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ABSTRACT
Background Older multimorbid adults have a high risk 
of mortality and a short life expectancy (LE). Providing 
high- value care and avoiding care overuse, including of 
preventive care, is a serious challenge among multimorbid 
patients. While guidelines recommend to tailor preventive 
care according to the estimated LE, there is no tool to 
estimate LE in this specific population. Our objective is 
therefore to develop an LE estimator for older multimorbid 
adults by transforming a mortality prognostic index, which 
will be developed and internally validated in a prospective 
cohort.
Methods and analysis We will analyse data of the 
Optimising Therapy to Prevent Avoidable Hospital 
Admissions in Multimorbid Older People cohort study 
in Bern, Switzerland. 822 participants were included 
at hospitalisation with age of 70 years or older, 
multimorbidity (three or more chronic medical conditions) 
and polypharmacy (use of five drugs or more for >30 days). 
All- cause mortality will be assessed during 3 years of 
follow- up. We will apply a flexible parametric survival 
model with backward stepwise selection to identify the 
mortality risk predictors. The model will be internally 
validated using bootstrapping techniques. We will derive a 
point- based risk score from the regression coefficients. We 
will transform the 3- year mortality prognostic index into an 
LE estimator using the Gompertz survival function. We will 
perform a qualitative assessment of the clinical usability 
of the LE estimator and its application. We will conduct 
the development and validation of the mortality prognostic 
index following the Prognosis Research Strategy 
(PROGRESS) framework and report it following the 
Transparent Reporting of a Multivariable Prediction Model 
for Individual Prognosis or Diagnosis (TRIPOD) statement.
Ethics and dissemination Written informed consent 
by patients themselves or, in the case of cognitive 
impairment, by a legal representative, was required 
before enrolment. The local ethics committee (Kantonale 
Ethikkommission Bern) has approved the study. We plan to 
publish the results in peer- reviewed journals and present 
them at national and international conferences.

BACKGROUND
Multimorbidity is frequent among older adults 
and is associated with a shorter life expec-
tancy (LE),1 a low quality of life and a high 

healthcare utilisation such as polypharmacy2 
and multiple hospital admissions.3 While the 
benefits and harms of preventive care, such as 
cancer screening and cardiovascular disease 
(CVD) preventive treatment, are well known 
up to the age of 75 years, they are not directly 
applicable to older multimorbid patients.4 5 
For this reason, international guidelines such 
as US Preventive Services Task Force recom-
mend accounting for LE when deciding on 
preventive care.

Accounting for LE is indeed key because 
most preventive care has a lag time to 
benefit. The lag time to benefit is the time 
interval between an intervention (eg, cancer 
screening) and the moment when health 
outcomes are improved (eg, lower cancer 
mortality). It varies greatly, ranging from 6 
months for statin treatment in the secondary 
prevention of CVD to up to 10 years for 
several cancer screenings.6 7 If the lag time 
to benefit of the intervention is longer than 
the estimated LE, the patient cannot benefit 
from it8 9 and the intervention should not be 
recommended. Older multimorbid adults are 
at high risk of not having the time to benefit, 
and harms may outweigh the benefits of an 
intervention. To decide which preventive 
care should be delivered, the lag time to 
benefit should be therefore weighted against 

Strengths and limitations of this study

 ► We will provide the first life expectancy estimator 
specifically for older multimorbid adults.

 ► We use high- quality data from a large prospective 
cohort study of multimorbid older adults.

 ► This predictive tool may help clinicians to person-
alise preventive care according to individual life 
expectancy.

 ► External validation of the new life expectancy esti-
mator in another cohort will still be required.

http://bmjopen.bmj.com/
http://orcid.org/0000-0002-6421-9867
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjopen-2020-048168&domain=pdf&date_stamp=2021-08-24
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the estimated LE, as proposed for cancer screening by 
Lee et al.6 7

There is, however, no tool to accurately estimate LE 
among multimorbid patients. LE estimators are usually 
derived from mortality risk scores. Several risk scores allow 
estimating mortality risk for older adults,8 but they are 
not recommended for widespread use and do not directly 
translate to LE estimates. To our knowledge, only Lee et 
al have developed an LE estimator from a mortality risk 
prognostic index from a cohort of community- dwelling 
older adults with a relatively low mortality rate,9 but it is 
not directly applicable to multimorbid patients and other 
populations with relatively high mortality rates. Our 
objective is therefore to develop and internally validate 
an LE estimator for older multimorbid adults.

METHODS AND ANALYSIS
Source of data and study design
We will use data from 822 participants of an ongoing study 
in Bern, Switzerland. Participants were originally enrolled 
in a clinical trial with an intervention lasting 1 year and will 
be followed up postintervention for an additional 2 years 
as a cohort. The clinical trial was the cluster randomised 
controlled trial Optimising Therapy to Prevent Avoid-
able Hospital Admissions in Multimorbid Older People 
(OPERAM10). Participants were assigned to receive either 
standard care or a medication review by a Systematic Tool 
to Reduce Inappropriate Prescribing with observation of 
the primary outcome of drug- related hospital admission 
over 1 year. For our study, we will use data collected at 
baseline (December 2016 to October 2018) and up to 3 
years after baseline (until October 2021). Figure 1 shows 
the schedule of data collection for this project.

Study nurses collected baseline data by a personal inter-
view with the participant and from medical files. Follow- ups 
are conducted via phone calls. Phone interviews are held 

with participants or relatives, otherwise with a proxy or 
with the general practitioner, when the participants are 
not reachable or not able to answer.

Participants
Eight hundred and twenty- two participants were enrolled 
at hospitalisation in the Inselspital, University Hospital, 
Bern, Switzerland. Inclusion criteria were age 70 years 
or older, multimorbidity (three or more chronic medical 
conditions) and polypharmacy (use of five drugs or more 
for >30 days). We defined multimorbidity as presence of 
three or more coexistent chronic medical conditions 
with an estimated duration of 6 months or more. The 
medical conditions were recorded as International Clas-
sification of Diseases (ICD-10) codes. The estimated 
duration was based on a clinical decision. The 10 most 
frequent chronic medical conditions were in descending 
order: essential hypertension (I10), type 2 diabetes 
mellitus (E11), hypertensive heart disease (I11), chronic 
kidney disease stage 3 (N18.3), disorders of lipoprotein 
metabolism and other lipidaemias (E78), atrial fibrilla-
tion and flutter (I48), chronic ischaemic heart disease 
(I25), hyperplasia of prostate (N40), other postsurgical 
states (Z98) and obesity (E66). A detailed account of 
the study participants’ baseline characteristics is given in 
table 1.

Written informed consent by patients themselves or, 
in the case of cognitive impairment, by a legal repre-
sentative, had already been obtained before enrolment. 
Patients planned for direct admission to palliative care 
(<24 hours after admission), or patients undergoing a 
structured drug review other than the trial intervention, 
or who had passed a structured drug review within the 
last 2 months were excluded. Also patients for whom 
it was not possible to obtain an informed consent were 
excluded.

Figure 1 Schedule of data collection from baseline to 3- year follow- up. 1Lee et al.15
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Outcome
The outcome of interest is all- cause mortality over the 3 
years of follow- up. One hundred and fifty- three deaths 
(18.6%) occurred over the first year of follow- up. Since 
participants were recruited during hospital admission, a 
higher mortality rate is expected during the first year of 
follow- up compared with subsequent follow- up and we 
expect approximately 250 deaths (30%) over the 3 years 
of follow- up.

Development, validation and clinical usability of an LE 
estimator for multimorbid adults
We will develop and validate the mortality prognostic 
index following the Prognosis Research Strategy (PROG-
RESS) framework,11 and report it following the Trans-
parent Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis (TRIPOD) statement.12 
We will further follow the recommendations of Moons et 
al13 14 for risk prediction models and apply the method 
described below for 3- year mortality prediction models. 
Figure 2 summarises the process of developing the LE 
estimator tool.

Candidate predictors identification
Candidate predictors are usually derived from previous 
research efforts in this field,8 15 ease and reliability of 
measurement in clinical setting and background knowl-
edge on potential associations with the outcome. There-
fore, we will perform a literature review of potential 
predictors, and also consider factors included in the 
OPERAM data set that may not be identified from the 
review but specific to the target population. Table 2 shows 
a list of potential candidate predictors. They include 
demographic (age, sex), clinical characteristics (comor-
bidity, medication, body mass index), smoking, func-
tional status variables and hospitalisation. Notably, we will 
account for the severity of comorbidity and functional 
impairment, which has not been considered by Lee et al.9

As part of the OPERAM trial, the participants have been 
assigned to a control or intervention group at baseline. 
We will test the predictive effect of this assignment on 
mortality and account for it in the analyses if necessary.

Mortality risk prognostic model
The relationship between candidate predictors and 
outcome will be analysed using the flexible parametric 
survival model. We will use the backward selection 
method.13 14 The remaining variables will form the final 
model. We will use multiple imputation for missing 
values under a missing at random assumption in order 
to reduce bias and avoid excluding participants from the 
analysis.13 We will investigate the predictive accuracy of 

Table 1 Baseline characteristics of participants

Baseline characteristic n (%)

n 822

Female 347 (42.2)

Age, median [IQR] 79 [74.0; 84.0]

BMI, median [IQR] 26.0 [23.0; 29.1]

Smoking 69 (8.4)

Education

  University 151 (18.4)

  High school 491 (59.7)

  Less than high school 170 (20.7)

Dementia 82 (10.0)

History of cancer 324 (39.4)

History of CVD 528 (64.2)

CVD risk factors and medication

  Hypertension 626 (76.2)

  Hypertension with treatment 529 (64.4)

  Hypercholesterolaemia 309 (37.6)

  Hypercholesterolaemia with treatment 229 (27.9)

  Diabetes 256 (31.1)

  Diabetes with treatment 202 (24.6)

Chronic medication, median [IQR] 10 [6.5; 13.5]

Diagnoses, median [IQR] 16 [12.5; 19.5]

Hospitalisations during the last year, 
median [IQR]

1 [0.5; 1.5]

BMI, body mass index; CVD, cardiovascular disease.

Figure 2 Flow chart of the development steps (boxes) and methods used (arrows) for the life expectancy estimator tool. 
FPSM, flexible parametric survival model.
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the final model by testing calibration and discrimina-
tion. We will assess the model’s calibration by graphical 
calibration plots and by comparing the predicted to the 
observed mortality, with a relative difference of less than 
10% considered satisfactory.8 The model’s discrimination 
will be assessed with Harrell’s C statistic.8 We will use boot-
strapping techniques to internally validate our mortality 
prognostic index. We will perform 500 bootstrap cycles 
from the original sample, sampling the same number of 
patients with replacement. In each bootstrap sample, we 
will derive a mortality prediction model and the relative 
risk score, as done in the original sample. We will also eval-
uate potential overfitting and optimism. We will calculate 
optimism as difference in performance measure (eg, C 
statistics) between the original sample and the respective 
bootstrap sample. This will be repeated for all bootstrap 
samples to estimate the average optimism.13 14 If neces-
sary, we will adjust the model for overfitting.

We have calculated the required sample size for 
conducting our multivariable prediction model using 
the criteria proposed by Riley et al16 and implemented in 
the pmsampsize library for the R environment.17 For the 
3- year mortality risk prognostic model, the minimum 
sample size required with 12 candidate predictor 
parameters, an expected outcome event rate of 0.1 per 
year and an anticipated Cox- Snell R2 of 0.126 (C statistic 
of15 0.8215 18) is 799 with 20 events per predictor param-
eter. This is considerably more than the idiomatic 10 
events per predictor parameter. Our sample size of 822 
is therefore adequate for this project.

To have a better clinical sense of the statistical 
power of our study, we computed the power to detect 
a between- group difference in estimated LE that can be 

considered as important on a clinical point of view. If 
we stratify our sample in three groups of equal number 
of patients (n=274) with a relatively short, average and 
long estimated LE, the power to detect a statistically 
significant between- group difference of LE of 1–3 years 
is indicated in table 3.

Point-based risk score
From the final model, we will derive a point- based risk 
score by assigning points to each risk factor. Each β coef-
ficient will be divided by the lowest β coefficient and 
rounded to the nearest integer. The sum of points for 
each risk factor will then represent the total risk score 
of this participant.15

LE estimator
We will transform the 3- year prognostic index into an 
LE estimator following the method of Lee et al.9 In 
particular, we will use the new 3- year mortality prog-
nostic index to define subpopulations with the same 
risk score.9 We will fit a Gompertz survival function 
with each point score as a categorical predictor having 
a flexible proportional effect on the hazard rate. The 
Gompertz function assumes that each subpopulation 
will experience an exponential rise in mortality risk over 
time (hi(t)=λiexp(γt), where λiiexp(xiβ)). The Gompertz 
model will allow us to determine the time to 25%, 50% 
and 75% mortality for each of the risk point groups. 
We will report 95% confidence for the median survival 
intervals using bootstrapping techniques as well as 50% 
prediction intervals. We will compare our fit Gompertz 
model with observed Kaplan- Meier survival curves. 
The Lee LE estimator9 will be recalibrated using stan-
dard methods to reflect the higher mortality rates of 
the target population.14 The performance of the new 
LE estimator will be compared with the recalibrated 
Lee LE estimator by the Brier Score19 and Harrell’s C 
statistic. We will build an interactive web application 
of the final model using the Shiny package in the R 
environment.

Table 2 Potential candidate predictors from information 
obtained at baseline

Variable Description

Age

Sex

Comorbidities Charlson Comorbidity Index (CCI)

Medication burden Number of drugs before index 
hospitalisation

Body mass index 
(BMI)

Ratio of weight (kg)/square of height (m2)

Weight loss Lost weight during last year (yes/no)

Smoking Current smoker (yes/no)

Hospitalisation Number of hospitalisations during last year

Activities of daily 
living (ADL)

Barthel Index: bathing, bladder control, 
bowel control, dressing, feeding, grooming, 
mobility, stairs, toilet use, transfer

Generic health 
status

EQ- 5D score: mobility, self- care, usual 
activities, pain/discomfort and anxiety/
depression

Falls Number of falls during last year

Nursing Nursing home residency (yes/no)

Table 3 Power to detect a statistically significant between- 
group difference in LE along various assumptions (n=274 
per group; alpha=0.05; two sided)

Difference in LE (years) SD of LE (years) Power (%)

1 4 83

1 8 31

2 4 >99

2 8 83

3 4 >99

3 8 >99

The relatively high power in most scenarios indicates that the 
sample size is adequate to address the research question.
LE, life expectancy.
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Clinical usability of the new LE estimator
We will perform a qualitative assessment of the LE esti-
mator with one- to- one interviews with at least 10 clini-
cians.20 We will assess whether the prediction parameters 
are pertinent and measurable in clinical practice, and 
evaluate barriers and enablers for impactful implemen-
tation of the tool. If no consent on the parameters to 
be included is found, we will use an iterative process 
based on the Delphi method.21 Identified barriers and 
enablers will be used for the elaboration of implemen-
tation strategies.

Patient and public involvement
Patients or the public were not involved in the design, 
or conduct, or reporting, or dissemination plans of our 
research.

ETHICS AND DISSEMINATION
The local ethics committee (Kantonale Ethikkommis-
sion Bern) has approved the study protocol. All partic-
ipants and their data are handled according to the 
ethical principles of the Declaration of Helsinki. This 
study complies with all applicable standards of the Inter-
national Conference on Harmonisation E6 Guideline 
for Good Clinical Practice (1996) guideline. We plan to 
publish the results from our study in peer- reviewed and 
open access journals and present them at national and 
international conferences. Data will be deposited in the 
Bern Open Repository and Information System ( www. 
boris. unibe. ch).

PERSPECTIVE
To our knowledge, we will be the first to develop an LE 
estimator specifically for older multimorbid adults. A 
major strength of this study is its high feasibility due 
to the follow- up of 822 already included multimorbid 
participants with strong strategies of containment of 
loss to follow- up.22 Notably, individuals with cogni-
tive impairment were included, who are commonly 
excluded from studies. In addition to the development 
and internal validation of the LE estimator, we also 
assess its implementation and clinical usability.

One major limitation is the lack of external valida-
tion but we will explore opportunities to test the LE 
estimator in a different data set of older multimorbid 
adults. As the study participants were included at the 
time of hospitalisation, they may not be representa-
tive of all patients with multimorbidity, and this could 
reduce the transportability of our findings to other 
populations. Further, we have a relatively short duration 
of follow- up.

Our results will be useful for both clinical and research 
activities as they can have a major impact on preven-
tive care practice by helping healthcare providers to 
tailor preventive care according to the estimated LE. 
Eventually, our study will help preventing underuse 

and overuse of preventive care in the growing older 
population.
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