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Abstract

Background—Rb-pathway disruption is of great clinical interest, as it has been shown to predict 

outcomes in multiple cancers. We sought to develop a transcriptomic signature for detecting bi-

allelic RB1 loss (RBS) that could be used to assess the clinical implications of RB1 loss on a pan-

cancer scale.

Methods—We utilized data from the Cancer Cell Line Encyclopedia (N=995) to develop the first 

pan-cancer transcriptomic signature for predicting bi-allelic RB1 loss (RBS). Model accuracy was 
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validated using the TCGA Pan-Cancer dataset (N=11,007). RBS was then used to assess the 

clinical relevance of bi-allelic RB1 loss in TCGA Pan-Cancer and in an additional metastatic 

castration-resistant prostate cancer (mCRPC) cohort.

Results—RBS outperformed the leading existing signature for detecting RB1 bi-allelic loss 

across all cancer types in TCGA Pan-Cancer (AUC: 0.89 vs. 0.66). High RBS (RB1 bi-allelic loss) 

was associated with promoter hypermethylation (P=0.008) and gene body hypomethylation 

(P=0.002), suggesting RBS could detect epigenetic gene silencing. TCGA Pan-Cancer clinical 

analyses revealed that high RBS was associated with short progression-free (P<0.00001), overall 

(P=0.0004), and disease-specific (P<0.00001) survival. On multivariable analyses, high RBS was 

predictive of shorter progression-free survival in TCGA Pan-Cancer (P=0.03) and of shorter 

overall survival in mCRPC (P=0.004) independently of the number of DNA alterations in RB1.

Conclusions—Our study provides the first validated tool to assess RB1 bi-allelic loss across 

cancer types based on gene expression. RBS can be useful for analyzing datasets with or without 

DNA-seq results to investigate the emerging prognostic and treatment implications of Rb-pathway 

disruption.

Introduction

RB1 is a tumor suppressor that has been implicated in the pathogenesis of numerous cancer 

types. In addition to causing pediatric retinoblastoma, RB1 alterations have been shown to 

play a major role in the progression of osteosarcoma1, lymphoma2, and breast3–5, lung6,7, 

and prostate8,9 malignancies. Moreover, recent studies have highlighted RB1 loss as an 

important clinical prognostic factor in specific cancer types. For example, RB1 loss has been 

shown to be associated with poor overall survival in osteosarcoma1, glioblastoma10, and 

lung cancers11 and has been shown to predict resistance or sensitivity to various small cell 

lung cancer7, pancreatic cancer12, and breast cancer therapies3,13.

In order to study the clinical implications of RB-pathway disruption, one must first be able 

to confidently assess RB1 status. Next-generation DNA-sequencing (NGS) approaches are 

well suited for identifying mutations, copy number alterations, and structural variants. 

However, there is often uncertainty as to whether a DNA alteration truly inactivates the 

affected allele. Moreover, other mechanisms of gene inactivation exist that may not be 

captured by DNA sequencing techniques (e.g. epigenetic, post-transcriptional, or post-

translational modifications). An alternative approach to assessing gene inactivation is to 

examine the sequelae of genomic alterations by assessing the resulting expression of related, 

downstream genes.

There exist a few RB1 gene sets (genes theorized to be collectively indicative of RB1 status) 

and two gene signatures (combinatorial expression pattern of the genes in a gene set) for 

predicting RB1 loss14,15. However, they all share the key limitation that they consist largely 

of cell cycle genes (whose expression is not specific to RB1 loss). Moreover, since these 

gene sets and signatures were primarily developed using breast cancer data, their 

generalizability to different cancer types has not been validated. Our first aim was to develop 

a novel pan-cancer RB1 bi-allelic loss gene signature (RBS) that outperformed existing 

RB1-loss signatures and accurately predicted bi-allelic RB1 loss across cancer types.

Chen et al. Page 2

Clin Cancer Res. Author manuscript; available in PMC 2021 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



After generating and validating RBS, we then sought to use it to assess RB1 loss as a 

prognostic factor across all major cancer types using the TCGA Pan-Cancer database 

(N=11,007). Since RB1 loss was known to be clinically important in metastatic prostate 

cancer (not included in the TCGA Pan-Cancer dataset), we examined the prognostic 

significance of RBS in an independent metastatic castration-resistant prostate cancer 

(mCRPC) cohort.

Methods

Variable definitions

We defined “RB1 loss” in our manuscript as predicted bi-allelic loss of RB1. For the 

purposes of training and testing our RB1-loss classifier (RBS), ground-truth labels of RB1 
status for each tumor were assigned based on the number of DNA alterations (i.e., non-silent 

exonic mutations, copy number loss, and inactivating structural variants) observed in RB1. 

For these ground-truth labels, RB1 loss was defined as presence of at least two DNA 

alterations in RB1.

RB1-loss gene signature (RBS) development and validation using the CCLE and TCGA 
pan-cancer datasets

Taking an unbiased approach to selecting genes indicative of RB1 loss, we leveraged 

microarray log2-normalized RPKM gene expression data of 951 pan-cancer cell lines from 

the Cancer Cell Line Encyclopedia (CCLE)16. We extracted GISTC2.017 and whole-exome 

sequencing (WES)-based mutation calls from UCSC Xena Browser to annotate RB1 copy 

number (CN) and mutation calls18. Cell lines with GISTC score < −0.8 were annotated as 

deep (two-copy) deletion (CN-2) and cell lines with GISTC score between −0.8 and −0.4 

were annotated as shallow (single-copy) deletion (CN-1). The remaining cell lines were 

annotated as two-copy intact (CN-0). To build an mRNA classifier to predict RB1 functional 

loss, we defined the tumor cell lines with predicted bi-allelic loss (i.e. deep deletion, shallow 

deletion with additional DNA mutation, or 2+ DNA mutations) as the RB1-loss group and 

remaining cell lines as the RB1-intact group. To identify differentially expressed genes 

between the two groups, we used the Wilcoxon Mann-Whitney test with an adjusted P-value 

threshold of P < 1×10-10.

We then used a nearest shrunken centroid approach (PAM)19 to generate our gene signature 

based on the expression pattern of the genes selected as described above. We trained the 

model by applying PAM to CCLE expression data, using posterior class probabilities for 

RB1 loss class predictions. The model was trained using 10-fold cross validation to optimize 

the PAM shrinkage parameter.

RBS was then validated on the TCGA Pan-Cancer RNA-seq expression dataset of 11,007 

tumor samples spanning 33 cancer types, downloaded from UCSC Xena Browser using the 

Synapse platform (syn4976369). RB1 copy number calls and mutation data for these 

samples were obtained from UCSC Xena Browser, and the same GISTIC2.0 copy number 

thresholds and mutation criteria as used in the CCLE training set were applied to the 

validation set. Final RB1-loss annotations were defined based on the number of RB1 DNA 
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alterations observed: 2-alterations (deep deletion, shallow deletion with one mutation, or 2+ 

mutations), 1-alteration (shallow deletion with no mutations or one mutation with no 

deletion), 0-alterations (no deletions or mutations). Model accuracy was assessed based on 

area under the ROC curve (AUC), benchmarked against the leading existing RB1-loss 

signature14.

RBS pathway enrichment analysis

The EnrichR web tool was used to identify genomic pathways enriched in the RBS gene set. 

Candidate gene sets were defined as all pathways in the KEGG, Reactome, WikiPathways, 

and BioCarta databases. Pathways were considered significantly enriched if their adjusted P-

values were less than a predetermined significance level of 0.05.

Differential expression analysis of RB1 loss due to two or more RB1 mutations

Differential expression analysis between CN-0 tumors with no mutations and CN-0 tumors 

with two or more mutations was performed to identify genes that were differentially 

expressed in tumors with 2+ RB1 mutations. Given that there were far fewer tumors with 2+ 

mutations than there were with no mutations, we randomly subsampled a set of CN-0 tumors 

with no mutations equal in size to the subset of tumors with 2+ mutations. We then 

performed a differential expression analysis between the tumors with 2+ mutations and the 

tumors with no mutations using the Wilcoxon Mann-Whitney test with an adjusted P-value 

threshold of P < 0.001. For statistical robustness, we performed a boostrapped analysis with 

1,000 different subsamples. Genes were considered significantly differentially expressed if, 

in >95% of all comparisons, they demonstrated the same directionality of over- vs. under-

expression and had adjusted P-values below the predetermined significance level of 0.001.

Promoter and gene body methylation analysis

To assess the utility of RBS in detecting gene silencing due to methylation, we downloaded 

TCGA Pan-Cancer methylation data for 49 RB1 methylation probes from the UCSC Xena 

Browser. We first filtered out probes that were previously identified to be of low quality20. 

We then computed Spearman correlation coefficients between RBS score and Illumina DNA 

methylation 450K array beta values for each RB1 methylation probe. To test whether the 

correlations between RBS score and methylation probe values were significant in the RB1 
promoter and gene body regions, we generated a null model by computing the correlation 

between RBS score and methylation in the promoter and gene body regions of 20 other 

random tumor suppressors not known to be related to RB1. For this analysis, a large set of 

tumor suppressors (N=1,217) was downloaded from the Tumor Suppressor Gene Database21 

and those not located on the same chromosome as RB1 (i.e., not on chromosome 13) and not 

included in RBS were used as candidate genes for the null model. Spearman correlation 

coefficients computed between RBS and each methylation probe in the promoter region of a 

gene (defined as +/− 1.5kb of the transcription start site22) were then modeled as a 

distribution. The distribution of correlations between RBS and RB1 promoter methylation 

probes was compared to the distribution of correlations between RBS and non-RB1 
promoter methylation probes using the Kolmogorov-Smirnov test with a two-sided 

significance level of 0.05. Analogous analyses were performed for the gene body region, 

where gene body was defined as the region 1.5kb downstream of the transcription start site 
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to the transcription terminator. Transcription start sites and terminators were defined using 

the ‘biomaRt’ R package23.

Characterizing the prognostic value of RB1 loss across cancer types

Clinical outcomes data (progression-free, overall and disease-specific survival) were 

obtained from the TCGA Pan-Cancer Clinical Data Resource24. All patients with available 

log2-normalized RPKM RNA-seq data and clinical outcomes data were included in survival 

analyses. Microarray expression data were log2-normalized and scaled prior to RBS 

analysis. Data for the metastatic castration-resistant prostate cancer (mCRPC) cohort were 

obtained from a previously published study25. This cohort consisted of 101 patients with 

deep whole-genome sequencing, whole-transcriptome RNA-seq, and clinical outcomes data 

available. The mCRPC RNA-seq data were log2-normalized FPKM values. The clinical 

endpoint examined was overall survival, with time of study entry defined as date of mCRPC 

diagnosis.

The threshold of RBS score used to assign binary RB1-impaired vs. RB1-intact status in 

both cohorts was determined by using the Youden index (computed using the 

‘OptimalCutpoints’ R package26) to select a threshold that maximized prediction accuracy in 

the CCLE training dataset. Cox proportional hazard models were used to model time-to-

event data. All survival analyses were performed using R version 3.5.0.

Results

RB1-loss gene signature development and validation using CCLE and TCGA Pan-Cancer 
data

To define our RB1-loss gene set, we identified genes that were differentially expressed 

between CCLE cell lines that demonstrated RB1 loss and cell lines that had intact RB1. 951 

of the 995 total cell lines had both copy number and microarray expression data available. 

Of these 951, 126 were identified as having bi-allelic RB1 loss (99 harbored two-copy 

deletions, 23 harbored single-copy deletions with an additional mutation, and 11 harbored 

2+ mutations) and 797 were identified as RB1 intact. Our unbiased approach to defining an 

RB1-loss gene set using CCLE data identified a final set of 186 genes that were indicative of 

RB1 loss (Supplementary Table 1A). Of note, only 7 of the 186 genes overlapped with genes 

in the existing RB1-loss signature14.

To assess the potential utility of our 186-gene signature for predicting RB1 loss, we first 

performed t-SNE dimensionality reduction on our CCLE training data (N=951). 

Visualization of the t-SNE embedding revealed that cell lines with 2+ DNA alterations in 

RB1 tended to map to similar parts of the embedding, suggesting that these cell lines had 

similar 186-gene expression profiles (Figure 1A). This finding supported the hypothesis that 

the 186 genes were useful in differentiating between RB1-loss and RB1-intact samples.

The expression values of the 186 genes nominated as described above were then used in a 

supervised learning approach (PAM) to compute a RBS score for predicting RB1 loss. The 

model was trained using the gene expression profiles of CCLE cell lines with known RB1 
status (i.e., RB1-loss vs. RB1-intact). The model identified 144 genes whose expression 
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values were most predictive of RB1 status – these genes were used compute the final RBS 

score (Figure 1B, Supplementary Table 1B). RB1 and CCND1 were among the genes 

expressed at relatively low levels in RB1-loss samples, while CDKN2A was among the 

genes expressed at relatively high levels in RB1-loss samples. This was consistent with prior 

studies which found a high ratio of CDKN2A to CCND1 expression to be associated with 

RB1-loss in multiple cancer types27,28. Since we noticed that prior RB1 gene sets and gene 

signatures largely consisted of cell proliferation genes, we assessed the association between 

RBS and a previously published cell proliferation activity score29. While a previously 

published RB1 loss signature14 was found to be strongly correlated with the cell 

proliferation score (r=0.93), we found that RBS was only weakly correlated with the cell 

proliferation score (r=0.03). These findings suggested that RBS was not a surrogate marker 

for cell proliferation and was potentially more specific to RB1 loss than existing signatures. 

Moreover, Enrichr pathway enrichment analysis revealed that RBS was enriched for genes 

not only in the cyclin D – CDK4/6 and cell cycle-related pathways but also in the DNA 

damage response and TP53 signaling pathways (Supplementary Table 2). Altogether, these 

results were consistent with recent literature that suggests RB1 may play a role in processes 

other than cell-cycle control30.

To validate RBS as an accurate model for predicting bi-allelic RB1 loss, we used the TCGA 

Pan-Cancer atlas expression dataset containing RNA expression data for 11,007 tumors 

spanning 33 cancer types with known mutation and copy number annotations. 698 of these 

samples were annotated as having two or more RB1 DNA alterations [559 had deep deletion 

(CN-2), 89 had shallow deletion with mutation (CN-1/mut), and 50 had two or more 

mutations with no deletions], 1,514 as having one RB1 alteration [1,332 with shallow 

deletion and no mutation (CN-1/no-mut), and 182 with one mutation and no deletions 

(CN-0/mut)] and 7,727 as having no RB1 DNA alterations. RBS achieved an AUC of 0.89 

for predicting RB1 bi-allelic loss in this validation set – far superior to an AUC of 0.66 

achieved by applying the leading existing RB1-loss signature14 to the same dataset (Figure 

2A–B). RBS also outperformed a predictive model based solely on the ratio of CDKN2A to 

CCND1 expression (AUC=0.72), which was previously reported to be associated with RB1 
loss. Genes including CAMK2N2, CDKN2A, and GPR137C were positively correlated with 

RBS score (i.e., high expression in RB1 loss) while genes including MED4 and RB1 were 

most negatively correlated with RBS score (Figure 2C).

RBS was highly accurate at identifying RB1 loss due to deep deletion and due to shallow-

deletion with additional mutation, which comprised the large majority of RB1-loss tumors. 

However, RBS was less effective at detecting the few RB1-loss tumors with 2+ RB1 
mutations, suggesting that these tumors may have a distinct gene expression profile. To 

investigate this further, we performed a bootstrapped differential expression analysis to 

identify genes over- and under-expressed in CN-0 tumors with two or more RB1 mutations 

compared to tumors with no RB1 mutations (Methods). We identified 448 genes 

significantly overexpressed and 245 genes significantly underexpressed in the tumors with 

two or more RB1 mutations (Supplementary Table 3). Of these, 16 overexpressed genes 

(including CCNE2 and CDKN2A) and three underexpressed genes (most notably RB1) were 

also found in RBS. Additionally, several known regulators or effectors of RB1 such as 

CCNE1, CDK2, EZH2, HOXB7, and select E2F-family genes were not in RBS but were 
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differentially expressed in the tumors with two or more mutations in RB130–34. Altogether, 

these findings suggested that there are some transcriptomic similarities but also notable 

differences between RB1-loss due to deletion and due to bi-allelic RB1 mutations.

RBS can be useful for capturing the effects of gene inactivation due to epigenetic 
modification

To assess the utility of RBS in capturing the effects of epigenetic events on gene expression, 

we examined the correlation between RBS score and the methylation scores of 39 

methylation probes in the Pan-Cancer cohort (Figure 3). To test whether the pattern of 

correlation between RBS and methylation probe values was significant in the RB1 promoter 

and gene body regions, we compared our results with the correlation between RBS score and 

methylation in the promoter and gene body regions of 20 other random tumor suppressors 

unrelated to RB1 (Supplementary Table 4). We found that the positive correlation between 

RBS score and RB1 promoter methylation and negative correlation between RBS score and 

RB1 gene body methylation were significant (P=0.0077 and P=0.0016 respectively). The 

directionality of correlation was also consistent with existing literature, which suggests that 

promoter methylation is associated with decreased gene expression and gene body 

methylation is associated with increased gene expression in tumor suppressors22. These 

findings supported the hypothesis that RBS could detect the downstream effects of RB1 loss 

due to multiple etiologies, including those (such as methylation) that may not be captured 

using DNA-sequencing techniques.

RBS highlights RB1 loss as a recurrent genomic event and prognostic factor across 
cancer types

After assessing the accuracy of RBS for predicting RB1 loss, we sought to use RBS to 

investigate the prognostic significance of RB1 loss across cancer types. For this analysis, we 

included patients in the TCGA Pan-Cancer dataset with available clinical follow-up. High 

RBS was defined as scores above a threshold of 0.6, determined based on the Youden Index 

approach applied to the CCLE training dataset. Of note, we found that the majority of cancer 

types had an RB1 2-hit prevalence of greater than 5%, suggesting that RB1 loss was 

common and potentially important in many cancer types. In our pooled analysis of all 

patient samples across cancer types, we found that RB1 loss defined using RBS was 

predictive of short progression free survival (median PFS: 36 vs. 56 months, 

HR:1.3[95%CI,1.18–1.44], P<0.0001; Figure 4A), short disease specific survival (median 

DSS: 88 vs. 219 months, HR:1.34[95%CI,1.17–1.55], P<0.0001; Figure 4B), and short 

overall survival (median OS: 70 vs. 94 months, HR:1.23[95%CI,1.09–1.38], P=0.0004; 

Figure 4C). In a multivariable survival model including both RBS and cancer type, high 

RBS was found to be independently prognostic of short PFS (HR:1.12[95%CI,1.02–1.26], 

P=0.04). These findings supported the hypothesis that RB1 loss is clinically important 

across cancer types and may indicate more advanced or aggressive disease in general.

We additionally assessed the prognostic significance of a DNA-sequencing based definition 

of RB1 loss, namely, having at least two DNA alterations in RB1. We found that similarly to 

high-RBS, presence of 2+ DNA alterations in RB1 was associated with short OS, PFS, and 

DFS compared to presence of 0 or 1 DNA alterations in RB1 (Figure 4D–F). These findings 
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suggested that our definition of “RB1 loss” as predicted bi-allelic loss of RB1 was clinically 

meaningful.

RBS is predictive of poor clinical outcomes independently of the number of DNA 
alterations in RB1

In our methylation analysis, we showed that RBS could potentially be used to detect RB1 
loss through mechanisms that could not be detected by DNA sequencing. Additionally, it is 

known that not all DNA mutations and copy number loss events in a gene have the same 

effect on the affected allele (i.e., resulting protein may still be partly or completely 

functional). Since RBS measures the downstream effects of DNA and non-DNA alterations 

at the gene expression level, we hypothesized that RBS may offer information on RB-

pathway disruption that is independent of DNA-sequencing results.

To explore this hypothesis, we assessed the prognostic significance of high-RBS for 

predicting survival in the TCGA Pan-Cancer cohort independently of number of observed 

DNA alterations. For these analyses, we focused on PFS as our clinical endpoint of interest 

due to a prior study that found that PFS was generally the most accurate endpoint collected 

across all cancer types in the TCGA Pan-Cancer dataset24. On multivariable analysis 

adjusting for number of DNA alterations in RB1, high RBS was independently predictive of 

short PFS (HR:1.14[95%CI,1.02–1.29], P=0.03). This suggested that RBS may help 

distinguish patients with a more pronounced RB1-impaired clinical phenotype from those 

with a less pronounced phenotype independently of the number of DNA alterations observed 

in the gene. Moreover, using a criteria of high RBS or 2+ DNA alterations in RB1 to select 

RB1-impaired patients resulted in a 73% increase in group size as compared to using the 

criteria of just 2+ DNA alterations (Supplementary Figure 1A). Thus, RBS may be useful for 

identifying a more comprehensive group of patients with RB-pathway disruption than can be 

recovered using DNA sequencing alone.

To explore this concept further, we examined a previously published cohort of patients with 

metastatic castration-resistant prostate cancer (mCRPC)25 – the lethal subtype of prostate 

cancer not represented in the TCGA Pan-Cancer cohort. RB1 loss (as defined based on 

detected DNA alterations in RB1) has been shown to be associated with short survival in 

mCRPC35. Interrogating the mCRPC cohort of 101 patients with both whole-genome 

sequencing and RNA-seq data available, we aimed to assess whether high-RBS might be 

predictive of short OS independently of the number of DNA alterations present. First, we 

examined the degree of concordance between RB1 status as defined based on number of 

DNA alterations observed and as defined based on RBS score. We found that while RBS 

score was strongly related to the number of DNA alterations observed (AUC=0.90), not all 

tumors with high RBS score harbored 2+ DNA alterations and vice versa (Figure 5A). By 

expanding the DNAseq-based definition of RB1-loss (2+ RB1 DNA alterations) to include 

tumors with fewer than 2 DNA alterations in RB1 but with high RBS, one could recover 

50% more tumors with RB1-impaired status (Supplementary Figure 1B). Next, we examined 

the prognostic significance of high-RBS in the mCRPC cohort. We found that RB1 loss as 

defined by high-RBS was predictive of short OS in mCRPC (median OS 15.0 vs. 42.0 

months, HR:2.93[95%CI[1.47–5.83], P=0.001; Figure 5B]). Finally, to assess whether the 
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RNA-seq (high-RBS) and DNA-seq (number of DNA alterations in RB1) results were 

independently predictive of survival outcomes, we performed a multivariable analysis 

including both the RNA-seq and DNA-seq definitions of predicted RB1 loss. We found that 

both the RNA-seq and DNA-seq definitions were independently predictive of short OS 

(P=0.0036 and P=0.046 respectively), suggesting that both RNA-seq and DNA-seq offered 

unique information on RB1 status that could be used to detect a clinical phenotype of RB1-

impaired, clinically aggressive mCRPC.

Discussion

In order to assess the clinical implications of RB1 loss across cancer types, we developed a 

pan-cancer RB1-loss signature (RBS) that predicted bi-allelic loss of RB1 based on gene 

expression data. We found that RBS was highly accurate at predicting RB1 loss across 

cancer types compared to existing RB1 gene signatures. Moreover, RBS was able to capture 

RB1 inactivation due to both DNA and epigenetic changes. Using pan-cancer (N=10,486) 

and metastatic prostate cancer (N=101) cohorts, we demonstrated that high-RBS was 

predictive of poor clinical outcomes independently of the number of DNA alterations in 

RB1.

There are several possible explanations as to why RBS was much more accurate than the 

leading existing RB1 signature at predicting bi-allelic loss of RB1 (AUC of 0.89 vs. 0.66). 

For one, RBS was the only RB1-loss signature that was designed to be applied across cancer 

types. Since RBS was trained on CCLE cell-line data derived from many different primary 

tissue types, it was well-suited to assess RB1 loss in the TCGA Pan-Cancer validation set, 

which also included patient samples from many different disease sites. Moreover, in contrast 

to existing RB1 loss signatures, which included genes largely or exclusively based on prior 

annotations, the RBS gene set was selected in an unbiased, unsupervised manner. Our 

approach nominated genes from the set of all existing genes that were most differentially 

expressed in our pan-cancer, RB1-loss training set samples. A final methodological strength 

of RBS was that it was trained on a very large dataset (N=995) including many samples with 

known RB1 loss (N=133) that could be collectively used to represent a distinct RB1-loss 

expression pattern.

It is important to note that that the “accuracy” of our model for AUC analyses was defined as 

concordance between (RBS-based) RB1-loss calls and DNA sequencing-based variant calls 

(i.e. mutation, copy number, and structural variant data when available). This was because 

DNA-sequencing results are commonly used to predict gene functional status and were the 

only data available for comparison. However, DNA-sequencing calls do not capture certain 

forms of gene inactivation such as DNA methylation of the RB1 promoter. While RBS 

demonstrated high concordance with DNA sequencing calls in our pan-cancer and mCRPC-

specific analyses (AUCs of 0.89 and 0.87 respectively), the differences in RB1 loss 

assignments may not be due to error but rather improved identification of RB1 gene 

inactivation.

This study is not without limitations. We evaluated RBS as a potential tool to identify RB1 
loss due to DNA-sequence alterations and DNA methylation at the RB1 locus. However, still 
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other mechanisms of RB1 inactivation exist, such as CDK phosphorylation of the Rb 

protein36,37. It is unclear whether these mechanisms of RB1 inactivation result in a similar 

pattern of gene expression and whether RBS can be used to identify these Rb-inactivated 

tumors. Future work may involve collecting and integrating phosphoproteomic data with 

DNA-seq and RNA-seq data to study these additional cases of tumors with RB1 gene 

inactivation. Additionally, since our analysis was conducted primarily using the CCLE and 

TCGA Pan-Cancer databases (which focus on primary cancers), an extension to metastatic 

cancers is needed. In particular, as RB1 loss and RB1 under-expression have been implicated 

as predictors of more advanced disease in various cancers38–40, future disease-specific 

studies with a range of indolent and aggressive tumors may leverage RBS to study RB1 loss 

in the context of disease progression.

The data presented here offer several novel insights and contributions. First, our study is the 

first to examine the clinical implications of RB1 loss on a pan-cancer scale. We found that 

RB1 loss was associated with shorter progression-free survival, overall survival and disease-

specific survival, highlighting the widespread clinical importance of the genomic event. 

Second, our novel transcriptomic signature (RBS) is highly accurate at predicting RB1 loss 

and can be used as a tool in future studies to shed new light on the biological and clinical 

impact of RB1 loss. This is especially relevant in light of recent studies which suggest that 

RB1 loss may associated with response to various cancer therapies including 

radiotherapy3,41, platinum-based chemotherapy3,7, and CDK4/6 inhibitors13,15 in breast, 

prostate, and small-cell lung cancers. RBS may be useful for detecting differential response 

to specific cancer therapies for an even broader range of therapies and cancer types than has 

been already studied. Third, RBS is specific to RB1-loss and not strongly correlated with 

cell proliferation scores (in contrast to existing RB1-loss signatures). Altogether, our study 

along with others suggest RB1 may have important functions aside from regulating cell 

proliferation, such as DNA damage repair41–43. Additional studies are needed to assess this 

in greater detail. Fourth, our transcriptomic signature may be used to identify RB1-impaired 

tumors that may not be detected using standard DNA sequencing-based definitions of 

predicted RB1 loss. The results of our multivariable analyses on two independent cohorts 

suggest that both RNA-seq and DNA-seq results may be useful to identify a more complete 

set of RB1-impaired patients.

Our approach to developing an RB1-loss signature is generalizable to studying a wide range 

of genomic alterations and may serve as a paradigm for generating expression-based gene 

signatures in an unbiased manner. Since RBS is an expression-based signature, it is 

complementary to and potentially more holistic than DNA sequencing-based approaches, 

which may fail to capture the full spectrum of genomic events that can result in a specific 

gene expression profile or phenotype. Given the plethora of studies highlighting RB1 loss as 

a driver event in a number of cancer types, the potential clinical implications, and the 

increasing availability of gene expression data for both retrospective and prospective 

cohorts, RBS is an immediately useful tool that can be used to assess RB1 loss in a variety 

of settings. Our analyses and the findings of others suggest that RB1 loss may be predictive 

not only of survival but also of response to cytotoxic and targeted therapies. RBS may be 

invaluable for investigating these relationships further with the broader goal of developing 

personalized cancer treatment regimens.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

RB1 loss is a recurrent genomic alteration that has been shown to predict response to 

various treatments including radiotherapy, platinum-based chemotherapy, and CDK4/6 
inhibitors in multiple cancer types. Leveraging the transcriptomic and DNA sequencing 

data of over 11,000 cancer cell lines and clinical tumor samples, we identified a novel 

pan-cancer transcriptomic signature for identifying RB1 loss (RBS). RBS is more 

accurate than existing transcriptomic signatures in detecting RB1 loss and can be used 

alongside DNA sequencing to identify Rb-loss tumors more comprehensively. Using 

RBS, we found that RB1 loss was associated with impaired survival across cancer types, 

supporting the notion that RB1 loss constitutes a biologically and clinically distinct 

subgroup of cancers. Our novel transcriptomic signature can be used to further investigate 

the clinical implications of RB1 loss and may be coupled with treatment response data to 

help develop personalized cancer treatment regimens.
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Figure 1: 
Training a classifier for detecting RB1-impaired tumors using Cancer Cell Line 

Encyclopedia (CCLE) data. A) t-SNE embedding of CCLE cell lines colored by number of 

DNA alterations in RB1. Embedding was constructed based on expression levels of the 186 

genes found to be differentially expressed between RB1-impaired and RB1-intact cell lines. 

Cell lines with 2 DNA alterations in RB1 map to similar parts of the embedding, suggesting 

these 186 genes in aggregate are useful for differentiating between RB1-impaired and RB1-

intact cancers. B) Heatmap visualizing expression values of 186 genes (rows) in 951 CCLE 

cell lines (columns). Cell lines are ordered from left to right in terms of increasing RBS 

score, where high RBS score denotes impaired RB1. Orange represents high expression and 

blue represents low expression.
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Figure 2: 
TCGA Pan-Cancer data validates accuracy of RBS in predicting bi-allelic RB1 loss. 

Boxplots showing accuracy of A) RBS in predicting bi-allelic RB1 loss compared to B) the 

leading existing model. C) Heatmap of TCGA Pan-Cancer data showing mRNA expression 

profiles of 186 genes (rows) in 11,007 patients (columns). Patients are ordered from left to 

right in terms of increasing RBS score, where high RBS score denotes impaired RB1. 

Orange represents high expression and blue represents low expression.
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Figure 3: 
High RBS (impaired RB1) is A) positively correlated with methylation of CpGs in the RB1 
promoter region and B) negatively correlated with methylation of CpGs in the RB1 gene 

body. Given prior reports of promoter hypermethylation and gene body hypomethylation 

being associated with gene inactivation, these results suggest RBS may detect tumors with 

impaired RB1 due to methylation-based gene silencing.
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Figure 4: 
High RBS (RNA-seq profile consistent with impaired RB1) is associated with short A) 

progression free survival (PFS), B) disease-specific survival (DSS), and C) overall survival 

(OS). RB1 Similarly, presence of 2+ DNA alterations in RB1 is associated with short D) 

PFS, E) DSS, and F) OS.
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Figure 5: 
A) RBS is associated with number of DNA alterations in RB1, and high RBS is predictive of 

bi-allelic RB1 loss, as defined using whole genome sequencing results (AUC=0.90). B) High 

RBS (impaired RB1) is associated with shorter overall survival in mCRPC.
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