, 2, 4, 8 (years)
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Uganda Simulations

Our simulations with Uganda followed a similar approach to the base model used for San

Diego but with different choices of parameters, motivated by Uganda. For inferring the reference

phylogeny and mutation rates, we used a dataset of all 893 HIV-1 subtype D pol sequences in

the Los Alamos National Laboratory (LANL) HIV Sequence Database that were sourced from

Uganda and that were obtained between 2005 and 2014. All other Uganda parameters were

motivated by McCreesh et al. (2017) [100], and the following are key differences from the

San Diego simulation. The contact network had 10,000 total individuals (a regional epidemic),

and 1,500 individuals were randomly selected to be seeds. For epidemiological parameters, we

assumed the expected time to begin as well as stop ART to be 1 year [100]. A comprehensive list

of simulation parameters can be found in Tables A.4 and A.5.

Transmission Network Reconstruction Methods

We compare two HIV network inference tools: HIV-TRACE [26] and TreeCluster [25].

HIV-TRACE is a widely-used method [22, 20, 101] that clusters individuals such that, for all

pairs of individuals u and v, if theTN93 distance is below the threshold (default 1.5%), u and v are

connected by an edge; each connected component forms a cluster. When we ran HIV-TRACE,

we skipped its alignment step because we did not simulate indels. TreeCluster clusters the leaves

of a given tree such that the pairwise path length between any two leaves in the same cluster is

below the threshold (default 4.5%), the members of a cluster define a full clade, and the number

of clusters is minimized. Trees given to TreeCluster were inferred using FastTree 2 [102] under

the GTR+Γ model. We used FastTree 2 because using IQ-TREE on these very large datasets

(up to 80,000 leaves) was not feasible. TreeCluster is similar in idea to Cluster Picker [24],

which uses sequence distances instead of tree distances (but also considers branch support). We

study TreeCluster instead of Cluster Picker because of its improved speed. Our attempts to run

PhyloPart [23] were unsuccessful due to running time.
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Measuring the Predictive Power of Clustering Methods

We now have two sets of clusters at the end of the simulation process (year 10): one

produced by HIV-TRACE and one by TreeCluster. Let Ct denote the clustering resulting from

removing all individuals infected after year t from a given final clustering C10, let Ct
i denote a

single i-th cluster in clustering Ct , and let g(Ct
i ) =

|Ct
i |−|Ct−1

i |√
|Ct

i |
denote the growth rate of a given

cluster Ct
i [103]. We then compute the average number of individuals who were infected between

years 9 and 10 by the “top” 1,000 individuals (roughly 5% of the total infected population)

who were infected at year 9, where we choose top individuals by sorting the clusters in C9 in

descending order of g(C9
i ) (breaking ties randomly) and choosing 1,000 individuals in this sorting,

breaking ties in a given cluster randomly if needed (e.g. for the last cluster needed to reach 1,000

individuals). As a baseline, we compute the average number of individuals who were infected

between years 9 and 10 by all individuals, which is equivalent (in expectation) to a random

selection of 1,000 individuals. Our metric, therefore, measures the risk of transmission from the

selected 1,000 individuals. Our motivation for this metric is to capture whether monitoring cluster

growth can help public health intervention efforts with limited resources in finding individuals

with a higher risk of transmitting.

1.3 Results

1.3.1 Comparison to Real Phylogenies

To compare data simulated by FAVITES to real data, we use the aforementioned San

Diego and Uganda phylogenies. Since the trees on real data are inferred trees (as opposed to true

trees), we compare them to inferred trees on simulated data (built using FastTree 2 as running

IQ-TREE on simulated data was not feasible). We randomly subsample the simulated dataset to

match the number of sequences in the corresponding real dataset (344 for San Diego; 893 for

23



Uganda).

For San Diego, the mean patristic distance between sequences on inferred trees is respec-

tively 0.087 and 0.089 for the real and base simulated datasets. The distributions of pairwise

distances among inferred trees of real and simulated datasets have similar shapes, but distances

from real data have higher variance (Fig. 1.3a). To quantify the divergence between the real

and simulated distributions, we use the JSD, a number between 0 and 1 with 0 indicating a

perfect match [104]. The JSD is only 0.023 for trees inferred from the San Diego base parameters

(Table A.6). The Uganda simulations have a larger divergence (Fig. 1.3a) between real and

simulated distributions (JSD: 0.082), with simulated data showing higher mean distances (means:

0.075 and 0.097). We observe similar patterns when we compute pairwise distances directly

from sequences and apply phylogenetic correction using the JC69+Γ model (Table A.6; Fig. A.3).

For all simulated datasets, the true trees have lower variance in pairwise distances compared

to estimated trees; this is consistent with the stochasticity of sequence evolution and the added

variance due to the inference uncertainty.

Our simulated trees, like real trees, include clusters of long terminal branches and short

internal branches, especially close to the root (Fig. A.4). The branch length distributions are

bimodal, with one peak close to 0 and another between 0.01 and 0.03 (Fig. 1.3b). However, the

second mode for the real trees is larger than the second mode of real data; for example, for San

Diego, the second peak is at 0.030 for real data and 0.023 for base simulated data. The JSD

divergence between branch length distributions of real and simulated trees are 0.102 for San

Diego (base) and 0.119 for Uganda. The distribution of branch lengths on true trees (as opposed

to inferred trees) has a similar shape (Fig. 1.3b) but a shorter tail of long branches and a reduced

JSD compared to real data (e.g. 0.044 for base San Diego; see Table A.6).
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Sensitivity to Parameters

Even though mean branch lengths can change (between 0.0053 and 0.0080) as a result of

changing EART and Ed (Fig. A.2), the overall distributions remain quite stable (Figs. 1.3b and A.3).

Similarly, patristic distances are not sensitive to EART (Fig. 1.3ab) nor to Ed (Fig. A.3). In terms of

branch lengths, the divergence from the real data changes only marginally as Ed and EART change

(Table A.7). While the distributions are stable with respect to these epidemiological parameters,

they are sensitive to others. For example, results are sensitive to the model of mutation rates. We

draw mutation rates from a Truncated Normal distribution (fitted to real data) and obtain close

matches to real data. However, other distributions (e.g. Exponential) yield significant deviation

from real distributions (Fig. A.3). Because of these deviations, we have only used the truncated

normal distributions for mutation rates everywhere.

1.3.2 Impact of Parameter Choices On the Epidemiology

Infected Population

The number of infected individuals increases with time and the rate of growth is faster for

larger EART values (Fig. A.5). For all tested values of EART , the number of infected individuals

grows close to linearly (Pearson r ≥ 0.966), indicating that the large at-risk population has not

saturated in the 10-year simulation period. As EART decreases from 8 years to 1/8 years, the total

number of infected individuals at the end of the simulation keeps decreasing (Fig. 1.4a). For

example, with degree 4, the average final number of infected individuals in the 10 year period is

6686, 4134, and 1273 with EART set to 1, 1/2, 1/8 year, respectively.

The model of contact network and the model of choosing the seed individuals have only

marginal effects on these outcomes. Edge-weighting the seed selections yields a slightly higher

(at most 12%) total number of infected individuals than the random selection (Table A.7). The

BA model of contact network leads to a slightly higher infection count when compared to the
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real data are inferred trees (as opposed to true trees), we compare them
to inferred trees on simulated data (built using FastTree 2 as running IQ-
TREE on simulated data was not feasible). We randomly subsample the
simulated dataset to match the number of sequences in the corresponding
real dataset (344 for San Diego; 893 for Uganda).

For San Diego, the mean patristic distance between sequences on
inferred trees is respectively 0.087 and 0.089 for the real and base simulated
datasets. The distributions of pairwise distances among inferred trees of
real and simulated datasets have similar shapes, but distances from real
data have higher variance (Fig. 3a). To quantify the divergence between the
real and simulated distributions, we use the Jensen-Shannon Divergence
(JSD), a number between 0 and 1 with 0 indicating a perfect match (Lin,
1991). The JSD is only 0.023 for trees inferred from the San Diego base
parameters (Table S6). The Uganda simulations have a larger divergence
(Fig. 3a) between real and simulated distributions (JSD: 0.082), with
simulated data showing higher mean distances (means: 0.075 and 0.097).
We observe similar patterns when we compute pairwise distances directly
from sequences and apply phylogenetic correction using the JC69+Γ

model (Table S6; Fig. S4). For all simulated datasets, the true trees have
lower variance in pairwise distances compared to estimated trees; this
is consistent with the stochasticity of sequence evolution and the added
variance due to the inference uncertanity.

Our simulated trees, like real trees, include clusters of long terminal
branches and short internal branches, especially close to the root (Fig. S2).
The branch length distributions are bimodal, with one peak close to 0 and
another between 0.01 and 0.03 (Fig. 3b). However, the second mode for the
real trees is larger than the second mode of real data; for example, for San
Diego, the second peak is at 0.030 for real data and 0.023 for base simulated
data. The JSD divergence between branch length distributions of real and
simulated trees are 0.102 for San Diego (base) and 0.119 for Uganda. The
distribution of branch lengths on true trees (as opposed to inferred trees)
has a similar shape (Fig. 3b) but a shorter tail of long branches and a
reduced JSD compared to real data (e.g., 0.044 for base San Diego; see
Table S6).

Sensitivity to parameters. Even though mean branch lengths can change
(between 0.0053 and 0.0080) as a result of changing EART and Ed
(Fig. S3), the overall distributions remain quite stable (Figs. 3b and S4).
Similarly, patristic distances are not sensitive to EART (Fig. 3ab) nor to
Ed (Fig. S4). In terms of branch lengths, the divergence from the real data
changes only marginally as Ed and EART change (Table S7). While the
distributions are stable with respect to these epidemiological parameters,
they are sensitive to others. For example, results are sensitive to the model
of mutation rates. We draw mutation rates from a Truncated Normal
distribution (fitted to real data) and obtain close matches to real data.
However, other distributions (e.g. Exponential) yield significant deviation
from real distributions (Fig. S4). Because of these deviations, we have only
used the truncated normal distributions for mutation rates everywhere.

3.2 Impact of parameter choices on the epidemiology

Infected population. The number of infected individuals increases with
time and the rate of growth is faster for larger EART values (Fig. S5). For
all tested values of EART , the number of infected individuals grows close
to linearly (Pearson r ≥ 0.966), indicating that the large at-risk population
has not saturated in the 10-year simulation period. As EART decreases
from 8 years to 1/8 years, the total number of infected individuals at the
end of the simulation keeps decreasing (Fig. 4a). For example, with degree
4, the average final number of infected individuals in the 10 year period is
6686, 4134, and 1273 with EART set to 1, 1/2, 1/8 year, respectively.

The model of contact network and the model of choosing the seed
individuals have only marginal effects on these outcomes. Edge-weighting
the seed selections yields a slightly higher (at most 12%) total number of
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Fig. 3. Kernel density estimates of the distributions of (a) patristic distances (path length)
between all pairs of sequencesand (b) branch lengths of real and simulated datasets for the
San Diego (SD) and Uganda (UG) datasets. Averages are shown as dots (Fig. S3). Black
denotes distributions computed from true (simulated) trees and grey denotes distributions
computed from trees inferred from sequences (IQ-TREE fro real and FastTree 2 for
simulated data). Note that real data only have inferred pairwise distances and branch lengths,
as true branch lengths are not known. EART is the expected time to start ART.

infected individuals than the random selection (Table S7). The BA model of
contact network leads to a slightly higher infection count when compared
to the ER (at most 7%) and WS (at most 8%) models (Figs. S6), but these
differences are marginal compared to impacts of EART and Ed (which,
when changed, leads to 43% and 152% change, respectively, in the number
of infected people compared to the base parameters). Finally, Uganda
simulations lead to higher infection count (64% versus 45%) compared to
San Diego (Table S7).

Treated population. The ratio of untreated to treated individuals is a
function of EART but not Ed (Fig. 4b). Note that this ratio remains
constant (at most 14.7% change) after year 4, has small changes in year
1 to 4, and experiences an initial period of instability for about 1 year
(Fig. S5), likely because all seeds are initially AU. With EART= 1 years,
the ratio is on average 0.507 after year 2; decreasing/increasing EART
reduces/increases the portion of untreated people. The 90-90-90 campaign
by UNAIDS (2014) aims to have 90% of the HIV population diagnosed, of
which 90% should receive treatment, of which 90% (i.e., 72.9% of total)
should be virally suppressed. Reaching the 90-90-90 goals in the epidemic
we model here requires EART between 1/2 and 1 year (assuming that
lack of viral suppression is fully attributed to lack of adherence). These
results are stable with respect to model of contact network, Ed, and seed
selection approach (Figs. 4b and S7). The only model choice that had a
noticeable effect on the results is the use of the ER network model, which
led to an increase in Untreated/Treated for Ed≤ 4 (Fig. S7). We note that
our simulated Uganda epidemic had twice the ratio of Untreated/Treated
compared to base San Diego (Table S7).

Figure 1.3: Kernel density estimates of the distributions of (a) patristic distances (path length)
between all pairs of sequences and (b) branch lengths of real and simulated datasets for the San
Diego (SD) and Uganda (UG) datasets. Averages are shown as dots (Fig. A.2). Black denotes
distributions computed from true (simulated) trees and grey denotes distributions computed
from trees inferred from sequences (IQ-TREE for real and FastTree 2 for simulated data). Note
that real data only have inferred pairwise distances and branch lengths, as true branch lengths
are not known. EART is the expected time to start ART.
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Figure 1.4: Sensitivity analysis of epidemiological outcomes. We show (a) the total number
of infected individuals, and (b) the ratio of the number of untreated vs. the number of treated
individuals (log-scale), vs. expected time to begin Antiretroviral Therapy (EART ) for the BA
model with various mean contact numbers (Ed) with all other parameters set to base values.
Untreated/treated = 1 is shown as a dashed black line, and the value of untreated/treated
corresponding to the “90-90-90” goal [105] is shown as a dashed blue line ((1−0.93)/0.93 ≈ 0.37).
The Untreated/Treated value corresponding to the simulated Uganda dataset has been shown as
a + symbol on (b).

ER (at most 7%) and WS (at most 8%) models (Fig. A.6), but these differences are marginal

compared to impacts of EART and Ed (which, when changed, leads to 43% and 152% change,

respectively, in the number of infected people compared to the base parameters). Finally, Uganda

simulations lead to higher infection count (64% versus 45%) compared to San Diego (Table A.7).

Treated Population

The ratio of untreated to treated individuals is a function of EART but not Ed (Fig. 1.4b).

Note that this ratio remains constant (at most 14.7% change) after year 4, has small changes in

year 1 to 4, and experiences an initial period of instability for about 1 year (Fig. A.5), likely

because all seeds are initially AU. With EART= 1 years, the ratio is on average 0.507 after year 2;

decreasing/increasing EART reduces/increases the portion of untreated people. The “90-90-90”

campaign by the Joint United Nations Programme on HIV/AIDS (UNAIDS) [105] aims to have
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90% of the HIV population diagnosed, of which 90% should receive treatment, of which 90%

(i.e., 72.9% of total) should be virally suppressed. Reaching the 90-90-90 goals in the epidemic

we model here requires EART between 1/2 and 1 year (assuming that lack of viral suppression is

fully attributed to lack of adherence). These results are stable with respect to model of contact

network, Ed , and seed selection approach (Figs. 1.4b and A.7). The only model choice that had a

noticeable effect on the results is the use of the ER network model, which led to an increase in

Untreated/Treated for Ed≤ 4 (Fig. A.7). We note that our simulated Uganda epidemic had twice

the ratio of Untreated/Treated compared to base San Diego (Table A.7).

1.3.3 Evaluating Inference Methods

Phylogenetic Error

From simulated sequences, we inferred trees under the GTR+Γ model using FastTree 2 [102],

and we computed the normalized Robinson–Foulds (RF) distance (i.e., the proportion of branches

included in one tree but not the other [106]) between the true trees and their respective inferred

trees (Fig. A.8). For all model conditions, the RF distance is quite high (0.36-0.58 for San Diego

and 0.25-0.40 for Uganda). However, we note that our datasets include many extremely short

branches, defined here as those where the expected number of mutations along the branch across

the entire sequence length is lower than 1. In our simulations, we have between 16% and 30% of

branches that are extremely short (Fig. A.8) and therefore hard to infer.

Clustering Methods

We measure the number of new infections caused by each person in the clusters with the

highest growth rate and compare it with the same value for the total population (Fig. 1.5). Over

the entire population, the average number of new infections caused by each person between years

9 and 10 is 0.028 for our base parameter settings. The top 1,000 people from the fastest growing
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Fig. 5. The effectiveness of clustering methods in finding high risk individuals. The average number of new infections between years 9 and 10 of the simulation caused by individuals
infected at year 9 in growing clusters. We select 1,000 individuals from clusters, inferred by either HIV-TRACE or TreeCluster, that have the highest growth rate (ties broken randomly). As
a baseline control, the average number of infections over all individuals (similar to expectations under a random selection) is shown as well. For a cluster with nt members at year t, growth
rate is defined as n9−n8√

n9
. The columns show varying expected degree (i.e., number of sexual partners), and all other parameters are their base values.

choose models appropriate to their specific epidemic of interest. To aid
users, our extensive documentation provides descriptions for each module
implementation and we provide model validation scripts.

For the simulation of HIV epidemics, novel statistical models can be
created to address the unrealistic assumptions. For example, our contact
network remains unchanged with time, whereas real sexual networks
are dynamic. Our transmission model does not directly model effective
prevention measures such as PrEP. Our sequences include substitutions,
but no recombination. Moreover, the models of sequence evolution we
used ignore many evolutionary constraints across sites. We also ignored
infections from outside the network (viral migration), assumed full patient
sampling, and we sampled all patients at the end time as opposed to varied-
time sampling. While these and other choices may impact results, we note
that our goal here was mainly to show the utility of FAVITES. We leave
an extensive study of the impact of each of these factors on the results to
future studies. Importantly, new models with improved realism to address
these issues can easily be incorporated, and continued model improvement
is a reason why we believe flexible frameworks like FAVITES are needed.

We observed relatively high levels of error in inferred phylogenies.
This is not surprising given the low rate of evolution and length of the pol
region (which we emulate). Further, our phylogenies include many super-
short branches, perhaps due to our complete sampling. Many transmission
cluster inference tools (e.g. PhyloPart, Cluster Picker, and TreeCluster) use
phylogenies during the inference process and thus may be sensitive to tree
inference error. Other tools like HIV-TRACE do not attempt to infer a full
phylogeny (only distances). The high levels of tree inference error may be
partially responsible for the relatively lower performance of TreeCluster
compared to HIV-TRACE. Nevertheless, TreeCluster had higher per capita
new infections in its fastest growing clusters than the population average,
indicating that the trees, although imperfect, still include useful signal
about the underlying transmission histories.

Using FAVITES, we compared TreeCluster and HIV-TRACE in terms
of their predictive power, and our results complement studies on real
data (Rose et al., 2017). Nevertheless, our simulations study has some
limitations that should be kept in mind. A major limitation is that
both methods we tested use a distance threshold internally for defining
clusters. The specific choice of threshold defines a trade-off between
cluster sensitivity and specificity, and the trade-off will impact cluster
compositions. T he best choice of the threshold is likely a function of
epidemiological factors, and the default thresholds are perhaps optimal
for certain epidemiological conditions, but not others. For example, we
observed that, for a minority of our epidemiological settings, TreeCluster
is more effective than HIV-TRACE in predicting growing clusters. A
thorough exploration of all epidemiological parameters and method
thresholds is left for future studies. On a practical note, FAVITES can

enable public health officials to simulate conditions similar to their own
epidemic and pick the best method/threshold tailored to their situation.

The approach we used for evaluating clustering methods, despite its
natural appeal, is not the only possible measure. For example, the best
way to choose high-risk individuals given clustering results at one time
point or a series of time points is unclear. We used a strict ordering
based on square-root-normalized cluster growth and arbitrary tie-breaking,
but many other metrics and strategies can be imagined (Wertheim et al.,
2018). For example, we may want to order individuals within a cluster
by some criteria as well and choose certain number of people per cluster
inversely proportional to the growth rate of the cluster. We simply chose
1,000 people to simulate a limited budget, but perhaps reducing/increasing
this threshold gives interesting results. A thorough exploration of the best
method for each budget is beyond the scope of this work. Similarly, we
leave a comprehensive study of the best strategies to allocate budgets based
on the results of clustering and better ways of measuring effectiveness, to
future work.
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Figure 1.5: The effectiveness of clustering methods in finding high risk individuals. The average
number of new infections between years 9 and 10 of the simulation caused by individuals infected
at year 9 in growing clusters. We select 1,000 individuals from clusters, inferred by either HIV-
TRACE or TreeCluster, that have the highest growth rate (ties broken randomly). As a baseline
control, the average number of infections over all individuals (similar to expectations under
a random selection) is shown as well. For a cluster with nt members at year t, growth rate is
defined as n9−n8√

n9
. The columns show varying expected degree (i.e., number of sexual partners),

and all other parameters are their base values.

TreeCluster clusters, in contrast, infect on average 0.066 new people.

Thus, the top 1000 people chosen among the growing clusters according to TreeCluster are

more than twice as infectious as a random selection of 1000 individuals. HIV-TRACE performs

even better than TreeCluster, increasing the per capita new infections among top 1,000 individuals

to 0.097 for base parameters, a 3.46x improvement compared to the population average. As EART

decreases, the total number of per capita new infections reduces; as a result, the positive impact of

using clustering methods to find the growing clusters gradually diminishes (Fig. 1.5). Conversely,

reducing EART leads to further improvements obtained using TreeCluster versus random selection

and using HIV-TRACE versus TreeCluster.

Changing Ed also impacts the results (Fig. 1.5). When Ed = 2, slowing the epidemic

down compared to the base case, both methods remain better than random, and HIV-TRACE

continues to outperform TreeCluster. However, when Ed is increased, the two methods first tie

at Ed= 8, and at Ed= 16, TreeCluster becomes slightly better than HIV-TRACE for most EART

values (Fig. 1.5). The advantage compared to a random selection of individuals is diminished

(improvements never exceed 70%) when the epidemic is made very fast growing by setting

EART≥ 2 and Ed= 16.
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1.4 Discussion

Our results demonstrated that FAVITES can simulate under different models and can

produce realistic data. A comparison of the fit between real and simulated data for Uganda and

San Diego points to the importance of data availability. For San Diego, where more studies

have been done and more sequence data were available, the fit between simulated and true data

was generally good (Table A.6). For Uganda, we had to rely on several sources (e.g. data from

McCreesh et al. (2017) [100] and LANL), and we had a reduced fit between simulations and real

data. Increased gathering and sharing of data, including sequence data, can in future improve our

ability to parameterize simulations.

Although we only explored viral epidemics, FAVITES can easily expand to epidemics

caused by other pathogens for which molecular epidemiology is of interest [107]. We also showed

that TreeCluster and HIV-TRACE, when paired with temporal monitoring, can successfully

identify individuals most likely to transmit, and HIV-TRACE performs better than TreeCluster

under most tested conditions. The ability to find people with increased risk of onward transmission

is especially important because it can potentially help public health officials better spend their

limited budgets for targeted prevention (e.g. Pre-Exposure Prophylaxis (PrEP)) or treatment (e.g.

efforts to increase ART adherence).

We studied several models for various steps of our simulations, but we did not exhaustively

test all models: FAVITES currently includes 21 modules and a total of 169 implementations (i.e.,

specific models) across them, and testing all model combinations is infeasible. To simulate San

Diego and Uganda, we aimed to choose the most appropriate set of 21 sub-models available

in FAVITES to create the end-to-end simulations. Each of these 21 sub-models has its own

limitations, as models inevitably do. However, it must be noted that limitations resulting from

model assumptions are limitations of the specific example simulation experiment we performed

in this manuscript, rather than limitations of the framework: FAVITES is designed specifically to
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be flexible, allowing the use of different models for different steps. If better models are developed

for each of these 21 modules, they can be easily incorporated. Like all statistical modeling,

appropriate choice of model assumptions is essential to the interpretation of the simulation results,

and it is important for the user to choose models appropriate to their specific epidemic of interest.

To aid users, our extensive documentation provides descriptions for each module implementation

and we provide model validation scripts.

For the simulation of HIV epidemics, novel statistical models can be created to address the

unrealistic assumptions. For example, our contact network remains unchanged with time, whereas

real sexual networks are dynamic. Our transmission model does not directly model effective

prevention measures such as PrEP. Our sequences include substitutions, but no recombination.

Moreover, the models of sequence evolution we used ignore many evolutionary constraints across

sites. We also ignored infections from outside the network (viral migration), assumed full patient

sampling, and we sampled all patients at the end time as opposed to varied-time sampling. While

these and other choices may impact results, we note that our goal here was mainly to show the

utility of FAVITES. We leave an extensive study of the impact of each of these factors on the

results to future studies. Importantly, new models with improved realism to address these issues

can easily be incorporated, and continued model improvement is a reason why we believe flexible

frameworks like FAVITES are needed.

We observed relatively high levels of error in inferred phylogenies. This is not surprising

given the low rate of evolution and length of the pol region (which we emulate). Further,

our phylogenies include many super-short branches, perhaps due to our complete sampling.

Many transmission cluster inference tools (e.g. PhyloPart, Cluster Picker, and TreeCluster)

use phylogenies during the inference process and thus may be sensitive to tree inference error.

Other tools like HIV-TRACE do not attempt to infer a full phylogeny (only distances). The high

levels of tree inference error may be partially responsible for the relatively lower performance

of TreeCluster compared to HIV-TRACE. Nevertheless, TreeCluster had higher per capita new
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infections in its fastest growing clusters than the population average, indicating that the trees,

although imperfect, still include useful signal about the underlying transmission histories.

Using FAVITES, we compared TreeCluster and HIV-TRACE in terms of their predictive

power, and our results complement studies on real data [22]. Nevertheless, our simulations study

has some limitations that should be kept in mind. A major limitation is that both methods we

tested use a distance threshold internally for defining clusters. The specific choice of threshold

defines a trade-off between cluster sensitivity and specificity, and the trade-off will impact cluster

compositions. The best choice of the threshold is likely a function of epidemiological factors, and

the default thresholds are perhaps optimal for certain epidemiological conditions, but not others.

For example, we observed that, for a minority of our epidemiological settings, TreeCluster is

more effective than HIV-TRACE in predicting growing clusters. A thorough exploration of all

epidemiological parameters and method thresholds is left for future studies. On a practical note,

FAVITES can enable public health officials to simulate conditions similar to their own epidemic

and pick the best method/threshold tailored to their situation.

The approach we used for evaluating clustering methods, despite its natural appeal, is

not the only possible measure. For example, the best way to choose high-risk individuals given

clustering results at one time point or a series of time points is unclear. We used a strict ordering

based on square-root-normalized cluster growth and arbitrary tie-breaking, but many other metrics

and strategies can be imagined [103]. For example, we may want to order individuals within

a cluster by some criteria as well and choose certain number of people per cluster inversely

proportional to the growth rate of the cluster. We simply chose 1,000 people to simulate a limited

budget, but perhaps reducing/increasing this threshold gives interesting results. A thorough

exploration of the best method for each budget is beyond the scope of this work. Similarly, we

leave a comprehensive study of the best strategies to allocate budgets based on the results of

clustering and better ways of measuring effectiveness, to future work.
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Chapter 2

A Two-State Model of Tree Evolution and

its Applications to Alu Retrotransposition
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Models of tree evolution have mostly focused on capturing the cladogenesis processes

behind speciation. Processes that derive the evolution of genomic elements, such as repeats,

are not necessarily captured by these existing models. In this paper, we design a model of tree

evolution that we call the dual-birth model, and we show how it can be useful in studying the

evolution of short Alu repeats found in the human genome in abundance. The dual-birth model

extends the traditional birth-only model to have two rates of propagation, one for active nodes

that propagate often, and another for inactive nodes, that with a lower rate, activate and start

propagating. Adjusting the ratio of the rates controls the expected tree balance. We present several

theoretical results under the dual-birth model, introduce parameter estimation techniques, and

study the properties of the model in simulations. We then use the dual-birth model to estimate the

number of active Alu elements and their rates of propagation and activation in the human genome

based on a large phylogenetic tree that we build from close to one million Alu sequences.

2.1 Introduction

Phylogenetic trees can be used to study the evolution of not just species, but of any

sequence that evolves. For example, multi-copy gene families [1, 108], cancer genomes [3, 2],

antibodies [4, 5, 6], segmental duplicates [7, 8], and long or short interspersed nuclear elements [9]

are all biological sequences that evolve, and many of these evolve within the genome of a single

species. The process of diversification for many evolving entities can be characterized by

propagation: an original copy of a sequence creates a new copy, and the two copies evolve

independently by accumulating mutations. Phylogenetics provides a natural framework for

studying such processes, but several challenges present themselves.

Given sufficiently long sequences and assuming our models of sequence evolution are

reasonably accurate, we can recover the phylogenetic trees from sequence data with high accu-

racy [50, 109]. However, unlike species-tree reconstruction, in which the entire genome can
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be used, reconstructing phylogenies of gene families, repeats, or antibodies is limited by the

length of the evolving entity. As a result, high levels of uncertainty are to be expected in trees

reconstructed from these types of sequences. These inherent limitations make accurate modeling

of underlying processes crucial, perhaps even more so than species-tree reconstruction.

Models of tree evolution describe probability distributions over the space of tree shapes

[29, 110, 30] and are useful in several ways. They can be used as the prior distribution in a

Bayesian inference [31, 32, 33]. They can also generate null distributions describing certain

neutral evolutionary process, which may then be rejected by trees inferred from the data [34,

35, 36]. Moreover, the diversification parameters are inherently of interest to the biologist [37].

Two well-known models of tree evolution are Yule (birth-only), in which each branch splits by

a Poisson process with a constant rate, and birth-death, in which, in addition to birth, branches

can go extinct with a constant rate. Each of these models have limitations and have inspired the

development of several alternative models [111, 112, 113, 114, 115, 116].

A main feature of a tree evolution model is the expected tree shape, especially the tree

balance (Fig. 2.1). The Yule model generates relatively balanced trees [117], more so than

typically seen in phylogenetic trees [114]. Some systems, such as certain viruses, are especially

known to have very unbalanced trees [118]. Most models of evolution are exchangeable, meaning

that, after a split, the two branches are indistinguishable. When evolution works in a series of

propagation events (i.e., where an element copies itself), there is a natural way in which one of

the child branches corresponds to the parent branch [119]. The new copy may have properties

that are different from the original branch, and as a result, non-exchangeable models may be

more appropriate. For example, the new child may be initially incapable of propagation until it

activates. In such situations, the tree will tend to be unbalanced. In the limit, if every new child is

impotent, one would expect a caterpillar-like tree (Fig. 2.1).

In this paper, we study a non-exchangeable extension of the Yule model, which we name

the dual-birth model. Each branch will split with one of two available rates. Branches that
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correspond to elements that have in the past propagated are considered active and have a high

rate of future propagation, whereas branches that have never propagated are considered inactive.

With some rate, the Unlike some previous models (e.g. BiSSE [116]), after every birth event, one

of the two children inherits the parent’s rate while the other child has the opposite rate (i.e., the

model is asymmetric in the terminology of Lambert and Stadler (2013) [119]). For this dual-birth

model, we describe methods for sampling the tree distribution, derive probability distributions

on the tree space, compute the expectation of various tree statistics, and introduce methods of

estimating the model parameters from data. In extensive simulations, we study the behavior of

the model and our estimators. We then use the model to study the evolution of Alu elements in

the human genome.

Alu elements are a family of Short Interspersed Nuclear Elements (SINEs), each ap-

proximately 300 base pairs (bp) long, that abound in the genomes of supraprimates and that

retrotranspose via Ribonucleic Acid (RNA) polymerase III-encoded RNAs [9]. There are ap-

proximately one million Alu elements in the human genome, meaning they comprise roughly

10% of the human genome. Although Alu elements have no known biological function of their

own [120], studying and understanding their retrotransposition in the genome can provide key

insight into their contributions to genetic disease [121] as well as useful information in the study

of supraprimate evolution [122, 123, 124].

A topic of interest regarding Alu elements is the number and identity of repeats that

are capable of propagating through retrotransposition [57, 125, 126]. Various hypotheses range

from the single source model to the transposon model, where all elements are assumed to be

equal in their ability to propagate [57]. We approach this question using phylogenetics and the

dual-birth model. We build a tree for close to one million Alu elements. Using the properties of

the dual-birth model, we estimate the number of Alu elements that have been active and estimate

the rates of Alu propagation and activation.
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2.2 Materials and Methods

2.2.1 Dual-Birth Model

The dual-birth model is similar to the Yule process, but unlike Yule, it is not exchangeable,

meaning that left and right branches are not generated using identical processes. The dual-birth

model is parameterized by two birth parameters: λa and λb. The generative process starts with a

single root node, which immediately splits into two child branches left, denoted by a, and right,

denoted by b. Further birth events occur on each child branch according to a Poisson process with

the constant rate λa on branch a and the constant rate λb on branch b. Thus, left and right are

governed by different rates. Each new node becomes the root of an identical process. The process

can be terminated at any point in time. This generates an unlabeled ordered, also known as

oriented [119], tree: each branch is labeled as either left or right (Fig. 2.1a). We define r = λa/λb

and λ = λa+λb, which together identify λa and λb. When r = 1, the dual-birth process is reduced

to the Yule process with a rate of λ/2.

Active/Inactive Elements

Consider a tree in which each branch corresponds to some entity, and the right child of

any branch corresponds to the same entity as the parent. Thus, each split is a propagation of

the parent entity. Moreover, entities are either active or inactive. A branch is active if it has

produced an offspring before and is otherwise considered inactive. The right child of any branch

is always active while the left one is inactive. Active entities propagate with rate λb (for “birth”),

and inactive entities activate and simultaneously propagate with rate λa (for “activation”). Note

that activation and the first propagation occur together (an alternative model could be that nodes

activate mid-branch and wait for a birth event). Once an entity activates, it remains active (thus,

there is no deactivation).

The dual-birth model can easily capture this scenario. If r = 1 (i.e., the Yule model),

38



active and inactive nodes have the same rates of birth, and thus, their difference is inconsequential.

When r < 1, new entities activate (i.e., propagate for the first time) with a rate λa that is lower

than the rate λb with which nodes that are already active propagate (Fig. 2.1b). Allowing λa > λb

would result in r > 1, which yields a model that is non-identifiable with the model that has rate

1/r. Setting r > 1 would correspond to a scenario where the rate of propagation reduces after the

first activation, and we don’t know of any scenario that justifies such reductions. Thus, our model

defines λa ≤ λb to remain identifiable.

One application of the dual-birth model is to study Alu elements, though the model may

prove useful for other systems, such as retroviruses or gene families. Each Alu element appears at

a specific position in the genome, and via retrotransposition, it can create a new copy of itself

elsewhere in the genome, leading to a split in the repeat evolutionary tree. Each branch of the

tree can thus be labeled by a position in the genome, which is the site at which the corresponding

element resides. One child branch inherits the same position as the parent (and is thus active),

and the other branch is the new copy, which is assumed to be initially inactive. The inactive state

captures the observation that most Alu elements don’t propagate [54]. The model allows for the

chance that some inactive elements become active and start propagating, perhaps due to mutations

or due to changes in their genomic context.

Tree Balance

The Yule model generates balanced trees, more so than trees typically found in phyloge-

netic databases [34, 114, 115]. Similar to several other models of tree evolution [111, 114, 116],

the dual-birth model provides a natural way to control tree balance (we provide an extensive

comparison to other models in the Discussion section). Consider an extreme case in which only

one element is ever active. The resulting tree is a caterpillar, which will include only one cherry

(an internal node is called a cherry if both of its children are leaves, i.e., terminal nodes). This

outcome can be naturally achieved in dual-birth by setting λa = 0 (i.e., r = 0). When we expect
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FIGURE 1. Dual-birth model. (a) A caterpillar tree with one cherry (node 4). The tree is generated by the dual-birth model;
right branches (dashed light gray) are sampled from the Poisson process with rate λb, and left branches (solid dark gray) are sampled
with rate λa. Internal nodes are ranked by distance to the root (ranks shown below nodes), and the tree is divided into time intervals
between consecutive nodes. (b) With r=λa/λb=0, only caterpillar trees can be generated; as r increases toward 1, the tree becomes
more balanced and thus has more cherries (dashed light gray). (c) All three possible tree shapes with five leaves are shown on top; the
second row shows Ψ, all possible rankings of tree shape 2; the third row shows Ω, all orderings of tree shape 2. The last row demonstrates
that, starting from a ranked ordered tree, one change of ranking followed by a change of ordering results in a tree identical to the original
tree.

will be denoted by tω. For e=(u,v)∈E, we refer to δ(e)1

by δi where i=ψ(v) (e.g. δ1 ...δ4 in Fig. 1a).2

Probability distributions.— We now derive probability3

distributions on tree shapes conditioning on fixed n. Here4

we give the main results and provide the proofs in the5

Proofs section of the Supplement.6

Theorem 1. Let X be a random variable (r.v.) over7

ordered ranked tree shapes and distributed according to8

the dual-birth model with parameter r=λa/λb. Then,9

Pr(X=Tψω ;n)=
rnr−1

∏n−2
i=1

(
(r−1)li+i+1

) (1)

Computing Equation 1 simply requires knowing the10

number of right leaves (nr) and the number of its left11

branches if the tree is terminated at each node i (li); all of12

these can be computed in time O(n) for an ordered tree.13

Figure S1 shows the perfect match between Equation 114

and observed frequencies in simulations for all ranked15

ordered tree shapes with n=6 and shows that, with r�16

1, the caterpillar tree shape has a high probability.17

The left/right order of nodes cannot be estimated18

from sequence data, and thus, it would be more useful19

to compute the probability distribution over unordered20

ranked tree shapes. Since all orderings of a ranked tree21

are distinct, the probability of a ranked tree simply needs22

to marginalize over all possible orderings. Thus,23

Corollary 1. For Y , an r.v. over ranked tree shapes24

with n leaves and distributed according to the dual-birth25

model,26

Pr(Y =Tψ;n)=
∑

ω∈Ω(Tψ)

Pr(Tψω ) (2)

where Ω gives the set of all orderings of Tψ.27

This computing requires an exponential number of 28

computations to iterate all orderings (the recursive 29

formula for that iteration is given in the supplement, 30

Eq. S5. Whether efficient algorithms for computing this 31

probability exist is unclear to us. See Figure S1 for an 32

example distribution and matching simulations. 33

Next, we turn to computing the probability 34

distribution over unranked shapes. This can be done 35

by enumerating all possible rankings of the unranked 36

tree and summing up their probabilities. The set of 37

all rankings, Ψ(T ), is simply the set of all the linear 38

extensions of the POSET defined by the tree shape. 39

However, a final complication needs to be addressed. 40

Recall that leaves are unlabeled. For a non-cherry 41

symmetric node u (i.e., sub-tree shapes below u1 and u2 42

are identical), take any ordering of any ranking of nodes 43

below u. Now swap ω(u1) and ω(u2) and also swap 44

the rankings of nodes below ω(u1) with the rankings of 45

the identical nodes under ω(u2) (Fig. 1c); this would 46

produce an identical tree shape. However, our process 47

will count this identical tree shape twice. To account for 48

this, we need to divide the total probability by two for 49

every non-cherry symmetric node. Thus, 50

Corollary 2. For Z, an r.v. over tree shapes with n 51

leaves and distributed according to the dual-birth model, 52

Pr(Z=T ;n)=
1

2σ(T )

∑

ψ∈Ψ(T )

Pr(Tψ) (3)

where Ψ gives all rankings of T and σ(T ) is the number 53

of non-cherry symmetric nodes in T . 54

Weighted trees.— Given an ordered weighted tree 55

shape T
ψ
ω , we can easily compute the probability density 56

Figure 2.1: Dual-birth model. (a) A caterpillar tree with one cherry (node 4). The tree is
generated by the dual-birth model; right branches (dashed light gray) are sampled from the
Poisson process with rate λb, and left branches (solid dark gray) are sampled with rate λa.
Internal nodes are ranked by distance to the root (ranks shown below nodes), and the tree is
divided into time intervals between consecutive nodes. (b) With r = λa/λb = 0, only caterpillar
trees can be generated; as r increases toward 1, the tree becomes more balanced and thus has
more cherries (dashed light gray). (c) All three possible tree shapes with five leaves are shown
on top; the second row shows Ψ, all possible rankings of tree shape 2; the third row shows Ω,
all orderings of tree shape 2. The last row demonstrates that, starting from a ranked ordered tree,
one change of ranking followed by a change of ordering results in a tree identical to the original
tree.

to have many more inactive nodes than active nodes, we would still expect to see an unbalanced

tree with few cherries. This outcome, too, can be achieved by a natural choice of λa� λb, which

results in r� 1. As r increases, the tree becomes gradually more balanced (Fig. 2.1b). With

r = 1, the tree is as balanced as expected under the Yule model.

2.2.2 Theoretical Properties of the Dual-Birth Model

Notations and definitions

A connected Directed Acyclic Graph (DAG) with no undirected cycles defines a tree. We

only consider binary trees in which all nodes either have outdegree zero (leaves) or two (internal

nodes). Two trees are considered to have the same shape if there exists a one-to-one mapping

40



between their nodes such that the head and tail of every edge in one tree map to the head and

tail of exactly one edge in the other tree. In this paper, we care about the space of distinct tree

shapes. In the tree-shape space, leaves are not distinguished (i.e., a tree shape is unlabeled). For

simplicity of presentation, we represent a tree shape on n leaves using T = (V,E), where V is the

set of n−1 internal nodes and E is the set of internal edges (u,v) from parent node u to child

node v. Note that terminal edges (connecting internal nodes to leaves) and leaves are not part of

E and V , and as such, are implicit in the T formulation (each internal node has to have outdegree

two). We use u1 and u2 to denote the children of u, and we use ⊗ to denote a generic unlabeled

leaf. Note that T defines a Partially Ordered Set (POSET) on V .

Recall a node v ∈V is called a cherry if both of its children are leaves. A tree shape is

called caterpillar if it has only one cherry (Fig. 2.1a); in contrast, a fully-balanced tree has exactly

n/2 cherries. The number of cherries of a tree is denoted as c(T ).

Let N = {0,1, . . . ,n−2}. A bijective function ψ : V 7→N is a ranking of a tree T = (E,V )

if for each edge (u,v) ∈ E, we have ψ(u)< ψ(v). A ranked tree shape is defined as T ψ = (T,ψ).

Each ranking is a topological sorting of the tree (i.e., is a linear extension of the POSET defined

by the tree shape). We use Ψ(T ) to denote the set of all possible rankings of the tree shape T

(Fig. 2.1c).

An ordered tree shape is a tree shape in which left and right child nodes are distinguished

(i.e., the tree is oriented). More precisely, ω : V 7→ {0,1} is a valid order for a tree shape T iff

ω(u1)+ω(u2) = 1 for every (u,u1),(u,u2) ∈ E and ω(r) = 1 for the root node r. We call v a

left child/node when ω(v) = 0 and otherwise call it a right child/node. A branch leading to a left

(right) child is called a left (right) branch. An ordered tree shape is denoted by T ω = (T,ω). Note

that, in this definition, leaves are not directly assigned a left/right side. Leaves below a cherry

are indistinguishable; leaves that are sister to internal nodes are considered to have the opposite

side of their sibling. For example, in Figure 2.1a, the leaf directly below the root is considered a

left node because its sister, the node ranked 1, is a right node. Also, Ω(T ψ) denotes the set of all
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possible orderings that are valid for T ψ (Fig. 2.1c).

A ranked ordered tree shape is defined by T ψ

ω = (T,ψ,ω). For ease of notation, we define

ωi = ω
(
ψ−1(i)

)
(the order of the node ranked i). For 0 < i < n and the ranked ordered tree

T ψ

ω , we define li(T
ψ

ω ) = 1+∑
i−1
k=1 ωk and it is easy to show that li(T

ψ

ω ) gives the number of left

branches (u,v) with ω(u) < i and ω(v) ≥ i. In other words, li(T
ψ

ω ) gives the number of left

terminal branches if the tree T ψ

ω is terminated at the time when node i is created. Where clear by

the context, we simply write li (Fig. 2.1a). We define nl = ln−1 and nr = n−nl; these definitions

can be intuitively considered to show the number of left and right terminal branches, respectively,

if we assign an order to all terminal branches (e.g. nr = nl = 3 in Fig. 2.1a).

We refer to a tree shape with ultrametric branch lengths as a weighted shape. A weighted

shape is defined by t = (T,δ ,τ), where δ : E 7→ R gives the length of internal branches and τ

gives the distance from the root to all leaves; note that τ has to be larger than the largest distance

to the root from any internal node. Node ages define a unique ranking on any weighted shape. A

weighted shape t can also be assigned an order, ω , and will be denoted by tω . For e = (u,v) ∈ E,

we refer to δ (e) by δi where i = ψ(v) (e.g. δ1 . . .δ4 in Fig. 2.1a).

Probability Distributions

We now derive probability distributions on tree shapes conditioning on fixed n. Here we

give the main results and provide the proofs in Section B.1.1.

Theorem 1. Let X be a random variable (r.v.) over ordered ranked tree shapes and distributed

according to the dual-birth model with parameter r = λa/λb. Then,

Pr(X = T ψ

ω ;n) =
rnr−1

∏
n−2
i=1
(
(r−1)li + i+1

) (2.1)

Computing Equation 2.1 simply requires knowing the number of right leaves (nr) and the

number of its left branches if the tree is terminated at each node i (li); all of these can be computed
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in time O(n) for an ordered tree. Figure B.1 shows the perfect match between Equation 2.1 and

observed frequencies in simulations for all ranked ordered tree shapes with n = 6 and shows that,

with r� 1, the caterpillar tree shape has a high probability.

The left/right order of nodes cannot be estimated from sequence data, and thus, it would be

more useful to compute the probability distribution over unordered ranked tree shapes. Since all

orderings of a ranked tree are distinct, the probability of a ranked tree simply needs to marginalize

over all possible orderings. Thus,

Corollary 1. For Y , an r.v. over ranked tree shapes with n leaves and distributed according to

the dual-birth model,

Pr(Y = T ψ ;n) = ∑
ω∈Ω(T ψ )

Pr(T ψ

ω ) (2.2)

where Ω gives the set of all orderings of T ψ .

This computing requires an exponential number of computations to iterate all orderings

(the recursive formula for that iteration is given in Equation B.5. Whether efficient algorithms for

computing this probability exist is unclear to us. See Figure B.1 for an example distribution and

matching simulations.

Next, we turn to computing the probability distribution over unranked shapes. This

can be done by enumerating all possible rankings of the unranked tree and summing up their

probabilities. The set of all rankings, Ψ(T ), is simply the set of all the linear extensions of the

POSET defined by the tree shape. However, a final complication needs to be addressed. Recall

that leaves are unlabeled. For a non-cherry symmetric node u (i.e., sub-tree shapes below u1 and

u2 are identical), take any ordering of any ranking of nodes below u. Now swap ω(u1) and ω(u2)

and also swap the rankings of nodes below ω(u1) with the rankings of the identical nodes under

ω(u2) (Fig. 2.1c); this would produce an identical tree shape. However, our process will count

this identical tree shape twice. To account for this, we need to divide the total probability by two

for every non-cherry symmetric node. Thus,
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Corollary 2. For Z, an r.v. over tree shapes with n leaves and distributed according to the

dual-birth model,

Pr(Z = T ;n) =
1

2σ(T ) ∑
ψ∈Ψ(T )

Pr(T ψ) (2.3)

where Ψ gives all rankings of T and σ(T ) is the number of non-cherry symmetric nodes in T .

Weighted Trees

Given an ordered weighted tree shape T ψ

ω , we can easily compute the probability density

function (p.d.f) for the length of each of its internal branches. Recall δi is the time between

internal nodes ranked i−1 and i (i.e., an interval), which is simply the length of a specific branch.

Given the tree shape, δi follows an exponential distribution with rate λi = λali +λb(i+1− li).

This is because the branch length is simply the minimum of all exponential r.v.s active in the

corresponding interval, which itself, is an exponential r.v. with the total rate. Furthermore, since

each interval is independent of the other intervals given T ψ

ω , the joint probability density of

T ψ

ω and a set of internal branch lengths can be computed by multiplying the probability of T ψ

ω

(Eq. 2.1) by the probability density of every branch length given T ψ

ω . Finally, to compute the

joint probability density of a given tree and all its branch lengths, we need to also multiple the

probability of no births in the final interval of length δn−1 = τ−∑
n−2
1 δi; this is the probability of

no events for an exponential with rate ln−1 in time δn−1; i.e., e−ln−1δn−1 .

Expected Number of Cherries and Active Leaves

We now ask the following question: how many cherries and how many active nodes are

expected in a dual-birth tree generated with rate ratio r?

A parsimony analysis is constructive here. Activation events can be considered evolution-

ary changes. Given an unordered tree, the most parsimonious ordering is one that implies the

minimum number of activation events. The number of activations is simply the number of left
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branches that have children. By making every internal node that is sister to a leaf a right node

and arbitrarily ordering the rest, one can show that the most parsimonious ordering has exactly

one activation for each cherry in the tree, counting the root as an activation (Lemma 1). The

parsimony analysis would only be relevant for r� 1, when one would expect very few activations.

As r increases, the tree becomes more balanced, and we would expect more cherries. We now

formalize this intuition.

Theorem 2. For a tree shape Z generated by the dual-birth model with r = λa/λb, let C = c(Z)/n

be an r.v. capturing the fraction of cherries; then,

lim
n→∞

E(C) =

√
r

1+ r+
√

r
(2.4)

Corollary 3. For an r.v. Nr capturing the fraction of right (i.e., active) leaves in tree shape T ,

lim
n→∞

E(Nr) =

√
r

1+
√

r
(2.5)

The proofs can be found in Section B.1.1. As Figure 2.2a shows, these expectations

closely match simulations results. As r increases, the expected frequency of cherries increases

until it reaches its peak at 1⁄3 for r = 1. The number of active elements follows a similar pattern

and reaches its peak at 1⁄2 for r = 1. Thus, under the Yule model, only half the nodes will be

expected to be active (recall that an active element is defined as one that has already propagated).

Also note r = x and r = 1
x differ only in what elements are labeled left or right, and thus, they

are indistinguishable for unordered trees. As noted before, r > 1 does not have a meaningful

interpretation in biological processes that we consider; thus, we focus on 0≤ r ≤ 1.

Expected Branch Length

A natural quantity of interest under any model of tree evolution is the expected length of a

random branch. For example, under the Yule model, branches are exponentially distributed with
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FIGURE 2. Theoretical expectations of (a) cherry fraction (dashed dark gray line) and active leaf fraction (dashed light gray line),
and (b) branch length (dashed dark gray line) and pendant branch length (dashed light gray line) versus simulated distributions (in box
plots) using 100 replicates with n=4096, λ=48, and varying values of r (x-axis) from 1/1024 to 1. Note that the number of cherries is
the maximum parsimony estimate of the number of active elements, and the most parsimonious estimate works well for low values of r.

Figure 2b shows that the conjectured results closely1

match the observed mean terminal branches for a wide2

range of r values. Note that changing λa simply scales3

all lengths, so our simple simulations have explored all4

free parameters of the dual-birth model (albeit, only for5

r∈ [10−4,1] range). Regardless of whether our conjecture6

is true (which cannot be proven by simulations), the close7

match of Equation 7 and simulated results means that8

we can use it to provide an approximate estimator of r.9

Parameter estimation.— Theorem 2 enables us to10

estimate the r parameter for a given tree. Given a11

tree with c cherries, and for x=c/n, solving for r in12

Equation 4 results in the following relationship (Fig. S2):13

14

r̂(x)=

(
1−x−

√
(x+1)(1−3x)

2x

)2

(8)

for x≤ 1
3 and else r̂(x)=1.15

An alternative estimator can be designed by combining16

Theorem 3 and Conjecture 1 for expected total and17

terminal branch length. Given a tree with an average18

branch length of d and an average terminal branch length19

of l, solving Equations 6 and 7 for r and λa, we can design20

the following estimator for large n:21

r̂(b,l)=

(
1−
√

2

(
1− d

l

))2

(9)

Further approximating the total average branch length22

to be the mean of internal branch lengths (i) and23

terminal branch lengths (a good approximation for large24

n), we can further simplify Equation 9 to:25

r̂(i,l)=

(
1−
√

1− i
l

)2

(10)

Having estimated r, we can easily use Equation 6 26

to get an estimate of λ from the observed mean 27

branch length for large n. Note that, absent a proof 28

for Conjecture 1, Equation 9 should be treated as an 29

approximate estimator. Also note that this approximate 30

estimator assumes the given tree itself was generated 31

by the dual-birth model (e.g. it is not the result of 32

subsampling the tips of a tree generated by the dual- 33

birth model). We discuss statistical properties of both 34

estimators in the discussion section. 35

Sampling the dual-birth model.— When conditioning 36

on n, the number of tips, a simple algorithm can be 37

used to sample the space of ordered weighted tree shapes 38

defined by the dual-birth model. 39

We start with a single-node tree and iteratively add 40

new nodes until the tree has n leaves. We use a heap 41

to keep a list of current leaves sorted by their distance 42

to the root. In each iteration, we add two child nodes 43

to the highest leaf in the tree (i.e., the leaf closest to 44

the root); we sample from two exponential distributions 45

with rates λa and λb for the left and right child’s branch 46

lengths, respectively. The two new nodes are added to 47

the heap of leaves, and the parent is removed from the 48

heap. Once the loop has terminated, we truncate the tree 49

by shrinking all terminal edges except the one attached 50

to the leaf that is closest to the root such that all leaves 51

are equidistant to the root. 52

Hartmann et al. have described various strategies for 53

sampling trees with n leaves (Hartmann et al., 2010). Our 54

sampling procedure falls under what they have termed 55

Simple Sampling Algorithm (SSA). As they point out, 56

the SSA procedure produces the right distribution on 57

tree topologies for pure birth models, like ours, because, 58

once the process reaches n tips for the first time, it never 59

goes back to having fewer tips A remaining question 60

is what distribution should be used to decide the time 61

Figure 2.2: Theoretical expectations of (a) cherry fraction (dashed dark gray line) and active
leaf fraction (dashed light gray line), and (b) branch length (dashed dark gray line) and pendant
branch length (dashed light gray line) versus simulated distributions (in box plots) using 100
replicates with n = 4096, λ = 48, and varying values of r (x-axis) from 1/1024 to 1. Note that
the number of cherries is the maximum parsimony estimate of the number of active elements,
and the most parsimonious estimate works well for low values of r.

rate 1/2λ [32]. In our model, the expected branch length depends on both λ and r. In all the

results given below, we assume all the leaves are sampled.

Theorem 3. For a weighted tree shape t generated by the dual-birth model with parameters r

and λ conditioned on having n leaves, let D be an r.v. giving the length of a random branch in t;

i.e., D = δI for I ∼U (1,n−2). Then,

lim
n→∞

E(D)→ 1
2λ

(
r+1√

r

)
=

1
λa

√
r

2
(2.6)

The proof can be found in Section B.1.1. For a fixed λ , increasing r in (0,1] reduces the

expected branch lengths, resulting in the minimum value under the Yule model (Fig. 2.2b).

Expected Terminal Branch Length

Under the Yule model, terminal and internal branch lengths have the same expected

length [32]. For r� 1, we expect that inactive entities result in long terminal branches and
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relatively short internal branches. These expectations can be confirmed in simulations. As

expected, close to r = 1, the mean terminal branch length is close to the mean branch length but

the two values gradually diverge as r decreases (Fig. 2.2b). Therefore, the difference between

average terminal and internal branch lengths is a function of r, and therefore, a closed-form

formula for the expected terminal branch length would be useful in building an estimator of r.

While we don’t have a proven result for the terminal branch length, based on simulations, we

present a conjecture. Note that this conjecture was purely reached based on our intuition and

trial-and-error, starting from Equation 2.6 and modifying the denominator until a close match to

the empirical values was obtained.

Conjecture 1. For a weighted tree shape t generated by the dual-birth model with parameters

r and λ conditioned on having n leaves, let L be an r.v. giving the length of a random terminal

branch in t. Then,

lim
n→∞

E(L)→ 1
λa

( √
r

1+2
√

r− r

)
(2.7)

Figure 2.2b shows that the conjectured results closely match the observed mean terminal

branches for a wide range of r values. Note that changing λa simply scales all lengths, so our

simple simulations have explored all free parameters of the dual-birth model (albeit, only for

r ∈ [10−4,1] range). Regardless of whether our conjecture is true (which cannot be proven by

simulations), the close match of Equation 2.7 and simulated results means that we can use it to

provide an approximate estimator of r.

Parameter Estimation

Theorem 2 enables us to estimate the r parameter for a given tree. Given a tree with

c cherries, and for x = c/n, solving for r in Equation 2.4 results in the following relationship
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(Fig. B.2):

r̂(x) =
(

1− x−
√
(x+1)(1−3x)

2x

)2

(2.8)

for x≤ 1
3 and else r̂(x) = 1.

An alternative estimator can be designed by combining Theorem 3 and Conjecture 1 for

expected total and terminal branch length. Given a tree with an average branch length of d and an

average terminal branch length of l, solving Equations 2.6 and 2.7 for r and λa, we can design the

following estimator for large n:

r̂(b, l) =

(
1−
√

2
(

1− d
l

))2

(2.9)

Further approximating the total average branch length to be the mean of internal branch

lengths (i) and terminal branch lengths (a good approximation for large n), we can further simplify

Equation 2.9 to:

r̂(i, l) =

(
1−
√

1− i
l

)2

(2.10)

Having estimated r, we can easily use Equation 2.6 to get an estimate of λ from the

observed mean branch length for large n. Note that, absent a proof for Conjecture 1, Equation 2.9

should be treated as an approximate estimator. Also note that this approximate estimator assumes

the given tree itself was generated by the dual-birth model (e.g. it is not the result of subsampling

the tips of a tree generated by the dual-birth model). We discuss statistical properties of both

estimators in Section 2.4.2.

Sampling the Dual-Birth Model

When conditioning on n, the number of tips, a simple algorithm can be used to sample the

space of ordered weighted tree shapes defined by the dual-birth model.

We start with a single-node tree and iteratively add new nodes until the tree has n leaves.
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We use a heap to keep a list of current leaves sorted by their distance to the root. In each iteration,

we add two child nodes to the highest leaf in the tree (i.e., the leaf closest to the root); we sample

from two exponential distributions with rates λa and λb for the left and right child’s branch lengths,

respectively. The two new nodes are added to the heap of leaves, and the parent is removed from

the heap. Once the loop has terminated, we truncate the tree by shrinking all terminal edges

except the one attached to the leaf that is closest to the root such that all leaves are equidistant to

the root.

Hartmann et al. have described various strategies for sampling trees with n leaves [81].

Our sampling procedure falls under what they have termed Simple Sampling Algorithm (SSA).

As they point out, the SSA procedure produces the right distribution on tree topologies for pure

birth models, like ours, because, once the process reaches n tips for the first time, it never goes

back to having fewer tips. A remaining question is what distribution should be used to decide

the time between when n leaves first become present until we stop the simulation (call it τ ′). Let

h(τ ′) be the p.d.f of that waiting time. If the time between when we have n leaves and the the

birth of leaf n+1 is given by x > τ ′, then τ ′ should be uniformly sampled between zero and x.

Moreover, the probability of sampling each tree with n leaves should be proportional to x, the

time it remains an n-leaf tree. Thus, as Hartmann et al.show, by summing over all possible values

of x, we get:

h(τ ′) ∝

∫
∞

x=τ ′
x.h(τ ′|x).gn−1(x) dx =

∫
∞

x=τ ′
x.

1
x
.gn−1(x) dx

=
∫

∞

x=τ ′
gn−1(x) dx (2.11)

where gn−1 is the p.d.f of a random variable (r.v.) for x. In our model, this r.v. is equivalent to

the minimum of n exponential r.v.s, ln−1 of which have rate λa and the rest have rate λb; thus,

g(x) is the p.d.f of an exponential with rate λn−1 = λaln−1 +λb(n− ln−1). It is easy to see that

Equation 2.11 simplifies to h(τ ′) ∝ gn−1(τ
′). Thus, the correct waiting time between the last birth

event and the end of the simulation is identical to the waiting time for the birth event that would
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create n+1 leaves.

Note that, if we were conditioning on τ (the tree height) instead of n, the same procedure

would remain correct, except we would continue until all leaves have at least the required height

and would then cut branches that are longer than τ .

2.2.3 Simulation Setup

Datasets

Given a set of parameters, we use our implementation of the fixed-n sampling procedure

to generate 20 replicate “true” trees. We then deviate each tree from ultrametricity by multiplying

each branch of the tree by a multiplier sampled from a gamma distribution with shape and rate

both set to α (with an expected value of 1). For each true tree, we then use INDELible [127] and

the GTR+Γ model [48] to simulate a multiple sequence alignment with no indels, which is later

used to infer the tree. The simulation parameters are n, r, λ , and deviation from ultrametricity

(i.e., the shape of the Gamma distribution, α). For sequence evolution, the parameters to select

are k (the sequence length), the GTR parameters, and the Gamma rate across sites. We also vary

model of sequence evolution used for inference.

Table 2.1: Experiments (default parameters in bold)

# Parameter Parameter Values
1 r (const. bl) 10−4,10−3,10−2,10−1,100

2 Model JC69, K80, HKY85, GTRCAT, GTR+Γ

3 λ 33.866,84.664,169.328,338.655,846.64
4 k 50,100,200,300,600,1200,2400,4800
5 n 25,50,250,500,1000,2000,4000
6 α (clock) 2.952,5.904,29.518,147.591,295.182,∞

We perform six experiments, each varying a single parameter (Table 2.1). The exception

is r, for which we modify both r and λ to keep expected branch length constant. Each experiment

is centered around a default set of parameters chosen to emulate our Alu dataset (details in
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Section B.2.1).

Methods

We infer trees from the simulated sequence data using FastTree-II [102] and RAxML [128].

We estimate r using the cherry-based (Eq. 2.8) and length-based (Eq. 2.9) estimators.

Error Measurement

We measure the accuracy of inferred tree topologies using the normalized RF dis-

tance [106], which is equal to the proportion of the branches that are different between the

true and inferred trees. To account for the sensitivity of RF distance to rogue tips, especially for

caterpillar trees, we also compute the Matching Split (MS) metric, implemented in TreeCmp [129].

We compute differences between the log-likelihood scores of true and inferred trees using RAxML.

To measure the accuracy of our estimates of λ and r, we compute the log-ratio of true versus

inferred values for both parameters and show the resulting distribution.

2.2.4 Human Alu Dataset

Most analyses of Alu elements have relied upon the classification of elements into sub-

families and using consensus sequences. Because the subfamily classification is potentially

incomplete [55], we analyze a large dataset of 885,011 Alu repeats.

Data Acquisition

We use the Dfam database [130] to search for Alu repeats. We first create a database

containing only Human Alu profile HMMs from Dfam. We then use nhmmer (via Dfam’s

dfamscan.pl script) to scan the hg19 reference genome using this subset of Dfam. nhmmer

computes a bitscore for each result, which is a metric of how well the sequence matches its

respective profile HMM in comparison to how well a random sequence would match the same
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model. Our motivation to use Dfam profile HMMs to scan for Alu sequences is their sensitivity

to detect sequences with deviation from the subfamily consensus, but this same sensitivity also

allows for false hits. To combat this, for each Alu subfamily, we filter out all sequences with low

bitscores. We use unique bitscore thresholds for each Alu subfamily because of the heterogeneity

of bitscore distributions across subfamilies (see Figs. B.3 and B.4 for our choices of thresholds).

Alignment and Tree Inference

We estimated a MSA on the set of 936,664 bitscore-filtered Alu sequences using

PASTA [131]. Some of the sequences in the resulting MSA were short (Fig. B.5), which could

negatively impact tree inference. To combat this potential risk, we filtered out any sequences that

had less than 200 non-gap characters in the MSA. Our final dataset contained 885,011 full-length

Alu sequences. Our MSA included some extremely gappy sites, as is expected for any dataset

including these many sequences. We masked all sites in the PASTA alignment where 99% or more

of characters were gaps. Prior to masking, there was a total of 266,699,287 non-gap characters in

the MSA; masking reduced the number to 264,144,814 non-gap characters in the MSA (99.04%

retention). Since gaps are treated as missing data in our tree inference methods (and not as

phylogenetically informative indels), the removal of 1% of the data should result in minimal loss

of phylogenetic information. The consensus sequence of the final alignment (Fig. B.6a) included

many conserved sites. We used FastTree 2 [102] to infer a tree on the masked alignment under the

GTR+Γ model. The resulting tree was not well-supported (Fig. B.7), a fact that is not surprising

considering the short sequence length and low divergence. We also used RAxML [128] to infer a

tree on the masked alignment under the GTR+CAT model. Our attempts to infer a tree under the

GTR+Γ model using RAxML were unsuccessful.

Finally, to test the stability of our estimates, we performed a series of subsampling

experiments in which we performed 20 subsampling replicates for n = 1,000, 10,000, and 100,000

sequences, inferred trees using FastTree 2, and estimated parameters from those trees just as
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before.

2.3 Results

2.3.1 Simulations: Dual-Birth Model

We study the effects of parameters on tree reconstruction accuracy and the ability to

estimate r.

Tree Accuracy

The topological tree accuracy was heavily influenced by r, λ , and sequence length

(Fig. 2.3a). Shortening branch lengths (by increasing λ ) increased the error (Fig. 2.3a, upper-

right) as expected. Reassuringly, increasing sequence length reduced the error; while with

the default 300 sites, the topological error was 38%, the error reduced to 6% with 4,800 sites

(Fig. 2.3a, lower-left).

Most interestingly, the topological error depended on the parameter r (Fig. 2.3a, upper-

left). When r = 1 (i.e., the Yule model), tree estimation error was relatively low. As we reduced r,

which progressively made the true trees less balanced, the topological error quickly increased

(Fig. 2.3a, upper-left). With r = 10−4, where the tree is almost fully unbalanced, the RF error

ranged between 85% and 94%. Similar patterns were observed when we used the MS [129]

measure of error (Fig. B.8). These extremely high levels of error for unbalanced trees are

interesting considering the fact that the sequence length and the expected branch length are kept

fixed.

Interestingly, the number of leaves, n, mostly affected the variance of the topological error.

As n increases, the average tree error remained relatively constant, but its variance gradually

reduced (Fig. 2.3a, lower-center). Deviations from the clock had very small impact on the

topological tree accuracy (Fig. 2.3a, lower-right). The choice of the sequence evolution model
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FIGURE 3. Tree inference error. Violin plots are shown for (a) the RF distance between true and estimated trees, and (b)
mean branch lengths and mean pendant branch lengths computed for each tree (the dashed lines show the theoretical and conjectured
expectations, and the dots show empirical averages). Note that FastTree does not implement the K80 and KH85 models.

(Fig. 4). When r=1, estimates from cherry fraction are1

close to true values. However, for small r, the cherry2

fraction can be dramatically overestimated (Fig. S12),3

and as a result, the estimated r can be orders of4

magnitude larger than the true value (Fig. 4). For 5

example, when the true value of r is 10−4, RAxML 6

inferred around 30% cherry fraction (i.e., r̂≈1) instead of 7

0.99% (Fig. S12). Since on true trees the estimator works 8

Figure 2.3: Tree inference error. Violin plots are shown for (a) the RF distance between true
and estimated trees, and (b) mean branch lengths and mean pendant branch lengths computed
for each tree (the dashed lines show the theoretical and conjectured expectations, and the dots
show empirical averages). Note that FastTree 2 does not implement the K80 and Hasegawa,
Kishino, and Yano (1985) (HKY85) models.
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similarly had minimal impact on accuracy (Fig. 2.3a, upper-center). Note that the GTR+Γ model

was used for simulation (with parameters given in the supplement); thus, all other results include

model misspecification.

To make sure the difficulty in correctly resolving unbalanced trees is not simply due

to insufficient search in ML tools, we compared likelihood scores of inferred trees and their

corresponding true trees (Fig. B.9). Two interesting patterns were observed. The RAxML tree

consistently had better scores than the true tree, indicating that lack of accuracy was not simply

due to insufficient search. The difference in log-likelihood scores narrowed as r increased. These

patterns are consistent with the explanation that likelihood scores computed on limited data are

progressively less predictive of tree accuracy as the trees become less balanced. It is well-known

that trees that include a mix of long and short branches, or generally, high heterogeneity of branch

length, are hard to estimate, even in a likelihood framework [132, 133]. Decreasing r increased

branch length heterogeneity in our dataset (Fig. B.10); the increased heterogeneity may be a cause

of the large number of sites required for accurate estimation using maximum likelihood.

Unlike tree topology, the estimated average branch length and average terminal branch

length were relatively accurate and robust to the parameters choice (Fig. 2.3b). However, two

interesting and related patterns should be noticed. For r = 10−4, both the terminal and overall

branch lengths had slightly lower empirical means compared to the theoretical results or the

conjecture (Fig. 2.3b, upper-left). This may partially be due to the fact that our theoretical

results/conjectures are asymptotic in n, so the estimators may be biased for limited n. Consistent

with this explanation, we observed that for r = 10−2, with small n, empirical branch length

averages were consistently lower than the theoretical values, but that they gradually increased

and reached the theoretical expectations around n = 500 (Fig. 2.3b, lower-center). The required n

for the asymptotic expectations to be accurate will likely depend on r, and r values in the 10−4

range likely require n> 1000.

Overall, RAxML consistently outperformed FastTree 2 with respect to tree accuracy by a
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FIGURE 4. Parameter estimation accuracy. Violin plots are shown for the estimated r, using the cherry-based estimator and
the branch-length-based estimator, for each of the experiments. True values are shown as dashed black lines.

very well (Fig. S11), the overestimation is clearly due to1

tree inference error. Consistent with this explanation, as2

the length of the sequence increases, the cherry fraction3

and r̂ gradually converge to the true values; with 4,8004

sites, the estimated r is within 27% of the true value5

(Fig. 4 bottom-left).6

Unlike the cherry-based estimates, the length-based7

estimates of r were generally quite accurate (Fig. 4).8

While the estimator showed patterns that indicated9

it may be biased, it gave reasonable estimates of r10

for most conditions. The length-based method tended11

to slightly overestimate r in most conditions, but the12

overestimation was substantial only for r=10−4; even13

for this most difficult case, however, estimates were still14

within one order of magnitude from the true value.15

Also, when sequences were extremely short (50bp), r was16

substantially overestimated but was still within an order17

of magnitude of the true r. Even though the estimator18

is based on asymptotic results on n, reducing n to small19

values still maintained relatively high accuracy; only at20

n≤50 did the variance of the estimator start to increase21

such that distributions of the estimate spanned more22

than an order of magnitude. Overall, the estimates are in23

the correct order of magnitude for most conditions, and24

are especially accurate for 10−3≤r≤1 for k=300, and25

this range is even wider for larger k.26

Simulations: Model Violations 27

Our results so far were based on trees that completely 28

followed the dual-birth model (save for the enforced 29

divergences from the ultrametricity). We now explore 30

the performance under conditions in which the model 31

generating the true tree diverges from our model. 32

Specifically, we explore the following model: instead of 33

forcing each node to have one child with rate λa and 34

another with rate λb, with some small probability p, we 35

allow both children to be active right away and thus 36

have the rate λb. Setting p=0 recaptures the dual-birth 37

model, but increasing p gradually introduces more model 38

violations; p=1 simply gives the Yule model. 39

We performed simulations in which we used the default 40

experiment parameters (Table 1) but varied p from 0 to 41

1. As expected, the error in r̂ increases as p approaches 42

1 (Fig. 5). The length-based estimator was robust to 43

relatively low levels of model violation. For example, with 44

p=0.05, the average estimated r was 0.0116, which is 45

very close to the true value of 0.01. Further increasing p 46

up to 0.17, the average estimate of r remained within 47

two times the true value; errors reached an order of 48

magnitude only at p= 1
2 . Interestingly, in log-scale, there 49

was a somewhat linear relationship between p and r̂. 50

Human Alu Analysis 51

We study two questions: How many Alu elements 52

are active? At what rates do inactive Alu elements 53

become active and active elements propagate? Assuming 54

Figure 2.4: Parameter estimation accuracy. Violin plots are shown for the estimated r, using the
cherry-based estimator and the branch-length-based estimator, for each of the experiments. True
values are shown as dashed black lines.

small margin.

Accuracy of r̂

We focus on RAxML trees here, but note that FastTree trees give similar results (Fig. B.11).

We start with the cherry-based r estimator. Unlike estimates based on true trees that were highly

accurate (Fig. B.11), when trees inferred from sequence data are used, the cherry-based estimator

is often not accurate (Fig. 2.4). When r = 1, estimates from cherry fraction are close to true

values. However, for small r, the cherry fraction can be dramatically overestimated (Fig. B.12),

and as a result, the estimated r can be orders of magnitude larger than the true value (Fig. 2.4).

For example, when the true value of r is 10−4, RAxML inferred around 30% cherry fraction (i.e.,

r̂ ≈ 1) instead of 0.99% (Fig. B.12). Since on true trees the estimator works very well (Fig. B.11),

the overestimation is clearly due to tree inference error. Consistent with this explanation, as the

length of the sequence increases, the cherry fraction and r̂ gradually converge to the true values;
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with 4,800 sites, the estimated r is within 27% of the true value (Fig. 2.4, bottom-left).

Unlike the cherry-based estimates, the length-based estimates of r were generally quite

accurate (Fig. 2.4). While the estimator showed patterns that indicated it may be biased, it

gave reasonable estimates of r for most conditions. The length-based method tended to slightly

overestimate r in most conditions, but the overestimation was substantial only for r = 10−4; even

for this most difficult case, however, estimates were still within one order of magnitude from the

true value. Also, when sequences were extremely short (50 bp), r was substantially overestimated

but was still within an order of magnitude of the true r. Even though the estimator is based on

asymptotic results on n, reducing n to small values still maintained relatively high accuracy;

only at n ≤ 50 did the variance of the estimator start to increase such that distributions of the

estimate spanned more than an order of magnitude. Overall, the estimates are in the correct order

of magnitude for most conditions, and are especially accurate for 10−3 ≤ r ≤ 1 for k = 300, and

this range is even wider for larger k.

2.3.2 Simulations: Model Violations

Our results so far were based on trees that completely followed the dual-birth model (save

for the enforced divergences from the ultrametricity). We now explore the performance under

conditions in which the model generating the true tree diverges from our model. Specifically, we

explore the following model: instead of forcing each node to have one child with rate λa and

another with rate λb, with some small probability p, we allow both children to be active right

away and thus have the rate λb. Setting p = 0 recaptures the dual-birth model, but increasing p

gradually introduces more model violations; p = 1 simply gives the Yule model.

We performed simulations in which we used the default experiment parameters (Table 2.1)

but varied p from 0 to 1. As expected, the error in r̂ increases as p approaches 1 (Fig. 2.5).

The length-based estimator was robust to relatively low levels of model violation. For example,

with p = 0.05, the average estimated r was 0.0116, which is very close to the true value of 0.01.
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Figure 2.5: Model violations. Length-based estimates of r vs. p, the probability that both
children of a given branch are active (i.e., have rate λb) based on 20 replicates of simulations
per p ∈ [0,1] with n = 1000, r = 10−2, λ = 169.328. Dashed light gray line: p = 0.05; dashed
medium gray line: r̂ = 2× r; dashed dark gray line: r̂ = 10× r.

Further increasing p up to 0.17, the average estimate of r remained within two times the true

value; errors reached an order of magnitude only at p = 1
2 . Interestingly, in log-scale, there was a

somewhat linear relationship between p and r̂.

2.3.3 Human Alu Analysis

We study two questions: How many Alu elements are active? At what rates do inactive Alu

elements become active and active elements propagate? Assuming that Alu evolution has followed

the dual-birth model, we use the length-based estimator (Eq. 2.9) to estimate the parameters shown

in Table 2.2 from the full Alu dataset as well as from replicate subsampled data. The parameter r

is estimated to be 0.006≈ 10−2.2 using the complete dataset. The estimated r gradually decreases

with subsampled datasets, and with 1,000 sequences, r is estimated to be 0.0034≈ 10−2.5. Note

that these changes remain well within an order of magnitude.
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Table 2.2: Results on Alu

Sampling† 1,000 10,000 100,000 885,011∗ 885,011+

nr 0.055±0.001 0.060±0.000 0.072±0.000 0.072 0.072
r̂ 0.0034±0.0001 0.0040±0.0001 0.0059±0.0000 0.0060 0.0060
λ 127.64±2.32 124.35±1.24 111.70±0.56 118.23 122.76
λa 0.44±0.01 0.50±0.00 0.66±0.00 0.70 0.73
λb 127.21±2.32 123.85±1.24 111.04±0.56 117.53 122.03
D 0.0671±0.0007 0.0636±0.0004 0.0585±0.0002 0.0550 0.0531
L 0.1206±0.0014 0.1133±0.0007 0.1019±0.0004 0.0958 0.0924

†Rows: Sampling (number of taxa), estimated portion of active Alus, model parameters (r, λ , λa,
λb), mean branch length, and mean terminal branch length. The last two column are for the full
final dataset (∗FastTree 2 and +RAxML). All other columns are the average of 20 subsampling
replicates with the given number of taxa.

Based on the full dataset, we estimate the percentage of active Alu elements (Eq. 2.5) to

be approximately 7.2% if either FastTree 2 or RAxML is used. Recall that an element is active if

it has ever propagated. Thus, we estimate that 7% of Alu repeats have propagated at least once.

Progressively reducing the number of sequences consistently reduces the estimated number of

active elements, but it never falls below 5.5%.

Rate of Activation and Propagation

We can also estimate λ (using Eq. 2.6). The rates we infer (Table 2.2) are in the unit of

expected mutations. To convert them to the unit of time, we use a simple approach that requires

several approximations and assumptions. We use a linear-time implementation of midpoint

rooting [134] to root our estimated tree and then compute the maximum root-to-tip distance,

which is 1.270. Assuming a molecular clock (see Fig. B.13 for deviations), we assume that this

value corresponds to approximately 65 million years since the origin of Alu repeats [54] and

multiply our estimates by the ratio of the tree depth in mutation units to time units. The results

are λa = 1.426× 10−8 activation events per year per inactive element and λb = 2.384× 10−6

propagation events per year per active element, meaning each Alu element becomes active with a

rate of roughly once every 70 million years, and once active, it propagates with a rate of roughly
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two and a half times every million years. Note that these rates are for each element, and the total

rates are much higher. Also, note that these are rates of an exponential distribution, and thus,

individual activation and propagation events may occur in much shorter or longer time frames.

2.4 Discussion

We start by comparing the dual-birth model to alternative models. We then discuss several

important points regarding our model and its application to Alu repeats.

2.4.1 Comparison to Other Models

The beta-splitting model of Aldous (1996) is one of the earliest models to provide a way

to control tree balance [111]. The model starts from a predetermined number of leaves and

recursively divides the set of leaves into two sets; at each step, the number of leaves in each

set is determined by draws from a parameterized distribution. Adjusting the parameter enables

generating trees with varying levels of balance. Our model is distinct from beta-splitting in several

ways. Beta-splitting, unlike our model, generates distributions over unordered tree shapes and

also does not define branch lengths. Moreover, unlike our model or Yule that generate the tree by

a natural Markov process, beta-splitting starts by deciding the final number of tips and thus does

not have a clear biological interpretation (as Aldous noted).

The alpha model of Ford (2005) is parameterized by a single parameter α ∈ [0,1], where

α = 0 gives the Yule model, α = 1/2 gives the uniform distribution, and α = 1 gives a perfect

caterpillar tree [113]. The alpha model starts with a single-leaf tree and iteratively adds a new leaf

to the middle of an edge in the tree. terminal edges are given weight 1−α and all other edges are

given weight α , and the edge to which a new leaf will be added is chosen via these weights. The

alpha model, unlike our model, does not define branch lengths, similarly to beta-splitting, and

also doesn’t have a clear biological interpretation.
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An improvement of the beta-splitting model is the Blum and François (2006) (BF)

model [114]. The BF model has a root speciation rate λ , and for a given branch with speciation

rate κ , one child branch has speciation rate pκ and the other has speciation rate (1− p)κ , where

p is either a fixed constant or is randomly chosen from a symmetric distribution on [0,1]. Because

the rate of a given branch must equal the sum of the rates of its two children, as the tree becomes

larger, rates will progressively shrink and branches will become longer (unlike the dual-birth

model). Blum and François are not concerned with this property because only the tree topology

matters to them. Doubling the rates of child branches in the BF model with a fixed p can maintain

the overall rate and gives a model that Kirkpatrick and Slatkin first introduced [35].

Just like the dual-birth model, the Kirkpatrick and Slatkin (1993) (KS) model can be

parameterized by λ and r (which they call x) to produce a fixed ratio r between the left and

right branch rates and can also produce unbalanced trees. However, a main difference remains.

Consider rates of the leaves in a balanced four-taxon tree. In the dual-birth model, two terminal

branches have the rate λa and two have the rate λb. However, in the KS model, two have the rate

2λaλb
λ

, one will have the rate 2λ 2
a

λ
, and the other will have the rate 2λ 2

b
λ

. In both models, the sum

of the rates of terminals is 2λ , but in the KS model, this total rate is distributed differently. For

larger trees, the terminal rates become even more unevenly distributed, whereas in the dual-birth,

we always have two rates at terminals, corresponding to our two states. There is no natural

way in which the KS or BF models can be mapped to the “active” and “inactive” states. To our

knowledge, the KS model has only been used to simulate unbalanced trees in order to test the

power of tree balance metrics in detecting deviations from the Yule model.

Jones (2011) explores age-dependent models in which a species lives for some time and

then either goes extinct or produces exactly two descendant species, where the ratio of extinctions

to speciations is given by a fixed number ρ [115]. The probability that a species i lives for at least

time t is given by a function S(t). Note that the function S(t) is dependent on time and not state,

whereas the probability that a given species i lives for at least time t under the dual-birth model is
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dependent on state (active or inactive) and is independent of time.

Maddison et al. (2007) propose a two-state model, known as the BiSSE model, in which

each state has its own birth and extinction rates, and entities can transition across the two states

under specified transition rates [116]. A key distinction between the dual-birth model and the

BiSSE model is that, under the BiSSE model, both children of a node inherit the parent’s state, but

under the dual-birth model, the two children must have different states. Thus, simply setting one

state transition rate (active to inactive) to 0 in the BiSSE model does not produce the dual-birth

model. Moreover, the BiSSE model assumes that state change and speciation are completely

independent of one another, whereas in the dual-birth model, a state change from inactive to

active must coincide with a birth event. The BiSSE model is designed to study the impact of traits

on speciation processes, and therefore, the inheritance of the state (e.g. a trait) by both progenies

is natural. However, it does not provide a clear advantage in the study of propagating elements

like Alu elements, where one of the child branches is a continuation of the parent and the other is

not.

Lambert and Stadler (2013) study a wide range of macroevolutionary models and deter-

mine which models lead to a uniform distribution on ranked tree shapes [119]. The dual-birth

model we introduce is an example of a model in which the speciation rate depends on a fully-

heritable trait (active) with asymmetric speciation: one child, right, is the “new” child and does

not inherit the mother active trait at all, and the other child, left, corresponds to the mother

and completely inherits the mother active trait. Based on results from Lambert and Stadler, the

dual-birth model does not induce a uniform distribution on ranked tree shapes, a fact that will be

corroborated by the probability distribution we derive for ranked tree shapes generated under the

model (Eq. 2.2 and Fig. 2.1c).

Finally, Steel and McKenzie (2001) propose a two-state extension of the Yule pro-

cess [112]. In their model, unlike ours, states are used to enable a birth rate that varies throughout

a branch, increasing gradually as the branch becomes longer.
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2.4.2 Properties of the Dual-Birth

Statistical Properties of the Estimators

Based on Theorem 3, it is easy to prove that the cherry-based estimator (Eq. 2.8) is a

statistically consistent estimator of r if n is allowed to grow infinitely and if the true phylogenetic

tree is known. Alternatively, if the tree is inferred from sequence data under the true model using

maximum likelihood, allowing both n and the alignment length to grow to infinity will render

Equation 2.8 a statistically consistent estimator. For limited n and alignment length, this estimator

is not necessarily unbiased; in fact, our simulations showed clear evidence of severe biases in the

number of cherries in trees inferred from limited data, and hence biased estimates of r. Only with

very large alignment lengths (e.g. 4,800) did our estimates of r start to become accurate using

the number of cherries. Requiring such long alignments can often be problematic. For example,

SINEs are typically no more than several hundred bases long, and any tree inferred from such

short datasets is prone to high estimation error. This shortcoming motivated the design of the

length-based estimator.

Since Equation 2.9 is a conjecture, the length-based estimator is not presently proven

statistically consistent. If Conjecture 1 is ever proven correct, the estimator can be also be proven

statistically consistent for increasing n and the correct phylogeny. The length-based estimator may

be biased, especially for small n. Nevertheless, it seems to provide a relatively robust estimator in

our wide-ranging simulations.

Model Limitations

The dual-birth model can be improved in several ways. Most importantly, it can be

imagined that, as an active element evolves, it can deactivate and lose propagation capability. This

change of state from active to inactive is not possible in our current model. Modeling deactivation

would enable the estimation of the number of elements that are active at any specific point in
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time, including at the present time. As the model currently stands, the estimated number of

active elements should be best interpreted as the number of elements that have been ever active.

A related but distinct improvement is allowing deaths in addition to births. Moreover, the fact

that all elements are born into an inactive state, have identical rate of activation at birth, and an

identical rate of birth are all obvious limitations of the model.

Unsolved Questions

While we derived equations for several distributions and expectations, many theoretical

questions remain unanswered, including the following. Can the exponential time calculations

of tree distributions be simplified using closed form formulas or more efficient algorithms (e.g.

dynamic programming)? What is the probability distribution of the number of leaves in the

left or right of a given node? Relatedly, what are the distributions of other statistics of tree

shape [135, 136]? We computed the expected branch length, but we did not derive the exact

distribution of branch lengths. Although we conjecture a formula for the expected length of

terminal branches and demonstrate its accuracy via simulation, we have not proven its correctness.

Further, the cherry-based approach to estimate r is often inaccurate because of the error-prone

topology of inferred trees. It would be interesting to see if such estimates could be corrected by

considering Bayesian distributions over the trees or by using branch bootstrap support.

A main application of tree shape models is to define the prior distribution in a Bayesian

tree inference [31, 32]. The dual-birth model could be used for this purpose as well, and such

an approach may help in addressing the issue of the low accuracy of inferred trees for very

unbalanced trees. Intuitively, if r is estimated to be small, the unbalanced trees will be given a

higher prior probability. While we have derived many of the required distributions, the practical

application of the dual-birth model as a prior model requires further development. The main

issue is that computing the probability of unordered trees requires iterating all orderings, which

will not be practical for trees of even moderate size. It may be possible to develop clever
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dynamic programming algorithms to speed up the computations. Further, the best choice for

hyperparameters for r and λ also need to be explored. However, if these difficulties could be

overcome, the Markov Chain Monte Carlo (MCMC) approach can also be used to estimate the r

parameter, and such approaches may outperform our current estimators.

2.4.3 Alu Repeats

The r ≤ 1 Assumption

We estimated r ≈ 0.006 and that approximately 7% of nodes are active. Note that a

transposon model of Alu propagation corresponds to r ≈ 1, where a new Alu is as active as

existing ones, and in expectation, half the repeats have propagated at least once. Recall that r = x

and r = 1
x are indistinguishable for trees inferred from the data, so r ≤ 1 is an assumption. But

note that r > 1 would imply that, once an Alu has propagated, its rate of transposition reduces.

Such a model is not one of the debated hypotheses and is not necessarily sensible: no reasonable

scenario that we can imagine would reduce the rate of propagation after the first propagation, but

would keep it constant afterwards. Thus, r > 1 is dismissed a priori in our analyses. In situations

where r > 1 and r < 1 both present reasonable hypotheses, our phylogenetic approach will not be

able to distinguish between the two scenarios.

Accuracy

Our simulation results indicated that the r parameter can be estimated with relatively high

accuracy in most cases. However, we note that the estimates are never quite exact and have a

range that spans between half to a full order of magnitude (Fig. 2.4). Thus, r estimates should be

treated as ballpark estimates and interpreted to give the right order of magnitude. Our estimate

of r = 0.006≈ 10−2.2, therefore, should be interpreted as stating that, based on our model and

our length-based estimator, there is a two to three orders of magnitude change between the rate
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of propagation of active and inactive elements. In our simulations, the estimator has reduced

accuracy for very low values of r (close to 10−4) but estimates around 10−2 are quite accurate, if

slightly overestimated. As r changes between 0.001 and 0.01, our estimate of the active number

of elements would change between 3% and 9%.

Interpretation

We have no independent way of estimating the number of active elements from our dataset.

Estimates of the number of active elements in the literature are wide and varied. For example,

Price et al. (2004) used whole-genome Alu data to estimate the total number of active elements

to have been at least 143 throughout the history of Alu elements [55]; Wang et al. (2006) used

human polymorphism data to estimate the number of currently-active Alu elements to be at

least 31 [137]; Wacholder and Pollock (2016) introduced a novel Bayesian transposable element

ancestral reconstruction method and used it to estimate a lower-bound of 1,386 Alu elements

to have ever been active [138]; Batzer and Deininger (2002) did not provide a specific estimate

of the number of active elements, but they stated that “only a few human Alu elements, the

so-called ‘master’ or source genes, seem to be retrotransposition competent” [54]. These wide

variations are partially because mechanisms of propagation and spread are not fully understood.

Moreover, these studies are looking for a strong evidence of transposition capability and do not

rule out the possibility that others are able to propagate. For example, the 1,386 lower bound

given by Wacholder and Pollock is based on the observation that these many distinct elements

currently include a mutation that inactivates them, and hence, should have been created by

those many active element [138]. Our estimates of 7% is higher than these values found in the

literature, but we emphasize that our estimate is not a lower bound. Future work should validate

these estimates using alternative approaches, perhaps by comparing various primate genomes or

providing estimates for other species.

Whether or not a new Alu insertion survives to become dominant in a population depends
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on many factors, including whether the element is under selective pressure. The dual-birth model

is not trying to capture population-level heterogeneity nor specific causes of birth, death, or

survival of elements. In other words, in our model, a birth event corresponds to a new repeat

that has successfully spread through a population (either due to drift or by selection). Thus, our

estimated rates of propagation should be interpreted in this light and not as the rate with which a

new Alu element is inserted in individual members of the population.

2.5 Data Availability

Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.13n52

Code available from the GitHub repository: github.com/niemasd/Dual-Birth-Model
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Chapter 3

ProACT: Prioritization Using Ancestral

Edge Lengths
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In HIV epidemics, the majority of the structure of the transmission network is dictated

by just a few individuals. Public health intervention, such as ensuring people living with HIV

adhere to ART and are continually virally-suppressed, can help control the spread of the virus.

However, such intervention requires utilizing the limited public health resource allocations. As

a result, the ability to determine which individuals are most at-risk of transmitting HIV could

allow public health officials to focus their limited resources on these individuals. Molecular

epidemiology suggests an approach: prioritizing people living with HIV based on patterns of

transmission inferred from their sampled viral sequences. In this paper, we introduce ProACT

(Prioritization using AnCesTral edge lengths), a novel phylogenetic approach for prioritizing

individuals living with HIV. ProACT uses a simple idea: ordering individuals by their terminal

branch length in the phylogeny of their virus. In simulations and also on a dataset of HIV-1

subtype B pol sequences obtained in San Diego, we show that this simple strategy improves the

effectiveness of prioritization compared to state-of-the-art methods that rely on monitoring the

growth of transmission clusters defined based on genetic distance.

3.1 Introduction

The transmission of HIV resembles scale-free networks [66], in which the majority of

the structure of the network is dictated by just a few individuals, a phenomenon likely resulting

from the scale-free properties of sexual contacts and injection drug use along which HIV is

transmitted [58, 139]. As a result, public health intervention may be more effective when targeted

at people living with HIV who are more likely to grow the transmission network. However, the

best method to target individuals for specific interventions remains an open question, and the best

strategy will likely depend on the specific intervention planned.

A potential form of intervention aiming to reduce future transmissions is to target HIV-

Positive Individuals (H+Is). For example, ART suppresses the HIV virus in the majority of cases,
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stops the progression of the disease, and prevents onward transmission to an uninfected sexual

partner, provided the H+I continuously adheres to the treatment [92]. In addition to reducing risk

of transmission at the molecular level, adherence to ART is associated with a reduction of risky

behavior as well [140]. While the initiation of ART is routine (or even universal) in most advanced

health care systems, not every case of ART initiation leads to a sustained suppression of the virus

through time. H+Is who start ART but fail to sustain it or who are otherwise unsuppressed can

still infect others. Thus, a possible intervention is to ensure known H+Is are kept on ART and

are continually suppressed, a task that requires allocation of public health resources. If people

at risk of losing their suppression could be predicted accurately, the public health system could

focus their limited resources on these individuals, administrating several types of interventions:

followups to ensure sustenance of ART, increased testing to ensure suppression, and, if all else

fails, offering PrEP to their sexual partners. However, these are all costly interventions and cannot

be undertaken for every known H+I. Thus, a natural question surfaces: which individuals are

most at-risk of transmitting HIV?

Predicting tendency for future transmissions is difficult and is fraught with danger if

undertaken primarily based on demographic or behavioral traits. Molecular epidemics suggest an

alternative method: prioritizing H+Is for intervention solely based on patterns of transmission

inferred from HIV sequence data [141, 142, 143, 21, 103, 16, 66, 144]. The inference of

transmission networks using phylogenetic or distance-based methods has been the subject of

much research [64, 26, 24, 23]. However, in this work, instead of being concerned with inferring

exact patterns of transmissions, we ask the following question: given molecular data from each

Sampled HIV-Positive Individual (SH+I), presumably all with access to ART, which individuals

are most at-risk of transmitting the virus?

Prioritizing care based on molecular epidemics has been studied recently. Wertheim et al.

(2018) present a method for prioritizing SH+Is based on performing transmission clustering (i.e.,

grouping individuals with low viral genetic distance into “transmission clusters”) and ordering
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clusters by growth rate [103]. On a large dataset from New York, they show that the approach is

able to predict individuals who will have relatively larger numbers of transmission links in the

near future. Moshiri et al. (2018) have studied the same question in simulations and have shown

that monitoring cluster growth can be used for predicting future transmissions substantially better

than a random guess, whether clusters are defined using genetic distances or using phylogenetic

methods [145]. Most recently, Balaban et al. (2019) showed in simulations that using a cluster-

monitoring approach similar to that of Wertheim et al. (2018) but defining clusters using a

min-cut optimization problem gives a small but consistent improvement over defining clusters

using genetic distances [25].

In this paper, we introduce a new method for ordering SH+Is based on their phylogenetic

relationships. Instead of relying on clustering individuals and then ordering clusters based on

their growth, we seek to order individuals without clustering and without reliance on parametric

models. Instead, we seek to simply exploits patterns in the phylogeny, and in particular, in branch

lengths.

3.2 New Approaches

ProACT (Prioritization using AnCesTral edge lengths) takes as input the inferred phylo-

genetic relationships between sampled HIV viruses (e.g. from the pol region), rooted using an

outgroup or clock-based methods (e.g. midpoint or MinVar-root [134]). ProACT simply orders

SH+Is in order of incident branch length of their associated virus, and it breaks ties based on

incident branch lengths of parent nodes, then those of grandparent nodes, etc. We first motivate

the approach and then present a formal definition of the method.

We note that ProACT is motivated and tested in a context similar to the present day health

care systems that enjoy enough resources to provide ART to all SH+Is (recall that we call a H+I

a SH+I if their sequence is also sampled). Thus, each SH+I is assumed to be given ART at a time
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close to when their HIV is sequenced, but they may fail to be suppressed for the remainder of their

life. These conditions describe the common practice of care in many advanced and (increasingly)

developing countries.

3.2.1 Motivating the Approach

We start with the observation that, in simulations (described in detail below), when a

phylogeny is inferred from sequences obtained at a given time point in an epidemic, the more a

node transmits, the shorter its incident branch length tends to be (Figs. 3.1d–e and C.2). Using the

Kendall’s tau-b test [146], in a ten-year epidemic simulation (details described below), we found a

statistically significant anticorrelation between the incident branch lengths of individuals sampled

within the first 9 years of the epidemic and the number of individuals they infected over the final

year of the epidemic. This held for true (τ =−0.0431, p� 10−10) and inferred (τ =−0.0354,

p� 10−10) phylogenetic trees. Though not obvious, this observation can be explained by the

constraints placed upon the viral phylogeny by the transmission history (Fig. 3.1a–c).

In the context of HIV epidemiology in many advanced countries, SH+Is are typically

sampled upon beginning ART. Let’s assume for simplicity that every individual in the given

dataset has at some point initiated ART, meaning future transmissions by individuals in the dataset

must happen only if the source stops ART or is otherwise unsuppressed. Given a viral phylogeny

containing all known SH+Is, if, in the future, individual u in the dataset transmits to individual

v, there are two possible scenarios regarding the placement of the leaf corresponding to v in the

existing (true) phylogeny: (1) v is placed on the edge incident to u, so the edge incident to u will

shorten, or (2) v is not placed on the edge incident to u, so the edge incident to u will remain the

same length. Although Scenario 2 is possible, Scenario 1 is far more likely [147], and note that

the terminal branch lengths do not increase in either scenario. Thus, as time goes by, the terminal

branch can only shorten or stay fixed, and it will most often shorten because of new transmissions

by the SH+I associated with that terminal branch. This pattern, easily observed in simulations
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FIG. 1. The effect of new transmissions on incident branch lengths. (a) Individual A transmits to individual B and C at
times at t1 and t2, respectively. (b) Viral samples are obtained from individuals A, B, and C at times tA, tB , and tC . The
viral phylogeny of samples is constrained by each transmission event’s bottleneck, and the most likely phylogeny matches
the transmission history (Left), but in the less likely deeper coalescence, it may not match (Right). (c) Moving from the
phylogeny observed at time tB to the phylogeny at time tC , the branch length incident to individual A shortens upon the
addition of individual C in the likely event that the coalescence of the lineage from C with the lineage from A is more
recent than its coalescence with the lineage from B (Left), or the branch length incident to individual A remains constant
in the event of a less likely deeper coalescence (Right). Regardless, the length of the branch incident to individual A never
increases. In simulation, we can observe this trend: as time progresses, the incident branch length of each individual tends
to decrease, both in true (Fig. S1) and inferred (d) phylogenies, and as the number of transmissions from a given individual
increases, the distribution of incident edge length tends to decrease, both in true and inferred phylogenies, labeled “True”
and “FT,” respectively (e).

the constraints placed upon the viral phylogeny

by the transmission history (Fig. 1a–c).

In the context of HIV epidemiology in many
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will remain the same length. Although Scenario 2

is possible, Scenario 1 is far more likely (Romero-

Severson et al., 2016), and note that the terminal

branch lengths do not increase in either scenario.

Thus, as time goes by, the terminal branch can

only shorten or stay fixed, and it will most
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Figure 3.1: The effect of new transmissions on incident branch lengths. (a) Individual A
transmits to individual B and C at times at t1 and t2, respectively. (b) Viral samples are obtained
from individuals A, B, and C at times tA, tB, and tC. The viral phylogeny of samples is constrained
by each transmission event’s bottleneck, and the most likely phylogeny matches the transmission
history (Left), but in the less likely deeper coalescence, it may not match (Right). (c) Moving
from the phylogeny observed at time tB to the phylogeny at time tC, the branch length incident to
individual A shortens upon the addition of individual C in the likely event that the coalescence
of the lineage from C with the lineage from A is more recent than its coalescence with the
lineage from B (Left), or the branch length incident to individual A remains constant in the
event of a less likely deeper coalescence (Right). Regardless, the length of the branch incident
to individual A never increases. In simulation, we can observe this trend: as time progresses,
the incident branch length of each individual tends to decrease, both in true (Fig. C.1) and
inferred (d) phylogenies, and as the number of transmissions from a given individual increases,
the distribution of incident edge length tends to decrease, both in true and inferred phylogenies,
labeled “True” and “Est.,” respectively (e).
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(Fig. 3.1d), leads to shorter branches for SH+Is who have transmitted recently.

Note that SH+Is who transmit are unsuppressed. The first time they infect others, their

terminal branch length is likely to decrease, and further transmissions further decrease their

terminal branch lengths (Fig. 3.1d). Thus, one expects nodes with smaller incident branch length

to be more likely to have transmitted since their sampling time. Moreover, they are also likely to

transmit in the near future because they are likely not to be suppressed. The higher probability of

a lack of suppression makes them a good candidate for intervention.

3.2.2 Formal Description

ProACT takes as input a rooted phylogenetic tree T of viral samples. Let bl(u) denote

the incident branch length of node u, and assume the incident branch length of the root of T is

0. Let a(u) denote the vector of ancestors of node u (including u), where a(u)1 is u, a(u)2 is the

parent of u, a(u)3 is the grandparent of u, etc. Let r(u) denote the length of the path from node u

to the root of T , i.e., r(u) = ∑v∈a(u) bl(v). ProACT sorts the leaves of T in ascending order of

bl(a(u)1), with ties broken by bl(a(u)2), then by bl(a(u)3), etc. Note that, for two leaves u and

v, |a(u)| may be less than |a(v)|, in which case, for all |a(u)|< i≤ |a(v)|, r(u)
|a(u)|−1 (i.e., average

branch length along the path from u to the root of T ) is compared with bl(a(v)i) instead. If two

nodes are equal in all comparisons, if the user provides sample times, the earlier sample time is

given higher priority; otherwise, ties are broken arbitrarily. Because sorting is needed, for a tree

with n leaves, assuming branch lengths are fairly unique, the ProACT algorithm runs in O(n logn)

time. Scalable methods exist both for the inferring [102, 148] and rooting [134] very large trees.

3.3 Results

We evaluate ProACT on simulated and real data.
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Table 3.1: Varied HIV simulation parameters. Values for the base model condition are shown in
bold.

Parameter Values
ART Start Rate (λ+, year−1) 1, 2, 4
ART Stop Rate (λ−, year−1) 0.12 (0.25x), 0.24 (0.5x), 0.48 (1x), 0.96 (2x), 1.92 (4x)

Expected Degree (Ed) 10, 20, 30

3.3.1 Simulation Results

In order to test ProACT’s efficacy, we performed a series of simulation experiments in

which we used FAVITES [145] to generate a sexual contact network, transmission network, viral

phylogeny, and viral sequences emulating HIV transmission in San Diego from 2005 to 2014

(Material and Methods). We have simulated nine model conditions (Table 3.1) by starting from

a base model condition and varying the rate of ART initiation (λ+), rate of ART termination

(λ−), and the expected degree of the sexual network (Ed). We subsequently inferred and rooted a

phylogeny of all sequences obtained during the first 9 years of the simulation. Then, ProACT was

run on the true and inferred full trees and subsampled trees.

To measure the efficacy of a given prioritization, we compute the Cumulative Moving

Average (CMA) of the number of infections caused by the top individuals in the prioritization

during the tenth year of the simulation (our outcome measure). The higher the CMA for the

top individuals in a prioritization, the higher the number of future transmissions from these top

individuals. Sorting individuals by their outcome measure (known to us in simulations) enables

us to compute the optimal CMA curve. Also, the mean number of transmissions gives us the

expected value of the CMA for a random prioritization. Across experimental conditions, the

maximum and random expectation vary, so to enable proper comparison of effects of prioritization

across conditions, we also report an adjusted CMA normalizing above the random prioritization

and over the optimal prioritization (Eq. 3.1; see Materials and Methods). Thus, for this Adjusted

Transmissions/Person metric, 1 indicates the optimal ordering and 0 indicates ordering that is no
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better than random.

ProACT Outperforms Random Prioritization Across Conditions

Across all experimental parameters, ProACT performed much better than one would

expect from a random ordering (Fig. 3.2). As we increased the proportion of top individuals

selected, ProACT’s CMA initially increased (e.g. for up to 7% top individuals in the base model

condition) and subsequently flattened out. The most clear signal for benefits of prioritization (e.g,

a high CMA) is obtained for up to 10% top-priority individuals (though exact values depend on

the model condition). As the number of selected individuals increases beyond 10%, however,

because the metric of efficacy is CMA, the efficacy of a selection will eventually converge towards

the efficacy of a random selection by definition (Fig. C.4).

ProACT Outperforms Cluster Growth

As mentioned, Wertheim et al. (2018) present a method for prioritizing SH+Is by

clustering individuals based on viral genetic distance, tracking the size of each cluster over

time, and prioritizing clusters in descending order of the growth rate [103]. The approach can

be easily extended to also order individuals (i.e., individuals belonging to clusters with high

growth rates are prioritized higher; see Materials and Methods for details). ProACT consistently

outperformed prioritization using cluster growth for various parameter choices (Figs. 3.2–3.3).

The only exception was when the rate of stopping ART was lowered all the way to 0.25x, which

corresponds to expected time of ART termination of 8.3 years. In this condition where adherence

was at its highest, prioritization by cluster growth outperformed ProACT when using the full

dataset.
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FIG. 2. ProACT performance on datasets simulated using FAVITES. Cumulative Moving Average (CMA) of adjusted

number of transmissions per person across the first decile of prioritized SH+I for each simulation parameter set. The

horizontal axis depicts the quantile of highest-prioritized SH+I (e.g. x=0.01 denotes the top percentile), and the vertical
axis depicts their adjusted average number of transmissions per person (1 indicates the optimal ordering, and 0 indicates
an ordering that is no better than random). In our simulations, we varied three parameters of interest: (a) the rate of
ART initiation (λ+), (b-c) the rate of ART termination (λ−), and (d) the expected degree of the sexual network (Ed).
The simulations were 10 years in length, prioritization was performed 9 years into the simulation, and the adjusted average
number of transmissions per person was computed during the last year of the simulation. The curves labeled “Cluster
Growth” denote prioritization by inferring transmission clusters using HIV-TRACE at year 9 of the simulation and sorting
clusters in descending order of growth rate since year 8. The curves labeled with percentages denote subsampled datasets.
All curves were calculated using 20 simulation replicates. 7

Figure 3.2: ProACT performance on datasets simulated using FAVITES. CMA of adjusted
number of transmissions per person across the first decile of prioritized SH+Is for each sim-
ulation parameter set. The horizontal axis depicts the quantile of highest-prioritized SH+Is
(e.g. x = 0.01 denotes the top percentile), and the vertical axis depicts their adjusted average
number of transmissions per person (1 indicates the optimal ordering, and 0 indicates an ordering
that is no better than random). In our simulations, we varied three parameters of interest: (a)
the rate of ART initiation (λ+), (b-c) the rate of ART termination (λ−), and (d) the expected
degree of the sexual network (Ed). The simulations were 10 years in length, prioritization
was performed 9 years into the simulation, and the adjusted average number of transmissions
per person was computed during the last year of the simulation. The curves labeled “Cluster
Growth” denote prioritization by inferring transmission clusters using HIV-TRACE [26] at year
9 of the simulation and sorting clusters in descending order of growth rate since year 8. The
curves labeled with percentages denote subsampled datasets. All curves were calculated using
20 simulation replicates.
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Figure 3.3: Efficacy on datasets simulated using FAVITES. Average of the raw number of
transmissions per person for the top n individuals in a prioritized list vs. simulation parameter
set across various values of n. The violin plots depicted are across 20 replicates and contain box
plots with distribution medians shown as white dots and distribution means shown as dashed
grey lines.

Impact of Simulation Parameters

As the rate of stopping ART (λ−) increased (i.e., with lower adherence), the gap be-

tween ProACT and cluster growth grows. For example, the mean number of transmissions per

person among the top 1,000 individuals chosen using ProACT and cluster growth were respec-

tively 0.1702 and 0.0745 (a 1.28x improvement) for the condition with λ− = 4x. This 1.28x

improvement gradually decreases to 0.95x, 0.78x, 0.31x, and -0.15x as we reduce the rate or ART

termination to 2x, 1x, 0.5x, and 0.25x. As λ− decreased, ProACT’s performance compared to

optimal ordering tended to decrease, whereas cluster growth’s performance compared to optimal

ordering tended to increase; however, ProACT continued to outperform cluster growth for all but

the λ− =0.25X condition (Fig. 3.2b–c).

As the rate of starting ART (λ+) increased (i.e., with faster diagnoses), the performance

of ProACT compared to optimal ordering very slightly degrades (Fig. 3.2a). As a result, the
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gap between ProACT and cluster growth decreases slightly: when observing the mean number

of transmissions per person among the top 1,000 individuals chosen by each method, ProACT

experiences a 0.78x, 0.70x, and 0.37x improvement over cluster growth when λ+ is set to 1x,

2x, and 4x, respectively. Note that as expected, increasing λ+ reduced the raw number of new

infections caused per capita (Fig. C.3) overall and among top-priority individuals (Fig. 3.3).

Effects of the expected number of sexual contacts per person (Ed), which controls the

speed of spread is also interesting (Figs. 3.2d and 3.3). As Ed increased, the efficacy of both

approaches decreased, but ProACT continued to consistently perform many times better than

cluster growth.

Impact of Incomplete Sampling

Subsampling the total dataset to include 3/4, 1/2, or 1/4 of the total population of SH+Is

did not have a major impact on the performance of ProACT compared to the optimal ordering

(Fig. 3.2). Inevitably, the raw number of new infections decreased as the dataset was subsampled

(Fig. C.3). However, what remained relatively constant was the benefit of ProACT and cluster

growth with respect to optimal and random ordering (e.g. the adjusted metric).

Despite the general robustness, some interesting effects were observed. With λ+ =

2x, ProACT’s performance remained quite similar across all levels of subsampling, whereas

prioritization by cluster growth was negatively impacted by less sampling, especially at the 1/4

level (Fig. 3.2a). Interestingly, for λ− < 1x, ProACT’s performance on 1/4 sampled datasets

improved relative to more complete sampling. However, the efficacy of prioritization by cluster

growth remained fairly consistent for λ− < 1x (Fig. 3.2b–c). Similarly, the performance of

ProACT compared to optimal ordering improved with 1/4 sampled datasets when sexual contact

degree increased to Ed ≥ 20 (Fig. 3.2d).
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Figure 3.4: Kendall’s tau-b test results for ProACT ordering on real data using two riskiness
score functions: an empirical smooth step function and a strict step function around 1.5%.
The full San Diego dataset was split into two sets (pre and post) at each decile (shown on the
horizontal axis). The individuals in pre were ordered using ProACT and by cluster growth, and
they were given a riskiness “score” computed using a riskiness score function (see Materials and
Methods). Kendall’s tau-b correlation coefficient was computed for each ordering with respect
to the optimal possible ordering (i.e., sorting in descending order of riskiness score). The null
distribution was visualized by randomly shuffling the individuals in pre, and test p-values are
shown in Table 3.2.

3.3.2 Real San Diego Dataset

We next analyzed a dataset of 926 HIV-1 subtype B pol sequences obtained in San Diego

between 1996 and 2018. To evaluate ProACT accuracy, we divided the data into deciles, with

each decile defining two sets: past (sequences up to the decile) and future (sequences after the

decile). We inferred a phylogeny from the sequences present in the past set using FastTree 2 [102],

and we used ProACT to order all SH+Is in this set. We then evaluated how the outcome measure

correlates with the position of each individual in the ordering. We quantify the correlation using

Kendall’s tau-b, a rank correlation coefficient adjusted for ties [146]. Values range between -1

and 1, with -1 signifying perfect inversion, 1 signifying perfect agreement, and 0 signifying the

absence of association.

On real datasets, unlike the simulated data, the desired outcome measure, the number

of new transmissions per person, is not known. Instead, we have to use inferred relationships.

HIV-TRACE (used in our cluster growth approach) defines a pair of SH+Is as “genetically linked”

if their sequences are very similar (TN93 distance below 1.5%). We similarly use the TN93
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sequence similarity as an outcome measure, but in addition to using a fixed threshold, we also use

smoother functions (Fig. C.5). We measure the number of linked individuals using a step function

(1 if TN93 distance is below 1.5% and 0 otherwise) and an empirical smooth step function

determined by fitting a mixture of three Gaussians to the distribution of pairwise TN93 distances

(Material and Methods). We also explore an analytical smooth step function (parameterized

sigmoid). Note that, when the step function is used, our outcome measure (computed for future

transmissions) is exactly the same as what the cluster growth method uses for prioritizing (albeit,

using past data). Thus, it is reasonable to expect the step function will favor cluster growth. As

we move to smoother functions of distance to count genetic links, our measure is expected to

become less biased in favor of HIV-TRACE.

Using both ProACT and cluster growth to prioritize individuals results in orderings

of individuals with positive Kendall’s tau-b correlations to the number of future genetic links

regardless of the time (i.e., decile) and the function used to count genetic links (Fig. 3.4). These

correlations are statistically significant in almost all cases (Table 3.2 and Fig. 3.4). The correlation

coefficient ranges ranges between 0.4 (ProACT; 10% time) and 0.1 (cluster growth; 20% time)

for empirical function, and between 0.6 (cluster growth; 10% time) and 0.1 (ProACT; 80% time)

for the step function.

The comparison between ProACT and cluster growth depends on the choice of the function

to count links. When counting the number of links using the step function, prioritization by

cluster growth consistently outperforms ProACT for all deciles of the dataset. These results

are not surprising, given that we count HIV-TRACE links both to prioritize and to evaluate.

However, according to the empirical smooth step function learned from the TN93 distances,

ProACT outperforms cluster growth in all except one time point, where they are tied.

To further test whether the smoothness of the link-counting function applied to TN93

distances is a factor in deciding the relative accuracy of methods, we used a sigmoid function

to replace the step function while keeping the inflection point at 1.5% (Fig. C.5). We observed
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Table 3.2: Kendall’s tau-b test for a null hypothesis that a given prioritization yields a total
outcome measure no better than random. We show p-values for the real San Diego dataset for
the first through ninth deciles using two outcome measure functions. Tests that failed to reject
the null hypothesis with (uncorrected) p-value < 0.00138 (corresponding to α = 0.05 with a
Bonferroni multiple hypothesis testing correct with n = 36) are marked with †.

Empirical Smooth Step Function
Percentile GD + Cluster Growth ProACT (FastTree)

10% †2×10−3 5×10−8

20% †2×10−2 1×10−4

30% 5×10−6 6×10−6

40% 2×10−4 2×10−7

50% 5×10−5 2×10−8

60% 6×10−7 2×10−11

70% 2×10−9 1×10−11

80% 2×10−8 1×10−11

90% 2×10−11 1×10−17

Step Function Around 1.5%
Percentile GD + Cluster Growth ProACT (FastTree)

10% 4×10−12 1×10−5

20% 1×10−19 5×10−8

30% 3×10−28 3×10−7

40% 7×10−25 2×10−10

50% 2×10−19 1×10−6

60% 8×10−12 1×10−6

70% 1×10−17 1×10−4

80% 5×10−14 †7×10−3

90% 2×10−25 4×10−7

that as the outcome measure function becomes more smooth, ProACT’s performance improves

with respect to prioritization by cluster growth (Fig. 3.5, Table C.1). Based on the more smooth

sigmoid function (λ = 5), ProACT outperforms cluster growth in all but one case where they are

tied. Thus, simply counting distances close to 1.5% as partial links leads to evaluations that favor

ProACT.

As time increases, both methods experience seemingly downward trends in their tau

coefficients, but the null distribution of tau coefficients also tightens (Fig. 3.4). Thus, both

methods consistently do significantly better than expected by random chance and there is no clear
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Figure 3.5: Kendall’s tau-b test results for ProACT ordering on real data using the sigmoid
riskiness score functions with λ = 100 and λ = 5. The full San Diego dataset was split into two
sets (pre and post) at each decile (shown on the horizontal axis). The individuals in pre were
ordered using ProACT and by cluster growth, and they were given a riskiness “score” computed
using a riskiness score function (see Materials and Methods). Kendall’s tau-b correlation
coefficient was computed for each ordering with respect to the optimal possible ordering (i.e.,
sorting in descending order of riskiness score). The null distribution was visualized by randomly
shuffling the individuals in pre, and test p-values are shown in Table C.1.

relationship between p-values of individual tool and time (Table 3.2). However, both for the step

function and the sigmoid functions, ProACT’s relative performance with respect to cluster growth

tends to improved over time.

3.4 Discussion

We start by discussing observed results and then comment on practical implications of

this paper both for public health and for future research in molecular epidemics.

3.4.1 Discussion of Results

In our simulations, ProACT was least effective in conditions with very low rate of ART

termination (λ−) which correspond to very high adherence. As expected, the total number of new

infections originated from SH+Is is low when adherence is high (Fig. C.3) and neither method

is much better than random clustering. This observation is consistent with the motivation we

presented for the ProACT algorithm. Recall that the motivation relied on identifying SH+Is who
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have stopped being suppressed. If all known SH+Is have been started on treatment and none

ever stops treatment, prioritization loses its practical relevance, and relatedly, ProACT loses its

statistical power. We saw a similar effects when we increased the rate of ART (λ+), which is also

not surprising as increasing λ+ is in effect similar to reducing λ−.

When we reduced sampling, we did not observe reductions in effectiveness of ProACT

and occasionally even observed improvements. These results have to be interpreted in the context

of our adjusted metric, which measures benefits over random and below optimal ordering. The per

capita number of new infections from high-priority SH+Is was lowered when we subsampled the

datasets (Fig. C.3). Thus, as expected, when some SH+Is are missing from the dataset available to

a particular analysis, the overall effectiveness of identifying top priority SH+Is reduces. However,

the effectiveness reduces equally for the optimal ordering and the ProACT method is not impacted

any worse than optimal ordering is. In fact, ProACT is in some cases impacted a bit less harshly

than optimal ordering, hence the improvements in adjusted outcome with 1/4 sampling. One

should also keep in mind that choosing x% highest priority individuals from the full datasets

results in 4x as many individuals as choosing the top x% of the 1/4 subsampled dataset.

The reader is reminded that SH+Is are H+Is who are also diagnosed, and in our model,

are immediately sequenced and put on ART (which they may or may not sustain). Thus, full

sampling refers to a case where all diagnosed individuals are included in the dataset and H+Is

who are not diagnosed are never in our sampling. In other words, the full sampling case should

not be misunderstood as including undiagnosed people. Rather, lack of full sampling corresponds

to a case where some SH+Is are known to some clinic but are not included in the study, perhaps

due to a lack of sequencing or data sharing.

ProACT far outperformed random ordering and also ordering by cluster growth in sim-

ulations. However, we note that, despite the strong performance, there is much room left for

future improvement: ProACT consistently ranges in its outcome measure between 2% and 10%

of the theoretically optimal efficacy when selecting up to 10% of top-priority SH+Is. Thus, there
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is great room for improvement in identifying high-value individuals compared to our method

according to the simulation results. It will be unrealistic to expect that any statistical method

based solely on sequence data (and perhaps also commonly available metadata, e.g. sampling

times) will be able to come close to the optimal ordering. Nevertheless, it remains likely that

methods better than ProACT could in fact be developed.

3.4.2 Implications of Results

In this paper, in addition to introducing ProACT, we formalized a useful approach for

thinking about the effectiveness of public health intervention in molecular epidemics. Instead

of focusing on the accuracy of methods of reconstructing phylogenetic trees or transmission

networks, a question fraught with difficulties, we asked a more practical question. Given molecular

epidemic data, can the methods, whether phylogenetic or clustering-based, prioritize SH+Is for

increased attention by public health? The idea of using molecular epidemics for prioritization is of

course not a new idea. For example, as we mentioned, Wertheim et al. (2018) presented a method

to prioritize SH+Is based on the growth rates of their transmission clusters [103]. Vasylyeva et

al. (2018) performed a phylogeographic analysis to reconstruct HIV movement among different

locations in Ukraine in order to infer region-level risk prioritization [149]. Much earlier even,

Mellors et al. (1996) predicted HIV patient prognosis by quantifying HIV RNA in plasma [150];

predicted prognosis can subsequently be used as a prioritization rank. However, we hope that

our formal definition of the problem as a computational question (i.e., prioritization), in addition

to our extensive simulations and developed metrics of evaluation will stir further work in this

area. As stated before, it seems likely that more advanced methods than our simple prioritization

approach can improve performance beyond ProACT in the future.

ProACT prioritizes individuals, not clusters. Prioritizing treatment followup or partner

tracing for individuals based on their perceived risk of future transmission promises to be perhaps

more effective than targeting clusters. However, such targeted approaches also pose ethical
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questions that have to be considered. For example, we may not want the algorithm to be biased

towards particular demographic attributes. ProACT does not use any metadata in its prioritization,

reducing risks of such biases. It simply uses the viral phylogeny, which, compared to other types

of data, may lead to fewer biases. Nevertheless, it is possible that factors such as the depth of the

sampling of a demographic group can in fact change branch length patterns in the phylogeny and

make ProACT less or more effective for certain demographic groups. These broader implications

of individual prioritization and impacts of demographics on the performance of ProACT should

be studied more carefully in future.

One may wonder whether ordering by branch lengths will result in orderings that fail

to change with time and reflect the changes in the epidemic. To answer this question, on the

San Diego Primary Infection Resource Consortium (PIRC) data, we asked how fast the ProACT

ordering changes as time progresses. To do so, we computed Kendall’s tau-b correlations to

the ProACT ordering obtained using only the first decile of the dataset (Fig. C.6). There was

a strong but diminishing correlation with the initial ordering. The correlations started at 1 (as

expected) and gradually decreased in the ninth decile to 0.522. The results show that as desired,

ProACT orders do in fact change with time, albeit gradually. The gradual change implies that

certain individuals remain high-priority as time progresses. In practical use, ProACT ordering

should be combined with clinical knowledge about the status of individual patients. For example,

high priority individuals according to ProACT can be given lower priority if they manage to

constantly remain suppressed with multiple followups. More broadly, the ProACT ordering

should be considered one more tool for prioritizing clinical care, but valuable clinical knowledge,

not incorporated into the algorithm, should also be exploited.

Finally, a question faced by public health officials is whether the cost of targeting diag-

nosed individuals for followups and partner tracing is worth the reduction in future cases. The

answer to that question will inevitably depend on who is targeted. For example, in our default

simulation case, targeting individuals randomly would at most reduce 0.0529 transmissions per
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chosen person in the next 12 months, whereas targeting top 1000 individuals according to ProACT

would at most reduce 0.119 transmissions. Thus, prioritization can in fact change the cost-benefit

analyses. Moreover, given a prioritization, one can use simulations to predict the outcome

measure for the top x individuals (similar to Fig. 3.2) and use metrics such as Quality-Adjusted

Life-Year (QALY) to estimate how many top individuals should be targeted for the cost to justify

the benefits.

3.5 Materials and Methods

3.5.1 Simulated Datasets

We used FAVITES to simulate a sexual contact network, transmission network, viral phy-

logeny, and viral sequences emulating HIV transmission in San Diego from 2005 to 2014 [145].

Transmissions were modeled using a compartmental epidemiological model with 5 states:

Susceptible (S), Acute HIV Untreated (AU), Acute HIV Treated (AT), Chronic HIV Untreated

(CU), and Chronic HIV Treated (CT). Individuals in state S (i.e., uninfected) can only transition to

state AU. Each infected state x ∈ {AU,AT,CU,CT} defines a “rate of infectiousness” λS,x: given

an uninfected individual u in state S who has nx sexual partners in state x ∈ {AU,AT,CU,CT},

the transition of u from S to AU is a Poisson process with rate λu = ∑x∈{AU,AT,CU,CT} nxλS,x. To

mimic reality, where ART significantly reduces the risk of transmission, rates are chosen such

that λS,AU > λS,CU > λS,AT > λS,CT ≈ 0. At the beginning of the epidemic simulation, all initially

uninfected individuals are placed in state S, and all initially infected (i.e., “seed”) individuals are

distributed among the 4 infected states according to their steady-state proportions. This model is

a simplified version of the model proposed by Granich et al. (2009) [79].

For the most part, we used the base parameters used in Moshiri et al. (2018) that sought to

model San Diego [145], with the following modifications to better capture reality. See Table C.2

for the full set of parameters of the default condition.
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Sexual Contact Network

To capture the scale-free nature of the sexual contact network, Moshiri et al. (2018) used

the BA model [42]. In addition to the scale-free property, in HIV sexual networks, we typically

observe many densely-connected communities [151], a property the BA model fails to directly

model. To have control over the number of communities, we simulated sexual contact networks

such that networks contained 20 BA communities, each with 5,000 individuals. In the base

condition, the expected degree of connection between an individual and somebody within their

community was chosen to be 10, and the expected degree between an individual and somebody

outside their community was chosen to be 1. Each community was simulated separately using the

BA model and connections between communities were chosen uniformly at random, akin to the

ER model [43]. Estimates from the literature put the number of contacts at 3–4 during a single

year [88]. Because our simulated sexual contacts remain static over the 10 year simulation period,

we explore mean degrees between 10 and 30.

Epidemic Initialization

In Moshiri et al. (2018), at the start of the epidemic, all infected individuals were in

state AU [145]. Here, instead, we randomly distribute initially infected individuals according to

expected proportions of the states. To find these proportions, we ran simulations in which all seed

individuals were in state AU, and we observed the proportion of individuals in each state over

time, which reached a steady-state fairly early in the simulations (Fig. C.7).

Time of Sequencing

In Moshiri et al. (2018), viral sequences are obtained from individuals exactly at the

end time of the 10-year simulation period [145]. In reality, however, HIV patients are typically

sequenced when they first visit a clinic to receive ART. Thus, it is expected that the terminal

branch lengths of trees simulated in Moshiri et al. (2018) are artificially longer than would be
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expected. Instead, we sample viral sequences from individuals the first time they begin ART (i.e.,

the first time they enter state AT or CT). Our current simulation better captures standards of care

in advanced health care systems.

Simulated Data Analysis

For each simulated sequence dataset, using FastTree 2 [102], a phylogenetic tree was

inferred under the GTR+Γ model from the sequences obtained in the first 9 years of the simulation.

These trees were then MinVar-rooted using FastRoot [134], and ProACT was run on the resulting

trees.

3.5.2 San Diego Dataset

To test ProACT on real data, we used a MSA of 926 HIV-1 subtype B pol sequences from

San Diego collected by the UC San Diego PIRC. PIRC is one of the largest longitudinal cohorts

of SH+Is in the United States. By design, PIRC strives to include acute infections (as much as

40% of recruited individuals are during acute or early stages of infection). Access to the data was

obtained through a proposal submitted to PIRC.

A phylogenetic tree was inferred from the MSA under the GTR+Γ model using Fast-

Tree 2 [102], and the resulting tree was MinVar-rooted using FastRoot [134]. For each decile,

using TreeSwift [152], the full tree was pruned to only contain samples obtained up to the end of

that decile. ProACT was run on each of the resulting trees.

3.5.3 Evaluation Procedure

Simulated Data

To measure the efficacy of a given ProACT selection, because the true transmission

histories are known in simulation, we simply average the number of infections caused by the
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individuals in the selection in the last year of simulation (i.e, after prioritization) to obtain a raw

outcome measure.

Let A = {1, . . . ,n} denote the first, . . . , n-th sampled individual in the current time step

(years 1–9 in our simulations). For each individual i, let c(i) denote the number of individuals

directly infected by i in the next time step (year 10 in our simulations). Given any set of individuals

s⊆ A, let C(s) = 1
|s|∑i∈s c(i) denote the average c(i) for all individuals i ∈ s.

Let x = (x1, . . . ,xn) denote an ordering of A. The (unadjusted) CMA of x up to i is

C ({x1, . . . ,xi}). Let o = (o1, . . . ,on) denote the ordering of A in which elements are sorted in

descending order of c(i) (i.e., the optimal ordering), with ties broken arbitrarily. We defined the

adjusted CMA of x up to i as
C ({x1, . . . ,xi})−C(A)
C ({o1, . . . ,oi})−C(A)

. (3.1)

We use Equation 3.1 to measure the effectiveness of a selection of the top i individuals from each

ordering of all individuals. We explore i for 1 to 10% of the total number of samples (i.e., |A|10 ).

Real Data

The sequences were sorted in ascending order of sample time and, for each decile, they

were split at the decile to form two sets: pre and post. A phylogenetic tree was inferred from

the sequences in pre under the GTR+Γ model using FastTree 2 [102] and MinVar-rooted [134].

Using the resulting tree, ProACT ordered the samples. Then, pairwise distances were computed

between each sequence in pre and each sequence in post under the TN93 model [47] using the

tn93 tool of HIV-TRACE [26].

A natural function to compute the riskiness score of a given individual u in pre, similar to

that proposed by Wertheim et al. (2018) [103], is to simply count the number of individuals in

post who are genetic links to u, i.e., ∑v∈post [d(u,v)≤ 1.5%]. In other words, the score function

is simply a step function with value 1 for all distances less than or equal to 1.5% and 0 for

all other distances. However, the selection of 1.5% as the distance threshold, despite being
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common practice in many HIV transmission clustering analyses, is somewhat arbitrary, and a step

function exactly at this threshold may be overly strict (e.g. should a pairwise distance of 1.51%

be ignored?).

To generalize this notion of scoring links, we utilized three analytical score functions. The

first is the aforementioned step function f1(d) = [d ≤ 1.5%]. The second is a sigmoid function

f2(d) = λ+1
λ d/0.15+λ

with the choice of λ = 100 and λ = 5 (Fig. C.5). The third is an empirical

scoring function learnt from the data by fitting a mixture model of three Gaussian random variables

onto the distribution of pairwise TN93 distances f3(d) =
p1(x)

p1(x)+p2(x)+p3(x)
, where p1(x) is the

Probability Density Function (PDF) of the Gaussian component with smallest mean and p2(x) and

p3(x) are the remaining Gaussian components (Fig. C.5). Specifically, the three Gaussian fits were

parameterized by (µ1 = 0.0191, σ1 = 0.0103), (µ2 = 0.0609, σ2 = 0.0118), and (µ3 = 0.118,

σ3 = 0.0468), respectively.

For each of these function, for each decile to define pre and post, we performed a

Kendall’s tau-b test to compare the prioritization approaches [146]. To generate a null distribution

in Figure 3.4, we randomly shuffled the individuals in pre repeatedly; note however that the p-

values reported in Table 3.2 are the theoretical p-values computed by the tau-b test, not empirically

estimated from our repeated shuffling.
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Chapter 4

TreeSwift: A Massively Scalable Python

Tree Package
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Phylogenetic trees are essential to evolutionary biology, and numerous methods exist

that attempt to extract phylogenetic information applicable to a wide range of disciplines, such

as epidemiology and metagenomics. Currently, the three main Python packages for trees are

Bio.Phylo, DendroPy, and the ETE Toolkit, but as dataset sizes grow, parsing and manipulating

ultra-large trees becomes impractical for these tools. To address this issue, I developed TreeSwift,

a user-friendly and massively scalable Python package for traversing and manipulating trees that

is ideal for algorithms performed on ultra-large trees.

4.1 Motivation and Significance

Phylogenetic trees are essential to evolutionary biology, and phylogenetic methods are

applicable to a wide range of disciplines, such as epidemiology [24, 22] and metagenomics

[153, 154, 155]. However, the datasets analyzed by these methods are growing rapidly as

sequencing costs continue to fall, emphasizing the need for scalable methods of tree traversal and

manipulation. Beyond the analysis of real datasets, phylogenetic approaches can be utilized in

the analysis of potentially massive datasets generated by simulation experiments [145].

Methods for performing phylogenetic analyses such as clustering [25] and rerooting [134]

are typically presented as a series of higher-level tree traversals and manipulations. The developers

of these tools do not commonly implement basic tree processing from scratch: they typically

utilize existing tree packages to handle low-level tasks and instead implement their algorithms

as a series of calls to functions of these packages. As a result, the performance of such a tool

depends not only on the time complexity of its algorithm, but also on the performance of the

underlying tree package.

Currently, the three main Python packages for trees are the Bio.Phylo module of Biopy-

thon [156], DendroPy [78], and the ETE Toolkit [157]. The three tools are simple to integrate

into new methods, include a plethora of functions that cater to most phylogenetics needs, and
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are fast for reasonably-sized trees. However, as dataset sizes grow, parsing and manipulating

ultra-large trees becomes impractical. I introduce TreeSwift, a scalable cross-platform Python

package for traversing and manipulating trees that does not require any external dependencies,

and I compare its performance against that of Bio.Phylo, DendroPy, and the ETE Toolkit.

4.2 Software Description

4.2.1 Software Overview

TreeSwift is a pure-Python package that has no required external dependencies and which

has been tested on Python versions 2.6–2.7 and 3.3–3.7. It is also compiled and hosted on PyPI,

meaning it can easily be installed with a single pip command without any need for administrative

privileges or any advanced knowledge. This is essential to contrast against the current state-of-

the-art, ETE Toolkit, which requires the Six and NumPy Python libraries to install if the user has

administrative privileges or Anaconda/Miniconda to install if the user doesn’t, and BioPython,

which requires a C compiler and the NumPy Python library as well as the computer fluency to

compile tools from source using a Makefile.

A key feature of TreeSwift is its simplicity in class design in order to reduce time and

memory overhead of loading, traversing, and manipulating trees. The entire package consists

of just two classes: a Node class, which contains the data and local relationships, and a Tree

class, which handles manipulation and traversal on the Node objects. A key distinction between

TreeSwift and DendroPy is that DendroPy stores bipartition information to enable efficient

comparisons between multiple trees that share the same set of taxa, but because TreeSwift is

designed for the fast traversal and manipulation of individual trees (and not for the comparison of

multiple trees), TreeSwift forgoes this feature to avoid the accompanied overhead, resulting in a

much lower memory footprint and faster execution of equivalent functions (Fig. 4.1).
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Figure 1: Runtimes of DendroPy, Bio.Phylo, the ETE Toolkit, and TreeSwift for a wide
range of typical tree operations using trees of various sizes, as well as memory consumption
after loading a tree. The truncation of a given tool’s plot implies lack of scalability beyond
that point, and the entire lack of a given tool implies lack of implementation of the tested
functionality. Timing was performed on a computer running CentOS release 6.6 (Final)
with an Intel(R) Xeon(R) CPU E5-2670 0 at 2.60GHz and 32 GB of RAM.

3

Figure 4.1: Runtimes of DendroPy, Bio.Phylo, the ETE Toolkit, and TreeSwift for a wide range
of typical tree operations using trees of various sizes, as well as memory consumption after
loading a tree. The truncation of a given tool’s plot implies lack of scalability beyond that point,
and the entire lack of a given tool implies lack of implementation of the tested functionality.
Timing was performed on a computer running CentOS release 6.6 (Final) with an Intel(R)
Xeon(R) CPU E5-2670 0 at 2.60GHz and 32 GB of RAM.
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4.2.2 Software Functionalities

TreeSwift supports loading trees in the Newick, Nexus, and NeXML file formats via the

read_tree_newick, read_tree_nexus, and read_tree_nexml functions, respectively. Inputs

to these functions can be strings, plaintext files, or gzipped files, and TreeSwift handles the

nuances of parsing them internally to maintain user-friendly operability.

TreeSwift provides generators that iterate over the nodes of a given tree in a variety

of traversals, including pre-order, in-order, post-order, level-order, and root-distance-order.

TreeSwift also allows for the modification of the structure of a given tree by simply modi-

fying the Node objects of the tree. These built-in generators and modifiers intend to provide

developers a simple yet efficient manner in which to implement their own algorithms such that

they only need to consider higher-level details of the traversal process.

TreeSwift also provides the ability to compute various summarizing statistics of a given

tree, such as tree height, average branch length, patristic distances between nodes in the tree,

treeness [158], and the Gamma statistic [159]. Beyond numerical statistics to describe trees,

TreeSwift can also generate a visual summary of a tree in the form of a Lineages Through Time

(LTT) plot [160], a feature not currently implemented in any other Python tree package.

4.3 Illustrative Example

In the following example, I load a tree from a gzipped file, compute the minimum distance

from each node in the tree to a leaf, print the minimum leaf distance of the root, and create a LTT

plot (Fig. 4.2).
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Figure 4.2: Example LTT plot generated using TreeSwift.

from treeswift import read_tree_newick

tree = read_tree_newick("my_huge_tree.nwk.gz")

min_leafdist = dict()

for u in tree.traverse_postorder():

if u.is_leaf():

min_leafdist[u] = 0

else:

min_leafdist[u] = min(min_leafdist[c]+c.edge_length for c in u.children)

print("Minimum leaf distance from root: %f" % min_leafdist[tree.root])

tree.lineages_through_time(color="blue")
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4.4 Impact

The key impact of TreeSwift is its significant performance improvement over existing

Python tree packages (Fig. 4.1). For almost all tested tree operations, TreeSwift performed tasks

significantly faster than all existing tools (by orders of magnitude at times), and it was the only

tool that not only had all tested functions implemented, but that also was able to scale to the

largest of tested datasets. Further, TreeSwift’s memory consumption was significantly lower than

all existing tools. Thus, phylogenetic tools written in Python can utilize TreeSwift for scalability.

Further, TreeSwift was designed to be simple to use. As can be seen in the example code

in Section 4.3, a user with minimal Python experience can generate a LTT plot in just 3 lines of

Python code. Even complex tree algorithms can be implemented cleanly by utilizing TreeSwift’s

traversal generators [25].

It must be emphasized that, although TreeSwift was designed with the field of phyloge-

netics in mind, the package is general in that it can be utilized with any arbitrary tree structure,

including those in non-phylogenetic applications [152]. Thus, its utility can extend well beyond

its intended phylogenetics audience.

4.5 Conclusions

In this article, I presented TreeSwift, a pure-Python package for loading, traversing, and

manipulating trees in a massively-scalable manner. The current version implements a wide range

of typical tree operations, and due to its simple design, I hope to engage other developers to

further expand TreeSwift’s capabilities to target a larger suite of potential applications.
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Chapter 5

Bioinformatics Education
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With rapid advances in sequencing technologies, the entire field of biology has largely

shifted to depend upon the ability to analyze ultra-large datasets. As a result, the ability to perform

basic computation has become a necessary prerequisite for successful biological research, yet

it is only barely beginning to enter official undergraduate biology curricula as a required topic.

Further, these skills are required not only by undergraduate biologists, but by graduate students,

post-docs, and even faculty members and professionals, yet these individuals may not have the

ability to enroll in undergraduate Computer Science courses. In an attempt to address this gap in

education availability, I have dedicated significant effort to develop MAITs for use in MOOCs as

well as in flipped in-person classrooms.

5.1 Introduction

5.1.1 Bioinformatics Education: The New Frontier

With the introduction of Next Generation Sequencing (NGS) technologies, researchers

gained the ability to perform large-scale sequencing experiments at extremely high throughput

with relatively low costs [161]. Due to the massive sizes of the datasets that are produced in such

experiments, basic computational education has become increasingly necessary for successful

biological research. While professors at top universities have started introducing bioinformatics

courses into undergraduate curricula in recent years [162, 163, 164], access to such courses

is typically restricted to students who have the ability to enroll in undergraduate courses at

these top universities. However, high tuition costs disproportionately prevent low-income and

minority students from entering such universities [165], leading to disparity in terms of who

actually has access to such learning materials. Further, undergraduate students are not the only

audience of interest for courses in such topics: graduate students, post-docs, and even faculty and

professionals who received formal training in biological and biomedical sciences without any

computational coursework are in need of these bioinformatics courses. In addition to difficulties
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faced by students, due to the rapid growth of the popularity of computational courses [166],

instructors of such courses tend to struggle to scale their courses to accommodate large class

sizes.

5.1.2 The MOOC Revolution

With the creation of companies like Coursera and edX, university professors started to

develop MOOCs: tuition-free courses taught over the internet to a large number of students.

What started as just a handful of courses, such as Machine Learning by Andrew Ng (2012) [167],

eventually blew up, and all major universities started releasing MOOCs on a wide range of

subjects [168]. Much research went into how to design these courses [169, 170, 171, 172].

Further, MOOCs seemed to attract increased participation by residents of countries in which higher

education is extremely rare, far more significant representation of women than in universities,

a large proportion of individuals who are either unemployed or seeking to change field of

employment, and a considerable number of individuals simply taking courses for interest [173].

However, their reception was generally mixed: some enjoyed the freedom of filling their education

gaps at their own pace [174], whereas others were pessimistic about their educational value [175].

Many complaints were aimed at the passive learning encompassed in traditional MOOCs, in

which students simply watch a series of lecture videos and answer simple multiple choice quizzes

embedded throughout.

5.1.3 From MOOCs to MAITs

Phillip Compeau and Pavel Pevzner released the first ever bioinformatics MOOC, Bioin-

formatics Algorithms (2014) [176], and with it, a new technology to revolutionize online learning:

the MAIT, an online text that has integrated quizzes, numerical problems, and even coding

challenges to allow the learner to directly interact with the content and to allow the instructor
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to enable active learning, even in a remote and automated setting [177]. The challenges are

adaptive in that they provide the student uniquely-tailored feedback based on the student’s specific

misconception, and the text itself is adaptive in that the user can take his or her own unique

“learning path.” For example, a biology student would have the ability to take optional “detours”

on prerequisite computer science topics such as time complexity, whereas a computer science

student would have the ability to take optional “detours” on prerequisite biology topics such

as the Central Dogma. These carefully-written MAITs were the foundation upon which the

Bioinformatics Algorithms MOOCs were built, and the adaptivity and interactivity was generally

well-received by the learners.

5.1.4 “Bioinformatics” Means Nobody Gets Left Behind

Despite the great success of the Bioinformatics Algorithms MOOCs, the space of online

bioinformatics education was not yet filled: these courses were excellent for students with exten-

sive backgrounds in programming, discrete mathematics, and algorithms, but for all biologists

who wanted to transition into the computational aspects of the field, these courses were incom-

prehensible due to the students’ lack of computational background. This motivated my work in

bioinformatics education: the development of beginner-friendly MAITs to embed within MOOCs

as well as to integrate into offline classrooms.

5.2 Methods

5.2.1 Teaching Philosophy

Just like running a traditional offline classroom, developing a MAIT requires the imple-

mentation of various pedagogical techniques to optimize the learning experience and to enhance

student outcomes. As such, the pedagogical design of a MAIT is essential to its success. In this
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Figure 5.1: Bloom’s Taxonomy

section, I discuss the pedagogical techniques I utilize when developing MAITs.

Bloom’s Taxonomy

Bloom’s Taxonomy is a set of three hierarchical models used to classify educational

learning objectives into levels of complexity and specificity [178]. The cognitive (i.e., knowledge-

based) domain of the taxonomy is a hierarchy containing the following levels: Remember,

Understand, Apply, Analyze, Evaluate, and Create (Fig. 5.1) [179]. I follow the guidelines of

Bloom’s Taxonomy when developing my materials.

Active Learning

Within my MAITs, I implement the Active Learning approach: students actively engage

with the materials as opposed to simply passively reading or viewing them [180]. Specifically,

I integrate numerous multiple choice, short answer, numerical, and coding challenges that can

be solved directly within the text. By undergoing frequent assessment throughout the learning

process, students are able to gauge their mastery of concepts throughout a given section, and

they will be able to correct their misconceptions precisely when they occur (unlike many existing

self-paced learning resources, which typically assess student mastery at the end of each section).
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Adaptive Learning

A common misconception is that online education lacks the personalized qualities of an

offline course. However, on the contrary, in my MAITs, I demonstrate that my tens of thousands

of students are able to receive far more personalized feedback than is possible in an offline

class of even tens of students. Specifically, in my MAITs, all challenges (including coding) are

automatically graded via carefully-designed Intelligent Tutor Systems (ITSs), which attempt to

provide students uniquely-tailored feedback based on their specific misconceptions (Fig. 5.2).

Inquiry-Based Learning

In introductory computational courses, the topics that are covered are rarely very inter-

esting when presented out-of-context. When I present new topics in my MAITs, I first motivate

them using a real-world problem in the form of a story. By employing Inquiry-Based Learning,

an educational strategy in which students perform tasks in a fashion similar to those undertaken

by professional scientists in order to construct knowledge [181].

Discovery Learning

Research into Discovery Learning has showed that, when a student finds the solution to

an open-ended problem on their own, the student benefits two-fold: the student typically has a

stronger fundamental understanding of the solution, and the student has an improved perception

of his or her own abilities to solve problems of this nature [182]. In my MAITs, instead of simply

presenting the learning goal to the student, I try to guide the students and have them discover the

solution on their own.

Making Learning Fun!

In my own experiences as a student, I often found it difficult to complete assigned reading

assignments and would quickly lose interest during classes. In computational textbooks and

106



(a)

(b)

(c)

Figure 5.2: Example code challenge. (a) Each problem has a clear prompt, and (b) students
can solve the problems directly within the text. In this example solution, the student has an
off-by-one bug (the student misses the last index), and (c) the carefully-designed ITS is able to
provide the student personalized feedback.
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learning resources, I often felt as though the learning materials were presented in a manner that

was unneededly dry and complex. Instead, I fill my MAITs with stories, jokes, and puns, and I

attempt to avoid the use of unnecessarily complex jargon when describing concepts to ensure that

students of a wide range of backgrounds are able to follow successfully. I believe the success to

learning is in the hands of the learners, and it is the responsibility of the teacher as the expert to

design the educational journey to be genuinely captivating. Intuitively, it is much easier to teach

when students want to learn.

5.3 Results

I developed Analyze Your Genome! (2017), a MOOC designed to teach biologists the

best-practice workflows to analyze biological big data [183]. However, instead of discussing

the specifics of the algorithms behind the analyses, I focused on how to design, execute, and

interpret end-to-end bioinformatics experiments. With this approach, students are able to gain the

basic proficiency required to perform relevant analyses to complement their traditional biological

experiments. The course covered differential gene expression analysis using RNA-sequencing

data, variant calling using Whole Genome Sequencing (WGS) vs. Whole Exome Sequencing

(WES) data, rare variant calling and phasing using WGS data obtained from a trio (i.e., mother,

father, and child), and bacterial genome assembly.

I also developed Data Structures, a MAIT to accompany the Advanced Data Structures

course at the University of California, San Diego. Since its initial development, it has been

integrated into data structures courses at the University of San Diego and the University of

Puerto Rico. In 2017, the MAIT was integrated into a MOOC on edX: Data Structures: An

Active Learning Approach (2017) [184]. The goal of the MOOC was to bridge the gap between

introductory programming (which exists in many MOOCs) and the Bioinformatics Algorithms

MOOCs by Compeau and Pevzner. After the large success of the MOOC, the MAIT was adapted

108



to a physical textbook: Design and Analysis of Data Structures (2018) [185]. In total, Data

Structures has reached a total of nearly 40,000 learners in less than 3 years of existence, and the

learners span a wide range of ages, education levels, and countries (Fig. 5.3).

5.4 Discussion

Historically, the ability to learn computer science and bioinformatics has been restricted

to students in higher education institutions, which can be prohibitive due to financial hardship,

time constraints, or other factors. However, due to their self-paced nature, MOOCs reduce these

barriers to entry, permitting entrance by previously underrepresented demographics. For example,

data structures are typically only taught in undergraduate computer science courses, meaning the

distribution of students is predominantly within the range of 17 through early 20s, whereas my

MOOC has reached a far wider range of learners who would otherwise not take such a course

(Fig. 5.3a). Further, MOOCs serve as a unique opportunity for learners who may have formal

education in one field but wish to transition fields, such as biologists with Bachelors, Masters, or

even Doctorate levels of education who wish to learn introductory computer science (Fig. 5.3b).

Lastly, MOOCs are accessible to curious minds across the globe, thus enabling the education of

individuals who physically would not be able to attend a top university (Fig. 5.3c).

Of course, the success of my MAIT-based MOOCs is largely due to the topics I have

chosen, which happen to align well with the automation capabilities of online learning platforms.

Specifically, the challenges in my MOOCs are largely coding-focused, and it is typically simple

to objectively determine the correctness of a student’s code. However, topics in other fields

(such as the social sciences) may not experience this simple objectivity in assessing correctness,

which could lead to difficulties in developing ITSs to automate grading and provide personalized

feedback. Even within Computer Science and Bioinformatics, coding-focused courses may be

prime for this form of presentation, but more theoretical or proof-based courses will certainly not
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Figure 5.3: (a) Age distribution, (b) education level distribution, and (c) geographical locations
of learners in Data Structures: An Active Learning Approach.
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enjoy the same ease of design.

Further, not all students in the same way, and just like any other educational technology

or mode of instruction, MAITs may not be the optimal mode of instruction for all students. For

example, some students strongly prefer the ability to directly interact with their instructor, and

while online education does permit real-time interaction in the form of video meetings, the student

may not perceive the interaction to be as meaningful if done remotely. On the other hand, other

students who feel lost in large lectures may actually prefer the self-paced and adaptive nature

of MAITs, which can provide them a far more personalized learning experience than can an

instructor teaching 300+ other students simultaneously.

In short, I believe that, when designed carefully and executed properly, a MAIT can be

a powerful tool for improving learning and for allowing instructors to reach a massive number

of individuals in a highly-scalable fashion. In the future, I will continue to develop high-quality

MAITs to address the learning needs of the bioinformatics community.
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Table A.1: Comparison with Existing Simulation Tools

epinet TreeSim outbreaker seedy PANGEA FAVITES
Contact
Network Fixed Complete Complete Complete Fixed Any

Trans.
Network Fixed Fixed Fixed Fixed Fixed Any

Sampling N/A
Fixed or
Sequential

Fixed Uniform Fixed Any

Phylogeny None Fixed Fixed Fixed Coalescent Any
Mutation

Rate N/A N/A Constant Constant Fixed Any

Sequences None None Fixed Fixed Fixed Any
Sequencing N/A N/A No No No Any

Table A.2: Post-Validation Tools

Name Description

compare_contact_networks.py
Compare the degree distributions of a given simulated
contact network against a reference contact network

compare_trees.py

Compare the distributions of all branch lengths, internal
branch lengths, terminal branch lengths, and root-to-tip
distances between a given simulated tree against a given

reference tree

distribution_distance.py
Compute a distance between two distributions given

samples from each
ltt.py Create a LTT plot from one or more Newick trees

sequence_score_profile_HMM.py
Score a given sequence dataset against a given profile

HMM
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(a) (b)

Figure A.1: (a) LTT plot of the first 25 years of the dated San Diego tree along with multiple
potential rate functions for the non-homogeneous Yule model [99], and (b) plots of the rate
functions. Because HIV trees have more short branches than normal Yule models (i.e., rate
1), we looked for functions that lead to increased numbers of lineages close to the root. This
can be done by increasing the rate close to the root and then gradually decreasing the rate. As
can be seen, λ (t) = 1 and λ (t) = max(2− t/25,1) are far lower than the real San Diego curve.
λ (t) = exp(−t)+ 1 is much closer to the real curve, and λ (t) = exp(−t2)+ 1 is marginally
closer than it. We chose to use λ (t) = exp(−t2)+1 as a result.

Figure A.2: Average true branch length vs. EART for the BA, ER, and WS models with random
seed selection as well as for the BA model with edge-weighted seed selection with various
expected degrees. The base parameters were chosen for all other parameters.

114



(a)

(b)

Figure A.3: (a) Kernel density estimates of the distributions of (Top) pairwise tree distances,
(Middle) branch lengths, and (Bottom) pairwise JC69+Γ distances of real and simulated datasets
for San Diego and Uganda using the default value of EART= 1 year for (Left) various values of
Edand (Right) various mutation rate models. For a pair of sequences with Hamming distance d,

the phylogenetic distance corrected under the JC69+Gamma model is t = 3α

4

((
1− 4d

3

)− 1
α −1

)
,

where α is the shape parameter of the Gamma distribution and is estimated using IQ-TREE [97]
in JC69+Γ mode. The JSD between the distributions of each model and the real dataset distribu-
tions are as follows: for inferred pairwise distances, Truncated Normal = 0.023, Exponential
= 0.055, Constant = 0.059, Gamma = 0.031, and Log-Normal = 0.024; for inferred branch
length, Truncated Normal = 0.044, Exponential = 0.031, Constant = 0.072, Gamma = 0.054,
and Log-Normal = 0.059. Overall, truncated normal and log-normal distributions have the best
match. The JSD values for the distributions in which Ed is varied can be found in Table A.6. (b)
Kernel density estimates of distributions of pairwise JC69+Γ distances on San Diego simulations
with various EART values and for Uganda.
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Fig. S2. Real versus simulated phylogenetic trees. Phylogenetic trees inferred from a real dataset of pol sequences (a) from San Diego (Little et al., 2014), (b) from a simulated San Diego
dataset, (c) from the set of all pol sequences in the Los Alamos National Laboratory (LANL) that were sampled in Uganda between 2005 and 2014, and (d) from a simulated Uganda dataset.
Trees were inferred using the ModelFinder Plus feature (Kalyaanamoorthy et al., 2017) of IQ-TREE (Chernomor et al., 2016).

Fig. S3. Average true branch length vs. EART for the Barabási-Albert (BA), Erdős-Rényi (ER), and Watts-Strogatz (WS) models with random seed selection as well as for the BA model
with edge-weighted seed selection with various expected degrees. The base parameters were chosen for all other parameters.

Figure A.4: Real versus simulated phylogenetic trees. Phylogenetic trees inferred from a real
dataset of pol sequences (a) from San Diego [58], (b) from a simulated San Diego dataset, (c)
from the set of all pol sequences in the LANL HIV database that were sampled in Uganda
between 2005 and 2014, and (d) from a simulated Uganda dataset. Trees were inferred using the
ModelFinder Plus feature [96] of IQ-TREE [97].
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Fig. S5. Number of infected individuals vs. time for multiple rates of starting ART (colors). The underlying contact network was simulated using the base parameters listed in Table 1 with
100,000 total individuals and 15,000 seed individuals under the epidemiological model shown in Figure 2. We show figures for all infected people (Top Left), and those in chronic states
(Top Right). We also show (Bottom) the ratio of the number of untreated individuals vs. the number of treated individuals (log-scale) vs. time where untreated/treated = 1 is shown as a
dashed black line, and the value of untreated/treated corresponding to the “90-90-90” goal (UNAIDS, 2014) is shown in blue.

Figure A.5: Number of infected individuals vs. time for multiple rates of starting ART (colors).
The underlying contact network was simulated using the base parameters listed in Table 1.1
with 100,000 total individuals and 15,000 seed individuals under the epidemiological model
shown in Figure 1.2. We show figures for all infected people (Top Left), and those in chronic
states (Top Right). We also show (Bottom) the ratio of the number of untreated individuals vs.
the number of treated individuals (log-scale) vs. time where untreated/treated = 1 is shown as a
dashed black line, and the value of untreated/treated corresponding to the “90-90-90” goal [105]
is shown in blue.
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Fig. S6. Total number of infected individuals vs. EART for the Barabási-Albert (BA), Erdős-Rényi (ER), and Watts-Strogatz (WS) models with random seed selection as well as for the
BA model with edge-weighted seed selection with various expected degrees. The base parameters were chosen for all other parameters. The number of seed individuals (15,000) is shown
by a black dashed line. The BA figure is repeated in each row on the left to facilitate visual comparison to other models.

Figure A.6: Total number of infected individuals vs. EART for the BA, ER, and WS models
with random seed selection as well as for the BA model with edge-weighted seed selection
with various expected degrees. The base parameters were chosen for all other parameters. The
number of seed individuals (15,000) is shown by a black dashed line. The BA figure is repeated
in each row on the left to facilitate visual comparison to other models.
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Fig. S7. The ratio of the number of untreated vs. the number of treated individuals (log-scale) vs. expected time to begin Antiretroviral Therapy (EART ) for the Barabási-Albert (solid
circles), Erdős-Rényi (dotted triangles), and Watts-Strogatz models (dashed squares) with random seed selection as well as the Barabási-Albert with edge-weighted seed selection (dot-dashed
pluses) with various Ed values (colors) Untreated/treated = 1 is shown as a dashed black line, and the value of untreated/treated corresponding to the “90-90-90” goal (UNAIDS, 2014) is
shown as a dashed blue line ((1 − 0.93)/0.93 ≈ 0.37).

Fig. S8. Robinson-Foulds (RF) distance (solid lines) and proportion of “extremely short” branches (dotted lines) vs. expected time to begin Antiretroviral Therapy (EART ) for the
Barabási-Albert model with various Ed values (colors) with all other parameters set to base values. We define branches to be “extremely short” if the expected number of mutations along
the branch is less than or equal to 1 (i.e., the branch length is less than or equal to the reciprocal of the sequence length). All the trees are inferred using FastTree 2 and RF is computed with
respect to the true tree.

Figure A.7: The ratio of the number of untreated vs. the number of treated individuals (log-
scale) vs. expected time to begin Antiretroviral Therapy (EART ) for the BA (solid circles), ER
(dotted triangles), and WS models (dashed squares) with random seed selection as well as
the BA with edge-weighted seed selection (dot-dashed pluses) with various Edvalues (colors).
Untreated/treated = 1 is shown as a dashed black line, and the value of untreated/treated
corresponding to the “90-90-90” goal [105] is shown as a dashed blue line

(
1−0.93

0.93 ≈ 0.37
)

.
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Fig. S7. The ratio of the number of untreated vs. the number of treated individuals (log-scale) vs. expected time to begin Antiretroviral Therapy (EART ) for the Barabási-Albert (solid
circles), Erdős-Rényi (dotted triangles), and Watts-Strogatz models (dashed squares) with random seed selection as well as the Barabási-Albert with edge-weighted seed selection (dot-dashed
pluses) with various Ed values (colors) Untreated/treated = 1 is shown as a dashed black line, and the value of untreated/treated corresponding to the “90-90-90” goal (UNAIDS, 2014) is
shown as a dashed blue line ((1 − 0.93)/0.93 ≈ 0.37).

Fig. S8. Robinson-Foulds (RF) distance (solid lines) and proportion of “extremely short” branches (dotted lines) vs. expected time to begin Antiretroviral Therapy (EART ) for the
Barabási-Albert model with various Ed values (colors) with all other parameters set to base values. We define branches to be “extremely short” if the expected number of mutations along
the branch is less than or equal to 1 (i.e., the branch length is less than or equal to the reciprocal of the sequence length). All the trees are inferred using FastTree 2 and RF is computed with
respect to the true tree.

Figure A.8: RF distance (solid lines) and proportion of “extremely short” branches (dotted
lines) vs. expected time to begin Antiretroviral Therapy (EART ) for the BA model with various
Edvalues (colors) with all other parameters set to base values. We define branches to be
“extremely short” if the expected number of mutations along the branch is less than or equal to 1
(i.e., the branch length is less than or equal to the reciprocal of the sequence length). All the
trees are inferred using FastTree 2 and RF is computed with respect to the true tree.
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Table A.3: Helper Scripts

Name Description

clean_labels.py

For each read of the given sequence file or each
leaf of a given phylogenetic tree, remove

everything from the label except for the contact
network individual’s name

cluster_previous_time.py

Given a clustering from the simulation end time,
a FAVITES-format transmission network, and a
time, remove individuals who were not infected
at the given time and output the resulting clusters

cn_adjacency_matrix_to_favites.py
Convert a given contact network from a binary

adjacency matrix to the FAVITES format

degree_stats.py
Given a contact or transmission network,

compute various statistics of the node degree
distribution

FAVITES2GEXF.py
Convert a FAVITES contact network and
transmission network to the GEXF format

PANGEA_transmissions_to_FAVITES.py
Convert a PANGEA transmission network into

the FAVITES edge-list format

patristic_distances.py
Given a phylogenetic tree, compute the pairwise
distances between leaves and output the resulting

distance matrix as a CSV file

scale_tree.py
Given a phylogenetic tree (in the Newick format),

scale all branches

score_clusters.py
Score a given query clustering against a given

true reference clustering

tn93_to_clusters.py
Convert tn93 output to the Cluster Picker

clustering format
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Table A.4: HIV Simulation Parameters (epidemiological model)

San Diego Uganda
CN Model BA BA

Expected Degree 4 4
Number of Seeds 1,500 15,000
λAU→CU (year−1) 8.667 8.667
λAT→CT (year−1) 4.333 4.333
λU→T (year−1) 1 1
λT→U (year−1) 1 0.48
λS,AU (year−1) 0.1125 0.1125
λS,AC (year−1) 0.0225 0.0225
λS,AT (year−1) 0.005625 0.005625
λS,CT (year−1) 0 0

Table A.5: HIV Simulation Parameters (evolutionary model)

San Diego Uganda
Seed Height (years) 25 25

Seed Rate 1+ e−t2
1+ e−t2

Population Growth 2.852 2.852
v.T50 -2 -2

Mutation Rate Location 0.0008 0.001
Mutation Rate Scale 0.0005 0.0005

GTR πA 0.392 0.377
GTR πC 0.164 0.172
GTR πG 0.212 0.210
GTR πT 0.232 0.241
GTR πAC 1.812 1.388
GTR πAG 9.934 7.017
GTR πAT 0.718 0.736
GTR πCG 0.971 0.594
GTR πCT 9.934 8.618
GTR πGT 1 1

α (Γ shape) 0.405 0.449
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Table A.6: Real vs. Simulated JSD. All columns except the last (UG; for Uganda) correspond
to the San Diego simulations. JSD is computed between two distributions, one based on
real data and one based on simulated data (either using true trees or trees inferred using IQ-
TREE from simulated data). Distributions correspond to pairwise leaf distances on the tree
(patristic distance), branch lengths (BL), and pairwise sequence distances corrected using
JC69+Γ correction (see Fig. A.3).

True Patristic Inferred Patristic True BL Inferred BL JC69+Γ

EART= 8 0.195 0.027 0.050 0.100 0.049
EART= 4 0.189 0.025 0.052 0.111 0.045
EART= 2 0.193 0.033 0.045 0.097 0.035

Base 0.202 0.023 0.044 0.102 0.024
EART=

1
2 0.188 0.023 0.057 0.116 0.040

EART=
1
4 0.202 0.018 0.047 0.110 0.027

EART=
1
8 0.163 0.024 0.046 0.103 0.023

Ed= 2 0.183 0.024 0.108 0.043 0.042
Ed= 8 0.179 0.025 0.103 0.056 0.033
Ed= 16 0.196 0.035 0.108 0.053 0.034

UG 0.100 0.082 0.082 0.119 0.243

Table A.7: Simulation Result Summary. U:T denotes the ratio of untreated to treated individuals.

Condition U:T Prop. Inf. Increase RF Distance Prop. Short
Base 0.507±0.004 1.449±0.005 0.430±0.052 0.203±0.015

EART=
1
8 0.061±0.001 1.086±0.003 0.452±0.032 0.193±0.012

EART=
1
4 0.122±0.002 1.150±0.004 0.481±0.042 0.199±0.012

EART=
1
2 0.248±0.004 1.127±0.005 0.465±0.040 0.207±0.014

EART= 2 1.036±0.013 1.677±0.019 0.429±0.027 0.210±0.009
EART= 4 2.122±0.019 1.885±0.008 0.437±0.034 0.218±0.013
EART= 8 4.289±0.047 2.034±0.012 0.433±0.041 0.220±0.013
Ed= 2 0.499±0.007 1.196±0.006 0.516±0.038 0.199±0.010
Ed= 8 0.531±0.009 2.103±0.013 0.434±0.031 0.234±0.010
Ed= 16 0.537±0.005 3.586±0.017 0.487±0.019 0.283±0.005

ER 0.503±0.006 1.359±0.007 0.384±0.039 0.186±0.015
WS 0.504±0.007 1.337±0.005 0.370±0.047 0.180±0.011

Edge-Weighted 0.511±0.005 1.571±0.007 0.409±0.025 0.209±0.009
Uganda 1.041±0.046 1.639±0.027 0.297±0.042 0.185±0.021
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B.1 Theoretical Results

B.1.1 Proofs

Theorem 4. Let X be a random variable (r.v.) over ordered ranked tree shapes and distributed

according to the dual-birth model with parameter r = λa/λb. Then,

Pr(X = T ψ

ω ;n) =
rnr−1

∏
n−2
i=1
(
(r−1)li + i+1

) (B.1)

where nr is the number of right leaves in T ψ

ω and li is the number of its left branches before node

i.

Proof. Proof (sketch) Consider the intervals between consecutive birth events in T ψ

ω , and denote

each interval by the rank of its end node (e.g. Figure 2.1a). Because T ψ

ω is ordered, branches in

the interval i can be ordered from left to right (including the order of parents) and assigned an

index between 1 and i+1. Two ordered ranked tree shapes are equal iff the index of the branch

where node i is born is identical in the two trees for all i ∈ N. Seeing that two identical ordered

ranked shapes have this property is trivial. The opposite direction becomes clear if the nodes that

give birth at point i in the two trees are mapped together; the shapes become obviously equivalent

(edges are the same), but also the ranking becomes the same. Finally, the ordering is the same

because of identical left to right ordering. Let ξi denote the event that the index of the branch on

which node i is born in X is equal to the index of i in T ψ

ω . Then, Pr(X = T ψ

ω ) = Pr(∩n−2
1 ξi).

Birth on each branch is governed by a Poisson process with rate λa and λb for left and

right branches, respectively. Due to the memoryless property of the exponential distribution, the

length of each branch before node i−1 has no bearing on subsequent birth events.

Thus, given li (the number of left branches in the interval i), the probability of ξi does

not depend on ξ1 . . .ξi−1. Therefore, Pr(∩n−2
1 ξi) = ∏

n−2
1 Pr(ξi; li). Also, the probability that any

one of the i+1 competing independent Poisson processes (present on different branches of the
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interval i) results in the first event is simply the ratio of its rate to the sum of all rates. Thus,

Pr(ξi; li) =
λa(1−ωi)+λbωi

liλa +
(
i+1− li

)
λb

=
r(1−ωi)+ωi

(r−1)li +(i+1)
.

Multiplying Pr(ξi; li)s and manipulations gives results.

Theorem 5. For a tree shape Z generated by the dual-birth model with r = λa/λb, let C = c(Z)/n

be an r.v.; then,

lim
n→∞

E(C) =

√
r

1+ r+
√

r
(B.2)

Corollary 4. For an r.v. Nr capturing the number of right (i.e., active) leaves in tree shape T ,

lim
n→∞

E(Nr) =

√
r

1+
√

r
(B.3)

Proof. Proof (sketch) Our proof follows the approach of McKenzie and Steel [117]. We categorize

the terminal branches (i.e., those incident on leaves) of an ordered tree shape into four types:

right branch in a cherry (Right Cherry, or RC), right branch not in a cherry (Right Non-cherry,

or RN), left branch in a cherry (Left Cherry, or LC), and left branch not in a cherry (Left Non-

cherry, or LN). Note that the number of RC and LC branches must be equal (they could be

potentially combined, but the discussions are more clear if we keep them separate). Suppose an

urn includes four types of balls RC, RN, LC, and LN, respectively corresponding to these four

types of branches. As the tree is evolving, each birth event adds a child to one of existing terminal

branches. Moreover, the terminal branch to be used is chosen at random (but not uniformly) from

the terminal branches available at that time point. After the birth, two new terminal branches are

added and the original branch turns into an internal branch. Because of the memoryless property

of our process, each birth event is equivalent to removing a ball from the urn and adding two

balls back to the urn. To make matters slightly more complicated, a birth can also change the
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type of sibling branches that have not been removed (e.g. a non-cherry can be turned to a cherry).

This can be modeled by removing a ball of one type and adding another ball of another type. In

total, after each round, the number of added balls of each type can be potentially negative but the

total number of new balls is a positive constant of 1; this kind of urn models are referred to as an

Extended Polya Urn (EPU).

For EPUs, asymptotic central list theorems exist for the distribution of balls [186]. Specif-

ically, an EPU with k types can be described by a matrix Ak×k, in which Ai j gives the number

of balls of type j added when a ball of type i was drawn. Under certain conditions [186], the

number of balls of type i out of n total balls is asymptotically normally distributed with a mean of

nλ1vi, where λ1 is the principal eigenvalue of A and v is its left eigenvector normalized to add up

to one; more precisely, the number of all ball types asymptotically has a joint normal distribution.

A birth in the dual-birth model can be described by

A′ =

RC :

RN :

LC :

LN :




0 0 0 1

1 −1 1 1

0 1 0 0

1 0 1 −1




Let p be the branch where the birth happens and let s be the sister to p. Each birth always

adds a new RC and a new LC branch, but depending on the type p other changes will occur too.

If p is an RC branch, an RC branch (p) is removed, an RC and an LC are added, and s changes

from LC to LN. Thus, in total, we gain one LN; hence, the first row of A′. A similar logic gives

the third row. For the second row, note that when p is an RN type, we simply remove p, reducing

the count of RN by one, and add an RC and an LC. A similar logic gives the last row.

A further complexity is that not all branches will have an equal chance of splitting in the

dual-birth model. Each left (or right) branch is selected with a probability proportional to λa (or

λb). We account for this by replacing each left ball with λa/λ = r/(r+1) balls and each right
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ball with λb/λ = 1/(r+1) balls. Thus, we get

A =
1

r+1




0 0 0 1

1 −1 1 0

0 r 0 0

r 0 r −r




It can be checked that our EPU satisfies the conditions of the EPU central list theorem.

The principle eigenvalue of A is λ1 =
√

r
r+1 , and a left eigenvector is

v′ =
[

1+
√

r r 1+
√

r 1
1+
√

r

]

The results immediately follow by computing λ1v′1/∑
4
1 v′i for E(C) and λ1(v′1 + v′2)/∑

4
1 v′i

for E(Nr).

Theorem 6. For a weighted tree shape t generated by the dual-birth model with parameters r

and λ conditioned on having n leaves, let D be an r.v. giving the length of a random branch in t;

i.e., D = δI for I ∼U (1,n−2). Then,

lim
n→∞

E(D)→ 1
2λ

(
r+1√

r

)
(B.4)

Proof. Proof (sketch) It is constructive to think about the sampling strategy. First, an uncensored

tree is created with n terminal branches but with varying depth for leaves. Half of the branches

in this tree are drawn from the exponential distribution with rate λa and the other half with rate

λb. Thus, the expected sum of branch lengths in the uncensored tree is 1
2(

1
λa
+ 1

λb
)n. We then cut

n−1 branches. Because of the memoryless property of the exponential distribution, the expected

length of the branches we cut from a tip is 1/λb for right branches and 1/λa for left branches.

By the proof of Corollary 3, the number of left and right branches are normally distributed with
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known expectation (Eq. 2.6); thus,

E(D) =
1
n

(
n

2λa
+

n
2λb
−
( √

r
1+
√

r
1
λb

+
1

1+
√

r
1
λa

)
(n−1)

)

which in limit gives the results.

Lemma 1. For a tree shape t, the most parsimonious number of activation events is the minimum

number of activation events possible, which is equal to the number of cherries in t.

Proof. Proof First, the most parsimonious number of activation events is the minimum number

of activation events possible. As mentioned in the main paper, an activation event is a biological

change, so a most parsimonious number of activation events would be one that minimizes the

number of activation events. Note that, under the dual-birth model, the root node is considered an

activation event.

Next, we prove that the minimum number of activation events possible is equal to the

number of cherries in t. Let Nt represent the minimum number of activation events possible for

tree t, let Vt denote the set of nodes in t, and let av = 1 if an activation event occurs on node v,

otherwise av = 0. Under the dual-birth model, activation events only occur on nodes (i.e., not on

edges), so Nt = ∑v∈V av.

A node v can have either 0 or 2 children. Under the dual-birth model, activation events

occur when an inactive node gives birth to a new node, meaning activation events can only occur

on internal nodes of t. Leaves that are active cannot undergo an activation event (by definition),

and leaves that are inactive have not yet given birth, meaning they have not yet been activated.

Therefore, for all leaves f , a f = 0.

For an internal node v, there are three possible cases: both children of v are leaves (i.e., v

is a cherry), one child is a leaf and the other is an internal node, or both children of v are internal

nodes.

If both children of v are leaves (i.e., v is a cherry), by definition, one child is active (and is
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therefore the propagation of v), and the other child is inactive. Therefore, either v or an ancestor of

v must have undergone an activation event. Let Av denote the set of ancestors of node v. Because

the dual-birth model does not allow deactivation, there can only be a single activation event in the

lineage of an active node, meaning av +∑u∈Av au = 1.

If one child of v is an internal node and the other is a leaf, let c denote the child that is an

internal node. One of the descendants of c must be a cherry. Therefore, there must be a cherry u

such that v ∈ Au.

If both children of v are internal nodes, by the same logic of the previous paragraph, v

must be the ancestor of at least two cherries: one for each of its internal node children.

Therefore, because each lineage of a cherry must have exactly 1 activation event, and

because every internal node that is not a cherry much be in the lineage of a cherry, the minimum

number of activation events possible would be a single activation event for each cherry’s lineage.

Therefore, the minimum number of activation events is equal to the number of cherries in t.

B.1.2 Set of All Possible Orderings

For T ψ = (T,ψ), the set Ω(T ψ) of all possible orderings for T ψ (as shown in Figure 2.1c

of the main paper) can be constructed recursively. For an internal node u and its two children u1

and u2, let

Ω
′({u}) =





{{(u1,0),(u2,1)},{(u2,0),(u1,1)}} if u1,u2 6=⊗

{{(u2,0)},{(u2,1)}} if u1 =⊗

{{(u1,0)},{(u1,1)}} if u2 =⊗

{{}} if u1 = u2 =⊗
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and for two disjoint node sets X and Y :

Ω
′(X ∪Y ) = {ωX ∪ωY |(ωX ,ωY ) ∈Ω

′(X)×Ω
′(Y )}. (B.5)

Then, Ω(T ψ) = {ωX ∪{(r,1)}|ωX ∈Ω′(V )} where r is the root.

B.2 Supplementary Methods

B.2.1 Simulation Setup

Motivation of Default Parameters

The default value of n = 1,000 (which is used for all trees in all experiments) is chosen

because it is large enough to observe changes in tree shape resulting from tweaking the other

parameters, yet it is small enough that simulations and subsequent tree inferences remain compu-

tationally tractable. The default values for the alignment simulation parameters, including GTR

parameters, are chosen based on ML estimates from of the Alu tree as computed by FastTree-2

(see Section 2.3.3).

The default value of r = 10−2 is chosen because r = 1 is equivalent to the Yule model and

r = 10−4 results in an almost fully ladder-like tree, so r = 10−2 serves as an intermediate. The

default value of λ = 169.328 is chosen because the best estimate of the average branch length of

the Alu tree is 0.029824, which can be used with the default value of r = 10−2 to find λ (Eq. 2.6).

k = 300 is chosen to match the length of Alu.

The default value of ultrametricity deviation gamma distribution rate α = 29.518 is chosen

by first rooting the best estimate of the Alu tree on the MRCA of 7SLRNA sequences, which

we assume is the outgroup of the Alu elements [56]. Then, root-to-tip distances are computed

and are normalized by the distribution average. A gamma distribution is then fit on the resulting

distribution with the constraint that the distribution’s rate and shape must be equal.
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Data Generation

To generate “true trees,” we use our implementation of the generative process of the

dual-birth model, which takes three parameters: λa, λb, and n. We then deviate each tree from

ultrametricity by multiplying each branch of the tree by a multiplier sampled from a gamma

distribution with shape and rate both set to some parameter α (so as to keep the expected value of

the distribution equal to 1, and as a result, keep the average branch lengths of the trees constant).

We then simulate a multiple sequence alignment with no indels according to the GTR+Γ model

using INDELible.

We have a series of “experiments,” where we start with a default set of parameters and

then deviate one parameter at a time.

• INDELible Parameters (Global)

– GTR Frequencies: 0.2922 0.2319 0.2401 0.2358

– GTR Rates (ac ag at cg ct gt): 0.8896 2.9860 0.8858 1.0657 3.8775 1.0000

– α = 5.256

• Default Parameters (param-00)

– n = 1000 (Global)

– r = 10−2

– λa = 1.6765100539857060

– λb = 167.65100539857060

– Ultrametricity Gamma Distribution Parameter α = 29.518173529892621

– Sequence Length = 300

• Experiment 1 (Changing r) (Constant Average Branch Length)
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– param-04: r = 10−4, λa = 0.16765100539857060, λb = 1676.5100539857060

– param-03: r = 10−3, λa = 0.53015902907666816, λb = 530.15902907666816

– param-00: r = 10−2, λa = 1.6765100539857060, λb = 167.65100539857060

– param-02: r = 10−1, λa = 5.3015902907666816, λb = 53.015902907666816

– param-01: r = 100, λa = 16.765100539857060, λb = 16.765100539857060

• Experiment 2 (Changing Model of DNA Evolution)

– param-00: JC69

– param-00: K80

– param-00: HKY85

– param-00: GTRCAT

– param-00: GTR+Γ

• Experiment 3 (Changing λ )

– param-05: λa = 0.33530201079714, λb = 33.53020107971412

– param-06: λa = 0.83825502699285, λb = 83.8255026992853

– param-00: λa = 1.6765100539857060, λb = 167.65100539857060

– param-07: λa = 3.35302010797141, λb = 335.3020107971412

– param-08: λa = 8.38255026992853, λb = 838.255026992853

• Experiment 4 (Changing Sequence Length)

– param-09: Sequence Length = 50

– param-10: Sequence Length = 100

– param-11: Sequence Length = 200

132



– param-00: Sequence Length = 300

– param-12: Sequence Length = 600

– param-13: Sequence Length = 1200

– param-14: Sequence Length = 2400

– param-15: Sequence Length = 4,800

• Experiment 5 (Changing Number of Leaves n)

– param-25: n = 25

– param-26: n = 50

– param-27: n = 250

– param-28: n = 500

– param-00: n = 1000

– param-29: n = 2000

– param-30: n = 4000

• Experiment 6 (Changing Ultrametricity Gamma Distribution Parameter α)

– param-16: α = 2.95181735298926

– param-17: α = 5.90363470597852

– param-00: α = 29.518173529892621

– param-18: α = 147.590867649463

– param-19: α = 295.181735298926

– param-20: α = 9999999999999999 (i.e., ∞)
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Methods

For each alignment created by INDELible (one alignment per “true tree”), we use FastTree-

2 and RAxML to infer a tree using the GTR+Γ model. We run RAxML a second time on the

trees outputted by RAxML in order to compute branch support values. We then estimate cherries

using the method described in Section 2.2.2.

• FastTree 2: fasttree -nt -gtr -gamma < SEQS

– -nt: Alignment contains nucleotide sequences

– -gtr: Use GTR model

– -gamma: Rescale tree’s branch lengths to optimize Gamma20 likelihood

– SEQS: INDELible multiple sequence alignment (FASTA)

• Initial RAxML (Tree Inference): raxmlHPC -s SEQS -m GTRGAMMA

-n OUT -p $RANDOM

– -s SEQS: Specify the sequence alignment file to be SEQS (FASTA)

– -m GTRGAMMA: Use the GTR+Γ model

– -n OUT: Specify output project name to be OUT

– -p $RANDOM: Use a random number as the seed

• Final RAxML (Branch Support): raxmlHPC -f J -p $RANDOM

-m GTRGAMMA -s SEQS -t TREE -n OUT

– -f J: Compute SH-like support values on the given tree

– -p $RANDOM: Use a random number as the seed

– -m GTRGAMMA: Use the GTR+Γ model

– -s SEQS: Specify the sequence alignment fileto be SEQS (FASTA)
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– -t TREE: Specify the input tree (from “Initial RAxML” step)

– -n OUT: Specify output project name to be OUT

• Cherry Estimation: estimate-cherries.sh TREE THRESHOLD

– TREE: Tree for which to estimate cherries

– THRESHOLD: Branch support threshold to use

Error Measurement

We measure the accuracy of inferred tree topology using the RF distance as well as the

MS metric.

• RF Computation: echo $(echo -n ’(’ &&

echo -n ‘compareTrees.missingBranch TRUE INFERRED | cut -d’ ’ -f3‘ &&

echo -n ’ + ’ &&

echo -n ‘compareTrees.missingBranch INFERRED TRUE | cut -d’ ’ -f3‘ &&

echo -n ’) / 2’) | bc -l

– TRUE: “True tree” simulated by our dual-birth simulation tool

– INFERRED: Inferred tree (from either FastTree 2 or RAxML)

– compareTrees.missingBranch: Tool to compute missing branch rate (FN) be-

tween two trees

– First compute FN of INFERRED with respect to TRUE

– Then compute FN of TRUE with respect to INFERRED

– Average these two FN values to compute the RF metric

• MS Computation: TreeCmp.jar -r TRUE -d ms -i INFERRED
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– TRUE: “True tree” simulated by our dual-birth simulation tool

– INFERRED: Inferred tree (from either FastTree 2 or RAxML)

– TreeCmp.jar: Tool used to compute MS metric [129]

– -r TRUE: Specify TRUE to be the reference tree

– -d ms: Compute the MS distance metric

– -i INFERRED: Specify INFERRED to be the inferred tree

B.2.2 Human Alu Analyses

Data Acquisition

• DfamScan: dfamscan.pl -fastafile hg19.fa -hmmfile Dfam-Alu.hmm

-dfam_outfile hg19.out

– -fastafile hg19.fa: Specify the hg19 reference genome as the input

– -hmmfile Dfam-Alu.hmm: Use the Alu Dfam HMM database

– -dfam_outfile hg19.out: Output results to hg19.out

Alignment and Tree Inference

Our first dataset of the “Alu” family based on the Dfam database included non-Alu items

(e.g. 7SLRNA, which is thought to be a predecessor of Alu elements). Our initial analyses

included these non-Alu members of the Dfam Alu family, which resulted in poor placement

of these more ancestral repeats on the resulting tree. We filtered out these non-Alu elements

and recomputed both alignments and trees. Our online data include both filtered and unfiltered

datasets.
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B.3 Supplementary Figures
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Figure B.1: Probability distributions on ranked tree shapes. There are (a) 120 ranked ordered
tree shapes, (b) 16 ranked unordered tree shapes, and (c) 6 unranked unordered tree shapes
with n = 6. The distribution according to the dual-birth model is given over these trees for four
choices of λa and λb (box header) corresponding to r = 1 (i.e., Yule), r = 1/2, r = 1/4, and
r = 1/8. Red line gives the theoretical distribution and the grey bars give the frequencies in
100,000 simulations.
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Figure B.2: Estimated r vs. Cherry Fraction. Estimated r (y-axis) as a function of the fraction
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scale.
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Figure B.3: Histograms of bitscores.
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Fig. S4. Histograms of Bitscore thresholds (continued from previous page).
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Figure B.5: PASTA alignment sequence lengths. Histogram of sequences based on non-gap
sequence length. As can be seen, a nontrivial number of sequences in the alignment have non-gap
lengths well below 300, which we know a priori to be the typical length of Alu sequences.
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Figure B.6: Human Alu alignment and tree. (a) Sequence logo constructed from the Alu
multiple sequence alignment in which sequences with less than 200 non-gap characters were
removed and sites with less than 1% non-gap characters were masked, using WebLogo [187].
The logo indicates conserved sequences and a good quality alignment: most sites have a clear
high-frequency consensus nucleotide. (b) Midpoint-rooted Alu phylogenetic tree inferred from
the aforementioned sequence alignment by RAxML under the GTR+CAT model. As expected,
portions of the tree are very ladder-like.
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Fig. S6. Human Alu alignments, 0.01%, 10%, and 50% masked. Sequence logo constructed from the Alu multiple sequence

alignment in which sequences with less than 200 non-gap characters were removed and sites with less than 0.01% (left), 10% (middle), and 50% (right) non-gap

characters were masked.
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Fig. S7. Human Alu tree branch support. Histogram of SH-like branch support values in the tree constructed from the masked alignment

using FastTree-II. As can be seen, there are many low-support branches. Values below 0.9 are typically considered low SH-like support.
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Figure B.7: Human Alu tree branch support. Histogram of SH-like branch support values in the
tree constructed from the masked alignment using FastTree 2. As can be seen, there are many
low-support branches. Values below 0.9 are typically considered low SH-like support.
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Figure B.8: Tree inference error (MS). Violin plots are shown for the MS distance between true
and estimated trees.
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Figure B.9: Tree inference error. Violin plots are shown for the log-likelihood score, as
computed by RAxML, of the inferred tree minus the true tree; values away from zero indicate
that the true tree has low log-likelihood scores.
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Figure B.10: Branch length summary statistics. Violin plots are shown for the branch length
variance computed for true trees.
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Figure B.11: Parameter estimation accuracy. Violin plots are shown for the estimated r, using
the cherry-based estimator and the branch-length-based estimator, for true trees and for inferred
FastTree 2 trees for each of the experiments. Note that FastTree 2 does not have K80 or HKY85
models implemented.
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Figure B.12: Cherry fraction. Violin plots are shown for the cherry fractions of the true trees
and inferred RAxML and FastTree 2 trees.
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Figure B.13: Molecular clock on the Alu tree. The distribution of the root-to-tip distances after
midpoint rooting are shown for the Alu tree with 1% masking. Under the molecular clock, root
to tip distances for all leaves are expected to be identical.

146



Appendix C

Supplemental Material for Chapter 3

147



Table C.1: Kendall’s tau-b test for a null hypothesis that a given prioritization yields a total
outcome measure no better than random. We show p-values for a real San Diego dataset for the
first through ninth deciles. These p-values do not correct for multiple hypothesis testing. Tests
that failed to reject the null hypothesis with (uncorrected) α = 0.001 are marked with †.

Sigmoid Function (λ = 5)
Percentile GD + Cluster Growth ProACT (FastTree)

10% 6×10−4 1×10−8

20% †6×10−3 8×10−5

30% 3×10−7 2×10−6

40% 5×10−5 5×10−8

50% 8×10−6 1×10−8

60% 2×10−7 1×10−11

70% 8×10−8 1×10−10

80% 1×10−6 3×10−11

90% 1×10−10 1×10−17

Sigmoid Function (λ = 100)
Percentile GD + Cluster Growth ProACT (FastTree)

10% 1×10−8 2×10−10

20% 2×10−11 7×10−9

30% 6×10−20 3×10−11

40% 3×10−24 4×10−18

50% 2×10−23 9×10−17

60% 5×10−17 4×10−20

70% 3×10−15 7×10−15

80% 6×10−11 2×10−12

90% 4×10−16 1×10−20
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Figure C.1: As time progresses, the true incident branch length of each individual tends to
decrease. This holds in inferred phylogenies as well (Fig. 3.1d).

Figure C.2: Number of transmissions vs. incident branch lengths for individuals in a simulated
epidemic. The epidemic was run for 10 years, samples were obtained at the 9-year mark, and a
phylogeny was inferred using FastTree 2 [102] and subsequently MinVar-rooted [134]. Number
of transmissions were measured between the 9-year and 10-year mark.
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FIG. S3. Efficacy on datasets simulated using FAVITES. Cumulative Moving Average (CMA) of adjusted number of

transmissions per person across all SH+I for each simulation parameter set.
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Figure C.3: Efficacy on datasets simulated using FAVITES. CMA of number of transmissions
per person across all SH+Is for each simulation parameter set.
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FIG. S4. Efficacy of optimal and random selections on datasets simulated using FAVITES. Cumulative Moving Average

(CMA) of number of transmissions per person across all SH+I for each simulation parameter set.

23

Figure C.4: Efficacy of optimal and random selections on datasets simulated using FAVITES.
CMA of number of transmissions per person across all SH+Is for each simulation parameter set.
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Figure C.5: Score functions vs. pairwise sequence distance.
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Figure C.6: Kendall’s tau-b test results for ProACT ordering with respect to the ProACT
ordering obtained with only the first decile of the datasat. The full San Diego dataset was split
into two sets (pre and post) at each decile (shown on the horizontal axis). The individuals in pre
were ordered using ProACT and by cluster growth. Kendall’s tau-b correlation coefficient was
computed for each ordering with respect to the ProACT ordering at the first decile. The null
distribution was visualized by randomly shuffling the individuals in pre.
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Table C.2: Default FAVITES simulation parameters.

Parameter Default Value
Number of Contact Network Communities 20

Number of Individuals per Community 5,000
Mean Number of Edges Within Community 10
Mean Number of Edges Outside Community 1

Number of Seed Individuals 15,000
Seed Selection Model Uniformly Random

Seed State Frequencies{AU,AT,CU,CT} {0.0033,0.0006,0.3396,0.6565}
Expected Transition Time AU→CU 6 weeks
Expected Transition Time AT→CT 12 weeks

Expected ART Initiation Time 1 year
Expected ART Termination Time 25 months

Rates of Infectiousness {AU,AT,CU,CT} {0.1125,0.005625,0.0225,0.000}
Seed Sequence Phylogenetic Model Non-Homogeneous Yule Process

Seed Phylogeny Height 25 years
Seed Phylogeny Speciation Rate Function exp(−t2)+1

Mutation Rate Model Truncated Normal
Mutation Rate Location 0.0008

Mutation Rate Scale 0.0005
Mutation Rate Minimum 0
Mutation Rate Maximum ∞

Viral Sequence Type HIV-1 Subtype B pol
Sequence Evolution Model GTR+Γ

GTR Frequencies {pA, pC, pG, pT} {0.392,0.165,0.212,0.232}
GTR Rates {λAC,λAG,λAT ,λCG,λCT ,λGT} {1.766,9.588,0.692,0.863,10.283,1.000}

GTR Gamma Distribution Shape 0.405
Viral Population Growth Rate Model Logistic

Viral Population Growth Rate 2.851904
Initial Viral Population Size 1

Viral Population T50 -2
Number of Sampled Lineages per Person 1

Time of Sampling ART Initiation
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