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Mining	the	gut	microbiome	for	temporal	signals	of	inflammatory	
bowel	disease	and	novel	symbiont	genomes		

Svetlana Lyalina 

Abstract 

High-throughput	sequencing	has	firmly	established	itself	as	the	leading	method	for	assaying	

the	structure	and	functional	capacity	of	microbial	communities.	With	this	deluge	of	data,	care	

must	be	taken	to	account	for	technical	and	biological	artifacts	in	order	to	produce	robust	

candidate	biomarkers.	Of	particular	interest	is	the	use	of	mixed	effects	models	and	nonlinear	

models	to	assess	key	differences	between	healthy	and	diseased	individuals	that	arise	over	time.	

In	my	thesis	work,	I	analyzed	data	from	a	longitudinal	study	of	inflammatory	bowel	disease	in	

mice	with	the	aim	of	uncovering	biological	features	predictive	of	abnormal	microbiome	

development	in	the	context	of	chronic	inflammation.	My	analysis	uncovered	multiple	taxa	and	

gene	families	that	have	differential	temporal	trajectories,	as	well	as	a	few	gene	families	that	

stratify	the	diseased	and	wild	type	subjects	early	on.	This	investigation	led	to	a	follow-up	study	

of	the	underrepresented	microbial	genomes	present	in	lab	mice,	to	expand	our	knowledge	of	

the	model	animal’s	microbiome.	Since	the	majority	of	microbiome	studies	aimed	at	future	

clinical	impact	are	carried	out	in	mice,	it	is	important	to	know	what	separates	human	

microbiomes	from	those	of	mice,	in	order	to	limit	hypotheses	that	are	not	transferrable.	We	

found	that	even	a	modest	single	cell	sequencing	effort	leads	to	an	appreciable	gain	in	

phylogenetic	diversity	and	significantly	improves	the	recruitment	of	short	reads	from	

unrelated	mouse	metagenomes.	Overall,	I	have	shown	that	robust	findings	are	possible	even	

with	a	limited	set	of	subjects	if	one	leverages	a	nuanced	statistical	modeling	approach	and	

undertakes	targeted	acquisition	of	new	data.
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1 Introduction	

1.1 The	microbiome:	an	important	factor	in	human	health	and	disease	

The	complex	community	of	bacteria,	archaea,	viruses,	and	microscopic	fungi	that	exists	

in	and	on	the	human	body	is	known	as	the	microbiome.	The	presence	of	microbes	living	in	

close	proximity	to	human	tissues	has	been	known	since	the	time	of	Antonie	van	

Leeuwenhoek,	who	was	the	first	to	study	microbes	in	saliva	and	dental	plaque	with	his	

newly	developed	microscope[1].	Throughout	much	of	history	since	then,	the	focus	has	been	

on	the	disease-causing	capabilities	of	bacteria.	Generations	of	scientists	painstakingly	

cultured	bacterial	isolates	in	order	to	study	them	in	a	controlled	setting	and	develop	

disease	treatments.	With	the	advent	of	the	polymerase	chain	reaction	(PCR),	the	genetic	

content	of	bacteria	became	significantly	easier	to	study,	allowing	microbiologists	to	go	

beyond	externally	observable	traits.	As	methods	for	assaying	the	complexity	of	the	

microbiota	have	expanded,	there	has	been	a	shift	in	the	perception	and	study	of	human	

associated	microbes,	with	more	interest	in	obtaining	a	holistic	picture	of	the	ecosystem.	

The	era	of	high-throughput	sequencing	opened	the	door	to	studying	microbial	diversity	at	a	

much	finer	scale	and	with	lower	cost.	Scientists	took	on	the	challenge	of	characterizing	not	

only	what	species	live	within	us,	but	also	their	functional	repertoires.	Due	to	these	

extensive	efforts	that	built	upon	prior	experimental	work,	we	now	know	that	this	complex	

community	provides	a	number	of	beneficial	services	for	the	mammalian	host,	including	

pathogen	defense[2],	vitamin	biosynthesis[3],	production	of	short	chain	fatty	acids[4],	and	

complicated	communication	with	the	host	immune	system[5].	The	presence	of	the	
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microbiome	at	the	interface	of	the	immune	system	and	environment	makes	it	a	particularly	

interesting	subject	of	study	in	the	case	of	autoimmune	disorders.	

1.2 Inflammatory	bowel	disease	(IBD)	

The	focal	disease	for	most	of	my	graduate	work	has	been	inflammatory	bowel	disease,	

an	autoimmune	disorder	that	is	thought	to	be	at	least	in	part	caused	by	an	exaggerated	

immune	response	to	benign	commensals[6].	Encompassing	two	major	disorders,	Crohn’s	

disease	and	ulcerative	colitis,	IBD	affects	more	than	a	million	people	in	the	United	States	

alone[7].	This	statistic	is	projected	to	increase[8].	Although	there	isn’t	a	consensus	on	the	

explanation	for	this	increase,	one	of	the	hypotheses	offered	links	it	with	a	more	“Western”	

lifestyle	–	sedentary	day-to-day	schedules[9],	a	more	sterile	built	environment[10],	and	

more	processed	food	choices[11][12].	These	external	factors	are	just	one	facet	of	this	

complicated	disease.	There	has	been	a	great	amount	of	research	on	the	genetic	causes	of	

IBD,	which	has	uncovered	more	than	160	associated	loci,	most	of	them	in	regions	related	to	

immune	function[13].	The	uneven	incidence	of	the	disease	between	different	ethnic	groups	

also	supports	the	presence	of	a	hereditary	component[14].	Studies	of	families	with	IBD	

have	shown	that	having	an	affected	close	relative	increases	the	likelihood	of	an	individual	

being	diagnosed	with	IBD[15].	However,	twin	studies	and	genome	wide	association	studies	

(GWAS)	show	that	genetic	factors	cannot	fully	explain	IBD	susceptibility:	reported	

heritability	estimates	are	quite	high	in	twin	studies,	yet	the	corresponding	estimates	from	

GWAS	are	approximately	halved[16].	While	diet,	exercise,	smoking,	and	stress	all	have	

additionally	been	implicated	in	this	disease	in	the	past[17],	recently	the	microbiome	has	

come	to	the	forefront	as	a	promising	new	source	of	both	predictive	biomarkers	and	
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potential	interventions.	Since	current	pharmaceutical	treatments	for	IBD	do	not	lead	to	

remission	for	all	patients,	and	surgical	interventions	negatively	affect	quality	of	life,	there	is	

an	unmet	need	for	novel	therapeutic	approaches.	

Most	work	that	has	been	carried	out	in	the	IBD	microbiome	space	has	sampled	human	

subjects	undergoing	some	form	of	treatment	for	their	disease,	and	the	samples	were	taken	

only	at	one	or	two	timepoints.	Promising	longitudinal	IBD	microbiome	data	have	been	

generated	by	the	iHMP	effort[18],	however	even	those	span	no	more	than	2	years	and	do	

not	exclude	samples	that	may	be	impacted	by	active	disease	management.	Additionally,	

most	prior	studies	have	generated	only	16S	rRNA	gene	sequencing	data,	which	provides	

limited	taxonomic	resolution.	The	hypervariable	regions	of	the	16S	rRNA	gene	are	a	

convenient	target	for	assessing	community	diversity	and	obtaining	both	reference-based	

and	de	novo	taxonomic	characterizations.	However,	the	results	of	this	approach	can	be	

affected	by	amplification	bias[19],	which	can	result	in	false	negatives	and	skewed	

abundance	estimates.	Functional	repertoires	are	also	difficult	to	reconstruct	from	this	kind	

of	data,	since	microbial	traits	have	variable	rates	of	phylogenetic	conservation[20].	During	

my	PhD,	I	focused	on	moving	past	the	common	paradigm	of	case/control	cross-sectional	

studies	and	instead	examining	the	microbiome	throughout	the	progression	of	the	disease:	

starting	at	a	susceptible,	but	uninflamed	state,	and	tracking	the	evolving	microbiome	with	

higher	resolution	shotgun	metagenomic	data.	

1.3 Model	animals	are	indispensable	for	tackling	a	complex	disease	like	IBD	
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It	has	been	shown	that	a	variety	of	lifestyle	choices	and	experiences	can	have	a	

compounding	effect	on	a	person’s	eventual	diagnosis.	That	is	why	in	order	to	truly	

investigate	IBD	with	minimal	confounders	it	is	necessary	to	start	with	mice.	To	underscore	

the	breadth	of	factors	that	are	associated	with	differences	in	the	human	gut	microbiome,	

here	are	some	of	the	previously	reported	external	influences:	

1. Diet[21]	

2. Medication	–	the	most	obvious	being	antibiotics,	but	other	drugs	also	having	an	

effect,	despite	not	directly	targeting	bacteria.[22][23][24]	

3. Stress	(including	travel)[25][26]	

4. Early	childhood	experiences	(including	birth	route)[27][28]	

5. Smoking[29]	

6. Alcohol	consumption[30]	

While	these	findings	have	differing	levels	of	experimental	support,	they	suggest	that	

extra	caution	is	necessary	when	attempting	to	find	new	microbiome-disease	associations.	

To	rule	out	the	effects	of	these	potential	confounders,	we	used	lab	mice	for	our	longitudinal	

study.	Additionally,	to	further	limit	the	number	of	uncontrolled	variables,	we	used	

littermate	controls.	This	takes	genetic	variability	out	of	the	equation,	and	addresses	

potential	seasonality	concerns	that	would	arise	with	staggered	cohorts.	

1.4 Biological	samples	and	data	generation	

IBD-susceptible	mice	with	a	dominant	negative	mutant	receptor	II	of	transforming	

growth	factor	β	(referred	to	as	DNR	for	the	rest	of	the	text)	and	their	healthy	control	

littermates	(referred	to	as	WT)	were	raised	in	collaborator	Shomyseh	Sanjabi’s	lab.	The	
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DNR	mouse	model	features	defective	TGF-β	signaling	in	T-cells,	leading	to	limited	amounts	

of	T	regulatory	cells,	and	eventually	a	pro-inflammatory	phenotype[31].	While	many	mouse	

models	of	IBD	exist,	they	vary	in	their	approximation	of	the	different	aspects	of	the	

disease[32].	The	DNR	model	represents	an	aspect	of	immune	dysregulation	that	has	been	

observed	in	human	patients,	namely	the	aberrant	downstream	signaling	via	SMAD	

proteins[33,	34].	

Stool	samples	were	collected	from	the	two	mouse	groups	(N=5	DNR,	N=4	WT)	at	

regular	intervals.	The	collection	started	at	weaning	and	ended	when	the	health	status	of	the	

DNR	mice	became	too	severe.	The	samples	then	underwent	DNA	extraction	and	library	

preparation	as	described	in	[35]	and	were	sequenced	at	the	UCSF	IHG	core	facility.	Raw	

sequence	data	were	quality	processed	and	reads	originating	from	the	host	organism	were	

removed.	The	clean	reads	were	then	used	to	generate	functional	and	taxonomic	

characterizations	of	the	mouse	gut	microbiome	using	the	tools	ShotMAP[36]	and	

MIDAS[37]	respectively.	These	two	characterizations	consist	of	abundances	of	KEGG[38]	

orthologous	groups	(KOs)	and	MIDAS	genome	clusters	(species).	Additional	blood-derived	

data	were	gathered	from	a	parallel	cohort	of	littermates.	This	was	used	to	confirm	the	

vastly	different	immune	profiles	that	develop	over	time	in	the	DNR	and	WT	mice.
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2 Longitudinal	analysis	of	the	gut	microbiome	in	IBD	uncovers	

temporal	signals	in	functional	and	taxonomic	profiles	

The	work	described	in	this	chapter	was	my	contribution	to	the	published	paper	in	

mSystems[35].	The	end	result	of	this	study	was	a	subset	of	KEGG	modules	and	MIDAS	

species	that	had	significantly	different	abundance	trajectories	between	the	groups	of	

interest,	as	well	some	post	hoc	investigations	clarifying	the	time	segment	of	the	functional	

differences.	

2.1 Statistical	modeling	choices	

I	took	multiple	novel	approaches	when	modeling	these	complex	high	dimensional	data	in	

order	to	find	differences	over	time	between	the	DNR	and	WT	groups	of	mice.	The	

generalized	linear	mixed	model	(GLMM)	approach	that	I	started	out	with	has	been	widely	

used	in	the	ecology	literature[39].	Using	regression	formula	notation,	the	dependent	and	

predictor	variables	are	related	as	follows:	

Abundance	~	group	+	time	+	time:group		+	kit	+	(1	+	time|subject)	

Unpacking	this	formula	we	have	the	following:	

• Abundance	can	refer	to	the	number	of	reads	assigned	to	a	functional	entity	(e.g.	a	

KEGG	ortholog	in	these	data)	or	it	can	be	a	more	complex	entity,	such	as	log	counts	

per	million	(logCPM)	or	reads	per	kilobase	per	genome	equivalent	(RPKG[40]).	
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• Group	is	a	binary	variable,	taking	on	the	value	of	1	if	the	observation	is	from	the	

group	of	interest	(DNR)	or	0	if	it	is	from	the	control	group	(WT).	The	coefficient	

estimated	for	this	variable	reflects	the	baseline	differences	in	abundance	between	

the	groups	at	the	start	of	the	time	series.	

• Time	is	a	continuous	variable	(unit	of	weeks).	The	coefficient	estimated	for	this	

variable	reflects	the	baseline	slope	of	the	modeled	data,	i.e.	how	much	abundance	is	

increasing	(or	decreasing	if	negative)	per	week	for	the	WT	group	(and	partially	the	

DNR	group,	whose	slope	is	also	influenced	by	the	time:group	estimate).	

• Time:Group	refers	to	the	time	by	group	interaction,	and	the	coefficient	for	this	

variable	reflects	the	additional	slope	for	the	group	of	interest	(DNR).	This	is	the	

primary	coefficient	that	we	want	to	test.	It	represents	the	difference	in	temporal	

change	of	a	particular	biological	factor.	We	hypothesize	that	this	change	happens	

alongside	disease	progression.	

• Kit	is	a	covariate	that	was	necessary	to	include	because	our	data	were	derived	from	

two	sequencing	events,	performed	on	biological	samples	that	were	processed	with	

either	the	Qiagen	or	MOBIO	DNA	extraction	kits.	

• (1	+	time|subject)	reflects	the	random	component	of	the	GLMM,	allowing	for	baseline	

and	slope	differences	between	individuals.	Having	a	fixed	and	random	component	in	

a	model	is	a	useful	approach	for	disentangling	effects	of	interest	(i.e.	differences	in	

slope	between	groups)	from	more	minute	inter-individual	variation.	

The	full	model	is	fit	with	one	of	the	many	GLMM	packages	(lme4[41],	glmmTMB[42],	

glmmADMB[43])	available	in	the	R	programming	language[44],	and	to	obtain	significance	
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estimates	for	our	coefficients	of	interest,	we	simply	fit	reduced	models	without	them	and	

perform	likelihood	ratio	tests.	

Starting	with	this	basic	GLMM	specification,	I	additionally	made	a	number	of	modeling	

decisions	that	are	less	common	in	the	literature.	Each	customization	to	the	general	

approach	is	outlined	in	a	separate	subsection.	

2.1.1 Choice	of	response	distribution	for	GLMM	

Most	methods	that	aim	to	fit	metagenomics	data	generally	follow	the	lead	of	the	RNA-

seq	field	and	use	either	the	negative-binomial	distribution	or	the	log-normal	distribution.	

The	negative	binomial	is	chosen	when	the	response	variable	is	positive	and	count	valued	

and	the	data	show	a	mean-variance	relationship.	The	log-normal	distribution	is	chosen	for	

positive	continuously	valued	dependent	variables,	such	as	logCPM.	Our	data	measured	

abundance	as	RPKG[40]	–	reads	per	kilobase	of	matched	sequence,	per	number	of	genome	

equivalents,	which	is	a	continuous	positive	quantity.	For	my	final	analyses,	I	chose	a	

promising	yet	less	commonly	used	distribution	known	as	the	compound-Poisson	Tweedie	

distribution[45].	This	distribution	features	a	power	relationship	between	the	variance	and	

the	mean,	with	the	power	coefficient	adaptively	determined	as	part	of	the	model	fitting	

procedure.	

Actual	model	fitting	was	carried	out	through	the	cpglmm	method	of	the	cplm	

package[46]	in	R,	which	produces	fit	objects	that	are	compatible	with	methods	that	know	

how	to	extract	fields	from	the	lmerMod	class.	Using	the	glmmTMB[42]	package,	I	also	

produced	comparable	fits	using	the	negative-binomial	and	log-normal	distributions	as	a	

response,	keeping	the	regression	formula	unchanged.	Since	the	negative	binomial	is	a	
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discrete	distribution,	I	used	read	counts	as	the	response	and	library	size	divided	by	average	

genome	size	as	the	offset	variable	to	ensure	the	same	information	was	being	provided	as	

would	be	in	the	composite	RPKG	statistic.	A	larger	number	of	cpglmm	fits	converged	

successfully	(373	vs	86	for	negative	binomial	and	145	for	log-normal).	At	this	point	the	

negative	binomial	was	no	longer	considered	a	viable	option	and	further	comparisons	

proceeded	between	the	compound	Poisson	Tweedie	and	the	log-normal	distributions.	

Since	these	are	not	nested	models,	the	correct	avenue	for	comparing	them	for	

difference	in	fit	is	the	Vuong	test[47].	Using	this	test,	in	66	out	of	145	cases	the	cpglmm	fit	

was	significantly	better	than	the	log-normal	fit,	and	for	the	remaining	non-significant	cases	

the	cpglmm	fit	still	had	a	lower	negative	log-likelihood,	although	it	was	not	statistically	

significant.	Based	on	this	evaluation,	combined	with	the	generally	higher	number	of	models	

converging	successfully,	I	chose	the	cpglmm	approach	for	the	final	analysis.	

2.1.2 Gene	set	testing	as	part	of	model	fitting	allows	for	better	interpretability	and	

higher	number	of	observation	points	per	model	

Following	the	interesting	method	proposed	by	Hejblum	et	al	in	their	TcGSA	

package[48],	I	wanted	to	combine	the	gene	trajectory	grouping	approach	with	the	non-

standard	distribution	I	had	chosen	in	subsection	2.1.1.	This	was	relatively	easy,	since	at	its	

core	TcGSA	essentially	specifies	extra	random	effects	in	the	formulation	of	the	regression.	

For	my	data,	this	resulted	in	the	inclusion	of	an	extra	(1+time|KO)	term,	and	the	fitting	of	

models	on	whole	KEGG	modules	instead	of	individual	KOs.	With	this	setup,	the	fixed	effects	

estimated	are	for	a	module,	and	the	KO	level	random	effects	allow	deviations	in	slope	and	
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intercept	for	the	constituent	orthologs	within	a	module.	This	reformulation	also	has	the	

added	benefit	of	reducing	the	number	of	tests	carried	out	when	testing	the	significance	of	

the	time	and	time:group	coefficients,	reducing	the	multiple	testing	burden.	

2.1.3 Knowing	the	progression	of	the	disease	allows	us	to	alter	the	statistical	model	

to	test	for	pre-	and	post-onset	changes	

Since	immunological	covariates	were	also	assessed	throughout	the	timecourse	(albeit	

on	a	parallel	cohort	of	mice),	we	knew	when	increased	inflammation	started	occurring	in	

the	DNR	mice.	This	prompted	us	to	ask	the	question	of	whether	we	can	not	only	tell	what	

modules	have	different	trajectories	over	the	entire	timespan,	but	also	if	those	differences	in	

slope	occur	before	or	after	disease	onset	at	week	7.	I	went	about	answering	this	question	

by	inserting	a	“hinge”	in	the	regression,	resulting	in	two	separate	slope	coefficients	and	two	

separate	slope	by	group	interaction	coefficients.	

2.2 An	alternative	to	GLMMs	to	test	differences	in	species	trajectories	

Since	taxonomic	abundances	do	not	have	the	advantage	of	being	grouped	into	

coherently	changing	over	time	units,	the	TcGSA-style	approach	of	effectively	increasing	the	

number	of	data	points	per	model	fit	was	not	possible.	Instead	I	chose	to	use	a	method	

proposed	in	a	paper	focused	on	a	similar	problem	of	finding	overall	differences	in	gene	

expression	profiles[49].	I	reimplemented	the	test	using	FPCA	code	from	the	refund	R	

package[50],	since	the	legacy	code	from	the	original	publication	was	not	maintained.	This	

method,	at	its	core,	aims	to	find	a	set	of	eigenfunctions	that	can	be	used	to	faithfully	
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represent	all	curves	in	a	dataset	and	then	tests	whether	representations	learned	from	

single	group	data	or	pooled	data	are	better	fits	for	individual	species	trajectories.	

During	the	peer	review	of	our	manuscript,	I	was	asked	to	justify	why	it	is	appropriate	to	

group	functional	units	into	higher	level	blocks	that	can	be	modeled	together	(KOs	into	

modules),	but	not	to	do	the	same	with	taxonomic	units	(species	into	genera).		I	investigated	

this	question	by	constructing	multiple	permutations	of	simulated	genera	and	simulated	

modules	(of	size	appropriate	for	each	setting)	and	calculating	the	DISCO[51]	F-statistics	for	

these	constructs’	longitudinal	abundance	trajectories.	I	then	compared	the	distributions	of	

these	statistics	when	computed	on	real	data	versus	simulated	data,	finding	that	there	was	a	

significant	difference	in	the	case	of	modules,	but	not	genera.	The	results	of	Kolmogorov-

Smirnov	tests	on	these	real	vs.	simulated	comparisons	are	shown	in	Figure	2.	This	suggests	

non-random	temporal	coherence	(as	measured	by	distance	covariance)	in	functional	

groups	but	not	taxonomic	groups.	

2.3 Results	of	GLMM	tests	

Instead	of	blindly	fitting	models	for	all	KEGG	modules	that	had	at	least	one	constituent	

KO	present,	I	chose	to	pre-emptively	limit	the	candidate	list	by	running	MinPath[52].	

MinPath	is	a	simple	integer	linear	programming	approach	to	find	the	fewest	gene	sets	(i.e.	

KEGG	modules)	that	can	still	cover	all	of	the	individual	lower-level	entities	(i.e.	KOs)	

present	in	a	dataset.	This	allowed	me	to	lower	the	number	of	fits	down	from	394	to	373.	Of	

those	373	modules,	29	had	a	significant	time	by	group	interaction	(Benjamini-

Hochberg[53]	corrected	p-value	<	0.05),	shown	in	Table	1.	When	testing	the	significance	of	

the	intercept	difference,	17	modules	were	found	to	be	significant,	shown	in	Table	2.	
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Subsequent	testing	via	hinge	regression	of	the	29	modules	with	differences	in	slope	

between	DNR	and	WT	showed	that	most	significant	differences	were	in	the	post-onset	

segment,	and	only	2	modules	had	a	pre-onset	difference	in	slope.	

P-value	 Interaction	
coefficient	
(time:group)	

KEGG	
module	

B-H	adjusted		
p-value	

Module	description	

0.003526808	 -0.061914095	 M00031	 0.045118826	 Lysine	biosynthesis,	2-
aminoadipate	=>	lysine	

0.001289328	 -0.054163057	 M00252	 0.023124397	 Lipooligosaccharide	transport	
system	

7.85984E-14	 -0.050795746	 M00037	 1.458E-11	 Melatonin	biosynthesis,	tryptophan	
=>	serotonin	=>	melatonin	

0.000583901	 0.001367718	 M00081	 0.012742783	 Pectin	degradation	
0.001641721	 0.005501227	 M00096	 0.02648167	 C5	isoprenoid	biosynthesis,	non-

mevalonate	pathway	
3.09279E-15	 0.006769116	 M00051	 1.14743E-12	 Uridine	monophosphate	

biosynthesis,	glutamine	(+	PRPP)	
=>	UMP	

2.47233E-08	 0.008386556	 M00432	 2.29308E-06	 Leucine	biosynthesis,	2-
oxoisovalerate	=>	2-oxoisocaproate	

3.2853E-05	 0.008449928	 M00015	 0.001354276	 Proline	biosynthesis,	glutamate	=>	
proline	

6.17762E-05	 0.010710645	 M00531	 0.002083541	 Assimilatory	nitrate	reduction,	
nitrate	=>	ammonia	

9.37223E-06	 0.01250214	 M00377	 0.000434637	 Reductive	acetyl-CoA	pathway	
(Wood-Ljungdahl	pathway)	

3.89476E-05	 0.021300468	 M00482	 0.001444956	 DevS-DevR	(redox	response)	two-
component	regulatory	system	

0.001371258	 0.02235754	 M00532	 0.023124397	 Photorespiration	
1.10344E-06	 0.024257464	 M00511	 6.82292E-05	 PleC-PleD	(cell	fate	control)	two-

component	regulatory	system	
0.000639329	 0.029589337	 M00009	 0.013177285	 Citrate	cycle	(TCA	cycle,	Krebs	

cycle)	
5.65831E-08	 0.033549367	 M00507	 4.19847E-06	 ChpA-ChpB/PilGH	(chemosensory)	

two-component	regulatory	system	
0.001895115	 0.040964063	 M00515	 0.028123512	 FlrB-FlrC	(polar	flagellar	synthesis)	

two-component	regulatory	system	
1.7889E-09	 0.053978814	 M00076	 2.21227E-07	 Dermatan	sulfate	degradation	
0.000488884	 0.057090656	 M00358	 0.011335995	 Coenzyme	M	biosynthesis	
5.596E-06	 0.066796574	 M00538	 0.000296588	 Toluene	degradation,	toluene	=>	

benzoate	
0.000238478	 0.067502417	 M00091	 0.006319664	 Phosphatidylcholine	(PC)	

biosynthesis,	PE	=>	PC	
0.003058517	 0.069417949	 M00079	 0.040525353	 Keratan	sulfate	degradation	
0.002173789	 0.070007142	 M00012	 0.029869476	 Glyoxylate	cycle	
0.000134104	 0.07130334	 M00259	 0.003827109	 Heme	transport	system	
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0.001986819	 0.096037367	 M00334	 0.028350384	 Type	VI	secretion	system	
0.00028046	 0.119637579	 M00555	 0.006936704	 Betaine	biosynthesis,	choline	=>	

betaine	
8.84876E-05	 0.120030856	 M00330	 0.002735742	 Adhesin	protein	transport	system	
0.000780192	 0.2081415	 M00229	 0.015234268	 Arginine	transport	system	
0.001792889	 0.209197878	 M00332	 0.02771507	 Type	III	secretion	system	
0.001315562	 0.209397611	 M00417	 0.023124397	 Cytochrome	o	ubiquinol	oxidase	

Table	1.	Significant	results	of	testing	group	by	time	interaction	coefficient	in	module-
level	GLMM	fits.	Negative	coefficients	reflect	a	reduced	slope	in	the	DNR	group.	P-values	are	
obtained	via	likelihood	ratio	test	against	a	reduced	model	with	no	interaction	term	

	

P-value	 intercept	
coefficient	
(group)	

KEGG	
module	

B-H	
adjusted	
p-value	

Module	description	

0	 -0.1367	 M00551	 0	 Benzoate	degradation,	benzoate	=>	catechol	/	
methylbenzoate	=>	methylcatechol	

0	 0.0689	 M00246	 0	 Nickel	transport	system	

0	 0.35636	 M00271	 0.00001	 PTS	system,	beta-glucosides-specific	II	
component	

0	 -0.2761	 M00502	 0.00001	 GlrK-GlrR	(amino	sugar	metabolism)	two-
component	regulatory	system	

0	 -0.17086	 M00080	 0.00005	 Lipopolysaccharide	biosynthesis,	inner	core	=>	
outer	core	=>	O-antigen	

0.00003	 0.00333	 M00549	 0.00173	 Nucleotide	sugar	biosynthesis,	glucose	=>	UDP-
glucose	

0.00004	 -0.0967	 M00235	 0.00211	 Arginine/ornithine	transport	system	

0.00006	 -0.76375	 M00537	 0.00298	 Xylene	degradation,	xylene	=>	methylbenzoate	

0.00026	 0.30189	 M00151	 0.01063	 Cytochrome	bc1	complex	respiratory	unit	

0.00034	 -0.13058	 M00211	 0.01269	 Putative	ABC	transport	system	

0.00075	 -0.18581	 M00278	 0.02516	 PTS	system,	sorbose-specific	II	component	

0.00081	 0.0352	 M00535	 0.02516	 Isoleucine	biosynthesis,	pyruvate	=>	2-
oxobutanoate	

0.00098	 -0.13234	 M00596	 0.02648	 Dissimilatory	sulfate	reduction,	sulfate	=>	H2S	

0.001	 0.05319	 M00159	 0.02648	 V-type	ATPase,	prokaryotes	

0.00117	 0.29126	 M00356	 0.02897	 Methanogenesis,	methanol	=>	methane	

0.0017	 -0.01631	 M00572	 0.03932	 Pimeloyl-ACP	biosynthesis,	BioC-BioH	pathway,	
malonyl-ACP	=>	pimeloyl-ACP	

0.00182	 0.57489	 M00349	 0.03965	 Microcin	C	transport	system	

Table	2.	Significant	results	of	testing	group	coefficient	in	module-level	GLMM	fits.	
Negative	coefficients	reflect	a	reduced	abundance	in	the	DNR	group	at	the	first	timepoint.	P-
values	are	obtained	via	likelihood	ratio	test	against	a	model	with	the	group	term	omitted.
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2.4 Results	of	FPCA-based	tests	

The	tests	performed	on	taxonomic	data	from	this	study	produced	7	MIDAS	species	that	

were	found	to	have	significantly	different	abundance	trajectory	shapes.	It’s	important	to	

note	that	significance	is	evaluated	via	a	permutation-based	comparison	of	F	statistics,	

hence	the	p-values	produced	can	be	exact	zeros	due	to	limitations	in	the	number	of	

permutations	performed.	Since	this	test	does	not	produce	a	comparison	coefficient	like	

slope	in	the	GLMMs,	I	have	instead	included	the	estimated	area	under	the	smoothed	

abundance	curve	as	a	purely	informational	quantity	in	the	results	Table	3.	The	abundance	

trajectories	of	these	significantly	different	species	can	be	seen	in	Figure	1,	where	the	

shaded	ribbons	are	LOESS	smoothing	across	individuals	in	a	group.	

Justifying	the	necessity	of	this	alternative	approach	for	comparing	species	trajectory	

shapes,	I	show	the	results	of	comparing	the	DISCO	F-statistic	distributions	(real	vs	

permuted	inputs)	in	modules	and	genera	(Figure	5).	The	significantly	different	F-statistic	

distribution	of	real	versus	permuted	longitudinal	KO	profiles	shows	that	organizing	low-

level	functional	units	into	higher	order	ontology-determined	groups	is	supported	by	the	

overall	coherence	in	the	group	longitudinal	development.	The	nonsignificant	result	

obtained	when	testing	taxonomic	profiles	in	a	similar	manner	shows	that	organizing	

species	trajectories	into	genera	does	not	aid	in	temporal	coherence.	An	alternative	

explanation	for	the	nonsignificant	difference	in	distributions	of	simulated	and	real	F-

statistics	is	that	genera	in	this	dataset	tend	to	have	few	constituent	taxa	present,	and	

therefore	there	is	a	discretization	effect	on	the	F-statistic	distribution	(only	a	certain	

number	of	permutation	groupings	can	be	created).		
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Species	
ID	

P-value	 B-H	
corrected	
p-value	

Species	name	 WT	area	
under	
LOESS	
curve	

DNR	area	under	
LOESS	curve	

54642	 0	 0	 Bacteroides	sartorii	 0.01992	 0.07699	

57185	 0	 0	 Bacteroides	xylanisolvens	 0.03051	 0.02506	
57318	 0	 0	 Bacteroides	uniformis	 0.02297	 0.04506	
58110	 0	 0	 Escherichia	coli	O157:H43	strain	

T22	
5.35E−4	 0.007523	

59684	 0.0001	 0.0025	 Lachnospiraceae	bacterium	COE1	 0.07203	 0.04213	
59708	 0	 0	 Bacteroides	rodentium	 0.0136	 0.01986	
61442	 0.0013	 0.02786	 Lachnospiraceae	bacterium	A4	 0.119	 0.1348	

Table	3.	Results	of	FPCA-based	goodness	of	fit	comparisons.	Exact	zeros	are	generally	not	
returned	when	estimating	p-values	with	a	theoretical	probability	distribution,	but	occur	
here	due	to	being	empirically	estimated	via	comparison	to	a	permutation	based	null	
distribution.	

	

	
Figure	1.	Smoothed	abundance	trajectories	of	species	with	significantly	different	

trajectory	shapes	in	the	FPCA-based	goodness-of-fit	comparisons.	Since	the	identifiable	unit	
in	MIDAS	is	a	genome	cluster,	the	labels	shown	here	are	those	of	centroid	genomes.		
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Figure	2.	Permutation-based	demonstration	of	the	lack	of	coherent	temporal	signal	in	
groups	of	taxonomic	vectors	compared	to	groups	of	functional	vectors	

	

2.5 Results	of	segmented	regression	

Since	there	was	interest	in	examining	the	timing	of	the	significant	changes	reported	in	

Table	1,	I	performed	a	post-hoc	analysis	on	those	modules’	data.	This	analysis	was	done	

with	a	modified	regression	formula	allowing	for	two	segments:	pre-disease	onset	and	post-

disease	onset.	Each	module’s	fit	produced	two	coefficients	reflecting	the	difference	in	slope	

between	DNR	and	WT	groups	in	each	time	segment,	which	I	then	tested	for	being	

significantly	non-zero	via	their	t-values.	Only	13	of	the	29	previously	identified	modules	

exhibited	a	significant	difference	in	coefficients	using	segmented	regression.	A	heatmap	of	

the	coefficients	is	presented	in	Figure	3	with	asterisks	marking	coefficients	that	were	

Kolmogorov−Smirnov test
D = 0.46338, p−value < 2.2e−16
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significantly	non-zero	(B-H	corrected	p-value	<	0.2).	Most	(11/13)	of	the	significant	

segment	slope	differences	were	in	the	post-immune	activation	part	of	the	timecourse.	

	

Figure	3.	A	heatmap	of	the	29	segmented	GLMM	coefficients.	Asterisks	mark	significantly	
non-zero	coefficients	(B-H	corrected	p-value	<	0.2).	Color	represents	the	estimated	
coefficient	for	group	by	time	interaction	in	that	segment,	i.e.	the	extra	slope	of	DNR.	
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2.6 An	approach	for	assessing	inter-species	interactions	

One	of	the	analyses	that	was	not	included	in	the	published	mSystems	manuscript	was	

focused	on	gauging	whether	species	interactions	in	the	DNR	and	WT	mice	were	also	

different,	and	if	they	were	affected	by	the	changing	abundances	of	active	immune	cells.	The	

generalized	Lotka-Volterra	model	has	been	a	common	approach	in	the	ecological	literature	

used	to	characterize	interspecies	interactions	within	a	community[54][55].	When	applied	

to	microbiome	data,	this	model	has	not	produced	many	successful	inferences	so	far.	For	the	

cases	where	coefficients	were	obtained	with	high	confidence,	the	researchers	were	able	to	

produce	interesting	mechanistic	hypotheses	for	community	alteration[56][57].	

In	the	context	of	our	small	mouse	IBD	study,	fitting	the	necessary	system	of	ordinary	

differential	equations	(ODEs)	was	a	daunting	task	even	when	armed	with	the	information	

sharing	approach	proposed	in	the	work	of	Chung	et	al[58].	Briefly,	the	approach	taken	in	a	

typical	generalized	Lotka-Volterra	model	involves	finding	optimal	coefficients	for	the	

system	ODEs	specified	by	the	following	formula	(with	coefficients	as	they	appear	in	

reference	[56]):	

𝑑
𝑑𝑡 𝑥! 𝑡 =  𝜇!𝑥! 𝑡 +  𝑥! 𝑡 𝑀!"𝑥! 𝑡

!

!!!

+  𝑥!(𝑡) 𝜀!"𝑢!(𝑡)
!

!!!

	

To	unpack	this	formula,	each	species’	rate	of	abundance	change	is	a	function	of:	

• an	inherent	growth	parameter	μ	and	current	abundance	xi	
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• the	sum	of	interspecies	interaction	effects,	calculated	by	multiplying	the	

other	species’	abundance	(xj)	by	the	focal	species’	abundance	(xi)	and	their	

interaction	coefficient	(Mij)	

• the	sum	of	species-host	interaction	effects,	calculated	by	multiplying	the	host	

quantity’s	abundance	(ul)	by	the	focal	species’	abundance	(xi)	and	their	

interaction	coefficient	(εil)	

The	M	and	ε matrices	are	conceptually	similar,	with	the	exception	that	the	host	effects	

are	unidirectional	(microbes	are	not	permitted	to	affect	host-related	abundances	in	this	

model).	The	host-originating	actors	in	this	case	were	immune	cell	subpopulations.	

Since	the	data	we	have	are	quite	sparse,	I	selected	only	the	top	10	prevalent	species	and	

interpolated	the	time	series	data	using	splines	within	the	Amelia	II	multiple	imputation	

package[59].	To	obtain	cohort-level	confidence	intervals,	all	samples	from	a	cohort	were	

used	in	the	two	step	inference	of	ODE	coefficients	via	modFit	and	modMCMC	functions	in	

the	FME	package[60].	This	approach	produces	an	initial	set	of	coefficients	via	conventional	

gradient-based	methods,	and	then	uses	the	Hessian	from	the	first	step	for	the	proposal	

distribution	in	the	MCMC	part.	

Initially	I	saw	promising	results	in	the	interaction	networks	that	emerged	for	the	two	

groups	because	they	appeared	quite	different	and	could	have	potentially	explained	some	of	

the	complex	interplay	happening	in	the	background	of	IBD	development	(summary	of	

coefficients	presented	in	Figure	4).	Upon	closer	inspection,	I	was	left	skeptical	of	the	results	

when	I	examined	the	MCMC	trace	plots	and	calculated	convergence	diagnostics	using	the	R	

package	coda[61].	Ultimately,	we	decided	that	the	uncertainty	was	too	large	to	make	
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effective	comparisons.	Such	an	over-parameterized	approach	needs	more	data	than	our	

small	study	or	simpler	communities	with	fewer	actors.	Recent	research	has	suggested	that	

Lotka-Volterra	approaches	may	be	fundamentally	incapable	of	describing	the	complexity	of	

ecological	interactions	between	microbes	[62].	

	

Figure	4.	Means	of	interaction	coefficients	of	the	per-group	Lotka-Volterra	model.	Upper	
triangles	are	the	DNR	estimates,	lower	triangles	are	WT	estimates.	
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2.7 Interpreting	the	GLMM	and	FPCA	results	in	the	context	of	IBD	and	the	

changing	intestinal	environment	

The	29	modules	with	different	time	trends	between	DNR	and	WT	mice	suggest	a	

shifting	ecological	landscape	with	perturbed	physicochemical	properties	and	the	

accompanying	response	of	the	microbiota	to	these	altered	conditions.	This	shift	is	most	

evident	from	the	presence	of	multiple	two-component	signaling,	chemotactic,	and	redox	

homeostasis	related	modules.	Bacteria	capable	of	moving	to	a	more	favorable	

microenvironment	within	the	gut	or	neutralizing	reactive	oxygen	species	are	more	likely	to	

survive	the	localized	effects	of	the	inflammatory	response[63].	Species	capable	of	taking	

advantage	of	inflammation-related	host	metabolites	also	have	a	survival	advantage[64].	

Another	overarching	theme	is	of	increased	pathogenic	potential,	seen	in	the	increase	of	

adhesion	related	modules,	Type	III	and	VI	secretion	systems,	keratan	and	dermatan	

degradation,	and	heme	transport.	Bacterial	secretion	systems	generally	carry	out	the	

function	of	injecting	proteins	into	a	target	host	or	competitor	cell[65][66].	While	the	

increase	of	both	systems	is	indicative	of	increased	capacity	to	inject	toxins	into	host	cells,	

Type	VI	secretion	additionally	suggests	that	other	microbiota	members	may	also	be	

targeted[67].	Keratan	and	dermatan	sulfate	are	components	of	mucin,	and	while	many	non-

harmful	bacteria	use	them	as	an	energy	source[68],	the	increase	in	bacteria	focused	on	

extracting	energy	from	this	defensive	barrier	is	suggestive	of	increased	access	to	the	

intestinal	epithelium[69].	Heme	transport	is	another	activity	that	regularly	occurs	within	

almost	all	bacteria[70],	but	the	increase	in	host-heme	“theft”	is	primarily	observed	in	
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pathogenic	bacteria[71][72].	Since	bacteria	seldom	have	access	to	free	iron,	they	have	

acquired	many	adaptations	to	effectively	trap	sequestered	iron[73].	

Of	extra	interest	are	the	3	negative	coefficient	modules:	melatonin	biosynthesis,	lysine	

biosynthesis,	and	lipooligosaccharide	transport.	Melatonin	has	a	dual	effect	on	the	immune	

system[74],	potentially	acting	in	a	stimulatory	manner	in	the	context	of	infection,	and	in	an	

immunomodulatory	manner	in	some	cases	of	chronic	inflammation[75].	The	sharp	

decrease	in	melatonin	synthesis	as	the	inflammation	progresses	suggests	that	it	is	

interpreted	as	the	mark	of	a	pathogen	in	this	scenario,	leading	to	the	eradication	of	

genomes	that	contain	this	function.	The	decrease	in	lysine	biosynthesis	indirectly	leads	to	a	

presumed	decrease	in	the	synthesis	of	short	chain	fatty	acids	like	butyrate[76],	which	

normally	serves	an	anti-inflammatory	and	colonocyte	nurturing	function[77].	The	decrease	

in	lipooligosaccharide	transport	seems	puzzling	at	first	glance,	since	lipooligosaccharides	

from	Gram-negative	bacteria	have	been	shown	to	have	a	pro-inflammatory	effects	rather	

conclusively[78].	However,	upon	closer	inspection	of	the	KEGG	references	for	this	specific	

module,	we	find	that	it	is	sparsely	characterized,	and	most	references	are	to	export	

activities	in	rhizobial	bacteria[79].	Therefore	this	particular	candidate	biomarker	still	

needs	to	be	examined,	as	it	has	promising	signal	in	my	results	(the	only	module	to	have	

significantly	different	slope	in	both	pre-	and	post-onset	segments),	but	lacks	a	clear	

mechanistic	explanation.	

From	testing	the	intercept	coefficient	of	GLMMs,	we	see	that	the	microbiomes	of	DNR	

and	WT	mice	already	have	significant	differences	early	in	development.	The	17	modules	

that	were	significantly	different	at	the	earliest	time	point	(week	4)	represent	a	broad	
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diversity	of	biosynthetic,	signaling,	and	methanogenesis	modules.	This	underscores	the	

importance	of	adjusting	for	these	pre-weaning	differences	when	focusing	on	temporal	

changes.	Additionally	these	intercept	effects	could	represent	the	influences	of	cage	effects,	

since	the	two	groups	of	animals	were	housed	separately,	but	were	not	single-caged.	

It	is	notable	that	in	the	more	detailed	post-hoc	segmented	regression	analysis	of	

candidate	modules	we	see	almost	universally	that	the	significant	intergroup	slope	

differences	occur	after	disease	onset,	suggesting	that	at	least	in	this	model	of	IBD,	the	

microbiome	primarily	changes	in	response	to	the	inflammation.	There	are	however	two	

modules	which	have	a	significant	slope-group	interaction	in	the	pre-onset	segment	(type	III	

secretion	and	lipooligosaccharide),	making	them	potential	candidate	biomarkers	for	future	

more	in-depth	studies	to	test.	

While	the	results	of	this	work	have	primarily	garnered	leads	from	the	functional	

characterization	of	the	microbiome,	a	few	species	signals	also	emerge.	Out	of	the	7	species	

that	had	significantly	different	abundance	trajectories	in	the	DNR	group,	4	are	members	of	

the	Bacteroides	genus.		Commensal	Bacteroides	species	have	been	shown	in	the	past	to	

induce	colitis	in	mouse	models	of	the	disease[80].	However,	Bacteroides	bacteria	are	also	

common	members	of	most	human	and	mouse	microbiomes,	therefore	we	need	further	

experimental	data	before	suggesting	these	bacterial	species	are	singularly	responsible	for	

disease.	Particularly	because	most	of	the	significant	trajectories	share	a	sharp	late	upswing	

pattern,	this	suggests	more	of	a	response	role	and	not	a	causative	role.	

It	is	important	to	note	that	all	these	findings	were	obtained	from	metagenomic	data,	

hence	they	reflect	the	functional	potential	of	the	community,	but	not	necessarily	the	
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transcriptional	activity	or	protein	and	metabolite	abundances.	While	DNA	sequencing	is	

currently	much	more	widespread	in	the	microbiome	field,	there	are	increasing	numbers	of	

integrative	approaches	that	tackle	metatranscriptomic	and	metaproteomic	data	as	well.	

The	work	I	have	presented	in	this	chapter	would	serve	as	a	jumping-off	point	for	in-depth	

hypothesis	testing	with	these	more	complex	approaches.	Final	confirmation	of	the	effects	of	

certain	pathways	or	species	would	still	need	to	come	from	carefully	designed	experimental	

perturbations	of	the	microbial	community.
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3 Single	cell	sequencing:	an	effective	approach	for	addressing	the	

underrepresentation	of	mouse	symbiotic	microbes	in	reference	

databases	

While	many	efforts	are	currently	underway	to	characterize	more	members	of	the	

human	microbiome,	little	data	exists	that	could	serve	as	a	high-quality	genome	reference	

for	mouse	microbiome	studies.	To	try	and	address	this	database	bias,	we	used	two	

biological	samples	from	WT	and	DNR	mice	to	generate	preliminary	low	coverage	and	more	

thorough	high	coverage	sequencing	data	for	more	than	700	individual	cells.	I	evaluated	the	

novelty	of	the	newly	sequenced	genomes,	both	in	terms	of	phylogenetic	placement	as	well	

as	the	genomic	features	that	could	be	retrieved.	I	also	assessed	the	utility	of	these	genomes	

in	serving	as	a	custom	reference	for	two	taxonomic	classifier	methods.		

3.1 An	optimization	approach	for	prioritizing	cells	for	high	coverage	

sequencing	

The	single	cell	sequencing	service	provided	by	the	Bigelow	SCGC	follows	a	two-stage	

pattern.	First,	low	coverage	genomes	are	generated	and	assessed	for	technical	quality	as	

well	as	relevance	to	the	researcher’s	biological	question.	Second,	the	researcher	chooses	

what	cells	from	the	plate	they	would	like	to	get	sequenced	with	higher	coverage,	and	a	

second	sequencing	run	is	performed	at	greater	depth.	An	agnostic	approach	for	making	this	

second	choice	relies	on	picking	the	first	150	cells	per	plate	that	had	the	lowest	values	of	a	

technical	parameter	referred	to	as	the	critical	point	(Cp).	Cp	is	the	time	needed	by	a	

particular	well’s	reaction	to	reach	the	inflection	point	in	its	amplification	curve.	The	
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sequencing	center	has	determined	empirically	that	this	gives	the	highest	chance	of	getting	

good	quality	data	from	the	resequencing.		

This	approach	of	taking	the	most	easily	sequenceable	samples	is	a	good	idea	for	diverse	

understudied	environments	like	the	marine	microbiome,	where	virtually	all	new	genomes	

are	likely	to	be	from	organisms	with	limited	representation.	Since	our	motivating	reason	

was	the	underrepresentation	of	mouse-specific	microbes,	I	chose	to	alter	the	prioritization	

scheme	to	disfavor	genomes	that	already	have	well	characterized	close	relatives.	If	we	had	

proceeded	with	the	default	proposal	set,	44	of	the	300	samples	would	have	been	from	

genomes	with	average	nucleotide	identities	of	more	than	95%	with	a	RefSeq	genome,	as	

determined	by	FastANI[81].	To	generate	a	new	set	of	proposed	cells,	I	set	the	optimization	

objective	to	maximize	the	total	branch	length	of	selected	tree	tips,	with	the	constraint	that	

the	sum	of	Cp	values	of	the	chosen	tips	must	still	stay	under	1.2	times	the	minimal	possible	

sum	of	Cp	values.	I	additionally	adjusted	the	costs	of	known	undesirable	samples	(positive	

and	negative	sequencing	controls,	samples	with	known	close	representatives	in	RefSeq,	

samples	that	had	poor	assembly	at	the	low	coverage	stage)	by	artificially	inflating	their	Cp	

value.	

The	problem	of	maximizing	phylogenetic	diversity	(PD)	while	limiting	cost	has	been	

discussed	in	the	ecology	literature,	where	it	is	relevant	for	species	conservation	efforts	and	

is	generally	solved	using	a	greedy	algorithm[82].	In	theoretical	discussions	of	the	runtime	

of	any	feasible	solution	to	this	problem	it	has	been	linked	to	the	broader	computational	

task	of	maximizing	set	coverage,	which	is	an	NP-hard	problem[83].	Despite	this	theoretical	

limitation	on	efficient	computation,	it’s	still	possible	to	get	an	approximate	solution	by	
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using	a	mixed	integer	programming	approach.	I	implemented	this	optimization	problem	

using	the	PuLP[84]	package	in	python	and	generated	two	sets	of	150	samples	that	had	

increased	phylogenetic	diversity	when	compared	to	the	default	set	achieved	by	just	

minimizing	total	Cp	(total	branch	length	of	60.24	vs	52.27,	respectively).	The	distributions	

of	a	number	of	key	technical	characteristics	that	we	already	had	from	the	low	coverage	

data	(Figure	5)	were	not	significantly	different	when	compared	by	the	Mann-Whitney	test		

(Table	4)	suggesting	that	aside	from	the	unavoidable	shift	in	amplification	efficiency,	no	

other	serious	obstacles	to	high	coverage	sequencing	should	occur.	

	

Figure	5.	Comparison	of	the	distributions	of	4	technical	characteristics	between	the	
default	lowest	Cp	proposal	set,	and	the	optimized	maximal	PD	proposal	set	

total length of assembled contigs ratio of assembly length to total readlength

Cp number of raw reads

0e+00 1e+06 2e+06 3e+06 0 2 4 6 8

1.6 2.0 2.4 2.80e+00 5e+05 1e+06
0

10

20

30

40

0

10

20

30

40

value

co
un

t Set of samples
default set

optimized set



	 28	

	

variable	 U	statistic	 P-value	 B-H	
adjusted	
p-value	

Cp	 52011	 0.0009598	 0.003839345	

number	of	raw	reads	 45441	 0.8356	 0.835633779	

total	length	of	assembled	contigs	 42271	 0.1987	 0.264981305	

ratio	of	assembly	length	to	total	read	length	 41073	 0.06439	 0.128789857	

Table	4.	Results	of	paired	Mann-Whitney	tests	comparing	4	technical	characteristics	of	
the	default	and	optimized	sequencing	proposals	

3.2 Single	cell	genomes	provide	noticeable	phylogenetic	gain	

The	data	processing	pipeline	followed	by	the	sequencing	center	involves	general	QC	of	

the	short	reads	for	contaminants	and	technical	artifacts,	generation	of	genome	assemblies	

by	SPAdes[85],	and	profiling	of	these	assemblies	by	CheckM[86].	Compiling	the	CheckM	

results	of	all	the	cells	profiled,	we	see	the	distributions	shown	in	Figure	6.	With	follow-up	

high	coverage	sequencing	of	a	subset	of	300	cells,	a	significant	improvement	is	observed	in	

multiple	assembly	criteria.	This	includes	completeness,	maximum	contig	length,	number	of	

contigs,	and	total	assembled	sequence	length	(Figure	7).	Since	one	of	the	primary	goals	of	

this	sequencing	endeavor	was	the	to	expand	the	diversity	present	in	the	tree	of	life,	I	used	

the	GTDB-Tk	python	package[87]	to	place	the	new	assemblies	in	the	GTDB	(release	80)	

genome	tree[88].	I	then	calculated	the	phylogenetic	gain	for	all	named	clades	with	

GenomeTreeTk[89]	and	visualized	it	as	a	color	gradient	on	the	taxonomy	tree	with	

metacoder[90]	(Figure	8).	
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Figure	6.	Assessment	of	assembly	quality	for	the	single	cell	genomes	
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Figure	7.	Improvements	achieved	by	high	coverage	resequencing	of	select	cells.	
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Figure	8.	Metacoder	heattree	showing	phylogenetic	gain	and	concentration	of	single	cell	
assembled	genomes	(SAGs)	on	select	lineages	in	the	bacterial	and	archaeal	trees.	This	tree	is	
generated	from	lineage	strings	assigned	by	GTDB-Tk’s	classify	workflow,	and	hence	this	is	
not	a	true	phylogenetic	tree,	as	the	branch	lengths	are	not	meaningful	

3.3 The	single	cell	genomes	are	a	source	of	new	genes	and	extended	genomic	

feature	assemblages	

To	show	that	we	not	only	increased	phylogenetic	diversity	but	had	also	increased	the	

collection	of	putative	genes,	I	created	a	gene	catalog	from	all	predicted	genes	generated	by	

checkM	(which	in	turn	uses	Prodigal[91]	for	gene	calling).	To	make	this	sequence	collection	

comparable	with	other	published	gene	catalogs,	I	reduced	redundancy	by	running	CD-HIT-

EST[92]	greedy	clustering.	I	then	annotated	the	remaining	non-redundant	sequences	with	
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EggNOG’s	emapper.py	utility[93],	which	outputs	predicted	membership	of	the	query	

sequences	in	databases	such	as	COG[94].	To	compare	the	gene	catalog	I	had	generated	with	

those	that	had	been	previously	published,	I	used	CD-HIT-EST-2D	with	settings	“–r	1	–c	0.95	

–n	8”	to	cluster	three	pairs	of	databases:	the	new	SCG	gene	catalog	against	(1)	the	human	

metagenome	gene	catalog[95],	(2)	the	mouse	metagenome	gene	catalog[96],	and	(3)	the	

Tara	Oceans	gene	catalog[97].	To	further	probe	the	enrichment/depletion	of	various	COG	

annotations	present	only	in	the	single	cell	genomes	gene	catalog	when	compared	against	

the	mouse	metagenome	gene	catalog,	I	performed	a	series	of	Fisher’s	exact	tests	assessing	

the	relationship	between	a	gene	being	labeled	a	certain	COG	category	versus	it	being	

considered	novel.	

One	of	the	advantages	of	uncontaminated	single	source	genomic	data	is	that	we	no	

longer	have	the	question	of	whether	a	collection	of	functions	truly	coexists	in	a	single	

closely	spaced	environment.	This	assurance	of	reasonable	physical	proximity	allows	us	to	

investigate	two	kinds	of	interesting	genomic	features	–	biosynthetic	clusters	and	CRISPR-

Cas	systems.	I	annotated	biosynthetic	gene	clusters	(BGCs)	within	the	single	cell	draft	

genomes	with	AntiSMASH[98].	I	found	predicted	CRISPR	arrays	with	metaCRT[99]	and	

classified	the	CRISPR-Cas	types	and	subtypes	with	CRISPRdisco[100].	

3.3.1 Results	of	annotating	genome	features	

When	analyzing	the	data	from	the	gene	catalog	perspective,	I	found	that	despite	the	

mouse	metagenome	catalog	being	a	much	larger	set	of	sequences,	over	half	of	our	

predicted	genes	were	not	represented	in	it.	The	intersections	with	the	human	and	ocean	
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microbiome	catalogs	were	even	smaller,	with	the	ocean	dataset	serving	as	the	expected	

most	dissimilar	comparison.	The	counts	of	the	set	intersections	can	be	seen	in	Figure	9.	

Taking	the	catalog	pairing	with	the	largest	intersection	(mouse	metagenome	catalog),	I	

wanted	to	investigate	whether	the	genes	that	had	not	been	cataloged	before	were	enriched	

or	depleted	for	a	certain	function.	The	results	in	Figure	10	are	a	barchart	summarizing	the	

collection	of	Fisher’s	exact	tests	performed	on	contingency	tables	relating	the	novelty	of	a	

gene	versus	it’s	annotation	as	a	particular	COG.	Overall	144	COGs	were	significant	in	this	

analysis.	Nearly	every	functional	category	had	COGs	enriched	or	depleted,	with	the	

exception	of	A(RNA	processing	and	modification),	B(Chromatin	structure	and	dynamics),	

W(Extracellular	structures),	and	Y(Nuclear	structure).	I	further	filtered	the	significant	

results	by	the	value	of	inter-catalog	ratios	of	COG	proportions,	and	subsequently	tallied	the	

number	of	COGs	per	category	with	absolute	value	of	the	ratio	greater	than	4.	The	more	

salient	functional	groups	after	this	filtering	step	are	G(Carbohydrate	transport	and	

metabolism),	which	has	more	hits	for	the	published	catalog,	and	C(Energy	production	and	

conversion),	which	has	more	COGs	enriched	for	the	new	catalog.		

To	represent	the	classified	CRISPR-Cas	types	and	the	predicted	biosynthetic	gene	

clusters	I	plotted	this	information	with	ggtree[101],	restricting	the	displayed	genomes	to	

the	449	that	were	placed	successfully	onto	the	phylogenetic	tree	by	GTDB-Tk	(Figure	11).	

Not	all	assembled	genomes	had	a	sufficiently	complete	set	of	single	copy	marker	genes,	

which	caused	them	to	be	dropped	from	the	multiple	sequence	alignment	performed	by	

GTDB-Tk.	The	total	counts	of	CRISPR-Cas	types	and	subtypes,	as	well	as	secondary	

metabolite	gene	clusters	by	category	can	be	seen	in	Table	5.	The	findings	from	this	analysis	
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show	a	phylogenetic	separation	in	CRISPR-Cas	types,	a	broad	presence	of	two	biosynthetic	

gene	cluster	types	(saccharide	and	fatty	acid),	and	a	more	narrow	phylogenetic	distribution	

of	rarer	types	of	BGCs	(bacteriocin	and	resorcinol).	These	results	are	further	discussed	in	

section	1.1.



	 35	

	

	

	

Figure	9.	Venn	diagrams	of	pairwise	gene	catalog	intersections	comparing	the	single	cell	
mouse	microbiome	gene	catalog	to	published	catalogs	(mouse,	human,	ocean).	The	3	
diagrams	are	not	comparable	between	each	other	area-wise	since	they	are	scaled	to	be	equal	
despite	having	an	order	of	magnitude	difference	in	total	genes.	
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Figure	10.	Barchart	of	COG	counts	that	were	significantly	enriched	(positive	counts)	or	
depleted	(negative	counts)	in	the	new	gene	catalog,	per	COG	functional	category	
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Figure	11.	CRISPR	classification	and	AntiSMASH	predictions	for	single	cell	genomes	that	
were	successfully	placed	in	the	phylogenetic	tree	of	GTDB	genomes.	The	points	near	the	tree	
tips	represent	CRISPR-Cas	type	classifications,	while	the	heatmap	on	the	right	shows	median	
number	of	genes	per	biosynthetic	cluster.	
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Gene	clusters:	 		 CRISPR-Cas	Types:	

1416	 cf_saccharide	 		 96	 TypeI	

653	 cf_putative	 		 78	 TypeVI	

334	 cf_fatty_acid	 		 18	 TypeII	

42	 resorcinol	 		 16	 TypeV-U	

26	 cf_fatty_acid-
cf_saccharide	 		 2	 TypeIII	

17	 arylpolyene	 		 		 		
14	 nrps	 		 	 	
13	 bacteriocin	 		 	 	
12	 sactipeptide	 		 	 	
9	 other	 		 	 	
5	 lantipeptide	 		 		 		
2	 terpene	 		 CRISPR-Cas	Subtypes:	

2	 thiopeptide	 		 78	 TypeVI-B	

1	 arylpolyene-nrps	 		 44	 TypeI-B	

1	 butyrolactone	 		 19	 TypeI-C	

1	 cf_fatty_acid-
arylpolyene	 		 16	 TypeVU-4	

1	 cf_fatty_acid-nrps	 		 13	 TypeII-C	

1	 cf_saccharide-nrps	 		 4	 TypeII-B	

1	 ladderane	 		 2	 TypeVU-2	

1	 t1pks-nrps	 		 1	 TypeII-A	
Table	5.	Summary	counts	of	annotated	features	retrieved	from	all	single	cell	genomes	

that	passed	technical	filtering.	
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3.4 Evaluating	the	utility	of	new	genomes	as	a	reference	for	metagenomic	

classification	

To	show	that	the	draft	genomes	are	a	useful	resource	for	our	research	and	for	others	

aiming	to	classify	metagenomic	data,	I	created	custom	reference	databases	for	two	

taxonomic	classification	tools	(MIDAS[37]	and	Sourmash[102]).	I	evaluated	their	

performance	on	mouse	metagenomes	(derived	from	mice	from	the	same	lines	housed	in	

our	facility,	mice	of	various	lines	in	other	labs[96],	a	wild	mouse	population[103]),	human	

metagenomes[104][105],	and	ocean	metagenomes[97].	The	expected	results	from	this	

experiment	were	that	the	custom	genomes	would	improve	the	classification	of	

metagenomes	from	related	mice	at	our	facility,	and	hopefully	other	lab	mice	as	well.	The	

performance	on	the	ocean	dataset	was	expected	to	be	poor,	as	there	is	very	little	similarity	

between	free-living	ocean	microbes	and	host-associated	mouse	symbionts.	Performance	on	

human	samples	was	expected	to	be	intermediate,	as	there	is	some	degree	of	similarity	in	

conditions	and	taxonomic	makeup	within	the	guts	of	warm-blooded	mammals.	

For	both	taxonomic	classification	tools,	three	reference	databases	were	used:		

1. Default	reference	–	created	from	RefSeq	published	bacterial	genomes	(MIDAS	db	

v1.2;	Sourmash	LCA	db	created	from	genomes	in	GTDB	release	80)	

2. SCG-only	reference	–	a	reference	created	from	the	newly	sequenced	draft	mouse	

microbiome	genomes		

3. Combined	reference	-	a	combined	database	incorporating	both	our	new	single	cell	

genomes	and	the	existing	genomes	that	make	up	the	default	reference	
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The	two	tools	used	were	chosen	as	representatives	of	two	major	paradigms	in	the	

taxonomic	classification	of	metagenomes:	the	marker	gene-based	approach	(MIDAS)	and	

the	least	common	ancestor-aware	kmer	approach	(Sourmash).	It	should	be	noted	that	

Sourmash	technically	does	not	operate	on	the	full	set	of	all	computed	kmers	from	a	

sequence,	but	instead	uses	a	locality	sensitive	hashing	algorithm	called	MinHash	to	

generate	much	more	compact	signatures	that	still	retain	approximately	the	same	

nucleotide	comparison	properties	as	the	full	kmer	feature	vector.	

3.4.1 Results	of	custom	database	tests	with	MIDAS	

To	assess	the	improvement	in	performance	when	using	the	SCG-only	or	combined	

reference	with	MIDAS’s	run_midas.py	species	command,	I	looked	at	three	metrics	of	

classification	success:	marker	gene	mean	coverage,	marker	gene	median	coverage,	and	

species	prevalence.	These	three	metrics	can	be	qualitatively	compared	per	dataset	in	the	

ridgeline	plots	in	Figure	12,	and	are	quantitatively	compared	with	two-sided	Mann-

Whitney	tests,	the	results	of	which	are	in	Table	6.	

dataset	 variable	 refA	 refB	 medianA	 medianB	 p.value	 p.adjusted	

dnr	 mean_coverage	
midas_db_
combined	

midas_db_
scg_only	 15.74	 14.57	 0.44812999	 0.733303619	

dnr	 mean_coverage	
midas_db_
combined	

midas_db_
v1.2	 15.74	 7.015	 5.70E-05	 6.15E-04	

dnr	 mean_coverage	
midas_db_
scg_only	

midas_db_
v1.2	 14.57	 7.015	 2.54E-04	 0.002281843	

dnr	 median_coverage	
midas_db_
combined	

midas_db_
scg_only	 5.22	 2.08	 0.53599105	 0.785401455	

dnr	 median_coverage	
midas_db_
combined	

midas_db_
v1.2	 5.22	 3.495	 0.597459928	 0.786898441	

dnr	 median_coverage	
midas_db_
scg_only	

midas_db_
v1.2	 2.08	 3.495	 0.261915016	 0.471447028	

dnr	 prevalence	
midas_db_
combined	

midas_db_
scg_only	 42	 34	 0.198740044	 0.397480087	

dnr	 prevalence	
midas_db_
combined	

midas_db_
v1.2	 42	 44.5	 0.429642592	 0.725021874	

dnr	 prevalence	
midas_db_
scg_only	

midas_db_
v1.2	 34	 44.5	 0.07355344	 0.208075713	

hmp	 mean_coverage	
midas_db_
combined	

midas_db_
scg_only	 20.875	 9.18	 0.245789638	 0.457677258	

hmp	 mean_coverage	 midas_db_ midas_db_ 20.875	 18.08	 0.650985378	 0.829919145	
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combined	 v1.2	

hmp	 mean_coverage	
midas_db_
scg_only	

midas_db_
v1.2	 9.18	 18.08	 0.34633574	 0.603294514	

hmp	 median_coverage	
midas_db_
combined	

midas_db_
scg_only	 2.615	 4.46	 0.218098389	 0.420618322	

hmp	 median_coverage	
midas_db_
combined	

midas_db_
v1.2	 2.615	 2.28	 0.736107221	 0.883328665	

hmp	 median_coverage	
midas_db_
scg_only	

midas_db_
v1.2	 4.46	 2.28	 0.139878478	 0.314726575	

hmp	 prevalence	
midas_db_
combined	

midas_db_
scg_only	 142	 173	 0.077065079	 0.208075713	

hmp	 prevalence	
midas_db_
combined	

midas_db_
v1.2	 142	 131	 0.507906583	 0.783627299	

hmp	 prevalence	
midas_db_
scg_only	

midas_db_
v1.2	 173	 131	 0.026956845	 0.090979351	

humanT1D	 mean_coverage	
midas_db_
combined	

midas_db_
scg_only	 4.89	 2.13	 0.183102723	 0.39120868	

humanT1D	 mean_coverage	
midas_db_
combined	

midas_db_
v1.2	 4.89	 4.89	 0.85559304	 0.943737821	

humanT1D	 mean_coverage	
midas_db_
scg_only	

midas_db_
v1.2	 2.13	 4.89	 0.188359735	 0.39120868	

humanT1D	 median_coverage	
midas_db_
combined	

midas_db_
scg_only	 2.035	 1.07	 0.590910697	 0.786898441	

humanT1D	 median_coverage	
midas_db_
combined	

midas_db_
v1.2	 2.035	 2.02	 0.913555212	 0.970190443	

humanT1D	 median_coverage	
midas_db_
scg_only	

midas_db_
v1.2	 1.07	 2.02	 0.557333175	 0.786898441	

humanT1D	 prevalence	
midas_db_
combined	

midas_db_
scg_only	 22	 18	 0.538145441	 0.785401455	

humanT1D	 prevalence	
midas_db_
combined	

midas_db_
v1.2	 22	 23	 0.916290974	 0.970190443	

humanT1D	 prevalence	
midas_db_
scg_only	

midas_db_
v1.2	 18	 23	 0.490195555	 0.778545882	

lab_mouse	 mean_coverage	
midas_db_
combined	

midas_db_
scg_only	 6.19	 6.155	 0.568679866	 0.786898441	

lab_mouse	 mean_coverage	
midas_db_
combined	

midas_db_
v1.2	 6.19	 1.205	 1.62E-07	 2.91E-06	

lab_mouse	 mean_coverage	
midas_db_
scg_only	

midas_db_
v1.2	 6.155	 1.205	 1.79E-06	 2.41E-05	

lab_mouse	 median_coverage	
midas_db_
combined	

midas_db_
scg_only	 0	 0.015	 0.660861541	 0.829919145	

lab_mouse	 median_coverage	
midas_db_
combined	

midas_db_
v1.2	 0	 0.17	 0.014817621	 0.057153682	

lab_mouse	 median_coverage	
midas_db_
scg_only	

midas_db_
v1.2	 0.015	 0.17	 0.044084809	 0.132254426	

lab_mouse	 prevalence	
midas_db_
combined	

midas_db_
scg_only	 11	 7	 0.759251269	 0.891294968	

lab_mouse	 prevalence	
midas_db_
combined	

midas_db_
v1.2	 11	 2	 7.31E-08	 1.97E-06	

lab_mouse	 prevalence	
midas_db_
scg_only	

midas_db_
v1.2	 7	 2	 3.05E-08	 1.65E-06	

tara	 mean_coverage	
midas_db_
combined	

midas_db_
scg_only	 1.86	 0	 0.001258474	 0.006946059	

tara	 mean_coverage	
midas_db_
combined	

midas_db_
v1.2	 1.86	 1.81	 0.963298771	 1	

tara	 mean_coverage	
midas_db_
scg_only	

midas_db_
v1.2	 0	 1.81	 0.001286307	 0.006946059	

tara	 median_coverage	
midas_db_
combined	

midas_db_
scg_only	 0.03	 0	 0.002161396	 0.010610489	

tara	 median_coverage	
midas_db_
combined	

midas_db_
v1.2	 0.03	 0.03	 0.990764315	 1	

tara	 median_coverage	
midas_db_
scg_only	

midas_db_
v1.2	 0	 0.03	 0.004128568	 0.018578554	

tara	 prevalence	
midas_db_
combined	

midas_db_
scg_only	 4	 0	 0.001114472	 0.006946059	



	 42	

tara	 prevalence	
midas_db_
combined	

midas_db_
v1.2	 4	 4	 0.856354689	 0.943737821	

tara	 prevalence	
midas_db_
scg_only	

midas_db_
v1.2	 0	 4	 0.001135264	 0.006946059	

wild_mouse	 mean_coverage	
midas_db_
combined	

midas_db_
scg_only	 1.63	 0.885	 0.004647395	 0.019304565	

wild_mouse	 mean_coverage	
midas_db_
combined	

midas_db_
v1.2	 1.63	 1.11	 0.126207095	 0.296312309	

wild_mouse	 mean_coverage	
midas_db_
scg_only	

midas_db_
v1.2	 0.885	 1.11	 0.701766439	 0.861258812	

wild_mouse	 median_coverage	
midas_db_
combined	

midas_db_
scg_only	 0.64	 0.39	 0.042821646	 0.132254426	

wild_mouse	 median_coverage	
midas_db_
combined	

midas_db_
v1.2	 0.64	 0.555	 0.779618551	 0.895731953	

wild_mouse	 median_coverage	
midas_db_
scg_only	

midas_db_
v1.2	 0.39	 0.555	 0.121881795	 0.296312309	

wild_mouse	 prevalence	
midas_db_
combined	

midas_db_
scg_only	 3	 2	 0.01667653	 0.060035508	

wild_mouse	 prevalence	
midas_db_
combined	

midas_db_
v1.2	 3	 2	 0.104136244	 0.267778914	

wild_mouse	 prevalence	
midas_db_
scg_only	

midas_db_
v1.2	 2	 2	 1	 1	

Table	6.	Results	of	two-sided	Mann-Whitney	tests	of	MIDAS	performance	characteristics	
achieved	with	different	reference	databases.	Yellow	shaded	rows	mark	tests	where	the	B-H	
adjusted	p-value	was	less	than	0.1.	Green	shaded	rows	also	fulfill	that	condition,	but	
additionally	signify	that	the	comparison	is	not	trivial,	i.e.	it	involves	the	SCG-only	or	
combined	database	outperforming	the	default	GTDB	database.	
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Figure	12.	Ridgeline	plots	of	3	MIDAS	performance	metrics	(mean	coverage,	median	
coverage,	prevalence),	plotted	with	each	reference	type	per	line,	facetted	by	test	dataset.	
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3.4.2 Results	of	custom	database	tests	with	Sourmash-LCA	

To	assess	the	improvement	in	performance	when	using	the	SCG-only	or	combined	

reference	with	Sourmash’s	lca	summarize	command,	I	looked	at	two	metrics	of	

metagenomic	sequence	recruitment:	total	number	of	hashes	assigned	to	a	sample	and	

number	of	species-level	nodes	in	the	taxonomy	tree	that	had	more	than	5	hashes	assigned	

to	them	(a	proxy	for	species	prevalence).	These	two	metrics	can	be	qualitatively	compared	

per	dataset	in	the	ridgeline	plots	in	Figure	13,	and	are	quantitatively	compared	with	two-

sided	Mann-Whitney	tests,	the	results	of	which	are	in	Table	7.	While	many	of	the	

comparisons	are	significant,	it	should	be	noted	that	comparisons	involving	“scg_ref”	are	of	

secondary	importance,	since	they	seldom	detect	unusual	cases	where	the	much	smaller	

SCG-only	reference	outperforms	the	other	two	contenders.	Most	of	the	focus	of	this	series	

of	tests	is	in	showing	the	increased	performance	of	the	combined	reference.	

dataset	 variable	 refA	 refB	 medianA	 medianB	 p.value	 p.adjusted	

dnr	
total	hashes	
assigned	 combined_ref	 gtdb_ref	 86334	 36425	 1.04E-20	 3.33E-20	

dnr	
total	hashes	
assigned	 combined_ref	 scg_ref	 86334	 52214	 1.02E-16	 2.51E-16	

dnr	
total	hashes	
assigned	 gtdb_ref	 scg_ref	 36425	 52214	 5.67E-13	 1.01E-12	

dnr	
species	with	count	>	
5	 combined_ref	 gtdb_ref	 26	 29	 0.014081245	 0.018774993	

dnr	
species	with	count	>	
5	 combined_ref	 scg_ref	 26	 5	 1.67E-16	 3.60E-16	

dnr	
species	with	count	>	
5	 gtdb_ref	 scg_ref	 29	 5	 1.69E-16	 3.60E-16	

hmp	
total	hashes	
assigned	 combined_ref	 gtdb_ref	 88886.5	 88263	 0.791983639	 0.873990843	

hmp	
total	hashes	
assigned	 combined_ref	 scg_ref	 88886.5	 4929	 1.54E-75	 1.65E-74	

hmp	
total	hashes	
assigned	 gtdb_ref	 scg_ref	 88263	 4929	 2.25E-75	 1.80E-74	

hmp	
species	with	count	>	
5	 combined_ref	 gtdb_ref	 106	 106	 0.819366415	 0.873990843	

hmp	
species	with	count	>	
5	 combined_ref	 scg_ref	 106	 4	 5.14E-84	 1.08E-82	

hmp	
species	with	count	>	
5	 gtdb_ref	 scg_ref	 106	 4	 6.77E-84	 1.08E-82	

humanT1D	
total	hashes	
assigned	 combined_ref	 gtdb_ref	 104829.5	 104246.5	 0.792522646	 0.873990843	

humanT1D	
total	hashes	
assigned	 combined_ref	 scg_ref	 104829.5	 4996.5	 4.52E-21	 1.61E-20	
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humanT1D	
total	hashes	
assigned	 gtdb_ref	 scg_ref	 104246.5	 4996.5	 4.52E-21	 1.61E-20	

humanT1D	
species	with	count	>	
5	 combined_ref	 gtdb_ref	 121	 123	 0.786757619	 0.873990843	

humanT1D	
species	with	count	>	
5	 combined_ref	 scg_ref	 121	 4	 1.26E-14	 2.37E-14	

humanT1D	
species	with	count	>	
5	 gtdb_ref	 scg_ref	 123	 4	 1.26E-14	 2.37E-14	

lab_mouse	
total	hashes	
assigned	 combined_ref	 gtdb_ref	 34587	 25295	 1.00E-17	 2.67E-17	

lab_mouse	
total	hashes	
assigned	 combined_ref	 scg_ref	 34587	 11820	 1.34E-46	 6.14E-46	

lab_mouse	
total	hashes	
assigned	 gtdb_ref	 scg_ref	 25295	 11820	 2.32E-18	 6.75E-18	

lab_mouse	
species	with	count	>	
5	 combined_ref	 gtdb_ref	 23	 25	 0.102407583	 0.131081706	

lab_mouse	
species	with	count	>	
5	 combined_ref	 scg_ref	 23	 4	 7.31E-56	 3.90E-55	

lab_mouse	
species	with	count	>	
5	 gtdb_ref	 scg_ref	 25	 4	 1.75E-57	 1.12E-56	

tara	
total	hashes	
assigned	 combined_ref	 gtdb_ref	 33375	 33380	 0.956837144	 0.987702858	

tara	
species	with	count	>	
5	 combined_ref	 gtdb_ref	 79.5	 79.5	 1	 1	

wild_mouse	
total	hashes	
assigned	 combined_ref	 gtdb_ref	 28864	 18836.5	 2.17E-05	 3.30E-05	

wild_mouse	
total	hashes	
assigned	 combined_ref	 scg_ref	 28864	 11664.5	 1.08E-05	 1.82E-05	

wild_mouse	
total	hashes	
assigned	 gtdb_ref	 scg_ref	 18836.5	 11664.5	 2.17E-05	 3.30E-05	

wild_mouse	
species	with	count	>	
5	 combined_ref	 gtdb_ref	 19.5	 20.5	 0.568708623	 0.699949074	

wild_mouse	
species	with	count	>	
5	 combined_ref	 scg_ref	 19.5	 4	 1.63E-04	 2.28E-04	

wild_mouse	
species	with	count	>	
5	 gtdb_ref	 scg_ref	 20.5	 4	 1.64E-04	 2.28E-04	

Table	7.	Results	of	two-sided	Mann-Whitney	tests	comparing	the	change	in	performance	
of	Sourmash-LCA	when	using	different	reference	databases.	Yellow	shaded	rows	mark	tests	
where	the	B-H	adjusted	p-value	was	less	than	0.1.	Green	shaded	rows	also	fulfill	that	
condition,	but	additionally	signify	that	the	comparison	is	not	trivial,	i.e.	it	involves	the	SCG-
only	or	combined	database	outperforming	the	default	GTDB	database.	
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Figure	13.	Ridgeline	plots	of	2	Sourmash-LCA	performance	metrics,	plotted	with	each	
reference	type	per	line,	facetted	by	test	dataset.	Ridgelines	are	missing	for	the	Tara	dataset	
tested	with	the	single	cell	only	reference	because	no	hashes	were	assigned	in	those	runs.	
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3.5 Conclusions	from	examining	the	genome	features	annotated	in	single	cell	

genomes	

CRISPR	typing/subtyping	continues	to	be	an	evolving	line	of	computational	research,	

and	the	assignments	we	have	obtained	will	likely	change	as	the	field	moves	forward.	Even	

with	the	coarse	classification	approach	that	is	available	now,	we	can	already	see	an	

interesting	separation	that	occurs	between	phylogenetically	disparate	bacteria	in	this	

modestly	sized	set	of	genomes.	It	appears	that	the	Type	VI	CRISPR-Cas	system	is	favored	by	

bacteria	of	the	newly	named	“Candidatus	Homeothermaceae”	family	(previously	

Bacteroidales	family	S24-7),	which	is	also	the	family	with	one	of	the	highest	percentages	of	

phylogenetic	gain.	This	taxon	has	frequently	appeared	in	16S	studies	of	various	diseases	as	

an	OTU	of	interest[106][107][108].	Despite	being	a	common	member	of	the	warm-blooded	

animal	microbiota,	it	has	not	been	studied	as	thoroughly	as	other	clades.	A	recent	effort	to	

survey	this	family	more	closely	has	been	carried	out	by	Ormerod	et	al[109],	who	examined	

30	metagenome	assembled	genomes	from	new	and	previously	sequenced	stool	samples.	

We	can	also	see	that	that	although	the	most	popular	AntiSMASH	categories	are	the	

ubiquitous	saccharide	biosynthesis	and	to	a	lesser	degree	fatty	acid	biosynthesis,	there	are	

a	few	rare	hits	that	can	be	of	potential	interest	for	a	deeper	dive.	For	example,	resorcinol,	

which	seems	to	be	concentrated	in	single	cell	genomes	assigned	to	the	Bacteroidaceae	

family.	The	signature	gene	for	this	cluster,	DarB,	is	present	in	the	KEGG	database	as	

K00648,	which	is	part	of	the	fatty	acid	biosynthesis	pathway.	Closer	investigation	of	the	

literature	regarding	the	putative	products	of	this	BGC	reveals	that	bacterial	

dialkylresorcinols	have	a	wide	variety	of	effects,	exhibiting	antibiotic,	antiproliferative,	and	
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anti-inflammatory	activities[110].	Intriguingly,	the	resorcinol	BGCs	in	our	genomes	are	not	

evenly	spread	between	the	two	biological	samples	–	36	are	from	the	DNR	sample	while	

only	6	are	from	the	WT.	This	suggests	an	interesting	future	line	of	inquiry	into	the	

relationship	between	this	colitis-attenuating	compound[111]	and	the	pro-inflammatory	

host	genotype.	

3.6 Conclusions	from	evaluating	the	dataset	as	a	reference	for	metagenomics	

studies	

In	line	with	my	expectations,	the	draft	genomes	improved	performance	for	

metagenomic	read	classification	in	similar	environments,	but	were	not	useful	when	tested	

in	a	dissimilar	complex	microbiome.	The	improvements	in	classifying	reads	from	wild	mice	

with	the	kmer-based	tool	Sourmash	and	the	combined	reference	are	particularly	

encouraging.	Performance	was	expected	to	drop	off	for	that	dataset	due	to	the	increased	

diversity	of	wild	mouse	microbiomes[103].	The	lack	of	significant	improvement	in	more	of	

the	comparisons	involving	human	samples	can	potentially	be	explained	by	heterogeneity	in	

those	samples,	since	the	distributions	in	Figure	12	show	bimodality	in	some	of	the	human	

dataset	panels.	The	findings	in	this	section	echo	similar	investigations	into	expanding	

reference	databases	in	general[112],	which	have	noted	that	taxonomic	classifier	

performance	is	as	much	a	function	of	the	reference	database	as	it	is	of	the	algorithm	used.



	 49	

4 Conclusion	

The	work	I	have	presented	in	this	dissertation	highlights	the	importance	of	gathering	

the	right	kind	of	data	and	examining	it	with	appropriate	statistical	methods.	In	Chapter	2,	I	

detailed	the	evolution	of	my	approach	for	studying	the	temporal	changes	that	occur	in	a	

mouse	model	of	IBD.	This	study	yielded	multiple	promising	biological	pathways	that	could	

serve	as	candidate	biomarkers,	as	well	as	a	handful	of	species	with	a	marked	response	to	

the	inflamed	environment.	Changes	that	occurred	early	on	in	the	disease	trajectory	were	

particularly	useful,	as	they	could	serve	as	hypotheses	for	intervention	experiments	aimed	

at	curtailing	IBD	early	on.	In	Chapter	3,	I	showcase	the	surprising	effectiveness	of	a	modest	

sequencing	effort	for	the	purposes	of	creating	a	custom	reference	database	and	

investigating	an	understudied	set	of	genomes.	The	genomes	that	our	lab	has	generated	

provide	a	new	look	into	the	characteristic	features	of	a	mouse	gut	symbiont.	They	also	

expand	the	representation	of	a	clade	that	previously	had	only	16S	markers	available,	and	

had	only	recently	been	more	thoroughly	investigated	with	longer	sequences	reconstructed	

from	metagenomes.	The	improvements	achieved	in	supporting	metagenomic	classification	

in	mice	should	indirectly	lead	to	improvements	in	human	studies	as	well,	as	we	learn	what	

features	are	specific	to	the	most	widely	used	model	animal,	versus	what	findings	are	truly	

generalizable.
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