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EPIGRAPH 

 

 

Oogway: My friend, the panda will never fulfill his destiny, nor you yours, until you 

let go of the illusion of control. 

Shifu: Illusion? 

Oogway: Yes. Look at this tree, Shifu. I cannot make it blossom when it suits me, nor 

make it bear fruit before it's time. 

Shifu: But there are things we can control. [Kicks the tree causing several peaches to 

fall] I can control when the fruit will fall. [One peach hits him on the head. Oogway 

chuckles] And I can control... [Tosses the peach in the air and chops it in half] ...where 

to plant the seed. [Punches a hole in the ground and catches the seed] That is no 

illusion, Master. [Throws the seed into the hole] 

Oogway: Ah, yes. But no matter what you do, that seed will grow to be a peach tree. 

You may wish for an apple or an orange, but you will get a peach. 

Shifu: But a peach cannot defeat Tai Lung! 

Oogway: Maybe it can. [Covers the seed in dirt] If you are willing to guide it. To 

nurture it. To believe in it. 

Shifu: But how? How? I need your help, master. 

Oogway: No. You just need to believe. Promise me, Shifu. Promise me you will 

believe. 

 

 

This conversation is a part of Kung Fu Panda
*
 movie. 

 

(*) Kung Fu Panda, Directed by John Stevenson and Mark Osborne, Written by 

Jonathan Aibel and Glenn Berger, DreamWorks Animation, 2008.  
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Structural health monitoring (SHM) is defined as the capability to monitor the 

performance behavior of civil infrastructure systems as well as to detect, localize, and 

quantify damage in these systems. SHM technologies contribute to enhance the 

resilience of civil infrastructures, which are vulnerable to structural aging, degradation, 
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and deterioration, and to extreme events due to natural and man-made hazards. Given 

the limited financial resources available to renovate or replace civil infrastructures, the 

implementation of SHM methodologies is crucial to detect safety threats at an early 

stage, evaluate the operational risk of the infrastructure after a catastrophic event, and 

prioritize the urgency of the repair/retrofit or replacement of these structures. 

This research focuses on the development of a novel framework for nonlinear 

structural system identification. This framework consists of updating mechanics-based 

nonlinear finite element (FE) structural models using Bayesian inference methods. 

Recognizing structural damage as the manifestation of structural material nonlinearity, 

the developed framework provides a new methodology for post-disaster SHM and DID 

of real-world civil structures. 

This research is subdivided in two parts. The first part investigates the accuracy 

of state-of-the-art nonlinear FE modeling in predicting the cyclic and dynamic inelastic 

response behavior of reinforced concrete structural components and systems. Sources 

of inaccuracy and uncertainty in the FE modeling and simulation approach are 

investigated by comparing the FE-predicted structural response with high-fidelity 

experimental results. In the second part of this research, two frameworks for nonlinear 

FE model updating are proposed, developed, and validated using numerically 

simulated data. In the proposed frameworks, different Bayesian estimation methods 

are utilized to update the nonlinear FE model of a civil structure using the recorded 

input excitation and response of the structure during a damage-inducing earthquake 

event. The initial frameworks are then extended to output-only nonlinear structural 
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system and damage identification methods. This extension not only overcomes the 

shortcomings of the initial frameworks in handling unmeasured or noisy input 

measurements, but also paves the way to a general approach to account for model 

uncertainties. Finally, a new information-theoretic approach is developed for the 

purposes of nonlinear FE model identifiability, experimental design, and optimal 

sensor placement. 
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CHAPTER 1: INTRODUCTION 

 

1.1. Structural health monitoring 

Critical civil infrastructures are referred to as fundamental facilities and 

structures that provide commodities and services essential to enable, sustain, and 

enhance societal living and the economy. Essential building facilities (such as 

hospitals, emergency management centers, security service centers, airport buildings, 

shelters, hazardous waste storages, etc.), transportation networks (including tunnels 

and bridges), utility systems (including dams, water tanks, and power generation 

plants), and other lifeline structures are categorized as critical civil infrastructures, the 

incapacitation or destruction of which would have devastating economic and life-

safety effects. The U.S. infrastructure recently received an overall D+ grade in the 

latest report card for America’s infrastructure [1] issued by the American Society of 

Civil Engineers (ASCE). This low grade reflects the poor condition and deficiency of 

the nation’s infrastructure based on several factors, including their physical condition, 

safety, resilience, and fiscal investments needed for improvement. In the case of 
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bridges, for example, the ASCE reports that over two hundred million trips are taken 

daily across deficient bridges in the largest metropolitan areas across the U.S. The 

average age of bridges is currently 42 years, and over 30% of these bridges have 

exceeded their 50-year design life limit. While billions of dollars have been spent 

annually on construction, rehabilitation, and repair of lifeline structures, current 

funding levels are insufficient to completely repair or replace the nation’s critical civil 

infrastructures and overcome their continual degradation.  

In the presence of limited financial resources available to renovate or replace 

the civil infrastructure, developing and implementing structural health monitoring 

(SHM) methods is the only practical solution to monitor the risk of operation and the 

reliability of these critical civil infrastructures and, therefore, assure their sustained 

usage and public safety. SHM and damage prognosis methods can detect safety threats 

at an early stage, evaluate the remaining useful life cycle of the infrastructure, and help 

in prioritizing the urgency of the repair/retrofit or replacement of these structures. 

SHM is defined as the capabilities for monitoring structural performance behavior and 

identifying, localizing, and quantifying the existence or occurrence of damage in the 

structural system, as well as predicting the remaining useful life of the system. 

Implementing SHM technologies to monitor critical civil infrastructures will not only 

prevent catastrophic structural failures (such as the I-35W Bridge failure in Minnesota 

in 2007, see Figure 1.1), but will also provide essential information for emergency 

management and rehabilitation after damage-inducing events (e.g., earthquakes, blast, 

fire, etc.).  
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Figure 1.1: I-35W St. Anthony Bridge Collapse in Minnesota in 2007  

(picture is taken from [2]). 

 

 

Disastrous events such as earthquakes are known to inflict potentially 

devastating damage to critical civil infrastructures. While the extent of damage is 

expected to be more significant in deficient structures, new or renovated/retrofitted 

structures are also vulnerable to experiencing damage during such events. Damage 

initiation and progression cannot always be detected through visual screening and, 

sometimes, very deliberate, costly, and invasive post-event inspection and evaluation 

processes are required to detect them (e.g., the connection failures in steel moment-

frame buildings in the Los Angeles area during the 1994 Northridge earthquake [3]). 

Hidden initiated damage can continue to grow over time, and eventually result in 

deterioration of structural performance and life-safety threat, which are especially 

detrimental in the aftermath of a catastrophic event such as an earthquake. 

Furthermore, the service interruption of critical facilities needed to perform post-event 
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inspection and evaluation procedure contradicts an efficient emergency response 

management strategy. Therefore, the potential impact of earthquakes and other natural 

and man-made hazards on urban societies can be reduced through accurate and time-

sensitive risk mitigating decisions, which can be supported and facilitated by the use of 

advanced SHM methodologies to help assess the safety and remaining strength of 

critical civil infrastructures. 

In conclusion, infrastructure resiliency can be enhanced by implementing 

advanced SHM and damage identification methodologies for critical civil 

infrastructures in order to monitor their performance and functionality during normal 

operation, and after extreme loading and disastrous events. An advanced SHM 

methodology can diagnose the incidence, location, and extent of damage throughout 

the structural system and can support decision making related to operation, emergency 

response management, structural retrofit, and rehabilitation. An advanced SHM 

methodology can not only assure the continual functionality and sustainability of the 

civil infrastructure during normal operation, but can also help achieve rapid post-

disaster recovery and rehabilitation.  

 

1.2. Structural health monitoring based on nonlinear system and 

damage identification 

Most of the current SHM methods are based on linear system and damage 

identification (ID). In these methods, the modal parameters of an equivalent linear 
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elastic, viscously damped model of the civil structure are identified before and after a 

damage-inducing event using low-amplitude input-output or output-only measured 

dynamic data. Structural damage is then defined as a statistically significant change in 

the identified modal parameters (e.g., natural frequencies, mode shapes, curvature 

mode shapes, modal strain energy, etc.) of the equivalent linear models before and 

after the damaging events.  

Damage ID based on tracking the changes in the modal parameters has been 

the subject of three important criticisms. First, linearity is an idealization of the 

response behavior of real structures, which are intrinsically nonlinear from the onset of 

loading [4]. Therefore, fitting a linear model to data measured from an intrinsically 

nonlinear structural system results in biased estimation of modal parameters, which in 

turn may result in erroneous damage ID results. Second, modal parameters and related 

quantities are global properties of the structure and often are not sensitive enough to 

local damage at the component or sub-component level [5]. Therefore, it is often 

difficult or even impossible to correctly identify and quantify localized damage at the 

component or sub-component levels of a structural system. Third and finally, low-

amplitude (e.g., ambient) vibrations used for linear system ID provide information 

about the loss of effective stiffness in the structural system; however, they do not 

contain any information about strength and ductility capacity related manifestations of 

damage in the structural system.  

SHM methods for civil infrastructure are required to be capable of identifying 

different damage manifestations—particularly those that correspond to the hysteretic 
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nonlinear behavior of the structural system (e.g., dissipated hysteretic energy, strength 

degradation, loss of ductility capacity). Moreover, the structural response of large and 

complex real-world civil infrastructures is far from linear elastic, especially during 

strong damage-inducing events. Therefore, developing reliable, robust, and accurate 

SHM necessitates methods and techniques that can acknowledge and incorporate the 

complex nonlinear response behavior of these structures.  

 

1.3. Nonlinear system and damage identification based on 

nonlinear finite element model updating 

State-of-the-art high-fidelity nonlinear finite element (FE) models can be used 

to reconstruct the nonlinear response process of a structure during a damage-inducing 

event. This reconstruction can be used to investigate the state of damage in various 

sub-systems, sub-assemblies, and components of the structure. However, the 

numerical models are subject to imperfections and inaccuracies caused by modeling 

and model parameter uncertainties. More specifically, nonlinear structural FE models 

depend on a set of unknown parameters, the proper selection of which has a dominant 

influence on the accuracy of the predicted structural response. These parameters can 

include inertial properties, geometric parameters, restraint and constraint parameters, 

damping parameters, and parameters characterizing the nonlinear material constitutive 

laws used in the FE model. Estimating the true values (or the values that best represent 

the state of nature) for these parameters is often challenging, if not impossible. 
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Through a nonlinear FE model updating procedure accounting for all significant 

sources of uncertainty, these parameters can be estimated so that the model predictions 

closely resemble the true response of the structure. 

Nonlinear FE model updating can be viewed as a family of methods used for 

the purpose of both nonlinear system ID and damage ID of civil structures (e.g., [6]). 

In this approach, using measured time histories of input-output data, the parameters of 

a mechanics-based nonlinear FE model of the structure of interest are estimated or 

updated by minimizing an objective function measuring the discrepancies between the 

measured and predicted responses in the time domain. Contrary to the modal ID 

methods, in this approach, the data measured during damage-inducing events (such as 

earthquakes), which contains valuable information about the nonlinear response 

behavior of the structure, are used to update the nonlinear FE model. The updated FE 

model can then be interrogated directly to evaluate the loss of strength and effective 

stiffness, as well as the history of inelastic deformations and related damages in the 

structure at different spatial resolution levels, from the global structural level to local 

component, element, and sub-element levels. 

 

1.4. Research objectives and scopes 

The main objective of the research work presented in this dissertation is to 

develop a nonlinear system and damage ID methodology for SHM by integrating high-

fidelity predictive structural modeling and Bayesian inference methods. The proposed 

methodology is intended to resolve major hurdles that prevent current SHM techniques 
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from successful real-world applications. The main objective was sought by pursuing 

the following five sub-goals. 

(1) The first goal of this research work is to systematically assess the 

fidelity and accuracy of a state-of-the-art FE modeling approach in predicting the 

behavior of real-world structural components and systems. It was, moreover, intended 

to quantify the simulation imprecision and point to the likely sources of FE modeling 

error or uncertainty through comparing experimental results with numerical FE 

predictions.  

(2) The second goal of this research work is to propose, verify, and validate 

a draft framework for SHM based on nonlinear FE model updating. It was intended to 

integrate advanced high-fidelity mechanics-based nonlinear FE modeling and analysis 

techniques, able to capture the damage/failure mechanisms to be identified, with 

advanced nonlinear estimation techniques, in order to harvest information from the 

measured structural response data and update the FE model of the structure of interest. 

Through an advanced and innovative approach, the proposed research aimed at 

drafting a general framework for the nonlinear system and damage ID of large and 

complex structures that can be applied to various types of structural systems (e.g., 

building structures, bridges, dams, and power plants), different types of FE modeling 

and analysis techniques, and different types of damage-inducing events.  

(3) The first version of the framework for SHM to be developed will be 

based on a set of simplifying and idealizing assumptions and conditions that may 

prevent it from successful real-world applications. The third goal of this research work 
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consists of understanding and quantifying the limiting effects of the underlying 

simplifying assumptions and, moreover, investigating the performance of the initially 

proposed framework, when these underlying assumptions are violated.  

(4) Building on the previous step, the next goal is to overcome problems 

that can prevent or limit the successful application of the proposed SHM framework to 

real-world civil structures. The research efforts resulted in developing and initially 

validating a general approach for addressing model uncertainties, input noise, and 

unknown/unmeasured input base excitation.  

(5) Finally, the last goal of this research work is to develop practical and 

efficient methods to evaluate model identifiability, which can then be used for optimal 

sensor placement and experimental design.  

 

1.5. Dissertation outline 

The presentation of this research work has been divided into eight chapters, the 

contents of which are outlined below. Except for the first and last chapters, which are 

dedicated to the Introduction and Conclusions, respectively, each chapter is an 

independent and self-contained description of a specific research task performed to 

pursue the research goals outlined previously. Each chapter, therefore, contains a 

descriptive introduction that defines the goals and objectives of the performed research 

task, and includes an in-depth literature review on the specific subject. 
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The first research goal is treated in Chapters 2 and 3. These two chapters focus 

on experimental-analytical correlation studies to investigate the sources of 

discrepancies between experimental results and predictions based on state-of-the-art 

nonlinear FE modelling and response simulation techniques for RC structures. Chapter 

2 uses a number of quasi-static experimental datasets obtained from high-quality tests 

on reinforced concrete components and subassemblies. By studying the influence of 

various modeling features, the sources of discrepancies between experimental and 

numerical simulation results are investigated. The goal of this chapter is first to 

examine the fidelity of the proposed modeling and simulation approach, and then to 

address the likely sources of discrepancies. Chapter 3 makes use of the findings and 

knowledge gained in chapter 2 to develop a predictive FE model of a full-scale 

building specimen that was tested on the NEES-UCSD large outdoor shake table in 

2012. In this landmark test, a full-scale five-story reinforced concrete building 

specimen, outfitted with a variety of nonstructural components and systems, was tested 

using a sequence of shake table dynamic tests using scaled and unscaled earthquake 

motions. A detailed three-dimensional nonlinear finite element (FE) model of the 

structure was developed and used for pre-test response simulations to predict the 

seismic response of the test specimen and for decision support in defining the seismic 

test protocol, as well as in selecting the instrumentation layout. Utilized as blind 

prediction, the pre-test simulation results at different levels (global structure level, and 

local member/section/fiber levels) are compared with their experimental counterparts 

for seismic input (base excitation) of increasing intensity from the serviceability to the 
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MCE level. The predictive capabilities of the employed FE modeling techniques are 

evaluated and possible causes of discrepancies between the FE predictions and 

experimental measurements are investigated and discussed. 

Chapter 4 provides the first step toward developing a novel nonlinear FE 

model updating framework and is aligned with the second research goal. In this 

chapter, advanced nonlinear structural FE modeling and analysis techniques are used 

jointly with a stochastic filtering method (the extended Kalman filter, or EKF in brief) 

to estimate time-invariant parameters associated with the nonlinear material 

constitutive models of the FE model. To verify the proposed nonlinear FE model 

updating framework, two proof-of-concept examples based on simulated data are 

presented in this chapter. The first example consists of a cantilever steel bridge column 

with three unknown primary material parameters, while a three-story three-bay 

moment resisting steel frame with six unknown primary material parameters is used as 

second example. The two examples demonstrate the excellent performance of the 

proposed parameter estimation framework even in the presence of high measurement 

noise. 

Chapter 5 unveils another approach for nonlinear system and damage 

identification of civil infrastructures based on nonlinear FE model updating. Focusing 

on the second and third research goals defined above, the framework proposed in this 

chapter integrates advanced mechanics-based nonlinear FE modeling and analysis 

techniques with a batch Bayesian estimation approach to estimate time-invariant 

model parameters used in the FE model of the structure of interest. The framework 
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uses measured input excitation and dynamic response of the structure and updates a 

nonlinear FE model of the structure to minimize the discrepancies between FE 

predicted and measured response time histories. The updated FE model can then be 

interrogated to detect, localize, classify, and quantify the state of damage and predict 

the remaining useful life of the structure. Unlike recursive estimation methods, in the 

batch Bayesian estimation approach, the entire time histories of the measured input 

excitation and output response of the structure are used as a single batch of data from 

which the FE model parameters are estimated through a number of iterations. In the 

case of a non-informative prior, the batch Bayesian method leads to an extended 

maximum likelihood (ML) estimation method to estimate jointly time-invariant model 

parameters and the measurement noise amplitude. The extended ML estimation 

problem is solved efficiently using a gradient-based interior-point optimization 

algorithm. The estimation uncertainties are evaluated based on the Cramer-Rao lower 

bound (CRLB) theorem by computing the exact Fisher information matrix using the 

FE response sensitivities with respect to the model parameters. The accuracy of the 

proposed uncertainty quantification approach is verified using a deterministic 

sampling approach based on the unscented transformation. The same numerical 

prototype structures as in the previous chapter are used here for validating the 

proposed framework, namely a bridge pier and a 2D moment-resisting steel frame. To 

address the third research goal, different case studies are conducted in this chapter to 

investigate the performance of the proposed parameter estimation and nonlinear FE 

model updating framework in the presence of high measurement noise, heterogeneous 
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sensor array, way-out initial estimates, input measurement noise, and modeling 

uncertainty.  

Chapter 6 presents an innovative framework for output-only nonlinear system 

identification of civil structures based on nonlinear FE model updating, utilizing only 

the measured structural response to earthquake excitation. The proposed framework 

provides a computationally feasible approach for health monitoring and damage 

identification of civil structures when either input seismic excitations are not measured 

or the measured seismic excitations are incomplete, erroneous, and/or contaminated 

with measurement noise. Grounded in Bayesian inference, the proposed framework 

jointly estimates the FE model parameters and the input earthquake ground 

acceleration time histories using only the measured dynamic response of the structure. 

Two approaches are investigated herein to solve the augmented input and parameter 

estimation problem: (i) the recursive maximum likelihood (ML) estimation approach, 

which reduces to a nonlinear optimization problem, and (ii) a stochastic filtering 

approach based on the recursive maximum a posteriori (MAP) estimation method, 

which reduces to an extended Kalman filtering method. Both approaches require the 

computation of FE response sensitivities with respect to FE model parameters and the 

input ground acceleration at the discrete times at which the input earthquake records 

are defined. The FE response sensitivities are computed accurately and efficiently 

using the direct differentiation method (DDM). The two proposed approaches are 

validated using the seismic response of a 3D five-story reinforced concrete building 

structure simulated utilizing an advanced mechanics-based nonlinear FE structural 
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model. The simulated structural response to a horizontal bidirectional seismic 

excitation is contaminated with artificial measurement noise and used as measured 

response data to estimate both the FE model parameters characterizing the nonlinear 

material constitutive laws of the concrete and reinforcement steel materials of the 

structure and the full time history of the input ground acceleration in the longitudinal 

direction.  

Chapter 7 aims at providing an innovative tool for sensor placement design for 

successful application of the proposed nonlinear FE model updating framework. This 

important goal is achieved by investigating the theoretical identifiability conditions 

using an information-theoretic approach. The accuracy and robustness of the proposed 

nonlinear system and damage ID methodologies highly depend on the amount of 

information contained in the measurements about the model parameters to be 

identified. It is therefore crucial to systematically identify the model parameters that 

can be estimated and to optimally select the sensor arrays and output measurements to 

harvest the maximum information about the model parameters. In this chapter, a 

statistical metric is developed to quantify the information contained in every individual 

measurement channel about every individual model parameter. This one-to-one 

identifiability measure is developed by evaluating the difference between the 

information entropy of the prior and posterior marginal probability distribution 

functions (PDF) of the model parameters. This approach provides a measure of 

identifiability of nonlinear structural FE models, which can have immediate 
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applications in parameter selection, optimal sensor placement, and design of 

experiment.  

Finally, chapter 8 summarizes the research work performed in this dissertation, 

emphasizes the main original contributions and findings of the research work, and 

provides recommendations for future research. 
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CHAPTER 2: EXPERIMENTAL-ANALYTICAL CORRELATION 

STUDY OF THE BEHAVIOR OF REINFORCED CONCRETE 

COMPONENTS AND SUB-ASSEMBLIES USING STRUCTURAL 

FINITE ELEMENTS AND SMEARED CRACK APPROACH  

 

2.1. Introduction 

Nonlinear structural analysis is an efficient and inexpensive method to predict 

and understand the complex seismic response of Reinforced Concrete (RC) structures. 

The nonlinear structural analysis objective is to accurately predict the force 

deformation response of the components as well as the global and local failure modes 

of the structure and the sub-structures, at an affordable computational cost. 

Two ends of the spectrum can be contrasted for nonlinear structural analysis of 

RC structures in terms of modeling sophistication and mathematical accuracy. In the 

lower end of the spectrum, methods such as lumped plasticity are placed. In the 

lumped plasticity method, the structure is modeled by simplified nonlinear structural 
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beam-column elements. In the other end of the spectrum, RC structures can be 

modeled using mechanics-based 3D continuum elements with spatially distributed 

inelasticity or plasticity of the steel and concrete materials. 

 In the lumped plasticity approach, an RC structure is modeled as an assembly 

of interconnected linear elastic elements with zero length (lumped) plastic hinge 

elements. Each lumped plastic hinge element can represent the nonlinearity of a 

specific behavioral sub-component such as axial-flexure, beam shear, torsion, beam-

column joint, and so on. Several models, such as simplified piece-wise linear models 

[1], smooth hysteretic models [2], and more advanced stress-resultant models [3] are 

articulated in the literature and used to define the nonlinear force-deformation relation 

for plastic hinge elements. Typically, a phenomenological hysteretic model for lumped 

plastic hinge element is calibrated using quasi-static test results on RC components 

and sub-assemblies (e.g., [4]). In addition to its simplicity and computational 

efficiency, the lumped plasticity approach is found efficient in predicting the response 

of regular RC structures [5]. For more complex structures or under atypical loading 

conditions, the results obtained by using lumped plasticity approach can be inaccurate. 

On the other end of the spectrum, opposite to the simplified lumped plasticity 

method, an RC structure can be modeled and analyzed using a detailed finite element 

modeling approach. This approach uses solid elements in conjunction with detailed 

three-dimensional material constitutive models for concrete and reinforcing steel, and 

can properly simulate the complicated physics of RC members. Various sources of 

nonlinearity in concrete material such as cracking, spalling, shear sliding, crushing, 
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and in steel reinforcements such as interface behavior of concrete and steel, dowel 

action, yielding, buckling, and rupture can be incorporated in the mathematical 

constitutive models to enhance the accuracy of the nonlinear structural analysis. 

Despite its fidelity, this approach is computationally demanding and potentially 

exposed to a number of numerical problems such as instability and lack of 

convergence. The associated computational costs and numerical problems render this 

approach sometimes unsuited for many practical applications especially at the full 

structural level modeling. Many valuable research efforts in this field are articulated in 

the literature, among which the works done by Maekawa et al. [6] can be cited as a 

remarkable contribution. 

Classified in between the two end of the spectrum of methods, other methods 

are reported in the literature to reduce the computational cost and maintain accepTable 

2.fidelity. Generally, in these methods, degenerated finite elements (such as structural 

truss, beam, and shell elements) are used with distributed inelasticity or plasticity. 

These methods use some underlying kinematic constraints or other simplifying 

assumptions, enhancing the computational efficiency and reducing the mathematical 

rigor of the model at the same time. The fidelity of these methods highly depends on 

the implicit kinematic assumptions and employed material constitutive models.  

Using fiber beam-column elements for nonlinear analysis of RC frames [7] is 

one of the well-established methods in the class of distributed plasticity structural 

finite element. The initial version of fiber element method uses one-dimensional 

material constitutive model to capture the nonlinear axial-flexural behavior of RC 
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sections. To include shear effects, Petrangeli et al. [8] updated the one-dimensional 

concrete constitutive model by incorporating axial-flexural-shear coupling at the 

section level. The proposed model by Petrangeli et al., however, is computationally 

demanding [9]. In another effort, Marini and Spacone [9] successfully aggregated a 

simple nonlinear hysteretic shear model at the section level of the classical fiber 

section to incorporate axial-flexural-shear coupling at the element level. The efficiency 

of the fiber element method is significantly affected by the flexural-shear and flexural-

torsional interactions especially during large-amplitude cyclic loadings. This limitation 

renders the fiber element method unsuiTable 2.to model specific RC structures and 

sub-components such as shear walls, shear-dominated beams under large cyclic 

loadings, and bridge girders under simultaneous flexural and torsional loadings.  

Since the fiber element method has serious limitations in modeling RC shear 

walls, Panagiotou et al. [10] proposed a nonlinear truss modeling approach to model 

plane stress RC members, such as concrete walls, subjected to cyclic reversals. In this 

method, an RC shear wall is modeled by a connected set of longitudinal, transversal 

and diagonal truss elements representing the concrete and reinforcing steel bars – both 

longitudinal and transversal –. This model can mimic the modified compression field 

theory [11] by affecting the stress-strain relationship in compressive trusses – struts – 

based on tensile strain in the transverse trusses – ties – and includes strength and 

stiffness degradation. The nonlinear truss model can properly capture the cyclic 

response of RC walls whose response is dominated by flexural-shear interactions. 
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Computationally efficient structural elements (such as beam-column elements, 

plate elements, shell elements, etc.) can be used in conjunction with advanced material 

constitutive models to develop another method in the class of distributed plasticity 

finite element. Following the implicit kinematic constraints in the formulation of 

structural elements, the corresponding multi-axial state of strain is derived from the 

nodal displacements at the integration point locations. Using the material law for 

concrete and steel, the multi-axial state of stress is updated at the integration points. 

The nodal force and stiffness matrix are computed by numerically integrating the 

stress and stiffness over all the integration points. Even though the designated 

constitutive models can capture sophisticated behavior of RC material, the structural 

element restricts the displacement field of the discretized model and consequently 

reduces the simulation accuracy. To better understand the performance of this 

compromising approach and to examine its shortcomings and limitations, the 

correlation between numerical results and the experimental observations must be 

studied. 

In the literature, there is a scarcity of experimental-analytical correlation 

studies using experimental data together with the state-of-the-art RC material models 

combined with structural elements. This chapter focuses on a state-of-the-art RC 

material modeling approach referred to as total strain rotating smeared crack model. 

The results of some selected experimental studies on RC components and sub-

assemblies are compared with the numerical simulation results using this modeling 

approach. By studying the influence of various modeling features, the sources of 
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discrepancies between experimental results and numerical simulations are explained. 

The goal of this study is first to examine the fidelity of the proposed modeling 

approach and to quantify the simulation imprecision, then to address the likely causes 

of discrepancies. Knowing the vulnerability sources of the proposed modeling 

approach paves the way for future research to further improve the Finite Element (FE) 

modeling technique for RC structures and reduce the discrepancies between 

experimental and analytical results.  

 

2.2. Concrete material constitutive model 

2.2.1. Background 

Different models are proposed in the literature to formulate the constitutive 

behavior of plain concrete material in the literature. Linear elastic model [12] 

combined with a failure criterion is the most basic approach to describe the concrete 

material law. The material either has a perfectly plastic behavior or possesses a 

degraded stiffness after failure in compression. In tension, however, the material is 

assumed to vanish or soften after failure. The complex nonlinear behavior of concrete 

material can be represented better by nonlinear elastic models such as path-dependent 

pseudo-elasticity [13] and hypo-elasticity [14]  models. Pseudo-elasticity – or secant-

elasticity – models define a relationship between the total strain and total stress 

tensors. In these models the nonlinearity is incorporated into the secant stiffness 

tensor, which is defined using a path-dependent material law. A class of pseudo-
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elasticity models is the elastic-damage model [15], in which a history-dependent 

internal damage parameter is used to model the stiffness degradation by down-scaling 

the elastic stiffness matrix. Contrary to the pseudo-elasticity, hypo-elasticity models 

define a relation between strain and stress rates using a history-dependent tangential 

stiffness matrix. Classical plasticity models [16] are another popular approach to 

formulate concrete material law based of flow theory of plasticity. Classical plasticity 

models are unable to capture the concrete stiffness degradation observed under cyclic 

loadings. Therefore, to overcome this deficiency, the classical plasticity is combined 

with damage models to form a new class of material models referred to as plastic-

damage models [17]. The Endochronic theory [18], which is based on the 

thermodynamics theory of internal variables, is also used to formulate concrete 

material law. This theory, which can be classified as a viscoplasticity model with 

strain-rate dependent viscosity, assumes that the stress is a function of entire history of 

deformation, measured using a time scale referred to as endochronic time. Microplane 

model [19] is another class of methods used to characterize concrete constitutive 

model by formulating stress and strain vectors relationship acting on a generic plane 

with arbitrary orientation, named as microplane. The macroscopic stress (or strain) 

vector is related to the stress (or strain) vector on the microplanes using static (or 

kinematic) constrains. Different gradually improved models of this class are 

articulated in the literature (refer to [20] for the most current model).  

In the finite element analysis of RC structures, fracturing of concrete material 

can be modeled following several approaches, two of which have been deliberated 
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more in the literature, namely the discrete crack approach [12] and the smeared crack 

approach [21]. In the first approach, cracking is modeled as a geometrical 

discontinuity and is applied by updating the mesh discretization of the finite element 

domain upon the formation of a new crack. The onset of cracking is usually defined 

based on fracture mechanics concepts. In the smeared crack approach, however, the 

cracked material is considered as a continuum; the effect of cracking is implicitly 

included in the concrete material law in a spatially averaged way and affects the stress-

strain relation at the integration points of the finite element model. The 

implementation of the smeared crack approach is known to be practically easier than 

the discrete crack approach. This simplicity makes the smeared crack approach the 

most widely used one in practice [22]. This approach has been widely referred to in the 

literature and research studies, and has been implemented in a number of commercial 

finite element analysis programs, such as DIANA [23].  

The smeared crack approach can be further classified into fixed crack model 

[21] and rotating crack model [24]. In the fixed crack model, the direction of a crack 

remains fixed once it forms. As the loading increases, the principal stress direction 

may deviate from the crack direction, and shear stresses appear at the crack surface. 

Therefore, a shear transfer model along the cracks surface needs to be implemented. 

To account for multi-directional cracks at a single point, different methods have been 

suggested in the literature, such as the multi-directional fixed crack model [25] and the 

quasi-orthogonal 4-way fixed crack model [6]. In the rotating crack model, conversely, 

the direction of a crack follows the principal tensile strain direction at every iteration 
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of the finite element analysis, regardless of the previous crack orientation. As a result, 

the principal stresses and strains are always aligned with the crack direction and no 

explicit shear transfer model needs to be defined. The rotating crack model has 

become more popular than the fixed crack model mainly because of its simplicity and 

computational efficiency [26-27]. 

Two main approaches exist to incorporate the smeared crack method for tensile 

behavior into the concrete constitutive model. In the first approach, the total strain of 

the concrete material is decomposed into two parts: uncracked-concrete strain and 

smeared-crack strain. Different models can be used to formulate the constitutive 

behavior of uncracked concrete; for instance, models such as linear elasticity [25] or 

classical plasticity [28] to name only two. The stress-stain relation of cracked concrete 

can be formulated by either the fixed crack model [25] or the rotating crack model 

[29]. In the second approach, the concrete is treated as an orthotropic nonlinear elastic 

material in which the total stress is defined as a function of the total strain in each 

principal direction. This total strain-based approach can be implemented in either a 

fixed or rotating crack framework [29]. This approach is conceptually simple to 

implement in a plane stress state. In a three dimensional state, however, the stress-

strain responses of concrete in different directions are strongly coupled because of the 

cracking and Poisson’s effects. Vecchio and Selby [30] proposed an effective and 

elegant method that uses nonlinear elastic constitute model for concrete in conjunction 

with the total strain-based rotating crack model in a three dimensional finite element 
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context. Maekawa et al. [6] also proposed a more sophisticated method that extends 

the total strain-based fixed crack model into the three dimensional state. 

 

2.2.2. Employed constitutive model 

This section describes the different ingredients of the concrete constitutive 

model employed in this study, which is a total strain rotating smeared crack model 

with an orthotropic pseudo-elastic concrete material law. 

 

2.2.3. Uni-axial tensile behavior 

The uni-axial tensile behavior of the concrete consists of the initial linear elastic part 

and successive nonlinear softening part according to Reinhardt exponential softening 

model [31] (Figure 2.1). The stress and strain – denoted by and – relation in tension 

is as follows:  

0

0 31

0

1

tc

.

tc
t tc tu

tu tc

E ,

f ,
 (2.1) 

where
0E = initial linear elastic modulus in tension and compression and is computed 

as 0

5

3

cc

cc

f
E , in which ccf  = peak confined compressive strength and cc = peak 

confined compressive strain. The tensile strength of concrete 0 33 (MPa)t cf . f , 

where cf  = unconfined compressive strength of concrete,
 
and the peak strain – or 
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cracking strain –
0

t
tc

f '
E

. The ultimate strain of concrete in tension is tu . Beyond 

tu , the concrete material will vanish in tension, that means both stress and stiffness 

will be zero. 

By incorporating the tensile strain softening behavior in a continuum finite 

element model, the model becomes spuriously sensitive to the mesh discretization 

[32]. To resolve this issue in the smeared crack formulation, Bazant [33] and Bazant 

and Oh [19] proposed the Crack Band Model, based on which the cracking energy 

dissipated by each element is constant and independent of the element size. This 

constant cracking energy is referred to as fracture energy, denoted by fG , defined as 

the energy required creating a unit area of a fully developed crack, and considered as a 

material property. To implement the fracture energy concept in the finite element 

framework, the ultimate tensile strain for an element of size h  is derived such that the 

area under the post peak part of the stress-strain curve is equal to fG / h . From the 

second part of Eq. 2.1, it follows that: 

0 24
f

t tu tc

G
. f

h
 (2.2) 

Introduction of the fracture energy removes the unobjective dependency of the FE 

results to the mesh size; however, the strain softening still concentrates along few 

elements. Therefore, the localization zones, or zones of strain softening concentration, 

are still biased by the FE mesh spatial discretization [34]. Other regularization 

methods to alleviate localization effects are discussed by de Borst [35]. 
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As shown in Figure 2.1, the unloading and reloading in tension is modeled by 

linear secant paths passing through the origin. This assumption is too simple as, in 

reality, some residual strains remain after stress removal. Nevertheless, this 

simplification is made to ensure numerical stability [36]. 

 

2.2.4. Uni-axial compressive behavior 

The uni-axial compressive constitutive law of concrete consists of an initial linear and 

two consecutive parabolic parts as shown in Figure 2.1. The unloading and reloading 

in compression is modeled by linear secant paths passing through the origin. The stress 

and strain – denoted by and – relation for each part is defined as: 

0

2

2

1
0

5

5 1 1
5 2

3 4 4 5

1

cc

cc
cc cc

cc cc

cc
cc cc cu

cu cc

E ,

f
,

f ,

 (2.3) 

In which
0E = initial linear elastic modulus and cu = ultimate strain of the confined 

concrete. ccf , cc , and cu are computed based on the initial – undamaged – properties 

of the concrete material and the confinement effect of the transverse reinforcements 

[37]. In a finite element model using beam-column elements, the confinement effect of 

transverse reinforcement cannot be included explicitly in the concrete constitutive 

model. Alternatively, the confinement effect can be incorporated indirectly by 
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increasing the peak compressive stress and strain and modifying the post-peak 

behavior of the concrete material. To this end, parameters ccf  and cc are determined 

using the average of various concrete models articulated in the literature such as 

modified Kent and Park’s model [38], Mander’s model [37], Saatcioglu and Razvi’s 

model [39], and Attard and Setunge’s model [40]. The ultimate strain of confined 

concrete in compression, cu , is determined following Scott et al. [41].  

The strain softening in compression is subjected to the same localization and 

unphysical mesh-sensitivity problem as in tension. To regularize the localization in 

compression failure, the softening branch of the compressive stress-strain curve for 

each finite element is defined as a function of a constant fracture energy in 

compression [42], cG , and the element size, h , such that the total post peak dissipated 

energy, dissipated by concrete crushing, is independent of the element size.   

As already mentioned, the use of the fracture energy resolves the mesh 

objectivity of the FE results; however, fracture localization still continues to take place 

along few elements in a displacement-based finite element model. For example, in 

modeling a RC frame, the post peak energy dissipation localizes in a few elements 

referred to as the plastic hinge elements. In this study, the size of the plastic hinge 

elements is selected to represent the physical plastic hinge region of the beam or 

column of interest, which is taken as one half of the structural member height. The size 

of slab plastic hinge elements is also selected following the same strategy. For each 

RC member, by having size of the plastic hinge element, h , the peak compressive 
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strain, cc , and the ultimate compressive strain, cu , of the confined concrete material, 

cG  is computed according to the parabolic relation defined in Eq. 2.3: 

2

3

c
cc cu cc

G
f

h
 (2.4) 

The compressive fracture energy, cG , is applied as a material constant to all the 

elements of the proposed RC member and reflects the confinement effects provided by 

the transverse reinforcement in the plastic hinge region.  

Tri-axial state of stress at an integration point produces a mechanics-based 

confinement. In DIANA, this type of confinement is accounted for by gradually 

increasing the stress and strain at the peak point of the concrete stress-strain curve [23] 

following the procedure suggested by Selby and Vecchio [43]. 

Based on the modified compression field theory (MCFT) [11] the compressive 

behavior of concrete in one principal direction can be substantially reduced by the 

presence of tensile cracking in the other principal directions. Denoting the strain in the 

compressive principal direction by 0 , and the average lateral tensile strains by 1 , the 

stress reduction factor, , is determined based on Model B as proposed by Vecchio 

and Collins [44]: 

1

0

1

1

0 27 0 37

c

c

K

K . .

 (2.5) 

where 2 2

1 1 2l , l , , and 1l , , 2l ,  denote the maximum observed tensile strain in the 

lateral principal directions 1 and 2, respectively. This procedure is employed in 
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DIANA and continually updates the uni-axial stress-strain law for the concrete in 

compression based on the computed maximum tensile strains in the lateral directions 

[23]. 

 

Figure 2.1: Uni-axial stress-strain constitutive law of concrete used in this study. 

  

2.2.5. Total strain-based rotating crack formulation 

By solving the global equilibrium equations at every iteration of the finite 

element analysis, the current displacement vector at nodal points and the total strain 

vector at integration points are computed. Based on the rotating crack approach, at 

each integration point, the total strain vector in global coordinates 

(
T

xyz xx yy zz xy yz zx, , , , ,ε ) is transformed into its principal directions 

( 123 11 22 33 0 0 0
T

, , , , ,ε ) using the strain transformation matrix T ( 123 xyzε εT ). The 

strain transformation matrix is computed using the principal directions of the strain 

tensor in global coordinates.  
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 (2.6) 

in which 
T

i i ik ,l ,m  denote the direction cosines of the i
th

 principal direction of the 

strain tensor in global coordinates. Using the orthotropic stress-strain relationship, the 

principal stress components are computed as 

2

23 12 31 23 31 12 23
1 1 1

11 112

12 31 23 31 23 12 31
22 2 2 2 22

233 33

31 12 23 23 12 31 12
3 3 3

1

1

1

E E E

E E E

E E E

 
(2.7) 

By using the orthotropic stress-strain relationship, the associated stiffness matrix will 

be non-symmetric in general. To resolve the non-symmetry in the stiffness matrix, the 

stress-strain relation is expressed in terms of equivalent uni-axial strain vector 

( 123 11 22 33 0 0 0
T

, , , , ,ε ) [23] as  

2

23 12 31 23 31 12 23

11 11 2

12 31 23 31 23 12 31
22 22

233 33

31 12 23 23 12 31 12

1

1

1

P P,  (2.8) 

in which 2 2 2

23 31 12 23 31 121 2 . Therefore, the relationship between stress 

vector and equivalent uni-axial strain vector in principal coordinates is simplified as 

follows. 
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where 123 11 22 33 0 0 0
T

, , , , ,σ is the stress vector in principal coordinates, 
1E , 

2E , and 

3E are the secant modulus in the three principal directions, respectively. The shear 

modulus term,
ijG , is defined as 

2 1

min,i min, j

ij

ij

Min E ,E
G  (2.10) 

in which min,iE is the minimum observed secant modulus in the principal direction i. If 

ii is tensile, then 
min,iE is the minimum observed secant modulus in tensile direction; if 

ii is compressive, then min,iE is the minimum observed secant modulus in compressive 

direction. 

 The material state determination – i.e. updating the stress vector and the 

stiffness matrix – at each integration point consists of four steps. In the first step, the 

P matrix is derived. In the second step, the equivalent uniaxial strain vector is 

computed. Then, the stress and secant modules are updated in each principal direction 

separately based on the equivalent uni-axial strains and the uni-axial material 

constitutive law as introduced earlier. Finally, the shear modulus terms are computed 

and the secant stiffness matrix, as given in Eq. 2.9, is set up. 

The Poisson’s ratios, used to derive the P matrix, are a function of secant 

modulus in principal tensile directions. In each principal direction, the Poisson’s ratio 
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is kept constant – in this study 
0 0 2. – before the concrete cracks in tension. After 

concrete cracks in a certain direction – for example direction i –, all the related 

component of Poisson’s ratio – for example ij  and 
ik

– are reduced as 

0

0

ten

min,i

reduced ,ij reduced ,ik

E

E
 (2.11) 

where ten

min,iE denotes the minimum observed secant modulus in the tensile direction of 

the principal direction i. This relation is based on the fact that in cracked concrete 

Poisson’s effect vanishes – i.e. upon cracking in one direction, contraction in 

perpendicular directions will be zero. When the concrete cracks in more than one 

direction, for example directions i and j, ij is computed based on the minimum 

observed secant modulus in the tensile direction of the principal directions i and j.  

0

0 0

ten ten

min,i min, j

reduced ,ij

E E
Min ,

E E
 (2.12) 

 

2.3. Steel material constitutive model 

2.3.1. Giuffré-Menegotto-Pinto model 

The material law for the longitudinal steel reinforcement bars is based on the 

modified Giuffré-Menegotto-Pinto model [45]. Using this model, the loading and 

unloading branches of the uni-axial constitutive law follow a curved transition from 

two straight line asymptotes as illustrated in Figure 2.2. The stress-strain relationship 

for this model is summarized as: 
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(2.13) 

In which ( )r r, = coordinates of the last strain reversal point in the stress-strain plane 

and 0 0( ), = coordinates of the two asymptotes intersection as illustrated in Figure 

2.2. These four parameters are updated after each strain reversal. Parameter b , also a 

constant material parameter, is the strain hardening ratio. Parameter R  determines the 

curvature of the transition curve and is updated after each strain reversal by the 

following relation: 

1
0

2

R
R R

R
 (2.14) 

where  referred to as normalized plastic excursion and is updated after each strain 

reversal. Constant material parameters 0 1R ,R , and 2R control the curvature of the 

hysteretic branches. Isotropic hardening can be incorporated into this model by 

introducing the following stress shift, shift , which shifts the position of the yield 

asymptote and is updated after each strain reversal event. 

1 2 0
shift max

y y

Max a a ,  (2.15) 

In the above equation, y and y  denote the initial yield stress and corresponding 

strain. max is the absolute maximum strain at the instant of the strain reversal, 1a  



36 

 

 

 

determines the magnitude of the stress shift, and 2a is a threshold for max / y , above 

which the stress shift is activated.  

 

Figure 2.2: Giuffré-Menegotto-Pinto uni-axial constitutive model for steel. 

 

The proposed Giuffré-Menegotto-Pinto steel model has eight free parameters 

to be set by the user, namely 0 1 2 1y y, , R , R , R , b, a , and 2a . The initial yield stress and 

strain, y  and y , are obtained from tensile tests performed on rebar samples. In this 

study, it is further assumed that the kinematic and isotropic hardening parameters, b  

and 1a , respectively, are equal. To estimate b  and 1a  for each rebar sample, a bilinear 

stress-strain curve fitted to the test results using the equal strain energy concept (Figure 

2.3). 
max

, as shown in this figure, is the maximum expected strain in the rebar. 
max

is 

estimated based on the expected ductility demands and updated based on the initial 

analysis results. The secondary slope of the fitted bilinear stress-strain curve is taken to 

be 2b . The other parameters for the steel model used in this study are taken 

as 0 1 221 18 96 0 024R , R . , R . , and 2 0a . 
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Figure 2.3: Estimation of kinematic hardening parameter, b , for the steel model  

based on monotonic tensile test results. 

 

2.3.2. Experimental validation of the proposed steel model  

The stress-strain curves from some cyclic tests performed on #4 rebar 

( 12 7bd . mm ) samples at the structural engineering laboratory of the University of 

California at San Diego (UCSD) are used to validate the reinforcement steel model 

adopted in this study. These tests were performed on samples conforming to the 

ASTM A706 / A706M - 09b standard for low-alloy steel deformed bars. Only Test 

results for short rebar specimens ( 3bl / d ) are used to avoid the effect of buckling on 

the experimental stress-strain curve. Figure 2.4(a) and Figure 2.4(b) show very good 

correlation between the proposed steel model and two sets of experimental results 

before the onset of rebar buckling. 
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(a) 

 

(b) 

Figure 2.4: Experimental validation of the proposed steel model for #4 rebar (38mm in 

length), with two different strain loading histories (a, b). 

 

 

2.4. Incremental-iterative nonlinear analysis 

In this study, the nonlinear analyses are performed using a displacement-

controlled loading. The analysis step size is initially selected as 2-5% of the nominal 

yield displacement of the test specimen and is adjusted subsequently to improve both 

the convergence rate and computational time.  



39 

 

 

 

The quasi-newton (secant) approach based on the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) stiffness update method [46], which is found to be efficient in 

handling smeared crack problems with softening, is selected to solve nonlinear 

equilibrium equations. The last obtained stiffness matrix at the end of each time step is 

used as the initial stiffness for the first iteration of the next time step and is being 

updated based on the BFGS rule for the subsequent iterations.   

The convergence criterion is based on the relative energy norm with a 

convergence tolerance varying from 45 10 to 31 10 . The maximum allowable 

number of iterations for each time step is limited to be 30. If the convergence criterion 

is not fulfilled within 30 iterations, the analysis goes on to the next time step and 

transfers the current unbalance force vector. In such a situation, the iteration history of 

the unconverged time step, the convergence state of the subsequent time step, and the 

obtained analysis results are checked manually to ensure the accuracy of the nonlinear 

analysis results. 

 

2.5. Experimental-numerical correlation studies 

2.5.1. Cantilever RC beam component tested by Popov et al. 

To study the effects of high shear force on strength, ductility, and energy 

dissipation characteristics of RC beams, Popov et al. [47] tested three RC cantilever 

beams. The size and spacing of the web reinforcements were the main difference 

between the three test specimens. In this study, the experimental response of one of the 



40 

 

 

 

three test specimens, referred to as beam 43, is compared with the FE simulation 

results.  

The details of beam 43 and its material properties are shown in Figure 2.5a.  

The shear reinforcements were designed to carry the maximum possible shear demand 

without concrete participation. To fabricate the specimen, the fixed end of the 

cantilever was built into an RC column stub anchored to the reaction frame using a T-

beam steel section. The longitudinal beam reinforcements were welded to the T-beam 

anchorage at the fixed end of the cantilever using connecting plates. Due to bond 

deterioration, some rebar slippage occurred in the connecting zone and resulted in a 

fixed end rotation of the specimen during the test. A piece of W24x76 was partially 

embedded in the free end of the cantilever and connected by a pin to the actuator arm. 

Loading was controlled by force before yielding of the test specimen and by 

displacement after yielding. The time history of the tip deflection is shown in Figure 

2.5b. 
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(a) (b) 

Figure 2.5: Beam 43 as tested by Popov et al. [47]; 

(a) Specimen configuration and material properties (dimensions are in mm); 

(b) Tip deflection loading history. 

 

The specimen is modeled using 3-node Mindlin–Reissner displacement-based 

beam elements [48]. The element formulation is based on quadratic shape functions 

that imply a linear variation of the axial strain and constant transverse shear strains 

over the cross-section. The length of first element adjacent to the fixed support, 

referred to as plastic hinge element, is taken as one half of the specimen’s height. 

Because the plastic hinge element is expected to experience higher level of 

nonlinearity compared to the other elements, a higher order integration scheme (IS1) is 

selected for this element as shown in Figure 2.6. Details of the employed concrete 

material law are described in Section 5.4 of this chapter. Longitudinal rebars are 

modeled using embedded steel bar elements with a full-bond assumption in 

conjunction with modified Giuffré-Menegotto-Pinto material law, as introduced in 
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section 3.1. The concrete and steel material parameters, as used in the FE model, are 

summarized in Table 2.1. To simulate the rebar slippage at the fixed end of the 

specimen during the test, two different FE models are developed as shown in Figure 

2.6. Model 1 has a fixed-support at the end of the beam. In Model 2, however, a new 

element with a hinge-roller supports is added at the end of the beam to simulate the 

rotational flexibility caused by the rebar slippage in the connecting zone during the 

test. The concrete material for this element has zero tensile strength and the same 

compressive properties as shown in Table 2.1.  

Figure 2.7 compares the experimental results with the force deformation 

response obtained from Model 1 (with fixed-end boundary condition) and Model 2 

(with flexible-end boundary condition). This Figure 2.shows that the responses of the 

specimen in both positive and negative loading branches are better predicted by the 

Model 2. Moreover, the initial elastic stiffness of the experiment matches better with 

Model 2. Therefore, the particular solution adopted to model the flexible support is 

effective in this case study.  

Table 2.1: Material parameters for beam 43. 
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Figure 2.6: Details of finite element model for beam 43 (dimensions are in mm). 

 

Figure 2.7: Comparison of the FE simulated force-deformation responses of beam 43 

with the experimental results. 

 

By studying Figure 2.7, two types of hysteresis loops can be distinguished in 

force-deformation response obtained from the experiment. The first type is the force-
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deformation hysteresis loops with minor shear effects. These hysteresis loops are 

spindle shaped with minor stiffness degradation in successive cycles. FE simulated 

results have better agreement with the experimental results both in loading and 

unloading branches of these loops. The second type of hysteresis loops exhibit major 

pinching behavior resulting from dominant influence of shear-flexural cracks formed 

across the web of the specimen during the test. The response of the FE model is 

different from the experiment during unloading branch of these hysteresis loops and 

the pinching behavior is not well simulated. The reasons for these differences can be 

explained by considering the underlying physics that cannot be captured by the FE 

model, as will be discussed in the following part.  

Figure 2.7 shows that upon unloading from an extreme loading point, the FE 

simulated results does not show any stiffness degradation in excessive loading cycles. 

The experimental results, however, unloads at a stiffness which deteriorates as the tip 

deflection increases. Based on observations made by Popov et al. [47] during the test, 

upon unloading from an extreme loading point, the stirrups became engaged in 

transferring the lateral force by a small frictional slippage that occurred along the 

diagonal shear cracks, which were present in the web of the component from the 

previous load reversals. The large cyclic deformations and the presence of the web 

diagonal cracks in both directions gradually deteriorate the stirrups bond with 

concrete, reducing the effectiveness of the stirrups, and degrade the unloading 

stiffness. At zero load stage, the open diagonal cracks make a physical discontinuity in 

the web of the specimen and eliminate the continuity of the web concrete and friction 
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across the crack. Therefore, initial lateral shear resistance and stiffness are mostly 

developed by dowel action of the longitudinal rebar interfacing the crack opening. The 

dowel action results in a small stiffness in the force-deformation response of the 

specimen at zero load stage. As loading increases, the web cracks close, and the truss 

mechanism forms in the web of the specimen. The lateral shear force is resisted 

collectively by stirrups, dowel action in compression steel, and aggregate interlock and 

friction in compression zone. The bending resistance is developed by the coupling 

action of compressive strut of concrete and tensile rebars. At this point the response of 

the test specimen is dominated by flexural characteristic of the plastic hinge region. 

The comparison of the experimental with FE simulated results shows that the 

described effects of shear mechanism and the resulting pinching behavior in the cyclic 

force-deformation response of the RC flexural component cannot be properly captured 

by the current FE model. The shear failure of the RC component, caused by the 

discontinuity along large diagonal shear cracks or rupture of lateral reinforcements, 

also cannot be predicted by the FE model. The flexural behavior of the component, 

however, can be predicted well by the FE model.      

   

2.5.2. Beam-column joint tested by Ruitong et al. 

Ruitong and Park [49] tested four different beam-column subassemblies to 

investigate the effects of bond strength and shear resisting mechanism on the behavior 

of interior beam-column joints. The selected test specimen for this study is referred to 

as unit 1, the details of which are shown in Figure 2.8a. This unit was designed 
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according to the ductile detailing requirements of New Zealand code (NZS 3101-

1982).  The two ends of the beam constrained against vertical movement using steel 

channels connected to the beam web by steel pins. This connection allowed free 

horizontal movement and rotation but restrained vertical movement at the beam end. 

The tip of the column was connected by a pin to the actuator arm. To test the 

specimen, first two symmetric gravity loads ( 55P kN ) were applied on the two 

beams, as shown in Figure 2.8a, and kept constant during the rest of the test. Then, the 

horizontal loading cycles were applied at the column tip as shown in Figure 2.8b. The 

loading was force-controlled before yielding of the test specimen and displacement-

controlled after yielding.  

 

 

(a) (b) 

Figure 2.8: Unit 1 as tested by Ruitong et al. [49]; 

(a) Specimen configuration (dimensions are in mm); (b) Column tip deflection loading history. 
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The shear deformation in the beam-column joints has a dominant effect on the 

overall behavior of RC moment frames. Herein, this effect is simulated by extending 

the flexibility of beam and column elements into the joint as proposed by Elwood et al. 

[50]. Four different configurations, referred to as Model 1 to Model 4, are considered 

in this study as shown in Figure 2.9a. Elwood et al. recommend Model 1 for joints in 

which the beams have higher nominal flexural capacity compare to the columns. 

Conversely, Model 2 is recommended for joints with columns stronger than the beams 

and Model 3 describes an in-between situation. As an extreme for Model 3, Model 4 

has zero rigid zone length at the beam and columns joint.  

For this specimen, the FE model is developed using 3-node Mindlin–Reissner 

displacement-based beam elements as used for the previous case study. The length of 

elements next to the beam-column joint, referred to as plastic hinge elements, is taken 

as one half of the depth of the associated section. The numerical integration schemes 

for plastic hinge and other elements are the same as previous case study. The 

longitudinal rebars in both column and beam are modeled using embedded steel bar 

elements with a full-bond assumption. The employed concrete and steel material laws 

are introduced in the previous sections of this chapter. The concrete and steel material 

parameters, as used in the FE model, are summarized in Tables 2a and 2b. 
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Figure 2.9: Details of finite element models for unit 1 (dimensions are in mm). 

Table 2.2: Material parameters for unit 1; (a) Concrete material parameters; (b) Steel material 

parameters. 

(a) (b) 

 Beam Column 

2cc

N
f

m
 

648 0 10.  652 0 10.  

2

N
E

m
 

935 7 10.  934 2 10.  

c

N
G

m
 

365 5 10.  355 4 10.  

2t

N
f

m
 

62 1 10.  62 1 10.  

f

N
G

m
 114.0 114.0 

 

 D16 HD16 

2y

N

m
 

6294 0 10.  6498 0 10.  

y  31 4 10.  32 5 10.  

1b, a  0.002 0.002 

 

 

 

The experimental force-deformation response of the test specimen and its 

correlation with Model 1 and Model 2 are presented in Figure 2.10a and with Model 3 

and Model 4 are presented in Figure 2.10b. Figure 2.10a shows that Model 1 

significantly overestimates the strength, while Model 2 underestimates the strength in 
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all loading cycles. Based on Figure 2.10b, Model 4 also underestimates the strength of 

the specimen in both positive and negative loading cycles. The success of the proposed 

solution to account for shear deformation in the beam-column joints highly depends on 

reinforcement detailing and the failure mechanism of the experimental specimen. In 

unit 1, proper detailing of beams, column, and beam-column joint successfully 

controlled the shear cracking in joint region. Diagonal cracks formed in the plastic 

hinge region of the beam with minor extension into the column and joint region. 

Figures 2.10 (a, b) show that results obtained from Model 3 have the best agreement 

with the experiment for this case study. The initial elastic stiffness and the yield 

strength as estimated by Model 3 also confirms well with the experiment. 

Similar to the previous case study, Figures 2.10 (a, b) also shows that the 

pinching behavior in the cyclic force-deformation response, caused by shear 

mechanism in RC beams, cannot be captured by the FE models. The shear mechanism 

results in poor correlation between the FE simulated and experimental results along 

the unloading branches, especially at high ductility loading cycles. The reasons of this 

poor correlation were discussed earlier in the previous section of this chapter and are 

an inherent part of the used FE modeling technique. The flexural behavior of the 

component in the positive and negative loading branches, however, can be predicted 

well by the FE model, the same as the previous case study.      
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(a) 

 

(b) 

Figure 2.10: Comparison of the FE simulated force-deformation responses of unit 1 with the 

experimental results; (a) Models 1 and 2; (b) Models 3 and 4. 

 

2.5.3. Beam-column joint with floor slab tested by Cheung et al. 

To study the performance of RC beam-column frames with slab and 

particularly to investigate the slab contribution in the flexural strength of the beams, 

Cheung et al. [51] tested a series of two-way and one-way exterior and interior beam-

column joints with slab under cyclic loading simulating earthquake actions. The test 

specimens were designed based on New Zealand code (NZS 3101:1982) to meet 
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earthquake resistant design requirements, which prevent beam shear failure, joint 

failure, and column failure under maximum credible loading conditions. A two-way 

interior frame sub-assembly, named as unit 2D-I, is selected for the current study. The 

details of unit 2D-I is shown in Figure 2.11a. The top and bottom of the column were 

pin-connected to allow rotation in two perpendicular directions. Four double-acting 

jacks were installed at the ends of the north-south and east-west beams to load beams 

upward or downward. Moreover, the beam ends were free to rotate and move laterally 

in the plane of the frame while the jacks were kept in a vertical position; so, no axial 

force was developed in the beams. A sequential cyclic loading was applied on both 

north-south and east-west beams with increasing deformation level during the test. In 

the developed FE model, however, the beam ends are restrained by hinge connections 

and the equivalent column side sways are imposed at the tip of the column. Figure 

2.11b shows the equivalent column tip deflection time history in the north-south and 

east-west directions. 
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(a) 

 

(b) 

Figure 2.11: Unit 2D-I as tested by Cheung et al. [51]; 

(a) Specimen configuration (dimensions are in mm); (b) Equivalent column tip deflection 

loading history. 
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The FE model for this specimen is developed using 3-node Mindlin–Reissner 

displacement-based beam elements, as used for the previous case studies, to model the 

beams and column. 8-node Mindlin–Reissner quadrilateral serendipity shell element, 

which has 6 DOFs per node including drilling degrees of freedom, is used to model the 

slab. A typical shell element of this type, including the integration points, is shown in 

Figure 2.12. The in-plane lamina strains (
xx

, yy , and xy ) vary linearly along the 

thickness of the element. The transverse shear strains (
xz

and yz ) are constant along 

the thickness and a correction factor of 5
6

 
is applied to the section area to obtain the 

effective shear area. The numerical integration rule is based on Gaussian quadrature 

over the plane and Simpson along the thickness. 

 

 

Figure 2.12: Typical shell element with typical integration points. 

 

To investigate the effect of two different modeling approached for the beam-

slab connections, two different finite element models are developed for this case study 

as shown in Figure 2.13. In Model 1, the shell elements are discontinued at the 

physical boundaries of the beam; therefore, no overlapping exists between beams and 

slab. Model 2 is instead the practical solution that is usually employed for simplicity. 
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In this model the shell elements of the slab are covering the physical width of the 

beams; therefore, overlapping exists between beams and slab in the model. In both 

models, the nodes of the beam elements are connected to the corresponding nodes of 

the slab shell elements using rigid link constraints. Both models are restrained in 

vertical direction at the end of the beams and hinged at the bottom of the column. The 

torsional degree of freedom is also restrained at the bottom of the column to provide 

static stability. To model the beam-column connections, half of the end zone of the 

beams is modeled as rigid. Same as previous case studies, the length of the elements 

next to the beam-column joint, referred to as plastic hinge elements, is taken as one 

half of the associated section depth. The numerical integration schemes for plastic 

hinge and other elements of beams and column are the same as previous case studies. 

The numerical integration scheme for all slab shell elements is as shown previously in 

Figure 2.12. Embedded steel bar elements with a full-bond assumption are used to 

model longitudinal rebars in column and beams. The reinforcement meshes of the slab 

are modeled using uni-axial membrane elements with equivalent thickness embedded 

in the slab shell element and fully bonded to the concrete. The employed concrete and 

steel material laws are introduced in the previous sections of this chapter. The concrete 

and steel material parameters, as used in the FE model, are summarized in Table 2.3. 
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Figure 2.13: Details of finite element models for unit  

2D-I (dimensions are in mm). 

 

Table 2.3: Material parameters for unit 2D-I; (a) Concrete material parameters; (b) Steel 

material parameters. 

(a) (b) 

 Beam Column Slab 

2cc

N
f

m
 

645 0 10.  660 8 10.  637 0 10.  

2

N
E

m
 

925 3 10.  913 9 10.  930 8 10.  

c

N
G

m
 

413 4 10.  413 7 10.  

 

314 2 10.  

2t

N
f

m
 

62 0 10.  62 0 10.  62 0 10.  

f

N
G

m
 118.0 118.0 118.0 

 

 D10 D20 D24 HD28 

2y

N

m
 

6326 0 10.  6300 0 10.  6283 0 10.  6432 0 10.  

y  31 8 10.  31 3 10.  31 3 10.  31 8 10.  

1b, a  0.002 0.0025 0.00375 0.005 

 

 

Following the observations made by Cheung et al. [51] during the test, plastic 

hinges formed over the whole height of all the four beams while only few minor cracks 

in the column developed, which indicated that the column remained essentially elastic. 
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The specimen remained intact until the last cycle of loading in which stretching and 

buckling of the beam bottom bars became visible after the spalling of concrete cover.  

The east-west and north-south force-deformation response of FE models are 

compared with the experimental results in Figures 2.14a and 2.14b, respectively. 

Response of Model 1 and Model 2 have minor differences. Therefore, the two 

alternatives in modeling the beams-slab connections result in identical results.  

The correlation of the simulated with the experimental results follows the same 

pattern as observed in the previous case studies. The strength of the sub-assembly at 

the extreme loading points of both positive and negative loading branches is well 

predicted by the FE models. The pinching behavior, however, is not captured by the 

FE models following the same reasoning discussed earlier. The initial elastic stiffness 

and the yield strength of the test specimen are slightly over predicted by the FE 

models.     
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(a) 

 

(b) 

Figure 2.14: Comparison of the FE simulated force-deformation responses of unit 1 with the 

experimental results; (a) East-west direction; (b) North-south direction. 

 

 

Figure 2.15 compares the measured and the FE-estimated curvature profile in 

the north and south beams. To obtain the beam curvature during the test, the 

measurement of linear pots installed on different segments along the beams, as shown 

in Figure 2.15, were used. Only the measured curvature profiles at the peak positive 

and negative loading points with the ductility of 2* and 4* are shown in Figure 



58 

 

 

 

2.15. The star superscript for the ductility stands for the bi-directional loading 

condition. In the FE model, the element curvature is the average of three section 

curvatures, obtained using the axial strain at the integration points of the section.  

 

 

Figure 2.15: Comparison of the measured and FE-estimated curvature profile of the north 

and south beams at different ductility levels. 

 

Figure 2.15 shows that the beam elements next to the rigid link, referred to as 

plastic hinge elements earlier, experience accumulated nonlinearity while the other 

elements along the beam remain elastic. The Figure 2.also shows that the magnitude of 

FE-estimated curvatures of the plastic hinge elements in the north and south beams are 

equal at the positive and negative loading points while the experimental measurements 

are not. The inconsistent experimental measurements were most likely caused by bi-

directional loading effects. As can be seen in Figure 2.15, the FE model consistently 
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overestimates the curvatures; the reason of overestimation is the averaging effects 

implied in linear pots’ measurements. 

The longitudinal beam rebars were instrumented by strain gauges to monitor 

strain variations during the test. The measured strain time history subsequently 

converted into the equivalent stress time history using a special material law for steel 

rebar [51]. This material law was a combination of bilinear and Ramberg-Osgood 

models. The FE-estimated stress in the rebar is the average of uniaxial stress in the 

three element sections. Figure 2.16a shows the equivalent stress values along the top 

D20 rebar in the north and south beams at the peak of the first loading cycles with 

ductility 2 and 8  obtained from the experiment, and compares them with the 

estimated values obtained from the FE model. Figure 2.16b compares the 

experimentally evaluated and the FE-estimated stress values along the bottom D24 

rebar in the east and west beams at the peak of the first loading cycle with ductility 

4* and 6* . Once more, the star superscript for the ductility stands for the bi-

directional loading condition. 
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(a) 

 

(b) 

Figure 2.16: Comparison of the experimentally measured equivalent stress and the FE-

estimated stress in longitudinal beam rebars; (a) strain in top D20 bar of north and south 

beams; (b) strain in bottom D24 bar of east and west beams. 
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Figures 2.16a and 2.16b clearly show the accumulation of nonlinearity in the 

plastic hinge elements in the FE model. Although the material law used to convert the 

experimentally measured strains into equivalent stresses is different from the one used 

in the FE modeling, the estimated peak stress values are comparable with the 

experiment. The mismatch in the peak stress location along the rebars is most likely 

because of the shift in anchorage point of the rebars during the test. Figure 2.16a also 

illustrates that the north top D20 bar was in tension at 2 ; while at 8 , 

compression stress developed in the rebar. The reason of this change in stress is the 

loss of effectiveness of the top flange concrete due to extensive cyclic damages; as a 

result, the neutral axis depth migrates toward the center line of the section. This 

phenomenon is captured by the FE model as can be seen in Figure 2.16a. Figure 2.16b 

shows some inconsistencies in the measured equivalent stress at the west side of the 

beam-column joint. These inconsistencies are most likely caused by bi-directional 

loading effects. 

 

2.6. Conclusions 

To evaluate the fidelity of the proposed FE modeling approach, to address the 

simulation inaccuracy, and to explore the likely sources of discrepancies, this chapter 

compared the experimental results of three RC test specimens, namely a cantilever 

beam component, a beam-column joint sub-assembly, and a beam-column joint with 

floor slab sub-assembly, with the numerical simulation results using total strain 

rotating smeared crack model combined with structural elements. Inspecting the 
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experimental-analytical correlation for these three case studies revealed that the 

proposed modeling approach cannot properly capture some physical aspects of the 

cyclic behavior of RC frame components. The main unpronounced aspects can be 

highlighted as follow:  

 Shear mechanism and shear failure in the frame components. Shear mechanism 

becomes more prominent at higher ductility demands and under poor detailing 

conditions. The formation of diagonal cracks along the web of the frame 

components eliminates the continuity of the web concrete and results in 

deteriorated loading and unloading stiffness and reduced shear resistance of the 

frame components under cyclic loadings. Dowel action and deterioration of 

bond resistance in longitudinal rebars are other consequences of shear 

mechanism in the frame components. In the ultimate condition, the frame 

component exhibits a large transverse deformation along a main diagonal 

crack, loses stability, and fails in shear. 

 Bond-slip mechanism of the longitudinal and lateral reinforcements. Bond 

deterioration is more significant under cyclic loading conditions. The bond 

slippage in longitudinal reinforcements deteriorates the composite action of 

concrete and rebars resulting in reduced stiffness of the frame component. The 

deterioration of bond reduces the efficiency of the lateral reinforcements in 

confining the concrete core and controlling the diagonal crack propagation, and 

ultimately results in shear failure of the frame components. 
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 Dowel action of the longitudinal rebars. Dowel action provides the minimum 

lateral stiffness and shear resistance of the frame component at the neutral 

loading condition in presence of large open flexural and diagonal cracks. The 

dowel action also accelerates the bond slippage in the longitudinal bar.  

 Pinching behavior of RC frame component under cyclic loading. The pinching 

behavior is a consequent of shear mechanism, bond-slip mechanism of both 

longitudinal and lateral reinforcements, and dowel action.  

The proposed modeling approach, however, can successfully capture the 

flexural-dominant behavior of the frame components. The initial elastic stiffness, yield 

strength, and post-yield flexural strength can be estimated with respectable accuracy.  

Moreover, this chapter studied the effects of different finite element modeling 

techniques. For the cantilever beam component, a simple and effective solution was 

proposed to account for the fixed-end rotation of the beam caused by support 

flexibility. For the beam-column joint sub-assembly, four different modeling 

techniques were proposed to account for the beam-column joint flexibility. The results 

showed that Model 3, in which the end zones of the beams and columns were partially 

modeled as rigid, had the best correlation with the experimental observation. To model 

the beam-slab connection in the beam-column joint with floor slab sub-assembly, two 

different strategies were proposed, the results of which were identical.  
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CHAPTER 3: NONLINEAR FINITE ELEMENT RESPONSE 

SIMULATION OF THE BNCS BUILDING 

 

3.1. Introduction 

Nowadays, nonlinear Finite Element (FE) modeling and response simulation is 

an important part of many seismic design procedures. Nonlinear FE simulation 

techniques are expected not only to predict the global response of the structure, but 

also to estimate the local response and failure mode at component level of the 

structure, at an affordable computational cost. Yet, despite remarkable progress made 

in the field of nonlinear computational structural mechanics, nonlinear FE modeling 

and response simulation of reinforced concrete (RC) structures remains a challenging 

task in both research and engineering practice. The challenges are due to the inherent 

nonlinearity of the RC behavior, which is caused by complex phenomena such as 

cracking, crushing, biaxial stiffening and strain softening, steel-concrete interaction, 

etc. As a result of this challenging behavior, many research studies in the literature 

have been devoted to developing theoretical constitutive models and FE modeling 
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techniques that can accurately and efficiently capture the complicated mechanics of 

RC material. Compromising between computational feasibility and fidelity, different 

techniques are proposed and used for nonlinear FE modeling and response simulation 

of RC structures (e.g., refer to [1] and references therein for a state-of-the-art review). 

Importantly, experimental studies, however time-consuming and costly, are 

essential to calibrate and validate the accuracy of the nonlinear FE modeling and 

response simulation techniques, especially for dynamic structural analysis under 

earthquake loading. Different experimental methods are used to test structural systems 

at full-scale under seismic loads. The simplest method is perhaps the quasi-static 

testing method, in which predefined time histories of displacements or forces are 

directly applied on the structure (e.g., [2]). Since the loading is applied in an extended 

time-scale, many dynamic features of structural behavior, such as dynamic interaction 

of structural and/or nonstructural components and systems and various sources of 

energy dissipation beyond material hysteretic energy dissipation are not properly 

reflected in the quasi-static testing results. The other testing approaches, such as 

pseudo-dynamic testing methods, are also subjected to serious shortfalls in simulating 

the real dynamic behavior of the structural systems at full-scale level under earthquake 

loading [3].  

Large or full-scale shake table testing is definitely the most accurate method to 

study the behavior of structural systems under seismic loads. Considering various 

limitations of the shake table tests and testing facilities, such as cost, size and capacity 

limitation, shake table tests are usually conducted at reduced scales, which will 
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introduce scaling issues into the testing procedure. Reduced test scales make it 

difficult to investigate the local failure modes and structural behavior at component 

and element levels. In a RC test specimen, reducing the testing scale exclusively 

affects phenomena such as bond-slippage, shear mechanism, anchorage failure, and 

rebar buckling and fracture. To date only a limited number of large or full-scale shake 

table tests have been conducted on RC or steel-framed building specimens (e.g., [4-

9]). 

In 2011-2012, a landmark research project, called BNCS, was completed at the 

University of California, San Diego (UCSD), which consisted of testing a full-scale 

five-story RC building specimen on the NEES (Network for Earthquake Engineering 

Simulation)-UCSD large outdoor shake table ([10-12]). The building was outfitted 

with a variety of nonstructural components and systems (NCSs), including a fully 

functional elevator, metal stair subsystem, complete exterior facade, interior partition 

walls, ceiling sub-system, piping, and various roof mounted equipment, to name a few. 

Different architectural occupancies including home office, laboratory environment, 

computer server room, intensive care unit (ICU), and surgery unit were designated at 

each level of the building. The main objectives of the project were to study the 

dynamic performance of the full-scale RC building including the NCSs under seismic 

excitations, to investigate the complex interaction between the structure and NCSs, 

and to contribute to the development of performance-based design methodologies for 

NCSs. The building was first tested in base-isolated configuration with the foundation 

resting on four elastomeric bearings. After completion of base-isolated tests, the 



73 

 

 

 

elastomeric bearings removed, the building foundation anchored to the shake table 

platen and the building tested in fixed base configuration. 

Pre-test simulations in the form of advanced nonlinear FE analyses were 

conducted, using the as-built details of the test specimen. The main goals of the pre-

test FE simulations were to predict the response of the test specimen, to estimate the 

seismic demands for the NCSs, to support the seismic test protocol, and to guide the 

instrumentation layout for both the structure and NCSs. Maintaining both the 

computational efficiency and accuracy was essential for the FE simulation framework 

to meet its objectives. This chapter describes the details of the pre-test simulation 

efforts for the fixed base building specimen. First, the building specimen and the 

testing protocol are briefly introduced. Then, the developed FE model is described in 

details. Finally, the prediction capability of the pre-test FE model is evaluated by 

comparing the FE predicted response parameters with their experimental counterparts. 

The experimental-analytical comparisons are performed at different levels varying 

from global structural level to local member level. The shortcomings of the employed 

FE modeling techniques are investigated and the possible sources of discrepancies are 

discussed. Considering the real-life conditions and configurations of the building 

specimen and the seismic test protocol, the analytical-experimental correlation studies 

in this chapter will provide realistic metrics to evaluate and validate the accuracy of 

the employed nonlinear FE simulation techniques for RC building structures. The 

drawn conclusions in this chapter are critical to pave the way for future research to 

improve the fidelity of the nonlinear FE simulations for RC structures. 
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3.2. Overview of the shake table test program 

3.2.1. Structural system of the building specimen 

The building structural skeleton consisted of a two bays by one bay cast-in-

place RC frame with a footprint of 6.6m by 11.0m in plan and uniform floor-to-floor 

heights of 4.27m resulting in a total height of 21.3 m from the top of the foundation to 

the top of the roof slab.  Figure 3.1(a) shows the structural skeleton and Figure 3.1(b) 

shows the completed building, including its exterior facade.  

The building was designed assuming a high seismic zone in southern 

California, namely downtown Los Angeles, and considering a stiff soil condition 

(Class D). A series of seven, spectrally matched, maximum credible earthquake 

(MCE) ground motions were used to design the fixed base structure. Target 

performance levels were selected as 2.5% peak inter-story drift ratio and 0.7g-0.8g 

peak floor acceleration during the conceptual design phase. Moreover, three spectrally 

matched serviceability level ground motions were selected and used to check the 

serviceability performance of the building. The building specimen was designed and 

built based on the current design and construction practice in Southern California.  
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(a) (b) 

Figure 3.1: Views of the building specimen; (a) bare structure; (b) completed building. 

 

The building specimen had a 1.5 m thick post-tensioned RC foundation 

designed to preserve linear elastic behavior during the seismic tests (Figure 3.2). 

During the first phase of seismic testing, the foundation was elevated from the shake 

table, resting on four high damping rubber bearings. Subsequently, the bearings were 

removed; the foundation was anchored to the shake table platen using post-tensioned 

rods installed at the foundation perimeter rendering a fixed base test configuration. 

The building specimen had six identical 660mm by 460mm RC columns reinforced 

with a longitudinal reinforcement ratio of 1 42l . %  and #4@102mm prefabricated 

welded grids as transverse reinforcement. Two identical moment resisting frames, one 

each on the north and south sides of the building, provided the primary lateral load 

resistance to the structure in the shaking direction (east-west). Beam-column joints 

were designed with equivalent beam moment capacities, but with different 

reinforcement details on each floor. The beams at the first two slabs (floors 2 and 3) 
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were reinforced with high strength steel with nominal yield strength of 827 MPa. Floor 

4 had a special moment frame (SMRF) with post-tensioned hybrid upturned beams. 

The upturned beams were connected to the columns at both ends using ductile rod 

connectors (DCs) [13]. The DCs were also used in the fifth floor in combination with 

conventional moment frame beams. The roof beams were detailed based on 

prescriptive requirements for SMRF in ACI 318-08 [14]. To provide adequate gravity 

support for the precast claddings, lateral beams were added in the east bay of the 

building at floors 4, 5, and roof (axis C as shown in Figure 3.2). The floor system was 

a 0.2 m thick concrete flat slab doubly reinforced at top and bottom. In addition to a 

number of smaller openings to allow passage of building services (plumbing, fire 

sprinklers, and electrical) and sensor/camera cables, two large perforations in the slab 

at each floor were provided to accommodate a full height elevator and stair shaft. Flat 

slab-column connections were reinforced using integral beams (embedded in the slab) 

and spanning all around the free perimeter of the slab. A pair of 0.15 m thick concrete 

walls, reinforced with a single grid of reinforcement in the middle, was placed in the 

north-south direction on either side of the elevator shaft to provide gravity support for 

the elevator system and also to provide additional transverse and torsional stiffness for 

the building. To partially counterbalance the torsional stiffness of the shear walls, 

located at the west half of the plan, the east bay of the building (axis C in Figure 3.2) 

was cross-braced at all floor levels with 32mm  steel rods, the ends of which were 

anchored in the floor concrete at the corners of the east bay. The estimated total weight 

of the bare structure was about 3010 kN excluding the foundation, which 
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approximately weighed 1870 kN. The completed building specimen, including all 

nonstructural components, approximately weighed 4420 kN, excluding the foundation. 

Figure 3.3 shows the contribution of different components and sub-systems to the total 

weight of the completed building. In this figure, the load of the furniture and other 

fixtures installed on the floor levels are categorized as “contents”. The contents’ 

weight at the roof level is composed of the penthouse, cooling tower, and air handling 

unit weight. 

 

  

Figure 3.2: Structural details of the building specimen (units are in meters). 
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Figure 3.3: Contribution of different components and sub-systems to the total weight of the 

completed building (excluding foundation). 

 

3.2.2. Instrumentation layout 

More than 600 sensors including accelerometers, linear potentiometers, string 

potentiometers, strain gauges, load cells, GPS receivers and digital cameras were 

deployed in the building specimen to record various responses of structural and NCSs. 

The main accelerometer array, measuring the response of the structure, consisted of 

four tri-axial force-balance EpiSensor accelerometers installed at the four corners of 

each floor’s slab and the foundation surface. These accelerometers had an amplitude 

range of ±4g and a wide frequency range of DC to 200 Hz. A 32-channel Quanterra 

Q330 data acquisition system from Kinemetric was used in conjunction with this 

accelerometer array to record data.  

Data cleansing of the acceleration records consisted of two steps. In the first 

step, each acceleration time history was detrended to eliminate linear trends from the 
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data. In the next step, the detrended data were filtered using two passes (in reverse 

directions) of a fourth-order Butterworth filter with corner frequencies of 0.07Hz and 

25Hz to remove noise effects. Before filtering, each record was zero-padded equally at 

the beginning and at the end as suggested by Boore [15]. The averaged east-west, 

north-south, and torsional components of the acceleration time history at the geometric 

center of each slab were derived using nonlinear least square optimization based on 

rigid diaphragm assumption. The cleansed acceleration time histories were then 

integrated to obtain the velocity and displacement time histories. The velocity and 

displacement time histories were also detrended and filtered following the same 

procedure used for the acceleration records (see Appendix 3.I). 

 

3.2.3. Seismic tests 

The fixed base building specimen subjected to a series of six earthquake 

motions with increasing intensity (Table 3.1). After completion of shake table tests, 

the FE model that was developed prior to the shake table tests was rerun with the 

shake table achieved motions, which differ from the target motions due to the 

imperfect nature of the shake table controller. Nevertheless, the FE model, as 

described in the following sections, was not revised to preserve a true comparison 

between blind predictions and measurement results. The averaged translational 

acceleration at the foundation level were computed and used as the base input motion 

in the nonlinear time history analyses. The time histories of the averaged east-west 

component of the achieved motions at the foundation level and their relative 
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displacement response spectra for FB-1: CNP100 to FB-5: DEN67 are shown in Figure 

3.4. 

Table 3.1: The seismic tests performed in the fixed base configuration. 

Test Name Seed Motion Description 

FB-1: CNP100 Canoga Park - 1994 Northridge earthquake 
Spectrally matched serviceability 

level  

FB-2: LAC100 
LA City Terrace - 1994 Northridge  

earthquake 

Spectrally matched serviceability 

level  

FB-3: ICA50 ICA - 2007 Pisco (Peru) earthquake 
Original earthquake record, 50% 

scale 

FB-4: ICA100 ICA - 2007 Pisco (Peru) earthquake 
Original earthquake record, 100% 

scale 

FB-5: DEN67 
TAPS Pump Station 9 - 2002 Denali 

earthquake 

Spectrally matched earthquake, 67% 

scale (targeted design level) 

FB-6: 

DEN100 

TAPS Pump Station 9 - 2002 Denali 

earthquake 

Spectrally matched earthquake, 

100% scale 
 

Note: With the exception of FB-3 and FB-4, motions listed are seed motions that were spectrally 

matched and amplitude scaled as noted in the description of each. 

 

 

 
Figure 3.4: Acceleration time histories of the seismic test motions achieved at the foundation 

level (east-west direction) and their 5% damped relative displacement response spectra. 
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3.3. Nonlinear Finite Element (FE) Modeling and Analysis 

3.3.1. FE Simulation Platform 

The building specimen had a number of unique features that required special 

attention in the FE modeling. The slabs were expected to influence significantly the 

earthquake resistance of the structure due to the specific plan configuration of the 

building specimen. The stairwell opening in the south-east corner of the plans was 

expected to affect the slab-frame interaction. Accommodating the full-height elevator, 

the opening in the north-west corner of the plans was likely to disturb the load transfer 

mechanism in the floor diaphragm. Due to the special configuration of the floor slabs, 

the “effective width” assumption, which is recommended by design codes to account 

for the slab-frame interaction, was supposed to be invalid. Furthermore, the flat slab-

column connections were expected to effectively contribute in the nonlinear response 

behavior of the structure. Therefore, it was decided to explicitly include the slabs in 

the FE modeling of the test specimen. To reach this goal, the DIANA finite element 

analysis software [16] was selected as the FE simulation platform. This software has 

dedicated nonlinear constitutive material models for modeling of RC structures. 

Moreover, it supports a variety of structural type finite elements, such as 3D beam-

column and shell elements. 
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3.3.2. Material constitutive models 

The employed concrete constitutive model is a total strain rotating smeared 

crack model with a pseudo-elastic concrete material law. A detailed description of this 

material model is provided in Chapter 2. The uniaxial tensile behavior of the concrete 

material model consists of an initial linear elastic part with a successive nonlinear 

softening behavior according to the Reinhardt exponential softening model [17] as 

shown in Figure 3.5. In this figure, cE denotes the linear elastic modulus defined as 

5

3

cc
c

cc

f
E , where ccf  = confined compressive strength and cc  = strain at ccf . The 

concrete tensile strength 0 33 (MPa)t cf . f , in which cf = unconfined compressive 

strength, which is determined based on testing of concrete samples taken during 

construction. The cracking strain t
tc

c

f

E
 and the ultimate tensile strain is tu . The 

concrete material fails in tension upon reaching tu , that means both tensile stress and 

stiffness will be zero. A fracture energy concept is implemented to handle the spurious 

mesh sensitivity caused by tensile softening [18]. Denoting the crack band width [19] 

of an element by h , the ultimate tensile strain, tu , for the element is derived such that 

the area under the post peak region of the stress-strain curve in tension is equal to 

fG

h
, in which fG is the tensile fracture energy and is considered as a constant 

material property equal to N125
m

(confirmed with various experimental studies such 
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as [20]). The crack band width is equal to the length of the element for beam-column 

elements; and for shell elements, it is taken as the square root of the element area [16]. 

The uniaxial compressive behavior of the concrete material model consists of 

an initial linear elastic part and two consecutive parabolic parts as shown in Figure 3.5. 

The values of ccf , cc , and cu , the ultimate confined compressive strain, are computed 

based on the initial – undamaged – properties of the concrete material and the 

confinement effect of the transverse reinforcements [21]. To account for the 

confinement effect, ccf  and cc  are computed using the average results of different 

concrete models such as modified Kent and Park [22] and Mander model [21]. cu  is 

determined following the suggestion of Scott et al. [23]. As discussed in Chapter 2, in 

a displacement-based finite element using structural beam-column or shell elements, 

the fracture localizes in particular elements, referred to as the plastic hinge (PH-) 

elements in this study. The size of PH-elements is selected to represent the physical 

plastic hinge region of the beams, columns, or slabs. For slabs, this size is taken equal 

to the slab thickness, and for beams and columns, it was taken as half of the section 

depth. Using the PH-element size, and the computed ccf , cc , and cu  for the PH-

element, the fracture energy in compression [24], cG , is computed for the beam, 

column, and slab elements (Figure 3.5). Details of the computed material parameters 

for various members can be found in Appendix 3.II. 

The modified compression field theory (MCFT) [25] is employed as a built-in 

sub-routine in DIANA to continually update the stress-strain relation for the concrete 

in compression based on the maximum transverse tensile strain [26]. “Model B” as 
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proposed by Vecchio and Collins [27] guides the reduction in compressive strength of 

concrete in one principal direction due to the presence of tensile cracking in other 

principal directions.  
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Figure 3.5: Uniaxial stress-strain behavior of concrete model 

(Tensile stresses and strains are negative). 

 

As illustrated in Figure 3.5, the unloading and reloading in tension and 

compression are modeled via origin-centered linear secant paths. This assumption 

seems counterintuitive, as in reality the unloading and reloading paths may not pass 

through the origin due to the residual strains that appear upon crack closure in tension 

or unloading in compression. Nevertheless, this simplifying assumption provides 

numerical stability for this material model [28]. 

The modified Giuffré-Menegotto-Pinto material model as proposed by 

Filippou et al. [29] is used to model the uniaxial hysteretic stress-strain behavior of the 

reinforcing steel. It is noted that shear stiffness and dowel action of the rebars are 

neglected in the model. The parameters of the constitutive model (e.g., modulus of 
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elasticity, yield strain, and strain hardening ratio) are obtained from tensile tests 

performed on representative rebar samples. The parameters defining strain hardening 

are determined based on the approach presented in Appendix 3.II.  

 

3.3.3. Finite elements 

The beam and column members are modeled using three-node Mindlin-

Reissner displacement-based 3D beam-column elements with 18 DOFs per element. 

The element formulation is based on quadratic shape functions that imply a linear 

variation of the axial and shear strains along the centerline of the element [30]. To 

maintain computational efficiency, different integration schemes for the beam-column 

elements – along their length and across their cross-section – are defined based on 

their expected level of nonlinearity (See Figure 3.6 and Table 3.2). The columns are 

restrained assuming full fixity at their base due to the large stiffness of the foundation, 

which was anchored to the shake table during the fixed base tests. The beam and 

column longitudinal steel reinforcements are defined using fully bonded embedded 

steel bars. The slabs and shear walls are modeled using eight-node Mindlin-Reissner 

quadrilateral serendipity shell elements. This element has six DOFs per node including 

mechanics-based drilling degrees of freedom. A numerical integration rule using two 

by two Gauss-quadrature integration points over the plane and three Simpson 

integration points across the thickness is applied to all shell elements. Each of the steel 

reinforcement meshes at the top and bottom of the slab is modeled as a membrane 

with an equivalent thickness, embedded in the concrete shell element. Forming RC 
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strong bands along the free perimeters of the slabs, the integral beams are modeled as 

regular beam-column elements. The cross section dimensions of these elements are 

based on the actual dimensions of the integral beam confined core. These elements are 

reinforced with embedded steel bars, similar to the frame beams. The steel rod braces 

are modeled using two-node directly integrated – one integration point – 3D truss 

elements with three DOFs per node.  

Some specific elements along each beam and column and across the slabs, 

which potentially can develop localized nonlinearities, are referred to as PH-elements. 

As already mentioned, the length of these PH-elements is taken to represent the length 

of the physical plastic hinge region of the associated member. The slab mesh 

discretization is designed manually considering five different criteria: (1) retaining 

proper length for the PH-elements, (2) aligning the nodal points of adjacent beam and 

shell elements, (3) retaining regularity in the shape and size of shell elements, (4) 

modeling different beam-column-slab joint details, and (5) accommodating different 

slab reinforcing details as specified in the design and as-built documents.  
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Table 3.2: Integration scheme for beam-column elements. 
Component Location Integration scheme  

Beams 

PHs at floors 2, 3, 

and 4 

ISB1: 3 (length), 3 (width), 

7(depth) 

 

PHs at floor 5 and 

roof 

ISB2: 3 (length), 3 (width), 

5(depth) 

Others 
ISB3: 3 (length), 3 (width), 

3(depth) 

Columns 

PHs at story 1 
ISC1: 3 (length), 3 (width), 

7(depth) 

 

PHs at stories 2 

and 3 

ISC2: 3 (length), 3 (width), 

5(depth) 

Others 
ISC3: 3 (length), 3 (width), 

3(depth) 
 

ISB: Integration scheme for beam, ISC: Integration scheme for column. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

  
  

(e) (f) (g) (h) 

Figure 3.6: (a) Complete FE model of the test specimen structure;  

FE mesh details at (b) floor 2, (c) floor 4, and (d) roof;  

joint details at (e) south-west corner of floor 2, (f) south-middle of floor 2, (g) south-east corner 

of floor 2, and (h) south-middle of floor 4 (N: North, E: East, U: Up, and W: West; units are in 

meters). 
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Figure 3.6(a) shows the 3D view of the FE model of the test specimen. Figures 

3.6(b), (c), and (d) show the details of the FE mesh at floors 2, 4, and roof, 

respectively. The FE mesh at floors 3 and 5 are close to floor 2 except for the 

integration scheme of beam-column elements, which are described in Table 3.2. Figure 

3.6(e) shows the column-slab joint detail at the south-west corner of floor 2. Figures 

3.6(f), (g), and (h) show the beam-column-slab joint details at the south-middle and 

south-east corner of floor 2 and south-middle of floor 4, respectively. 

 

3.3.4. Modeling of inertia and damping properties 

The self-mass of the beams, columns, and shear walls is modeled by assigning 

proper material mass density to the corresponding elements. The overlapping of 

adjacent components is accounted for by modifying the mass density of the connecting 

elements. To determine the mass density of the slab shell elements, the mass of all 

individual non-structural components located in the upper half story below the slab 

and lower half story above the slab are added to the self-mass of the slab concrete, 

resulting into an equivalent mass density of the shell elements. Since the individual 

mass contributions of the interior partition walls, ceilings, balloon frame facade at 

stories 1 to 3, and the installed contents on each floor are relatively small, their inertial 

effect is modeled as uniformly distributed mass over the floor slab. On the other hand, 

the individual mass contributions of the precast concrete claddings at stories 4 and 5, 

the stairs and elevator – spanning the height of the building – and the penthouse and 

cooling tower – at the roof level – are significant; therefore, they are each modeled 
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with lumped masses. Each precast cladding panel is connected at two locations to the 

lower floor slab at bottom, by means of in situ welded connections, and to the upper 

floor slab at top, by means of rod connections, restraining the out-of-plane movement 

of the panel. Lumped masses are assigned based on the connection details and 

tributary area at the four supporting points of each panel. The translational mass of the 

panel in its in-plane direction is equally distributed over the two bottom connection 

points, as the top connections were intended to translate freely during the in-plane 

motion of the panel. In contrast, the translational mass of the panel in its out-of-plane 

direction is distributed equally over all four support points. Other items in the building 

have well-defined lumped masses. For example, since the cabin and counterweight of 

the elevator system were located at the same level during all fixed base seismic tests, 

the total mass of the elevator system is equally distributed over four points around the 

elevator openings at floors 3, 4, and roof as shown in Figures 3.5(c) and (d). The 

masses of the penthouse and cooling tower are distributed equally over four support 

points of the penthouse, and support points of the cooling tower at the roof level, 

respectively (See Figure 3.6(d)). Using the defined mass densities, the consistent mass 

matrices for all finite elements, including rotational terms, are computed and added to 

the defined nodal lumped masses to assemble the mass matrix of the whole structure. 

The damping characteristics are modeled using proportional Rayleigh damping 

model [31] by defining a damping ratio of 2% at the first mode – of the undamaged 

initial linear elastic model of the structure – and at 20Hz. The Rayleigh damping mass 

and stiffness coefficients are held constant during the time history analyses. The 
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consistent damping matrix is updated at each time step of the time history analysis, by 

applying the stiffness coefficient to the current stiffness matrix.   

 

3.3.5. Incremental-iterative nonlinear time history analyses 

Each nonlinear analysis starts by applying the gravity loads quasi-statically and 

incrementally. The regular incremental-iterative Newton method is used to solve the 

nonlinear static equilibrium equations for gravity loads. The nonlinear time history 

analysis for an earthquake excitation is then performed from the state of the structure 

after application of the gravity loads. Newmark averaged acceleration method [31], 

with a constant time step size of 0.025 sec, is used to integrate the equations of motion 

in time. The time step size is selected based on a preliminary convergence study of 

time history analysis results with respect to the time step size to ensure the analysis 

accuracy. The quasi-Newton (secant) method based on the Broyden–Fletcher–

Goldfarb–Shanno (BFGS) stiffness update method [32] is employed as the iterative 

method to solve the nonlinear dynamic equilibrium equations. At the end of each 

analysis time step, the last obtained stiffness matrix is stored and used as the initial 

stiffness matrix for the first iteration of the next time step. The convergence criterion 

is based on either the relative norm of the last displacement increment vector or the 

relative norm of the last unbalance force vector with a convergence tolerance of 410 , 

whichever occurs first, while the number of iterations per time step is limited to 30. If 

none of the two convergence criteria are satisfied within 30 iterations, the iterative 

procedure is terminated, the current unbalance force vector is transferred to the next 
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time step, and the analysis goes on. The parallel direct sparse solver method [33] is 

used for solving the systems of linearized incremental equilibrium equations. 

To compare the FE predicted and measured building responses, a nonlinear 

time history analysis is performed by applying the sequence of test ground motions 

after applying the gravity loads. Thus, the input base motion consists of the sequence 

of all six ground motions, as reproduced by the shake table, with 5 seconds of zero 

padding between any two consecutive motions. In this case, the model state is retained 

from motion to motion and the analysis accounts for cumulative damage in the 

structural system. In a parallel effort, a nonlinear time history analysis is performed 

separately for each test ground motion after application of the gravity loads. The 

former analysis is called “sequential analysis” while the later one is called “individual 

analysis” hereafter. 

 

3.4. Nonlinear time history analyses results 

This section presents the FE predictions – obtained from sequential analysis 

method – and compares them with the experimental measurements obtained during the 

shake table tests. Five seismic tests are considered in this section for the analytical-

experimental correlation study, namely FB-1: CNP100, FB-2: LAC100, FB-3: ICA50, 

FB-4: ICA100, and FB-5: DEN67. The FB-6: DEN100 is not included in this chapter 

since during this test, the building specimen experienced modes of structural failure 

that cannot be simulated by the FE modeling technique described above.  
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3.4.1. Structural level response 

Figures 3.7-3.8 compare the FE predictions and experimental measurements 

from the shake table tests for the peak floor absolute acceleration (PFAA) response, 

peak interstory drift ratio (PIDR), and peak total (inertial) story shear (PTSS) 

normalized by the total weight of the building, respectively. The total (inertial) story 

shear, referred to as story shear hereafter for brevity, is computed as 

6

1

1 6i j j

j i

V m a , i ,...,  (3.1) 

where iV  is the story shear evaluated at the section in midway of i
th

 and (i+1)
th

 floor 

(i
th

 story), ja is the averaged absolute acceleration at floor j in east-west direction, and 

jm is the tributary mass of floor j.  

In Figures 3.7(a)-3.7(c) the coefficient of determination ( 2R ) measures the 

level of agreement between FE predictions and measurements for the peak values of 

the considered response parameters at different floor levels or stories for the five 

different seismic tests. The envelope plots in Figures 3.8(a)-3.8(c) compare the FE 

predicted and measured PFAA, PIDR, and PTSS along the height of the building – 

positive and negative peaks are treated separately. To compare the relative difference 

between the FE predicted and measured responses of the building in a more 

comprehensive and concise way, a relative error measure ( iE ) is defined, which shows 

the relative closeness of the FE predicted and measured peak response value at floor 

(or story) i  of the building. Denoting a peak response quantity obtained from FE 
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prediction and experimental measurements at floor (or story) i  by FE Pr ed .

i ,R  and Meas.

i ,R  in 

the positive direction, and by FE Pr ed .

i ,R  and Meas.

i ,R in the negative direction, respectively, 

the relative error measure, iE , is defined as  

0

FE Pr ed . Meas. FE Pr ed . Meas.

i , i , i , i ,

i Meas. Meas.

i , i ,
i i

R R R R
E max , .

max R min R
 

 

(3.2) 

0iE  indicates a perfect agreement at floor (or story)  i  between the FE 

prediction and the measurement for the peak response of interest. The more iE  

deviates from zero, the more error exists in the FE prediction. The distribution of this 

relative prediction error is shown by contour plots for the five seismic tests and the 

five floor levels in Figures 3.9(a)-3.9(c) for the PFAA, PIDR, and PTSS, respectively. 

By comparing parts (a) and (b) of Figures 3.7-3.9, it is concluded that the 

PFAA results are generally better predicted than PIDRs. The PFAAs are better 

predicted at upper floors for low intensity seismic tests and at lower floors for high 

intensity seismic tests (Figure 3.9(a)). Figure 3.8(b) also clearly shows that the FE 

simulation generally overpredicts the PIDRs in low intensity seismic tests and 

underpredicts them in high intensity seismic tests. For low intensity tests, the PIDR is 

typically overestimated at all stories, although more so at the middle stories of the 

building, while for high intensity tests, the PIDR is underestimated at the lower stories 

and overestimated at the upper stories of the building. Figure 3.9(b) shows that the 

PIDR relative prediction error is more significant for the low intensity seismic tests 

(FB-1: CNP100 to FB-3: ICA50) and at the middle stories of the building (story 3). 
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Finally, the FE simulation underpredicts the PTSS at all the stories as can be observed 

in part (c) of Figures 3.7-3.8. 

It is hypothesized that the nonstructural components, especially the partition 

walls, contribute significantly to the discrepancy between the FE predicted and 

measured PIDR results. The influence of partition walls on the dynamic response of 

buildings has been the focus of other research studies (e.g., [34]), where it has been 

noted that their effect is more significant at low IDR, since the walls are intact, well 

connected to the structure, and contribute their full original stiffness. As the base 

motion intensifies, the partition walls undergo damage and their connections to the 

building structure deteriorate at the lower stories of the building, where the IDR 

demand is usually higher, while at the upper stories, where the IDR demand is lower, 

they are still influential.  
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(a) (b) 

 
(c) 

Figure 3.7: Correlation of the FE predicted versus measured  

(a) peak floor absolute acceleration, (b) peak interstory drift ratio,  

and (c) peak total story shear normalized by the total weight of the building. 
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(a) (b) 

 
(c) 

Figure 3.8: Comparison of FE predicted and measured (a) peak floor absolute acceleration 

envelopes, (b) peak interstory drift ratio envelopes, and (c) peak total story shear envelopes 

normalized by the total weight of the building. 
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(a) (b) 

 
(c) 

Figure 3.9: Relative prediction error for  

(a) peak floor absolute acceleration, (b) peak interstory drift ratio, and (c) peak total story 

shear. 
 

 

Figure 3.9(b) shows that the PIDR relative prediction error is largest at story 3 

for the low intensity seismic tests (FB-1: CNP100 to FB-3: ICA50). This can be 

explained by comparing the total length of the installed partition walls at each story of 

the building, as shown in Table 3.3. The exterior balloon framings are excluded in this 

table, since they have special connection details that reduce their interaction with the 

structural system. Table 3.3 indicates that at stories 3 and 4 approximately 50% more 

partition walls are installed compared to other stories. The contribution of the partition 

walls to the lateral stiffness of the building specimen can also be inferred by 
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comparing the experimentally identified natural periods for the bare structure and full 

building as presented in [35].  

 

Table 3.3: Length of partition walls and balloon framing at different stories. 

Total length (m) Story 1 Story 2 Story 3 Story 4 Story 5 

Partition walls in 

E-W direction 
13.5 13.5 22.0 15.0 13.5 

Partition walls in 

N-S direction 
3.5 11.0 15.5 7.5 6.0 

 

 

The underprediction of the PIDR at the lower stories of the building during 

large intensity tests (See Figure 3.8(b) for FB-4: ICA100 and FB-5: DEN67) can be 

explained by the difference between the actual and FE predicted hysteretic response of 

the structural components. The employed FE modeling technique is unable to capture 

the pinching hysteretic behavior in the beams and columns. As a result, the structural 

components have larger energy dissipation capacity under cyclic loading in the FE 

model than in the real structure at the same ductility level. Consequently, the FE 

predicted floor displacement responses are lower than the test results at the lower 

stories of the building. Figure 3.8(b) shows that the PIDR is underpredicted at the first 

story for FB-4: ICA100 and the first two stories for FB-5: DEN67. This explanation is 

in agreement with the story level response of the building discussed in the next section 

of this chapter. 

To better investigate the effect of nonstructural components on the seismic 

response of the building, the time histories of selected response parameters are 

compared in Figures 3.10(a) and 11(b) for FB-1: CNP100 and FB-5: DEN67, 
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respectively. In these figures, the time histories of (i) roof drift ratio, which is the 

relative roof displacement normalized by the roof height measured from the top of the 

foundation, (ii) second story IDR, and (iii) total base overturning moment normalized 

by the product of the total weight of the building ( 4420 kNtW ) and the roof height 

( 21 34 mRh . ) are shown. The total (inertial) base overturning moment ( BM ) is 

computed as  

6

2

B j j j

j

M m a h  
(3.3) 

 

where jh  is the height of floor j, measured from the top of the foundation. Figure 

3.10(a) shows a clear difference in the frequency content of all response time histories 

between the FE predicted and measured results, which is most likely due to the 

contribution of the nonstructural components – mostly partition walls. This 

contribution, which is not accounted for in the FE model of the building, results in a 

shortening of the natural periods of the building. By comparing Figures 3.10(a) and 

11(b), it is observed that the discrepancy in the frequency content between FE 

predicted and measured responses lessens from FB-1: CNP100 to FB-5: DEN67 

because of extensive physical damage in the nonstructural components developed in 

the seismic tests prior to FB-5: DEN67. As a result, the nonstructural components’ 

contribution is significantly reduced for FB-5: DEN67. 
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(a) 

 
(b) 

Figure 3.10: Comparison of FE predicted and measured time histories of selected response 

parameter for (a) FB-1: CNP100 and (b) FB-5: DEN67. 
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3.4.2. Story level response 

The plots of TSS versus IDR can show the hysteretic response of the building 

at the individual story levels. These plots are shown in Figures 3.11(a), (b), and (c) for 

FB-1: CNP100, FB-4: ICA100, and FB-5: DEN67, respectively. Figure 3.11(a) shows 

that the FE prediction is in reasonable agreement with the measured response only at 

the first story for FB-1: CNP100, because few partition walls were installed in this 

story (See Table 3.3). For all other stories, the measured response is significantly 

stiffer than the predicted one, which can be explained by based on the contribution of 

the nonstructural components (especially partition walls). As the base excitation 

intensifies from FB-1: CNP100 to FB-4: ICA100 and to FB-5: DEN67, the 

nonstructural components incrementally damage and their contribution to the 

structural system response decreases, leading to better agreement of the stiffness 

between the FE predicted and measured response of upper stories. The FE prediction 

underestimates the IDR demands in the lower stories during FB-4: ICA100 and FB-5: 

DEN67 tests. As discussed earlier, since the employed FE modeling technique has 

some deficiencies in simulating the hysteretic response of the structural components, 

the predicted IDR responses are lower than the measured ones. Thus, the measured 

story responses show higher level of nonlinearity compare to the FE predictions. The 

difference in the FE predicted and measured response at lower stories during the high 

intensity seismic test can also be a consequence of improper modeling of damping 

energy dissipation beyond material hysteretic energy dissipation. As described earlier, 
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the damping characteristics are modeled using proportional Rayleigh damping by 

defining a constant damping ratio at two predefined frequencies.  

To better study the difference between the FE predicted and measured story-

level hysteretic responses, Figures 3.12(a), (b), and (c) show the normalized prediction 

error of the total absorbed energy ( AE ) time history at the story level for FB-1: 

CNP100, FB-4: ICA100, and FB-5: DEN67, respectively. AE  is computed by 

integrating the TSS versus IDR responses for each story separately. AE  consists of 

both the dissipated hysteretic energy and the recoverable strain energy. The measured 

absorbed energy is larger than its FE prediction in the first and second stories for FB-1: 

CNP100 (Figure 3.12(a)), in the first four stories for FB-4: ICA100 (Figure 3.12(b)), 

and in the first three stories for FB-5: DEN67 (Figure 3.12(c)). As mentioned earlier, a 

number of factors can explain these discrepancies including imprecision in restrictive 

kinematic assumptions in the structural FEs adopted, which can result in inaccurate 

hysteretic response of the structural components, and other energy dissipation 

mechanisms that are either not represented or not properly modeled in the FE model of 

test building (such as energy dissipated by nonstructural components or other viscous 

damping sources). 
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(a) 

 
(b) 

 
(c) 

Figure 3.11: Comparison of FE predicted and measured TSS vs. IDR hysteretic response for  

(a) FB-1: CNP100, (b) FB-4: ICA100, and (c) FB-5: DEN67. 
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(a) (b) 

 
(c) 

Figure 3.12: Normalized prediction error of the total absorbed energy time history at the story 

level for (a) FB-1: CNP100, (b) FB-4: ICA100, and (c) FB-5: DEN67. 
 

 

3.4.3. Component level response 

To measure the beam-end axial elongation and rotation, the north frame beams 

of the building were instrumented with a pair of linear potentiometers at each end of 

the beam. The potentiometers were installed at top and bottom of only the south face 

of the beams (See Figures 3.13(a) and 3.13(b)). The normalized beam-end axial 

deformation and average curvature response time histories can be derived using the 

recorded data of each pair of linear potentiometers. Denoting the length of the sensor 

by l , the vertical distance between the two sensors at each beam-end by h , and the 
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potentiometer measurement by
 

, the measured beam-end axial deformation, Meas. , and 

the measured beam-end averaged curvature, Meas. , are computed as 

2

topbot

bot top

Meas

l l
, 

topbot

bot top

Meas.

l l

h
 

(3.4) 

The FE predictions for the axial deformation and averaged curvature are 

obtained from the first beam element next to the column element (PH-element) by 

extracting and processing the axial strain time histories at the proper integration points 

of the cross section. Figure 3.14 compares the FE predicted and measured beam-end 

axial deformation time histories at the both ends of the north beam at second and third 

floor levels (beneath the first and second floor slabs) for FB-5: DEN67. Similarly, 

Figure 3.15 compares the FE predicted and measured beam-end average curvature 

time histories at the both ends of the north beam at second and third floor levels for 

FB-5: DEN67. Moreover, Figure 3.16 compares the averaged axial strain versus 

curvature at the similar locations. The comparisons show good correlation between FE 

prediction and experimental measurement. Although the predicted beam-end axial 

deformation and averaged curvature time histories have a good agreement with the 

measured results, the peak values of both the axial deformation and curvature time 

histories are overpredicted by FE model. This can be due to all the above mentioned 

modeling uncertainties. Moreover, in this case, the averaging effects implied in the 

measurement of the sensors can also be a source of discrepancy. The length of the 

installed linear potentiometers is about 0.5 m, which is clearly larger than the expected 

length of the physical plastic hinge region at the end of the beam. So, the measured 
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axial deformation and curvature are averaged along the first 0.5 m portion of the beam, 

while the FE predicted axial deformation and curvature are averaged over the first 

beam element next to the column (PH-element), the length of which is about 0.35 m 

(See Figure 3.6). Therefore, the FE predicted peak values of the beam-end axial 

deformation and curvature averaged over the expected plastic hinge length are larger 

than their measured counterparts. 

 

(a) 

  
(b) (c) 

Figure 3.13: Instrumentation of structural components:  

(a) schematic details of north frame instrumentation;  

(b) linear potentiometers installed at east end of second floor north beam;  

(c) string potentiometers installed at the base of the north east column. 
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(a) (b) 

  
(c) (d) 

Figure 3.14: Comparison of FE predicted and measured averaged axial strain time histories 

for FB-5: DEN67 at the (a) west end of the second floor north beam, (b) east end of the 

second floor north beam, (c) west end of the third floor north beam, (d) east end of the third 

floor north beam. 
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(a) (b) 

  
(c) (d) 

Figure 3.15: Comparison of FE predicted and measured averaged curvature time histories for 

FB-5: DEN67 at the (a) west end of the second floor north beam, (b) east end of the second 

floor north beam, (c) west end of the third floor north beam, (d) east end of the third floor 

north beam. 
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(a) (b) 

  
(c) (d) 

Figure 3.16: Comparison of FE predicted and measured averaged axial strain vs. curvature 

for FB-5: DEN67 at the (a) west end of the second floor north beam, (b) east end of the 

second floor north beam, (c) west end of the third floor north beam, (d) east end of the third 

floor north beam. 

 

The south, south-east, north, and north-east columns were instrumented at their 

base with a pair of string potentiometers located on interior faces to measure the axial 

elongation and averaged curvature of the column bases over the sensor length (See 

Figures 3.13(a) and 3.13(c)). The procedure used to extract the axial deformation and 

curvature, from both FE model and experimental measurement, is similar to the one 

employed for the beams. Figure 3.17 compares the FE predicted and measured 

averaged axial deformation time history at the base of the four instrumented columns. 

Likewise, Figure 3.18 compares the FE predicted and measured averaged curvature 

time histories. The FE predicted and measured responses are in good agreement, 
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especially given the local nature of these response quantities. As observed for the case 

of beams, the peak axial strain and curvature responses of column are also 

overpredicted by the FE model. 

 

  
(a) (b) 

  
(c) (d) 

Figure 3.17: Comparison of FE predicted and measured averaged axial strain time histories 

for FB-5: DEN67 at the (a) base of north middle column, (b) base of north east column, (c) 

base of south middle column, (d) base of south east column. 
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(a) (b) 

  
(c) (d) 

Figure 3.18: Comparison of FE predicted and measured averaged curvature time histories for 

FB-5: DEN67 at the (a) base of north middle column, (b) base of north east column, (c) base 

of south middle column, (d) base of south east column. 

 

 

3.4.4. Strain gauge and crack level response 

Selected longitudinal reinforcing bars placed in the north frame beams were 

instrumented at different locations with strain gauges. Figure 3.13(a) shows the 

location of one of the strain gauges installed on the outer longitudinal rebar at the east 

corner of the third floor beam, which is near the plastic hinge region of that beam. This 

strain gauge is shown in Figure 3.19(a). The strain time history measured through this 

strain gauge during the FB-5: DEN67 test is compared with the corresponding FE 

prediction in Figure 3.19(b). The FE predicted axial strain at the strain gauge location 
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is derived by interpolating the axial strain at the integration points of the beam PH-

element. Figure 3.19(b) shows that the FE model predicts well both the rebar strain 

time history and the residual strain at the end of the seismic test.  

 

 
 

(a) (b) 

Figure 3.19: (a) Strain gauge installed on the outer rebar at east end of the 3
rd

 floor north 

frame beam; (b) comparison of the FE predicted and measured longitudinal rebar strain for 

FB-5: DEN67. 

 

During the inspection phases, following each seismic test, the propagation of the 

cracks across each slab was carefully marked and documented. This information was 

integrated into schematic crack maps such as the one shown in Figure 3.20(a) for the 

top surface of the second floor slab after the FB-5: DEN67 test. To obtain the FE 

predicted crack maps, the computed maximum crack opening at the top surface of the 

slab shell elements is extracted from the integration points located at the top surface of 

the slab shell elements, and plotted as a continuous contour map over the slab as 

shown in Figure 3.20(b). The crack opening is the product of crack strain averaged 

over the surface integration points and the crack bandwidth of the element. The 

correlation between the FE predicted and the observed crack maps is excellent, as can 
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be observed in Figures 3.20(a) and (b). Figures 3.20(c) to 3.20(e) show the actual 

damage state of second floor slab at different locations after FB-5: DEN67. 

  
(a) (b) 

  
(c) (d) 

  
(d) (e) 

Figure 3.20: Comparison of FE predicted and observed cracks on the top surface of the second 

floor slab after FB-5: DEN67: (a) experimental observation; (b) maximum crack opening 

based on FE prediction (units are in mm); damaged state of the second floor slab after FB-5: 

DEN67 at (c) north-west corner (observed from east side), (d) north-west corner (observed 

from south side), (e) south-west corner, and (f) around north-middle column. 

 

Before the FB-5: DEN67 test, a sensitive linear potentiometer was installed on 

the second floor slab across one of the major cracks near the north-middle column to 

measure its opening during FB-5: DEN67. Figure 3.20(a) shows the crack and the 
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sensor locations on the crack map, while Figure 3.21(a) shows the sensor, which is 

also visible in Figure 3.20(e) where it is distinguished by a red circle. The crack 

opening time history measured through this sensor is compared with its FE predicted 

counterpart in Figure 3.21(b). The FE predicted crack opening time history is obtained 

by averaging crack strain over the top surface integration points of the shell element in 

which the sensor is located. The averaged crack strain is then multiplied by the crack 

bandwidth of the element to result the crack opening. Considering the various sources 

of approximation and uncertainties involved in this local scale of comparison, the 

obtained correlation is remarkable.  

 

 
 

(a) (b) 

Figure 3.21: (a) Potentiometer (protected by plastic cover) installed prior to FB-5: DEN67 across a 

crack on the second floor concrete slab; (b) comparison of FE predicted and measured crack opening 

time history for FB-5: DEN67. 

 

3.5. Sequential versus individual nonlinear time history analysis 

As mentioned earlier, two types of analysis were performed for pre-test 

simulation of the building specimen, namely a sequential analysis and a set of 
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individual analyses. The sequential analysis accounts for damage accumulation in the 

building structure during the successive earthquake tests and is computationally more 

demanding than the set of individual analyses starting from an initial undamaged state 

for each earthquake. To investigate the effect of damage accumulation in the FE 

model, Figures 3.22(a) to 3.22(c) compare the normalized PFAA predictions obtained 

from the sequential and individual analyses for FB-3: ICA50, FB-4: ICA100, and FB-

5: DEN67. At each floor level of the building, the peak positive and negative values of 

the predicted FAA are normalized by the peak positive and negative values of the 

measured FAA, respectively. Similarly, Figures 3.22(d) to 3.22(f) show the normalized 

PIDRs obtained from the sequential and individual analyses for FB-3: ICA50, FB-4: 

ICA100, and FB-5: DEN67. The predicted PIDRs are also normalized by the measured 

PIDRs in the positive and negative directions, separately. It is observed that there are 

relatively small differences between the two types of the analysis results for the PFAA 

prediction for all three tests. In the case of PIDR, there are no differences for FB-5: 

DEN67; however, the sequential analysis improves the PIDR predictions for FB-3: 

ICA50.  
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 3.22: Comparison of the building response prediction results obtained using the 

sequential and individual analyses; PFAA normalized by the corresponding measured PFAA 

for: (a) FB-3: ICA50, (b) FB-4: ICA100, and (c) FB-5: DEN67; PIDR normalized by the 

corresponding measured PIDR for: (d) FB-3: ICA50, (e) FB-4: ICA100, and (f) FB-5: 

DEN67. 

 

 

3.6. Conclusions 

Details of the 3D nonlinear FE model utilized for the pre-test numerical 

simulation of a full scale five-story RC building specimen tested on the NEES-UCSD 

shake table is described. To investigate the likely shortcomings of the employed FE 

modeling technique, the selected FE predicted response parameters are compared with 

the experimental measurements at different response levels varying from global 

structural level to local sensor and crack levels.  

The FE simulation generally better predicts the peak FAAs than the peak IDRs. 

The peak FAAs are better predicted at upper floor levels for low intensity tests and at 

lower floor levels for high intensity tests. For low intensity tests, the FE simulation 

mostly over-predicts the peak IDRs, more in the middle stories of the building, whiles 
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for high intensity tests it under-predicts the peak IDRs in the lower stories and over-

predicts them in the upper stories. The time histories of the measured response time 

histories have higher frequency content compared to the FE predictions for low 

intensity tests. The difference in the dominant frequency reduces for FB-5: DEN67 

compared to FB-1: CNP100. The measured TSS vs. IDR at story levels show 

remarkable stiffer response compare to the predicted results at all the stories except the 

first one, in which the stiffness difference is insignificant. As the test motion 

intensifies, the stiffness agreement of the story-level responses improves between the 

FE predictions and experimental measurements. The measured responses at lower 

stories show higher level of nonlinearity and displacement demand than the FE 

predicted responses for FB-5: DEN67. Moreover, The FE simulation underpredicts the 

dissipated hysteretic energy at the lower story levels and slightly overpredicts it at 

upper story levels. The measured beam-ends and column-bases axial deformation and 

averaged curvature responses show good correlation with the FE predictions. The FE 

simulation predicts the measured strain of the beam longitudinal reinforcement well. 

The predicted crack map for floor slab confirms remarkably well with the observed 

damage state of the slab. The crack opening time history for a specific crack in the 

second floor level is also predicted reasonably well by the FE simulation. Four 

different causes can explain the probable sources of discrepancies between the FE 

prediction and experimental measurement: 

(1) Kinematic interaction between the structural and nonstructural systems, 

which are not considered in the current FE simulation. This interaction contributes in 
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the lateral energy dissipation mechanism of the building, increases the measured 

stiffness of the building, affects the dominant frequency contents of the response time 

histories, and reduces the measured floor displacement demands compared to the FE 

predictions. As the intensity of the earthquake increases, the nonstructural components 

start to get damaged, undergo stiffness and strength degradation, and their kinematic 

interaction with the structural system diminishes.  

(2) The material constitutive laws used in the developed FE model have some 

imprecisions. Moreover, the adopted FE formulation implies restrictive kinematic 

assumptions which can result in inaccurate hysteretic response simulation of the 

structural components. More specifically, the pinching hysteretic behavior of the RC 

flexural members cannot be captured correctly using the employed FE modeling 

technique. Therefore, in highly nonlinear regions, the FE model of the test structure 

has higher energy dissipation capacity for flexural members than the actual specimen. 

As a consequence, for the high intensity tests, the FE model under-predicts the floor 

displacement demands of the building at the lower floors.  

(3) The damping is modeled using proportional Rayleigh damping model based 

on constant damping parameters in the employed FE model. The adequacy of the 

classical Rayleigh damping model for nonlinear time history analysis of structures is 

questionable. Moreover, the selection of the damping ratios and the implication of the 

proportional Rayleigh damping model are open problems that require further research.  

(4) Uncertainties involved in various stages of parameter selection and 

modeling are another cause of discrepancies, for example the uncertainties included in 
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the estimation of the inertia models and uncertainties involved in the selected material 

parameters such as steel hardening parameters to name only two. 

Considering the real-life conditions and configurations of the experimental 

program, the comparison studies in this chapter provide realistic metrics to evaluate 

and validate the accuracy of an advanced nonlinear FE simulation technique for RC 

building structures. The drawn conclusions in this chapter pave the way for future 

research to improve the fidelity of the nonlinear FE simulations for RC structures. 

Future research is underway by the Authors to address the various possible sources of 

discrepancies and modeling uncertainties discussed in this chapter.  
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Appendix 3.I: Data Processing 

3.I.1. Data cleansing procedure 

The acceleration time history data obtained from the accelerometer sensors 

have been processed to remove the artificial noise effects in the recorded signal. The 

data cleansing procedure involved the following steps: 

a. Obtain the acceleration time history from raw data files and apply the sensor 

correction factors. 

b. Eliminate linear trends in the acceleration time history by removing the best straight 

line fit from the data. 

c. Taper the first and last 1 second of the acceleration time history with a half-cosine 

function. 

d. Zero-pad the acceleration time history at the beginning and the end with 42.8 

seconds of zeros (following the procedure suggested by [15]). 

e. Filter the zero-padded acceleration time history with two passes of a 4
th

 order 

Butterworth bandpass filter with corner frequencies of [0.07, 25] Hz. 

 

3.I.2. Evaluating the average floor absolute accelerations 

Four tri-axial accelerometers were installed at the four corners of each floor 

slab. The recorded data from the accelerometers were averaged to obtain the mean 

translational and rotational accelerations at the center of geometry of the slab. Figure 
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3.23 shows the schematic plan view and location of the four accelerometers. In this 

figure, 
xA  and yA  denote the translational acceleration at the geometric center of the 

slab in x- and y-directions, respectively, and A  is the rotational acceleration of the 

slab. 
xa  and ya  denote the two translational components of the acceleration data 

recorded by a sensor. Assuming a rigid diaphragm condition for the floor slab, the 

translational accelerations at the sensor location can be related to the translational and 

rotational accelerations at the geometric center of the slab as follows. 

2

x,i x,i i ia A r Cos r Sin  

2

y,i y,i i ia A r Sin r Cos  

(3.5) 

 
(3.6) 

where the subscript i denote the time step. Using a first-order integration rule, the 

rotational velocity at time step i, i , can be related to the rotational acceleration at time 

step i, i , and the rotational velocity and acceleration at previous time step: 

1

1 1 1

1 1

1

2

2 2

2

i

i i i i i

i i i i
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i i i

tt
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where t  is the time step size. Therefore, 

2

2 2

1 1
2

x,i x ,i i i i i

t
a A rCos r Cos t Sin r Cos

2

2 2

1 1
2

y,i y ,i i i i i

t
a A rSin r Sin t Cos r Sin  
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The same equations can be written for the other three sensors, resulting in 8 

equations and 3 unknowns (
xA , yA , and A ) at each time step. The system of 

equations is recursively solved in time using a nonlinear least-squares method.  

 

Figure 3.23: Schematic plan view and location of accelerometers. 
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Appendix 3.II: Material Parameters 

3.II.1. Concrete material parameters 

37 different sets of concrete material model were defined in this study to 

specify the variations in the concrete material properties and confinement conditions 

of different structural components and members. Table 3.4 lists the parameters of 

these 37 concrete material models. The compressive strength of concrete was obtained 

from standard compressive tests performed on cylindrical specimens sampled during 

construction. Most of the compressive tests were performed on 18-days old specimens. 

Table 3.5 shows a sample spreadsheet used to compute concrete material parameters 

for 1st floor columns. 
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Table 3.4: Parameters selected for different concrete material models. 

Set # Member / Component cf  (18 days test) 

(ksi) 
(MPa)cf  cc

 (MPa)ccf  cu
 (m)PHL  

0 (MPa)E  (N/m)cG   (MPa)tf  (N/m)fG  

1 Columns, First Floor 5.925 40.85 0.0036 56.79 0.0203 0.330 26467.43 209067.46 2.11 124.78 

2 Walls, 1st Floor 5.925 40.85 0.0022 40.85 0.0040 0.076 30947.91 3735.44 2.11 117.46 

3 Slab, 2nd Floor 5.233 36.08 0.0035 47.78 0.0152 0.102 22949.09 37961.78 1.98 117.46 

4 Slab, 2nd Floor 5.233 36.08 0.0035 47.78 0.0152 0.102 22949.09 37961.78 1.98 117.46 

5 Slab, 2nd Floor 5.233 36.08 0.0021 36.08 0.0040 0.102 28634.99 4643.27 1.98 117.46 

6 Beam, 2nd Floor 5.233 36.08 0.0035 48.66 0.0184 0.356 23507.25 172458.18 1.99 117.46 

7 Columns, 2nd Floor 5.7515 39.66 0.0037 55.74 0.0204 0.330 25109.46 204923.90 1.98 117.12 

8 Columns, 2nd Floor 5.7515 39.66 0.0037 55.74 0.0204 0.330 25109.46 204923.90 1.98 117.12 

9 Walls, 2nd Floor 5.7515 39.66 0.0022 39.66 0.0040 0.076 30041.67 3626.05 2.08 117.12 

10 Slab, 3rd Floor 5.34 36.82 0.0035 47.48 0.0152 0.102 22609.52 37626.95 2.00 117.18 

11 Slab, 3rd Floor 5.34 36.82 0.0035 47.48 0.0152 0.102 22609.52 37626.95 2.00 117.18 

12 Slab, 3rd Floor 5.34 36.82 0.0021 36.82 0.0040 0.102 29220.50 4738.21 2.00 117.18 

13 Beam, 3rd Floor 5.34 36.82 0.0035 49.51 0.0183 0.356 23917.87 174296.98 1.98 117.46 

14 Columns, 3rdFloor 6.015 41.47 0.0036 57.48 0.0203 0.330 26912.17 211831.85 2.13 125.72 

15 Columns, 3rdFloor 6.015 41.47 0.0036 57.48 0.0203 0.330 26912.17 211831.85 2.13 125.72 

16 Walls, 3rd Floor 6.015 41.47 0.0022 41.47 0.0040 0.076 31418.00 3792.18 2.13 125.72 

17 Slab, 4th Floor 5.41 37.30 0.0034 49.48 0.0150 0.102 24252.45 38872.84 2.02 119.23 

18 Slab, 4th Floor 5.41 37.30 0.0034 49.48 0.0150 0.102 24252.45 38872.84 2.02 119.23 

19 Slab, 4th Floor 5.41 37.30 0.0022 37.30 0.0040 0.102 28257.92 4547.67 2.02 119.23 

20 
Lateral Beam, 4th 

Floor 
5.41 37.30 0.0034 49.48 0.0150 0.102 24252.45 38872.84 2.02 119.23 

21 Beam, 4th Floor 5.41 37.30 0.0034 50.23 0.0182 0.356 24621.08 176225.78 2.02 119.23 

22 Columns, 4th Floor 6.4845 44.71 0.0035 60.67 0.0209 0.330 28892.29 232400.07 2.21 130.54 

23 Columns, 4th Floor 6.4845 44.71 0.0035 60.67 0.0209 0.330 28892.29 232400.07 2.21 130.54 

24 Walls, 4th Floor 6.4845 44.71 0.0022 44.71 0.0040 0.076 33870.33 4088.18 2.21 130.54 

25 Slab, 5th Floor 5.927 40.87 0.0034 53.54 0.0147 0.102 26243.63 40976.51 2.11 124.80 

26 Slab, 5th Floor 5.927 40.87 0.0034 53.54 0.0147 0.102 26243.63 40976.51 2.11 124.80 

27 Slab, 5th Floor 5.927 40.87 0.0022 40.87 0.0040 0.102 30958.35 4982.26 2.11 124.80 

28 
Lateral Beam, 5th 

Floor 
5.927 40.87 0.0034 53.54 0.0147 0.102 26243.63 40976.51 2.11 124.80 

29 Beam, 5th Floor 5.927 40.87 0.0034 54.35 0.0179 0.356 26643.14 186833.19 2.11 124.80 

30 Columns, 5th Floor 7.3265 50.51 0.0034 66.91 0.0217 0.330 32797.55 269530.84 2.35 138.76 

31 Columns, 5th Floor 7.3265 50.51 0.0034 66.91 0.0217 0.330 32797.55 269530.84 2.35 138.76 

32 Walls, 5th Floor 7.3265 50.51 0.0024 50.51 0.0040 0.076 35079.30 4105.79 2.35 138.76 

33 Slab, 6th Floor 6.39 44.06 0.0033 56.71 0.0145 0.102 28640.40 43019.44 2.19 129.59 

34 Slab, 6th Floor 6.39 44.06 0.0033 56.71 0.0145 0.102 28640.40 43019.44 2.19 129.59  
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Table 3.5: Details of the concrete material parameters evaluation for 1
st
 floor columns. 
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3.II.2. Steel material parameters  

Different sets of steel material model were defined in this study to specify the 

variations in the reinforcing steel material properties. Table 3.6 lists the parameters of 

different steel material models. The yield strength and elastic modulus of steel rebars 

were obtained using standard tensile (universal) tests performed on rebar coupons.  

 

Table 3.6: Parameters selected for steel material models. 

Rebar Size - Location 
Test Results Material Model 

(ksi)y  (ksi)E  (MPa)y  (MPa)E  b  y  

#3 - Slab 75.20 30615.67 518.48 211086.57 0.0300 0.0025 

#4 68.50 30440.33 472.29 209877.69 0.0129 0.0023 

#5 - Slab 73.50 29019.50 506.76 200081.44 0.0246 0.0025 

#6 - Column and Slab 71.00 29365.00 489.53 202463.56 0.0267 0.0024 

#7 - Beam 71.67 27454.33 494.12 189290.05 0.0147 0.0026 

#8 71.67 27454.33 494.12 189290.05 0.0147 0.0026 

#9 - Col and Slab 71.67 27454.33 494.12 189290.05 0.0147 0.0026 

#7 HSS - Beam 124.67 23606.67 859.54 162761.45 0.0576 0.0053 
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CHAPTER 4: PARAMETRIC IDENTIFICATION OF 

HYSTERETIC MATERIAL CONSTITUTIVE LAWS IN 

NONLINEAR STRUCTURAL FINITE ELEMENT MODELS 

USING EXTENDED KALMAN FILTER 

 

4.1. Introduction 

In the field of structural engineering, system identification (ID) refers to 

methods and techniques to identify a mathematical model of a structure using input-

output (or output only) data. Structural system identification techniques facilitate the 

detection of damage in structures by tracking the changes in the identified 

mathematical model or dynamic signatures of the structure. Extensive research efforts 

have been dedicated to structural health monitoring (SHM), which is the process of 

implementing damage ID techniques for structures [1]. The reader is referred to [2-4] 

for an in-depth literature survey on these subjects.  
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Structural modal ID, or identification of modal properties of a structure using 

input-output (or output only) data, is one of the most popular structural system ID 

approaches used for damage ID. The measured response of the structure under low-

amplitude forced or ambient vibrations are processed to extract the modal properties of 

an equivalent linear elastic viscously damped dynamic system [5]. When a structure 

suffers damage or when its material and/or geometric properties change, the identified 

modal properties of the structure deviate from its initial undamaged (or baseline) 

modal properties. These variations in identified modal parameters or features extracted 

from them can be utilized to identify damage in the structure. Nevertheless, damage ID 

in structures based on modal ID has been criticized for some technical reasons. 

Classical modal properties (i.e., natural frequencies, mode shapes, and damping ratios) 

provide information on the global behavior of the structure and are often not sensitive 

to local damages in the structural system. Moreover, modal ID and the related damage 

ID methods are based on the fundamental assumption of linear elastic behavior of the 

structural system. However, especially in case of civil structures, “nonlinearity is 

generic in nature, and linear behavior is an exception” [6], even at low-amplitude 

levels of vibration (e.g., ambient). More importantly, low-amplitude vibrations used 

for modal ID provide information about loss of effective stiffness, but are unable to 

disclose any information about loss of strength (i.e., the most important manifestation 

of damage in the structural systems) and history of the response nonlinearities and 

related damage experienced by the structure. 
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Nonlinear FE Model updating in time domain can be considered as a family of 

methods used for both nonlinear system ID and damage ID of civil structures (e.g., [7-

9] to name a few). In this approach, using the measured input-output data, the 

parameters of a nonlinear FE model of the structure of interest are estimated or 

updated by minimizing an objective function expressing the discrepancies between the 

measured and predicted responses in the time domain. Contrary to the modal ID based 

damage ID methods, in this approach, the data measured during damage-inducing 

events (such as earthquake), which contains valuable information on the nonlinear 

behavior of the structure, can be used to update the nonlinear FE model.  

Various methods have been proposed and employed for nonlinear FE model 

updating and parameter estimation of structural models in the literature: methods 

based on least-square estimation (e.g., [10-12]), methods using the extended Kalman 

filter (EKF) and its variations (e.g., [13-20]), methods using the unscented Kalman 

filter (e.g., [8, 21-22]), and methods using particle filters (e.g., [23-25]). Some of these 

methods (EKF) require linearization of the state space model with respect to the 

parameters to be identified, which can be performed with (e.g., [19]) or without (e.g., 

[20]) computation of the relevant derivatives. Other methods avoid linearization using 

sampling-based methods (e.g., [24]). More recently, combinations of these two types 

of methods were also proposed (e.g., [25]). However, the studies reported in the 

literature typically use simplistic structural models such as single-degree-of-freedom 

or multi-degree-of-freedom mass-spring-dashpot models, and shear-building models, 

in which the nonlinearities are lumped at the structural or story levels, or one-
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dimensional FE models. These basic models are either insufficient to predict the 

response of a real structure or are based on simplifying assumptions that result in a 

crude prediction of the real behavior of the structures. Moreover, the force–

deformation, behavioral, or material constitutive models assumed in the studies 

referred to above are typically either linear elastic, nonlinear elastic, bilinear, or based 

on the empirical Bouc-Wen model. These constitutive models are either inadequate to 

capture the complex actual nonlinear behavior of real structures or, as in the case of 

the Bouc-Wen model, are not parameterized with physical material parameters (e.g., 

Young’s modulus, yield stress) and furthermore require calibration (using 

experimental data or high-fidelity predictive models) on a case-by-case basis. 

Consequently, there is a need to introduce state-of-the-art nonlinear structural FE 

modeling and analysis techniques into the FE model updating and parameter 

estimation field. 

This chapter presents a novel framework that integrates the EKF as a parameter 

estimation tool with state-of-the-art mechanics-based nonlinear structural finite 

element modeling and analysis techniques to provide a new nonlinear system and 

damage identification framework for structural systems. The FE model depends on a 

set of time-invariant modeling parameters, which are assumed to be unknown and 

modeled as random variables according to the Bayesian approach of parameter 

estimation. Estimating the expected values and covariance matrix of these parameters 

using the input-output measured data is the objective of the parameter estimation and 

FE model updating framework. The updated FE model can then be interrogated 
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directly to evaluate the loss of strength and effective stiffness and the history of 

inelastic deformations and related damages in the structure at different spatial 

resolution levels, from global structural level to local component and element levels. 

The proposed framework is general and can be readily applied to different types of 

nonlinear FE models and to estimate different modeling parameters such as inertia 

properties, damping parameters, parameters characterizing the nonlinear material 

constitutive laws, geometric, loading, and constraint parameters. Using the EKF to 

estimate the modeling parameters and update the FE model requires the computation 

of structural FE response sensitivities with respect to the modeling parameters. These 

FE response sensitivities can be computed using the computationally demanding finite 

difference method (FDM) or the well-established, accurate and computationally more 

efficient direct differentiation method (DDM) [26]. In this study, DDM is employed as 

a tool to facilitate the implementation of the EKF in parameter estimation of nonlinear 

structural FE models. 

The chapter is organized in the following way. After the introduction, the 

second section of the chapter introduces the Kalman filter and its application in 

parameter estimation. The third section reviews the technical background of the 

employed FE modeling and analysis techniques and formulates the proposed nonlinear 

FE model updating framework. Elements of the DDM-based FE response sensitivity 

analysis method are also provided in the third section. Finally, two proof-of-concept 

examples including a cantilever steel column and a three-story three-bay moment 

resisting steel frame are presented in the fourth section to verify the implementation 
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and the performance of the proposed nonlinear FE model updating framework. 

Conclusions are provided in the final section.  

 

4.2. Kalman Filter (KF) 

4.2.1. KF for linear systems 

In system theory, the mathematical model of a linear dynamic system is often 

expressed in the state-space representation. The state-space model represents the 

dynamics of a linear system using two sets of vector equations. The first set is referred 

to as the state (or process) equation, while the second set is called the measurement 

equation. In the discrete time domain, the state equation is a set of coupled first-order 

ordinary difference equations and the measurement equation is a set of algebraic 

equations combining the states and inputs to yield the outputs (responses) of the 

system. Eqs. (4.1) and (4.2) provide the general time-variant discrete-time state-space 

representation of a linear stochastic dynamic system. In the state equation, Eq. (4.1), 

1
1


  xx

n
k  is the state vector at time step (k+1), which is the smallest set of system 

variables that fully defines the system and its response to given inputs. xxA
nn

k


  is 

the state matrix, uxB
nn

k


  is the input matrix, 
1

 uu
n

k  is the deterministic 

input vector, and 
1

 xw
n

k  is the stochastic input vector – or process noise vector, 

accounting for model uncertainties – all at the k
th

 time step. The state equation governs 

the evolution over time of the system state. In the measurement equation, Eq. (4.2), 
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 yy

n
k  is the output (response) of interest of the system, xyC

nn
k


 1  is the 

output matrix, uyD
nn

k


 1  is the feedthrough (or feedforward) matrix, and 

1
1


  yv

n
k  is the measurement noise vector, all at time step (k+1). 

kkkkkk wuBxAx 1  

111111   kkkkkk vuDxCy  

(4.1) 

(4.2) 

Depending on the application, accurate measurement of all the system states is 

usually impossible in the real world, as it requires numerous numbers of sensors; 

moreover, the sensor measurement would always be contaminated by measurement 

noise. Therefore, an interesting question is how to estimate the system states at every 

time step given the system matrices, the inputs, and the noisy responses of the system. 

Investigated by Kalman in 1960, this question led to the development of the Kalman 

Filter (KF) method [27]. Generally speaking, the KF recursively estimates the mean 

and covariance of the state vector of a linear Gaussian dynamic system, using the input 

and output vectors of the system. The KF is an unbiased, linear quadratic estimator, 

which minimizes the variance of the estimated states in time.  

The KF algorithm is a recursive prediction-correction process. At the k
th

 time 

step, prior or a priori estimates (denoted by the minus sign in the superscript and 

superimposed hat, respectively) of the state and state covariance matrix are predicted 

for the next time step (i.e., 
1ˆ kx  and 

1,
ˆ

kxP , respectively). Using the a priori state 

estimate, the predicted system response, 
1ˆ ky , is evaluated. Then, upon arrival of the 
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measured response of the system at time step (k+1), 
1k

y , 
1ˆ kx  and 

1,
ˆ

kxP  are 

corrected based on the difference between the observed (measured) and predicted 

responses, i.e.  
  11 ˆ kk yy . The correction procedure results in posterior or a 

posteriori estimates (denoted by the plus sign in the superscript and superimposed hat, 

respectively) of the state and state covariance matrix (i.e., 
1ˆ kx  and 

1,
ˆ

kxP , 

respectively). This predication-correction procedure is then repeated from time step to 

time step. The discrete-time KF algorithm is provided in Table 4.1 for the case where 

w  and v  are zero-mean independent Gaussian white noise processes, with covariance 

matrices at the k
th

 time step denoted by kQ  and kR , respectively. In this table,  .E  

and  ..E  denote the expectation and conditional expectation operators, respectively. 

More details on the mathematical derivation of the KF and its variations can be found 

in a number of textbooks (e.g., [28]). 
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Table 4.1: Discrete-time KF algorithm 
Initialization: 

Postulate 
0x̂  and 


0,

ˆ
xP where 

     







  T

EE 00000,00 ˆˆˆ,ˆ xxxxPxx x  

Estimates of initial state and state 

covariance matrix 

For each time step (k = 0, 1, …):  

Prediction:  

  kkkkkkk E uBxAyyyxx  



 ˆ,...,,ˆ 2111  A priori state estimate              (4.3) 

   k
T

kkkk

T

kkkkk E QAPAyyyxxxxP xx 







 






 ,2111111,

ˆ,...,,ˆˆˆ  
A priori state covariance  

matrix                                       (4.4) 

 

  11112111 ˆ,...,,ˆ 




  kkkkkkk E uDxCyyyyy  

Predicted response                    

(4.5) 

   T
kkk

T

kkkkk E 11,2111111,
ˆ,...,,ˆˆˆ












 








 CPyyyyyxxP xxy  

Estimated state-response cross 

covariance matrix                     (4.6)                              

   111,12111111,
ˆ,...,,ˆˆˆ












 








 k

T
kkkk

T

kkkkk E RCPCyyyyyyyP xy  
Estimated response covariance 

matrix                                       (4.7) 

Correction: (upon arrival of the measured response at time step (k+1))  

  1

1,1,1
ˆˆ 




  kkk yxy PPK  Kalman gain matrix                  (4.8) 

   






  111112111 ˆˆ,...,,|ˆ kkkkkkk E yyKxyyyxx  A posteriori state estimate        (4.9) 

  

    T
kkk

T
kkkkk

k

T

kkkkk E

111111,11

12111111,

ˆ

,...,,ˆˆˆ




























KRKCKIPCKI

yyyxxxxP

x

x
 

A posteriori state covariance matrix           

 

(Joseph equation [29])            

(4.10) 

 

4.2.2. KF for nonlinear systems 

The discrete-time state-space representation of a nonlinear dynamic system is 

expressed as 

  kkkkk wuxfx  ,1  

  11111 ,   kkkkk vuxgy  

(4.11) 

(4.12) 

in which     111
,:,


 xux..f

nnn
k  is the nonlinear vector-valued state function 

and 
1

 xw
n

k  is the process noise vector at the k
th

 time step. The term 
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    111
1 ,:,


  yux..g

nnn
k  is the nonlinear vector-valued measurement function 

and 
1

1


  yv
n

k  is the measurement noise vector at time step (k+1). 

The KF method cannot be directly applied to nonlinear dynamic systems, in 

which either one or both of the state and measurement equations are nonlinear. The 

time evolution of the probability distribution of the states in a nonlinear dynamic 

system can be described by the conditioned Fokker-Planck differential equation [30], 

the solution of which can be very tedious. To work around the nonlinear filtering 

problem, a number of methods have been proposed to extend the application of the KF 

to nonlinear systems using simplifying assumptions. One of these methods is the EKF, 

in which the nonlinear state space model is linearized around the latest estimated state, 

using a first-order Taylor series approximation. Then, the KF prediction-correction 

procedure (for linear systems) is applied to the linearized system and the derived a 

posteriori estimate is used as the center-point for the next time step linearization. The 

first-order Taylor series expansion of Eq. (4.11) about 

kx̂  can be expressed as  

      kkkT

kk
kkkk TOH

k

wxx
x

uxf
uxfx

xx




















 








...ˆ
,

,ˆ

ˆ
1  

k 1 k k k k   x A x u w  

 

 

 

 

(4.13)

  

where 

 
 

k

k k

k k k k k k kT

ˆ

,
ˆ ˆ, ,



 




  


x x

f x u
A u f x u A x

x
 

 

Using this first-order approximation and assuming that  kk N Q0w ,~ , in 

which  Cμ,N  denotes the normal probability distribution with mean vector μ  and 
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covariance matrix C , the a priori estimates of the state vector and state covariance 

matrix are obtained as 

 kkkk uxfx ,ˆˆ 1


   

T

,k 1 k ,k k k
ˆ ˆ 

  x xP A P A Q  

(4.14) 

(4.15) 

To evaluate the a posteriori estimates of the state vector and state covariance 

matrix, the measurement equation must also be linearized with the linearization point 

taken as the a priori state estimate, which at this point is the best available estimate of 

the state, i.e., 

      111
ˆ

11
1111 ...ˆ

,
,ˆ

1











 
























kkkT

kk
kkkk TOH

k

vxx
x

uxg
uxgy

xx
 

k 1 k 1 k 1 k 1 k 1       y C x z v

 

(4.16) 

where 

 
 

k 1

k 1 k 1

k 1 k 1 k 1 k 1 k 1 k 1 k 1T

ˆ

,
ˆ ˆ, ,




   

      




  


x x

g x u
C z g x u C x

x
 

 

Therefore, assuming that  kk N Rv ,0~  and that w  and v  are independent white noise 

processes, the above first-order approximation yields the following results:  

 1111 ,ˆˆ 




  kkkk uxgy  

T
kkk 11,1,

ˆˆ






  CPP xxy  

111,11,
ˆˆ







  k
T

kkkk RCPCP xy  

(4.17) 

(4.18) 

(4.19) 
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Eqs. (4.14)-(4.15) and (4.17)-(4.19) can be used to run recursively the Kalman 

filter prediction-correction procedure summarized in Table 4.1, for the nonlinear 

dynamic system governed by Eqs. (4.11) and (4.12). It should be mentioned that for 

the Gaussian process and measurement noises, w  and v respectively, the output of the 

linearized system is also Gaussian. In other words, the output of the nonlinear system 

is gaussianized through linearization of the system. 

 

4.2.3. Parameter estimation using EKF 

The EKF framework presented in the previous section can also be used for 

estimating the unknown parameters of a nonlinear model. Suppose that a general 

nonlinear system is described using a nonlinear model that is parameterized by a set of 

constant parameters such that the response of the nonlinear model is uniquely defined 

by the parameters and the input to the model. A set of input-output data, consisting of 

sample pairs of known input and noisy output (measurement) of the system, is 

available. The unknown parameters are modeled as random variables according to the 

Bayesian approach. The objective is to estimate the mean and variance of the 

parameters using the available set of input-output data. This problem is referred to as 

nonlinear parameter estimation. 

Assume that the output of a nonlinear system is modeled as 

  1111 ,   kkkk vuθhy  (4.20) 
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in which 
1

1


  yy
n

k  is the noisy output (measurement) vector, 
1

 θθ
n

 is the 

vector of constant unknown parameters, 
1

1


  uu
n

k  is the deterministic input vector, 

    111
,:,


 yuθ..h

nnn  is the nonlinear vector-valued function representing the 

parameterized model, 
1

1


  yv
n

k  is the measurement noise vector, and the 

subscripts indicate the sample number of the input-output data sequence.  

To solve the nonlinear parameter estimation problem, the constant unknown 

parameter vector, θ , is modeled as a random vector, the evolution of which is 

characterized by a Gaussian Markov process – also known as a random walk process. 

Then, a state space model is set up, in which the state equation governs the evolution 

of the random parameter vector and the measurement equation corresponds to the 

output equation of the nonlinear system [31], i.e., 

kkk γθθ 1  

  11111 ,   kkkkk vuθhy  

(4.21) 

(4.22) 

in which 
1

 θγ
n

k  is a zero-mean Gaussian white noise process. Assuming that the 

measurement noise vector, 1kv , is also a zero-mean Gaussian white noise process, 

the EKF can be employed to recursively update the mean vector and covariance matrix 

of the parameter vector, θ , using the measured (recorded) input and output (response) 

of the system. The mean vector is referred to as parameter estimate and the covariance 

matrix as parameter covariance matrix hereafter. Comparing Eqs. (4.11)-(4.12) with 

Eqs. (4.21)-(4.22) shows that the process equation is now linear and only the 
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measurement equation needs to be linearized for the EKF process. This parameter 

estimation setup is a crucial step that facilitates the implementation of the EKF in the 

nonlinear FE model updating framework proposed in the next section. Similar 

parameter estimation setup has been used in [32] to update FE models under quasi-

static loading conditions and identify parameters of linear elastic and nonlinear elastic 

material model using particle filters.  

 

4.3. Nonlinear FE model updating using EKF 

4.3.1. Problem statement 

Suppose that the input ground acceleration and the dynamic response of a civil 

structure (e.g., building, bridge) are recorded during an earthquake event. The dynamic 

response of civil structures are typically recorded through an array of accelerometers 

(acceleration sensors), which measure the total acceleration response time histories at 

various points of the structure. As expected for any physical measurement, the 

recorded data are polluted by noise, referred to as measurement noise. To simulate the 

dynamic response of this building structure, a nonlinear FE model is developed. The 

FE model depends on a set of unknown time-invariant parameters including inertia 

properties, damping parameters, and parameters characterizing the nonlinear material 

constitutive laws used in the FE model. These parameters are referred to as material 

parameters henceforth. Using the recorded input ground acceleration time history and 

the noisy measured response of the building, the objective is to identify the best set of 



146 

 

 

 

unknown material parameters to minimize the discrepancy between FE predicted and 

measured structural responses for the recorded input ground motion. In this chapter, 

the estimation problem is tackled by updating recursively (i.e., step by step as we 

march forward in time during the earthquake) the unknown material parameters of the 

nonlinear FE model using the EKF parameter estimation framework.  

 

4.3.2. Nonlinear FE modeling and analysis method 

In this study, the proposed nonlinear FE model updating framework is 

developed by employing a distributed-plasticity, displacement-based, structural finite 

element modeling and analysis technique [33]. In this technique, which has been 

widely used in nonlinear analysis and design of frame-type structures, the structural 

model is spatially discretized using fiber-section displacement-based beam-column 

elements formulated from Euler-Bernoulli or Timoshenko beam theory. Contrary to 

lumped plasticity models, in the distributed plasticity models, the element material 

nonlinearity can spread over several monitored sections along the element, also known 

as integration points. The sections are further discretized into fibers [34]. A nonlinear 

uniaxial material constitutive model governs the force-deformation response of each 

fiber. Figure 4.1 shows the hierarchical discretization levels of the nonlinear FE 

modeling and analysis method considered here. The reader is referred to [35] for more 

details about this structural modeling and analysis approach. 
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Figure 4.1: Hierarchical discretization levels in distributed plasticity structural FE models 

using fiber-section displacement-based beam-column elements. The notation is further 

described in Section 3.4. 

 

4.3.3. Parameter estimation – Nonlinear FE model updating framework 

The space- and time-discretized (discrete spatio-temporal) equation of motion 

of a nonlinear FE model at time step (k+1) is expressed as 

           11111 ,   kkkkk fθθqrθqθCθqθM   (4.23) 

in which θ unknown time-invariant material parameter vector;  111 ,, kkk qqq   

nodal displacement, velocity, and acceleration vectors; M mass matrix; C damping 

matrix;     θθqr ,11 kk history-dependent (or path-dependent) internal resisting force 

vector; 1kf dynamic load vector; and the subscripts indicate the time step. Note that 

 θqr ,  depends on θ  both explicitly and implicitly through )(θq . In the case of 

earthquake uniform base excitation, 
11  

kguk ulMf , where ul  is the influence 

coefficient vector and 
1kgu  denotes the input ground acceleration. In this chapter, it 
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is presumed that the level of measurement noise in the input ground acceleration time 

history is negligible. 

Without loss of generality, it is assumed here that the response of the structure 

is recorded using only accelerometers installed at specific locations within the 

structure. The absolute acceleration response vector at the instrumented locations is 

given by 

   1111   kkgukyk u vlqLy    (4.24) 

in which 1ky  absolute acceleration response vector at time step (k+1), yL output 

matrix,  and ),(~ kk N R0v  is the measurement noise vector assumed zero-mean and 

Gaussian (normal) with covariance matrix kR . By combining Eqs. (4.23) and (4.24), 

the absolute acceleration response vector is expressed as a nonlinear function of the 

material parameters, input ground acceleration time history, and initial conditions of 

the FE model, i.e., 

   100111 ,,,   kkgkk u vqqθhy   (4.25) 

In this equation,  ...1kh  is the (k+1)
th

 time step absolute acceleration response 

function of the nonlinear FE model and    Tgggkg k
uuuu

121
,...,,

1 



  denotes the input 

ground acceleration time history from time 1t  to 1kt . The terms 0q  and 0q  are the 

initial nodal displacement and velocity vectors, respectively. For notational 

convenience, and without loss of generality, at rest initial conditions, i.e. 0qq  00  , 

are assumed hereafter. 
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Based on the parameter estimation framework presented in Section 2.3, θ  is 

modeled as a random vector characterized by a Gaussian Markov process and the 

nonlinear parameter estimation problem at time step (k+1) (k = 0, 1, 2, …) is set up as 

kkk γθθ 1  

   11111
, 

 kkgkkk
u vθhy 

 

(4.26) 

(4.27)

 

in which  kk N Q0γ ,~  and  11 ,~  kk N R0v . Now, the estimation problem posed 

above can be solved using the EKF recursive prediction-correction procedure 

described in Section 5.4. The solution starts by defining the mean and covariance of 

the parameter vector at time step k = 0. At each time step, the a priori parameter 

estimate and the a priori parameter covariance matrix for the next time step are 


 

kk θθ ˆˆ
1  

kkk QPP
θθ  

 ,1,
ˆˆ

 

(4.28) 

(4.29)

 

Following the approach used to derive Eq. (4.16), the measurement equation is 

linearized around the a priori estimate, 
1

ˆ
kθ , as 

11111
~

  kkkkk vzθCy  (4.30) 

The predicted response vector is then computed as 

  
1111 ,ˆˆ






 

kgkkk uθhy  (4.31) 
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Moreover, assuming that γ  and v  are independent white noise processes, the 

parameter-response cross covariance matrix and the response covariance matrix are 

estimated as 

T
kkk 11,1,

ˆˆ






  CPP θθy  

111,11,
ˆˆ







  k
T

kkkk RCPCP θy  

(4.32) 

 
(4.33) 

in which 
  

   









 








111111

ˆ

11

1
ˆ,ˆ~,

,

1

kkkgkkkT
kgk

k u
u

k

θCθhz
θ

θh
C

θθ




. 
 

The term 
  

T
kgk u

θ

θh




 11 , 

 is the sensitivity (or rate of variation) of the acceleration 

response of the structure, obtained from the FE model, with respect to the material 

parameters, θ , and is referred to as the FE acceleration response sensitivity. FE 

response sensitivity analysis is a well-developed subject with a variety of applications 

including structural design optimization, probabilistic analysis, and reliability analysis 

of structural and/or geotechnical systems (e.g., [26, 36-39]). The direct differentiation 

method (DDM), a well-known FE response sensitivity analysis method, is based on the 

exact (consistent) differentiation of the finite element numerical scheme with respect 

to the FE model parameters of interest, here the material parameters, θ . The software 

for finite-element response sensitivity computations using the DDM has been 

integrated into the OpenSees software architecture using a versatile FE model 

parameterization framework [40] and extended into nonlinear FE-based optimization 

problems [39]. DDM is known to be more accurate and/or computationally more 
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efficient than other methods for FE response sensitivity analysis, such as FDM ( [37, 

41-42]). The fundamentals of DDM-based FE response sensitivity computation [41] 

are briefly described in the next section. 

 

4.3.4. FE response sensitivities using DDM 

The discrete spatio-temporal equation of motion shown in Eq. (4.23) is solved 

using recursive numerical integration in time. Using an implicit single-step time 

integration scheme, such as the Newmark-beta method [43], the acceleration and 

velocity at time step (k+1) are interpolated as 

kkkkk aaaa qqqqq  432111    

kkkkk bbbb qqqqq  432111    

(4.34) 

(4.35) 

where 1a  to 4a  and 1b  to 4b  are constant integration coefficients. Substitution of these 

equations into Eq. (4.23) yields the following nonlinear vector-valued algebraic 

equation, which can be solved using incremental iterative procedures such as Newton-

Raphson method [33]. 

           1111111
~

,   kkkkk ba fθθqrθqθCθqθM   

(4.36) 

in which 

                 θqθqθqθCθqθqθqθMff kkkkkkkk bbbaaa  43243211
~

   (4.37) 



152 

 

 

 

and  Tθθ ,..., 21θ is the vector of time-invariant material parameters. Now, Eq. (4.36) 

is separately differentiated with respect to each material parameter,  θniθi ...,,1 , to 

obtain the response sensitivity with respect to this parameter, i.e., 
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(4.38) 

   

in which 
    1

1

11 ,




 



k

stat
TT

k

kk K
q

θqr
 is the static (consistent) tangent stiffness matrix 

and is readily available from the FE solution if a Newton-Raphson iterative scheme is 

used (at least in the last iteration) to solve Eq. (4.36). Moreover, the matrix in the left 

hand side of Eq. (4.38) is called the dynamic tangent stiffness matrix,  
1k

dyn
TK ,  

which is also available from the FE solution. Using Eq.  (37), the last term in the right 

hand side of Eq. (4.38) is obtained as 
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432432

432432
11

~

 (4.39) 

Depending on the type of material parameter, 
i

k

θ

 1f
, 

 

iθ

 θM
, and 

 

iθ

 θC
 are usually 

easy to derive at the element level [37]. Furthermore, the vectors 
i

k

θ

q
, 

i

k

θ

q
, and 
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i

k

θ

q
 are available from the last time step sensitivity computation. Thus, 

i

k

θ

 1
~
f

 is 

obtained from the vectors can be computed without any complication. 

The first term in the right-hand-side of Eq. (4.38) represents the partial 

derivative of the internal resisting force vector with respect to the material parameter, 

iθ , conditional on the displacement vector, 1ku , remaining fixed. To compute this 

conditional partial derivative, the structure’s internal resisting force vector at time step 

(k+1) needs to be found explicitly. In a displacement-based FE model of frame-type 

structures, the structure’s internal resisting force vector is derived by assembling the 

element nodal resisting force vectors as 

      θθqrθθqr A ,,
11

#

1
11

ele
k

ele
k

ele

ele
kk 


    (4.40) 

in which  ...

#

1

ele

ele
A  denotes the direct stiffness assembly process including the 

transformation from the element local coordinate system to the structure global 

coordinate system,  θqr ,eleele element nodal resisting force vector, and 

ele
q element nodal displacement vector in the element local coordinate system. 

Following the hierarchical discretization levels shown in Figure 4.1, the element nodal 

resisting force vector is obtained, through the principle of virtual displacements, as the 

following weighted integral of the section stress vector, sec
k 1σ , [35] 

     dLsec
k

sec
k

L

Tele
k

ele
k

ele

θθεσBθθur ,, 1111     (4.41) 
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where B strain-displacement transformation matrix,  θεσ ,secsec section stress 

resultant vector, and sec
ε  section strain (or deformation) vector. Finally, the section 

stress vector is obtained by integrating the fiber stresses over  the cross-section as 

     dA
fib

k
fib

k

A

sec
k

sec
k

sec

θθaθθεσ ,,
1111     (4.42) 

in which a section kinematic (compatibility) vector,  θ,
fibfib

 fiber stress 

(uniaxial), and 
fib

  fiber strain (uniaxial). The integrals in Eqs. (4.41) and (4.42) are 

evaluated using numerical quadrature. Now, the conditional partial derivative of the 

structure’s internal resisting force vector with respect to the material parameter, iθ , 

can be computed as 

   











































 dAdL
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 θ
aB

θqr A
qq

 (4.43) 

where 
 

fib
k

fib
i

fibfib
k

θ

1

,
1












 θ
is the history-dependent variation of fiber stress with 

respect to the material parameter iθ  conditional on the fiber strain remaining fixed. 

This conditional partial derivative can be computed by analytically differentiating the 

material constitutive law of the fiber with respect to iθ  ([36-37, 41]).  

The procedure for DDM-based FE response sensitivity computation at time 

step (k+1) can be summarized as follows. First, the nonlinear FE recursive algebraic 
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equation shown in Eq. (4.36) is solved iteratively using Newton-Raphson method to 

find 1kq . After convergence of the Newton-Raphson iterative process is achieved for 

the response of the structure at time step (k+1), the right-hand-side of Eq. (4.38) is 

computed for each material parameter  θniθi ...,,1 . Then, Eq. (4.38), which is a 

linear algebraic equation, is solved in one-step for 
i

k

θ

 1q
. Once Eq. (4.38) is solved 

for all the material parameters considered, the displacement-response sensitivity 

matrix, 
T

k

θ

q



 1 , is available. Sensitivities of nodal velocity or acceleration response 

parameters can easily be obtained using Eqs. (4.34)-(4.35). 

 

4.3.5. Proposed algorithm for nonlinear FE model updating using EKF 

Table 4.2 summarizes the proposed algorithm for nonlinear FE model updating 

using the EKF. The notation was previously defined in Section 3.3. 
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Table 4.2: Proposed algorithm for nonlinear FE model updating using the EKF 
Initialization:                                                              

Postulate 

0θ̂  and 


0,

ˆ
θP  where      








  T

EE 00000,00
ˆˆˆ,ˆ θθθθPθθ θ  

Initial estimates of parameter 

vector and parameter 

covariance matrix 

For each time step (k = 0, 1, …);  

Prediction:  

  



  kkkk E θyyyθθ ˆ,...,,ˆ

2111                   A priori parameter estimate                          

   kkk

T

kkkkk E QPyyyθθθθP θθ 







 






 ,2111111,

ˆ,...,,ˆˆˆ  
A priori parameter 

covariance matrix                         

Run the nonlinear FE time history analysis with 

1

ˆ
kθ  from tt   to  

tkt  )1(  and obtain: 
 

Predicted acceleration response: 

1ˆ ky   

Predicted acceleration response sensitivities: 
  

T

kgk

k

u

θ

θh
C




 


11

1

, 
  

   T
kkk

T

kkkkk E 11,2111111,
ˆ,...,,ˆˆˆ












 








 CPyyyyyθθP θθy  

Estimated parameter-

response cross covariance 

matrix                                            

   111,12111111,
ˆ,...,,ˆˆˆ












 








 k

T
kkkk

T

kkkkk E RCPCyyyyyyyP θy  Estimated response 

covariance matrix             

Correction:  

Measure/read the acceleration response of the structure at 

 time step (k+1): 1ky  
 

  1

1,1,1
ˆˆ 




  kkk yθy PPK  Kalman gain matrix                              

   






  111112111 ˆˆ,...,,ˆ

kkkkkkk E yyKθyyyθθ  
A posteriori parameter 

estimate                          

  

    T
kkk

T
kkkkk

k
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kkkkk E

111111,11

12111111,

ˆ

,...,,ˆˆˆ




























KRKCKIPCKI

yyyθθθθP

θ

θ
 A posteriori parameter 

covariance matrix                          

 

 

4.4. Verification case studies 

Two numerical examples are provided to verify the proposed nonlinear FE 

model updating framework. For each example, first the earthquake response of a 

realistic structure is simulated using the structural FE modeling and analysis method 

described above. The FE modeling and response simulation are performed using the 

structural analysis software framework OpenSees [44] assuming a set of predefined 
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realistic material parameter values considered as the true parameter values. The 

material parameters are later treated as unknown and are identified in the estimation 

phase. In these examples, only physical parameters characterizing the nonlinear 

material constitutive laws defined in the FE model are estimated. The EKF is 

implemented in MATLAB [45] and interfaced with OpenSees for FE response and 

response sensitivity computations. A suite of real ground motion records with varying 

intensity are used for the nonlinear response history simulations. The simulated 

acceleration response time histories are then artificially contaminated by numerical 

noise and used as the measured response data in the estimation phase, in which the 

proposed nonlinear FE model updating framework described above is employed to 

estimate the material parameters. The performance of the proposed framework is then 

evaluated and discussed. 

 

4.4.1. Example #1: steel cantilever pier  

The first benchmark structure is a 6.0 m cantilever steel column, with a built-

up box section. Representing the pier of a small bridge, the column carries a lumped 

mass of 310100 kg at the top. The structural geometry is presented in Figure 4.2(a). 

The section design satisfies the compact section requirements [46] and it is therefore 

assumed that the section retains its full capacity without any strength degradation or 

softening behavior. Using fiber-section displacement-based beam-column elements, a 

2D model of the structure is developed in OpenSees. Figure 4.2(b) shows details of the 
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FE model including the discretization of the column and the fiber discretization of the 

cross-section. The FE model has 51 degrees of freedom. The steel fibers are modeled 

using the modified Giuffré-Menegotto-Pinto material constitutive model [47]. This is a 

uniaxial material model, in which the stress-strain relation is defined using smooth 

curved shaped hysteretic loading and unloading branches as illustrated in Figure 4.3. In 

general, this material model is governed by eight time-invariant parameters, five of 

which are empirical parameters controlling the curvature of the hysteretic loops (i.e., 

the Baushinger effect) and the isotropic hardening and are assumed as known 

constants in this problem. Treated as unknown physical material parameters to be 

identified, the other three material parameters are y  initial yield strength, 

E elastic modulus, and b strain hardening ratio, as shown in Figure 4.3. The true 

(exact) values of these material parameters are taken as MPa250true
y , 

GPa200trueE , and 1.0trueb . Tangent stiffness-proportional Rayleigh damping [43] 

is used to model the damping characteristics by defining a damping ratio of 2 percent 

for the first mode.  
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(a) (b) 

Figure 4.2: (a) Cantilever steel column with box section, (b) details of the developed FE 

model (IP: integration point, ele: element, 

1 ton = 1000 kg, length unit: mm). 

 

 
Figure 4.3: Modified Giuffré-Menegotto-Pinto uniaxial material constitutive model for steel. 

 

Five different earthquake ground motions defined in Table 4.3 and obtained 

from [48] are selected for the nonlinear time history analyses. Figure 4.4 shows the 

acceleration time histories of these ground motions. Each nonlinear analysis is started 

by first applying the gravity loads quasi-statically. Then, the nonlinear time history 

analysis is performed using the Newmark average acceleration method [43] to 

integrate the equations of motion using a time step of sec02.0t . The Newton-
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Raphson method is employed to solve iteratively the nonlinear dynamic equilibrium 

equations at each time step. 

 

Table 4.3: Selected earthquake ground motions. 

Motion 

name 

Earthquake (M) Station / Component PGA (g) 

EQ1 1989 Loma Prieta 

(M6.9)  

Corralitos - Eureka Canyon Road / 90° 0.48 

EQ2 1989 Loma Prieta 

(M6.9) 

Los Gatos - Lenihan Dam / 0° 0.45 

EQ3 1994 Northridge 

(M6.7) 

14145 Mulholland Dr., Beverly Hills / 

N09E 

0.44 

EQ4 1994 Northridge 

(M6.7) 

 Castaic - Old Ridge Route / 90°  0.57 

EQ5 1994 Northridge 

(M6.7) 

600 E. Grand Ave., San Gabriel / 

S90W  

0.24 

 

Note: all records are sampled at 50 Hz 

 

 

 

Figure 4.4: Time histories of the selected earthquake ground motions. 
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Structural response simulation 

In simulating the response of the structure, the FE model is analyzed for each 

earthquake ground motion separately. The acceleration response time history of the 

column top ( topu ) – in the direction of the seismic input – is obtained, artificially 

polluted by measurement noise, and used as the measured response in the estimation 

phase. In the real world, the measurement noise is caused by various sources such as 

electrical line (sensor cable) noise and sensor and data acquisition system errors. 

Consequently, the noise level can be approximately assessed by evaluating the noise 

sources. In this problem, the measurement noise superimposed on the simulated 

acceleration response time history is modeled as a zero-mean Gaussian white noise 

with two different amplitude levels: 1% and 10% root mean square (RMS) noise-to-

signal ratio (NSR). Therefore, the noise standard deviation (or RMS) for the two cases 

is   topuRMS10 2   and   topuRMS10 1 , respectively. Although the RMS NSR of 

10% is unrealistically high, it is applied to investigate the performance and robustness 

of the proposed estimation framework with respect to the measurement noise level. 

 

Estimation of material parameters 

The FE model of the structure employed in the proposed estimation process is 

the same as the one used for the response simulation – i.e., FE modeling uncertainty is 

not considered in this basic study. The measurement noise on the seismic input is not 

considered here as well and the same input ground motion time histories are used in 

the response simulation and parameter estimation phases. As presented in Table 4.2, 



162 

 

 

 

the parameter estimation algorithm requires the setting of a number of variables, 

i.e. 
0θ̂ , 

0,
ˆ
θP , kQ , and 1kR . Below, each of these variables are addressed separately. 

Initial estimate of mean vector and covariance matrix of material parameters: 
0θ̂  is 

the vector of initial estimates of the material parameters, which are selected as 

true
yy  80.0

0
 , trueEE 75.00  , and truebb 50.10  . The covariance matrix of the 

initial estimates of the material parameters, 
0,

ˆ
θP , quantifies the uncertainty in the 

initial estimates of the parameters. Here 
0,

ˆ
θP  is defined as a diagonal matrix, which 

means that initial estimates of the various material parameters are statistically 

uncorrelated. The diagonal entries of 
0,

ˆ
θP  – or the initial estimate variances – are 

2

0
)( yp , 2

0 )( pE , and 2
0 )( pb , where 25.0p  is the coefficient of variation of the 

initial parameter estimates. As p  increases, there is more uncertainty (i.e., less 

confidence) in the initial estimates of the material parameters, and therefore the EKF 

(at the early time steps) relies more on the information obtained from the response 

measurements than on the prior information provided by 
0θ̂ . Higher variances of the 

initial parameter estimates may accelerate the convergence rate of the parameter 

estimation process, but may adversely affect its stability ( [13-14, 28]). The effect of 


0,

ˆ
θP  on the estimated parameters diminishes progressively as the recursive estimation 

process advances in time and more information is gathered from the response 

measurements [16].  
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Process noise covariance matrix: Assuming that the second order statistics of the 

process noise, γ  – see Eq. (4.26) – are time-invariant, the process noise covariance 

matrix is defined as  T
k E γγQQ  . The covariance matrix Q  is a diagonal matrix 

whose diagonal entries are the process noise variances associated with the parameters 

to be estimated. Here, these variances are selected as 2

0
)( yq , 2

0 )(qE , and 2
0 )(qb , 

where 410q , i.e., the RMS of each component of the process noise is taken as 0.01 

percent of the initial estimate of the corresponding material parameter. Increasing the 

process noise variance serves to increase the estimation uncertainty and increase the 

relative importance attributed by the KF to the response measurements, 1ky , versus 

the latest prior estimate of the parameters, 
1

ˆ
kθ  [28].  

Measurement noise covariance matrix: In this first verification example, the 

measurement vector, 1ky , and measurement noise vector, 1kv , are scalar quantities 

(single entry vectors) and therefore the covariance matrix 1kR  of the measurement 

noise is a scalar (single entry matrix) corresponding to the variance of the 

measurement noise associated with the acceleration response of the pier top. The 

variance of the measurement noise is also assumed to be time-invariant, i.e., RRk 1 . 

In this problem, as mentioned earlier, an artificial measurement noise with two 

predefined amplitude (1% and 10% RMS NSR) is superimposed on the simulated 

response. In a real world application, however, the statistics of the measurement noise 

are unknown; but can be approximately estimated by quantifying the noise sources. 

Here, the amplitude of the measurement noise is pretended to be unknown and the 
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measurement noise RMS is estimated as 

       yyv RMS032.0RMS10RMS 5.1   , where  y  is the noisy acceleration 

response time history of the column top; therefore,    23 RMS10 yR   . 

As recognized by many researchers (e.g., [28, 49, 50]), the process and 

measurement noise covariance matrices ( Q  and R , respectively) may have a 

significant influence on the performance and convergence of the KF estimation 

process and an appropriate selection of Q  and R  is an important issue. Further 

systematic studies to investigate the effects of Q  and R  on the stability and 

convergence properties of the proposed nonlinear FE model updating framework are 

needed, but not within the scope of this chapter.  

 

Material parameter estimation results 

Figure 4.5 shows the time histories of the a posteriori estimates of the material 

parameters – normalized by the corresponding true parameter values – obtained for 

EQ1 for the two measurement noise levels considered. Figure 4.6 shows the time 

histories of the a posteriori coefficients of variation (C.O.V.) of these material 

parameters. These two figures show that all three material parameter are recursively 

updated from their initial to their final estimates, which are converged to the 

corresponding true parameter values with very small coefficients of variation, for both 

measurement noise levels considered. The estimate of the elastic modulus, E , starts 

updating from the very beginning of the excitation and converges to the true value 

( trueE ) much earlier than the other two parameters, since the response of the structure 
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depends on the stiffness related material parameter, E , from the start (initial linear 

elastic response behavior). In contrast, the estimates of the mean and C.O.V. of the 

yield strength, y , and strain hardening ratio, b , start with a flat stage followed by a 

period of rapid change which initiates after the structure has become nonlinear and its 

measured response sufficiently sensitive to (and informative about) these parameters. 

Notice that, expectedly, the strength related material parameter y  starts updating 

earlier than the post-yield related material parameter, b . To support this explanation, 

Figure 4.7 shows the time histories of the pier top normalized FE acceleration 

response sensitivities to the three material parameters, obtained using the DDM during 

the estimation process for EQ1. Comparing this figure with Figures 4.5 and 4.6 clearly 

shows that the estimates of the mean and C.O.V. of y  and b start updating when the 

pier top acceleration response becomes sensitive to these parameters. Figure 4.7 also 

shows that the pier top acceleration response is relatively much less sensitive (by a 

factor of 5) to parameter b  than to parameter y , which explains why updating starts 

and converges earlier for the strength related parameter y  than for the post-yield 

related parameter b . Figures 4.5 and 4.6 also display the effect of the measurement 

noise level. When the noise level is low (i.e., RMS NSR = 1%), the estimation 

procedure smoothly updates the parameters and reduces the associated C.O.V. as time 

advances. In the case of high-level noise (i.e., RMS NSR = 10%) the estimates of the 

parameters fluctuate before convergence. It should be noted that these figures show 
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only the first 15 seconds of the time histories, since the estimation results do not 

change after this time. 

 

Figure 4.5: Time histories of a posteriori material parameter estimates for EQ1. 

 

 

Figure 4.6: Time histories of a posteriori C.O.V.s (%) of material parameters for EQ1. 
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Figure 4.7: Time histories of the normalized FE acceleration response sensitivities to the three 

material parameters, obtained using the DDM during the estimation process for EQ1 (in the 

case of 10% RMS NSR). In this figure, a = topu = acceleration response of the column top. 

 

Figures 4.8 to 4.11 compare structural response obtained at the simulation 

stage (i.e., true response) with that obtained from the FE model updated using the 

material parameters estimated based on EQ1 for the case of 10% RMS NSR. The 

comparison is performed at different levels from the global structural level to the local 

section and fiber levels. To compute the structural response using the updated FE 

model, the last 100 estimated values for each material parameter, which have minor 

differences, are averaged to obtain the final estimation of each parameter. Then, the FE 

model is updated using these final material parameter estimates and rerun to obtain the 

estimated structural response. Figure 4.8 compares the simulated (true) and estimated 

acceleration response time histories of the pier top. Figure 4.9 compares the simulated 

(true) and estimated pier base shear ( bV ) – normalized by the top (i.e., bridge deck) 

weight ( kN981W ) supported by the pier – versus pier drift ratio – i.e., displacement 
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at the pier top normalized by the pier height. The section level simulated (true) and 

estimated responses are compared in Figure 4.10, which shows the normalized 

moment-curvature response of the pier base section – see Figure 4.2(b). The section 

moments ( M ) are normalized by the corresponding section nominal yield moment 

( yM ) and the curvatures ( ) by the section height ( mm550H ). 

 

Figure 4.8: Comparison of simulated (true) relative acceleration response time history of the 

pier top with estimated response after FE model updating for EQ1 with 10% RMS NSR. 

 

 

Figure 4.9: Comparison of simulated (true) normalized base shear vs. drift ratio with 

estimated response after FE model updating for EQ1 with 10% RMS NSR. 

 

Finally, Figure 4.11 compares the simulated (true) and estimated normalized 

stress-strain responses of the monitored extreme fiber (or layer) at the pier base section 

– see Figure 4.2(b). All these figures show excellent agreement between the simulated 

(true) and estimated structural responses. The structural response estimated using the 



169 

 

 

 

FE model based on the initial material parameter estimates ( 
0θ̂ ), not shown here, 

differs significantly from the true structural response. Therefore, it can be concluded 

that the proposed framework has successfully updated the FE model by steering the 

crude initial estimates of the material parameters to the true values. 

 

Figure 4.10: Comparison of simulated (true) moment-curvature response of pier base section 

with estimated response after FE model updating for EQ1 with 10% RMS NSR. 

 

 

Figure 4.11: Comparison of simulated (true) fiber stress-strain response at monitored fiber in 

pier base section with estimated response after FE model updating for EQ1 with 10% RMS 

NSR. 
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Table 4.4 summarizes the material parameter estimation results normalized 

with respect to the true parameter values for all five seismic input motions – see Table 

4.3 and Figure 4.4 – and the two levels of measurement noise. As mentioned earlier, 

the final estimations are obtained by averaging the last 100 estimated parameters. This 

table also reports in the last two columns the ductility demands, at the structure and 

fiber levels, obtained from the simulated (true) and estimated structural responses; the 

latter is obtained from the FE model updated using the final material parameter 

estimates. The structure-level displacement ductility demand is defined as the peak 

relative displacement response of the pier top normalized by yield displacement of the 

column pier. The fiber-level strain ductility demand is defined as the peak fiber strain 

response normalized by the yield strain ( Eyy   ). Ductility demands provide a 

simple way to quantify the peak level of response nonlinearity experienced by a 

structure. A ductility demand, however, does not provide any information on the 

number and shapes of the hysteretic cycles of response or the hysteretic energy 

dissipated in the structure.  
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Table 4.4: Material parameter estimation results for all earthquake input motions and noise 

levels in Example 1. 

Motion 

name 

Noise level  

(RMS NSR) 

Final estimations 
Ductility demand  

(Simulated) Estimated 

true
yy  /

 

trueEE /  

truebb /  

Structure level Fiber level 

EQ1 
1% 1.000 1.000 0.998 

(2.81) 
2.81 

(4.93)  
4.92 

10% 0.999 0.997 0.980 2.79 4.93 

EQ2 
1% 1.001 1.000 0.999 

(5.42)  
5.41 

(8.23)  
8.23 

10% 1.003 0.998 1.006 5.40 8.20 

EQ3 
1% 1.000 1.000 1.003 

(3.40)  
3.40 

(5.76)  
5.75 

10% 0.997 1.001 1.004 3.40 5.77 

EQ4 
1% 0.998 1.000 1.011 

(2.21)  
2.21 

(3.82)  
3.82 

10% 0.993 0.999 1.005 2.22 3.84 

EQ5 
1% 0.944 1.000 1.504 

(0.71)  
0.75 

(0.69)  
0.73 

10% 1.136 1.000 1.510 0.63 0.61 

 

The material parameter estimation results presented in Table 4.4 reveal that the 

modulus of elasticity E  is accurately estimated in all cases. In contrast, the strength 

and post-yield related material parameters, y  and b  respectively, are only estimated 

correctly when the ductility demand is high enough, i.e., when the level of nonlinear 

behavior experienced by the structure is sufficient. This means that in a real world 

application, a strong enough earthquake base excitation is required to correctly 

estimate the parameters governing the strength and post-yield (monotonic and cyclic) 

behavior of the material model used in the FE model of the structure. When the 

earthquake excitation is too low, the measured response of the structure contains no 

information to update these parameters; in other words, these parameters are not 

identifiable based on the information contained in the measured structural response. 

Table 4.4 also shows that the estimated model is able to accurately capture the peak 

values of ductility demand both at structure and fiber levels, except for EQ5, for which 

the response remain linear elastic. It should be noted that in the latter case, the yield 
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strength ( y ) is not estimated correctly; therefore, the estimated yield displacement of 

column pier and yield strain of fibers are not accurate. 

To study the efficiency of the DDM relative to the FDM for computing the FE 

response sensitivities in the proposed parameter estimation framework, the parameter 

estimation process is repeated for the case of EQ1 and 10% RMS NSR. The problem 

setup and initializations are as before. An identical pier top measured acceleration 

response – with identical measurement noise realization – is used for the comparison. 

Figure 4.12 compares the time histories of the a posteriori material parameter 

estimates – normalized by the true parameter values –for the DDM and the forward 

FDM based on two values of the parameter step size. For a specific material parameter 

( i ), the step size is defined as the relative amplitude of the perturbation of the 

parameter value (i.e., ii  ) which is used to estimate the corresponding FE 

response sensitivity. Running the estimation problem using the DDM for this problem 

was found to be about four times faster than when using the FDM on a Dell Optiplex 

980 desktop workstation with 8GB RAM. 
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Figure 4.12: Time histories of a posteriori material parameter estimates for EQ1 and 10% 

RMS NSR when FE response sensitivities are computed using DDM and FDM (time histories 

are shown for a short time window for more clarity). 

 

To study the effect of initial estimates of the material parameters on the 

performance of the parameter estimation framework, the parameter estimation process 

is repeated for the case of EQ1 and 1% RMS NSR with five different initial estimates 

as shown in Table 4.5. All the other filter parameters are the same as before. To better 

compare the performance of the parameter estimation process in these five cases, the 

same measured acceleration time history is used for all the cases, i.e., the measurement 

noise has the same realization in all the cases.  Figure 4.13 shows the time histories of 

the a posteriori estimates of the material parameters normalized by the corresponding 

true parameter values. Similarly, Figure 4.14 shows the first 6 seconds of the time 

history of the normalized posteriori estimates of the material parameters. Figure 4.15 

and Figure 4.16 show the time histories of the a posteriori coefficients of variation 

(C.O.V.) of these material parameters. As can be seen from these figures, for all the 
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five considered cases, the parameter estimation process successfully estimated the 

correct values of the material parameters.       

 

Table 4.5: Different sets for the initial estimates of the material parameters 

  
Initial estimates Initial estimate  

RMS Error true
yy  /

0
 

trueEE /0  

truebb /0  

Set 1 1.15 1.5 1.2 32.2% 

Set 2 0.5 1.2 1.5 42.4% 

Set 3 0.7 1.7 0.6 49.7% 

Set 4 0.4 0.8 1.6 50.3% 

Set 5 1.6 0.4 1.4 54.2% 
 

 

 

Figure 4.13: Time histories of a posteriori material parameter estimates for EQ1 for five 

different initial estimates of the material parameters. 

 



175 

 

 

 

 

Figure 4.14: Time histories of a posteriori material parameter estimates for EQ1 for five 

different initial estimates of the material parameters – zoom on the first 6 seconds. 

 

 

Figure 4.15: Time histories of a posteriori C.O.V.s (%) of material parameters for EQ1 for 

five different initial estimates of the material parameters. 
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Figure 4.16: Time histories of a posteriori C.O.V.s (%) of material parameters for EQ1 for 

five different initial estimates of the material parameters – zoom on the first 6 seconds. 

 

4.4.2. Example #2: three-story three-bay 2D steel moment frame  

The second benchmark structure is the three-story special moment resisting 

steel frame building designed for the FEMA/SAC project (LA model, pre-Northridge 

design) [51]. As in the first example, a 2D FE model is developed in OpenSees using 

fiber-section displacement-based beam-column elements with 348 degrees of freedom. 

Figure 4.17 shows details of this FE model including the FE mesh discretization, the 

nodal masses, and the gravity loads. The steel fibers are modeled again using the 

modified Giuffré-Menegotto-Pinto material constitutive model. Since the steel grades 

of the beams and columns are different, two steel material models are used in the FE 

model of the structure for a total of 632   unknown time-invariant material 

parameters to be estimated from input-output data using the proposed FE model 

parameter estimation framework. The true (exact) values assumed for these six 
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material parameters are reported in Table 4.6. To model the damping characteristics of 

the structure (beyond material hysteretic energy dissipation), mass and tangent 

stiffness proportional Rayleigh damping is used and calibrated for a damping ratio of 

2% at the first and second modes of FE structural model ( sec33.0sec,00.1 21  TT ). 

The same five earthquake ground motion records as in the first example are used.  The 

FE model is subjected to the same type of analyses as in the previous example. 

Table 4.6: True material parameter values used for Example 2. 

Material parameter Columns Beams 
true
y  350 MPa 250 MPa 

trueE  200 GPa 200 GPa 

trueb  0.04 0.08 

 

Structural response simulation 

The nonlinear dynamic response of the building subjected to uniform 

earthquake base excitation is computed from the FE model developed. The obtained 

acceleration response time histories at the three floors of the building at the north 

column location (see Figure 4.17) are artificially polluted by measurement noise to 

simulate the measured response of the building. As in the previous example, the 

superimposed measurement noise is modeled as a zero-mean Gaussian white noise of 

two different levels: 1% and 10% RMS NSR.  
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Figure 4.17: Details of 2D FE model of three-story three-bay steel moment frame (DB 

Element: displacement-based element, IP: Integration point, ele: element, CS1: column 

section #1, BS1 and BS2: beam sections #1 and #2, 1 ton = 1000 kg, length unit: m).  

 

 

Estimation of material parameters 

The parameter estimation phase is based on the same FE model of the building 

structure as the one used to simulate the earthquake response and the noiseless input 

data and corresponding simulated noisy output data for each of the five ground motion 

records defined in Table 4.3 and Figure 4.4.  The setting of the initial estimates of the 

material parameters and other variables of the parameter estimation algorithm is 

addressed below. 

Initial estimate of mean vector and covariance matrix of material parameters: Table 

4.7 reports the initial estimates of the material parameters, which define the 
0θ̂  vector. 

The covariance matrix of the initial estimates of the material parameters, 
0,

ˆ
θP , is a 

diagonal matrix whose diagonal entries are the individual variances of the initial 

parameter estimates, which are computed assuming a constant coefficient of variation 

of 0.25 as in Example 1. 
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Table 4.7: Initial estimates of the material parameters used for Example 2. 

Material parameter Columns Beams 
true
yy  /

0
 0.9 0.8 

trueEE /0  0.8 0.8 

truebb /0  1.5 0.5 

 

Process noise covariance matrix: Similar to the previous example, the process noise 

covariance matrix, Q , is a diagonal matrix whose diagonal entries are 2

0
)(

col
yq ,  

2
0 )( colqE , 2

0
)( colqb , 2

0
)(

beam
yq ,  2

0
)( beamqE , and 2

0
)( beamqb , where 410q , i.e., the 

RMS of each component of the process noise is taken as 0.01 percent of the initial 

estimate of the corresponding material parameter. 

Measurement noise covariance matrix: The covariance matrix R  is taken as a 

diagonal matrix,    yR niRii ...,,1 , which means that the individual measurement 

noises are assumed statistically uncorrelated. The i
th

 diagonal entry of R , iiR , 

represents the variance of the individual measurement noise, iv , corresponding to the 

i
th

 measured response. The amplitudes of the measurement noises are pretended to be 

unknown and taken as     ii yrv RMSRMS  , where  iy  denotes the time history of 

the i
th

 measured response, which is the  noisy acceleration response of the i
th

 floor of 

the building at the north column location; thus,    22 RMS iii yrR  . Two values 

are considered for r , namely 032.010 5.1  r  and 1.010 1  r . As will be shown 

below, the second choice for r  improves the performance of the parameter estimation 

procedure when the NSR is high. 
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Material parameter estimation results 

The time histories of the a posteriori estimates of the six material parameters – 

normalized by the corresponding true parameter values – obtained for EQ2 are shown 

in Figure 4.18. Figure 4.19 presents the time histories of the a posteriori C.O.V. of 

these material parameters. Only the first 20 seconds of the time histories are shown in 

these figures, since the estimation results do not change after this time. Similar to the 

previous example, the estimates of the elastic moduli of both the beams and columns 

start updating from the very beginning of the excitation. However, the other 

parameters ( y  and b  for beams and columns), which characterize the nonlinear 

behavior of the beam and column material models, start updating after the structure 

starts yielding (during the strong phase of the ground motion excitation), when the 

parameters become identifiable. 

Figure 4.18 also shows that the material parameter estimation accuracy 

deteriorates in the presence of high NSR. Other researchers (e.g., [16-18, 52]) also 

report the adverse effect of increasing measurement noise on parameter identification 

using the EKF. The estimated elastic moduli of beams and columns, however, are less 

sensitive to the measurement noise than the other material parameters as seen in 

Figures 4.14 and 4.15. This is due to the fact that the elastic moduli of the beams and 

columns have a strong influence on the structural response, which therefore is highly 

sensitive to the variations of these parameters and contains dense information about 

E .  The relatively high sensitivity of the acceleration response measurements to the 
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beam and column elastic moduli reduces the sensitivity of  the estimated values of 

elastic moduli of beams and columns to the measurement noise.  

Figure 4.18 shows that the choice of 1.0r  versus 032.0r  improves overall 

the parameter estimation performance in the case of high measurement noise intensity 

(10% RMS NSR). This is due to the fact that when using 032.0r , there is a 

significant difference between the actual measurement noise intensity (i.e., 10% RMS 

NSR where the signal is defined as the noiseless/true acceleration response) and the 

noise intensity assumed in the estimation process (3.2% RMS NSR where the signal is 

defined as the noisy response measurement). Using 032.0r  underestimates 

significantly the measurement noise level, while 1.0r  corresponds to a more 

accurate estimation (almost exact) of the actual noise level. As mentioned earlier, the 

appropriate selection of the process and measurement noise covariance matrices, Q  

and R  respectively, is an important step influencing the performance of the proposed 

parameter estimation procedure. This step requires more in-depth investigations, 

which are beyond the scope of this chapter. 
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Figure 4.18: Time histories of a posteriori material parameter estimates for EQ2. 
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Figure 4.19: Time histories of a posteriori C.O.V.s (%) of material parameters for EQ2. 

 

To investigate its performance, the proposed parameter estimation framework  

was applied for all five seismic input motions (see Table 4.3 and Figure 4.4) and the 

two levels of measurement noise considered. The estimated material parameters 

normalized by the corresponding true values are reported in Table 4.8. The ductility 

demand – obtained from the simulated (true) and estimated structural responses – at 

the fiber level for one column section and two beam sections – CS1, BS1, and BS2 as 

shown in Figure 4.17 – are also provided in Table 4.8. The fiber ductility demands in 
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the column and beam sections considered are larger than in any other column and 

beam sections in the structure. 

 

Table 4.8: Material parameter estimation results for all earthquake input motions and noise 

levels in Example 2. 

Motion  

name 

Noise 

level  

(RMS 

NSR) 

r 

Final estimations Fiber level ductility demand  

(Simulated) Estimated Columns Beams 

true
yy  /

 

trueEE /
 

truebb /
 

true
yy  /

 

trueEE /  
truebb /  

CS1 BS1 BS2 

EQ1 

        (1.52) (5.55) (5.68) 

1% 0.032 0.996 1.000 1.146 0.998 1.000 1.012 1.53 5.56 5.69 

10% 0.032 1.042 1.001 2.109 1.015 0.997 0.835 1.46 5.46 5.58 

10% 0.1 0.925 1.003 2.962 1.011 0.996 0.810 1.65 5.47 5.60 

EQ2 

        (8.98) (12.71) (12.08) 

1% 0.032 0.976 0.997 0.890 1.001 1.004 0.995 9.18 12.74 12.11 

10% 0.032 0.931 1.006 0.680 1.062 0.991 0.652 9.71 11.86 11.28 

10% 0.1 1.009 1.002 1.218 0.964 1.005 1.066 8.92 13.25 12.60 

EQ3 

        (2.79) (8.83) (9.64) 

1% 0.032 0.994 1.099 1.145 0.998 0.928 0.926 2.42 8.21 8.96 

10% 0.032 0.697 1.085 0.593 0.921 0.941 2.449 4.34 9.02 9.85 

10% 0.1 0.970 0.999 1.754 1.002 1.000 1.002 2.87 8.82 9.62 

EQ4 

        (2.59) (6.87) (5.11) 

1% 0.032 0.983 1.000 1.424 1.020 0.999 0.772 2.64 6.73 5.00 

10% 0.032 0.609 0.999 2.968 1.156 1.014 2.529 4.25 6.02 4.48 

10% 0.1 0.966 1.003 1.670 1.016 0.997 0.682 2.69 6.74 5.01 

EQ5 

        (0.75) (1.81) (1.16) 

1% 0.032 0.912 0.993 1.503 1.027 1.003 0.436 0.81 1.77 1.13 

10% 0.032 0.966 1.001 1.502 0.986 1.002 1.040 0.72 1.84 1.17 

10% 0.1 1.039 0.998 1.500 1.021 1.001 0.457 0.77 1.78 1.13 
 

 

 

Careful examination of Figure 4.18 and Table 4.8 reveals that a permanent 

error exists in the estimated strain-hardening ratio ( b ) for columns. Table 4.8 indicates 

that this estimation error is lowest for EQ2, which produces the highest level of fiber 

ductility demand in column section CS1 among the seismic inputs considered. 

Consistent with the conclusions drawn in the first example, successful estimation of 

the yield strength ( y )  and post-yield ( b ) related material parameters requires a 
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sufficient level of nonlinearity in the response, which is not only measured by the 

ductility demand, but also the number and extent of hysteretic cycles undergone by the 

structure. Moreover, if the level of nonlinearity experienced by the structure is not high 

enough, and the structural response is not very sensitive to some strength or post-yield 

related material parameter, then the estimation results for such a parameter are 

sensitive to the measurement noise level. This is illustrated by the estimates of the 

column strain-hardening ratio obtained for the two measurement noise levels for EQ1, 

EQ2, and EQ3 (see Table 4.8). The results in Table 4.8 also confirm that the choice of 

1.0r  over 032.0r  for the case of 10% RMS NSR improves the accuracy of the 

estimated parameters in most cases. 

Figure 4.20 compares the simulated (true) acceleration response time histories 

at all three levels of the frame structure, with their counterparts obtained from the FE 

model updated using the material parameters estimated for EQ2 based on 10% RMS 

NSR and using 1.0r  (see Table 4.8). Similarly, Figure 4.21 compares the simulated 

(true) and estimated base shear ( bV ) versus roof drift ratio hysteretic response for EQ2. 

The match between simulated and estimated global level structural responses in Figure 

4.20 and Figure 4.21 is excellent. 
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Figure 4.20: Comparison of simulated (true) relative acceleration response time histories at 

three levels – recorded at the north column location – with estimated response after FE model 

updating for EQ2 with 10% RMS NSR and r = 0.1. 

 

 

Figure 4.21: Comparison of simulated (true) normalized  base shear vs. roof drift ratio with 

estimated response after FE model updating for EQ2 with 10% RMS NSR and r = 0.1 – base 

shear is normalized by W = 1591g kN. 

 

Finally, simulated (true) and estimated local level responses consisting of the 

stress-strain responses of the monitored fibers at beam cross-section BS2 and column 

cross-section CS1 (see Figure 4.17) are compared in Figure 4.22 and Figure 4.23. The 

match between these simulated and estimated beam local responses (see Figure 4.22) 

is excellent, while the relatively small differences observed between the simulated and 
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estimated column local responses (see Figure 4.23) stem from the inaccurate 

estimation of the strain-hardening ratio for the column material  

( 218.1truebb ). 

 

Figure 4.22: Comparison of simulated (true) fiber stress-strain response at monitored fiber in 

beam cross section BS2 with estimated response after FE model updating for EQ2 with 10% 

RMS NSR and r = 0.1. 

 

 

Figure 4.23: Comparison of simulated (true) fiber stress-strain response at monitored fiber in 

column section CS1 with estimated response after FE model updating for EQ2 with 10% 

RMS NSR and r = 0.1. 

 

4.5. Conclusions 

This chapter presented a new framework for nonlinear finite element (FE) 

model updating. In this framework, the extended Kalman filter (EKF) method is used 
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in combination with state-of-the-art nonlinear structural FE modeling and analysis 

methods to estimate the time-invariant material parameters used in the FE structural 

model, including the parameters characterizing the nonlinear material constitutive 

laws. Using the EKF as a parameter estimation tool requires the computation of the 

structural response sensitivities to the parameters to be estimated, which is 

accomplished using the direct differentiation method (DDM). The framework was 

developed by integrating three advanced analytical tools: nonlinear FE method using 

fiber-section displacement-based beam-column elements as the modeling and analysis 

tool, the EKF as the parameter estimation method, and the DDM for FE response 

sensitivity computation.   

The performance of the proposed framework in terms of convergence, 

accuracy, and robustness was illustrated through two verification examples based on 

realistic structural designs and numerically simulated response data. For each example, 

the response of the structure was simulated from the “true” nonlinear FE model and 

artificially contaminated by measurement noise. The noisy responses were then fed 

into the proposed nonlinear FE model updating framework and the unknown time-

invariant material parameters were estimated. The estimation performance of the 

proposed framework was found to be very good even in the presence of an 

unrealistically high level of simulated measurement noise. Careful study of the results 

obtained for these two examples yields the following important conclusions: (i) For a 

material parameter to be well identifiable, the measured responses of the structure used 

in the estimation process must be sensitive enough to that parameter. (ii) A sufficient 
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level of response nonlinearity is required to identify the material parameters governing 

the nonlinear aspects of the response. This means that in a real world application, an 

earthquake excitation strong enough to cause the structure to respond in its nonlinear 

range of behavior is required to accurately estimate such parameters. Otherwise, if the 

dynamic excitation is not strong enough, the response of the structure contains no or 

insufficient information about the material parameters governing its nonlinear 

behavior.  (iii) When the satisfaction of the two aforementioned conditions weakens, 

the parameter estimation performance becomes increasingly sensitive to the 

measurement noise.  

It is important to mention that the proposed framework can be readily extended 

to different types of nonlinear finite elements (e.g., force-based beam-column, plate, 

shell, and solid elements) used to model structural and/or geotechnical systems and to 

FE model parameters not only limited to material parameters, such as geometric and 

constraint parameters. Furthermore, it can be applied for FE model updating in the 

context of quasi-static tests performed on structural components, sub-components, and 

systems, by simply removing the dynamic (inertia and damping) effects in the 

formulation presented in this chapter.  

Further studies are needed to investigate potentially beneficial or detrimental 

effects of factors such as filter tuning and modeling uncertainty (error) on the 

performance of the proposed nonlinear FE model parameter estimation framework. 

Also, in future work, the proposed framework will be applied to experimental data 
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from a structural specimen subjected to dynamic (earthquake) loading and undergoing 

nonlinear response behavior.   
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CHAPTER 5: NONLINEAR STRUCTURAL PARAMETER 

ESTIMATION AND UNCERTAINTY QUANTIFICATION USING 

BAYESIAN INFERENCE METHOD 

 

5.1. Introduction 

Existing vibration-based structural health monitoring (SHM) methods use 

measured input-output or output-only vibration data from a structure before and after a 

potentially damaging event. These methods typically track the changes in the identified 

modal properties to detect the occurrence of damage in the structural system. The 

modal properties are estimated assuming an equivalent linear elastic viscously damped 

structural model. Damage detection using structural modal identification methods is 

based on the premise that damage is manifested as a loss of effective stiffness over one 

or more regions of the structure. While loss of effective stiffness is a correct indication 

of damage, there are other important manifestations of damage in structural systems 

that cannot be identified by tracking the loss of effective stiffness. Loss of strength, 
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loss of ductility capacity, softening, and/or residual deformation in one or more 

components of a structural system are all important expressions of damage that cannot 

be directly identified or evaluated by most existing vibration-based SHM methods. 

Furthermore, accurate SHM after a damage-inducing event requires the correct 

identification of these important manifestations of damage in the structural system. 

This chapter presents a framework for SHM and damage identification (DID) 

of structural systems by integrating advanced mechanics-based nonlinear FE modeling 

and analysis techniques, which are able to capture the damage/failure mechanisms to 

be detected and identified in the structural system of interest, with Bayesian estimation 

methods. Bayesian methods are employed to update the nonlinear FE model of the 

structure using the input-output data recorded during dynamic excitations of small, 

moderate, or large amplitude. The updated FE model can then be interrogated to 

extract detailed information about various manifestations of damage in the structural 

components and systems such as stiffness degradation, strength deterioration, loss of 

ductility capacity, history of inelastic deformations, etc. The proposed methodology 

can be used not only to detect the occurrence of damage, but also to localize, classify, 

and quantify the state of damage throughout the structural system at different scales, 

from the global system level to the local member, section, and fiber levels. This 

information is essential to accurately predict the remaining useful life of the structure, 

as well as the reliability and risk of operation. This chapter is part of an extensive 

research effort that has been pursued in the field of SHM and DID of structural 

systems using a nonlinear FE model updating approach ([1-5]). 
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The proposed framework for SHM and DID of structural systems is based on 

two long-lasting techniques in the field of SHM, namely FE model updating and 

nonlinear probabilistic (Bayesian) estimation. Defined as the process of calibrating or 

tuning a FE model to minimize the discrepancies between predicted and measured 

responses of the structure of interest, FE model updating is a powerful system 

identification methodology for structural systems ([6-7]). Several FE model updating 

methods proposed in the literature are based on linear FE structural models (e.g., [6-

9]). DID based on linear FE model updating has the ability to capture the loss of 

effective stiffness in the structural system; but, it can provide little or no information 

about other important manifestations of damage mentioned above. Moreover, since the 

behavior of actual civil structures is intrinsically nonlinear from the onset of loading, 

the assumption of linear elastic structural behavior underlying linear FE model 

updating is violated even for low amplitude loading. On the other hand, several 

nonlinear probabilistic estimation methods, including batch estimation methods (e.g., 

[10-13]) and recursive filtering methods (e.g., [14-22] to name a few) are used in 

model-based methods for parametric identification of nonlinear structural models. 

However, applications of these estimation methods have been mostly limited to data 

simulated from highly idealized nonlinear structural models, such as single degree-of-

freedom (DOF) systems, chain-like multi DOF systems, and shear building models, 

which are very limited or unsuitable for nonlinear response prediction of large and 

complex real-world civil structures. In other few research studies ([23-24]) nonlinear 

estimation techniques have been used for nonlinear FE model updating of civil 
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structures using experimental data. These studies, however, have utilized simplified 

structural models with lumped nonlinearities modeled using empirical nonlinear 

material laws, such as the Bouc-Wen model. These simplified and empirical models 

are incapable of accurately representing the actual nonlinear behavior of civil 

structures. Other studies such as [25] and [26], have employed more advanced 

nonlinear FE modeling techniques and material constitutive models, but are using 

simplistic estimation methods unable to evaluate the parameter estimation uncertainty. 

The approach presented in this chapter provides a computationally feasible 

stochastic framework for nonlinear FE model updating of civil structures. This 

approach is general and applies to large scale FE models with various levels of 

complexity. The proposed framework also provides evaluation of the estimation 

uncertainty and hence, offers the proper tool for remaining useful life prediction (i.e., 

damage prognosis) and reliability analysis of civil structures following a damage-

inducing event.  

 

5.2. Nonlinear Finite Element Model Updating 

Given the measured input ground acceleration and dynamic response of a civil 

structure during an earthquake event, it is intended to accurately identify and quantify 

the state of damage in the structural system. In this study, this objective is pursued 

through nonlinear finite element (FE) model updating using the recorded input ground 

acceleration and dynamic response of the structure, which are contaminated by 

measurement noise as expected for any physical measurement. The nonlinear FE 
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model of the structure of interest depends on a set of unknown parameters including 

but not limited to inertial properties, gravity loading, geometry, restraint and constraint 

parameters, damping parameters, and parameters characterizing the nonlinear material 

constitutive laws. These parameters, referred to as model parameters hereafter, are 

assumed to remain time-invariant during the earthquake event. The main goal of the 

proposed nonlinear FE model updating is to find the best estimate (i.e., point-estimate) 

of the model parameters in order to minimize the discrepancy between FE predicted 

and measured structural response time histories. The parameter estimation procedure is 

presented in the next section. Another important objective of the proposed nonlinear 

FE model updating is to provide a quantitative assessment of the parameter estimation 

uncertainty or, in the Bayesian viewpoint, a measure of plausibility or degree of belief 

of the parameter estimation results. Evaluation of the parameter estimation uncertainty 

is referred to as uncertainty quantification and is discussed in Section 5.4 of this 

chapter. 

 

5.3. Parameter Estimation 

The time-discretized equation of motion of a nonlinear FE model of the 

structure can be expressed as, at the k
th

 time step,  

           kkkkk fθθqrθqθCθqθM  ,
 

(5.1) 

where  θM  = mass matrix;  θC  = damping matrix,   θθqr ,kk  = history-dependent 

(or path-dependent) internal resisting force vector;       1
,,


 DOFn

kkk θqθqθq   = 
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nodal displacement, velocity, and acceleration response vectors; 1
 θθ

n  = model 

parameter vector; 
1

 DOFn
k f = dynamic load vector; and the subscripts indicate the 

time step. In the case of earthquake base excitation, 
kgk uMLf  , where 

gDOF nn u
L


  is the base acceleration influence matrix and 

1
 g

n

kg
u

u
   denotes the 

input ground acceleration vector. Eq. (5.1) can be solved in time through a recursive 

numerical integration method. Using an implicit single-step time integration scheme, 

such as the Newmark-beta method [27] the nodal acceleration and velocity response 

vectors at the k
th

 time step can be approximated as  

1413121   kkkkk aaaa qqqqq   (5.2) 

1413121   kkkkk bbbb qqqqq   (5.3) 

in which 1a  to 4a  and 1b  to 4b  are integration coefficients. Substitution of Eqs. 

(5.2)-(5.3) into Eq. (5.1) results in the following nonlinear algebraic equation in kq  

that can be solved using incremental iterative solution procedures such as Newton-

Raphson method [28]. 

          

                   θqθqθqθCθqθqθqθMuLθM

θθqrθqθCθqθM

141312141312

11 ,

 



kkkkkkkg

kkkk

bbbaaa

ba


 

(5.4) 

Upon solution of Eq. (5.4) for kq , the nodal acceleration and velocity response 

vectors can be obtained using Eqs. (5.2)-(5.3), respectively. The solution for the 

structural response at the k
th

 time step is then complete and the numerical integration 

algorithm can proceed to the next time step. In essence, by having the initial conditions 
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0 0,q q  and the time history of the input ground acceleration, the equation of motion of 

the structure can be solved recursively in time to find the nodal response of the FE 

model at each discrete time step. In short-hand notation, the nodal response of the FE 

model at the k
th

 time step can be expressed as a nonlinear function of the model 

parameter vector (θ ), time history of the base acceleration vector, and the initial 

conditions of the FE model ( 0 0,q q ), i.e., 

   0 0
1 2

, , , , ,..., , ,k k k k
k

g g gq q q h θ u u u q q
 

(5.5) 

where  ...
~

kh  is referred to herein as the nonlinear nodal response function of the FE 

model at the k
th

 time step for earthquake base excitation.  

In general, the response of a FE model at a given time step can be expressed as 

a (nonlinear) combination of the nodal displacement, velocity, and acceleration 

responses at the same time step, i.e., 

 kkkk qqqgy  ,,ˆ   (5.6) 

where 
1

ˆ


 yy
n

k   denotes the FE predicted response vector at the k
th

 time step, and 

 ...g  is the (nonlinear) output function. According to Eqs. (5.5) and (5.6), the response 

of a nonlinear FE model to an earthquake ground motion at each time step can be 

expressed as a nonlinear function of the model parameters (θ ), the input ground 

acceleration time history from the start of the earthquake  until that time step, and the 

initial conditions ( 0 0,q q ), i.e., 

 001
,,,ˆ qquθhy 

kgkk 


 
(5.7) 
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in which  TT
g

T
g

T
gkg k

uuuu  ,...,,
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, 1
0


 DOFnq  = initial nodal displacement 

vector, 1
0


 DOFnq  = initial nodal velocity vector, and  ...kh  = nonlinear response 

function of the FE model at the k
th

 time step.  

The dynamic response of civil structures can be recorded using an array of 

heterogeneous sensors such as accelerometers, GPS sensors, linear displacement 

transducers, potentiometers, strain gauges, etc. The measured structural response 

vector, ky , can be related to the FE predicted response vector, kŷ , as  

   θyyθv kkk ˆ  (5.8) 

in which kv , the simulation error, accounts for the misfit between the measured 

response of the structure and the FE predicted response. This misfit stems from the 

output measurement noise and the modeling error. Modeling error is classified into 

two general types [10]: 

(i) Modeling error due to uncertainty in the model parameters. This type of modeling 

error is minimized during the parameter estimation procedure.  

(ii) Modeling error due to model uncertainties, which means that the selected class of 

models does not contain the real structure. In other words, the mathematical FE 

model is an idealized and imperfect representation of the real structure and 

therefore, the actual structural response is different from the model prediction, no 

matter how the FE model is tuned. 

In nonlinear FE model updating of civil structures, model uncertainties arise 

from two sources: (1) incorrect or unphysical modeling assumptions, which are not in 

agreement with the true physical conditions of the structure (e.g., unphysical material 
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constitutive models, incorrect modeling of damping energy dissipation mechanisms, 

limiting kinematic assumptions, incorrect model geometry, etc.), and (2) unmodeled 

physics, which is not included in the FE model  (e.g., kinematic interaction between 

non-structural and structural components and systems in a building structure, 

foundation flexibility, soil-structure interaction, etc.) [29].  

If the effects of model uncertainties are neglected, the simulation error 

accounts only for the measurement noise and, therefore, a noise model is defined to 

characterize the simulation error [30] as 

  kk q εηLv ,
 (5.9) 

in which  ηL ,q  is the noise filter operator, which models the spectrum of the 

measurement noise polluting ky , η  represents the noise filter parameters, and q is the 

unit delay operator (i.e., ikk
iq 
  εε ). Substitution of Eq. (5.9) into Eq. (5.8) results 

in the prediction error framework for system identification ([30-31]), i.e., 

      1 ˆ, ,k k kq ε θ η L η y y θ
 

(5.10) 

where  ηθε ,k  is the prediction error (PE). Once the noise filter model structure 

is selected, the FE model parameters and noise filter parameters can be estimated as 

the solution of the following optimization problem: 

      
,

1

ˆ ˆ, argmin trace , ,
k

T

i i

i

 
  

 


θ η
θ η ε θ η ε θ η

 

(5.11) 

It is important to recognize that  ηL ,q  is used to capture the measurement 

noise dynamics. The idea of using a filter to capture noise dynamics is sometimes 

extended to capture possible effects of model uncertainties, although these effects are 
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in nature completely different from measurement noise. Nevertheless, accounting for 

model uncertainties in the nonlinear FE model updating is out of the scope of this 

chapter. Furthermore, it is assumed herein that the measurement noise is a stationary, 

zero-mean, independent Gaussian white noise (i.e., statistically independent across 

time and measurement channels) [32]. Therefore, the noise model in Eq. (5.9) is taken 

as the unit function (i.e.,   1, ηL q ), and the simulation error is modeled as a 

stationary, zero-mean, independent Gaussian white noise process. Based on these 

simplifying assumptions, Eqs. (5.10) and (5.11) lead to the following least squares 

estimation problem: 

      
1

2

0 0

1 1

ˆ argmin trace argmin , , ,
i

k k
T

i i i i

i i
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θ θ
θ ε θ ε θ y h θ u q q

 

(5.12) 

The least squares estimation approach for structural model updating can be 

derived from the Bayesian framework and more specifically the maximum likelihood 

estimation method under the assumption of a Gaussian white simulation error [10]. It 

is well known and has been used extensively in the literature (e.g., [11,13,33] to name 

a few).  The least squares method for system identification also has a long history in 

other engineering fields (e.g., [31-30,34]). The least squares estimation method as 

presented in Eq. (5.12) is optimal when the measurement noise is characterized as a 

zero-mean independent and identically distributed white noise vector process (i.e., 

statistically independent across time and measurement channels). Nevertheless, 

assuming equal noise characteristics at different measurement channels is a restrictive 

and often invalid hypothesis. For example, the equal variance assumption is incorrect 
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in the case of heterogeneous sensor arrays, in which the signals measured from 

different sensors have different scales, physical units, and noise characteristics. When 

signals obtained from different sensors have different physical units, the least squares 

estimation procedure gives relatively higher weight to the measurement data with 

higher amplitude. This limitation can be lifted by using the weighted least squares 

method, as suggested and used by many researchers (e.g., [13,30,35]). In the weighted 

least squares approach, each signal is scaled (or weighted) separately based on its 

amplitude and/or estimated measurement noise-to-signal ratio. The selection of scaling 

(or weighting) factors can have significant influence on the estimation results and 

should be done in a systematic way. Another situation in which least squares 

estimation may lead to incorrect estimation results is the case of erroneous 

measurements at one or few measurement channels as a result of sensor or DAQ 

malfunctioning for example. To remove these limitations of the traditional least 

squares estimation approach in a systematic way, the Bayesian estimation method in 

the context of nonlinear FE model updating is revisited in this study. Furthermore, the 

proposed estimation procedure provides the necessary tools for quantifying the 

parameter estimation uncertainty using the Fisher information matrix, as will be 

presented in Section 5.4. 

The unknown FE model parameters to be estimated in Eq. (5.8) are modeled as 

random variables according to the Bayesian approach for parameter estimation. Bayes’ 

rule is employed to infer the a posteriori joint probability density function (PDF) of 
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the model parameters from the time histories of noisy input and output measurements 

and the a priori joint PDF of these parameters as 
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(5.13) 

where 
1 1 2, , ...,

T
T T T

k k
   y y y y .  Assuming that the components of measured input 

ground acceleration are known (deterministic) and noiseless, the effects of input 

measurement noise are not considered herein. Therefore, Eq. (5.13) simplifies to 

([36]): 

     1 1

1
k kp p p

c
 θ y y θ θ

 
(5.14) 

in which  1 kp θ y  is the a posteriori joint PDF of the model parameters, 

    θθθy dppc k  1  is a normalizing constant called evidence, and 

   1 1,k kp l y θ θ y  is the likelihood function, which represents the contribution of 

the measured responses in the a posteriori joint PDF of the model parameters. The 

term  θp  in Eq. (5.14) is the a priori PDF of the model parameters and is assigned 

based on the prior information and knowledge about the model parameters.  

In the Bayesian estimation, the value of θ  that maximizes the a posteriori joint 

PDF – i.e., the mode of  1 kp θ y  – is called the maximum a posteriori (MAP) 

estimate of θ : 

 1
ˆ argmaxMAP kp 

   θ
θ θ y

 
(5.15) 
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It is usually more convenient to express the estimation problem as a 

minimization problem. Therefore, the MAP estimate of θ  can be computed by 

minimizing the negative natural logarithm of the a posteriori joint PDF. Therefore, 

  

    

1

1

ˆ arg min ln

arg min , ln

MAP k

k

p

p





  
 

    

θ

θ

θ θ y

θ y θ
 

 

(5.16) 

where     kk l   11 ,ln, yθyθ  is the log-likelihood function.  

In the case of nonlinear FE model updating for civil structures, prior 

information or knowledge about FE model parameters is often limited to design and 

construction documents (e.g., nominal material parameter values), previous destructive 

or non-destructive material testing results for the structure of interest, the technical 

literature, engineering experience and expert opinion. It is common to consider 

minimum prior knowledge about model parameters and assume a uniform a priori 

joint PDF. According to Eq. (5.16), if the a priori PDF of θ ,  θp , is sufficiently flat 

and close to uniform, its natural logarithm tends to a constant. This means that when 

there is little or no information about the model parameters θ , the a posteriori joint 

PDF will be maximized, in the limiting case, at the value of θ  that minimizes the 

negative log-likelihood function, which is known as the maximum likelihood (ML) 

estimate of θ  [34]: 

  kML  1,minargˆ yθθ
θ  

(5.17) 

According to Eq. (5.8),      1 1 1, k k kl p p   θ y y θ v  and since v  is 

modeled herein as a stationary, zero-mean, independent Gaussian white noise vector 
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process (  R0v ,~ N ), i.e., statistically independent across time and measurement 

channels; therefore,   
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(5.18) 

in which R  denotes the determinant of the diagonal matrix R , which is the 

covariance matrix of the simulation error vector. Eqs. (5.17) and (5.18) result in the 

following statement of the maximum likelihood (ML) estimation for the model 

parameters [13]: 
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(5.19) 

Assuming equal variances for the simulation error at different measurement 

channels results in identical diagonal entries for R  (i.e., n nr 
y y

R I ), where r  is the 

(assumed to be known) simulation error variance for each measurement channel, 

which is equivalent to the measurement noise variance based on the assumptions made 

earlier, and I  denotes the  n ny y
 identity matrix. Therefore, the ML estimation 

problem reduces to a least squares problem as shown in Eq. (5.12). 

To allow the use of data obtained from heterogeneous sensor arrays in the 

nonlinear FE model updating procedure and enhance the robustness of the parameter 

estimation procedure, an extended ML estimation procedure is used in this study, in 

which not only the FE model parameters but also the variances of the components of 
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the simulation error vector are estimated. The idea of estimating jointly the simulation 

error variances and the model parameters has been proposed and used by other 

researchers in the field of structural identification (e.g., [36-37]). The variances of the 

simulation error are the diagonal entries of the covariance matrix 

( , 1, ,jr j n    yR ). The diagonal entries of the covariance matrix are stacked in a 

row vector called the variance vector  , 1, ,jr j n  yr . Following Eq. (5.19), the 

extended estimation problem can be formulated as the following optimization 

problem: 

 
 

 
kgkML J


11

,

,,,minargˆ,ˆ uyθrrθ
rθ



 
(5.20) 

         1 1

1
1

1 1
1

1
, , ,   ln , ,

2 2 i i

n k T

k j i i i i

j i
k

g g g

k
J r

 




 


    
y

r θ y u y h θ u R y h θ u  (5.21) 

in which  ...J  is the objective function of the optimization problem and the 

dependence of J  on the initial conditions of the FE model ( 0q  and 0q ) is dropped for 

notational convenience. The objective function in Eq. (5.21) consists of two terms. 

The first term,  


yn

j

jr
k

1

ln
2

, is a regularization term penalizing the estimation of large 

values for the simulation error variance. The second term is the distance between the 

FE predicted and measured structural responses weighted inversely by the estimated 

error variances. Therefore, if the error variance is estimated to be high on a certain 

measurement channel, the contribution of the measured data obtained from that 

channel in the parameter estimation procedure is downscaled proportionally. This 
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estimation framework not only resolves the scale problem discussed earlier in the case 

of a heterogeneous sensor array, but also improves the estimation robustness in the 

presence of erroneous measurement data due to, for example, malfunctioning sensors 

and/or DAQ system. 

By defining a feasibility range for the model parameters and the simulation 

error variances (i.e., maxmin θθθ   and maxmin rrr  ), the parameter estimation 

problem is transformed into a constrained nonlinear optimization problem, which is 

solved using an interior-point method ([38-39]) in this study. The utilized 

computational optimization algorithm is available as part of the MATLAB 

optimization toolbox [40]. It requires the computation of the gradient of the objective 

function with respect to the model parameters, θ , and the simulation error variances, 

r , which can be obtained as 
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(5.23)    

in which ijy  is the j
th 

component of the response vector at the i
th

 time step. The 

derivative of vector 1 ma  with respect to vector 1 nb  is denoted as 
b

a
C




 , 

where C  is a nm  matrix defined as i
ij

j

a
c

b
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The term 
 

θ

uθh




igi 1

, 
 in Eq. (5.22) is the sensitivity (or rate of variation) of 

the FE predicted response at the i
th 

time step with respect to the model parameter 

vector, θ , and is referred to herein as the FE response sensitivity matrix. FE response 

sensitivity analysis has been used for a variety of applications in the literature 

including structural design optimization, and propagation of uncertainties needed for 

probabilistic and reliability analysis of structural and geotechnical systems (e.g., [41-

45]). FE response sensitivities can be computed approximately using the finite 

difference method (FDM), which requires at least 1θn  runs of the nonlinear FE 

model, where θn  is the number of parameters with respect to which the sensitivities 

are computed. The computational cost of the FDM significantly increases as the 

number of model parameters and the scale of the FE model increase. The direct 

differentiation method (DDM) is an accurate and computationally efficient alternative 

method for computing the FE response sensitivities. The DDM is based on the exact 

differentiation (consistent linearization) of the FE numerical scheme for response 

computation with respect to the model parameters. The fundamentals of DDM-based 

FE response sensitivity computation can be found in [43-44,46]. The FE model 

parameter estimation framework proposed herein uses the DDM to compute FE 

response sensitivities and therefore, offers a computationally feasible framework for 

parameter estimation and nonlinear FE model updating especially for large scale 

nonlinear FE models.  
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5.4. Parameter Estimation Uncertainty Quantification 

Due to the presence of output measurement noise, the response of a structure to 

a deterministic (known) earthquake excitation can be modeled as a random process, 

k1Y , and the measured response, k1y , can be viewed as a specific realization of 

k1Y . In the proposed nonlinear FE model updating approach described in the 

previous section, the ML estimator for the FE model parameters and the simulation 

error variances is defined as a function of the random variable k1Y , 

   1, ML kΘ t YR , where  ...MLt  denotes the ML estimator. The ML estimate of the 

model parameters and the simulation error variances,    1
ˆ ˆ, ML kθ r t y , can be 

computed through the procedure described above. Unlike stochastic estimation 

approaches such as Kalman filtering methods, the ML estimation process does not 

directly provide any measure of uncertainty associated with the parameter estimates. 

The estimation uncertainty (or measure of plausibility or degree of belief) is 

completely described by the joint PDF of the parameter vector estimator. In other 

words, if the estimation process is repeated for many realizations of the measured 

response k1Y , the statistical distribution of the parameter estimates describes the  

parameter estimation uncertainty.  

A ML estimator has some general statistical asymptotic properties that can be 

used to evaluate the parameter estimation uncertainty. The covariance matrix of a ML 

estimator can be asymptotically evaluated using the Cramér-Rao lower bound (CRLB) 

[34]. In general, the CRLB provides a lower bound for the estimation covariance 
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matrix of any unbiased estimator. It can be shown that a ML estimator is 

asymptotically unbiased and its estimation covariance asymptotically converges to the 

CRLB. The asymptotic properties of a ML estimator can be summarized in the 

following definition and theorems. 

Definition 1 (Unbiased estimator):   An estimator  Yt  for trueψ  is said to be 

unbiased if [31] 

     |   true trueE p d      YΨ t Y t y y ψ y ψΨ
 

(5.24) 

In other words, an unbiased estimator on the average yields the true value (or the true 

state of nature) of the unknown parameter vector. 

Theorem 1 (Cramér–Rao):   If  ytψ ˆ  is an unbiased estimate of trueψ  based 

on the measured data y , and has a log-likelihood function,  yψ, , which is 

differentiable with respect to ψ , then the covariance matrix of the estimator satisfies 

the CRLB, i.e. 

       1
|   

T
true true trueE    

  
Y Ψ t Y ψ t Y ψ I ψ

 
(5.25) 

in which the matrix inequality BA   means that BA  is a positive semi-definite 

matrix and  ψI  denotes the Fisher information matrix (FIM) defined as  

 
       

 |

, , , ,
T T

E p d
            
         

            
Y Ψ

ψ y ψ y ψ y ψ y
I ψ y ψ y

ψ ψ ψ ψ
 

(5.26) 

The proof of the Cramér–Rao theorem can be found in [34]. 

Theorem 2 (Asymptotic efficiency of the ML estimator):   A ML estimator 

is asymptotically efficient. In other words, for a large number of informative measured 
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response data samples (i.e., 1 ky  with k large), the ML estimator is unbiased and the 

parameter estimation covariance matrix achieves the CRLB. The proof of this theorem 

can be found in [31,47]. 

The parameter estimation uncertainty is quantified using the estimation 

covariance matrix which can be approximated by the inverse of the FIM. Two methods 

to approximate analytically and/or numerically the CRLB are presented below. 

However, since the CRLB provides only a lower bound for the parameter estimation 

covariance matrix, a key question that is also investigated herein is how close the 

actual parameter estimation covariance matrix is to the CRLB approximated by the 

following two methods. This question will be addressed by using a deterministic 

sampling method to estimate the parameter estimation covariance matrix, which is 

further discussed in the context of the application example presented in Section 3.1. 

Method 1: CRLB based on the (asymptotically exact) Fisher information matrix 

Assuming that  TTT
rθψ  in Eq. (5.26), the FIM for the ML estimation 

problem stated in Eqs. (5.20) and (5.21) can be derived as 
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(5.27) 

where the sub-matrices θθI  and rrI  are derived in Appendix 5.I. Based on the 

Cramér-Rao theorem, it follows that 
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in which      | , 1 ,kE E p d    Y y θ r yR
. Therefore, the lower bound for the 

covariance matrix of the estimated FE model parameters is given by 
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(5.29) 

where θθI  is evaluated for the true values of the FE model parameters and simulation 

error variances, θ  and r , respectively, which are approximated by the ML estimates θ̂  

and r̂ . Based on Theorem 2, θ̂  and r̂  converge asymptotically to θ  and r , 

respectively, and therefore, the parameter estimation covariance matrix asymptotically 

converges to the CRLB computed at θ̂  and r̂ . Although the obtained CRLB (i.e., 

inverse of the FIM) usually has non-zero off-diagonal entries, typically only the 

diagonal entries are considered in evaluating the variance of the model parameters. 

Therefore, the lower bound for the variance of parameter i  ( 2

i
 ) is the i

th
 diagonal 

entry of the CRLB matrix. In case the off-diagonal terms of the CRLB are significant 

compared to the diagonal terms, the CRLB for the variance of each individual 

parameters can be obtained using the Schur complement method [48]. Assuming that 

the FE model parameter vector θ  is partitioned in two parts 
1 2

T
T T   θ θ θ , the FIM is 

correspondingly partitioned in four blocks as 
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(5.30) 

It can be shown that the CRLB of the covariance matrix of the estimation of 1θ  

can be found using the generalized Schur complement of 11I  in θθI  [49], i.e.,      
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(5.31) 

Since the evaluation of the FIM matrix requires estimates of the simulation 

error variances, r̂ , this method of parameter estimation uncertainty quantification  is 

made possible only through the extended estimation problem stated in Eqs. (5.20) and 

(5.21). It is noteworthy that after estimating the FE model parameters ( θ̂ ) and the 

simulation error variances ( r̂ ), evaluating their estimation uncertainty using this 

method comes at minor additional computational cost. The term 
 

ˆ ˆat  ,

,
i ii g 




θ r

h θ u

θ
 in 

Eq. (5.29) is the FE response sensitivity matrix, which is computed using the DDM 

during the optimization process for parameter estimation and is therefore already 

available. The accuracy of the computed FIM in this method depends only on the 

accuracy of the estimated model parameters and simulation error variances ( θ̂  and r̂ , 

respectively). Using a deterministic sampling approach, it will be shown in Section 3.1 

in the context of an application example that this method provides a more accurate 

approximation of the parameter estimation covariance matrix than Method 2 which is 

described next. 

Method 2: CRLB approximation based on the Hessian of the ML objective function 

It can be shown that the FIM is equal to the negative of the expected value of 

the Hessian matrix of the log-likelihood function evaluated at the true value of the 

parameter vector θ  (refer to [34] for the proof). Therefore, the two sub-matrices θθI  

and rrI  in Eq. (5.27) can be written as 
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(5.32) 

Therefore, the CRLB for the FE parameter estimation covariance matrix can be 

evaluated as 
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(5.33) 

where, as in Eq. (5.32), the expectation is taken with respect to  rθy ,1 kp  . In the 

presence of a single realization of the measured structural response data (which is 

often the case in real-world applications), the expectation operation can be dropped 

and the FIM can be approximated by the negative of the Hessian of the log-likelihood 

function  1, k θ y  evaluated at the ML estimates θ̂  and r̂ . Since the objective 

function of the ML optimization problem is the negative log-likelihood function, see 

Eq. (5.21), the CRLB of the parameter estimation covariance matrix can be 

approximated as the inverse of the Hessian of the ML objective function. Some 

gradient-based optimization algorithms (e.g., interior-point method) also make use of 

an approximation of the Hessian matrix (e.g., using Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method [50]) to solve the optimization problem. For such ML 

optimization algorithms, approximating the FIM using the estimated Hessian matrix at 

the converged optimal point would be at no additional computational cost. 

This method for approximating the CRLB of the parameter estimation 

covariance matrix has been extensively used in the structural model updating literature 

(e.g., [10,13,33]) to evaluate parameter estimation uncertainty. Nevertheless, this 



218 

 

 

 

approximation of the CRLB is expected to be less accurate than the first method 

because of the following two approximations used in the second method:  

(1) Eq. (5.33) is strictly valid when the expected value is taken over an infinite number 

of realizations of the measured structural response data. However, as mentioned 

earlier, the expectation operation in Eq. (5.33) is dropped in the presence of a 

single realization of the measured structural response data and the FIM is 

approximated by the negative Hessian matrix of the log-likelihood function. 

(2) An approximation of the Hessian matrix is used. 

 

5.5. Validation Studies using Simulated Data 

Two numerical validation studies are provided to validate and further 

investigate the performance of the proposed parameter estimation and nonlinear FE 

model updating framework. For each validation study, first the earthquake response of 

a proposed full-scale structure, designed according to previous or current seismic 

design provisions, is simulated using a structural FE modeling and analysis technique 

[28] to be described later. A set of predefined realistic FE model parameter values, 

referred to herein as the true parameter values, are used in the simulation phase. The 

simulated structural response time histories are then contaminated with numerical 

noise and used as measured structural response data for the following parameter 

estimation phase. In the latter, the FE model parameters are treated as unknown and 

modeled as random variables. The FE model parameters are estimated following the 
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procedure described in Section 2.1, and their estimation uncertainty is evaluated using 

the methods described in Section 5.4.  

The FE modeling and analysis technique used in this study is based on 

distributed-plasticity, displacement-based, structural FE models. In this approach, 

which has been widely used in nonlinear analysis and design of frame-type structures, 

the structure is spatially discretized using fiber-section, displacement-based, beam-

column elements formulated using Bernoulli-Euler beam theory. The material 

nonlinearity can spread over several sections monitored along the element, which are 

called integration points. The sections are further discretized into layers or fibers [51], 

the stress-strain behavior of which is governed by associated (nonlinear) uniaxial 

material constitutive laws. Material constitutive models depend on a set of material 

model parameters (e.g., elastic modulus, yield stress, post-yield strain hardening ratio, 

etc.), the estimation of which is the objective of the proposed nonlinear FE model 

updating framework. A structural system is typically composed of a relatively small 

number of materials (e.g., two types of steel and three types of concrete) with different 

sets of nominal material parameters, each of which is represented by a single nonlinear 

uniaxial material model. Adapted from [2], Figure 5.1 shows the hierarchical 

discretization levels of the nonlinear FE modeling and analysis method considered in 

this study.  

The ML estimation procedure is implemented in MATLAB [52] and interfaced 

with OpenSees [53] for FE response and response sensitivity computations. Although 

a specific nonlinear FE modeling and analysis technique is employed in the validation 
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studies presented here, the proposed parameter estimation and nonlinear FE model 

updating framework is general and applies to other types of nonlinear FE modeling 

and analysis techniques.  

 

 

Figure 5.1: Hierarchical discretization levels in distributed plasticity structural FE models using 

fiber-section displacement-based beam-column elements (Adapted from [2]; notations are further 

described therein). 

 

5.5.1. Validation Study 1: Cantilever Steel Column 

The benchmark structure used for the first validation study is a 6.0 m cantilever 

steel column representing a small bridge pier [2]. The column has a mm20550550   

built-up box section (ASTM A36 steel) and carries a lumped dead load of 981 kN, 

with a corresponding inertial mass of 310100  kg, as shown in Figure 5.2(a). The 

section is designed to attain its full plastic capacity prior to local buckling, strength 

degradation, or softening behavior. Using fiber-section displacement-based beam-

column elements, a 2D FE model of the structure is developed in OpenSees as shown 

in Figure 5.2(b). The bottom part of the column is discretized into 10 displacement-
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based (DB) elements of length 250 mm and 5 Gauss-Lobatto (GL) integration points 

each, while the top part is discretized into 7 DB elements of length 500 mm and 3 GL 

integration points each. The steel fibers are modeled using the modified Giuffré-

Menegotto-Pinto material constitutive model [54] with smooth curved shaped loading 

and unloading branches as illustrated in Figure 5.3. This material model is 

characterized by eight (time-invariant) parameters subdivided into three primary 

parameters and five secondary parameters. The three primary parameters are: E  

elastic modulus, y  initial yield strength, and b strain hardening ratio (see Figure 

5.3), while the five secondary parameters control the curvature of the hysteresis loops 

and the isotropic hardening. In this study, the three primary material parameters are 

treated as unknown FE model parameters to be identified, while the five secondary 

parameters are assumed known (deterministic) constants. For the simulation phase, the 

true (exact) values of the primary parameters are taken as GPa200trueE , 

MPa250true
y , and 1.0trueb , while the true values of the secondary parameters are 

set to the values recommended in [54].  

Two ground acceleration records from the 1989 Loma Prieta and 1994 

Northridge earthquakes are selected [55] for the nonlinear time history analyses (see 

Table 5.1). Figure 5.4 shows the acceleration time histories for these two earthquake 

ground motions. Each nonlinear analysis is performed by first applying the gravity 

load quasi-statically and then the base excitation dynamically. The nonlinear time 

history analyses are performed using the Newmark average acceleration method [27] 

to recursively integrate the equations of motion in time using a constant time step size 
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of sec02.0t , and the Newton-Raphson method to solve iteratively the nonlinear 

incremental dynamic equations of equilibrium at each time step. Tangent stiffness-

proportional damping [27] is used to model the damping energy dissipation 

characteristics (beyond material hysteretic energy dissipation) of the column by 

assuming a damping ratio of 2 percent for the first elastic mode ( sec76.01 T ). 

 

 
                           (a)                (b) 

Figure 5.2: (a) Cantilever steel column with built-up box section, (b) details of the developed FE 

model (DBE: displacement-based finite element; 1 ton = 1000 kg; length unit: mm). 
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Figure 5.3: Modified Giuffré-Menegotto-Pinto uniaxial material constitutive model for 

structural steel. 

 

 

Table 5.1: Selected earthquake ground motions. 

Motion 

name 

Earthquake Station / Component PGA (g) 

EQ1 1989 Loma Prieta (M 

6.9)  

Corralitos - Eureka Canyon Road / 90° 0.48 

EQ2 1994 Northridge (M 

6.7) 

 Castaic - Old Ridge Route / 90°  0.57 

 

Note: both records are sampled at 50 Hz. 

 

 

Figure 5.4: Time histories of the selected earthquake ground motions, top: EQ1 from 1989 

Loma Prieta earthquake, bottom: EQ2 from 1994 Northridge earthquake. 
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The acceleration response time history of the column top in the direction of the 

seismic input is simulated and artificially polluted with measurement noise to 

represent the measured structural response. The measurement noise is modeled as a 

zero-mean Gaussian white noise. In the real world, the amplitude of the measurement 

noise for acceleration response time histories depends on the type of sensor and DAQ 

system (including sensor cables) and the environmental conditions. Using current 

sensor technology for structural response monitoring, the measurement noise is 

expected to be lower than 0.5% g root-mean-square (RMS).  

The proposed parameter estimation and nonlinear FE model updating 

framework is utilized to evaluate point estimates of the FE model parameters 

(
T

y bE ]ˆ,σ̂,ˆ[ˆ θ ) and the measurement noise variance r̂  (which in this case is a single 

component vector). The FE model parameter estimation uncertainty is evaluated by 

computing the CRLB using the two methods presented in Section 5.4. To increase the 

computational efficiency, only the response of the structure to the first 16 and 20 

seconds of EQ1 and EQ2, respectively, are used in the parameter estimation process. 

In this validation study, the same FE model is used for the response simulation and 

parameter estimation phases; therefore, the effects of model uncertainties are not 

considered in this study. Moreover, the same input ground motion time history is used 

in the response simulation and parameter estimation phases; therefore, the effects of 

measurement noise on the seismic input are not considered, i.e., the seismic input is 

assumed noiseless. The detrimental effects of measurement noise on the input ground 
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acceleration on the performance of the proposed framework are investigated in the 

second validation example.  

Two different cases are considered in this validation study. In the first case 

study, the performance of the parameter estimation procedure is investigated for 

different levels of output measurement noise. In the second case study, a deterministic 

sampling method is employed to obtain the statistical distribution of the estimated FE 

model parameters, which is then used to assess the accuracy of the FE model 

parameter estimation uncertainty evaluated from the two methods presented in Section 

5.4.   

Case study 1: Effects of output measurement noise amplitude 

To investigate the robustness and sensitivity of the proposed parameter 

estimation and nonlinear FE model updating framework to the output measurement 

noise level, the estimation process is performed for different amplitudes of the 

contaminating measurement noise. The simulated absolute acceleration response of the 

cantilever column is contaminated with zero-mean Gaussian white noise of three 

different amplitudes, namely 0.5% g, 2% g, and 5% g RMS. The 2% g and 5% g RMS 

noise levels are unrealistically high and are unlikely to be seen in the real world; 

nevertheless, they are considered here to exercise the estimation framework under 

extreme noisy conditions. As mentioned earlier, by neglecting the effects of the input 

noise and model uncertainties in the parameter estimation process, the simulation error 

accounts for the measurement noise only. Therefore, the simulation error variance is 

expected to be equal to the measurement noise variance. The measurement noise 
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variance corresponding to a zero-mean Gaussian white noise signal with x% g RMS 

amplitude is equal to  281.9
100

x  
2

2m s   . Therefore, the true values of the 

simulation error variance for the three considered noise levels (0.5% g, 2% g, and 5% 

g RMS) are 2 20.24 10 ,  3.85 10 ,truer     and 21006.24   
2

2m s   , respectively. These 

true values are used later to assess the accuracy of the estimated simulation error 

variance. The initial estimates of the FE model parameters are selected as 

trueEE 30.10  , true
yy  75.0

0
 , and truebb 35.10  , which represents a significant 

departure from their true values given the physical nature of these parameters and the 

fact that their true values are expected to not be far from their nominal values.  For all 

three cases, the initial estimate of the simulation error variance is selected as 

2
0 1062.0 r  

2
2m s   , which corresponds to a 0.8% g RMS measurement noise 

signal. The feasible search domain for the model parameters is selected as 

00 5.24.0 θθθ   where 0θ  vector of initial estimates of the FE model parameters, 

and the feasible search domain for the simulation error variance is set as 

00 10001.0 rrr  . Since there is minor prior knowledge about the true value of the 

simulation error variance, its feasible search domain is selected to be much wider than 

for the FE model parameters. To improve the performance of the optimization process, 

the FE model parameters and the simulation error variances are normalized by their 

corresponding initial estimates. Through this normalization, the derivatives of the ML 

objective function with respect to the estimation parameters have the same order of 

magnitude. 
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Figure 5.5 shows the convergence history of the three FE model parameters 

and the simulation error variance for the three considered levels of measurement noise 

amplitude for EQ1. In this figure, the number of iterations is equal to the number of 

evaluation of the ML objective function, which in turn is equal to the number of FE 

model runs. The converged point estimates are depicted with filled circular dots to 

facilitate comparison of the number of iterations to achieve convergence in the three 

cases. Figure 5.6 shows similar results for EQ2. Spike-like behavior is observed in the 

convergence histories in Figures 5.5 and 5.6. This spike-like behavior is the result of 

perturbation in the estimation parameters to escape local minima. The optimization 

algorithm detects when iterations appear to be converging to a local minimum, and 

then perturbs the parameters to escape the domain of attraction of that local minimum. 

The convergence criterion consists of two conditions; if any of the two conditions is 

satisfied, the optimization process is considered converged. The first condition is 

based on the absolute variation in the estimation parameters and the second condition 

is based on the first-order optimality measure of the ML objective function as 

Condition 1: 7

21

1 10
ˆ

ˆ

ˆ

ˆ
  



 





























m

m

m

m

r

θ

r

θ
   (5.34) 

Condition 2:   710,  

 rθJ  (5.35) 

where mθ
ˆ  is the estimated normalized FE model parameter vector  at the m

th
 

optimization iteration, 
2

...  denotes the second order (or Euclidean) norm, and 
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...  denotes the infinity norm ( = the maximum absolute value of vector 

components). 

Table 5.2 reports the converged estimated FE model parameters and simulation 

error variance, normalized by the corresponding true parameter values, for all cases 

considered. This table also reports the estimation standard deviation of each model 

parameter (evaluated using the two methods presented in Section 5.4) normalized by 

the corresponding point estimate of the parameter; the ˆˆ
i i   can be loosely 

interpreted as the coefficient of variation (C.O.V.) of the FE model parameter.  

Figures 5.5 and 5.6, and Table 5.2 indicate the successful performance of the 

proposed parameter estimation method in correctly estimating the model parameters 

and measurement noise variance. The estimated values of the FE model parameters for 

the case of 5% g RMS measurement noise level (see Table 5.2) show that this 

excessively high level of measurement noise results in erroneous (biased) estimation 

of the strain hardening ratio parameter b . Furthermore, these detrimental effects of 

high measurement noise are more significant for EQ2 than EQ1. To correctly estimate 

post-yield material parameters such as b , the earthquake base excitation should be 

strong enough to exercise the post-yield branches of the material model at the fiber 

level and moreover, the measured response of the structure should be sensitive enough 

to the variation of these parameters. The FE predicted curvature ductility demand 

(defined as the ratio of the peak curvature response to the yield curvature) at the base 

section (marked as monitored section in Figure 5.2b) of the structure are listed in the 

last column of Table 5.2 for both the estimated and true FE model parameter values.  
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The curvature ductility demands reported in Table 5.2 show that the structure exhibits 

higher level of nonlinear behavior during EQ1 than during EQ2; consequently, the 

response of the structure to EQ1 contains more information about the yield and post-

yield material parameters than for EQ2 and therefore, the parameter estimation results 

are less sensitive to the measurement noise level for EQ1 than for EQ2. These 

observations are in agreement with previous studies [2-3]. 

 

 
Figure 5.5: Convergence history of the estimated FE model parameters and simulation error 

variance for three measurement noise levels for EQ1 (The last graph is plotted in semi-

logarithmic scale). 
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Figure 5.6: Convergence history of the estimated FE model parameters and simulation error 

variance for three measurement noise levels for EQ2 (The last graph is plotted in semi-

logarithmic scale). 

 

 

 

 

The estimated C.O.V.s of the estimation parameters are in good agreement 

with the parameter estimation accuracy, i.e., the C.O.V.s are larger when the estimated 

FE model parameters are less accurate. For all cases considered here, the modulus of 

elasticity E  has the lowest C.O.V., followed by the yield strength yσ , and the strain 

hardening ratio b  which has the largest C.O.V. Moreover, the C.O.V.s of the estimated 

parameters consistently increase as the level of measurement noise increases. For FE 

model parameters that are not estimated accurately, the corresponding C.O.V.s 

estimated from the two methods used for computing the CRLB are more distant, as in 

the case of the strain hardening ratio, b, for EQ2 with 5% g RMS measurement noise 

level. 
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Figures 5.7 and 5.8 compare the FE predicted structural response to EQ1 

obtained using the true values of the FE model parameters, and the initial and final 

estimates of the FE model parameters inferred for the case of 2% g RMS measurement 

noise level. Figure 5.7 compares the structural level response, with the column top 

relative (to the base) acceleration response time history in Figure 5.7(a), and the base 

shear ( bV ) normalized by the total dead load supported by the column versus the 

column drift ratio (ratio of column top horizontal relative displacement to column 

height) in Figure 5.7(b). The local section and fiber level FE predicted responses are 

compared in Figure 5.8. Figure 5.8(a) shows the normalized moment-curvature 

response of the pier base section, in which the section moment ( M ) is normalized by 

the corresponding section nominal yield moment ( yy SM σ , where S denotes the 

section modulus) and the curvature ( ) is multiplied by the section height 

( mm550H ). Figure 5.8(b) compares the FE predicted stress-strain responses of the 

monitored layer (or fiber) at the column base section (see Figure 5.2(b)). It is observed 

that at both the global structural and local section and fiber levels, (a) the FE predicted 

response based on the initial estimates of the model parameters differs significantly 

from the true response, and (b) the FE predicted response based on the final estimates 

of the model parameters practically coincides with the true response. 

This validation study illustrates the application of the proposed parameter 

estimation and nonlinear FE model updating framework for structural damage 

identification. Using the measured input excitation and the structural response time 

histories recorded during a damage-inducing earthquake, an initial FE model of the 
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structure is successfully updated in the time domain by correctly estimating the 

unknown FE model parameters. The updated FE model successfully estimates the 

structural response at both the global structural and local section and fiber levels, 

which can be used to investigate and identify (detect, localize, classify and quantify) 

structural damage in the structure. The parameter estimation process for each of the 

cases considered in this example required less than one hour on a Dell Precision 

T7610 desktop workstation with two Intel Xeon E5-2630 (2.6 GHz) processors with 6 

cores each.   

 
(a) 

 
(b) 

Figure 5.7: Comparison of the FE predicted structural level response to EQ1 obtained using 

the true values of the FE model parameters, and the initial and final estimates of the FE model 

parameters inferred for the case of 2% g RMS measurement noise level: (a) relative 

acceleration response time history of the column top, and (b) normalized base shear versus 

column drift ratio. 
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(a) 

 
(b) 

Figure 5.8: Comparison of the FE predicted section level response to EQ1 obtained using the 

true values of the FE model parameters, and the initial and final estimates of the FE model 

parameters inferred for the case of 2% g RMS measurement noise level: (a) normalized 

moment-curvature response of the column base section, and (b) normalized fiber stress-strain 

response of the monitored layer at the column base section. 

 

 

Case study 2: Deterministic sampling method for evaluating the estimation 

uncertainty  

Two methods are described in Section 5.4 to approximate the CRLB, which 

provides an asymptotic limit for the parameter estimation covariance matrix. The 

question that is investigated in this case study is how close the actual parameter 

estimation covariance matrix can get to the approximated CRLB for a nonlinear FE 
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model updating problem using dynamic input-output data recorded during an 

earthquake event. For this purpose, a deterministic sampling method is employed to 

obtain a statistical distribution of the ML estimator for the FE model parameter vector. 

The estimator  k 1YtΘ  can be viewed as a nonlinear function (mapping) of the 

random variables k1Y . The conditional joint PDF of the measured response k1Y , 

denoted as  1 ,true true

kp y θ r  and assumed to be Gaussian, is propagated through the 

nonlinear estimator function  ...t  to find the joint PDF of the FE model parameters Θ . 

Here, the nonlinear transformation of the Gaussian joint PDF  1 ,true true

kp y θ r is 

performed using the unscented transformation method [56], which is a deterministic 

sampling approach. The unscented transformation is an approximate method to 

propagate the mean vector and covariance matrix of a Gaussian random vector through 

a nonlinear function. It can be shown that the unscented transformation can provide a 

third order approximation of the true mean vector and covariance matrix of the 

estimator [57]. 

In the unscented transformation method, a set of deterministic samples called 

sigma points are selected so that the ensemble mean and covariance of these samples 

match the first and second moment of  truetrue
kp rθy ,1 . Each sigma point herein is 

a realization of the stochastic response of the structure k1Y  for the true FE model 

parameters. In this case study, 2n sigma points are selected and denoted as )(
1
i

k
y , 

ni 21 , where ynkn   [57]. Each sigma point is used as the measured response 
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of the structure to estimate a sample of the FE model parameter vector through the ML 

estimation procedure, i.e.,  )(
1

)(ˆ i
kML

i


 ytθ . The ensemble covariance of the resulting 

2n estimated FE model parameter vectors approximates the parameter estimation 

covariance matrix. The sigma points )(
1
i

k
y  are computed as ([57-58]). 
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where  truetrue
k

true
k

E rθΘYy  
R,11

 = response time histories of the 

structure simulated using the true FE model parameters. Matrix Pn  is the matrix 

square root of matrix Pn  such that      PPP nnn
T

 , and  inP  in Eq. (5.36) 

denotes the i
th

 row of matrix Pn . Matrix P  is the covariance matrix of 

 1 ,true true

k  Y Θ θ rR  and is defined as 
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(5.37) 

where R  is the diagonal covariance matrix of the simulation error vector as 

introduced earlier following Eq. (5.18); in the present case, it is equal to the covariance 

matrix of the artificially imposed (true) measurement noise.  

While the deterministic sampling approach is still an approximate method to 

evaluate the parameter estimation uncertainty based on a limited number of samples, it 
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can provide some insight on the accuracy of the two methods for evaluating the 

parameter estimation covariance matrix presented in Section 5.4. Table 5.3 compares 

for EQ1 the C.O.V.s of the estimated model parameters obtained using Method I and 

Method 2 in Case study # 1 (see Table 5.2) with the C.O.V. estimated here using the 

deterministic sampling approach. It is observed that the C.O.V.s obtained using 

Method 1 are closer to the corresponding C.O.V.s estimated using the deterministic 

sampling method for all three measurement noise levels. Therefore, in this validation 

study, Method 1 provides a more accurate estimation of the C.O.V. of the estimated 

model parameters than Method 2, which is a widely used approach for computing 

parameter estimation uncertainty. The C.O.V.s obtained using the sampling method 

are lower than the CRLB estimated using Method 1 due to the estimation error in the 

sampling method and the source of error in Method 1 discussed in Section 5.4. 

 

Table 5.3: Comparison of C.O.V.s of the estimated FE model parameters obtained using three 

methods for EQ1. 

Ground 

motion 

 name 

Noise level  

(%g RMS) 

C.O.V. (%) 

Sampling Method 

C.O.V. (%) 

Method 1 

C.O.V. (%) 

Method 2 

E  y  b  E  y  b  E  y  b  

EQ1 

0.5 0.0

3 

0.1

4 

1.0

2 

0.0

3 

0.1

4 

1.0

5 

0.0

3 

0.1

3 
0.86 

2 0.1

2 

0.5

5 

4.1

0 

0.1

2 

0.5

5 

4.2

6 

0.1

2 

0.5

6 
4.43 

5 0.3

0 

1.3

0 

8.8

9 

0.3

2 

1.4

5 

9.4

9 

0.3

4 

1.5

0 

13.3

6 
 

 

Although the deterministic sampling method requires a limited number of 

sigma points, the process of evaluating the ML estimates of the FE model parameters 

for every sigma point is computationally demanding. Running the deterministic 

sampling procedure for each of the three levels of measurement noise in this problem 
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required about 26 hours of parallel processing on a Dell Precision T7610 desktop 

workstation with two Intel Xeon E5-2630 (2.6 GHz) CPUs (with 12 cores).   

 

Case study 3: Heterogeneous sensor array  

To highlight the dominance of the proposed nonlinear FE model updating and 

parameter estimation framework compared to the current least squares estimation 

method in the literature, this case study investigates the case of having measurement 

data obtained from heterogeneous sensor array with one or more data channels having 

erroneous data. As stated before, the least squares estimation method gives equal 

weights to the different measurement data channels. As will be shown in this case 

study, when the measured signals have different unit scale and amplitude, the least 

squares method is unable to completely extract information from the measured data. 

In this case study, the simulated acceleration response of the cantilever steel 

column (as considered in Case study 1) is polluted by colored measurement noise. The 

noise is considered to be Gaussian colored with 5% g RMS amplitude and   Hz4,5.0  

frequency bandwidth. The colored noise can be a result of sensor malfunctioning 

and/or improper sensor installation. Since the noise is non-white, it is expected to have 

biased estimation of modeling parameters. To enhance the estimation accuracy, a 

second channel of data is added by measuring the curvature of the column base 

section. The curvature of steel sections can be measured by a pair of strain gauges 

installed on the outer faces of the section. Figure 5.9 shows the time histories of the 

measured data for EQ2 including both the acceleration of the column top and the 
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curvature of the column base section. The curvature data is assumed to have 

4102  RMS measurement noise. 

 
(a) 

 
(b) 

Figure 5.9: Heterogeneous measurements, (a) acceleration response time history of the 

column top, (b) curvature response time history of the column base section. 

 

In this case study, both the least squares estimation method and the parameter 

estimation method proposed in this study are used. The estimations are performed by 

considering only the measured acceleration time history as output measurement (1-

Output), and both the measured acceleration and curvature time histories as output 

measurement (2-Outputs). The same as Case study 1, initial estimates of the modeling 

parameters are selected as true
yy  75.0

0
 ,  trueEE 30.10  , truebb 35.10  . The initial 

estimate of noise variance is selected as 2
0

1062.0 accr  
2

2 






s
m for acceleration 

response and 6
0

1000.1 curr  for curvature response. The feasible search domain for 

the modeling parameters is set as 00 5.24.0 θθθ  , where 0θ  vector of initial 
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estimates of the modeling parameters, and the feasible search domain for noise 

variance is set as 00 40025.0 rrr  . 

Figures 5.10 and 5.11 show the convergence history for the two cases of output 

measurement using the least squares estimation and the proposed estimation method, 

respectively. Figure 5.10 clearly shows that the inclusion of the second measurement 

data set does not affect the least squares estimation results, and in both cases the 

material parameter estimations are inaccurate. The scale difference of the two 

measurement signals makes the least squares method to automatically ignore the 

curvature data in the presence of the higher amplitude acceleration signal and the least 

squares estimation cannot extract any information from the cleaner (less noisy) 

curvature data. The proposed estimation procedure, however, can correctly use the 

measured curvature data to enhance the estimation accuracy.  

Table 5.4 lists the estimation results including the estimation COVs. Although 

the acceleration data is contaminated by a colored noise, the estimation COVs in this 

table shows that the proposed estimation algorithm successfully extracts all the useful 

information contained in the curvature data and the estimation uncertainties associated 

with the 1-Output case are significantly reduced by adding the extra measurement data. 
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Figure 5.10: Convergence history of the modeling parameters using least squares estimation 

method for two cases of output measurement for EQ2. 

 

 

 

 

 

 
Figure 5.11: Convergence history of the modeling parameters using the proposed estimation 

method for two cases of output measurement for EQ2. 
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Table 5.4: Estimation results for Case study 3. 

Estimation 

method 

Modeling parameters 

Accelerat

ion Noise 

variance 

Curvature 

Noise 

variance 

COV (%) 

Method 1 

COV (%) 

Method 2 

true
yy  /  

trueEE /  

truebb /  

truerr /  truerr /  y  E  b  y  E  b  

LS Method-1 

Output 
1.04 0.99 0.56 - - - - - 0.17 0.01 2.05 

LS Method-2 

Outputs 
1.04 0.99 0.56 - - - - - 0.17 0.01 2.04 

Prop. Method-

1 Output 
1.05 0.99 0.54 0.97 - 0.01 0.0 0.17 0.05 0.00 0.69 

Prop. Method-

2 Outputs 
1.00 1.00 1.00 1.00 1.02 0.00 0.0 0.00 0.00 0.00 0.00 

 

 

Case study 4: Effects of initial estimation error 

To investigate the sensitivity of the proposed parameter estimation framework 

to initial estimates of the modeling parameters, the FE model updating procedure for 

cantilever steel column is repeated for EQ1 with 2% g RMS measurement noise level 

with four different sets of initial estimates as shown in Table 5.5. The initial 

estimation error in this table is defined as the relative distance between the initial 

estimates and the true values of modeling parameters: 

100
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(5.38) 

 

Table 5.5: Different sets of initial estimates considered in Case study 4. 

Set # 
true
yy  /

0
 trueEE /0  truebb /0  Error (%) 

Set 1 1.33 0.78 1.34 ~30% 

Set 2 0.50 0.60 1.27 ~40% 

Set 3 0.50 1.55 1.45 ~50% 

Set 4 1.55 1.81 0.65 ~60% 
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The same as Case study 1, the initial estimate of noise variance is 2
0 1062.0 r  

2

2 






s
m , and the feasible search domain for the modeling parameters is set as 

00 5.24.0 θθθ   and for noise variance is set as 00 40025.0 rrr  . 

Figure 5.12 illustrates the convergence history of the three modeling 

parameters and the noise variance for the four different sets of initial modeling 

parameter estimates. Table 5.6 lists the estimated modeling parameters and noise 

variance in addition to the coefficient of variation (COV) of the modeling parameters. 

More combinations of randomly generated initial parameter estimates are also studies, 

but are not presented here due to space limitations. It is concluded that for initial 

estimation error less than 60% (as defined by Eq. (5.38)), the proposed nonlinear FE 

model updating and parameter estimation framework is almost insensitive to the initial 

parameter estimates. 

 
Figure 5.12: Convergence history of the modeling parameters and the noise variance for four 

different sets of initial estimates as considered in Case study 4 for EQ1 and 2% g RMS 

measurement noise. 
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Table 5.6: Estimation results for four sets of initial estimates considered in Case study 4. 

Motio

n 

name 

Set 

# 

Modeling parameters 
Noise 

variance 

COV (%) 

Method 1 

COV (%) 

Method 2 

true
yy  /  

trueEE /  

truebb /  

truerr /  y  E  b  y  E  b  

EQ1 

1 1.00 1.00 1.02 1.04 0.57 0.12 4.22 0.58 0.12 4.08 

2 1.00 1.00 1.02 1.04 0.57 0.12 4.21 0.62 0.13 4.41 

3 1.00 1.00 1.02 1.04 0.57 0.12 4.22 0.58 0.13 4.30 

4 1.00 1.00 1.02 1.04 0.57 0.12 4.22 0.59 0.14 4.30 
 

 

Case study 5: Effects of  input measurement noise 

The effects of input measurement noise on the proposed parameter estimation 

framework are examined by considering slightly different input motions in the 

simulation and estimation phases. In the simulation phase, the ground acceleration 

time histories of EQ1 and EQ2 as shown in Figure 5.4 are used to simulate the 

acceleration response of the structure. The acceleration response is then polluted by 

2% g RMS measurement noise to obtain measured response of the structure. In the 

estimation phase, the acceleration time history of the two earthquake motions is 

contaminated by zero-mean Gaussian white noise to mimic the presence of noise in the 

measured ground acceleration. To investigate the sensitivity of the parameter 

estimation framework to the input measurement noise, three levels of input noise are 

considered here: 0.5% g, 2% g, and 5% g RMS. As stated before, the last two noise 

levels are unphysical and large; they are included to examine the robustness of the 

estimation framework under extreme input noise levels. Figure 5.13 compares the true 

ground acceleration time history, which used in the simulation phase, with the noisy 

ground acceleration time histories used in the estimation phase for EQ2. 
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Figures 5.14 and 5.15 illustrate the convergence history of the three modeling 

parameters and noise variance for three levels of input noise for EQ1 and EQ2, 

respectively. Because the current parameter estimation framework does not account for 

the effects of input noise, the presence of input noise biases the estimation results and 

the estimation errors increase as the level of input noise increases. Table 5.7 lists the 

estimation results including the estimation uncertainties for the three input noise level 

for EQ1 and EQ2. Table 5.7 shows that as the input noise level increases, the 

estimated prediction error variance also increases. In other words, the estimation 

framework tries to indirectly account for the effects of input noise by estimating higher 

level of output noise. However, the input white noise signal, which is filtered through 

the nonlinear structural system, is transformed into a colored noise signal at the output 

channel and therefore, approximating the resulting colored output noise with a white 

noise model leads to biased estimation results. As can be inferred from Figures 5.14 

and 5.15 and Table 5.7, the estimation errors are more significant for the strength-

related material parameters (i.e., 0,by ) as compared to the modulus of elasticity E . 

Moreover, the estimation errors increase as the level of input motion and the seismic 

demands decrease from EQ1 to EQ2. 
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Figure 5.13: Comparison of the noisy with the true (not noisy) ground acceleration time 

history of EQ2. 

 

 
Figure 5.14: Convergence history of the modeling parameters and the noise variance for three 

levels of input noise as considered in Case study 5 for EQ1 and 2% g RMS output 

measurement noise. 
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Figure 5.15: Convergence history of the modeling parameters and the noise variance for three 

levels of input noise as considered in Case study 5 for EQ2 and 2%g RMS output 

measurement noise. 

 

 
 
 

Table 5.7: Estimation results for three levels of input noise considered in Case study 5. 

Motio

n 

name 

Input 

noise 

 level  

(%g 

RMS

) 

Modeling parameters 
Noise 

variance 

COV (%) 

Method 1 

COV (%) 

Method 2 

true
yy  /  

trueEE /  

truebb /  

truerr /  y  E  b  y  E  b  

EQ1 

0.5 0.99 1.00 1.08 1.08 0.59 0.13 4.10 0.57 0.13 4.05 

2 0.97 1.01 1.22 2.38 0.90 0.20 5.55 3.68 0.71 30.67 

5 1.03 1.00 0.82 6.44 1.34 0.32 12.46 14.10 5.59 161.37 

EQ2 

0.5 1.02 1.00 0.76 1.10 0.78 0.09 11.52 0.82 0.11 11.03 

2 0.98 1.01 0.85 3.12 1.30 0.15 17.13 2.50 0.21 37.68 

5 
1.11 0.99 0.54 6.44 1.61 0.20 34.70 

253.6

9 

10.6

6 

5886.6

8 
 

 

 

Similar to Case study 1, Figure 5.16 compares the true structural response with 

the response obtained using initial and final estimated modeling parameters responses. 

The comparisons are made only for EQ1 for the case of 2% g RMS output 

measurement noise and 2% g RMS input noise. The relative acceleration response 

time history of the column top is shown Figure 5.16a and the stress-strain response of 
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the monitored fiber (or layer) at the column base section is shown Figure 5.16b. In 

spite of the simultaneous presence of relatively high levels of input and output 

measurement noises, Figure 5.16 shows that the proposed nonlinear FE model 

updating and parameter estimation framework is able to estimate the dynamic 

responses of the structure at both global and local level with acceptable level of 

accuracy.  

 

 
(a) 

 
(b) 

Figure 5.16: Comparison of the true response with the response obtained using initial and 

final estimates of the modeling parameters for EQ1 with 2% g RMS measurement noise and 

2% g RMS input noise, (a) relative acceleration response time history of the column top, and 

(b) fiber stress-strain response of monitored fiber at the column base section. 
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Case study 6: Effects of model uncertainties 

To study the detrimental effects of neglecting model uncertainties on the 

performance of the proposed parameter estimation framework, the nonlinear FE model 

updating of the cantilever steel column is repeated considering different material 

models for the steel fibers in the simulation and estimation phases. In this case study, 

the response of the structure is simulated using the modified Giuffré-Menegotto-Pinto 

material model for the steel fibers. The same as Case study 1, the true (exact) material 

parameters are selected as MPa250true
y , GPa200trueE , and 1.0trueb . The 

simulated acceleration response time history of the column top is computed for EQ1 

and polluted by 0.5% g RMS measurement noise to obtain the measured response. In 

the estimation phase, the employed FE model has identical geometry as the one used in 

the simulation phase, but uses bilinear material model to define the stress-strain 

relation of the steel fibers (Figure 5.17). The initial estimates of the modeling 

parameters are taken the same as Case study 1. 

The estimation convergence time history for the three modeling parameters and 

the noise variance are shown in Figure 5.18. As can be seen, the mismatch between the 

models used in the simulation and estimation phases results in remarkable bias in the 

estimated material parameters. Figure 5.19a compares the time histories of the 

acceleration response and Figure 5.19b compares the monitored fiber stress-strain 

responses between the true, initial, and final updated models. In spite of the acceptable 

match between the simulated and estimated acceleration response time histories in 
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Figures 5.19a and 5.19b shows a notable difference in the fiber level response, which 

is an inherent outcome of the material model mismatch. 

 

 

Figure 5.17: Bilinear uniaxial material constitutive model for structural steel. 

 

 
Figure 5.18: Convergence history of the modeling parameters and the noise variance in 

Case study 5 for EQ1 and 0.5% g RMS output measurement noise. 
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(a) 

 
(b) 

Figure 5.19: Comparison of the true response with the response obtained using initial and 

final estimates of the modeling parameters for EQ1 with 0.5% g RMS measurement noise, (a) 

relative acceleration response time history of the column top, and (b) fiber stress-strain 

response of monitored fiber at column base section. 

 

 

5.5.2. Validation Study 2: 2D Moment Resisting Steel Frame 

The benchmark structure used for the second validation study is the three-story 

moment resisting (MR) steel frame designed for the FEMA/SAC project (LA3 model 

structure, pre-Northridge design) [59]. The FE model of this frame structure (see 

Figure 5.20) is also developed in OpenSees using fiber-section displacement-based 

beam-column elements and the modified Giuffré-Menegotto-Pinto material 

constitutive model (see Figure 5.3) for the structural steel. According to the design 

details, the beams and columns are made of two different steel grades and therefore, 

two sets of the Giuffré-Menegotto-Pinto material model are used in the FE model. For 
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each set, three material parameters  ,   and yE b  are treated as unknown FE model 

parameters and are estimated using the proposed parameter estimation and nonlinear 

FE model updating framework. The true (exact) values of these six FE model 

parameters are selected as: GPa200true
col

E , MPa350
,

true
coly

 , %4true
col

b , 

GPa200true
beam

E , MPa250
,

true
beamy

 , and %8true
beam

b . 

 

Figure 5.20: Details of the developed 2D FE model of the three-bay three-story MR steel 

frame based on the LA3 model structure from the FEMA/SAC project with pre-Northridge 

design [59]. (1 ton = 1000 kg, length unit: m). 

 

The two ground acceleration records from the 1989 Loma Prieta and 1994 

Northridge earthquakes defined in Table 5.1 and shown in Figure 5.4 are also used in 

this validation study. Each nonlinear analysis is performed by first applying the gravity 

loads quasi-statically and then the base excitation dynamically, as in the first validation 

study. Rayleigh damping is used to model the damping characteristics (beyond the 

hysteretic energy dissipated through inelastic action of the structural material) by 

defining a damping ratio of 2 percent for the first two elastic modes of the structure 

( sec06.11 T  and sec35.02 T ) and using the tangent stiffness matrix.  
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The floor acceleration response time histories of the structure are simulated, 

using the true values of the FE model parameters, and artificially polluted with 

measurement noise to represent the measured structural response. The measured 

response is then used in the proposed parameter estimation and nonlinear FE model 

updating framework to compute the point estimates of the FE model parameters, 

, ,
ˆ ˆˆ ˆ ˆˆ ˆ[ , σ , , , σ , ]Tcol y col col beam y beam beamE b E bθ , and the simulation error variances, r̂ . The 

parameter estimation uncertainty is evaluated by computing the CRLB using the two 

methods presented in Section 5.4. This validation study is subdivided into four case 

studies to better investigate the performance of the proposed parameter estimation and 

nonlinear FE model updating framework. In the first case study, the performance of 

the proposed parameter estimation framework is investigated for increasing levels of 

output measurement noise. Heterogeneous measurement data are used in the second 

case study to compare the performance of the proposed parameter estimation 

framework with the traditional least squares approach. The sensitivity of the proposed 

parameter estimation procedure to the initial estimates of the FE model parameters is 

investigated in the third case study. Finally, the last case study examines the 

detrimental effects of the input measurement noise on the performance of the proposed 

parameter estimation framework. 

 

Case study 1: Effects of output measurement noise amplitude 

The simulated floor acceleration response of the structure recorded at the north 

column location (see Figure 5.20) is polluted with independent and identically 
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distributed zero mean Gaussian white noises to obtain the measured response of the 

structure. Similar to the first validation study, three different levels of measurement 

noise (i.e., 0.5% g, 2% g, and 5% g RMS) are considered. The initial estimate of the 

FE model parameter vector is selected as: 

0 θ [ 0.80 ,true
colE ,1.30 σ ,true

y col 0.70 ,true
colb 0.75 ,true

beamE ,1.25 σ ,true
y beam 0.80 true

beamb ]
T
. The 

initial estimates of the simulation error variances at the three measurement channels 

are selected as: 
2 2 2

0 0.62 10 , 0.62 10 , 0.62 10
T

       r  
2

2m s   , which corresponds to 

a 0.8% g RMS noise signal at each measurement channel. Similar to the first 

validation study, the feasible search domain for the FE model parameters is taken as 

00 5.24.0 θθθ  , where 0θ  vector of initial estimates of the FE model parameters, 

while the feasible search domain for the simulation error variance vector is set as 

00 10001.0 rrr  . The optimization convergence criterion is the same as in the first 

validation study (see Eqs. (5.34)-(5.35)). 

Figures 5.21 and 5.22 show the convergence history of the six FE model 

parameters and three simulation error variances (corresponding to the three 

measurement channels) for the three considered levels of measurement noise 

amplitude for EQ1 and EQ2, respectively. Table 5.8 reports the converged estimated 

FE model parameters and simulation error variances, normalized by their 

corresponding true values, for all cases considered. Curvature ductility demand of the 

column section CS1 and beam section BS1 (see Figure 5.20) are given in the last two 

columns of Table 5.8 for both the estimated and true FE model parameter values. The 
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low curvature ductility demand for the column section, especially for EQ1, indicates 

that the response of the column experiences a low level of nonlinearity and therefore, 

the response of the structure contains little information about the post yield 

characteristics of the column material. Consequently, the strain hardening ratio for the 

column material is not correctly estimated. Moreover, since the structural response has 

limited information about the post yield behavior of the column material, the 

estimation of the strain hardening ratio is more sensitive to the measurement noise 

level. Table 5.9 reports the estimated coefficient of variation (C.O.V.) of the estimated 

parameters for all cases considered. As in the first validation study, it is observed that 

the C.O.V.s are larger (i.e., higher estimation uncertainty) when the estimated FE 

model parameters are less accurate, with the strain hardening parameter of the column 

material for EQ1 as the most extreme case. It should also be noted that in this 

validation study, EQ2 imposes higher seismic demand on the structure than EQ1 (as 

shown by the column and beam section curvature ductility demands in Table 5.8) and 

therefore, the estimated FE model parameters are more accurate and the estimated 

C.O.V.s lower for EQ2 than for EQ1. Figure 5.23 compares the time histories of the 

FE predicted floor relative (to base) acceleration response to EQ2 obtained using the 

true values of the FE model parameters, and the initial and final estimates of the FE 

model parameters inferred for the case of 2% g RMS measurement noise level. Figure 

5.24 shows a similar comparison for the normalized moment-curvature hysteretic 

responses of column section CS1 and beam section BS1 (see Figure 5.20). The results 

presented in Figures 21- 24 and Tables 8-9 show the successful performance of the 
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proposed parameter estimation and nonlinear FE model updating framework. This 

framework is able to successfully estimate the identifiable (i.e., with structural 

response containing enough information about these parameters) material parameters 

of the nonlinear FE model. By correctly estimating the FE model parameters, the 

initially inaccurate FE model is updated and the structural response is estimated 

correctly at both the global structural and local section levels. The estimation process 

for each level of measurement noise in this example required about one and a half hour 

on a Dell Precision T7610 desktop workstation with two Intel Xeon E5-2630 (2.6 

GHz) processors with 6 cores each.     
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Figure 5.21: Convergence history of the estimated FE model parameters and simulation error 

variances for three measurement noise levels for EQ1 (the convergence histories of the 

simulation error variances are plotted in semi-logarithmic scale). 
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Figure 5.22: Convergence history of the estimated FE model parameters and simulation error 

variances for three measurement noise levels for EQ2 (the convergence histories of the 

simulation error variances are plotted in semi-logarithmic scale). 
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(a) (b) 

Figure 5.23: Comparison of the time histories of the FE predicted floor relative (to base) acceleration 

response to EQ2 obtained using the true values of the FE model parameters, and the initial and final 

estimates of the FE model parameters inferred for the case of 2% g RMS measurement noise level; (a) 

complete response time histories between 0-20 seconds; (b) response time histories zoomed between 5-

10 seconds. 

 

  
(a) (b) 

Figure 5.24: Comparison of the FE predicted moment-curvature hysteretic responses to EQ2 obtained 

using the true values of the FE model parameters, and the initial and final estimates of the FE model 

parameters inferred for the case of 2% g RMS measurement noise level: (a) moment-curvature response of 

the column base section CS1, and (b) moment-curvature response of the beam section BS1 

( mm416colH , mm762beamH ). 
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Case study 2: Heterogeneous sensor array  

The advantage of the proposed parameter estimation and nonlinear FE model 

updating framework over the traditional least squares approach is better highlighted by 

considering heterogeneous measurement data. In this case study, the acceleration 

response time histories at the first and third floors of the structure and the curvature 

time history of the column base section CS1 (see Figure 5.20) are selected as output 

measurements. The section curvature can be measured using a pair of strain gauges (or 

displacement transducers) mounted on opposite sides of the column at its base. The FE 

predicted acceleration time histories are polluted with zero-mean, 2% g RMS Gaussian 

white noise, while the curvature time history is polluted with zero-mean, 42 10  [m
-1

] 

RMS measurement noise. Figure 5.25 shows the measured structural response time 

histories for EQ1. The scale difference between the acceleration and curvature 

response time histories is evident in this figure. The initial estimates of the FE model 

parameters are the same as for Case study #1. The initial estimates of the simulation 

error variances are selected as: 
3

0 102.6 accr  
2

2m s    for acceleration responses and 

6
0

1000.1 curr  [m
-1

]
2
 for curvature response, which respectively correspond to 

0.8% g RMS and 
31.00 10  [m

-1
] RMS measurement noise. The feasible search 

domain and other conditions for the parameter estimation procedure are the same as 

for Case study #1. Due to space limitation, the estimation results for this case study are 

presented only for EQ1. 
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(a) (b) 

Figure 5.25: Heterogeneous structural response measurements: acceleration response time histories 

measured at the first and third levels and curvature response time history of the column base section 

(CS1) for EQ1; (a): complete response time histories between 0-16 seconds; (b) response time 

histories zoomed between 5-10 seconds. 

 

To investigate the influence of local response measurements (such as 

curvature) on the parameter estimation process, first the nonlinear FE model updating 

is performed utilizing only structural level measured response quantities (i.e., 

acceleration response at first and third levels) using two estimation methods: the 

traditional least squares method, see Eq. (5.12), and the proposed parameter estimation 

method, see Eqs. (5.20) and (5.21).The first row of results in Table 5.10 show the 

estimated values of the six FE model parameters based on the least squares method; 

the second row shows the estimated values of the FE model parameters and the 

simulation error variances based on the proposed parameter estimation and nonlinear 

FE model updating method. It is observed that some of the FE model parameters (i.e., 

beamcolcoly bb ,,σ , ) are not identified correctly due to the fact that the two acceleration 
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response time histories contain limited information about these parameters.  The first 

two rows of Table 5.11 report the C.O.V.s. of the estimated parameters. The parameter 

estimation C.O.V.s for the least squares method can be obtained only through Method 

2 described in Section 5.4; however, for the proposed nonlinear FE model updating 

method, both Method 1 and Method 2 have been used. Although the point estimates of 

the strain hardening ratio for the column steel material are close to the true value of 

this parameter, their extremely large estimated C.O.V.s indicate the high uncertainty 

(and therefore likely inaccuracy) associated with the estimation of this parameter, i.e., 

its estimations are accurate here by coincidence.  

Now, the curvature response time history at column section CS1 is added as 

third measurement channel and the nonlinear FE model updating procedure is repeated 

using both the traditional least squares and the proposed parameter estimation 

approaches. The estimation results are summarized in the last two rows of Tables 10-

11. It can be seen that the inclusion of the curvature measurement improves 

significantly the estimation accuracy (for parameters beamcolcoly bb ,,σ , ) of the 

proposed parameter estimation and nonlinear FE model updating framework. The last 

row in Table 5.11 shows that the parameter estimation uncertainties are remarkably 

reduced as the third measurement (curvature) data channel is included in the 

estimation process. However, the conventional least squares approach is unable to 

properly extract information from the third measurement channel. Comparing the first 

and third rows of Table 5.10 clearly shows that the inclusion of the curvature 

measurement data has minor influence on the FE model parameter estimation results 
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obtained using the least squares method. The least-squares method automatically 

overlooks the curvature data in the presence of the acceleration signals which are of 

much larger magnitude numerically. The least squares method can be replaced by the 

weighted least squares method, which improves the performance of the traditional 

least squares method in the case of heterogeneous measurement data. However, 

selection of the weighting factors for each measurement channel is user-dependent. 

Nevertheless, the proposed nonlinear FE model updating procedure provides a 

systematic solution (without the need for user-dependent scaling) to correctly infer 

information from heterogeneous measurements. 
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Case study 3: Effects of initial estimates of FE model parameters 

The sensitivity of the proposed parameter estimation and nonlinear FE model 

updating framework to initial estimates of the FE model parameters is investigated for 

the 2D steel MR frame structure. The FE model updating procedure is repeated for 

both EQ1 and EQ2 (with 2% g RMS measurement noise on each of the three 

acceleration measurement channels) using four different sets of initial estimates of the 

FE model parameters as shown in Table 5.12. The norm of the initial estimation error, 

reported in the last column of Table 5.12, is defined as the relative root mean square of 

the difference between the initial estimates and the true values of the FE model 

parameters, i.e., 

2
6

0,

1
(%)  100

6

true

i i

true
i i

Error

 



 
 
  



 

(5.39) 

 

Table 5.12: Different sets of initial estimates of FE model parameters considered in Case 

study #4. 

Set # 

Column material parameters Beam material parameters 

Error (%) 
trueEE /0  

true
yy  /

0
 truebb /0  trueEE /0  

true
yy  /

0
 truebb /0  

Set 1 
0.41 0.62 1.18 0.88 0.97 1.05 

30%  

Set 2 
1.54 1.44 0.49 0.64 1.08 1.28 

40%  

Set 3 
1.95 1.47 0.53 0.97 1.38 1.02 

50%  

Set 4 
1.87 1.68 1.20 0.47 0.51 1.62 

60%  
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The initial estimates of the simulation error variances are selected as 

 T222
0 1062.0,1062.0,1062.0  r  

2
2m s   . Other conditions for the ML 

estimation procedure are the same as in Case study #1.  

The estimated FE model parameters and simulation error variances for the four 

different cases considered here are reported in Table 5.13 and the corresponding 

estimation C.O.V.s are reported in Table 5.14. It is observed that when FE model 

parameters are estimated accurately (i.e., ratio of estimated-to-true parameter value 

close to 1.0 and estimation C.O.V. below 1.0 percent), their converged estimated 

values are independent of their initial estimates. However, in the case when FE model 

parameters are not estimated accurately, their converged estimated values vary from 

set to set of initial parameter estimates, but this variation may only be due to the 

stochastic nature of the estimation problem (i.e., estimation uncertainty) and unrelated 

to the specific initial estimates of the FE model parameters. From the results in Tables 

5.13 and 5.14, it appears that the accuracy of the estimated FE model parameters does 

not depend on the norm of the initial estimation error defined in Eq. (5.39).   
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Case study 4: Effects of input measurement noise 

The effects of input measurement noise on the parameter estimation results 

obtained from the proposed parameter estimation framework are examined by 

polluting the input ground acceleration time history with artificial measurement noise 

prior to the estimation phase. The noiseless time history of the earthquake ground 

acceleration shown in Figure 5.4 is used to simulate the acceleration response of the 

structure in the simulation phase. The simulated floor acceleration response time 

histories are then polluted with 2% g RMS measurement noise to simulate the noisy 

measured response of the structure. In the estimation phase, the time history of the 

input ground acceleration is contaminated with a zero-mean Gaussian white noise of 

three different amplitudes, namely 0.5% g, 2% g, and 5% g RMS. The second and 

third noise levels are unrealistically high; however, they are included to examine the 

detrimental effects of extreme input noise amplitude on the parameter estimation 

results. As mentioned earlier, the proposed parameter estimation and nonlinear FE 

model updating framework is based on deterministic (noiseless) input ground 

acceleration(s); therefore, the presence of input noise is expected to adversely affect 

the performance of the parameter estimation procedure. 

Table 5.15 reports the estimated FE model parameters and simulation error 

variances, normalized by the corresponding true parameter values, for all cases 

considered herein. The detrimental effects of the input measurement noise on the 

estimated FE model parameters and simulation error variances are evident. The 

presence of input noise biases the FE model parameter estimation results and the 
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estimation error increases with increasing amplitude of the input noise. Moreover, as 

the amplitude of the input noise increases, the estimated simulation error variances 

increase. This means that the estimation framework indirectly accounts for the effects 

of input noise by estimating large amplitude measurement noise at the output channels. 

However, the input Gaussian white noise signal is filtered through the nonlinear 

structural FE model and transformed into non-white and non-Gaussian signals at the 

output channels. The estimation framework approximates these non-white, non-

Gaussian signals as equivalent Gaussian white measurement noise. This 

approximation results in erroneous estimation results. It is worth mentioning that state-

of-the-art accelerometers (e.g., force-balance EpiSensor from Kinemetrics, Inc.) have a 

residual electrical noise of 0.15% g RMS, which is significantly lower than the lowest 

RMS value (i.e., 0.5% g) considered here for the input measurement noise. 

Table 5.16 reports the estimated C.O.V.s of the estimation parameters obtained 

using the two methods presented in Section 5.4. Unlike in the previous case studies, 

the estimated C.O.V.s in this case do not correlate with the accuracy of the estimated 

FE model parameters, i.e., although some FE model parameters have significant 

estimation errors, the corresponding C.O.V.s are relatively small (especially in the case 

of 5 % g RMS input noise). In the case of 5% g RMS input noise for EQ1, the 

computed Hessian matrix was badly conditioned and therefore, the C.O.V.s of the 

estimated FE model parameters could not be computed using Method 2. 

From this case study, it is concluded that, in order to increase the accuracy and 

robustness, the proposed parameter estimation framework should be further extended 
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to account for input measurement noise as well as non-white and/or non-Gaussian 

and/or correlated (across channels) output measurement noise. 
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5.6. Conclusions 

This study presented a framework for nonlinear system identification, 

structural health monitoring (SHM), and damage identification (DID) of civil 

structures. The proposed framework uses an extended maximum likelihood (ML) 

estimation method to estimate finite element (FE) model parameters as well as 

simulation error variances and update the nonlinear FE model of the structure based on 

input-output data measured during a damage-inducing event such as an earthquake. 

The computational efficiency of the parameter estimation and nonlinear FE model 

updating procedure was improved using the direct differentiation method (DDM) to 

compute FE response sensitivities with respect to FE model parameters. The FE model 

parameter estimation uncertainties were quantified using the estimation covariance 

matrix which was approximated by the Cramer-Rao lower bound (CRLB). Two 

methods to approximate analytically and/or numerically the CRLB were presented. 

The first method, referred to as Method 1, estimated the CRLB based on the 

(asymptotically exact) Fisher information matrix (FIM). Evaluation of the FIM 

required the computation of the FE response sensitivities with respect to the FE model 

parameters, which were estimated through the extended ML estimation framework. 

The second method, referred to as Method 2, approximated the FIM through the 

Hessian of the extended ML objective function. The accuracy of these two approaches 

for parameter estimation uncertainty quantification was investigated using a 

deterministic sampling approach in the context of an application example. 
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The proposed framework is general and applies to different types of structural 

and/or geotechnical systems, different types of FE modeling and analysis techniques, 

and different types of loads (e.g., static, quasi-static, time-dependent, dynamic). 

Although the proposed framework is general, the validation studies presented in this 

study were based on simple but realistic nonlinear frame-type structural models and 

earthquakes as potentially damaging events. Two proof-of-concept studies using 

numerically simulated structural response data were conducted to investigate the 

performance and evaluate the accuracy of the proposed framework. In both validation 

studies, the proposed framework successfully estimated the identifiable model 

parameters as well as the simulation error variances and updated the FE model of 

interest, even in the presence of high output measurement noise levels and/or way-out 

initial estimates of the FE model parameters. The superiority of the proposed nonlinear 

FE model parameter estimation framework over the traditional least squares method 

was highlighted by considering heterogeneous output measurements (i.e., structural 

response measured from different types of sensors). The proposed estimation 

procedure was able to systematically infer information from the heterogeneous 

measured data and estimate the FE model parameters, while the traditional least 

squares method fell short in extracting information consistently from all measured 

data. Furthermore, the detrimental effects of input measurement noise on the 

performance of the proposed framework were investigated and quantified.  

The presented parameter estimation and nonlinear model updating framework 

does not account for the effects of model uncertainties, input measurement noise, 
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unmeasured (unknown) excitations, and non-white, non-Gaussian, and/or correlated 

output measurement noise. Research is underway to remove these current limitations, 

and to validate the framework using experimental data obtained from large-scale shake 

table tests. 
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Appendix 5.I:   Derivation of the Exact Fisher Information Matrix 

The FIM is defined as TE    I ss  where  ...s  denotes the score function and 

the expectation is taken with respect to  rθy ,1 kp   (see Eq. (5.26)). The score 

function is defined as the gradient of the log-likelihood function with respect to the 

parameters to be estimated [34]. For the ML estimation problem stated in Eqs. (5.20) 

and (5.21), the score function can be derived as 
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in which  Tnrrrdiag
y

Rr ...)( 21  where ir  is the i
th

 diagonal entry of matrix R, 

and   is the log-likelihood function defined as the natural logarithm of the likelihood 

function given in Eq. (5.18), i.e., 
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(5.41) 

where    001
,,,ˆ qquθhθy 

igii 
  is the FE predicted response at the i

th
 time step and 

the dependence of  θyiˆ  on 
ig 1

u , 0q , and 0q  is dropped for notational convenience. 

As mentioned before, the simulation error (defined in Eq. (5.8)) is characterized as a 

zero-mean independent Gaussian white noise vector process, i.e., statistically 

independent across time and measurement channels. Substituting Eq. (5.41) into Eq. 

(5.40) yields 
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 component of the simulation error vector at the i
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step. The FIM can be obtained as 
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The first submatrix θθI  can be derived as 
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The second submatrix θrI  can be obtained as 
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in which the term   ˆ T
i i jE   Y y θ W  can be derived as  
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The simulation error is modeled as a zero-mean Gaussian white noise (across time) 

vector with statistically independent components. Therefore, when 21 tt   or nm  , it 

follows that 
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On the other hand, when 21 tt   and nm  , it follows that 
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Y y θ  is Gaussian. Therefore,   ˆ T
i i jE    Y y θ W 0  and Eq. (5.45) 

reduces to 
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(5.46) 

Finally, the last submatrix in Eq. (5.43), rrI , can be obtained as 
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The term  i
E W  can be derived as 
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Therefore, according to Eq. (5.47), the submatrix rrI  reduces to 
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CHAPTER 6: OUTPUT-ONLY STRUCTURAL SYSTEM AND 

DAMAGE IDENTIFICATION USING STOCHASTIC 

NONLINEAR FINITE ELEMENT MODEL UPDATING 

 

6.1. Introduction  

Disastrous events such as earthquakes are known to inflict potentially 

devastating damage to critical civil infrastructures. Potential impacts of earthquakes 

and other natural and man-made hazards on urban societies can be reduced through 

accurate and timely risk mitigation decisions after the catastrophic event, which can be 

supported and facilitated by the use of advanced structural health monitoring (SHM) 

methods to help identify damage in critical civil infrastructures. Damage identification 

(ID) in civil infrastructures based on changes in the identified modal properties of an 

equivalent linear elastic model is perhaps the most popular SHM approach ([1-3] to 

name only a few) .Nevertheless, damage ID based on linear modal ID is subjected to 

three key shortcomings: (i) the underlying linearity assumption is an idealization of the 
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real structure behavior, which is intrinsically nonlinear from the onset of loading [4]; 

(ii) modal parameters are global properties of the structure and often insensitive to 

local damages; and (iii) low-amplitude vibrations used for modal identification contain 

information about loss of effective stiffness, but cannot provide any information about 

other important manifestations of damage (such as loss of strength, ductility capacity, 

etc.).  

Nonlinear finite element (FE) model updating in time domain is an advanced 

system and damage ID approach for civil structures that can overcome the 

shortcomings of the damage ID based on linear modal ID methods (e.g., [5-10]). The 

measured input excitation and output response of the structure are utilized in this 

method to update the nonlinear FE model of the structure of interest. The updated FE 

model can then be interrogated to extract detailed information about various 

manifestations of damage in the structural components and systems. Nonetheless, 

measuring the exact input excitation for real world civil structures is often 

unattainable. For example, besides the possibility of measuring incomplete, erroneous, 

and/or noisy input data for typical civil structures, measuring the input earthquake 

excitations for underground structures, multi-span bridges spanning over deep water, 

and buildings with deep underground basement can be impractical or impossible. It is 

therefore rational to extend state-of-the-art input-output nonlinear FE model updating 

methods to account for the effects of unknown, erroneous, and/or noisy input 

excitations. This objective is pursued in this study through a joint structural system 

and input excitation estimation approach. 
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Estimating the unknown exciting forces in structural systems has been the 

subject of past studies in the literature. In [11,12], the conjugate gradient estimation 

method has been used to estimate the external forces and time-dependent system 

parameters of simple structural models including a linear elastic MDOF mass-spring 

model and a cantilever beam. An extended inverse estimation algorithm based on the 

extended Kalman filter and intelligent recursive least squares method is developed in 

[13] to estimate the unknown input load in a SDOF nonlinear mass-spring model 

representing a tower structure. An inverse method to identify input forces of non-linear 

structural systems based on the extended Kalman filter method is developed and 

applied to a MDOF mass-spring [14] and a linear elastic cantilever beam model [15]. 

A method based on sensitivity of structural responses is presented in [16] for 

identifying both the system parameters and the input excitation force for a simply 

supported steel beam. Based on linear minimum-variance unbiased estimation method, 

an algorithm is proposed in [17] for estimating jointly the input and state of a structure 

from a limited number of acceleration measurements. The algorithm is validated using 

the experimental data obtained from an instrumented steel beam and vibration data 

recorded from a full-scale bridge in Wetteren (Belgium). Recently, a procedure for 

joint system and input identification based on the unscented Kalman filtering method 

is proposed in [18] and validated using 2D linear elastic structural frame models. The 

structural applications in all the above-mentioned studies consist of either linear elastic 

structural models, or SDOF or MDOF nonlinear mass-spring models. These models 

are either insufficient to predict the response of a real civil structure or are based on 
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simplifying assumptions that result in a crude prediction of the real behavior of the 

structural systems. Consequently, there is a need to develop output-only nonlinear 

structural system and input estimation methodologies that are applicable to large and 

complex real world civil structure. 

This chapter proposes a novel framework for blind nonlinear system and 

damage ID of civil structures based on output-only advanced mechanics-based 

nonlinear finite element (FE) model updating using seismic excitations. This 

framework offers a computationally feasible tool for SHM and damage ID of civil 

structures when input seismic excitations are not measured or the measured seismic 

excitations are incomplete, erroneous, and/or contaminated with measurement noise. 

Two data fusion approaches based on Bayesian inference methodology are proposed in 

this study to estimate jointly the nonlinear structural model parameters and input 

earthquake excitations. Furthermore, the estimation uncertainties are quantified by 

providing a measure of plausibility or degree of belief of the estimation results. The 

proposed framework in this study is rooted in the Authors’ previous studies on 

nonlinear FE model updating of civil structures using the input-output measurement 

data ([8-10]).   

 

6.2. Output-only nonlinear system and input identification 

The time-discretized equation of motion of a nonlinear FE model at time step k 

is expressed as 
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            θfθθqrθqθCθqθM kkkkk  ,
 

(6.1) 

where   DOFDOF nn 
θM  = mass matrix;   DOFDOF nn 

θC  = damping matrix; 

   1
,


 DOFn

kk θθqr  = history-dependent (or path-dependent) internal resisting force 

vector;       1
,,


 DOFn

kkk θqθqθq   = nodal displacement, velocity, and acceleration 

vectors, respectively; 1
 θθ

n  = the FE model parameter vector;   1
 DOFn

k θf  = 

dynamic load vector. The FE model parameters include parameters characterizing the 

nonlinear material constitutive laws, inertial properties, loading, damping, geometry, 

restraint and constraint parameters [10]. In the case of uniform base excitation, 

    g
kk uLθMθf   where gDOF nn

uL 


  is the base acceleration influence matrix, and 

1


gng
k

uu    denotes the input ground acceleration vector. Using a recursive numerical 

integration rule, such as Newmark-beta method [19], Eq. (6.1) is reduced to a 

nonlinear vector-valued algebraic equation that can be recursively solved in time to 

find the nodal displacement vector. Therefore, by having the initial conditions of the 

FE model (i.e., 0 0,q q ) and the time history of the input ground acceleration, the 

equation of motion of the structure can be solved recursively in time to find the nodal 

response of the FE model at each discrete time step. In short, the nodal response of the 

FE model at time step k can be expressed as a nonlinear function of the model 

parameter vector (θ ), time history of the base acceleration vector 

(
T

Tg
k

TgTgg
k 








 uuuu  ,...,, 21:1

), and the initial conditions of the FE model ( 0 0,q q ), i.e. 

[10], 
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(6.2) 

where  ...
~

kh  is referred to as the nonlinear nodal response function of the FE model at 

time step k. In general, the response of a FE model at each time step is expressed as a 

linear or nonlinear function of the nodal displacement, velocity, and acceleration 

vectors. Denoting the response quantity estimated from the FE model at time step k by 

1
ˆ


 yy

n
k  , it follows that  

 00:1
,,,ˆ qquθhy  g

kkk 
 

(6.3) 

where  ...kh  is the nonlinear response function of the FE model at time step k.  

The actual dynamic response of a civil structure can be measured using sensors 

deployed in the structure or installed on its components. The measured response vector 

of the structure, ky , is related to the FE predicted response, kŷ , as 

   g
kkk

g
kk :1:1

,ˆ, uθyyuθv  
 

(6.4) 

in which 
1

 yv
n

k   is the simulation error vector and accounts for the misfit between 

the measured response of the structure and the FE predicted response. This misfit 

stems from the output measurement noise, parameter uncertainty, and model 

uncertainties. The latter stands for the mathematical idealizations and imperfections 

underlying the FE model, which result in an inherent misfit between the model 

prediction and the actual structural response ([10,20]). By neglecting the effects of 

model uncertainties, the simulation error due to model parameter uncertainty is 

minimized in the parameter estimation procedure and therefore, kv  in Eq. (6.4) 

accounts for only the measurement noise. Furthermore, it is assumed herein that the 
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measurement noise is stationary, zero-mean, and independent Gaussian white noise 

(i.e., statistically independent across time and measurement channels) [21] Therefore, 

the probability distribution function (PDF) of the simulation error in Eq. (6.4) is 

expressed as 
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(6.5) 

in which R  denotes the determinant of the diagonal matrix yyR
nn 

 , which is the 

(time-invariant) covariance matrix of the simulation error vector (i.e., 

  iE
T

ii  ,vvR ). 

In the output-only structural system and input identification problem of 

interest, the FE model parameter vector (θ ) and the components of the input ground 

acceleration time history ( g
k:1

u )  are time-invariant unknown parameters, which are 

modeled as random variables according to Bayesian inference method (the 

corresponding random variables are shown by Θ  and g
k:1

U , respectively). The 

objective of the output-only system and input identification problem is to  jointly 

estimate the unknown parameters such that their joint a posteriori PDF given the 

measured response of the structure is maximized, i.e., 
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(6.6) 

in which  TT
k

TT
k yyyy ,,..., 21:1  = time history of the measured response of the 

structure, and MAP stands for maximum a posteriori estimate. Two approaches are 
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proposed in this study to solve the estimation problem shown by Eq. (6.6): (i) 

recursive maximum likelihood (ML) estimation method, and (ii) stochastic filtering 

method based on recursive maximum a posteriori estimation. 

 

6.3. Recursive ML estimation method 

Using Bayes’ rule, the a posteriori probability distribution in Eq. (6.6) can be 

expressed as 
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(6.7) 

where  g
kkp

:1:1 ,uθy   = the likelihood function,  g
k

p
:1

,uθ   = the joint a priori 

distribution of the random variables Θ  and g
k:1

U , and  kp :1y  = constant independent 

of the random variables Θ  and  g
k:1

U , and. It is assumed herein that the a priori 

distribution of Θ  is independent of the a priori distribution of g
k:1

U ; therefore, 

     g
kkg ppp

:1:1
, uθuθ   . Moreover, the a priori distributions are assumed uniform. 

Thus, Eq. (6.7) is reduced to: 

 g
kkk

g
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:1:1:1:1

,, uθyyuθ  






 
(6.8) 

in which 
   
 k

g
k

p

pp
c

:1

:1

y

uθ 
  is a constant. As a result, the MAP estimation problem shown 

in Eq. (6.6) is reduced to a ML estimation problem [22] as 
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(6.9) 

According to Eq. (6.4), the likelihood function is equal to the PDF of the 

simulation error time history, i.e.,    k
g

kk pp :1:1:1 , vuθy  . Since the simulation error 

is modeled as an independent Gaussian white noise process, the likelihood function is 

derived as 
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(6.10) 

As proposed in [10], to enhance the robustness of the parameter estimation 

procedure, variance of the components of the simulation error vector (i.e., the diagonal 

entries of R  matrix) are also treated as unknowns and estimated jointly with the other 

unknown parameters (i.e., θ  and g
k:1

u ) through an extended ML estimation framework. 

The diagonal entries of the covariance matrix R  are stacked in a row vector called the 

variance vector   yr njrj  1, , where jr  is the j
th

 diagonal entry of R . 

To solve the ML estimation problem, it is more convenient to minimize the 

negative natural logarithm of the likelihood function, which results in the following 

nonlinear optimization problem to jointly estimate the FE model parameters, the 

ground acceleration time history, and the variance vector: 
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in which  ...J  = the objective function of the resulting optimization problem, ijy  = the 

j
th 

component of the structural response vector at i
th

 time step, and similarly ijh  = the 

j
th 

component of the predicted FE response vector at i
th

 time step, and the dependence 

of  ...J  on the initial conditions of the FE model ( 0q  and 0q ) is dropped for 

notational convenience. The nonlinear optimization problem in Eqs. (11)-(12) can be 

solved using gradient-based optimization procedures, which require the computation 

of the gradient of the objective function with respect to the estimation parameters. The 

gradient can be exactly derived as 
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The term 
 



















θ

uθ
g

iijh :1, 
 in Eq. (6.14) is the rate of variation (or sensitivity) of 

the j
th

 component of the FE response vector at i
th 

time step with respect to the FE 

model parameter vector θ , and is referred to as the FE response sensitivity with 

respect to FE model parameters. Likewise, the vector 
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:1,

 in Eq. (6.15) is the 

rate of variation (or sensitivity) of the j
th

 component of the FE response vector at i
th 

time step with respect to the input base acceleration vector at the l
th 

time step g
l

u , and 

is referred to as the FE response sensitivity with respect to base accelerations. It should 

be noted that since the structural system is a causal system, its response depends on the 

past and current input, but not on the future inputs. Therefore, in Eq. (6.15), 

 
0

, :1 
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 if il  . FE response sensitivities can be computed approximately using 

the finite difference method (FDM), which requires multiple runs of the FE model. 

The computational cost of the FDM significantly increases as the number of sensitivity 

parameters and the scale of the FE model increase. As a more resourceful alternative 

method, FE response sensitivities can be computed using the direct differentiation 

method (DDM), which is based on the exact (consistent) differentiation of the FE 

numerical scheme for response sensitivity computation with respect to the sensitivity 

parameters ( [23-26]). The proposed framework in this study uses the DDM to 

compute FE response sensitivities with respect to the FE model parameters and the 

components of the input base acceleration time history and therefore, offers a 



297 

 

 

 

computationally feasible framework for output-only nonlinear FE model updating 

especially for large scale nonlinear FE models. 

A recursive estimation approach is proposed herein to solve the extended ML 

estimation problem. In this approach, the estimation time domain is split into 

successive overlapping windows, referred to as estimation windows. The ML 

estimation is solved recursively across each window to find the unknown parameter 

estimates, which are then transferred to the next window and utilized as initial 

estimates. The unknown parameters consist of the FE model parameters, the base 

accelerations time history across the window, and the simulation error variances. The 

estimated FE model parameters and simulation error variances are directly transferred 

from one window to the next and used as initial estimates. The first part of the 

estimated base acceleration time history that is not overlapped with the next window, 

is taken as final estimate; while, the overlapped part is transferred and re-estimated 

over the next window. 

Figure 6.1 schematically illustrates the recursive estimation approach. The 

estimation windows have an identical length (tl = window length in number of time 

steps) and overlap with the following windows (to = overlap length in number of time 

steps). The sliding (or moving) rate is defined as time step difference between the 

starting points of two successive windows, i.e., ols ttt  . As shows in this figure, the 

m
th

 estimation window spans from time step mt1  to time step mt
2 , where s

mm ttt  1
11 , 

and l
mm ttt  12 . The first part of the estimated base acceleration time history at the 

m
th

 estimation window that is not overlapped with the (m+1)
th

 window is denoted by 
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1,,

1: 11

ˆ mg

ttt s
mm 

u  herein. Likewise, 2,,

: 21

ˆ mg

ttt m
s

m 
u  denotes the second part of the estimated base 

acceleration time history that is transferred to the next window as initial estimates. 

 

 
Figure 6.1: Schematic representation of the proposed recursive estimation approach for joint 

estimation of the FE model parameters, the simulation error variances, and the base 

acceleration time history. 

 

The proposed recursive ML estimation method for the m
th

 estimation window 

can be summarized as 
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in which, g

tm 1:1 1

ˆ


u  is the base acceleration time history from time step 1 to time step 

11 mt  estimated from past estimation windows and is used as known quantity at the 

m
th 

estimation window.  

The estimation uncertainty is quantified using the estimation joint covariance 

matrix which can be approximated by the Cramér–Rao lower bound (CRLB) [27]. As 

presented in [10], the estimation covariance matrix for the ML estimation can be 

asymptotically approximated by the inverse of the Fisher information matrix (FIM). 

Similar to the process shown in [10], the FIM for the recursive estimation problem 

shown by Eqs. (17)-(18) can be derived as (see Appendix 6.I) 
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where gntl u  is the size of g

tt mm
21 :

u , which is the base acceleration time history to be 

estimated at the m
th

 estimation window. The sub-matrices θθI , g
uθ

I  , and gg
uu

I  is 

derived as  
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Furthermore, T
gg

uθθu
II
  . Considering that the FIM as shown in Eq. (6.19) is a block 

matrix, the lower bound for the FE model parameters and the base acceleration time 

history estimation covariance matrix is derived as 
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where  
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in which     yruθy
UΘY

dpEE
g

tttt mmmmg
mtmt

mtmt









  ,,

2121
2

:
12

:
1

::,,|
 R

 and the matrix 

inequality BA   means that BA  is a positive semidefinite matrix. The right hand 

side of Eq. (6.19) is evaluated for the true values of the FE model parameters, the base 

acceleration time history, and simulation error variances (θ , g

tt mm
21 :

u , and r , 

respectively). Based on the asymptotic efficiency of the ML estimation ([28-29]), for 

an identifiable problem, θ̂ , g

tt mm
21 :

û , and r̂  converge asymptotically to their true values 

respectively and therefore, the parameter estimation covariance matrix asymptotically 

converges to the CRLB computed at the estimated parameter values. 
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A lower bound for the covariance matrix of the FE model parameters and base 

acceleration time history can be derived as ([30-31]) 

     11
Cov




θuuuuθθθ IIIIΘ gggg   
(6.25) 

   11

: 21

Cov
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tt uθθθθuuu
IIIIU 

  (6.26) 

Table 6.1 summarizes the proposed recursive ML estimation algorithm.  
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Table 6.1: Recursive ML estimation algorithm for the output-only parameter estimation and 

nonlinear FE model updating problem. 

1. Set the estimation window length lt , and the sliding rate st . Find the overlap length 

slo ttt  . Set 10
1 t . 

2. Initialize 0θ̂ , 0r̂ . Set 0u 
0,

: 1
2

1
1

ˆ g

tt
 . 

3. For the m
th
 estimation window (m = 1, 2, …): 

3.1. Set s
mm ttt  1
11 , and l

mm ttt  12 . 

3.2. Retrieve the estimated FE model parameters, simulation error variances, and base 

acceleration time history from the last estimation window (i.e., 1
ˆ

mθ , 1ˆ mr , and 

1,

: 1
2

1
1

ˆ 


mg

tt mmu ). 

3.3. Set 10,
ˆˆ

 mm θθ , and 10, ˆˆ  mm rr . 

3.4. Set 
2,1,

:

1,,

: 1
2

1
111

ˆˆ 

 
mg

ttt

mg

ttt m
s

m
o

mm uu   , and 0u 


2,,

:1 21

ˆ mg

ttt m
o

m
 . 

3.5. Solve the optimization problem shown in Eqs. (17)-(18).  

3.6. Find θθI , g
uθ

I  , and gg
uu

I   using Eqs. (20)-(22). 

3.7. Compute the CRLB for the estimation covariance matrix for the FE model 

parameters and the base acceleration time history using Eqs. (25) and (26), 

respectively. 

3.8. Move on to the next estimation window (m = m + 1, go to step 3). 
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In spite of its simplicity, the proposed recursive ML estimation method has two 

important shortcomings that may adversely affect its estimation accuracy and/or 

computational efficiency: 

(i) The ML estimation is asymptotically efficient [27]. In other words, for a large 

number of informative data samples (e.g., mm tt 21 :
y  with large estimation window 

length mm
l ttt 12  ), the ML estimator is unbiased and the parameter estimation 

covariance matrix achieves the CRLB. Thus, to achieve the estimator efficiency, 

the estimation windows should be long enough. Nevertheless, by lengthening the 

estimation window, the number of estimation parameters and therefore, the 

dimension of the optimization problem increase, which in turn requires more 

iteration for the optimization algorithm to converge. In short, enhancing the 

estimation accuracy is at the cost of increasing computational demands. 

(ii) Although the parameter estimates are transferred from one estimation window to 

the other, no information about the plausibility or degree of belief of the 

parameter estimates is transferred between the windows. The a priori 

distribution of the estimation parameters at each estimation window is always 

assumed to be uniform, regardless of the estimation accuracy achieved at the last 

window. This loss of information results in more iteration for the optimization 

algorithm to converge at each estimation window and thus, results in remarkable 

computational demands. 
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6.4. Stochastic filtering method 

To overcome the abovementioned shortcomings of the proposed recursive ML 

estimation method, an improved alternative approach is proposed in this section. This 

approach is based on a recursive maximum a posteriori (MAP) estimation, in which 

the a posteriori joint PDF of the FE model parameters and base acceleration time 

history are maximized at each estimation window using an iterative first order 

approximation method. The a posteriori point estimates and covariance matrix of the 

parameters are then transferred to the next estimation window and used as a priori 

information to solve the MAP estimation problem at the next estimation window. As 

will be shown later, this method reduces to an extended Kalman filtering (EKF) 

approach ([32]).  

Utilizing the recursive estimation approach introduced earlier, the natural 

logarithm of the a posteriori joint PDF of the FE model parameters and base 

acceleration time history at the m
th 

estimation window is derived as  
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:::
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: 2121212121

,log,log,log uθuθyyuθ 
 

(6.27) 

in which   mm tt
pc

21 :
log y  and is constant. It is assumed that g

t m 1:1 1 
u  is estimated 

from previous estimation windows and is known. For notational convenience, an 

extended parameter vector at the m
th 

estimation window is defined as 

T
Tmg

tt

T
m mm 










,

: 21

,uθψ  , where 
  1


gl ntn

m
u

θ
ψ  . By substituting Eq. (6.10) for the 
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likelihood function into Eq. (6.27) and assuming a Gaussian distribution for the a 

priori joint PDF, it follows that 
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(6.28) 

where 0k  is a constant; 
mψ̂  and 

ψP̂  are the a priori mean vector and covariance 

matrix of the extended parameter vector at the m
th 

estimation window. yyR
ntnt ll 


~

 

is a block diagonal matrix whose diagonals are the simulation error covariance matrix 

R , i.e., 
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(6.29) 

in which mm

l
ttt
12

  is the estimation window length. To find the MAP estimate of mψ , 

the a posteriori PDF in Eq. (6.28) is maximized, i.e., 
  

0
ψ

yψ






m

ttm mmp
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log
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Eq. (6.30), which is a nonlinear algebraic equation in mψ  can be solved using an 

iterative first order approximations method such as Newton-Raphson. The first-order 

Taylor series expansion of 









g

tmtt mmm
1:1:

121
,uψh   about 

mψ̂  is expressed as 

  ...ˆ
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,ˆ,
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The matrix 
















mm

mmm

m

tgmtt

ψψ

ψ

uψh

ˆ

1:1:
121

, 
 is the FE response sensitivities with 

respect to the extended parameter vector, evaluated at the a priori mean values of the 

extended parameter vector, 
mψ̂ . This matrix is denoted by C hereafter for notational 

convenience. Substituting Eq. (6.31) into Eq. (6.30) and neglecting the higher order 

terms results in the following (first order approximate) equation for the MAP estimate 

of mψ : 
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1
1

11

12121
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~ˆ~
ˆˆ uψhyRCPCRCψψ ψ   (6.32) 

 

in which 
mψ̂  is the updated (or the a posteriori) estimate of mψ . It can be shown that 

the term   1
1

11 ~ˆ~ 











 RCPCRC ψ

TT  is equivalent to the Kalman gain matrix [32] (see 

Appendix 6.II). According to the Newton-Raphson approach, the estimated (predicted) 


mψ̂  from Eq. (6.32) is iteratively used as the new center-point for the linearization of 

Eq. (6.30) to find an improved (corrected) estimation. Therefore, the prediction-



307 

 

 

 

correction procedure at each estimation window reduces to an iterative EKF method 

([32]).  

Following the EKF procedure, the a priori covariance matrix of the extended 

parameter vector 
m,

ˆ
ψP  is updated to the a posteriori covariance matrix 

m,
ˆ
ψP  after 

each prediction-correction iteration. It is moreover assumed that both the a priori and 

a posteriori joint PDF of the extended parameter vector are Gaussian. The updated 

estimation covariance matrix, is derived as (refer to [32,33] for proof) 

       KRKKCIPKCIψΨψΨP ψψ
~ˆˆˆˆ

,, 







  T

m

T

mmmmm E  (6.33) 

 

Furthermore, to improve the convergence of the iterative prediction-correction 

procedure, a definite disturbance is added to the a posteriori covariance matrix at each 

iteration to provide the a priori covariance matrix for the next iteration, i.e., 

QPP ψψ  
 ii ,1,

ˆˆ
 

(6.34) 

where Q  is a constant diagonal matrix with small (relative to the diagonal entries of  

matrix 
i,

ˆ
ψP ) positive diagonal entries. The matrix Q  is referred to as process noise 

covariance matrix in Kalman filtering approach. The subscript i in Eq. (6.34) denotes 

the iteration number. 

The recursive MAP estimation procedure can be summarized as follows. At 

each estimation window, a priori estimate of the extended parameter vector and its 

covariance matrix is being updated iteratively following an iterative EKF approach, 

until some convergence criteria are met. The resulting a posteriori mean and 
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covariance matrix of the extended parameter vector are then transferred to the next 

estimation window and utilized as the a priori information. As described earlier, the 

estimated FE model parameters and simulation error variances are directly transferred 

from one window to the next and used as initial estimates. The first part of the 

estimated base acceleration time history that is not overlapped with the next window, 

is taken as final estimate; while, the overlapped part is transferred and re-estimated 

over the next window. Suppose that the final a posteriori estimates of the mean of the 

extended parameter vector for the (m-1)
th

 estimation window is derived as 

T
Tmg
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o
mm 


















 

2,1,

:1

1,1,

:11 1
2

1
1

1
1

1
1

ˆ,ˆ,ˆˆ uuθψ 
 

(6.35) 

Likewise, that the final a posteriori estimates of the covariance matrix of the extended 

parameter vector for the (m-1)
th

 estimation window is correspondingly partitioned as 
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(6.36) 

Therefore, the a priori estimates of mean of the extended parameter vector for the m
th

 

estimation window is defined as 
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where 2,1,

:1

1,,

: 1
2

1
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mm uu   is transferred from the previous window, and 
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:1 21

ˆ mg

ttt m
o

m 
u  is initialized as zero vector, i.e. 0u 
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ˆ mg

ttt m
o

m
 . The conditional a 
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posteriori covariance matrix of the parameters that are transferred from the (m-1)
th

 

window to the m
th

 window can be derived as 
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in which 1,1,

: 1
1

1
1

ˆ 



mg

ttt o
mmu  is  replaced by 1,1, mg

u  and 2,1,

:1 1
2

1
1

ˆ 

 

mg

ttt m
o

mu  is replaced by 2,1, mg
u  

for notational convenience. Finally, the a priori covariance matrix of the extended 

parameter vector for the (m)
th

 estimation window is defined as 
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where 
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2,2,
ˆˆˆ uuP

uu
  is the initial estimate of the 

covariance matrix of 2,,

:1 21

ˆ mg

ttt m
o

m 
u  and is selected as a constant diagonal matrix. Table 

6.2 summarizes the proposed stochastic filtering algorithm for output-only parameter 

estimation and nonlinear FE model updating problem.  

 

 

 

 

 



310 

 

 

 

Table 6.2: Stochastic filtering algorithm for the output-only parameter estimation and 

nonlinear FE model updating problem. 

1. Set the estimation window length lt , and the sliding rate st . Find the overlap length 

slo ttt  . Set 10
1 t . 

2. Initialize: 0θ̂ , 0,
ˆ
θθP , 

0,
ˆ

gg
uu

P  . Set 0u 
0,

: 1
2

1
1

ˆ g

tt
 . 

3. Set 

T
Tg

tt

T








 0,

:00 1
2

1
1

ˆˆˆ uθψ  , and 















0,

0,
0, ˆ

ˆ
ˆ

gg
uu

θθ
ψ

P0

0P
P


.  

4. Postulate the process noise covariance matrix Q . Postulate the simulation error 

covariance matrix R . Set up R
~

 using Eq. (6.29). 

5. For m
th
 estimation window (m = 1, 2, …): 

5.1. Set s
mm ttt  1
11 , and l

mm ttt  12 . 

5.2. Retrieve the a posteriori estimates of mean and covariance matrix of the extended 

parameter vector from the last estimation window (i.e., 
1ˆ mψ , and 


1,

ˆ
mψP ). 

5.3. Set 
  mm ψψ ˆˆ 0, , where 

mψ̂  is defined in Eq. (6.37). 

5.4. Set 
  mm ,0,,

ˆˆ
ψψ PP , where 


m,

ˆ
ψP  is defined in Eq. (6.39).  

5.5. Iterate (i = 1, 2, …): 

a. Set 



  1,, ˆˆ imim ψψ , QPP ψψ  




1,,,,
ˆˆ

imim . 

b. Evaluate the FE model using 


im,ψ̂ ; obtain response and response sensitivities: 
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. 

c. Find Kalman gain matrix:    1
1

1

,,
1 ~ˆ~ 











 RCPCRCK ψ

T
im

T
. 

d. Find the corrected estimates of mean and covariance matrix of the extended 

parameter vector: 

  mmmm ttttimim
2121 ::,, ˆˆˆ yyKψψ   , 

    KRKKCIPKCIP ψψ
~ˆˆ

,,,,   T
imim . 

e. Check for convergence: 

if 





  1,1,, ˆˆˆ imimim tol1 ψψψ  or tol2i   (where tol1  = tolerance limit 

for relative change in the estimated parameter vector, and tol2  = iteration limit): 

iteration is converged; move onto the next estimation window (m = m + 1, go to 

step 5); otherwise iterate again at the current estimation window (i = i + 1, go to 

step 5.5).  
 

 

 



311 

 

 

 

6.5. Direct differentiation method (DDM) for finite element 

response sensitivity analysis with respect to uniform base 

excitation 

DDM is based on the exact (consistent) differentiation of the finite element 

numerical scheme with respect to the sensitivity parameters. As mentioned earlier, the 

equation of motion (shown in Eq. (6.1)) can be transferred into a nonlinear algebraic 

equation using a single-step time integration scheme, e.g., the Newmark-beta method. 

Based on the Newmark-beta method, the acceleration and velocity vectors at time step 

k are approximated as 

1413121   kkkkk aaaa qqqqq 
, 1413121   kkkkk bbbb qqqqq 

 (6.40) 

where 1a  to 4a  and 1b  to 4b  are integration coefficients. Substitution of these 

equations into Eq. (6.1) results in the following nonlinear vector-valued algebraic 

equation in kq : 

            ψfψψqrψqψCψqψM kkkkk ba
~

,11 
 

 (6.41) 

in which 

                     ψqψqψqψCψqψqψqψMψfψf 141312141312
~

  kkkkkkkk bbbaaa    (6.42) 

and ψ  is the sensitivity parameter vector, i.e., parameters with respect to which the FE 

response sensitivity is computed. Sensitivity parameters are the FE model parameters 

and/or the components of the uniform base acceleration time history. FE response 

sensitivity computation for FE model parameters using DDM is discussed in the 
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literature (e.g., [23-26]). This section emphasizes on the FE response sensitivity 

computation with respect to the input base acceleration. 

For the sake of derivation simplicity, it is assumed herein that g
iuψ  , which is 

the uniform base acceleration vector at i
th

 time step. As mentioned earlier, in the case 

of earthquake base excitation, the external force vector in Eqs. (41) and (42) is written 

as g
kk uMLf  . Eq. (6.41) is differentiated with respect to 

g
iuψ   to derive the 

response sensitivity with respect to the uniform base acceleration vector at i
th

 time 

step, i.e., 
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(6.43) 

in which the matrix in the left hand side of Eq. (6.43) is called the dynamic tangent 

stiffness matrix,  
1k

dyn
TK  and is available from the FE solution if a Newton-Raphson 

iterative scheme is used to solve Eq. (6.41). Following Eq. (6.42), the right hand side 

of Eq. (6.43) is derived as 
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(6.44) 

in which the vectors 
g
i

k

u

q
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, and 
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 are available from the last time step 

sensitivity computation. Moreover, it is clear that 
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δ , where δ  is the 
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Kronecker delta. Therefore, Eq. (6.43), which is a linear algebraic equation, can be 

solved in one-step to compute the FE response sensitivity with respect to the uniform 

base acceleration vector at i
th

 time step, g
iu . Once Eq. (6.43) is solved, sensitivities of 

nodal velocity or acceleration with respect to 
g
iu  can be easily obtained using Eq. 

(6.40). The sensitivity computation is repeated for each time step in the same way. To 

provide the required computational tool in this study, the DDM method to compute the 

FE response sensitivities with respect to the uniform base excitation is implemented in 

the open source structural analysis software framework OpenSees [35].  

 

6.6. Validation study 

Numerically simulated data from a three-dimensional (3D) 5-story 2-by-1 bay 

reinforced concrete (RC) frame building subjected to bidirectional seismic excitation 

is used to verify the performance of the proposed framework (Figure 6.2). The north-

south component of the base excitation is assumed to be measured and known, while 

the east-west component is assumed to be unmeasured and unknown. Moreover a set 

of five unknown material parameters characterizing the nonlinear material constitutive 

model of reinforced concrete are treated as unknowns and are identified in the 

estimation phase. A mechanics-based nonlinear finite element (FE) model of the 

building, developed in the OpenSees, is used to simulate the response of the building 

to the earthquake event. In this simulation phase, the FE model of the building and the 

seismic input excitation are assumed to be completely known. The simulated 
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responses of the structure are then extracted and contaminated by artificial 

measurement noise to obtain the measured response of the structure. In the estimation 

phase, the measured response of the structure is utilized to estimate the five FE model 

parameters and the time history of the base acceleration in the EW direction. The 

output-only parameter estimation and nonlinear FE model updating frameworks 

presented in this study are implemented in MATLAB [36] and interfaced with 

OpenSees [35] for FE response and response sensitivity computations. 

 

6.6.1. 3D RC frame building structure 

The building has two and one bays in the longitudinal and transverse 

directions, respectively, with plan dimensions of 10.0×6.0 m. The building has a total 

height of 20.0 m with constant story height of 4.0 m. The structure is designed as an 

intermediate moment-resisting RC frame for a moderate seismic risk zone (downtown 

Seattle, WA) with Site Class D and short-period and one-second spectral accelerations 

of 1.37MSS g  and 1 0.53MS g , respectively. Dead and live loads and 

corresponding seismic masses are calculated according to the 2012 International 

Building Code [37]. Longitudinal beams have a square cross-section of 0.40×0.40 m 

and are reinforced with 3 #8 longitudinal reinforcement bars at top and bottom, and #3 

@ 100 mm transverse reinforcement. Transverse beams have a rectangular cross-

section of 0.40×0.45 m and are reinforced with 4 #8 longitudinal reinforcement bars at 

top and bottom, and #3 @ 100 mm transverse reinforcement. The building has six 

identical 0.45×0.45 m RC columns reinforced with 8 #8 longitudinal reinforcement 
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bars and #3 @ 150 mm transverse reinforcement. Grade 60 reinforcing steel is 

considered for the columns and beams. Figure 6.2 shows the building view, and details 

of the RC beam and column sections. 

 

Figure 6.2: RC frame building structure: isometric view and cross-section of beams and 

columns.  

 

The FE model of the structure is developed using distributed-plasticity, 

displacement-based, structural FE models. In this approach, the structure is spatially 

discretized using fiber-section, displacement-based, beam-column elements 

formulated using Bernoulli-Euler beam theory. The material nonlinearity can spread 

over several sections monitored along the element, which are called integration points. 

The sections are further discretized into layers or fibers [38], the stress-strain behavior 

of which is governed by associated (nonlinear) uniaxial material constitutive laws (see 

Figure 6.3). In this study, the selected constitutive law for the concrete material is 
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based on the Popovics-Saenz concrete model ([39,40]), a typical cyclic response of 

which is shown in Figure 6.4(a). In general, this material model is governed by six 

parameters, which are subdivided into two primary parameters and four secondary 

parameters. The two primary parameters ( cE  = initial tangent stiffness, and cf   = 

concrete compressive strength) are treated as unknown FE model parameters to be 

identified while the other four parameters are assumed known and constant. The steel 

reinforcements are modeled using the modified Giuffré-Menegotto-Pinto material 

constitutive model [41] with smooth curved shaped loading and unloading branches as 

illustrated in Figure 6.4(b). This material model is characterized by eight parameters, 

which are subdivided into three primary parameters and five secondary parameters. 

Treated as unknown FE model parameters, the three primary parameters are E = 

elastic modulus, yσ  = initial yield strength, and b = strain hardening ratio. The other 

five secondary parameters are assumed known and constant and are selected based on 

the suggested values in [41]. The FE model parameter vector is defined as 

 ccy fEbE  σθ̂  . The true (exact) values of the FE model parameters are 

taken as GPa200trueE , MPa400σ true
y , and 05.0trueb , GPa30true

cE , and 

MPa40 true
cf . 
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Figure 6.3: Hierarchical discretization levels in distributed plasticity structural FE models 

using fiber-section displacement-based beam-column elements (adapted from [8]).  

 

  
(a) (b) 

Figure 6.4: Typical cyclic behavior of the employed material models: (a) Popovics-Saenz for 

concrete material, (b) Giuffré-Menegotto-Pinto for reinforcing steel material. 

 

A ground acceleration record from the 2004 Parkfield earthquakes (Cholame 2 

west station) [42] is selected for this study (see Figure 6.5). Nonlinear analysis is 

performed by first applying the gravity load quasi-statically and then the base 

excitation dynamically. The nonlinear dynamic time history analysis is performed 

using the Newmark average acceleration method [19] to recursively integrate the 

equations of motion in time using a constant time step size of sec025.0t , and the 
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Newton-Raphson method to solve iteratively the nonlinear incremental dynamic 

equations of equilibrium at each time step. Rayleigh damping [19] is used to model the 

damping energy dissipation characteristics (beyond material hysteretic energy 

dissipation) of the structure by assuming a damping ratio of 2 percent for the first and 

third modes after applying gravity loads ( sec43.11 T , sec37.12 T , and sec30.13 T ). 

 
Figure 6.5: 2004 Parkfield earthquake ground motion (Cholame 2 west station, resampled at 

40 Hz); top: 90° component applied in N-S direction, and bottom: 360° component applied in 

E-W direction. 

 

6.6.2. Recursive ML estimation method 

In the simulation phase, eight FE simulated response time histories are 

obtained and polluted by artificial measurement noise to provide measured response of 

the structure. The measured response time histories consist of first, fourth, and fifth (or 

roof) level absolute acceleration response and roof relative (to base) displacement 

response. All the responses are measured in both north-south and east-west directions 

at the north-east corner of each level (see Figure 6.2). The acceleration response time 

histories are polluted by a 1% g RMS zero-mean Gaussian white noise, and the 
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displacement response time histories are polluted by a 0.5% [m] RMS zero-mean 

Gaussian white noise. Although the earthquake base excitation as shown in Figure 6.5 

is longer than 5 seconds, only the first 5 seconds of the base acceleration time history 

are estimated herein. Three case as listed in Table 6.3 are studied to investigate the 

performance of the proposed ML recursive estimation method for the purpose of 

output-only parameter estimation and nonlinear FE model updating framework. The 

specifications of these case studies are further described in the following part. 

Estimation window: Three types of estimation window are considered herein: 

EW1, EW2, and EW3. EW1 has a length of 100 time steps (i.e., 

sec5.2025.0100 lt ), with a moving rate of 50 time steps 

( sec25.1025.050 st ). EW2 has a length of 140 time steps and moving rate of 70 

time steps (i.e., sec5.3025.0140 lt , and sec75.1025.070 st ). The overlap 

ratio (i.e.,  
l

o
t

t
, where to= tl - ts) for both EW1 and EW2 is 50%. EW3 expands over 

the whole 5 seconds of the estimation time domain; in other words, EW3 is a batch 

estimation case in which the whole time history of the base acceleration is estimated 

jointly with the FE model parameters, and the estimation noise variances. By using 

EW1, EW2, the estimation time domain is divided into three and two estimation 

windows, respectively.  

Initial estimate of the FE model parameters and base accelerations: The initial 

estimates of FE model parameters ( 0θ̂ ) are selected as 
trueEθ 80.0ˆ

1,0  , 

true
yθ σ40.1ˆ

2,0  , 
truebθ 20.1ˆ

3,0  , 
true
cEθ 80.0ˆ

4,0  , and 
true

cfθ  70.0ˆ
5,0 . The initial 
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estimates of the base accelerations are selected as zero. The feasible search domain for 

the FE model parameters and base accelerations are selected as 00 0.25.0 θθθ  , 

gug g 11   , respectively. 

Initial estimate of the simulation error variances: The simulation error 

variance is expected to be equal to the measurement noise variance. The true value of 

the measurement noise variance for the acceleration and time histories, which are 

respectively polluted by 1% g and 0.5% [m] RMS Gaussian white noise, are 

3106.9 true
Accr   22/ sm , and 5105.2 true

Dispr  [m
2
]. The initial estimate of the 

simulation error variance for acceleration response data is selected as 

2
0, 102.2 Accr   22/ sm , and for displacement response data is selected as 

6
0, 109 Dispr [m

2
], which correspond to 1.5% g RMS and 0.3% [m] RMS 

measurement noise, respectively. The feasible search domain for the simulation error 

variance is set as 00 101.0 rrr  .  

Optimization algorithm and convergence criteria: The nonlinear optimization 

problem shown in Eqs. (17)-(18) is solved using an interior-point method ([43,44]) 

herein, which is available as part of the MATLAB optimization toolbox [45]. The 

convergence criterion for the optimization algorithm consists of the two following 

conditions; the optimization process is considered converged if any of the two 

conditions is met: 
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Condition 1: 4
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m

r

ψ

r

ψ
   (6.45) 

Condition 2:   410,  

 rψJ  (6.46) 

where mψ̂  is the vector of estimated parameters at the m
th

 optimization iteration 

normalized by the corresponding initial estimates, 
2

...  denotes the second order (or 

Euclidean) norm, and 


...  denotes the infinity norm ( = the maximum absolute 

value of vector components). 

Table 6.3: Validation cases studies. 

Case # Estimation window Window length Overlap length 

1 EW1 100 50 

2 EW2 140 70 

3 EW3 200 - 
 

 

Figure 6.6 compares the true and estimated EW component of the base 

acceleration time history for three cases considered. Defined as the difference between 

true and estimated acceleration time history, the estimation error time history is also 

shown in Figure 6.9 for each case. It can be observed that the base acceleration time 

history is very well estimated in all three cases. 
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(a) 

 
(b) 

 
(c) 

Figure 6.6: Left: Comparison of the estimated and true base acceleration time history in the 

EW direction; Right: estimation error of the base acceleration time history; (a): Case #1; (b): 

Case #2; (c): Case #3. 

 

Figure 6.7 shows the standard deviation (S.D.) of the estimated base 

acceleration time history. The S.D.s are obtained from the marginal a posteriori 

covariance matrix as introduced in Eq. (6.26). As can be observed, the estimated S.D.s 

are the largest and smallest in Case #1 and Case #3, respectively. In other words, by 

increasing the estimation window length, the uncertainties associated with the 

estimated base acceleration time history is decreased. It should be noted that the 
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sudden drops (notch point) in Figures 6.7(a), and 6.7(b) coincide with the starting 

point of each estimation window.  

 

  
(a) (b) 

 
(c) 

Figure 6.7: Standard deviation (S.D.) of the estimated base acceleration time history in the east-

west direction; (a): Case #1; (b): Case #2; (c): Case #3. 

 

 

Table 6.4 compares the converged estimates of the five FE model parameters 

normalized by their corresponding true parameter values and the estimation standard 

deviation of each model parameter (evaluated using the CRLB) normalized by the 

corresponding point estimate of the parameter; the iθ θσ
i

ˆˆ  can be loosely interpreted 

as the coefficient of variation (C.O.V.) of the estimated material parameter. This table 

also reports the relative root mean square error (RRMSE) of the predicted base 

acceleration time history in EW direction. The RRMSE is defined as 
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(6.47) 

As can be observed, the FE model parameters are estimated with comparable 

accuracy in all the three cases; however, the RRMSE of the estimated base 

acceleration time history is slightly smaller for Case #3 than the two other cases.  

 

Table 6.4: Comparison of FE model parameter estimation results in three case studies. 

Case 

study 

# 

Final estimates of material parameters Final estimates of C.O.V. (%) 

)ˆ(RRMSE g
u

(%) 
trueE

Ê  

true
y

y

σ

σ̂  

trueb
b̂  

true
c

c

E

Ê  

true
c

c

f

f



ˆ
 

)ˆ(C.O.V. E  )ˆ(C.O.V. yσ  )ˆ(C.O.V. b  )ˆ(C.O.V. cE  )ˆ(C.O.V. cf 
 

1 1.000 0.993 1.019 1.004 1.001 0.372 0.317 1.784 0.931 1.281 5.236 

2 1.001 0.999 1.022 1.001 0.992 0.295 0.279 1.475 0.741 1.078 5.251 

3 1.000 0.997 1.024 0.999 1.009 0.444 0.345 1.463 1.261 1.482 4.812 
 

 

Furthermore, Table 6.5 reports the converged estimated simulation error 

variances for the eight measurement channels, normalized by their corresponding 

measurement noise variance. The simulation error variance estimation is inaccurate 

and no difference can be observed between the three case studies. As illustrated in 

Appendix 6.I, the CRLB for the i
th

 component of simulation error variance vector is 

approximated as  2ˆ2
irk

, in which k is the total number of data samples used in the 

estimation process (i.e., k = 200 herein). Therefore, the approximate C.O.V. of the 

simulation error variance is 14.1%, 12.0%, and 10%respectively for Cases #1, #2 and 

#3, which represent relatively large uncertainty in the estimated simulation error 

variances due to the limited time samples of the measured data used in the estimation. 
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It should be recognized that incorrect estimation of the simulation error variances 

adversely affects the estimation of the CRLB for the estimated FE model parameters 

and base acceleration time history, since the FIM as shown in Eqs. (20)-(22) depends 

on the estimated simulation error variances.  

 

Table 6.5: Comparison of the estimated simulation error variance in three case studies. 

Case 

study 

# 

Final estimates of simulation error variance, truerr /  

Acc1-

EW 

Acc1-

NS 

Acc4-

EW 

Acc4-

NS 

Acc5-

EW 

Acc5-

NS 

Disp5-

EW 

Disp5-

NS 

1 2.078 1.170 0.625 0.896 0.631 0.960 0.796 0.794 

2 0.758 0.885 0.580 0.895 1.970 0.856 0.789 0.797 

3 0.522 0.877 0.673 1.007 0.632 1.129 0.712 0.778 
 

 

Figure 6.8 shows the convergence history of the five FE model parameters for 

Case #3. In this figure, the number of iterations is equal to the number of evaluation of 

the ML objective function, which in turn is equal to the number of FE model runs. 

Spike-like behavior is observed in the convergence histories in this figure. This spike-

like behavior is the result of perturbation in the estimation parameters to escape local 

minima. The optimization algorithm detects when iterations appear to be converging 

to a local minimum, and then perturbs the parameters to escape the domain of 

attraction of that local minimum. 
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Figure 6.8: Convergence history of the estimated FE model parameters for Case #3. 

 

Finally, Table 6.6 reports the total number of estimation iterations (which is 

equal to the total number of runs of the FE model) and total computation time (in 

hour) required for each case study. Each case study was run in parallel on a Dell 

Precision T7610 desktop workstation using only one Intel Xeon E5-2630 (2.6 GHz) 

processor with 6 cores. As can be seen, the output-only parameter estimation and 

nonlinear FE model updating using the recursive (or batch) ML estimation method 

requires significant number of iterations and is computationally demanding. 
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Consequently, the method may perceive to be unsuitable for applications including 

large scale structural FE models. 

 

Table 6.6: Comparison of computational time in three case studies. 
Case 

study 

# 

Total number of iterations Total computation time (hr) 

1 806 61 

2 712 78 

3 808 168 

 

 

6.6.3. Stochastic filtering method 

Similar to the first validation study, the simulated time histories of absolute 

acceleration response of  first, fourth, and fifth (or roof) level and relative (to base) 

displacement response of roof level in both north-south and east-west directions, 

measured at north-east corner of the building,  are used as the measured structural 

responses. The acceleration and displacement response time histories are respectively 

polluted by 1% g and 0.5% [m] RMS zero-mean Gaussian white noise Different case 

studies, as listed in Table 6.7 are considered herein to investigate the performance of 

the proposed output-only parameter estimation and nonlinear FE model updating 

framework using stochastic filtering method. Case studies #1 and #2 examines the 

effects of estimation window length on the performance of the proposed framework. 

Case #3 studies the effect of convergence criteria (as introduced in Table 6.2) on the 

accuracy of the parameter estimation results. Finally, in Case study #4, only six 
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measured response time histories (i.e., absolute acceleration response time histories of 

third, and fifth levels, and displacement response time histories of roof level, measured 

at north-east corner of the building, in both north-south and east-west directions) are 

used to study the performance of the framework with sparse measured structural 

response data.  

Table 6.7: Validation cases studies. 

Case # 
Estimation 

window 

Convergence criteria 
Measured data set 

tol1 tol2 

1 EW1 0.01 40 
8 channels (6 accelerations, 2 

displacements) 

2 EW2 0.01 40 
8 channels (6 accelerations, 2 

displacements) 

3 EW2 0.0075 60 
8 channels (6 accelerations, 2 

displacements) 

4 EW2 0.0075 60 
6 channels (4 accelerations, 2 

displacements) 
 

 

Estimation window: Two types of estimation window are considered herein: 

EW1, and EW2. The length of both estimation windows is equal to 50 time steps (i.e., 

sec25.1025.050 lt ). For EW1, sec625.0025.025 st , and for EW2 

sec375.0025.015 st , where ts denotes the moving (or sliding) rate of the 

estimation window. Therefore, the overlap ratio (i.e.,  
l

o
t

t
, where to= tl - ts) is 50% and 

70%, respectively for EW1 and EW2. By using EW1, the estimation time domain (i.e., 

the first five seconds of the earthquake excitation) is divided into seven estimation 

windows; while, it is divided into eleven estimation windows by using EW2. EW2 has 

a wider overlap length; therefore, the parameter estimation results using EW2 are 

expected to be more accurate than those using EW1. However, the accurate estimation 
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results of EW2 are expected to be at the cost of higher computational demands than 

those of EW1. 

Initial estimate of mean vector and covariance matrix of FE model 

parameters: The initial estimates of FE model parameters ( 0θ̂ ) are selected as 

trueEθ 80.0ˆ
1,0  , true

yθ σ40.1ˆ
2,0  , 

truebθ 20.1ˆ
3,0  , 

true
cEθ 80.0ˆ

4,0  , and 

true
cfθ  70.0ˆ

5,0 . The covariance matrix of the initial estimates of the FE model 

parameter vector, which quantifies the uncertainty in the initial estimates of the FE 

model parameters, is selected as a diagonal matrix  ip0,
ˆ
θθP . The term ip , or the i

th
 

diagonal entry of 0,
ˆ
θθP , is the variance of the initial estimate of the i

th
 FE model 

parameter and is selected as  2,0
ˆ10.0 ii θp  . 

Initial estimate of mean vector and covariance matrix of base accelerations: 

As mentioned earlier, the initial estimates of the base acceleration is zero. The 

covariance matrix of the initial estimates of the base acceleration vector 
0,

ˆ
gg

uu
P   is 

selected as a diagonal matrix with constant diagonal entries of 0.0625  22/ sm , which 

is the variance of the initial estimate of the base accelerations.  

Process noise covariance matrix: The process noise covariance matrix, Q  as 

introduced in Eq. (6.34), serves to increase the a priori estimation uncertainties and 

therefore, increases the relative importance attributed by the filtering method to the 

response measurements versus the a priori information transferred from the last 

estimation iteration. The matrix Q  is a time-invariant (constant) diagonal matrix 
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herein. The first θn  diagonal entries, which are correspond to the FE model 

parameters, are selected as 810 , and the other diagonal entries, which are correspond 

to the estimated base accelerations, are selected as 410 . It should be recognized that 

the selection of the diagonal entries of  Q  matrix has a dominant influence on the 

performance and convergence rate of the proposed estimation method.  

Simulation error covariance matrix: The diagonal entries of the simulation 

error covariance matrix, R  as introduced following Eq. (6.5), represent the 

measurement noise variances herein. In a real world application, the statistics of the 

measurement noise are unknown, but can be approximately estimated by quantifying 

the noise sources. Here, the amplitude of the measurement noise for acceleration 

response time histories is estimated as 1.5% g RMS, and for displacement response 

time histories is estimated as 0.3% [m] RMS.  

Figure 6.9 compares the true and estimated EW component of the base 

acceleration time history for four cases considered in Table 6.7. Defined as the 

difference between the true and estimated acceleration time history, the estimation 

error time histories are also shown in Figure 6.9. It can be observed that the base 

acceleration time history is very well estimated in all four cases. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.9: Left: Comparison of the estimated and true base acceleration time history in the 

east-west direction; Right: estimation error of the base acceleration time history; (a): Case 

#1; (b): Case #2; (c): Case #3; (d): Case #4. 

 

 

Likewise, Figure 6.10 shows the standard deviation (S.D.) of the estimated 

base acceleration time history. The S.D.s are obtained from the marginal a posteriori 
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covariance matrix of the first part of the estimated acceleration time history in each 

estimation windows (i.e., 1,ˆ g
u ), which is equal to the submatrix 1,1,

ˆ
gg

uu
P   as shown in 

Eq. (6.36). Figure 6.10 shows notch points in the estimated S.D. time histories, which 

are the result of a sudden drop in the estimated S.D.s. The notch points coincide with 

the starting point of each estimation window (i.e., mt1 , where m denotes the m
th

 

estimation window). Since the structural system is causal, all the structural response 

data samples measured across the m
th

 estimation window are sensitive to g

t m
1

û  and 

therefore, they have more information about g

t m
1

û  than other time samples of the base 

acceleration vector. Consequently, g

t m
1

û  has a relatively smaller estimation uncertainty 

than the other samples of the base acceleration time hsitory. Moreover, comparing 

Figure 6.10(a) with the other parts of Figure 6.10 demonstrates that the EW2, which 

has larger overlap ratio than EW1, results in less uncertainty in the estimated base 

acceleration time history. Finally, for all four cases, the estimated S.D. time history has 

a tail with significantly large estimated S.D. values, which are associated with the last 

estimation window. The measured response across the last estimation window has 

limited information about the base acceleration time history and therefore, the 

estimated base accelerations have larger uncertainties.  
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(a) (b) 

  
(c) (d) 

Figure 6.10: Standard deviation (S.D.) of the estimated base acceleration time history in the 

east-west direction; (a): Case #1; (b): Case #2; (c): Case #3; (d): Case #4. 

 

 

Figures 6.11-6.14 show the time histories of the a posteriori mean (normalized 

by their corresponding true parameter values) and coefficient of variation (C.O.V.) of 

the FE model parameters for all four cases studies. The vertical black lines in these 

figures indicate the iteration limits for each estimation window. As can be seen, all the 

material parameter are recursively updated from their initial to their final estimates, 

which are (closely) converged to the corresponding true parameter values with very 

small C.O.V. in all four cases considered. The elastic response related material 

parameters (such as elastic modulus of steel and concrete) start updating from the 

beginning of the excitation and eventually converge to the true parameter values; 

while, the estimation time history of other material parameters start with a flat-like 

stage followed by a period of rapid change, which expectedly indicates that the 
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structural response becomes nonlinear and sensitive to strength and post-yield related 

material parameters. Comparing Figures 6.11-6.13 reveals the dominant estimation 

accuracy in Case #3 as compared to Cases #1 and #2. Moreover, Figure 6.14 

demonstrates the excellent performance of the proposed estimation procedure in 

correctly estimating the material parameters in case of reduced output response 

measurement channels (i.e., Case #4).   

 

 
Figure 6.11: Time histories of the a posteriori mean and C.O.V. of FE model 

parameters for Case #1. 
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Figure 6.12: Time histories of the a posteriori mean and C.O.V. of FE model 

parameters for Case #2. 
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Figure 6.13: Time histories of the a posteriori mean and C.O.V. of FE model 

parameters for Case #3. 
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Figure 6.14: Time histories of the a posteriori mean and C.O.V. of FE model 

parameters for Case #4. 

 

Table 6.8 compares the final estimates of the material parameters (i.e., the a 

posteriori estimate of mean FE model parameter vector obtained at the last estimation 

iteration), the final estimates of the C.O.V. of material parameters and the relative root 

mean square error (RRMSE) of the estimated base acceleration time history in EW 

direction. The RRMSE is defined as 
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(6.48) 

Moreover, Table 6.9 shows the total number of estimation iterations (which is 

equal to the total number of runs of the FE model) and total computation time (in 

hour) required for each case study. Each case study was run in parallel on a Dell 

Precision T7610 desktop workstation using only one Intel Xeon E5-2630 (2.6 GHz) 

processor with 6 cores.  

The presented results clearly demonstrate the successful performance of the 

proposed stochastic filtering method for output-only model parameter estimation and 

nonlinear FE model updating. The estimation results for Case studies #1 to #3 show 

progressively improved accuracy in the parameter estimation results by using larger 

overlap length for the estimation windows and tighter convergence criteria. The 

improved accuracy, however, attains at the cost of significantly higher computational 

demands as can be inferred from Table 6.9. Furthermore, the estimation framework 

successfully performed with exceptional accuracy in Case study #4, where limited 

measurement data channels were used. However, it should be noted that in general, 

reducing the number of measurement data channels may compromise the 

identifiability of the estimation problem. 
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Table 6.8: Comparison of parameter estimation results in fours case studies. 

Case 

study # 

Final estimates of material parameters Final estimates of C.O.V. (%) 

RMSE 

(%) 
trueE

Ê  

true
y

y

σ

σ̂  

trueb
b̂  

true
c

c

E

Ê  

true
c

c

f

f



ˆ
 

)ˆ(C.O.V. E  )ˆ(C.O.V. yσ  )ˆ(C.O.V. b  )ˆ(C.O.V. cE  )ˆ(C.O.V. cf 
 

1 1.022 1.000 1.018 0.949 0.947 0.037 0.018 0.064 0.090 0.099 6.689 

2 1.013 1.000 1.015 0.975 0.965 0.031 0.019 0.064 0.075 0.090 5.102 

3 1.003 0.998 1.017 0.996 0.995 0.031 0.019 0.064 0.074 0.090 5.023 

4 1.011 1.000 1.019 0.978 0.974 0.031 0.019 0.064 0.074 0.090 7.388 
 

 

Table 6.9: Comparison of computational time in four case studies. 
Case 

study 

# 

Total number of iterations Total computation time (hr) 

1 111 7.1 

2 253 13.8 

3 482 23.6 

4 424 21.1 

 

 

6.7. Conclusions 

This chapter presented a novel framework for nonlinear system identification 

of civil structures based on nonlinear finite element (FE) model updating utilizing the 

measured structural response to earthquake excitations. Grounded in Bayesian 

inference methodology, the proposed framework estimates simultaneously the FE 

model parameters and the input ground acceleration time history using only the 

measured dynamic response of the structure. Two data fusion approaches were 

presented in this study to solve the augmented input and parameter estimation 

problem: (i) recursive maximum likelihood (ML) estimation approach, which reduces 
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to a nonlinear optimization method, and (ii) stochastic filtering approach based on 

recursive maximum a posteriori (MAP) estimation method, which reduces to an 

iterative extended Kalman filtering method. Both approaches require the computation 

of FE response sensitivities with respect to FE model parameters and components of 

the input ground acceleration time history. The FE response sensitivities are computed 

accurately and efficiently using the direct differentiation method (DDM). For this 

purpose, the DDM to compute the FE response sensitivities with respect to the 

uniform base acceleration is implemented in the open source structural analysis 

software framework OpenSees. 

Numerically simulated data from a three-dimensional 5-story 2-by-1 bay 

realistic reinforced concrete (RC) frame building subjected to bidirectional seismic 

excitation is used to verify the performance of the two proposed approaches. While the 

recursive ML estimation method accurately estimated the unknown FE model 

parameters and the input ground acceleration time history, it realized to be 

computationally demanding. Nevertheless, the stochastic filtering approach based on 

recursive maximum a posteriori (MAP) estimation method offered a computationally 

feasible framework with outstanding estimation accuracy, which can pave the way for 

future applications to real world civil structures. 
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Appendix 6.I:   Derivation of the Exact Fisher Information Matrix 

for the Joint Input-model Parameter Estimation Problem 

The FIM is defined as 
TE    I ss  where  ...s  denotes the score function and 

the expectation is taken with respect to 







ruθy ,,

2121 ::
g

tttt mmmmp  . The score function is 

defined as the gradient of the log-likelihood function with respect to the parameters to 

be estimate [27] For the ML estimation problem stated in Eqs. (17)-(18), the score 

function can be derived as 
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(6.49) 

in which   is the log-likelihood function defined as the natural logarithm of the 

likelihood function, i.e., 
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time step and the dependence of  iŷ  on g
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u  is dropped for notational 

convenience. Substituting Eq. (6.50) into Eq. (6.49) yields 
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in which 
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where   









g

itiii m :1

,ˆ uθyyθv   is the simulation error vector at the i
th

 time step, which 

is characterized as a zero-mean independent Gaussian white noise vector process, i.e., 

statistically independent across time and measurement channels. The FIM, which is a 

symmetric matrix, can be obtained as 
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(6.53) 

The first submatrix θθI  can be derived as 
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(6.54) 

Therefore, 
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The second submatrix g
uθ

I   can be obtained as 
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(6.56) 

Therefore,  
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The third submatrix θrI  can be derived as 
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in which the term 
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I   in Eq. (6.53) can be derived as 
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Therefore,  
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(6.60) 

Finally, the last submatrix in Eq. (6.53), rrI , can be obtained as  

         
 





























































































k

i

k

j

T
ji

Tk

i

i

k

i

T
i

T

tt
g

tt

g

t

T

tt
g

tt

g

t

EE
k

E
kk

E

mmmmmmmmmm

1 1

1

11

111
2

::1:1::1:1

4

1

444

,,ˆ,,,,ˆ,,
2121121211

WWrWWrrr

r

Yuurθ

r

Yuurθ

Irr



 

(6.61) 

It is clear that  
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Also, it can be observed that 
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Therefore, following Eq. (6.61) it can be concluded that: 
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(6.62) 
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Appendix 6.II: Derivation of the traditional Kalman gain matrix 

It can be proved that the term   1
1

11 ~ˆ~~ 
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TT  in Eq. (6.32) is 

equivalent to the Kalman gain matrix. The Kalman gain matrix is traditionally defined 
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CHAPTER 7: IDENTIFIABILITY ASSESSMENT FOR 

NONLINEAR STRUCTURAL SYSTEM IDENTIFICATION 

PROBLEMS 

 

7.1. Introduction 

Identifiability of parametric models investigates the question of existence and 

uniqueness of solution of the associated parameter estimation problem. The 

identifiability problem is closely related to experimental design and optimal sensor 

placement problems, which respectively aims at designing the input excitation and 

sensor locations to measure the most informative data about the estimation parameters. 

Identifiability of dynamic models can be expressed at two different levels: (i) a priori 

identifiability, which is a function of the parametric model structure of the dynamic 

system, and the strength and richness of the input excitation. a priori identifiability 

pertains to whether the model parameters can be uniquely identified using ideal 

(noiseless) measurements (e.g., [1-3]); (ii) a posteriori identifiability, which addresses 
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the effects of measurement noise and model uncertainties and examines quality of the 

actual measured data to identify the model parameters [4]. Indeed, a posteriori 

identifiability implies a priori identifiability. 

An extensive amount of attention has been given to the concept of 

identifiability (or observability) of nonlinear models from various scientific 

disciplines. In spite of their apparent differences, many of the definitions and 

statements can be proved to be interchangeable or mathematically equivalent under 

certain conditions ([5-6]). Following the inverse function theorem, Tunali and Tarn [7] 

showed that model identifiability can be investigated based on the rank of the Jacobian 

matrix ( = partial derivative of the model outputs with respect to the model 

parameters). Tunali and Tarn showed that if the Jacobian matrix is full rank, the model 

parameters are locally identifiable. Likewise, Reid [8] proposed the notion of 

sensitivity identifiability based on the rank of the sensitivity matrix. Suppose  θhy ˆ  

denotes a nonlinear model parametrized by θ . Based on Reid, the model parameters 

are sensitivity identifiable if   0det CC
T , where 

θ

h
C




  is the sensitivity (or 

Jacobian) matrix. Other investigators have followed similar approaches (e.g., [9-10] to 

name only two). Bellman and Astrom [11] proposed the positive definiteness of the 

Hessian matrix of the least squares parameter estimation objective function ( = second 

order partial derivative of the sum of squared residuals with respect to the model 

parameters) as a sufficient condition for identifiability. Staley and Yue [12] showed 

that the positive definiteness of the Fisher information matrix (FIM) can provide the 

necessary and sufficient condition for identifiability of a parametric model. Similarly, 
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Rothenberg [13] showed that the model parameters are locally identifiable if the FIM 

evaluated at the parameter values is non-singular. Bowden [14] made the same 

conclusion based on an information-theoretic approach. It can be shown that under 

certain conditions, the abovementioned criteria are mathematically equivalent. In the 

context of optimal input design, Mehra [3] has proposed various scalar measures of 

identifiability based on the FIM. As suggested in [3], the identifiability can be 

quantitatively evaluated and compared using the trace, maximum eigenvalue, or 

determinant of the inverse of the FIM, which are respectively referred to as A-

measure, E-measure, and D-measure for identifiability. The smaller these measures 

are, the more identifiable the parametric model is.  

Identifiability of structural models has been fairly studied in the structural 

engineering field in the context of linear system identification and especially, optimal 

sensor placement (e.g., [15-16]). Most of the proposed approaches utilize the 

determinant ([17-20]) or trace ([21]) of the FIM to evaluate model identifiability. As a 

departure from state-of-the-art identifiability assessment approaches in structural 

engineering, Papadimitriou et al. ([22-24]) used the concept of information entropy to 

provide systematic measure of information contained in the model outputs about the 

estimation parameters. Other researchers also pursued similar approaches (e.g., [25-

26]). Chatzis et al. followed a different path in [27], where they used three methods 

based on geometric and algebraic observability from the control literature and studied 

their application for observability and identifiability of nonlinear structural models. 

Danai et al. [28] proposed the use of wavelet method to transform the sensitivities of 
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the model outputs with respect to the model parameters into the time-scale domain. 

This method provides an efficient tool to evaluate the contribution of each 

measurement channel in the individual parameter identifiability. Nevertheless, the 

structural applications in all the above-mentioned studies consist of either linear elastic 

structural models or nonlinear mass-spring models. These basic models are based on 

simplifying assumptions that result in a crude prediction of the real behavior of the 

civil structures and therefore, are futile for real world applications.  

This chapter investigates the model identifiability in structural system 

identification based on mechanics-based nonlinear finite element (FE) model updating 

approach. Recently, the authors have developed a novel framework for health 

monitoring and damage identification of civil structures capable of real-world 

applications ([29-33]). In this approach, the measured input excitation and output 

response of a civil structure are utilized to update state-of-the-art nonlinear mechanics-

based FE model of the structure in time domain using Bayesian inference methods. 

Closely resembling the actual state of the structure, the updated FE model can then be 

interrogated to extract detailed information about various manifestations of damage in 

the structural systems. The nonlinear FE model of the structure depends on a set of 

unknown parameters including but not limited to inertial properties, gravity loading, 

geometry, restraint and constraint parameters, damping parameters, and parameters 

characterizing the nonlinear material constitutive laws. These parameters, referred to 

as model parameters hereafter, are estimated by minimizing the discrepancy between 

the time histories of the FE predicted and actual structural responses, measured during 
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a damage-inducing event. As for any parametric system identification problem, the 

accuracy and robustness of the underlying parameter estimation procedure depends on 

the information contained in the measurements about model parameters. It is therefore 

crucial to systematically select the model parameters, and optimally select the sensors 

arrangements and output measurements to harvest maximum information about the 

model parameters. In this study, a statistical metrics is developed to quantify the 

information contained in every individual measurement channel about every individual 

model parameter. This one-to-one identifiability measure is developed by evaluating 

the difference between the entropy [34] of the a priori and a posteriori probability 

distribution function (PDF) of the model parameters. Being similar to the method 

proposed in [23] for optimal sensor placement, this approach provides a measure of 

identifiability of nonlinear structural FE models, which can have immediate 

applications in parameter selection, optimal sensor placement, and design of 

experiment. The framework presented in this study offers a generic one-to-one 

identifiability measure that can find useful applications in nonlinear system 

identification problems from various engineering disciplines. 

 

7.2. Structural system identification through nonlinear FE model 

updating – Problem Statement  

The time-discretized equation of motion of a nonlinear FE model at time step k 

is expressed as 



360 

 

 

 

            θfθθqrθqθCθqθM kkkkk  ,
 

(7.1) 

where   DOFDOF nn 
θM  = mass matrix;   DOFDOF nn 

θC  = damping matrix; 

   1
,


 DOFn

kk θθqr  = history-dependent (or path-dependent) internal resisting force 

vector;       1
,,


 DOFn

kkk θqθqθq   = nodal displacement, velocity, and acceleration 

vectors, respectively; 1
 θθ

n  = the FE model parameter vector;   1
 DOFn

k θf  = 

dynamic load vector, and DOFn  is the number of degrees of freedom of the FE model. 

Using a recursive numerical integration rule, such as Newmark-beta method [35], Eq. 

(7.1) is reduced to a nonlinear vector-valued algebraic equation that can be recursively 

solved in time for the nodal displacement vector. Considering the recursive nature of 

the solution approach, by having the initial conditions of the FE model (i.e., 0 0,q q ) 

and the time history of the dynamic load, the equation of motion of the structure can 

be solved to find the nodal response of the FE model at a specific discrete time step, 

say time step k. In short, the nodal response of the FE model at time step k can be 

expressed as a nonlinear function of the model parameter vector ( θ ), and the initial 

conditions of the FE model ( 0 0,q q ), i.e. [31], 

   00 ,,
~

,, qqθhqqq  kkkk   
(7.2) 

where  ...
~

kh  is referred to as the nonlinear nodal response function of the FE model at 

time step k. In general, the response of a FE model at each time step is expressed as a 

linear or nonlinear combination of the nodal displacement, velocity, and acceleration 

vectors. Denoting the response quantity estimated from the FE model at time step k by 

1
ˆ


 yy

n
k  , it follows that  
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 00 ,,ˆ qqθhy kk   (7.3) 

where  ...kh  is the nonlinear response function of the FE model at time step k. 

Assuming that  the initial conditions of the FE model are deterministic and known, the 

dependence of the  nonlinear response function of the FE model on 0 0,q q  are dropped 

henceforward for notational convenience. 

The actual dynamic response of civil structures can be recorded using an array 

of heterogeneous sensors such as accelerometers, GPS sensors, LDTVs, 

potentiometers, strain gauges, etc. The measured response vector of the structure, ky , 

is related to the FE predicted response, kŷ , as 

   θyyθv kkk ˆ  (7.4) 

in which 
1

 yv
n

k   is the simulation error vector and accounts for the misfit between 

the measured response of the structure and the FE predicted response. This misfit 

arises from various sources, namely output measurement noise, parameter 

uncertainties, and model uncertainties. The latter stems from the mathematical 

idealizations and imperfections of the FE model technique, and results in an inevitable 

misfit between the model prediction and the actual structural response [36]. By 

neglecting the effects of model uncertainties herein, the simulation error due to model 

parameter uncertainty is minimized in the parameter estimation procedure and 

therefore, the simulation error accounts for only the measurement noise. Furthermore, 

it is assumed herein that the measurement noise is stationary, zero-mean, and 

independent Gaussian white noise (i.e., statistically independent across time and 
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measurement channels). Therefore, the probability distribution function (PDF) of the 

simulation error in Eq. (7.4) is expressed as 

 
 

i
T
i

ep
n

i

vRv

R
v

y

1

2

1

2/12/
π2

1




 

(7.5) 

in which R  denotes the determinant of the diagonal matrix yyR
nn 

 , which is the 

(time-invariant) covariance matrix of the simulation error vector (i.e., 

  iE
T

ii  ,vvR ). 

To estimate the unknown FE model parameter vector (θ ) in Eq. (7.4), it is 

modeled as random vector (shown by Θ ) according to the Bayesian estimation 

approach. The objective of the parameter estimation is to find the maximum a 

posteriori (MAP) estimates of the FE parameters, which maximize the a posteriori 

joint PDF, i.e.,  

 θθ
θ

pospmaxargˆ
MAP 

 
(7.6) 

in which    k
pos pp :1yθθ  , where  TT

k
TT

k yyyy ,,..., 21:1  = time history of the 

measured response of the structure. According to Bayes’ rule, the a posteriori joint 

PDF of the model parameters is expressed as 

 
   

 k

pri
kpos

p

pp
p

:1

:1

y

θθy
θ 

 

(7.7) 

where  θy kp :1 =  kl :1,yθ  = the likelihood function,  θprip  = the joint a priori 

distribution of the FE model parameters, and  kp :1y  = normalizing constant 

independent of the random variables Θ . Eq. (7.7) is simplified to ([31]): 
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     θyθθ
pri

k
pos plcp  :1,  

(7.8) 

in which  kp
c

:1

1
yY 

 , and random variable Y  denotes the random measured 

response of the structure. Two different approaches have been proposed by the authors 

to solve the estimation problem expressed in Eq. (7.6) for nonlinear structural system 

identification and nonlinear FE model updating. The first approach is based on 

stochastic filtering methods, in which the model parameters are recursively estimated 

in time using an extended ([30]) or unscented Kalman filtering method ([29]). The 

second approach is based on a batch estimation method, in which the model 

parameters are estimated through a nonlinear optimization process to maximize the 

log-likelihood function ([33]). It has been recognized in these studies that the 

successful estimation of the FE model parameters depends not only on the FE model, 

but also on the characteristics and intensity of the input dynamic load (earthquake 

excitation therein), the measured data set, and the level of measurement noise. Except 

for the latter one, the other factors are important components influencing the a priori 

identifiability of the FE model parameters, which is addressed in the next section. 

 

7.3. Identifiability assessment based on the Cramér–Rao lower 

bound 

The identifiability of the model parameter vector Ωθ  in the nonlinear FE 

model  θhy kk ˆ  (see Eq. (7.3)) can be defined as follows ([6, 13]): 
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Definition 1 (local identifiability): A parameter vector θ  is said to be locally 

identifiable if there exist no other Ωθ   in an open neighborhood of θ  such that 

   θyYθyY  kk pp :1:1  for any realization of the measured response, k:1y . 

The mathematical condition for local identifiability has been partially 

developed by Cramér [37] and is expressed by Rothenberg [13] through the following 

theorem.  

Theorem 1 (Rothenberg condition for local identifiability): Assume: 

(i) The log-likelihood function, i.e.,     kk l :1:1 ,log, yθyθ  , is 

continuously differentiable with respect to θ ; 

(ii) the elements of the Fisher Information matrix (FIM) exist and are 

continuous functions of θ  everywhere in Ω , where the FIM is defined as 

[38] 
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(7.9) 

(iii) there exists an open neighborhood of 0θ  where  θI  has constant rank. 

Then, 0θ  is locally (a priori) identifiable if and only if  0θI  is nonsingular.  

Theorem 1 provides a strict binary measure of identifiability. Nevertheless, in 

many practical situations, the information matrix is nonsingular but poorly 

conditioned. This may occur when the measurement data contain relatively little 

information about a certain subset of the model parameters, which consequently may 

not be estimated correctly. In such a case, although the FIM is nonsingular, the model 

parameters are not practically identifiable. 
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The identifiability condition can alternatively be expressed as a scalar measure 

of the parameter estimation performance, which is most conveniently expressed in 

terms of the estimation covariance. Under some regularity conditions, the estimation 

covariance can be asymptotically approximated with the Cramér-Rao lower bound 

(CRLB) [39]. 

Theorem 2 (Cramér–Rao lower bound):   If  ytθ ˆ  is an unbiased estimate 

of θ  based on the measured data y  with a non-informative (uniform) prior, a 

differentiable log-likelihood function with respect to θ , and an invertible FIM, the 

covariance matrix of the estimator satisfies the CRLB [38]: 

        θIθYtθYtΘY
1

|


T
E

 
(7.10) 

where   Ytθ ΘY|E  is the true value (or the true state of nature) of the parameter 

vector, assuming that the estimator  YtΘ   is an unbiased estimator. 

Identifiable parameters are those who can be estimated with little uncertainty or 

with small estimation variances, which can be approximated asymptotically with the 

CRLB. Therefore, the (a priori) identifiability can be assessed quantitatively using 

some scalar measures of the CRLB, for example, D-measure, which is the determinant 

of the CRLB (i.e.,  θI
1 ) as proposed by Mehra [3]. This scalar measure of 

identifiability offers a useful tool for the experimental design and/or sensor placement, 

where different candidates for input excitation and/or sensor configuration are to be 

compared in order to maximize the identifiability of the estimation parameters. 

Nevertheless, the D-measure of the FIM provides an overall assessment of the 
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estimation problem identifiability and offers no details on the contribution of different 

measurement data channels and/or the identifiability of individual parameters. These 

shortcomings are lifted in the next section by introducing a new measure of 

identifiability based on information entropy, which can offer a one-to-one 

identifiability measure between each output measurement channel and each individual 

model parameter. This proposed approach is inspired by the method presented in [23].   

 

7.4. Identifiability assessment based on Information-entropy 

approach 

In an identifiable parametric model, the measurements contain rich information 

about the model parameters and therefore, the parameter uncertainties are reduced 

significantly through the estimation process. Hence, the difference between the a 

priori and the a posteriori uncertainties of a model parameter can be used as a 

quantitative measure of information gained about the model parameter, or its 

identifiability. The Shannon Information entropy is a scalar measure of the uncertainty 

associated with a random variable. The gain in the information about the model 

parameters, which is expressed as the difference between the a priori and the a 

posteriori information entropy, can be used as a quantitative measure of identifiability 

of the model parameters. The information entropy gain (or entropy gain for brevity) is 

defined as 

     pospri HHH θθθ 
 

(7.11) 
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where  θH  denotes the Shannon Information entropy and is defined as [34] 

     θθ θ pEH ln  (7.12) 

Assuming a Gaussian a priori distribution, i.e.,  00 ,~ Pθθ Npri , the a priori 

entropy can be expressed as (see [40] for proof) 

     0ln
2

1
π2ln

2
Pθ 

n
H pri

 
(7.13) 

where  θnn  , and  XX det  herein. Using Eqs. (8) and (12), the a posteriori 

entropy can be expressed as 

     
         cpElE

pEH

pri
k

pospos

pospos

pos

lnln,ln

ln

:1 



θyθ

θθ

θθ

θ

 

(7.14) 

The first term in the right-hand side of Eq. (7.14) is expressed as 

        
Ωθ

θθyθyθ dplE pos
kkpos :1:1 ,,ln

 
(7.15) 

Assuming that the a posteriori PDF is densely distributed around the MAP estimates 

( θ̂ ), the integral in Eq. (7.15) can be simplified as (see Appendix 7.I) 

     kklE pos :1:1 ,ˆ,ln yθyθ
θ


 

(7.16) 

It should be recognized that the underlying conditions stated in Appendix 7.I 

requires the successful solution of the MAP estimation problem with ideally small 

estimation uncertainties. These conditions may often be violated, especially when 

some of the considered model parameters are not identifiable.  

Likewise, the second term in the right-hand side of Eq. (7.14) can be derived as 

      θθ
θ

ˆlnln pripri ppE pos 
 

(7.17) 
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The last term in the right-hand side of Eq. (7.14) can be asymptotically (using large 

number of data samples) derived as (see Appendix 7.II for proof) 

            θyθθJPθI ˆln,ˆπ2ln
2

ˆˆln
2

1
ln :1

1
0

pri
k p

n
c 





 



 
(7.18) 

Substitution of Eqs. (12) and (16)-(18) back into Eq.(11) results in an approximate 

expression for the information gain as  

      










 

 1
0

1
0 ln
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1ˆˆln
2

1
PθJPθIθH

 
(7.19) 

The term  θI ˆ  in Eq. (7.19) is the FIM evaluated at the MAP estimates, which can be 

asymptotically expressed as (see Appendix 7.III) 
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θy
R

θ

θy
θI  (7.20) 

in which R  is the covariance matrix of the simulation error vector (see Eq. (7.5)). As 

mentioned earlier, by neglecting the model uncertainty, the simulation error accounts 

only for the measurement noise and therefore, the diagonal entries of R  are equal to 

the measurement noise variance at measurement channels. The diagonal entries of 

matrix R  work as weighting factors in Eq. (7.20); the more the measurement noise 

variance, the less the contribution of the corresponding measurement channel in the 

FIM. The measurement noise variances can be estimated through the estimation 

method (e.g., [31]), or they can be estimated in prior by quantifying different sources 

of measurement noise (e.g., sensor noise, DAQ noise, etc.). 

The term 1
0


P  in Eq. (7.19) accounts for the a priori uncertainties in the model 

parameters. Moreover, the term  θJ ˆ  in Eq. (7.19) is a function of the second order 
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sensitivities of the FE predicted response with respect to the material parameters, and 

the simulation error, which is the misfit between the FE predicted and measured 

response. The term  θJ ˆ  accounts partially for the a posteriori identifiability and 

merges zero asymptotically (i.e., using large number of data samples, k) under some 

idealizing conditions. The effects of this term are neglected herein assuming ideal 

asymptotic behavior; therefore, Eq. (7.19) reduces to: 

    










 

 1
0

1
0 ln

2

1ˆln
2

1
PPθIθH

 
(7.21) 

Assuming non-informative prior (i.e., if the a priori PDF is sufficiently flat and 

close to uniform), the entropy gain in Eq. (7.19) is reduced to the following equation: 

    θIθ ˆln
2

1
H

 
(7.22) 

Therefore, in the limiting case of non-informative prior, the information gain is 

a function of the determinant of the FIM. This is in agreement with D-measure for 

identifiability as proposed by Mehra [3]. It should be recognized that Eqs. (7.21) and 

(7.22) are derived based on the following conditions/assumptions:  

(i) The effects of model uncertainties are neglected. In other words, the real 

structure is assumed to be in the class of FE models. 

(ii) The measurement noise is assumed to be stationary, zero-mean, and 

independent Gaussian white noise. 

(iii) The MAP estimates of FE model parameters (i.e., θ̂ ) exists and can be 

determined (or, equivalently, the estimator is unbiased). 
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(iv)  θI ˆ  is non-singular for any subset of data samples (i.e., Rothenberg 

condition for local identifiability is satisfied). 

(v) The number of data samples is large enough (i.e., asymptotic behavior).  

(vi) The a posterior is unimodal and densely distributed around θ̂ . In other 

words, 
  

1
ln

ˆ
2

2






θθ
θ

θ
posp

. It should be noted that using the efficiency 

properties of the estimator, this condition can be resulted from (iii), (iv), 

and (v). 

Any violation of the abovementioned conditions adversely affects the validity 

of Eqs. (7.21) and (7.22). Although some of these conditions are partially violated in 

practical applications of identifiability assessment, Eqs. (7.21) and (7.22) still can be 

used as an approximate measure of identifiability for nonlinear models.  

Eq. (7.21) can furthermore be related to the resolution analysis (i.e., the 

analysis of uncertainty) as proposed by Duijndam [41] and used by Tarantola [42]. Eq. 

(7.21) can be re-written as 

       









 11
0

1
0

ˆln
2

1
PθIPθH

 

(7.23) 

where    11
0

ˆ


 PθI  is the a posteriori CRLB (PCRLB) [43] and is the lower bound 

for the a posteriori covariance matrix of the parameter estimation, denoted by posP . It 

follows that    11
0

ˆ


 PθIPpos  and posP  asymptotically merges to the PCRLB. 

Therefore, under the aforementioned conditions, Eq. (7.23) reduces to  
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(7.24) 

in which iλ  is the i
th

 eigenvalue of the generalized eigen problem .0 λXPXP pos  

Each eigenvalue gives a measure of the ratio of the a posteriori to the a priori variance 

in the direction expressed by the eigenvector ix  in the parameter space. For example, 

the eigenvector ix  corresponding to the smallest eigenvalue mini λλ   expresses the 

direction in the parameter space that has the most reduction in the uncertainties from a 

priori to a posteriori. In other words, the values of the eigenvalues express the relative 

degree of the reduction from a priori to a posteriori uncertainties in the principal 

directions in the parameter space. 

In summary, the entropy gain as shown in Eq. (7.21) can be used as a measure 

of identifiability, i.e., the information contained in every measurement channel (or set 

of measurement channels) for every single (or a group of) material parameter. 

Following Eq. (7.21), the entropy gain is derived using the FIM and the a priori 

covariance matrix of the model parameters. The FIM (Eq. (7.20)) is derived using the 

R matrix, and the FE response sensitivities with respect to the model parameters, 

which are evaluated at the MAP estimates of model parameters. However, in practical 

situations, the identifiability is often addressed before estimating the model 

parameters; therefore, the MAP estimates of model parameters are not available at the 

identifiability assessment stage. Hence, it is suggested herein to use the initial 

estimates of the model parameters to derive the FIM. Given the physical nature of a 

mechanics-based FE model parameters, the true values of the parameters are not 
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expected to be significantly far from their initial estimates, which are usually based on 

nominal engineering values. The error in the entropy gain resulted by approximating 

the MAP estimates of the model parameters with their initial estimates are quantified 

in the case study presented in the next section. Finally, as mentioned earlier, the 

diagonal entries of R matrix in Eq. (7.21), or the measurement noise variances, are 

approximately estimated in prior by quantifying the sources of measurement noise. 

 

7.5. Numerical case study 

A three-dimensional (3D) 5-story 2-by-1 bay reinforced concrete (RC) frame 

building model subjected to bidirectional seismic excitation is used to demonstrate the 

proposed framework for identifiability assessment (Figure 7.2). A set of nine 

parameters characterizing the nonlinear material constitutive model of the reinforced 

concrete are treated as unknown model parameters. The mechanics-based nonlinear 

finite element (FE) model of the building is developed in the open source software 

framework for earthquake simulation, OpenSees [44], and used to compute the 

response and response sensitivities of the building. Various response sets are extracted 

from the FE model and used to assess the identifiability of the individual model 

parameters based on the Information-theoretic approach presented in the previous 

section. 
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7.5.1. Description of the RC building structure and developed FE model 

The building has two and one bays in the longitudinal and transverse 

directions, respectively, with plan dimensions of 10.0×6.0 m. The building has a total 

height of 20.0 m with constant story height of 4.0 m. The structure is designed as an 

intermediate moment-resisting RC frame for a moderate seismic risk zone (downtown 

Seattle, WA) with Site Class D and short-period and one-second spectral accelerations 

of 1.37MSS g  and 1 0.53MS g , respectively. Dead and live loads and 

corresponding seismic masses are calculated according to the 2012 International 

Building Code [45]. Longitudinal beams have a square cross-section of 0.40×0.40 m 

and are reinforced with 3 #8 longitudinal reinforcement bars at top and bottom, and #3 

@ 100 mm transverse reinforcement. Transverse beams have a rectangular cross-

section of 0.40×0.45 m and are reinforced with 4 #8 longitudinal reinforcement bars at 

top and bottom, and #3 @ 100 mm transverse reinforcement. The building has six 

identical 0.45×0.45 m RC columns reinforced with 8 #8 longitudinal reinforcement 

bars and #3 @ 150 mm transverse reinforcement. Grade 60 reinforcing steel is 

considered for the columns and beams. Figure 7.1 shows the building view, and details 

of the RC beam and column sections. 
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Figure 7.1: RC frame building structure: isometric view and cross-section of beams and 

columns.  

 

The FE model of the structure is developed using distributed-plasticity, 

displacement-based, structural FE models. In this approach, the structure is spatially 

discretized using fiber-section, displacement-based, beam-column elements 

formulated using Bernoulli-Euler beam theory. The material nonlinearity can spread 

over several sections monitored along the element, which are called integration points. 

The sections are further discretized into layers or fibers [46], the stress-strain behavior 

of which is governed by associated (nonlinear) uniaxial material constitutive laws (see 

Figure 7.2). The steel reinforcements are modeled using the modified Giuffré-

Menegotto-Pinto material constitutive model [47] with smooth curved shaped loading 

and unloading branches as illustrated in Figure 7.3(a). This material model is 

characterized by eight parameters, which are subdivided into three primary parameters 
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and five secondary parameters. Treated as unknown FE model parameters, the three 

primary parameters are yf  = initial yield strength, E = elastic modulus, and b = strain 

hardening ratio. The other five secondary parameters are assumed known and constant 

and are selected based on the suggested values in [47]. The longitudinal steel 

reinforcements in beams are grade 60 and in columns, grade 75 steel reinforcements 

are used for longitudinal rebars. The selected constitutive law for the concrete material 

is based on the Popovics-Saenz concrete model ([48-49]), a typical cyclic response of 

which is shown in Figure 7.3(b). In general, this material model is governed by six 

parameters, which are subdivided into three primary parameters and three secondary 

parameters. The three primary parameters ( cf   = concrete compressive strength, cE  = 

initial tangent stiffness, and cε  = concrete strain at maximum strength point) are 

treated as unknown FE model parameters while the other three parameters are assumed 

known and constant. The FE model parameter vector is defined as 

 ccc
beambeambeam

y
colcolcol

y εEfbEfbEf θ̂ . The true (exact) values 

of the FE model parameters are taken as MPa520, col
trueyf , GPa200col

trueE , 

01.0col
trueb , MPa410, beam

trueyf , GPa200beam
trueE , 02.0beam

trueb , MPa40,  truecf , 

GPa28, truecE , 004.0, truecε . 
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Figure 7.2: Hierarchical discretization levels in distributed plasticity structural FE models 

using fiber-section displacement-based beam-column elements (adapted from [30]).  

 

  
(a) (b) 

Figure 7.3: Typical cyclic behavior of the employed material models: (a) Giuffré-Menegotto-

Pinto for reinforcing steel material, and (b)Popovics-Saenz for concrete material.  

 

A ground acceleration record from the 1994 Northridge earthquake (Sylmar 

County hospital station) [50] is selected for this study (see Figure 7.4). Both the north-

south and east-west components of the base excitation are assumed to be deterministic 

(noiseless) and known. Nonlinear analysis is performed by first applying the gravity 

load quasi-statically and then the base excitation dynamically. The nonlinear dynamic 

time history analysis is performed using the Newmark average acceleration method 
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[35] to recursively integrate the equations of motion in time using a constant time step 

size of sec02.0t , and the Newton-Raphson method to solve iteratively the 

nonlinear incremental dynamic equations of equilibrium at each time step. Rayleigh 

damping [35] is used to model the damping energy dissipation characteristics (beyond 

material hysteretic energy dissipation) of the structure by assuming a damping ratio of 

2 percent for the first and third modes after applying gravity loads 

( sec43.11 T , sec37.12 T , and sec30.13 T ). 

 

Figure 7.4: 1994 Northridge earthquake ground motion (Sylmar County hospital station); top: 

90° component applied in N-S direction, and bottom: 360° component applied in E-W 

direction. 

 

7.5.2. Identifiability assessment of the FE model parameters 

The identifiability of the nine FE model parameters are evaluated in this case 

study by computing the gain in entropy of model parameters from various 

combinations of measurement data. To highlight the excellency of the proposed 

methodology in providing a one-to-one identifiability measure between different 
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measurement data sets and estimation parameters, ten different measurement data sets 

are considered herein and summarized in Table 7.1 (see Figure 7.1 for reference). 

 

Table 7.1: Measurement data sets. 

Set # Description 

S1 
Absolute acceleration response in NS and EW directions measured at the north west corner of the first 

slab.  

S2 
Absolute acceleration response in NS and EW directions measured at the north west corner of the third 

slab.  

S3 
Absolute acceleration response in NS and EW directions measured at the north west corner of the fifth 

slab.  

S4 
Displacement response (relative to base) in NS and EW directions measured at the north west corner of 

the fifth slab. 

S5 Base rotation in XX and YY directions of north middle column. 

S6 
Beam end rotation of the first floor west beam at the north end + beam end rotation of the first floor 

north-west beam at the west end. 

S7 S5 + S6 (beam and column end rotation responses). 

S8 S1 + S2 +S3 (absolute acceleration responses of three slabs). 

S9 S1 + S2 +S3 + S4 (absolute acceleration responses of three slabs + roof drift response). 

S10 
S1 + S2 +S3 + S4 + S5 + S6 (absolute acceleration responses of three slabs + roof drift response + 

beam and column end rotation responses). 
 

 

As mentioned before, the information gain is evaluated using the FIM, and the 

a priori covariance matrix of the model parameters. The FIM is approximated using 

the initial estimates of the FE model parameters and the R matrix. The initial estimates 

of FE model parameters ( 0θ̂ ) are selected as col
trueyfθ ,1,0 30.1ˆ  , col

trueEθ 20.1ˆ
2,0  , 

col
truebθ 25.1ˆ

3,0  , beam
trueyfθ ,4,0 80.0ˆ  , beam

trueEθ 70.0ˆ
5,0  , beam

truebθ 75.0ˆ
6,0  , 

truecfθ ,7,0 85.0ˆ  , truecEθ ,8,0 20.1ˆ  , truecεθ ,9,0 70.0ˆ  . The diagonal entries of R 

matrix, which are used in computing the FIM, are the measurement variance 

corresponding to different measurement channels. The amplitude of the measurement 

noise for the acceleration measurements is estimated as 1% g RMS, for the 
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displacement measurements is estimated as 0.5 % [m] RMS, and for beam and column 

rotation measurements is estimated as 0.05% [Rad] RMS. The covariance matrix of 

the initial estimates of the FE model parameter vector, which quantifies the uncertainty 

in the initial estimates of the FE model parameters, is selected as a diagonal matrix 

 ip0P . The term ip , which is the i
th

 diagonal entry of 0P , is the variance of the 

initial estimate of the i
th

 FE model parameter and is selected as  2,0
ˆ10.0 ii θp  . 

Finally, it should be mentioned that the FE model parameters are normalized by their 

corresponding initial estimates as recommended in [30-31]. As a result of the 

normalization, the sensitivities of the FE response with respect to the model 

parameters will have the same order of magnitude. This recommendation is followed 

herein and the presented results are based on FE model parameters normalized by their 

corresponding initial estimates. 

Figure 7.5 shows the time history of the entropy gain (measured in nats) for all 

the nine FE model parameters from the ten different measurement data sets as listed in 

Table 7.1. As is expected, S10 has the highest information content about the model 

parameters, while the local responses (S5 and S6) have the lowest. The initial flat 

stage in this figure corresponds to the first 2.5 seconds of the earthquake, where the 

level of base excitation is small and the dynamic response of the structure contains 

information only about the elastic-related model parameters. As the input motion 

intensifies, the response becomes more sensitive to the yield and post-yield related 

material parameters and therefore, the information gain jumps up remarkably.  
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Figure 7.5: Time history of the entropy gain for nine FE model parameters from different 

measurement data sets. 

 

Although Figure 7.5 can provide quantitative measure of information contained 

in various measurement data sets (and therefore can be used for optimal sensor design 

and placement purposes), it does not provide any insight about the information gain of 

individual parameters. The information gain of parameter iθ , or  iθH  (see Eq. 

(7.21)), provides the information contained in the corresponding measurement data set 

about iθ . Figure 7.6 shows the information gain for each one of the nine FE model 

parameters from different measurement data sets. The one-to-one measure of 

identifiability in this figure clearly represents the amount of information each 

measurement channel carries about each individual parameter. This representation 

provides an excellent tool for estimation problem design, i.e., choosing the identifiable 

parameter sets, and deciding on the most informative sensor configuration. Figure 7.7 

shows the same results in a graph format. 
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Figure 7.6: Entropy gain (in nats) time history for each individual FE model parameter from 

different measurement data sets. 
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cεθ 9   

 
 

 

Figure 7.6 (continued): Entropy gain (in nats) time history for each individual FE model 

parameter from different measurement data sets. 
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Figure 7.7: Entropy gain time history for each individual FE model parameter from different 

measurement data sets. 
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Figure 7.7 (continued): Entropy gain time history for each individual FE model parameter from 

different measurement data sets. 

 

Likewise, Figure 7.8 shows the breakdown of information contained in each 

measurement data set about the nine FE model parameters. The results are only shown 

for some selected data sets for brevity. Finally, Figure 7.9 correlates the information 

contained in each measurement data set with each FE model parameter. This one-to-

one identifiability measure is an elegant way to evaluate the identifiability of 

individual model parameters versus the candidate measurement data set. 
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Set #3 Set #4 

  
Set #7 Set #8 

  
Set #10 

 

 

 
Figure 7.8: Entropy gain (in nats) time history from different measurement data sets. 
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Figure 7.9: The correlation of the total entropy gain (in nats) between individual model 

parameters and measurement data sets. 

 

7.5.3. Miscellaneous discussions 

The results presented in the previous section are based on the information gain 

of each parameter, as if it is estimated individually. However, in a practical estimation 

problem, a group of parameters are estimated together and therefore, it can be realized 

intuitively that the amount of information each parameter receives among a group is 

less than the information the parameter receives when it is alone. This concept can be 

expressed mathematically by introducing conditional information entropy [34] as 

         jjijiji HHpEH
ji

θθθθθθθ θθ  ,ln,
 

(7.25) 

in which  jiH θθ  expresses the amount of information iθ  receives when it is jointly 

estimated with jθ . Following Eq. (7.25), the conditional information gain can be 

derived as 
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(26) 

where 
jθ

P ,0  is the initial covariance matrix of jθ , and it is assumed that 

T
T

j
T
i 








 θθθ . It can be proved that    iji HH θθθ  . 

Figure 7.10 compares the individual entropy gain for each of the nine FE 

model parameters with the conditional information gain of each parameter given the 

other eight parameters for data set S10. This figure clearly shows the reduction in 

entropy gain of a parameter as it is estimated among a group of parameters. 
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Figure 7.10: Comparison of the individual versus conditional entropy gain for S10. 
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Figure 7.10 (continued): Comparison of the individual versus conditional entropy gain for 

S10. 

 

The difference between the individual versus conditional information gain for a 

model parameter (as shown in Figure 7.10) expresses the amount of mutual 

information between the parameters. The mutual information between iθ  and jθ  is 

defined as [34] 

 
 

   
         jijijii

ji

ji
ji HHHHH

pp

p
EI

ji
θθθθθθθ

θθ

θθ
θθ θθ ,

,
ln, , 






























 

(7.27) 



390 

 

 

 

Mutual information  jiI θθ ,   measures the amount of information iθ  carries 

about jθ  and can be interpreted loosely as the measure of statistical dependence 

between iθ  and jθ . Figure 7.11 shows the mutual entropy gain between each pair of 

the model parameters. The diagonals in this figure are the entropy gain of the 

corresponding parameter, and the off diagonals are the mutual entropy gain between 

the two corresponding parameters. This figure clearly illustrates the dependence 

between model parameters. For example, it can be observed that cf   has noticeable 

dependence on cε  and beamE , and some dependence on cE . This figure can facilitate 

the choice of model parameter set to be estimated. As a rule of thumb, if the 

measurement data set contains significant information about a pair of strongly 

dependent parameters, they (most likely) can be estimated jointly; however, if the 

information is limited, the strong dependence between the two parameters may 

adversely affect their successful identification. 

  

Figure 7.11: Mutual entropy gain (in nats) of the FE model parameters. 
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As mentioned earlier, since the MAP estimates of the model parameters may 

not be available at the stage of identifiability assessment, the FIM and therefore, the 

entropy gain are computed based on the initial estimates of model parameters. It is, 

however, hypothesized that this approximation for the case of FE model parameters 

does not introduce any significant error in the computed entropy gains. Figure 7.12 

compares the entropy gain of individual FE model parameters computed using the 

initial and true values of the model parameters. As was hypothesized, the differences 

between the entropy gains are minor. 
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Figure 7.12: Comparison of the entropy gain computed using the initial and true values of 

FE model parameters for S10. 

  



393 

 

 

 

 

cfθ 7  

 

cEθ 8  

  

cεθ 9   

 

 

Figure 7.12 (continued): Comparison of the entropy gain computed using the initial and true 

values of FE model parameters for S10. 

 

7.6. Conclusions 

This study proposed a novel approach based on information theory for 

identifiability assessment of finite element (FE) model parameters in nonlinear FE 

model updating, which is used for nonlinear system and damage identification of civil 

structures. The proposed approach is rooted in the Bayesian inference method and 
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utilizes the Shannon entropy as a measure of inherent uncertainty in the model 

parameters. The difference in the entropy of a priori and a posteriori model 

parameters, which is referred to as entropy gain, is interpreted as the reduction in 

uncertainties of model parameter and used as a measure of identifiability. The entropy 

gain approach offers a one-to-one measure of identifiability to evaluate the amount of 

information contained in each measurement data set about each model parameter. The 

proposed approach provides an excellent tool for systematic parameter selection, 

optimal sensor design, selection of measurement data sets, and experiment design. 

An approximate expression for entropy gain was derived under some 

regularizing assumptions (i.e., estimator unbiasedness and efficiency, asymptotic 

conditions, etc.). The entropy gain, in its most general case, was found to be a 

approximate function of the Fisher Information matrix (FIM), the second order 

sensitivities of the FE predicted response with respect to the material parameters, the 

simulation error ( = the difference between the FE predicted and measured structural 

responses), and the a priori covariance matrix of the model parameters. Assuming a 

large number of measurement data (i.e., asymptotic conditions), the entropy gain was 

reduced to a function of the FIM and the a priori covariance matrix. The FIM depends 

on the FE response sensitivities, and the covariance matrix of the measurement noise, 

which is estimated in prior by approximately quantifying the noise sources affecting 

each measurement channel.  

The application of the proposed approach in this study in not limited to the 

structural system identification problems; yet, it offers a general framework for 
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evaluating the identifiability of model parameters in any nonlinear system 

identification problem. The one-to-one measure of identifiability between model 

parameters and measurement data sets and the time resolution (i.e., the entropy gain 

time history for each individual parameter) are unique features of the proposed method 

that can be used in various applications from other engineering fields. A 3D five story 

reinforced concrete frame building model was used as a case study to illustrate the 

proposed identifiability assessment method. The FE model of the structure was 

developed using state-of-the-art mechanics-based nonlinear structural FE modeling 

technique, and subjected to a bi-directional earthquake base excitation. The FE model 

depended on nine model parameters, characterizing the nonlinear material law of 

reinforced concrete. The identifiability of the FE model parameters were evaluated by 

computing the gain in entropy of model parameters from various combinations of 

measurement data sets. The application example illustrated the perfection of the 

proposed method in evaluating the information content of each measurement channel 

about each estimation parameter.  
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Appendix 7.I: Approximating the a posteriori Expectation 

Suppose the a posteriori expectation of a general scalar function  θh  as: 

      
Ωθ

θθθθ dphhEI pos
pos

 

(7.28) 

where      θyθθ
pri

k
pos plcp  :1,  (see Eq. (7.8)). Suppose θ̂  to be the MAP 

estimate, which means that  θposp  has a (local) maximum at θθ ˆ , i.e., 
 

0
θ

θ




 posp
. 

Define minus log a posteriori PDF as 

    θθ
pospln

 
(7.29) 

The Taylor series expansion of  θ  around θ̂  yields: 
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(7.30) 

in which  
 

0
θ
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θθ
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θ

θ

θθ

θ

2

2

. The function  θ  has a local 

minimum at θθ ˆ ; therefore, 
 
2

2

θ

θ




 is positive definite at θθ ˆ . Substitution of Eq. 

(7.30) into Eq. (7.28) results in: 
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(7.31) 

This integral can be solved using the Laplace method for Gaussian Integrals [51]. 

Assuming that 
 

1

ˆ
2

2






θθ
θ

θ
, the main contribution of the integral comes from 
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small neighborhood of θ̂ . Moreover, it is assumed that  θh  is sufficiently flat around 

θ̂ , and   0ˆ θh ; therefore, it follows that: 
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(7.32) 

The multi-dimensional Gaussian integral can be found as 
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(7.33) 

where  θθ dim nn . Therefore, 
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For a unimodal a posteriori PDF that is densely distributed around θ̂ , it is followed 

that 
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(7.35) 

Therefore,  

 θ̂hI 
 

(7.36) 

In other words, when  θposp  is densely distributed around θ̂  (or in loose terms the 

distribution has small uncertainties),  θposp  behaves similar to a Dirac delta function.  
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Appendix 7.II: Finding the evidence  

It is known that       θθyθyY
Ω

dplp pri
kk  :1:1 , . Define 

      θyθθ
pri

k pln, :1  ; it follows that 

   
θy

Ω

θ dep k 
:1  (7.37) 

The Taylor series expansion of  θ  around θ̂  yields: 
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(7.38) 

It can be followed from Eq.  (7.8) that         θθθ  cp pos lnln , in which 

 θ  is the minus log a posteriori PDF defined in Eq. (7.29). Suppose θ̂  is the MAP 

estimate; therefore, 
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Substitution of Eq. (7.38) into Eq. (7.37) results in:  
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Assuming a normal distribution for the a priori PDF, the term 
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expressed as 
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where 0P  is the a priori covariance matrix of θ . According to Eqs. (7.4) and (7.5), the 

likelihood function is Gaussian, i.e.,  
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Therefore, the term 
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 k  in Eq. (7.40) can be further expressed as 
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The first term in the right-hand side of Eq. (7.42) is the Fisher Information matrix (see 

Appendix 7.III for proof). The term 
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i  is the second order 

sensitivities of the FE predicted response with respect to the material parameters, and 

is a 3
rd

 order yθθ nnn   tensor and is shown by  k:1,yθJ  hereafter. Therefore,   
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where  
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results: 
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It should be noted that for large number of data samples (i.e., large k), the term 
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merges asymptotically to  θI . This conclusion is consistent with the definition of the 

FIM as stated in Eq. (7.9), i.e.,  
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In conclusion, the term  θJ  reflects the misfit effects between the FE model 

predictions and measurements, which merges zero under ideal estimation conditions 

(i.e., large number of informative data sets, no model uncertainties, independent 

Gaussian measurement noise, etc.). Considering asymptotic behavior, Eq. (7.44) 

results in the inverse of a posteriori Cramér–Rao lower bound [43] for k large enough: 
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PθI

θ

θ
 (7.46) 

The a posteriori Cramér–Rao lower bound can be interpreted as the lower 

bound for covariance matrix of a MAP estimation problem. The term 1
0


P  indicates 

the contribution of the a priori information; if the a priori PDF of θ  is sufficiently flat 

and close to uniform (non-informative prior), then 0P 
1

0 , and consequently the a 

posteriori CRLB merges to the regular CRLB.  

Substitution of Eq. (7.44) back into Eq. (7.39) results in: 
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Appendix 7.III: Derivation of the Fisher Information Matrix 

The FIM is defined in Eq. (7.9) as  
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where the log-likelihood function is shown in Eq. (7.41). Therefore, The FIM can be 

asymptotically derived as 
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CHAPTER 8: CONCLUSIONS 

 

8.1. Summary of research work performed and novel contributions 

The research work presented in this dissertation was focused on development 

of an advanced nonlinear system and damage identification (ID) framework for 

structural health monitoring (SHM). This framework is based on high-fidelity 

mechanics-based nonlinear finite element (FE) model updating. The proposed 

framework in this research provides a transformative methodology that will eventually 

be capable of real-world application on large and complex civil infrastructures.  

The research work was mainly divided into two parts. The first part is the 

object of Chapters 2 and 3. It systematically studies the fidelity and accuracy of state-

of-the-art FE modeling approaches in predicting the actual behavior of reinforced 

concrete structural components and systems. In chapter 2, the experimental results of 

three reinforced concrete (RC) test sub-assemblies were compared with numerical 

simulation results obtained using an advanced nonlinear FE modeling approach. 

Chapter 3 presented the pre-test FE modeling and response simulation of a full-scale 
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five-story RC building specimen tested on the NEES-UCSD shake table. The likely 

shortcomings of the employed FE modeling technique were investigated. Comparisons 

were made between the FE prediction and experimental measurement of selected 

structural response parameters from the global structural level to the local member, 

sub-member, and concrete crack levels for base excitations of increasing intensity. 

Considering the near real-world conditions of the test specimen, this study provided a 

unique opportunity to identify the main sources of inaccuracy and uncertainty of state-

of-the-art nonlinear FE modeling of RC building structures.  

The second part of the research, which is covered in Chapters 4 through 7, was 

focused on developing, evaluating, and further extending the proposed SHM and 

damage ID framework. Chapter 4 drafted a novel framework for nonlinear finite 

element (FE) model updating. In this framework, the extended Kalman filter (EKF) 

method is utilized jointly with advanced nonlinear structural FE modeling and analysis 

methods to estimate the time-invariant parameters of the material constitutive laws 

used in the FE structural model. The parameter estimation procedure required the 

computation of the structural response sensitivities with respect to the material 

parameters. This was achieved using the direct differentiation method (DDM). 

Therefore, the proposed framework took advantage of three existing analytical tools: 

nonlinear FE methodology using fiber-section displacement-based beam-column 

elements as the structural modeling and analysis tool, the EKF as the parameter 

estimation method, and the DDM for FE response sensitivity computation. 

Furthermore, the performance of the proposed framework in terms of convergence, 
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accuracy, and robustness was investigated through two validation case studies based 

on numerically simulated structural response data.   

A different framework for nonlinear system identification, SHM, and damage 

ID of civil structures was presented in Chapter 5. This framework utilized an extended 

maximum likelihood (ML) estimation method to estimate FE model parameters. 

Additionally, this framework facilitated the estimation of simulation error variances 

and enabled the updating of the nonlinear FE model of the structure based on input-

output data measured during a damage-inducing earthquake. The parameter estimation 

uncertainties were quantified using the Cramer-Rao lower bound (CRLB) theorem. 

Two methods to approximate the CRLB analytically and/or numerically were 

presented in this chapter. The first method estimated the CRLB based on the 

analytically exact Fisher information matrix (FIM). The second method approximated 

the FIM through the Hessian computation of the extended ML objective function. The 

accuracy of these two approaches for parameter uncertainty quantification was 

investigated using a deterministic sampling approach in the context of an application 

example. In addition, the advantage of the proposed nonlinear FE model parameter 

estimation framework over the traditional least squares method was highlighted by 

considering heterogeneous output measurements. The proposed estimation procedure 

was able to systematically extract information from the heterogeneous measured data 

and estimate the FE model parameters, while the traditional least squares method fell 

short of extracting information consistently from all measurement data. Moreover, 

different cases were studied in this chapter to investigate the performance limits of the 
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proposed framework under extreme measurement noise conditions and exaggerated 

(way-out) initial estimates of the model parameters to be estimated. Furthermore, the 

detrimental effects of input measurement noise and modeling uncertainty on the 

performance of the proposed nonlinear FE model updating were investigated and 

quantified. 

Chapter 6 extended, in an innovative way, the proposed framework for 

nonlinear FE model updating using input-output data to a framework using output data 

only. This extension not only overcomes the shortcomings of the initially proposed 

framework in handling unmeasured, erroneous, or noisy input measurements, but also 

paves the way to a more general approach for addressing FE modeling uncertainty. 

Grounded in Bayesian inference, the proposed output-only nonlinear FE model 

updating approach estimates jointly the FE model parameters and the input earthquake 

ground acceleration time histories using only the measured dynamic response of the 

structure. Two data fusion approaches were presented in Chapter 6 to solve the 

augmented input and parameter estimation problem: (a) the recursive maximum 

likelihood (ML) estimation approach, which reduces to solving a nonlinear 

optimization problem, and (b) the stochastic filtering approach based on a recursive 

maximum a posteriori (MAP) estimation method, which reduces to an iterative 

extended Kalman filtering method. Both approaches required the computation of FE 

response sensitivities with respect to FE model parameters and the discrete input 

ground accelerations. For this purpose, the DDM was implemented in the open source 

structural analysis software framework, OpenSees, which was used for nonlinear FE 
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modeling and analysis and to compute the FE response sensitivities with respect to the 

input ground acceleration for the uniform base acceleration case. To validate the 

performance and evaluate the efficiency of the two proposed methods, numerically 

simulated structural response data were used for a three-dimensional five-story two-

by-one bay RC frame building subjected to horizontal bidirectional seismic excitation. 

Although both methods were accurate in jointly estimating the model parameters and 

input ground acceleration, the recursive ML estimation method was found to be 

computationally more demanding than the recursive MAP method. Therefore, the 

stochastic filtering approach based on a recursive MAP estimation method was 

concluded to offer a computationally feasible framework with excellent estimation 

accuracy. 

Finally, a new approach based on information theory for assessing the 

identifiability of FE model parameters in nonlinear FE model updating was proposed 

in Chapter 7. This approach is based on Bayesian inference and utilizes the Shannon 

Information entropy as a measure of inherent uncertainty in the model parameters. The 

difference in entropy between the prior and posterior probability distributions of the 

model parameters, which is referred to as entropy gain, is interpreted as the reduction 

in uncertainty of the model parameters and used as a measure of identifiability. The 

approach presented in this chapter offers a one-to-one measure of identifiability to 

evaluate the amount of information contained in each measurement dataset about each 

model parameter. Moreover, the proposed approach provides an excellent decision-

support tool for selecting the model parameters to be identified, optimal sensor array 
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and location design, selection of measurement datasets, and experiment design. In this 

chapter, an approximate expression for the entropy gain was derived under some 

regularizing assumptions (i.e., estimator unbiasedness and efficiency, asymptotic 

conditions, etc.). The entropy gain was found to be an approximate function of: (a) the 

FIM, (b) the second order sensitivities of the FE predicted response with respect to the 

model parameters, (c) the simulation error ( = the difference between the FE predicted 

and measured structural responses), and (d) the prior covariance matrix of the model 

parameters. Assuming a large number of measurement data (i.e., to satisfy the 

asymptotic conditions), the entropy gain was reduced to a function of the FIM and the 

prior covariance matrix. The FIM depends on the FE response sensitivities and the 

covariance matrix of the measurement noise, which can be estimated upfront through 

approximate quantification of the various noise sources affecting each measurement 

channel. A 3D five story reinforced concrete frame building model was used as a case 

study to illustrate the proposed identifiability assessment method. The FE model was 

dependent on nine model parameters characterizing the nonlinear material laws of 

reinforced concrete. The identifiability of the FE model parameters was evaluated by 

computing the gain in entropy of the model parameters for various measurement 

datasets. The approach presented in this chapter is not limited to structural system 

identification problems, but can be used for evaluating the identifiability of model 

parameters for any system. The one-to-one measure of identifiability between model 

parameters and measurement datasets and the time resolution (i.e., the entropy gain 
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time history for each individual parameter) were unique features of the proposed 

method that can be used in various applications from other engineering fields. 

 

8.2. Summary of major findings and limitations of the research 

work 

The first part of this research work, which focused on nonlinear FE modeling 

and response simulation of RC structural subassemblies and systems, reveals 

important lessons about the shortcomings of state-of-the-art FE modeling techniques 

for RC structures. The response behavior of RC components, sub-assemblies, and 

structures is governed by complex physical phenomena. In order for a FE response 

simulation technique to be successful in predicting the actual response behavior of RC 

components and sub-assemblies, the following important physical phenomena, which 

are an inherent part of RC behavior, should be properly captured by the numerical 

modeling technique: 

(1) Shear mechanism and shear failure in beam-column frame members. 

Shear mechanisms become more prominent at higher ductility demands and 

under poor detailing conditions. The formation of diagonal cracks over the web 

of frame components eliminates the continuity of the web concrete and results 

in deteriorated loading and unloading stiffness and reduced shear resistance of 

frame components under cyclic loading. Dowel action and deterioration of 

bond resistance in the longitudinal reinforcement are other consequences of 
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shear mechanisms in frame components. In the ultimate condition, the frame 

component exhibits a large transverse deformation along a main diagonal 

crack, loses stability, and fails in shear.  

(2) Bond-slip mechanism along the longitudinal and lateral reinforcements. 

Bond deterioration is more significant under cyclic loading conditions. The 

bond slippage along the longitudinal reinforcement deteriorates the composite 

action of the concrete and reinforcing steel resulting in reduced stiffness of the 

frame component. The deterioration of bond reduces the efficiency of the 

lateral reinforcement in confining the concrete core and controlling the 

diagonal crack propagation and ultimately results in shear failure of the frame 

components. 

(3) Dowel action of the longitudinal reinforcement. 

Dowel action provides the minimum lateral stiffness and shear resistance of the 

frame component at the neutral loading condition in the presence of large open 

flexural and diagonal (shear) cracks. Dowel action also accelerates bond 

slippage along the longitudinal reinforcing bars. 

(4) Pinching behavior of RC frame components under cyclic loading. 

 The pinching behavior is a consequence of shear mechanisms, bond-slip 

mechanisms along both the longitudinal and lateral reinforcement, and dowel 

action. 

Moreover, when the aim of FE modeling is to predict and simulate the response of a 

building structure to dynamic excitations (especially earthquakes), other system-level 
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sources of modeling uncertainty and inaccuracy come into play. If not addressed 

correctly, the following important aspects can cause significant bias in the FE 

predicted versus actual building response:  

(1) Kinematic interaction between structural and nonstructural components 

and systems (NCSs).  

This interaction is usually not considered in the FE simulation. It influences the 

lateral energy dissipation mechanism of the building, increases the measured 

stiffness of the building, affects the predominant period of the response time 

histories at the global structural level, and reduces the measured floor 

displacement demands compared to the FE predictions. As the intensity of the 

dynamic excitations increases, the NCSs suffer progressive damage, undergo 

stiffness and strength degradation, and therefore, their influence on the stiffness 

and strength of the structural system diminishes.  

(2) Energy dissipation mechanisms. 

These are usually modeled using the proportional Rayleigh damping model and 

are found to be a major source of uncertainty. The adequacy of the classical 

Rayleigh damping model for nonlinear time history analysis of structures is 

questionable. Moreover, the selection of the damping ratios and the implication 

of the proportional Rayleigh damping model are open problems that require 

further investigations.  

(3) Uncertainty related to the FE model parameters.  



417 

 

 

 

The uncertainty of the FE model parameters is another source of discrepancy 

between FE predicted and measured responses. Such parameters include the 

inertia properties, gravity loading, damping properties, material constitutive 

model parameters, and boundary conditions.  

The findings and conclusions that resulted from the first part of this research 

work led to development of nonlinear FE model updating procedures. These were the 

focal point of the second part of the research work. The research performed on the 

subject of nonlinear system and damage ID using nonlinear FE model updating 

resulted in the following major outcomes and findings: 

(1) Two novel frameworks for nonlinear FE model updating are proposed, 

developed, and validated using numerically simulated structural response data. 

The first framework is based on a recursive parameter estimation approach and 

uses the EKF to estimate FE model parameters. The second framework is 

based on batch Bayesian estimation and results in an extended maximum 

likelihood estimation to jointly estimate FE model parameters and 

measurement noise variances. 

(2) The two above-mentioned frameworks are developed under the following 

simplifying and idealizing assumptions and conditions, which may often be 

violated in real-world applications: (a) the dynamic input excitations are 

assumed to be known and noiseless (deterministic); (b) the effects of FE 

modeling uncertainties are neglected. In other words, the actual structure is 

assumed to belong to the FE model class used to estimate the parameters. In all 
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the validation studies performed in this research, the same FE model was used 

for the simulation and estimation. Therefore, no model uncertainty was 

considered; (c) the measurement noise processes at the various measurement 

channels are assumed to be independent Gaussian white noises. Moreover, it 

has been found that the input measurement noise and the model uncertainty can 

have strong detrimental effects on the performance and accuracy of the 

proposed FE model parameter estimation frameworks. 

(3) Through an innovative approach, the initially proposed framework is extended 

to account for the effects of unmeasured, erroneous, or noisy input excitations. 

The same approach can also be used to address the effects of modeling 

uncertainty. The proposed output-only framework is found to be accurate and 

efficient in jointly estimating FE model parameters and input excitations. 

(4) Validation of the developed input-output and output-only nonlinear FE model 

updating approaches was performed using realistic and progressively 

complicated structures: from a 2D cantilever steel bridge column to a 3D RC 

building structure designed according to current design procedures. However, 

the validation process in this research work was limited to numerically 

simulated structural response data and no real-world data were used to evaluate 

the performance of the proposed frameworks. 

(5) The correct estimation of the model parameters characterizing the nonlinear 

features of the structural response requires a strong enough dynamic excitation 

to exercise sufficiently the nonlinear branches of structural behavior. The 
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successful estimation of these material parameters can be evaluated through the 

identifiability assessment process. 

(6) An identifiability assessment method to evaluate the amount of information 

contained in a measurement dataset about each FE model parameter is obtained 

based on an information theoretic approach. This method has developed based 

on a set of restrictive theoretical assumptions (as stated in Chapter 7); however, 

it still provides a useful quantitative tool for model parameter selection, and 

optimal sensor types and sensor placement. 

 

8.3. Recommendations for future research work 

(1) Successful performance of the proposed SHM frameworks for real-world 

applications requires advancement of both FE modeling of civil structures and 

nonlinear parameter estimation approaches. To reduce the modeling 

uncertainty, FE modeling techniques need to be improved to closely capture 

the important mechanics and physical phenomena governing the actual 

behavior of civil structures, such as nonlinear shear-flexure interaction  in 

beam-column elements, bond-slip mechanism, dowel action, and pinching 

behavior in RC structural components, and kinematic interaction between 

structural and NCSs. Therefore, the first recommendation for future work is to 

develop and validate more advanced modeling and simulation techniques for 

nonlinear FE response simulation of building and other civil structures.     
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(2)  The proposed nonlinear FE model updating frameworks should be further 

extended to incorporate the effects of modeling uncertainty. Modeling 

uncertainties arise from two sources: (a) incorrect or nonphysical modeling 

assumptions, which are not in agreement with the true physical conditions of 

the structure (e.g., nonphysical material constitutive models, incorrect 

modeling of energy dissipation mechanisms, restrictive kinematic assumptions, 

incorrect model geometry, incorrect boundary conditions, etc.), and (b) 

unmodeled physics, which are not included in the FE model (e.g., foundation 

flexibility, soil-structure interaction, non-structural components and systems, 

etc.). 

(3) The proposed nonlinear FE model updating frameworks should be further 

modified to account for the effects of non-white, non-Gaussian, and/or 

correlated measurement noise. 

(4) The proposed frameworks for nonlinear FE model updating should be 

validated using real-world data. For this purpose, the frameworks should be 

validated using large-scale shake table test data at the first stage. At the 

following stage, the validation should be performed with data recorded from 

real-world building structures during damaging earthquakes.  

(5) The application of the proposed frameworks should be extended from building 

structures to other civil infrastructures, such as bridges, dams, power plants, 

etc. The validation process is recommended to be performed in a two-stage 
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approach for these new applications, starting from simulated structural 

response data and then using data measured from real-world structures. 

(6) The proposed frameworks for SHM should be further advanced to include 

other damaging events besides earthquakes. Depending on the type of civil 

infrastructure, damaging events may include explosions, fires, impacts, terrorist 

attacks, hurricanes, tsunamis, etc.  

 

 

 




