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Abstract 

By computing the imaginary part of the propagator of the local four 

quark operator O(x) = sL(x)y~'dL(x)sL(x)y iL(x), we obtain the upper 

bound: 

I= < KOIOIKO> ,;;j I vacuum estimate + 0( 1/N 2) c 

with an uncertainty (outside the liN/ corrections) of order 10%. We 

show how it can be recovered by Laplace hadronic sum rules. 

t This work was wpported by the Director, Office of Energy Research. 
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of the U.S. Department of Energy under Contract DE -AC03 -76SF00098. 
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I. INTRODUCTION 

Weak interactions generate a mixing between the K0 and K0 

states, 1 mainly by the exchange of two W bosons (Fig. 1). (We neglect 

the Higgs contributions.)2 In a free quark model, this transition can be 

considered to be mediated by an effective four quark local hamiltonian;' 

this property subsists when one resums all hard gluonic corrections at 

the leading logarithm approximation.2·3 We shall deduce an upper 

bound for the matrix element: 

/11t; I :: I ~ j(. I 0 11< 0 > I 
(1) 

of this local operator 

O(,c) = s:cl(>o~"d~(">;~cJ<)(rd:clt}. 
(2) 

(a and bare color indices). 

It is based on the computation of the imaginary part of the correlation 

function: 

'f(,') ~ ~ sd4( e.-,." <ol T O( .. ) o+(<>) IO> 
(3) 

up to corrections of order 1/N /· 

The result, very close to the vacuum saturation estimatel.3 

I17CI v .. c. : 4 r"z. r1"t.. 
3 (4) 

strengthens the constraint obtain~d recently4 by hadronic sum rules. 

can be simply recovered in their "Laplace" (or "Borel") version5 and 

constitutes in this precise case their maximal capability. 
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II. DEDUCTION OF THE BOUND. DISCUSSION 

We shall be concerned henceforward with the matrix element of 

the local fo\lr quark operator O(x). This means in particular that we 
. . 

deliberately ignore the contributions of soft gluons (Fig. 2a), light 

quark condensates (Fig. 2b) etc .... ,which we cannot see how they can be 

handled within this approximation. 

If one neglects the mixing angles other than Cabibbo's ac, the KL­

Kg mass splitting writes: 

M~.M~:. 
Gt. 1. t.Q ~ 
~ s~ e .. Cot Vc, WI, ' 

~ tt" 

"!J'b 
H". 

I 
(5) 

with 01e defined in Eqs. (1,2); rz originates from the resummation of 

hard gluons corrections at the leading logarithm approximation.2•3 

Looking for an upper bound for the modulus squared 117612, we 

study the imaginary part of the corrrelation function tp(q2) defined in 

Eq. (3), graphically depicted in Fig. (3). At order 1/Nc2 6 it factorizes 

into Fig. (4): gluonic corrections to Fig. (4) breaking the factorization 

are indeed at least suppressed by 2 powers of 1/Nc. For example, Fig. 

(5b) = 0(1/N/) Fig. (5a) (2 gluons at least are needed by Furry's 

theorem), Fig. (5d) = 0(1/Nc2) Fig. (5c), etc .... The analytic expression 

corresponding to Fig. (4) is readily obtained by separately resumming 

at all orders of the strong interactions the hadronic current propagators 

appearing at the free quark level in the computation of Fig. (6a), 

leading to: 

S 
.1ft' 

't'h,_) : - t ~ I~ {trt )It 

~......, -.t 

( dlrf 
J(;n)" (!.,)" <i>"(<t-'·r) 

·- / ... 
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[ 'n'r~ <~) T '~-~ ""~ c~>][ ~;~;~ ct) T i1;: cr) J 
v.J Itt\ 'II ltlfl (6) _, 

The IIJ'~lare the propagators of the vector (V V) or axial (AA) hadronic 

currrents 

defined as: ... ,,. 
TTl\,\" 
'IV 

(AA) 

'~·~ . Yr ( .. ) ... d C~tl ~~ s c~1 
. ,.:. 
At (t) = ~ (~<) ¥r ~'" Hx) 1 

~r.~~" e'"'"<otl' Vt<~) V"t<.,> lo> 
( Ar (-.) p.,vt (o)) 

(7) 

(8) 

The same trick can be applied (up to corrections in liN/) to a formal 

resummation of Fig. (6b) where the fermionic lines of color have been 

crossed with respect to Fig. (6a). Fig. (6b) has the same analytic 

expression in terms of the n~lV's as Fig. (6a), up to an extra factor 1/Nc. 

This leads to a factor (1 + liN) = 4/3 in Eq. (6) and to the final 

expression valid up to corrections of order l/Nc2: 

lf ht.) ~ - t ~ 1 ~ (I~ ~) J ~: ~ ~ 5 (~:~It & " ( '\. ~. ~) 

[ 'n11~11 (I\) 1- 'ifr (h)J'[ i~t~ ce) i n;:J cnJ-
~, ltl\ ~" ""' 

(9) 

The matrix element 'JJC can be considered4 as the value at zero 

transfer (t = 0) of a scalar form factor F(t) analytic real in the complex t 

plane with a cut from toKK = 4M/ to"'· Its modulus squared !F(t)jZ is 

-:- ~. 

l 
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directly related to Im ljl(t), IK°K0 > being the lowest intermediate state 

contributing to the absorptive part of tp. This leads4 to the inequality: 

I ;' liM t (") l 
~ 1,lr .... 

...!.. '~-_\F(rl \'t ec~J ...... ). 
~~~ 

lo kiC. :. ( ~ M ~ ) t.. 
(10) 

From Eq. (9), on the other side, 1m ljl(t) can be estimated as a sum of 

contributions from low energy resonances and poles, plus a continuum 

which can be obtained from the asymptotic behavior of QeD (free 

quarks). In particular, as will be shown below, we can obtain a very 

simple analytic expression in the narrow width approximation, the 

relevance of which will be discussed a little further. 

Limiting ourselves to the lowest (K, K*, Q) contributions and 

using eve, we have the relations: 

..!.. IIIW\ 'W~, (I:) :. 0 ® 
1T v., 

h'l t. 
b'(t- ~~.) 

.L !.-v~ TTL· I t 1:-) 
M.c· ~ ... 
~~-Tl" flo/ 

.1. .!..oM 
~..:.-. 

ill") (1:-) :. 2-fl(-z. b(~- M,:) 8 
rr "" (11) 

•·•t M 'L 
6 (l-- foi~'L) ..!. TIIW\ ~1 Cl:-) ell 0 :: 

lT /Ht ~Ill~ 

for the functions r1' 0 ' and n' 1' appearing in the decomposition of then~''' 

orthogonal in the J = 0 and J = 1 channels: 

Tl " ) -c-' -~1 ) I tf"' (,) = • ( dr"~t- '\(~· II (~t)" ' .. ~v II ('\"- , (12) 

• -· 
-6-

Evaluating dis-persively the n~'v's in Eq. (9) and integrating 

immediately over the dispersive variables t and t' we get: 

• . • 1 1 ) ) Jlt~ 5Jfof {q )ft bl, ( t:._ D) 
~(,")::.. - ?.. -. ( '"'- - I 'I )" ~lr 9- -\ 

1' 3 {_2.rr)'t ~IT 

L . (ML)L \ 
· ~ l t fo\1(• L \ _I_ -. _s_ _I - ---

{ [ t ~ 1 ,( U) j[( ~) ~·- M~• ~~ M:• l<" !..'.M<' t :14• 
'L ..t "- \ I I )] t\.,_ ... ,.,~ I "' - -~'k· ~~t. ( '-'-M .. ·'t fZ.~'I. C.."..M~~ ~~- H!" t 

'r l f... t)t. (~ fl("" )" I 

f... ... _fotw.""' e~ t-tw.~ (13) 

-[ t:·e't- c~.n j H~ [ ~:t. ( t~~~4 r~t{: • ~'l.~ttl(~ ~~ t\~J 

t'\f('t ( ___)_ --'-- ~ ___L_ __l_ ) 1} 
T ~'\.,_ \. ~'t~'t ~~t{K"L f-_'L_t(loo."' tt-t\~'t ' 

2 Imljl(t) is now obtained by replacing every term l/{p2-M2) by the 

corresponding 2in 5(p2-W) and performing explicatively the 2-body 

phase space integrals: 

lrnljl(t) = _1 
,, l't~lt' t 

( M'L t,r.:; - '1. J l(l;) v HU.,.,.1 LH • .,, .• H(t-l.,.,.J e(u.,,,.J 

·(~~rv qt.t ••• ) r 3 t:.. • 4t(t. b.··' P (U ••• J 

'"2-~c"M~'- (~-~. \(t.~o. )[3(~o.b)~. +t..(Lr • .,.·~)~U ... ~)\ 
3"('L 3t' "~ I(.. k~ ~ 

+ \.(.; f.c,_ M"'~~'L 
j ll~ ,_ 

( L h ~\( )(L tol(.•tt) CU [ J
~~ 

~ l t. tqc•lil) 

l t -to It~" ) 

( ... 
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~ I" ~lc.t- ~ct,_ [ aJ.\(
11 

)(L ~~"") r/t \) (t. t-. I(~) 
~~ 

• 4f~ V ttu ••• ) ( t:.,. >l(H ••• )J ~(u ... + 
(14) 

The notations are: 

l: .. \(' :. l Ml( ... f'{.,_ ) t. ~~ ""- ::. l M". M.._ )'Z. e\ ..... 
I 

(15) 

The QCD continuum can be computed from Figs. (6a,b)4 and is: 

I~ -tl~) ~ _..!. f_j_)' .!_(t~ '/3 ) ~It ~H~-h.) . 
'" \1,'11~ 5 

(16) 

We make it start from a threshold t
0 

high enough to avoid double 

counting with the low energy hadronic contributions. 

Comparing Eqs. (14)-(16) with the inequality Eq. (10) and taking 

the limit t-+ toKK. + e, we obtain the bound: 

\ F c ~ .. ""' \" ~ -we 1. 'r~) c !t f"~ Ml(,. )\ &c ~~"') . 
(17) 

The bound (17), obtained in the narrow width approximation, only 

depends on the kaon contribution, not on higher resonances or the 

continuum. This is a consequence of taking the limit t-+ toKK +e . It 

specially makes unnecessary the replacement of the narrow width 

approximation for the K' by a more refined evaluation of the Kn 

continuum, since the associated hadronic threshold in Im '!'(t) would 

anyhow be higher than toKK· The same reasoning applies to other 

resonances and to the QCD continuum.Fl 

To obtain abound for 1"'12, we must complete the inequality 

,- •t 

Eq. (17) by an estimate of 

I F (h.I(K) 

F (o) 

t F (~•l(lt) It. 
rr;r; 

(18) 

-8-

The simplest possibility is to take this ratio equal to 1. The KK, I = 1, 

J = 0, is indeed an exotic channel most probably structureless (though 

we have still no experimental result on it). A slightly more refined 

argument can be given in the line of Ref. [ 4], by linking this channel to 

the other exotic one, nn I = 2, J = 0, belonging to the same 

representation(27)of flavor SU(3). This last one has been 

experimentally studied at low energy. A good fit to the data for the 

phase shift 80
2 is given by the effective range formula: 

-- It F~-· b! ~ Arf. ~~ l- I 
o.l" ' ;;:-:---(~ t • 2: r. ~ (u ••• ) 
e ~\r·••wlf) 

with:7 

q! : - • IS' f ~ lS' Ge'l./ -r 

r; ~ . ~~ f ~ c;s c;cv •• 

80
2 is related to F(t)/F(O) hy an Omnes relation8 

f{~) - ?.. (t) --
F(o) 

'"f f...L It~ 
1t' J. ~· to 

~! ('"') j­
~· (~'.t} 

(19) 

(20) 

(21) 

P 
0
(t) is a polynomial of nth degree in t. n being the number of zeros 

of F(t) in the complex plane. (Note that we neglect all effects of 

• -. 
.•· 
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inelasticity.) Taking the simplest assumption of the absence of zero,f2 

and so Pn(t) = 1, we obtain the estimate 

(22) 

F ( ~011( ) I .. . ~ 
F (o) IT-tr

1 
:I:.'l. 1J":. o 

. 5 I 

which we shall take as an estimate of the corresponding quantity in the 

KK channel I = 1, J = 0. 

This leads to the final bound: 

\ ??C\ ~1 F(oJj ~ t.qr;:;-~IA ... MI41.: .~ l77b)".._ :. CJ5(1J7&/11 ...:. 
. - V I•'(:J 

(23) 

where I ve lvacis given by Eq.(4). We recall that the sources of 

uncertainty are: 

-the contributions of order liN/, 

-PCAC for the kaon, Eq. (llc), 

-the estimation of !F(t0)/F(O)jKK I=I.J=O from the similar in the nn, 

I= 2, J = 0 channel and the corresponding low energy elastic phase shift, 

together with the hypothesis of the absence of zero for F(t). The second 

uncertainty, essentially attached to the existence of a continuum 

higher in energy in addition to the kaon pole, is again of no relevance in 

the limit t-+ toKK + e. The third is certainly the more out of control. 

We are however inclined to trust the intuitive idea that in a smooth 

exotic channel, the scalar form factor cannot vary very much within the 

small domain of energy [0, 4MK 2]. 

Regarding to that and to Eq. (22) we shall attach an uncertainty of 

ordr 10% to our last following statement: Up to 11N,;1 corrections, the 

vacuum estimate is an upper bound for the matrix element of the local 

0 

• .. 
-10-

four quark operator O(x) between the states KQ and KQ! This 

strengthens the upper bound of 217i'tlac obtained previously in Ref.[ 4] by 

hadronic sum rules, is consistent with recent Monte-Carlo simulations 

on a lattice9 giving !77Civac as a reliable estimate, and compatible with 

Ref. [10], giving li.t'l = .33l?l:lvac· 



-11-

III. THE LAPLACE SUM RULE APPROACH 

Both sides of the inequality (10), positive functions of t,j may be 

integral transformed with a positive weight function oft, giving a sum 

rule in its usual form. (A Hilbert transform was for example used in 

Ref. [ 4]). It is clear that this technique, mixing all values oft, generally 

looses information and gives further uncertainty attached to the 

contributions of higher resonances and the existence of an arbitrary 

scale q2(or W). We shall show however, for completeness, that we can 

recover the bound of Section II by using a Laplace sum rule at the limit 

ofsmallM. 

Taking the weight function in the integral to be e-UM2, neglecting 

here color factors and making the reasonable assumption IF(t)/F(O)i = 
1, we obtain the bound 

17(, 
~ 'Ji. l..v 

r~~.."- Ml(" 

A 

Mit 

fJ Mti [

- M" (l. \f!Jl)(l'\t.)J '/~ 
~ (M'') 

where Lis the Laplace inverse operatorS 

"" L-:. ''~ 
~t._, ~ 

n -) tP 
Q.,.(~ :. Mt. f;•ccl 

i:.f'_ ('(~)I\ r-t. t 

l"-'n ('a~""rl · 

(24-) 

(2S) 

l{115 ~Q2) is the fifth derivative of l{l(Q2) with respect to Q2 (as requested 

by the QCD computation of Fig. (6);4 we have the identity 

- M't L. ~(!) (11'"):. - 1
- -' Jb e "' :r.,.. -tLt) , (~6) (

A ) J.p -I:/ 1. 

' LM'? rr • 

c-· 
\ '·':; 

-12-

~ ( M~) rP ~-_1_ ( ,lr e- 'tft.-.'-' ~·It\(. 
M~ J1 ~ 

~·\(~ 
(2f) 

The different contributions to-W Ll{115>are plotted on Fig. (7), showing 

clearly the damping of high energy contributions by the exponential 

weight at low M. The corresponding bound for i7J,/fK2MK21 is shown on 

Fig. (8); we recover forM-+ 0, as expected, the previous bound (up to a 

color factor and the variation of F(t0) to F(O)), which constitutes in this 

case the maximum capability of the sum rule technique. 

~ ~! .. 
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~· 
-l. 

IV. CONCLUSION 

We have obtained the upper bound: 

I <: l<o 1 ( s .. ti cl.. s .. ~r d .. ) l \<"' > 
\o, .. l 

( VOC\J<J~ ~~\io~na~c.) "t-

with an estimated uncertainty of order 10%. 
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FOOTNOTES 

Fl. It is worth mentioning that, even in the sum rule approach of Ref. 

[4], mixing all values oft, the bounds obtained with a narrow 

width approximation for the K* or the more elaborate form of the 

Kn continuum used therein do not differ by more than 6% (at the 

minimum of the curve c of Fig. 3.) 

F2. Up to now this hypothesis is in contradiction with no 

experimental result. A possible test would be the violation of the 

sum rule8b 

0 : 
t> 

( c!.~' 
)c...,.u~ 

~ 1 f.,(t'l I 
~· ( \-

1
- to.,,.) '(w. 

very difficult to detect experimentally. 

• . .. ... ) 



_.. 

·~ 
--(.. ... 

-17-

FIGURE CAPTION 

Fig.l K°K0 tra~sitlon by exchanges ofW's. 

.... ·.: ~ ' ·~ . Fig. 2. Contributions that we neglect in the local approximation . 

Fig. 3. The propagator IJI(q2). · 

~~- .. Fig. 4. Factorization of ljl(q2). 

Fig. 5. Factorization only breaks down at order l!N/-

Fig. 6. Free quark contributions to ljl(q2). 

Fig. 7. Contributions ofK, K*, Q to -~P[L 11,t5
1] (~). 

Fig. 8. Bound for 177CifK2MK21 in the Laplace sum rule technique. 
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