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Sub-Nyquist sampling has received a huge amount of interest in the past decade. In

classical compressed sensing theory, if the measurement procedure satisfies a particular condition

known as Restricted Isometry Property (RIP), we can achieve stable recovery of signals of low-

dimensional intrinsic structures with an order-wise optimal sample size. Such low-dimensional

structures include sparse and low rank for both vector and matrix cases. The main drawback of

conventional compressed sensing theory is that random measurements are required to ensure

the RIP property. However, in many applications such as imaging and array signal processing,
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applying independent random measurements may not be practical as the systems are deterministic.

Moreover, random measurements based compressed sensing always exploits convex programs

for signal recovery even in the noiseless case, and solving those programs is computationally

intensive if the ambient dimension is large, especially in the matrix case.

The main contribution of this dissertation is that we propose a deterministic sub-Nyquist

sampling framework for compressing the structured signal and come up with computationally

efficient algorithms. Besides widely studied sparse and low-rank structures, we particularly focus

on the cases that the signals of interest are stationary or the measurements are of Fourier type. The

key difference between our work from classical compressed sensing theory is that we explicitly

exploit the second-order statistics of the signals, and study the equivalent quadratic measurement

model in the correlation domain. The essential observation made in this dissertation is that a

difference/sum coarray structure will arise from the quadratic model if the measurements are

of Fourier type. With these observations, we are able to achieve a better compression rate for

covariance estimation, identify more sources in array signal processing or recover the signals of

larger sparsity.

In this dissertation, we will first study the problem of Toeplitz covariance estimation. In

particular, we will show how to achieve an order-wise optimal compression rate using the idea of

sparse arrays in both general and low-rank cases. Then, an analysis framework of super-resolution

with positivity constraint is established. We will present fundamental robustness guarantees,

efficient algorithms and applications in practices. Next, we will study the problem of phase-

retrieval for which we successfully apply the sparse array ideas by fully exploiting the quadratic

measurement model. We achieve near-optimal sample complexity for both sparse and general

cases with practical Fourier measurements and provide efficient and deterministic recovery

algorithms. In the end, we will further elaborate on the essential role of non-negative constraint

in underdetermined inverse problems. In particular, we will analyze the nonlinear co-array

interpolation problem and develop a universal upper bound of the interpolation error. Bilinear
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problem with non-negative constraint will be considered next and the exact characterization of the

ambiguous solutions will be established for the first time in literature. At last, we will show how

to apply the nested array idea to solve real problems such as Kriging. Using spatial correlation

information, we are able to have a stable estimate of the field of interest with fewer sensors than

classic methodologies. Extensive numerical experiments are implemented to demonstrate our

theoretical claims.
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Chapter 1

Introduction

1.1 Background and Motivations

Sub-Nyquist sampling has been intensely studied in the past decades along with the

emergence of ”Big Data” [20, 21]. The research interest comes from the fact that there is a

widening gap between the volume of available data and the resources for storing, communicating

and processing. Big data arises in many applications ranging from sensor networks, computer

vision, artificial intelligence, surveillance system, genomics, web search, video streaming, social

networks, to name a few. However, one common feature of these applications is that the underlying

information of interest has a structure of much lower dimension compared to the ambient size

of the raw data. Two typical low-dimensional structures considered in literature are sparse and

low-rank. For example, a medical imaging device will collect a sequence of two-dimensional

images which are corrupted by the blurring kernel and/or additive noise. The ultimate goal is to

recover the locations of particular molecules rather than the time-variant signal intensities. This

key observation provides us the opportunity to design efficient sampling strategies with much

fewer samples by exploiting certain prior knowledge of the sources.

The classical compressed sensing theory was motivated by the prior work on decomposing
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a signal in a sparse way with respect to a particular over-complete dictionary, and considered an

opposite problem that how to design a measurement matrix to compress a sparse signal without

information loss [22–26]. The key analysis tools are variants of concentration bounds which will

ensure that the measurement process will satisfy a property known as Restricted Isometry Property

(RIP) with high probability. Similar ideas have been later extended to matrix completion [51] and

sparse/low rank matrix compression [28, 29, 89]. Because of the dependence on sophisticated

probabilistic tools, the measurement procedures in all these work are based on random sampling,

which may not be practical in many applications. Instead, in this dissertation, we will mainly

study underdetermined inverse problems with deterministic sampling strategies. One of the

advantages of deterministic sampling is that it allows us to exploit the statistical prior knowledge

of the signals, which cannot be efficiently utilized by random sampling. As demonstrated in

literature, certain statistical structures are known a priori. For example, in array signal processing,

the income signals from different targets are statistically uncorrelated. Using this kind of prior

knowledge, we are able to derive theoretical guarantees of stable sparse recovery with fewer

measurements or sensors. Moreover, efficient algorithms can be designed.

As a high-level summary, our work in this dissertation differs from previous literature in

following ways:

• We avoid the use of random sampling by explicitly exploiting the statistical properties of

the signals and certain quadratic structures of the measurement models.

• Using the statistical structures of the signal, we design deterministic samplers based on the

idea of sparse arrays, with which we can achieve order-wise optimal sample complexity

and come up with efficient algorithms.

• Our analysis will be applicable to a family of recovery algorithms including both convex

and non-convex programs. The performance guarantees are also universal and derived from

the fundamental structures of the signals and models.
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• We highlight the role of non-negative constraints (positivity/positive semidefinite) in sparse

recovery. These constraints are not subspace-based as widely used sparse and low-rank

constraints. We show that non-negative constraints are essential in robustness analysis and

allows for relaxed conditions and simpler algorithms.

1.2 Compressive Toeplitz Covariance Sketching and Quadratic

Samplers

In classical compressed sensing theory [96], the compressive measurement model can be

written as

y = Ax + n

where y ∈ CM represents low dimensional linear measurement of a high dimensional sparse

vector x ∈ CN (N � M ) using the measurement matrix A ∈ CM,N . The number of non-zero

elements of x, denoted by ‖x‖0 = s is typically small, i.e. s � N . Given y, x is typically

reconstructed using the following l1 minimization:

min
z
‖z‖1

s.t. y = Ax (1.1)

By invoking certain isometric properties of high dimensional random linear operators [24],

the original high dimensional signal can be successfully recovered from its low-dimensional

measurement using l1 minimization [22, 23]. In particular, for a wide class of random A with

i.i.d entries, it can be shown that M = O(s log(N/s)) measurements suffice for perfectly

reconstructing x with overwhelming probability (that grows to 1 exponentially with N ).
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In many applications, however, our goal is to infer certain statistics of interest from high

dimensional signals (such as stock price series over several months). In such cases, it may not be

necessary to reconstruct the original signal and compression can be obtained without requiring the

signal to be sparse. Furthermore, the physics of the problem can impose structures on the ensuing

acquisition system, leading to the possibility of “structured sampling” strategies. Also often, one

can make informed assumptions about the nature of randomness, or statistical distribution of the

data (which is frequently done in statistical signal processing) that can be judiciously exploited by

the sampling technique. Standard compressive sensing techniques, that heavily rely on sparsity

of representation, and use linear random projections for taking measurements, may turn out to

be either inapplicable, or sub-optimal in such settings. We will illustrate this in the context of

compressive covariance sketching, where the goal is to infer the covariance matrix parameterizing

the distribution of high dimensional signals, from their compressed sketch.

In many signal and information processing tasks, (such as spectral estimation and source

localization), the covariance matrix Rx = E(xxH) of the (zero-mean) high dimensional random

signal x is used for subsequent estimation/detection tasks. However, owing to its large size, it

may be impractical to store and/or communicate Rx (or its estimate). Instead, if we acquire

compressive linear measurements of x as y = Ax, the covariance matrix Ry of y now acts as a

compressive sketch of Rx which can be effectively stored and/or processed. The high dimensional

covariance matrix Rx and its compressive sketch Ry are related as

Ry = ARxAH (1.2)

Notice that Ry and Rx are still linearly related, and in the most general setting, this linear map is

equal to the Kronecker product A∗ ⊗A. This is seen more clearly using the following vectorized
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form:

vec(Ry) =
(
A∗ ⊗A

)
vec(Rx)

Hence, each element of Ry is a quadratic function of the elements of A. The key idea in

compressive covariance sensing is to design the linear operator A such that its aforementioned

quadratic form possess certain desirable properties which can be exploited to reconstruct Rx from

an optimal number of measurements. It is to be noted that Kronecker products of measurement

matrices have been studied and analyzed for compressed sensing and sketching of images and

other matrices [27, 28]. More recently, the performance of nuclear norm based compressive

covariance estimation algorithms has been studied using random A with i.i.d entries. However,

when the covariance matrix is highly structured, a direct application of these results will produce

sub-optimal number of measurements. In other words, by carefully exploiting the specific

structure of Rx (such as its positive semidefinite property), it may be possible to achieve a

greater degree of compression via clever design of structured deterministic A. In this thesis, we

will assume Rx to be a Toeplitz structured covariance matrix, and derive an optimal structured

sampling strategy (inspired from prior work on nested arrays [45]) that can provably perform

exact and stable reconstruction of Rx from its compressed sketch, acquired using an optimal

number of measurements, which is only a function of the rank of Rx.

1.3 Super Resolution and Support Recovery with Non Nega-

tive Constraint

The common goal of super-resolution and support recovery is to estimate the locations

of the non-zero entries from a few noisy low-passed measurements. In previous literature, the

structures exploited to solve this underdetermined system are sparse [139, 141, 143, 145] and
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non-negative constraint [61, 148]. In particular, the measurement model in both continuous and

discrete cases can be expressed in a unified way as

y = Qx + n (1.3)

where n represents the additive noise and Q,x have different meanings according to the context

• Continuous Case: Qx ∈ Ck are the first few Fourier-series coefficients and x ∈ Ck

consists of the amplitudes of k spikes. The goal is to recover the amplitudes x and gridless

support ω = {ω0, · · · , ωk−1} from y.

• Discrete Case: Q ∈ CM×N is a partial DFT matrix and x ∈ CN is a sparse vector with

‖x‖0 = k. The objective is to recover the support as well as the non-zero entries of x.

The problems of super-resolution and support recovery are closely connected and similar analysis

tools can be exploited to provide robust guarantees of estimating x in both cases.

The major contribution of this dissertation to the theory of super-resolution/support-

recovery is that we show it is possible to have robust estimate even in the regime k ≥ M by

exploiting the idea of sparse array. No analysis has been done in this regime in literature. The

application of sparse array is natural as the measurement matrix Q is of Fourier type. A difference

co-array will arise in the correlation domain such that Q (in the correlation domain) will have

more rows than the physical number of measurements. This will allow for the stable recovery of

larger support.

We will highlight the role of non-negativity constraint on x which arises if we only focus

on the support recovery and exploit the correlation information of the signal (x will represent

the signal powers in this case). Furthermore, with the non-negative constraint, we can formulate

a non-convex program to promote the sparsity of the recovered support. The key idea is that a

non-negative vector can be written as a entry-wise square of another vector with the same support.

We propose an iterative algorithm to efficiently solve this non-convex program. As another
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contribution of independent interest, we provide a benchmark named Modulus of Continuity

(MC) for evaluating different convex/non-convex super-resolution algorithms with non-negative

constraint. By computing the MC of super-resolution with non-negative constraint, we show that

non-negative constraint will ensure a lower error bound compared with general case.

1.4 Phase Retrieval and Structured Fourier Samplers

Besides covariance compression, quadratic Samplers also arise in a famous problem from

high resolution optical imaging, namely that of phase retrieval. It finds extensive application in

many areas of imaging science, such as X-ray crystallography, diffraction imaging, molecular

imaging and high resolution microscopy, astronomical imaging, to name a few. The goal is to

recover an unknown signal (or an image) from the magnitude of its Fourier measurements. It

arises from the fact that detectors often are unable to measure the phase of incident optical wave,

whereby much of the structural information contained in the image may be lost. The (noiseless)

measurement model for phase retrieval can be represented as

yi = |〈ai,x〉|, i = 1, 2, · · · ,M (1.4)

Here x ∈ CN is the unknown signal of interest and yi, 1 ≤ i ≤ M represent M intensity

measurements acquired using the measurement vectors ai, i = 1, 2 · · · ,M . The problem of

phase retrieval has received great attention across scientific and engineering communities [75,

77, 100, 105], both due to fundamental mathematical questions on the number of necessary

and sufficient measurements (i.e. relation between M and N ) and the need for developing

robust algorithms that can successfully recover x (upto a trivial global phase ambiguity) from

yi, i = 1, 2, · · ·M . The problem of Fourier phase retrieval (i.e . when {ai}Mi=1 represent columns

of a DFT matrix) is particularly elusive, since the presence of multiple spectral factors make

the problem fundamentally ill-posed (to be elaborated later in Chapter 4). In recent times, there
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have been attempts at resolving this ambiguity by using sparsity as a prior [104], using coded

diffraction masks [164], or using STFT [72]. However, these methods are often sub-optimal in

terms of the number of measurements required to ensure perfect reconstruction.

In this dissertation, we will develop a new Fourier-based measurement system (again,

inspired from nested arrays) that can perform phase retrieval with provably near-minimal number

of measurements. A key idea is to realize that the non-linear measurement model for phase

retrieval can be recast in the following form

y2
i =

(
aTi ⊗ aHi

)
vec(xxH) (1.5)

It can be seen that y2
i is a linear function of the matrix xxH and this equivalent linear map actually

consists of quadratic products of the measurement vector ai. We can actually view (1.5) as a

special case of covariance sketching, where xxH represents a rank-1 covariance matrix. This

formulation will help us exploit ideas from covariance estimation using nested samplers to design

highly efficient Fourier-based measurement vectors ai for phase retrieval.

1.5 Dissertation Structure and Contributions

This dissertation is organized as follows:

1.5.1 Compressive Toeplitz Covariance Estimation and Generalized Nested

Sampler

In Chapter 2, we address the problem of compressive Toeplitz covariance estimation

using Generalized Nested Sampler (GNS). We will show how to exploit the difference coarray

structure embedded in the quadratic measurement model, and achieve the order-wise optimal

sample complexity. The contributions are summarized as follows
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• In the noiseless case, we obtain order-wise optimal sample complexity using GNS for the

general or low rank case respectively. Our recovery algorithm is deterministic and has

much lower computational complexity compared to previous methods, especially in the

low rank case.

• In the noisy case, we provide a universal robustness analysis of Toeplitz covariance estima-

tion which is independent of particular algorithms. This analysis relies on the Vandermonde

decomposition of Toeplitz covariance matrices and exploits the tools in the literature of

line spectrum estimation.

• For low-rank Toeplitz covariance matrix estimation, our algorithm does not involve any

penalty such as nuclear norm to promote low rank structure. Instead, we propose a

simple two step approach and make predictions to estimate the original high-dimensional

covariance matrix. We demonstrate that positive semidefinite Toeplitz constraint alone will

guarantee a stable recovery. Our algorithm is computationally efficient as we do not solve a

convex program of the ambient signal dimension.

• We analyze the non-convex maximum likelihood (ML) algorithm for estimating low rank

Toeplitz covariance matrix with finite noisy measurements. By analyzing three equivalent

ML formulations, we show exact recovery is guaranteed with GNS measurements.

1.5.2 Super Resolution and Support Recovery with Non Negative Con-

straint

In Chapter 3, we discuss the closely-related problems of super-resolution and support

recovery. For the first time in literature, we introduce the idea of sparse array to recover more

sources than sensors. We consider both continuous and discrete settings. We particularly highlight

the role of non-negativity in the robustness analysis. We make following significant contributions
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• Motivated by the Fourier structure of the measurement matrix Q, we exploit the correlation

information and apply the idea of sparse array to demonstrate the possibility of recovering

larger support than the number of measurements. In the correlation domain, x will represent

the signal powers and is naturally non-negative. Our recovery algorithms will enforce the

non-negative constraint.

• We develop a universal bound on the error of estimating x. The analysis is applicable to

both convex/non-convex algorithms as long as the non-negativity constraint is enforced and

a separation condition of the true support is satisfied .

• With the universal upper bound of the estimation error, we provide a computationally

efficient algorithm to recover the support by simply hard-thresholding the estimated signal

powers. Our analysis does not require the prior knowledge of noise and signal powers.

• We try to understand how non-negativity constraint is helpful on stable recovery by formu-

lating an equivalent non-convex optimization program. Such formulation directly relies on

the non-negative property, and is shown to further promote sparsity than convex programs.

We provide a reweighted iterative algorithm to solve the non-convex program.

• We study a particular super-resolution problem known as fluorescence microscopy. Mo-

tivated by the underlying physics, we exploit the facts that the sources are statistically

uncorrelated and the point spread function can be approximated by a Gaussian function.

After applying the sparse array idea, we successfully show that more sources than sensors

can be localized by utilizing a novel sum coarray structure in the correlation domain.

1.5.3 Phase Retrieval and Structured Fourier Samplers

In Chapter 4, we study the problem of phase retrieval using structured Fourier samplers.

Compared to previous relevant work, we have made several significant contributions:
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• We propose a novel Fourier-type sampler called partial nested Fourier sampler (PNFS)

that can exploit the quadratic measurement model of phase retrieval. A difference coarray

structure arises which can decompose the coupled correlation lags to guarantee uniqueness

of recovery. Since the sampling scheme is deterministic, our recovery algorithm is also

deterministic and computationally efficient compared with conventional convex methods

with random measurements.

• Using PNFS, for the first time in literature, we achieve O(s logN) sample complexity for

stable sparse phase retrieval.

Finally, in Chapter 5, we discuss two important extensions of our theoretical work in

previous chapters, and further emphasize the usefulness of non-negativity constraint. In particular,

we will present a unified analysis of co-array interpolation, which is applicable to a broad family

of algorithms with positive semidefinite constraint. This work won the best student paper award

(first place) at IEEE ICASSP 2017 in New Orleans, USA.

Then, we study the bilinear problem with non-negative constraint. For the first time in

literature, an exact analysis of the set of ambiguous solutions is developed, especially in the case

with more variables than equations. This work was nominated for the best student paper award at

IEEE CAMSAP 2019.

In the end, we will apply the nested array idea to the problem of Kriging and provide

a robustness guarantee based on total least-squares method. The field of interest can be stably

estimated with fewer sensors as a benefit of exploiting the spatial correlation information and

sparse array structure.
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Chapter 2

Compressive Covariance Sketching and

Quadratic Samplers

This chapter considers the problem of compressively sampling wide sense stationary

random vectors with a low rank Toeplitz covariance matrix. Certain families of structured

deterministic samplers are shown to efficiently compress a high dimensional Toeplitz matrix of

size N ×N , producing a compressed sketch of size O(
√
r)×O(

√
r).The reconstruction problem

can be cast as that of line spectrum estimation, whereby, in absence of noise, Toeplitz matrices

of any size N can be exactly recovered from compressive sketches of size O(
√
r)×O(

√
r), no

matter how large N is. In presence of noise and finite data, the line spectrum estimation algorithm

is combined with a novel denoising technique that only exploits a positive semidefinite (PSD)

Toeplitz constraint to denoise the compressed sketch using a simple least-squares minimization

framework. A major advantage of the algorithm is that it does not require any regularization

parameter. It also enjoys lower computational complexity owing to its ability to predict the

unobserved entries of the low rank Toeplitz matrix. Explicit bounds on the reconstruction error

are established and it is shown that the PSD constraint on the denoiser is sufficient to ensure

stable reconstruction from a sketch of size O(
√
r)×O(

√
r). Extensive simulations demonstrate
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that the proposed algorithm provides better performance over random samplers and algorithms

that use nuclear norm based regularizers.

2.1 Introduction

Estimation of second-order statistics (or correlation) of high-dimensional data plays a

central role in modern statistical analysis and information processing. The covariance matrix

acts as a sufficient statistic in many signal processing problems [33, 34]. It also provides a

compact summary of a large dataset, and is used for dimensionality reduction. A popular

example is that of principal component analysis [35, 36] where the second-order statistics of the

data are used to project the data along the dominant eigenvectors, thereby attaining dimension

reduction. The inverse covariance matrix also plays an important role in many applications

related to classification of Gaussian data and establishing independence relations in exploratory

data analysis and testing [37]. Owing to its large dimension, it may not be always possible to

store and/or reliably communicate the entire high dimensional covariance matrix. Hence, it is

crucial to obtain a compressive sketch of the covariance matrix which can be efficiently stored and

transmitted. The topic of compressive covariance sampling [38–40,42,43], is receiving increasing

attention, where the goal is to compress and reconstruct the high dimensional covariance matrix

using so-called covariance samplers. In general, it is not possible to design a compressive sampler

unless the correlation matrix exhibits some low dimensional structure that allows compression.

Typical structural assumptions include that of sparsity, low rank and stationarity of data (which

imposes a Toeplitz structure on the covariance matrix) [38, 40].

2.1.1 Related Work

The problem of obtaining a sketch of the covariance matrix by compressively sampling the

underlying random process has been recently investigated in a number of works [28,38–40,42]. In
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[28], a high dimensional covariance matrix Σ ∈ RN×N is sketched using rank-one measurements

where Σ is assumed to exhibit distributed sparsity. The required sample size for compressing

sparse covariance matrices is proved to be O(
√
N logN). When the covariance matrix exhibits

a Toeplitz structure, compressive covariance sensing becomes equivalent to compressive power

spectrum estimation, which has been investigated in [39, 40, 42–45]. The common theme in this

body of work is the use of deterministic sub-Nyquist samplers (often inspired from the idea of

difference-sets [32]) for compressively sampling WSS signals. Such samplers can compress

Toeplitz matrices of size N × N using a sketch of size O(
√
N) × O(

√
N). The work in [46],

considers a cyclostationary signal model for which the number of measurements is shown to be

O(
√
N). In [48], the authors consider the estimation of Toeplitz covariance matrix via Maximum

Likelihood methods. However, the results are asymptotic and no stability result is available for a

noisy and finite snapshot model.

In this chapter, besides Toeplitz structure, we also exploit low rank of the covariance matrix

that allows further compression over what is possible by exploiting the Toeplitz structure alone. In

many practical problems across scientific and engineering disciplines, the signal of interest often

has a spectrally sparse represenation, i.e., its power spectrum can be modeled as a superposition of

a few spikes [109]. By Carathéodory’s theorem, the covariance matrix of such signals possess low

rank positive semidefinite (PSD) Toeplitz structure, and they arise in a large number of practical

applications such as direction finding for radar, sonar and astronomical imaging [49,110–112,139],

neural source localization using sensor arrays (e.g. EEG/MEG) [113–115], source localization

and inverse scattering in seismic imaging [116, 117, 233] and so forth. In these problems, low

rank is typically attributed to the presence of only a few sources or scatterers compared to the

number of physical sensors. 1 A key feature of our reconstruction algorithm is that unlike sparsity

enforcing techniques [119, 120] which discretize the parameter space into a grid with finite points

1Owing to the presence of noise, the covariance matrix of the received signal in these applications is not strictly
low rank, rather it is a sum of low rank PSD Toeplitz matrix, and a scaled diagonal matrix, where the scaling factor
denotes noise power. We will show in Sec. 2.4 that the proposed sampling and reconstruction framework continues
to be applicable for such full rank positive definite Toeplitz matrices as well.
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and assumes the parameters to lie on this grid, we allow the spectral lines to take up any value

continuously within a range. In this regard, our algorithm belongs to a class of “discretization-

free” or “gridless line spectrum estimation” techniques which encompass classical methods such

as MUSIC, covariance fitting algorithms based on Maximum Likelihood criterion [48, 121], as

well as more recent techniques based on nuclear and atomic norm minimization [57, 59].

The terminology “gridless” is also used in recent literature [122, 123, 127, 128]. The

authors in [122, 127] consider gridless extension of the SPICE algorithm [120] and its connection

to regularizer based methods. In [123], a denoising based MUSIC algorithm for DOA estimation

of more sources than sensors is proposed to combat finite snapshot estimation errors. In [128],

algorithmic implementations of atomic norm based algorithms are discussed. However, these

works do not establish any stability analysis or explicit error bounds for gridless methods as a

function of the number of snapshots.

2.2 Preliminaries for Low Rank Toeplitz Recovery

We begin by introducing our measurement model and then review a key property of low

rank Toeplitz matrices that we will exploit throughout the paper.

2.2.1 Model Description

Consider a sequence of high dimensional zero-mean random vectors {xp}∞p=−∞ of di-

mension N (N is a large integer), whose covariance matrix is given by E(xpx
T
p ) , T ∈ RN×N .

We compressively sample the data using a sampling matrix As ∈ RM×N , M � N to obtain

yp = Asxp where M is treated as sample size to be minimized throughout the paper. The

covariance matrix of {yp}∞p=−∞ is given by

RY = E[ypy
H
p ] = AsTAT

s (2.1)
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Instead of the larger covariance matrix T, we store and/or transmit the compressed covariance

matrix RY ∈ RM×M . This paper focuses on the special case when the vectors xp are wide-

sense stationary, whereby its covariance matrix T ∈ RN×N is a Toeplitz matrix, satisfying

[T]m,n = [T]m+k,n+k = t|m−n|, ∀m,n, k. The goal of this paper is to design the sampling

matrix As to obtain the compressed sketch RY and develop a reconstruction algorithm to recover

T from RY under the assumption that T is Toeplitz and low rank.

2.2.2 Low Rank Toeplitz Matrix and Vandermonde Decomposition Lemma

Our proposed sampling scheme and recovery algorithms are fundamentally based on the

famous Carathéodory’s theorem [56, 64, 65] that provides an explicit algebraic structure of T in

terms of a Vandermonde matrix:

Theorem1 A positive semidefinite Toeplitz matrix T ∈ RN×N with rank r < N has the

following decomposition:

T = VNDVH
N (2.2)

where VN ∈ CN×r = [vN(f1),vN(f2), · · · ,vN(fr)] and each column vN(fi) is defined as

[vN(fi)]k = ej2πfi(k−1) fi ∈ (−1/2, 1/2], 1 ≤ k ≤ N (2.3)

The matrix D ∈ Rr×r is diagonal with positive entries {d1, d2, · · · , dr}.

Remark1. The Vandermonde decomposition lemma is also true for complex valued low rank

PSD Toeplitz matrices. However, we present it for real valued T which is the focus of current

paper.

The decomposition (2.2) allows us to deduce similar factorization for all leading principals
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of T. In particular, we have the following corollary

Corollary1 For all 1 ≤ n ≤ N , we have the following decomposition of T(n)

T(n) = VnDVH
n (2.4)

where the columns of Vn ∈ Cn×r are defined in the same way as (2.3).

The degrees of freedom of a matrix is defined as the minimum number of real numbers

needed to represent it. Using Carathéodory’s theorem, the degrees of freedom of a rank r Toeplitz

matrix is given by

Corollary2 A PSD Toeplitz matrix T ∈ RN×N with rank r, has at most 2r degrees of freedom

(DOF), characterized by the real numbers {fi, di}ri=1 given by (2.3).

Two important remarks follow:

• The DOF of a rank r < N Toeplitz matrix is completely independent of the ambient

dimension N . We will exploit this property to propose a recovery technique that has

significantly lower complexity than the nuclear norm minimization framework of [58, 59].

• Any (order-wise) optimal sketching method should produce a sketch RY of size O(
√
r)×

O(
√
r), i.e., it should contain O(r) measurements of T. The proposed sampling and

reconstruction scheme will be shown to be order-wise optimal.

2.3 Near Optimal Compression and Recovery of Low-Rank

Toeplitz Matrices

The Vandermonde decomposition lemma dictates that a rank r PSD Toeplitz matrix can

be compressed by simply retaining its n× n principal T(n) where n = O(r). The possibility of
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compressing and reconstructing a n× n Toeplitz matrix simply by exploiting the redundancies in

its entries has been explored in [39,40,42,43] where the sampling matrix As is constructed using

a minimum redundancy sampler or a sparse ruler [32]. The size of the optimally compressed

covariance matrix is O(
√
n)×O(

√
n) and it retains all n distinct entries of T(n). However, one

disadvantage of using sparse rulers is that there are no closed form expressions for the sampling

set, or the exact size of the sketch. We recently proposed another structured deterministic sampler,

namely, the Generalized Nested Sampler (GNS) [2,10] that ensures perfect reconstruction of T(n)

from a compressed sketch of size O(
√
n)×O(

√
n). An advantage of GNS is that closed form

expressions for the sampling matrix As and the size of the sketch can be derived for almost any n.

The use of random samplers for compressing Toeplitz matrices has also been considered

in [40], and it is shown that with probability 1, they attain the same order wise compression (i.e.

O(
√
n)) as sparse rulers. However, these samplers usually lead to a dense measurement matrix

As while sparse rulers or GNS yield highly sparse As which can require less storage space and

allow faster computations. We next introduce the principles behind a GNS and discuss how it can

be used for low-rank Toeplitz compression. We would like to reiterate that in principle, the GNS

can be replaced by a sparse ruler or minimum redundancy sampler, without any loss in generality

of the derived results.

2.3.1 Review of Generalized Nested Sampler (GNS)

The Generalized Nested Sampler (GNS) was first introduced in [10] and further developed

in [2]. Following [10], we review some key properties in this section. A GNS is defined in terms

of two integer-valued functions Θ(N) and Γ(N).

Definition1 For any integer L ≥ 6, define Θ(L) and Γ(L) as integers such that

Θ(L) = b
√
L+

1

4
− 1

2
c Γ(L) = 1 + L−Θ2(L) (2.5)

18



Here b.c denotes the floor operation.

Given an integer L, a GNS can be defined as a measurement matrix as follows:

Definition2 For any integer L ≥ 6, define the effective Generalized Nested Sampling matrix

AL
GNS ∈ RM×L, with M = Γ(L) + Θ(L)− 1, as

[AL
GNS]i,j =



1 if i = j, 1 ≤ i ≤ Γ(L)

1 if j = (i− Γ(L))Θ(L) + i,

Γ(L) < i ≤M

0 Elsewhere

(2.6)

Remark2. As a simple observation, from (2.5), we always have M < L for L ≥ 6. Also, M is

of order O(
√
L). The specific case of L = M2/4 +M/2− 1 was introduced as “Nested Array”

in [45]. As discussed in [10], the fundamental idea behind GNS or other sparse ruler type sampler

is to exploit the difference set of the sampling indices. In particular, each row of As contains a

single 1 and let c(i) denote the index of the column containing it. Then, the (i, j)th entry of RY

corresponds to tc(i)−c(j). The length of smallest range over which (i, j) should be chosen so that

{c(i)− c(j)} spans all integers from 0 to L− 1 is O(
√
L) and the GNS shows a constructive way

to select c(i) over this range.

The following result from [10] shows how to compress a N ×N Toeplitz matrix without

assuming it to be low rank.

Lemma1 A real symmetric Toeplitz matrix T ∈ RN×N can be exactly recovered from its

compressed measurement RY = AN
GNST(AN

GNS)T where AN
GNS ∈ RM×N is a Generalized

Nested Sampling Matrix given by (2.6).
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To illustrate how GNS works, we show an example of small dimension. Let T be a real PSD

Toeplitz matrix of dimension N = 6 with first column [t0, t1, · · · , t5]T . Then AN
GNS is given by

AN
GNS =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1


(2.7)

Then the compressed sketch RY is given by

RY =



t0 t1 t2 t5

t1 t0 t1 t4

t2 t1 t0 t3

t5 t4 t3 t0


(2.8)

Then obviously, we can recover T from observation RY.

Compression Using Structure Alone: It is worth noting that the row or column size M of the

compressed matrix RY is O(
√
N). This shows that GNS can compress a N ×N Toeplitz matrix

T by entirely exploiting its structure, even when it is not necessarily low rank. As an immediate

consequence of Lemma 1, we have following corollary on recovering the n× n principal T(n) of

T.

Corollary3 For any 6 ≤ n ≤ N , T(n) can be exactly recovered from its compressive sketch

RY = AsTAT
s where the measurement matrix As ∈ R(Γ(n)+Θ(n)−1)×N is given by As defined as

As = [An
GNS,0] (2.9)

where An
GNS ∈ R(Γ(n)+Θ(n)−1)×n is a GNS defined as (2.6).
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2.3.2 Sampling and Reconstruction in absence of noise

We now propose an end-to-end sampling and reconstruction scheme for low rank PSD

Toeplitz matrices in noiseless case using GNS as a representative example of an order-wise

optimal sampler. In principle, GNS can also be replaced by a sparse-ruler type sampler [39, 40].

1. Compression: Given a sequence of high dimensional WSS data xp ∈ RN with Toeplitz

covariance matrix T having rank r < N , obtain compressed measurements

yp ∈ RΓ(r+q)+Θ(r+q)−1

as

yp = Asxp, As = [Ar+q
GNS,0] (2.10)

Here q ≥ 1 and Ar+q
GNS ∈ R(Γ(r+q)+Θ(r+q)−1)×(r+q) is a GNS sampler. Compute the

covariance of the compressed measurements to obtain the required sketch

RY ∈ R(Γ(r+q)+Θ(r+q)−1)×(Γ(r+q)+Θ(r+q)−1)

of T as RY , E(ypy
T
p ) = AsTAT

s From the structure of As in (2.10), it can be readily

observed that RY = Ar+q
GNST(r+q)(A

r+q
GNS)T

2. Reconstruction: Given RY obtained from the compression stage, we proceed to recon-

struct T as follows:

(a) Recover T(r+q) from RY. This is possible as dictated by Corollary 3.

(b) Noticing that T(r+q) is a rank deficient (rank r) PSD Toeplitz matrix for q ≥ 1, let

{fi, di}, i = 1, 2, · · · , r be the parameters describing its parametric decomposition
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(2.4). Recover {fi, di} using MUSIC and least-square (LS) according to (2.4).

(c) Given {fi, di}, recover T using its Vandermonde decomposition (2.2).

Fig. 2.1 shows the pictorial depiction of the end-to-end compression and reconstruction system.

Figure 2.1: GNS based sampling and reconstruction of low rank PSD Toeplitz matrix
in absence of noise.

2.3.3 Efficient Reconstruction Algorithm via Linear Prediction

In [2], we relate the low-rank Toeplitz covariance estimation problem to linear prediction

of line spectrum process. Consider a zero mean scalar WSS process z[n] whose autcorrelation

matrix of size N is given by T. In particular, defining zN [n] = [z[n], z[n− 1], · · · z[n−N + 1]]T ,

we have

T = E(zN [n]zN [n]T ) (2.11)

Now we know that T(r+1) is of rank r, and hence has a 1 dimensional null space. Without

losing generality, let b ∈ Null(T(r+1)) and to make it unique, we normalize the first entry of b to
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1, i.e., b1 = 1. Then,

T(r+1)b = 0⇒ bTT(r+1)b = 0

⇒ bTE
{
zr+1[n](zr+1[n])T

}
b = 0

⇔ E
{
|bTzr+1[n]|2

}
= 0⇔ bTzr+1[n] ≡ 0 (2.12)

Since b1 = 1, (2.12) implies

z[n] = −
r∑
i=1

bi+1z[n− i] (2.13)

Notice that (2.13) describes an order r linear predictor for the WSS process z[n]. In fact, it

also shows that z[n] is a predictable process, which can be completely predicted from its past r

samples. The filter coefficients−bi, i = 2, 3, · · · r+ 1 actually correspond to the optimum order-r

linear predictor (since it attains 0 prediction error) and can be obtained by solving (for instance,

by using Levinson Durbin Algorithm)

T(r)b̃ = tr (2.14)

where tr = [t1, t2, · · · tr]T , and [b̃]i = −bi+1, i = 1, 2, · · · r. Notice that T(r) is full rank and

T(r) and tr are completely known since GNS has already recovered T(r+1). The equation (2.13)

immediately leads to an iterative approach to estimate ti. We can write

E{z[n]z[n− r − k]} = −
r∑
i=1

bi+1E{z[n− i]z[n− r − k]}

⇒ tr+k = −
r∑
i=1

bi+1tr+k−i (2.15)

Since GNS provides us with ti, 1 ≤ i ≤ r, all the other entries of T can be recovered in an
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Table 2.1: GNS for Linear Prediction

Input: z[n] Output: LP coefficients b̃

(a) Construct a GNS matrix As ∈ RM×N with N = r + 1. This implies
M = O(

√
r)

(b) Obtain compressed measurements y[n] = Aszr+1[n]

(c) Compute the compressed correlation matrix RY = E(y[n]yT [n])

(d) Obtain T(r+1) from RY (using Lemma 1).

(e) Compute b̃ using T(r+1).

iterative way using (2.15), whereby the original Toeplitz matrix is exactly recovered.

Consider the problem of linear prediction of a scalar WSS process z[n] whose autocorre-

lation matrix T ∈ RN×N is of rank r for every N ≥ r. From (2.13), it is easily seen that z[n]

is a predictable process, each value of which can be exactly predicted from its past r samples.

The linear prediction coefficients b̃ are obtained by solving (2.14) where T(r) is full rank. Typi-

cally T(r+1) is computed by uniformly sampling z[n] so that T(r+1) = E(zr+1[n]zTr+1[n]) where

zr+1[n] ∈ Rr+1 contains r + 1 consecutive samples of z[n]. However, the properties of GNS can

be leveraged to compute T(r+1) more efficiently using O(
√
r) non uniform samples of z[n] as

dictated by the sampling matrix of the GNS. The steps of this procedure are described in Table

2.1.

2.4 Stable Reconstruction with noisy finite measurements: A

Regularizer-Free Approach

In this section, we consider a finite number (L) of noisy compressed measurements as

yp = Asxp + np 1 ≤ p ≤ L (2.16)
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where {np} are independent zero-mean white Gaussian noise vectors with covariance σnIM .

We propose a novel algorithm that generalizes the noiseless reconstruction technique proposed

in Sec. 2.3.2, by adding a simple denoiser prior to performing MUSIC. The main idea is to

solve a constrained least squares minimization problem (with positive semidefinite and Toeplitz

constraints) to denoise the n noisy measurements (n = O(r)) and use them to predict the

remaining N−n entries of T. We show that this algorithm leads to provably stable reconstruction

with finite noisy measurements.

2.4.1 Vandermonde Decomposition of Positive Definite Toeplitz Matrices

Our algorithm is based on the following elegant Vandermonde decomposition lemma

from [68] that holds for any positive definite Toeplitz matrix:

Lemma2 [68] A positive (semi) definite Toeplitz matrix T ∈ RN×N has the following decom-

position :

T = VN×N ′DVH
N×N ′ + σIN (2.17)

Here σ is the smallest singular value of T, IN ∈ RN×N is the identity matrix and D =

diag(d1, d2, · · · , dN ′) with di > 0. The matrix

VN×N ′ ∈ CN×N ′ = [vN(f1),vN(f2), · · · ,vN(fN ′)]

is a Vandermonde matrix satisfying N ′ < N with the ith column vN(fi) given by (2.3).

Remark3. Lemma 18 is actually a more general version of (2.2) and it applies to both positive

definite and semidefinite Toeplitz matrices, using appropriate values of σ and N ′. When T is low

rank, (5.30) reduces to (2.2) with σ = 0, N ′ = rank(T) If T is positive definite, N ′ = N −mσ
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where mσ is the multiplicity of its smallest singular value σ. In both cases, the frequencies in

the representations (5.30) and (2.2) are uniquely determined and can be found using a harmonic

retrieval algorithm such as MUSIC [149].

2.4.2 Regularization Free Reconstruction from Finite Noisy Measurements

Consider the following noisy compressive sketch (of size O(
√
n) × O(

√
n), where

n ≥ r + 1) of T obtained from the sample covariance corresponding to the measurements (2.16)

R̃Y =
1

L

L∑
l=1

yly
T
l = AsT1AT

s + W(L)

T1 = T + σnIN (2.18)

Here W(L) denotes the finite snapshot estimation error associated with the empirical covariance

matrix R̃Y. As before, the sampling matrix As is an order-wise optimal structured sampler (such

as the GNS in (2.9), designed for a specified n ≥ r + 1) and we use the fact that AsINAT
s = IM .

From properties of GNS (or sparse ruler), we construct a vector t̃(n) ∈ Rn by selecting n

appropriate entries of R̃Y that 2

t̃(n) = t1(n) + w
(L)
(n) (2.19)

where t1(n) = t(n) + σne1(n) and e1(n) = [1, 0, · · · , 0]T .

In order to recover T from the compressive noisy measurements t̃(n), we propose a new

2Recall that RY contains a total of n distinct entries which are distributed across the matrix, with repetitions.
Instead of directly selecting the corresponding n distinct entries from R̃Y, it is also possible to compute an average
corresponding to each entry over the number of times it repeats. This will lead to a weighted least squares objective
in (2.20) instead of a simple least squares, and Steps 2 and 3 will continue to hold. The analysis framework developed
in this paper will be applicable for such a setting as well, with straightforward modifications.
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recovery algorithm which is described in Table 1.

The algorithm consists of three steps: (i) Denoising (ii) Parameterization, and (iii) Predic-

tion. The denoising step finds a denoised estimate t#
(n) of t1(n), by solving a simple least squares

problem under Toeplitz and Positive semidefinite (PSD) constraints. Under these constraints, it

is guaranteed that T (t#
(n)) � 0 Therefore, according to Lemma 18, T (t#

(n)) has a Vandermonde

decomposition given by (2.21). The second step (Parameterization) crucially utilizes this repre-

sentation to estimate the associated parameters σ#, n′, f#
i and d#

i . The final step then comprises

of predicting the remaining N − n entries of T by using these parameters.

Remark4. The PSD constraint in the denoising stage, and the Vandermonde decomposition

dictated by Lemma 18 are crucial ingredients in the proposed algorithm. In fact the PSD constraint

ensures that we can apply Lemma 18 to the denoised estimate t#
(n) and use the corresponding

parametric representation to predict the remaining N − n entries.

Remark5.Notice that Step 3 in Table 1 essentially extends the PSD Toeplitz matrix T (t#
(n)) (of

size n× n), to a bigger PSD Toeplitz matrix T#
(N) of size N ×N , such that the n× n principal of

T#
(N) is equal to T (t#

(n)). If σ# > 0, or equivalently, if T (t#
(n)) is positive definite (which typically

happens in presence of noise), it is possible to find two or more N × N Toeplitz covariance

matrices such that T (t#
(n)) corresponds to the n× n principal of both [64, 66, 68]. The proposed

algorithm finds one such representation. On the other hand, if σ# = 0, there is only one way to

extend it into a PSD Toeplitz matrix of larger dimension N .

2.4.3 Sampling Requirements with Infinite Snapshots

In order to analyze the performance of the algorithm proposed in Table 2.2, we first

show that with infinite snapshots, it recovers the desired PSD Toeplitz covariance matrix T and

noise power σn with only n ≥ r + 1 measurements. Compared to the random sampler proposed
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Table 2.2: Low Rank PSD Toeplitz Matrix Recovery In Presence of Error

Input: Noisy measurements t̃(n) ∈ Rn satisfying (2.19)
Output: Estimate of the entries ti, i = 0, 1, · · · , N − 1 of the PSD
Toeplitz matrix T ∈ RN×N and noise power σn

Step 1: Denoising
Obtain denoised estimate t#

(n) of t1(n) as

t#
(n) , arg min

u∈Rn
‖t̃(n) − u‖2

s.t. T (u) � 0 (2.20)

where T (u) denotes a real symmetric Toeplitz matrix whose first column
is u.
Step 2: Parameterization
Let the Vandermonde decomposition of T (t#

(n)) be:

T (t#
(n)) = V#

n×n′D
#(V#

n×n′)
H + σ#In (2.21)

where V#
n×n′ = [vn(f#

1 ),vn(f#
2 ), · · · ,vn(f#

n′ )] is a Vandermonde ma-
trix of size n× n′ parameterized by frequencies {f#

1 , f
#
2 , · · · , f

#
n′} and

D# = diag(d#
1 , d

#
2 , · · · , d

#
n′) where d#

i > 0. The parameters in the
above representation can be determined as follows:

• Compute σ# as the minimum singular value of T#
(n)

• Compute n′ as the integer n−mσ# where mσ# is the multiplicity
of σ#.

• Compute the frequencies {f#
1 , f

#
2 , · · · , f

#
n′} in the representation

(2.21). The MUSIC algorithm, for instance, can be used to exactly
recover {f#

1 , f
#
2 , · · · , f

#
n′}.

• Given the frequencies, σ# and n′, the amplitudes d#
i are computed

as the least squares solution to the system of linear equations (in
d#
i ) given by (2.21).

Step 3: Prediction Predict the remaining N − n entries of T as

t#m =
n′∑
i=1

d#
i e

j2πf#i m, n ≤ m ≤ N − 1

The estimate of T is therefore given by T#
(N) = T (t#

(N)) and the estimate
of σn is σ#.
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in [38] that requires O(rpolylogN) samples with infinite snapshots, the number of measurements

required by our algorithm is near-minimal, with no dependence on the ambient dimension N .

Theorem2 When L→∞, the solution of the algorithm proposed in Table 1 satisfies T = T#

and σn = σ# if n ≥ r + 1.

Proof. As L→∞, W(L) → 0 and t̃(n) → t1(n). Therefore, with infinite snapshots, t#
(n) = t1(n)

becomes the unique global minimizer of (2.20). If n ≥ r + 1, T (t#
(n)) is full rank and σn is the

smallest singular value. The frequencies {fi}ri=1 can be uniquely determined using the MUSIC

algorithm since T (t#
(n))− σnIN is of rank r. Given {fi}ri=1, the amplitudes {di}ri=1 can also be

uniquely recovered by least-square since V#
n×n′ is a Vandermonde matrix with full-column rank.

Since the representation (2.2) of T consists of these same frequencies and amplitudes, Step 3 of

the proposed algorithm exactly recovers T. Therefore, with infinite snapshots, we can exactly

recover T when n ≥ r + 1. This implies that the dimension (M ) of the compressed covariance

matrix satisfies M = O(
√
r), which is order-wise optimal.

2.4.4 Stability Analysis with Finite Noiseless Snapshots

We first analyze the performance of the proposed algorithm as a function of the number of

snapshots (L) in absence of additive noise. The stability analysis in [57] is also performed under

a similar noiseless setting by only considering the effect of finite snapshots. We divide the total

error in N entries of the Toeplitz matrix into two parts (i) estimation error, that represents the error

in the first n entries, and (ii) prediction error, which is the error in the last N − n entries. While it

is straightforward to bound the estimation error directly using the denoising step, establishing

a bound on the prediction error is more involved. We will make novel use of properties of

trigonometric polynomials, such as those developed in [59, 141, 142] to formulate an explicit

bound on the prediction error. Note that the analysis technique in [59,141,142] was developed for

Total Variation norm minimization/atomic norm minimization - however, our algorithm does not
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use any regularizer. In this case, the ideal covariance matrix of yp is given by RY = AsTAT
s , and

the estimated covariance matrix (using L samples) is given by R̃Y = 1
L

∑L
p=1 ypy

T
p . Here R̃Y

satisfies (2.18) with W(L) representing the approximation error due to finite snapshot averaging.

As before, using the properties of GNS or sparse ruler, we can extract n appropriate entries of

R̃Y to obtain (2.19). In order to statistically characterize w(n) in terms of L, we assume that

xp, 1 ≤ p ≤ L represent L i.i.d. Gaussian random vectors distributed as xp ∼ N (0,T) and

therefore, the measurements yp are distributed as yp ∼ N (0,RY). We now invoke the following

large deviation bound from [129]

Lemma3 (Proposition A.3 in [129]) Let {yp}Lp=1 be zero mean i.i.d Gaussian random vectors

distributed as yp ∼ N (0,RY). Then,

P
{
‖RY − R̃Y‖F ≥

trace(RY)√
L

}
≤ 2e−2c1

√
L (2.22)

where c1 is a positive universal constant.

It can be easily verified that ‖w(L)
(n)‖2 ≤ ‖RY − R̃Y‖F . Hence, Lemma 17 implies that with

probability 1−O(e−2c1
√
L), the estimation error w

(L)
(n) satisfies

‖w(L)
(n)‖2 ≤

Mt0√
L

(2.23)

where M = O(
√
n).

Firstly, the estimation error associated with the denoising step is given by the following

lemma.

Lemma4 The solution t#
(n) to (2.20) satisfies

‖t#
(n) − t(n)‖2 ≤ 2‖w(L)

(n)‖2 (2.24)
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Proof. Since the true t(n) is a feasible solution to (2.20), we have ‖t#
(n) − t(n)‖2 ≤ 2‖t(n) −

t̃(n)‖2 = 2‖w(L)
(n)‖2 which establishes (2.24). Before establishing the bound on prediction error,

we will need to define several quantities, and state two lemmas from [59] that will be used in our

proof. Notice that t(n) and t#
(n) satisfy

t(n) =

∫ 1/2

−1/2

vn(f)µ(df) t#
(n) =

∫ 1/2

−1/2

vn(f)µ#(df) (2.25)

where µ, µ# are positive finite measures given by

µ =
r∑
i=1

diδ(f − fi) (2.26)

µ# =
n′∑
i=1

d#
i δ(f − f

#
i ) +

σ#

n

n∑
i=1

δ(f − (i− 1)

n
)

The difference measure is defined by ν = µ# − µ. Let ρ(f̂1, f̂2) denote the wraparound

distance function for distinct frequencies f̂1, f̂2 ∈ (−1/2, 1/2] [141]. Following [59], we define

neighborhoodsNl around each true frequency fl asNl = {f ∈ (−1/2, 1/2] : ρ(f, fl) ≤ 0.16/n}

as well as a far region F , (−1/2, 1/2] \
⋃r
l=1Nl. Let PF denote the projection of any measure

onto the true frequency support F = {f1, f2, · · · , fr} and ‖ · ‖TV be the Total Variation (TV)

norm [142]. Furthermore, let

I l0 :=

∣∣∣∣∫
Nl
ν(df)

∣∣∣∣ I l1 := n

∣∣∣∣∫
Nl

(f − fl)ν(df)

∣∣∣∣ (2.27)

I l2 :=
n2

2

∫
Nl

(f − fl)2|ν|(df) Ii :=
r∑
l=1

I li , for i = 0, 1, 2

We will also make use of the following two lemmas from [59] in order to derive the desired bound
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on the prediction error.

Lemma5 (Lemma 3 and Theorem 4 in [59]) Consider the measurement model (2.19) and the

representations for t(n) and t#
(n) as given by (2.25). If the true frequencies {fl}rl=1 satisfies

minp 6=q ρ(fp, fq) > 4/n and n > 256, then there exists a trigonometric polynomial Q(f) such

that

‖PF(ν)‖TV =

∫ 1/2

−1/2

Q(f)PF(ν)(df)

|Q(f)| ≤ 1− Ca
2
n2(f − fl)2 f ∈ Nl, 1 ≤ l ≤ r (2.28)

|Q(f)| ≤ 1− Cb f ∈ F∣∣∣∣∣
∫ 1/2

−1/2

Q(f)ν(df)

∣∣∣∣∣ ≤ Ccrξ

n
(2.29)

where Ca, Cb, Cc are positive constants and ξ , supf∈(−1/2,1/2] |〈vn(f), t#
(n) − t(n)〉|

Lemma6 ( Lemma 2 in [59]) Consider the measurement model (2.19) and the representations

for t(n) and t#
(n) as given by (2.25). If the frequencies {fl}rl=1 satisfy minp 6=q ρ(fp, fq) > 4/n and

n > 256, then there exist positive constants c̃1, c̃2 such that

I0 ≤ c̃1

(
rξ

n
+ I2 +

∫
F
|ν|(df)

)
I1 ≤ c̃2

(
rξ

n
+ I2 +

∫
F
|ν|(df)

)
(2.30)

where ξ , supf∈(−1/2,1/2] |〈vn(f), t#
(n) − t(n)〉|

Notice that Lemma 6 establishes upper bounds on I0 and I1 in terms of I2 and
∫
F |ν|(df).

We next prove a key lemma which, in turn, bounds the quantities I2 and
∫
F |ν|(df) in terms of the

measurement noise.

Lemma7 Consider the measurement model (2.19) and the representations for t(n) and t#
(n) as
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given by (2.25). If the true frequencies {fl}rl=1 satisfy minp 6=q ρ(fp, fq) > 4/n and n > 256, then,

there exist positive constants c1, c2 such that

I2 +

∫
F
|ν|(df) ≤ c1

(
c2rξ

n
+ |t#0 − t0|

)
(2.31)

where ξ , supf∈(−1/2,1/2] |〈vn(f), t#
(n) − t(n)〉|

Proof. Since {fl}rl=1 satisfy minp 6=q ρ(fp, fq) > 4/n, from Lemma 5, there exists a polynomial

Q(f) such that

‖PF(ν)‖TV =

∫ 1/2

−1/2

Q(f)PF(ν)(df) (2.32)

Using triangle inequality and recalling that PF denotes the projection onto F, we have

‖PF(ν)‖TV ≤

∣∣∣∣∣
∫ 1/2

−1/2

Q(f)ν(df)

∣∣∣∣∣+

∣∣∣∣∫
Fc
Q(f)ν(df)

∣∣∣∣
≤ Ccrξ

n
+
∑
fl∈F

∣∣∣∣∫
Nl\fl

Q(f)ν(df)

∣∣∣∣+

∣∣∣∣∫
F
Q(f)ν(df)

∣∣∣∣
≤ Ccrξ

n
+
∑
fl∈F

(∫
Nl\fl
|ν|(df)− CaI l2

)
+ (1− Cb)

∫
F
|ν|(df)

=
Ccrξ

n
+ ‖PFc(ν)‖TV − CaI2 − Cb

∫
F
|ν|(df) (2.33)

where we have used (2.29) and (2.28) for the second and third inequalities. We also have

‖µ#‖TV = ‖µ+ ν‖TV = ‖µ+ PF(ν)‖TV + ‖PFc(ν)‖TV

≥ ‖µ‖TV − ‖PF(ν)‖TV + ‖PFc(ν)‖TV (2.34)
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Combining (2.34) and (2.33), we get

CaI2 + Cb

∫
F
|ν|(df) ≤ Ccrξ

n
+ ‖µ#‖TV − ‖µ‖TV (2.35)

A key observation is to notice that both µ, µ# as given by (2.26) are positive measures. Therefore,

we have

‖µ‖TV = t0, ‖µ#‖TV = t#0 (2.36)

Using (2.36) in (2.35), we finally obtain

CaI2 + Cb

∫
F
|ν|(df) ≤ Ccrξ

n
+ t#0 − t0 (2.37)

I2 +

∫
F
|ν|(df) ≤ 1

min{Ca, Cb}

(
Ccrξ

n
+ |t#0 − t0|

)

which completes the proof.

Equipped with Lemmas 5, 6 and 7, we present our main result regarding the prediction

error in the following theorem:

Theorem3 ConsiderL i.i.d measurements {yp}Lp=1 (acquired via GNS or sparse ruler) distributed

as yp ∼ N (0,AsTAT
s ) and let R̃Y = 1

L

∑L
p=1 ypy

T
p be the estimated covariance matrix, from

which the observation model (2.19) is derived, where t(n) has the line spectrum representation

(2.25). Let T# be the estimate of T obtained from the algorithm proposed in Table 1 and t#m

denote the mth entry in the first row (or column) of T#. Then, with probability 1−O(e−2c1
√
L)

1

n
‖t#

(n) − t(n)‖2 ≤
2Mt0

n
√
L

(2.38)

Furthermore, if n > 256, and if the frequencies {f1, f2, · · · , fr} satisfy minp 6=q ρ(fp, fq) > 4/n

then, with probability 1−O(e−2c1
√
L), the prediction error |t#m − tm|, for n ≤ m ≤ N − 1, can
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be bounded as

|t#m − tm|

≤
(
γ1 +

γ2πm

n
+
γ3π

2m2

n2

)(
γ4r√
n

+ 2

)
Mt0√
L

(2.39)

where c1, γ1, γ2, γ3, γ4 are positive constants and M = O(
√
n).

Proof. The bound (2.38) follows directly from Lemma 4 and (2.23). To establish the bound

(2.39) on the prediction error, observe that for any n ≤ m ≤ N − 1, we have

|t#m − tm| = |
∫ 1/2

−1/2

ej2πmfν(df)|

≤
∫
F
|ν|(df) +

r∑
l=1

∣∣∣∣∫
Nl
ej2πmfν(df)

∣∣∣∣ (2.40)

where (2.40) follows from triangle inequality. Using Taylor’s theorem for each neighborhood Nl

around fl we get,

∣∣∣∣∫
Nl
ej2πmfν(df)

∣∣∣∣ ≤ ∣∣∣∣∫
Nl
ν(df)

∣∣∣∣
+2πm

∣∣∣∣∫
Nl

(f − fl)ν(df)

∣∣∣∣+ 2π2m2

∫
Nl

(f − fl)2|ν|(df)

= I l0 +
2πm

n
I l1 +

4π2m2

n2
I l2 (2.41)

Therefore, (2.40) can be simplified as

|t#m − tm| ≤
∫
F
|ν|(df) + I0 +

2πm

n
I1 +

4π2m2

n2
I2

≤
(
c̃1 +

2πm

n
c̃2 + 1

)∫
F
|ν|(df)

+

(
c̃1 +

2πm

n
c̃2 +

4π2m2

n2

)
I2 + (c̃1 + c̃2

2πm

n
)
rξ

n
(2.42)
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where the inequality (2.42) follows from Lemma 6. Since n ≤ m, we further have

|t#m − tm|

≤
(
c̃1 +

2πm

n
c̃2 +

4π2m2

n2

)(
I2 +

∫
F
|ν|(df)

)
+(c̃1 + c̃2

2πm

n
)
rξ

n

≤
(
c̄1 +

c̄2πm

n
+
c̄3π

2m2

n2

)(
c̄4rξ

n
+ |t#0 − t0|

)
(2.43)

where we used Lemma 7 to derive (2.43) and {c̄i}4
i=1 are positive constants. Using Cauchy-

Schwartz inequality, we can bound ξ as

ξ ≤ ‖vn(f)‖2‖w(L)
(n)‖2 =

√
n‖w(L)

(n)‖2 ≤
√
nMt0√
L

(2.44)

Finally, from (2.20), it follows that

|t#0 − t0| ≤ ‖t
#
(n) − t(n)‖2 ≤ 2

Mt0√
L

(2.45)

The proof completes by substituting (2.44) and (2.45) in (2.43).

Theorem 3 provides a finite-sample bound on the prediction error and shows that as

L→∞, it is possible to perfectly recover T using the proposed prediction based framework.

Remark6. In [57], the authors derived a related bound on the covariance estimation error (as a

function of L) by considering a noiseless model, and sampling the entire covariance matrix. This

corresponds to the scenario when n = N and no prediction is necessary. Hence, we can compare

the error bound in [57] with the bound on estimation error (2.38) from Step 1 of our proposed

algorithm. According to [57],

1

n
‖t#

(n) − t(n)‖2 ≤ cλ

√
r

n
(2.46)
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where λ is the regularization parameter and c is a universal constant. For large enough L, the

parameter λ in Theorem 4 of [57] is lower bounded as

λ ≥ c′
√
Mt0‖RY‖

√
log(Ln)

L
(2.47)

where c′ is another constant and ‖ · ‖ is the operator norm. From (2.46) and (2.47), the tightest

upper bound on 1
n
‖t#

(n) − t(n)‖2 is given by

1

n
‖t#

(n) − t(n)‖2 ≤ c1

√
Mt0‖RY‖√

nL

√
r log(Ln) (2.48)

Since M < n, we have M
n
<
√

M
n

. In addition, due to the structure of As, the diagonal entries

of RY are all t0, and ‖RY‖ ≥ t0. Hence the bound (2.38) is tighter than (2.48). Our numerical

experiments will further validate this fact.

2.4.5 Stability Analysis in Presence of Noise

We now consider the effect of additive noise in (2.19). Using Lemma 17, with probability

1−O(e−2c1
√
L), w

(L)
(n) satisfies

‖w(L)
(n)‖2 ≤

M(t0 + σn)√
L

(2.49)

where M = O(
√
n).

Theorem 3 can be used to derive noisy finite-snapshot guarantees with some modifications.

Notice that t̃1(n) from (2.19) now serves as the input for the algorithm proposed in Table 1. The

solution t#
(n) from Step 1 satisfies T (t#

(n)) = V#
n,n′D

#(V#
n,n′)

H + σ#In where V#
n,n′D

#(V#
n,n′)

H

is a low rank PSD Toeplitz matrix which can also be verified to be real-valued (since t#
(n) is real).

Let t̂#
(n) denote the first row (or column) of this matrix, i.e. T (t̂#

(n)) = V#
n,n′D

#(V#
n,n′)

H Notice
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that t̂#
(n) (and not t#

(n)) is the estimate of t(n). We can now derive bounds on the observed and

prediction error as follows:

‖t#
(n) − t1(n)‖2 = ‖t̂#

(n) − t(n) + (σ# − σn)e1(n)‖2

≥ ‖t̂#
(n) − t(n)‖2 − |σ# − σn| (2.50)

On the other hand,

‖t#
(n) − t1(n)‖2 ≤ ‖t#

(n) − t̃1(n)‖2 + ‖t̃1(n) − t1(n)‖2

≤ 2‖t̃1(n) − t1(n)‖2 = 2‖w(L)
(n)‖2 (2.51)

where the second inequality follows from the fact that t#
(n) is the minimizer of (2.20). Combining

(3.68) and (2.51), obtain the following bound on the estimation error (of first n entries):

‖t̂#
(n) − t(n)‖2 ≤ 2‖w(L)

(n)‖2 + |σ# − σn| (2.52)

We need some additional notations to derive the prediction error bound. Similar to (2.25),

t̂#
(n) satisfies

t̂#
(n) =

∫ 1/2

−1/2

vn(f)µ̂#(df), µ̂# =
n′∑
i=1

d#
i δ(f − f

#
i ) (2.53)

Defining ν̂ = µ̂#−µ as the difference measure, it can be verified that Lemmas 5, 6 and 7 continue

to hold, using ν̂ as the difference measure instead of ν, and replacing t#
(n) and t#0 with t̂#

(n) and t̂#0

(the zeroth entry of t̂#
(n)) respectively. Furthermore we have

sup
f∈(−1/2,1/2]

|〈vn(f), t̂#
(n) − t(n)〉| ≤

√
n‖t̂#

(n) − t(n)‖2

≤
√
n
(

2‖w(L)
(n)‖2 + |σ# − σn|

)
(2.54)
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where the last inequality follows from (2.52). Similarly, we have

|t̂#0 − t0| ≤ ‖t̂
#
(n) − t(n)‖2 ≤ 2‖w(L)

(n)‖2 + |σ# − σn| (2.55)

Following the same steps as in the proof of Theorem 3 (for deriving (2.43)), and using (2.55) and

(2.54), we obtain the following upper bound on prediction error as

|t̂#m − tm| ≤ (2.56)(
c̄1 +

c̄2πm

n
+
c̄3π

2m2

n2

)(
c̄4r√
n

+ 1

)
(2‖w(L)

(n)‖2 + |σ# − σn|)

Finally, using (2.49), we summarize the bounds on the estimation and prediction error as

‖t̂#
(n) − t(n)‖2 ≤ η (2.57)

|t̂#m − tm| ≤
(
c̄1 +

c̄2πm

n
+
c̄3π

2m2

n2

)(
c̄4r√
n

+ 1

)
η,m ≥ n

where η , 2‖w(L)
(n)‖2 + |σ# − σn| and with probability 1−O(e−2c1

√
L), w

(L)
(n) satisfies (2.49).

Remark7. Unlike the result in Theorem 3, the error bound (2.57) is implicit since it is itself a

function of the error |σ# − σn| in estimating the noise power σn. It is non-trivial to explicitly

express this error as a function of finite snapshots, which is beyond the scope of this paper.

However, in the limit L→∞, since R̃Y → AsTAT
s + σnIM , following our previous argument,

it holds that t1(n) will be the unique minimizer of (2.20), implying σ# = σn. Hence as L→∞,

both prediction and estimation error will become zero, and it will be possible to exactly recover

T.
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2.4.6 Advantages of the Proposed Algorithm

Compared to recently proposed compressive Toeplitz covariance estimation algorithms

[38,57] that are based on nuclear norm minimization framework, or algorithms derived from Max-

imum Likelihood (ML) estimation [48, 121], the proposed algorithm enjoys unique advantages

which are discussed as follows:

1. Absence of Regularization Parameter: The PSD Toeplitz constraint in (2.20) ensures

stable reconstruction using a simple least squares denoising (a fact also noted in [70, 71]),

without the need for any regularizer. In contrast, the method proposed in [38] requires

knowledge of noise power (or an upper bound) while [57] needs a tuning parameter for

atomic-norm based regularization. Our algorithm can be especially advantageous over these

techniques since tuning parameters are often sensitive to uncertainties in our knowledge of

noise power. Although the ML based methods [121] also do not require any regularization

parameter, their performance can only be analyzed in the asymptotic regime. In contrast,

the analysis framework for our method permits non-asymptotic theoretical analysis of the

reconstruction error, even for non-Gaussian models.

2. Stable Reconstruction with Near-minimal Sample Size: Theorem 2 shows that in ab-

sence of noise, the proposed algorithm only requires n ≥ r+1 samples for perfect recovery

of T. In presence of noise, the number of measurements required for stable reconstruction

is indirectly provided by the separation condition in Theorem 3. In particular, in order

to satisfy the separation condition, we need n > 4r measurements, and this implies that

the size of the sketch R̃Y is O(
√
r) × O(

√
r), which does not depend on the ambient

dimension N . On the other hand, the random sampling based approach in [38] requires

O(rpolylogN) samples, whereas the structured sampling based approach in [57] and the

ML based approach using sparse arrays in [121] use a sketch of size O(
√
N)×O(

√
N) to

recover a Toeplitz PSD matrix of size N ×N (which is sub-optimal when r � N ).
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3. Low Computational Complexity: The algorithms in [38, 57] as well as the ML based

technique in [121] attempt to recover the entire N × N matrix T by solving a single

Semidefinite Program (SDP), whose problem size (and the computational complexity)

scales with N . In contrast, we only need to solve an SDP (2.20) with n variables, and

perform an eigenvalue decomposition (Step 2 in Table 1) on a matrix of size n× n. The

complexity of both steps scale only with n = O(r), and is independent of the ambient

dimension N . Hence our approach requires fewer measurements and has lower complexity

(especially when r � N ) than those proposed in [38, 57] and [121].

4. Theoretical Guarantees with Finite Samples: One of our key contributions over the ML

based algorithms in [121] is that we are able to analytically characterize the reconstruction

error and provide explicit upper bounds that continue to hold for a finite number (L) of

samples. On the other hand, the algorithm in [48, 121] is shown to be asymptotically

equivalent to Maximum Likelihood Estimation for Gaussian signal models. Its performance

in presence of finite snapshots has not been analyzed. Furthermore, the algorithms in

[48, 121] are all derived by assuming a Gaussian measurement model, whereas our results

in Theorem 3 hold for any distribution on the signal as long as w
(L)
(n) can be upper bounded.

5. Separation Condition and Prediction v/s Estimation Error: Theorem 2 dictates that

the proposed algorithm can exactly reconstruct a low rank Toeplitz PSD T using n ≥ r + 1

measurements without requiring a separation condition on the frequenices. This is because

we exploit the positive semidefiniteness of T which, in turn, dictates that the coefficients di

are positive. The fact that the “separation condition” can be avoided when the coefficients

di in the line spectrum are positive has been noted in [58, 61–63] and our algorithm further

corroborates this observation. In presence of noise, we have established different bounds

for the estimation error (given in (2.38)) and prediction error (given by (2.39)). The former

is obtained by directly using triangle inequality, whereas the latter result is the first of
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its kind. Another important distinction between the two bounds is that (2.38) does not

require a separation condition, whereas it is needed for establishing (2.39).The reason

is that for prediction, we need to estimate the frequencies that parameterize T (which

is not necessary for just denoising the observed entries). Existing results in noisy line

spectrum estimation [56, 58, 59, 141, 142] also seem to require a “separation condition” for

developing error bounds on the estimated frequencies. In [62], similar results as in [59]

have been obtained without explicitly assuming separation condition, but requiring the dual

polynomial to satisfy a so-called Quadratic Isolation Condition (QIC). Another closely

related idea is that of Rayleigh regularity [61] which does not lead to a strict separation

condition on the frequencies. It is however, non trivial to extend this analysis for bounding

the error in frequency estimates. Since it is presently unclear what kind of separation is

fundamentally necessary for frequency estimation in presence of noise, in this paper, we

still assume the specific form of the separation condition as used in [58, 59, 142], and leave

the general case as an open problem for future research.

2.5 ML Methods for Localizing More Sources than Sensors

In previous sections, we have studied the problem of compressive Toeplitz covariance

matrix estimation using GNS. Because of the Vandermonde decomposition (2.2), recovering

low-rank Toeplitz covariance matrix can be related to the problem of direction-of-arrival (DOA)

estimation in array signal processing. In particular, the frequencies correspond to the incoming

directions of the sources and the diagonal entries of D represent the signal powers. In the next,

we will formally establish this relationship, and show more sources than sensors can be detected

using GNS.
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2.5.1 Signal Model, Direct MUSIC and Co-Array MUSIC

Consider a linear array of M antennas where ziλ/2, i = 1, 2, · · ·M denotes the distance

of the ith antenna from the the origin. Here zi is an integer and λ is the carrier wavelength

of narrowband signals received by the array. The antenna receives D? narrowband sources

simultaneously from directions Ψ = [ψ1, ψ2, · · · , ψD? ]. The k th time sample of the received

signal at the M antennas can be expressed as

y[k] = A(θ?)s[k] + n[k] (2.58)

Here A(θ?) ∈ CM×D? is the array manifold matrix given by [A(θ?)]m,n = ej2πzmθ
?
n = ejπzm sinψn ,

s[k] ∈ CD? denotes the vector of zero-mean wide sense stationary (WSS) source signals with

a diagonal covariance matrix Rss = diag(p1, p2, · · · , pD?) and n[k] denotes the additive white

noise with power σ2
n, uncorrelated with s[k]. The covariance matrix of the received signal is given

by

Ryy = E(y[k]yH [k]) = A(θ?)RssA
H(θ?)︸ ︷︷ ︸

Rsig

+σ2
nI

A central problem in array processing is to estimate θ? given time samples of the vector

y[k]. Traditional DOA estimation algorithms operate in the regime D? < M , in which case the

matrix Rsig ∈ CM×M is low-rank (rank D?). Classical subspace-based methods (such as MUSIC)

identify the null-space of Rsig directly from the data covariance matrix Ryy and exploit its

structure to estimate the DOAs. This has been referred to as “direct MUSIC” in recent literature,

in order to distinguish it from “Co-array MUSIC” which we review next.

Given a set of antenna locations (normalized with respect to λ/2) {zi, i = 1, · · · ,M},

its “difference co-array” is the set Sca of all pairwise differences: Sca = {zi − zj, 1 ≤ i, j ≤

M}. For certain sparse arrays such as the nested array, Sca contains Mca , M2/4 + M/2
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distinct consecutive integers (and their negatives). The difference co-array of the nested array is

therefore a uniform linear array (ULA) with O(M2) elements. Let Anested(θ
?) ∈ CM×D? and

Aca(θ
?) ∈ CMca×D? respectively denote the array manifolds corresponding to the nested array

and the positive half of its difference co-array, where [Aca(θ
?)]m,n = ej2πmθ

?
n = ejπm sinψn , 1 ≤

m ≤Mca, 1 ≤ n ≤ D?. Then, it can be easily verified that [10, 45]

Anested(θ
?) = SAca(θ

?) (2.59)

where S ∈ RM×Mca is a row-selection matrix

[S]i,j =


1 1 ≤ i = j ≤M/2

1 M
2

+ 1 ≤ i ≤M, j = (M
2

+ 1)(i− M
2

)

0 otherwise

The covariance matrix Ryy of the signals received at a nested array satisfies

Ryy = S
(

Aca(θ
?)RssA

H
ca(θ

?)︸ ︷︷ ︸
Tca

+σ2
nI
)
ST (2.60)

Here Tca represents the (noiseless) covariance matrix of the signals, as though it was received at

the virtual difference co-array with Mca elements. Since Sca is a ULA, Tca is Toeplitz structured.

As long as D? < Mca, Tca is rank-deficient and the DOAs θ? can be uniquely identified by using

the MUSIC algorithm on Tca. This is also known as “Co-array MUSIC ” [130, 131].

In practice, however, we do not have access to Ryy and can only estimate it from a finite

number (say, L) snapshots as R̂yy = 1
L

∑L
k=1 y[k]yH [k]. Obtaining a reliable estimate of Tca

from R̂yy becomes a challenging task, especially when D? > M [131]. In recent times, nuclear

norm and atomic-norm based regularized least square algorithms have been proposed to estimate

Tca from R̂yy [57, 59]. In this paper, we focus on certain constrained Maximum Likelihood (ML)
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methods for estimating Tca from R̂yy. Unlike [57, 59], this framework is regularizer-free, and we

show that it provably produces the ML estimate of the DOAs θ? as well without assuming the

number of sources D? to be known.

2.5.2 Constrained Maximum Likelihood Co-Array Covariance and DOA

estimation with Finite Snapshots

Under the Gaussian stochastic signal model [130], the L snapshots y[k], 1 ≤ k ≤ L of

the signal received at a nested array with M antennas are assumed to be i.i.d random vectors

distributed as

y[k] ∼ N
(
0,Anested(θ

?)RssA
H
nested(θ

?) + σ2
nI
)

(2.61)

Since Tca is a positive semidefinite (PSD) Toeplitz matrix, we consider the following constrained

Maximum Likelihood problem for estimating Tca

min
T∈CMca×Mca

L(T) s.t T � 0, T is Toeplitz (2.62)

and L(T) = log det(STST ) + Trace
(

(STST )−1R̂yy

)
. Let T̂ be a global optimum of (2.62).

Then T̂ is guaranteed to be a PSD Toeplitz matrix, and therefore it permits the following

Vandermonde Decomposition, owing to Carathéodory’s Lemma [59, 68]

T̂ = Aca(θ
′)diag(p′)AH

ca(θ
′) + σ′I (2.63)

Here Aca(θ
′) ∈ CMca×D′ is a tall Vandermonde matrix satisfying D′ < Mca (with elements given

by [Aca(θ
′)]m,n = ej2πmθ

′
n), and σ′ ≥ 0. The representation (2.63) is unique in (D′,θ′,p′, σ′)

[68]. Moreover, since D′ < Mca, Aca(θ
′) is column-rank deficient and θ′ can be uniquely

identified using the MUSIC algorithm [149] on T̂ca = T̂− σ′I. We denote the overall framework
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for ML estimation of Tca, followed by MUSIC, as “Co-array ML-MUSIC” or (Co-MLM).

Since D′ < Mca and Mca can be as large as O(M2), it is possible to estimate as many as

O(M2) sources with only M physical sensors. We now show that θ′ also serves as the Maximum

Likelihood (ML) estimate of θ? when the number of sources is considered to be an unknown

integer-valued parameter in the ML objective.

2.5.3 ML DOA estimation with Unknown Source Number

Under the stochastic signal model (2.58), Maximum Likelihood estimate of the DOAs are

obtained by solving the following optimization problem

min
θ∈(−1/2,1/2]D? ,p∈RD?++,σ≥0

LML(θ,p, σ) (2.64)

where

LML(θ,p, σ) = log det(Anested(θ)diag(p)AH
nested(θ)

+σI) + Trace
(

(Anested(θ)diag(p)AH
nested(θ) +

σI)−1R̂yy

)
(2.65)

Comparing (2.62), (2.60) and (2.64), we obtain

LML(θ,p, σ) = L(T)T=Aca(θ)diag(p)AH
ca(θ)+σI (2.66)

Note that in (2.64), the number of sources D? has been assumed to be known. This is a common

practice in traditional ML estimation, where the model order (or the number of sources) is either

assumed to be known, or estimated using the AIC or MDL criteria [132, 133].

When the number of sources (D?) is unknown, one may treat it as an unknown (integer-

valued) parameter D and jointly minimize the negative log likelihood function (2.65) with respect
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to D and the other parameters:

min
D∈Z+,

1≤D≤Mca−1

min
θ∈(−1/2,1/2]D,

p∈RD++,σ≥0

LML(D,θ,p, σ) (2.67)

Solving (2.67) with respect toD, θ, p and σ is equivalent to jointly finding the maximum likelihood

estimates for the number of sources, and the DOAs. Notice that the number of sources in (2.67) is

allowed to be larger than M . At first glance, (2.67) may appear to be a mixed discrete-continuous

optimization problem (since D is a positive integer and θ,p and σ are real valued parameters).

However, the following theorem establishes a direct connection between the ML DOA estimate

obtained from (2.67) and θ′ obtained from (Co-MLM) algorithm. For the remainder of the paper,

we will assume that R̂yy is full rank which is valid when L is large enough. 3

Theorem4 Assume that the empirical covariance matrix R̂yy is full rank. Let T̂ be a global

minimum of (2.62) and (D′,θ′,p′, σ′) be the parameters associated with its Carathéodory rep-

resentation (2.63), obtained from the (Co-MLM) algorithm. Then (D′,θ′,p′, σ′) represents a

global minimum of the ML problem (2.67).

Proof. We prove by contradiction. If (D′,θ′,p′, σ′) does not represent a global minimum of

(2.67), there exists (D̃, θ̃, p̃, σ̃) 6= (D′,θ′,p′, σ′) such that

LML(D̃, θ̃, p̃, σ̃) < LML(D′,θ′,p′, σ′) (2.68)

Using (2.63), construct a PSD Toeplitz matrix T̃ = Aca(θ̃)diag(p̃)AH
ca(θ̃) + σ̃I. Then, (2.68),

(2.59) and (2.66) imply that L(T̃) < L(T̂). Since T̃ is feasible for (2.62), this contradicts the

claim that T̂ is a global minimum of (2.62), and proves the theorem. Theorem 4 establishes

that the solution of (Co-MLM) is guaranteed to be a global minimum of the ML problem (2.67).

3This assumption will imply that the unconstrained ML objective Lgen(R) = log det(R) + Trace(R−1R̂yy)
attains a finite global minimum value over the set of positive semidefinite matrices R [134]. Hence, the objective
functions of (2.62) and (2.67) remain finite at their respective global minima, and we can compare their values.
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This is true for every finite value of L (such that R̂yy is full rank), as well as when the number of

sources exceeds the number of sensors, i.e. D? > M .

2.5.4 Exact Recovery with Orthogonal Source Waveforms

We have shown that D′ and θ′ obtained from the (Co-MLM) algorithm are also the ML

estimates of D? and θ?. However, with finite number (L) of snapshots, usually D′ 6= D? and

θ′ 6= θ?. We will now show that under certain conditions on the source waveforms, it is possible

to ensure exact recovery of the source DOAs, i.e. D′ = D? and θ′ = θ? even with finite number

of snapshots. 4 We make the following assumptions:

1. (A1) The measurements are noiseless, i.e. n = 0 in (2.58), and the number (D?) of sources

satisfies M ≤ D? < Mca.

2. (A2) The source signals are orthogonal [135] , i.e. for p? ∈ RD?

++,

1

L
XsXs

H = diag(p?),Xs , [s[1], s[2], · · · , s[L]]

Theorem5 Under assumptions (A1-A2), there exists a unique global minimum T̂ of (2.62),

and the parameters (D′,θ′,p′, σ′) associated with its Carathéodory Representation (2.63) satisfy

D′ = D?,θ′ = θ?,p′ = p?.

Proof. Recall that R̂yy is assumed to be full rank, implying that it is the unique minimum of

minR�0 Lgen(R) = log det(R) + Trace(R−1R̂yy) [134, 136]. Moreover, due to (A1), R̂yy =

ST?ST where T? is a Toeplitz matrix:

T? = Aca(θ
?)diag(p?)AH

ca(θ
?) (2.69)

4A related result on recovering more sources than sensors was reported in the context of SBL by using sparse
representation over a known dictionary and analyzing the derivatives at the global minima. However, our framework
does not use a known dictionary (i.e. Aca(θ?) contains unknown parameters) or sparsity; rather we exploit the
Toeplitz structure and Vandermonde decomposition imposed by the nested array geometry.
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Comparing Lgen(R) and (2.62), we can see that T? is also a global minimum of (2.62). Since

R̂yy is the unique global minimum of Lgen(R), it follows that any other global minimum T∗ of

(2.62) must also satisfy R̂yy = ST∗ST . Due to the properties of nested arrays [10, 45], for any

Toeplitz matrices T1 and T2

ST1S
T = ST2S

T ⇒ T1 = T2 (2.70)

This implies that T∗ = T? and (2.62) has a unique global minimum at T = T?. Finally, since

D? < Mca, the Carathéodory representation of T? is unique and given by (2.69), implying that

D′ = D?,θ′ = θ?,p′ = p?.

Remark8. Theorem 5 shows that in spite of being highly non-convex, (Co-MLM) algorithm can

exactly recover the true DOAs if the source waveforms are orthogonal, even when the number of

sources is unknown and exceeds the number of sensors.

2.6 Numerical Results

In this section, we show simulation results supporting the practical applicability of

the proposed compression and recovery algorithms for low rank PSD Toeplitz matrices, and

numerically compare its performance with related works in [38, 57, 121]. For given rank r ≤ N ,

we generate the real PSD Toeplitz matrix by invoking the Vandermonde decomposition (2.2). The

frequencies and amplitudes are generated randomly while satisfying the separation condition. In

particular, for a given r, we generate r equispaced frequencies on [−1/2, 1/2] (ensuring that both

positive and negative frequencies occur in pair so that T is real). The amplitudes di are generated

as i.i.d random variables following a uniform distribution on [0,1]. The same amplitude di is used

for both fi and −fi. We further normalize the entries of T so that the diagonal entries satisfy

t0 = 1. The recovered matrix is denoted as T#. We use the GNS matrix As defined in (2.9) to
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compress T. All simulations are executed using the CVX Toolbox for MATLAB.

2.6.1 Phase Transition with Infinite Noiseless Snapshots

Fig. 2.2 shows the noiseless phase transition plot of the probability of successfully

recovering T from its compressed sketch, for different choices of the rank r and the sampled

size n. As a reference, we also show the theoretical lower bound and it is obvious that the

simulation results agree with this bound perfectly. In particular, GNS based compression, along

with the proposed reconstruction algorithm can perfectly recover T as soon as n ≥ r + 1. The

phase transition exhibits a perfectly linear behavior, which is in agreement with the fundamental

compression limit of rank r Toeplitz matrices .
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Figure 2.2: Phase transition plot for the proposed GNS based compression and MUSIC
based reconstruction of T. A trial is declared successful if ‖t−t#‖2/N ≤ 0.001. White
cells indicate success while black denote failure. The red line represents n = r + 1 and
the result is averaged over 50 runs. N = 113.

We also compare the results with random sampling based compression and recovery of

Toeplitz matrices, as proposed in [38]. The sampling model for our method is different from that

in [38] (in particular, [38] uses rank 1 measurement matrices). For fairness of comparison, we fix

the value of n and simulate the measurement model in [38] by collecting n measurements. This

ensures that the reconstruction algorithms for both approaches use the compressed sketch of same

size. Fig. 2.3 shows the noiseless phase transition for the nucelar norm based recovery algorithm

from [38]. Comparing Fig. 2.2 and Fig. 2.3, it is obvious that the proposed method has tighter
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transition boundary and larger success region. The underlying reason for this difference is that we

transform the matrix completion problem into spectrum detection problem and the Vandermonde

decomposition theorem gives us deterministic guarantees with minimum possible measurement

size, thereby leading to the sharp phase transition. The non-linear shape of the transition region in

Fig. 2.3 is due to the nature of random sampling used in [38], for which the number of required

measurements needed for a given r is strictly larger than that for our method.
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Figure 2.3: Phase transition plot for method in [38] and nuclear-norm minimization
based reconstruction of T. A trial is declared successful if ‖t−t#‖2/N ≤ 0.001. White
cells indicate success while black denote failure. The red line represents n = r + 3 and
the result is averaged over 100 runs. N = 113.

2.6.2 Study of Prediction and Total Error

We next evaluate the performance of the proposed method in presence as a function of

number measurement size (n), SNR, number of snapshots, and compare them with related works

in [38, 57]. In particular, we compare the following algorithms:

• proposed: This refers to the proposed reconstruction algorithm described in Table 1.

• nuclear-psd: This refers to the nuclear norm minimization framework in [57]

t# = arg min
t∈RN

1

2
‖R̃Y −Adet(T (t))‖2

F + λTrace(T (t))

s.t. T (t) � 0 (2.71)
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whereAdet(·) represents a deterministic sampler and R̃ ∈ RM×M represents the compressed

sample covariance matrix of size M ×M . In [57], Adet(·) corresponded to a sparse ruler

that sampled the entire covariance matrix, implying M = O(
√
N) and there was no need

for prediction. In this paper, we will use a GNS instead of sparse ruler (so that the proposed

algorithm and (2.71) have the same sampling operator) and consider different values for M

under different experimental settings.

• random: This represents the covariance compression/reconstruction framework of [38]

using random samplers. In particular, the algorithm in [38] solves the following convex

problem:

T#
(N) = arg min

T∈RN×N
Trace(T) (2.72)

s.t. T � 0, Toeplitz

‖z−Arandom(T)‖2 ≤ ε

where z ∈ RMr denotes Mr measurements of the high dimensional covariance matrix T

acquired using so-called rank-1 random measurements as proposed in [38]. The correspond-

ing sampling operator is denoted by Arandom(·). Notice that the proposed algorithm and

(2.71) use the same measurement model which samples a certain number of entries of T.

On the other hand, the measurement model in (2.72) is different, where each measurement

contains a random linear combination of all the entries of T. However, for fair comparison,

in this subsection, we provide the same measurement size to our algorithm and [38]. In

particular, this implies n = Mr (recall that n denotes the number of distinct entries of T

that are observed using GNS based measurement model).

In this subsection, we compare the performance of our algorithm against (2.71) and (2.72) under

two different settings. In the first setting, we assume that the acquired sketch R̃Y is a perturbed
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version of the error-free measurements, i.e.

R̃Y = AsTAT
s + W (2.73)

where W represents a perturbation matrix with bounded entries. This measurement model with

bounded perturbations was used in the numerical experiments of [38], and we consider a similar

setting to be consistent with [38]. The regularization parameter λ for [57] is found through

exhaustive search to ensure best performance. Similarly, in (2.72), we assume knowledge of the

upper bound on the perturbation errors. In contrast, our algorithm does not need any regularization

parameter nor the knowledge of the perturbation error bound.

In the second setting, we consider the measurement model (2.18) where W(L) represents

the noisy finite snapshot estimation error, with L denoting the number of snapshots, and σn

representing the noise power.

Setting 1: Perturbed Measurements

Under the perturbed measurement model, as before, we can extract n entries t̃(n) from

R̃Y such that t̃(n) = t(n) + w(n) where w(n) denotes the corresponding perturbation vector. In

this case, we can define a Signal-to-Noise Ratio (SNR) as SNR , 10 log10

∑n
i=1 [t(n)]

2
i∑n

i=1 [w(n)]
2
i

The

entries of w(n) are assumed to be i.i.d random variables following the uniform distribution on

α[0, 1], where α is a normalizing constant adjusted to different values of the SNR as defined

above. The normalized total error of reconstruction is defined as ε = ‖t−t#‖2
‖t‖2 where t# is the

estimate of t (the first row/column of T). Similarly, the normalized prediction error is defined as

εpred =
‖t(−n)−t#

(−n)‖2
‖t(−n)‖2

where t(−n) = [tn, tn+1, · · · , tN−1]T and t#
(−n) = [t#n , t

#
n+1, · · · , t

#
N−1]T .

We further assume that all algorithms use the same number of measurements, denoted

by n. This means that the proposed algorithm as well as (2.71) effectively sample the first n

(perturbed) entries of T, whereas for (2.72), we assume Mr = n. When n < N , the algorithms
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in (2.72) and (2.71) implicitly perform “extrapolation/prediction” in order to find the optimal

estimate of T. In Fig. 2.4, we study the normalized prediction error εpred and the normalized total

error ε of the aforementioned algorithms as a function of SNR. It can be seen that the proposed

method outperforms the algorithms in [38, 57], in terms of both the prediction error and the total

normalized error.
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Figure 2.4: Estimation error of different algorithms as functions of SNR. (Top) Nor-
malized error ε v/s SNR. (Bottom) Normalized prediction error v/s SNR. The results
are averaged over 100 runs. Here N = 110, r = 30.

We also study the prediction error as a function of the sampled size n. Fig. 2.5 shows

the normalized total error and prediction error as a function of sampled size n. It can be seen

that the average prediction error decreases with increasing n, and increases as rank and noise

power increase. In all cases, the proposed method shows better performance over random and

nuclear-psd. The absence of any tuning parameter, and exploitation of the exact parametric

representation of low rank PSD Toeplitz matrices (for both compression and reconstruction) are

potential factors behind the superior performance of our algorithm.

Setting 2:Finite Noisy Snapshots

We next consider the noisy measurement model (2.16) consisting of a finite number (L) of

snapshots. We study the error of reconstruction for two values of n: (i) n = 30 (ii) n = N = 42.

In the latter case, no prediction is necessary, and we only only execute Step 1 (denoising) of our

proposed algorithm. Fig. 2.6 and Fig. 2.7 show the performance of all the algorithms as functions
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Figure 2.5: Estimation error of different algorithms as functions of n. (Top) Normalized
error ε v/s n. (Bottom) Normalized prediction error v/s n. The results are averaged over
100 runs. Here N = 110, SNR = 50dB.

of L for both scenarios. It can be seen that the proposed algorithm continues to outperform

(2.72) and (2.71). This shows that simple least squares based estimation with PSD and Toeplitz

constraints provides the best performance in this setting.
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Figure 2.6: Estimation error of different algorithms as functions of L. (Top) Normal-
ized error ε v/s L. (Bottom) Normalized prediction error v/s L. The results are averaged
over 200 runs. Here n = 30, N = 42, σn = 0.09.

2.6.3 Approximate Low Rank

In practice, T may not be low rank but can be approximated by a low rank matrix. We

study the robustness of the proposed method in such a setting when the entries of T can no longer

be represented as a sum of complex exponentials. We generated an approximately low rank T

by adding a small diagonal loading factor to a low rank PSD Toeplitz matrix. In Fig. 2.8, we
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Figure 2.7: Normalized error ε of different algorithms with n = N = 42. σn = 0.09.
Averaged over 200 runs.

study the performance of proposed method for such an approximately low rank T as a function

of sampled dimension n and compare it with nuclear-psd and random. The proposed method

exhibits robustness to violation of the low rank assumption and its performance improves with

increasing n.
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Figure 2.8: Recovery performance of different algorithms when T is approximately
low rank Toeplitz. The matrix T is approximately of rank 30, with ambient dimension
N = 110. Here SNR is 50 dB and the results are averaged over 50 runs.

2.6.4 Comparison with Maximum Likelihood based method

We now compare the performance of our algorithm with the SPA algorithm developed

in [121], which is derived from the Maximum Likelihood method and is also regularization-

free. Since the SPA algorithm [121] assumes that the measurements {yp} are Gaussian random

variables, we also generate both the data {xp} and noise {np} as i.i.d zero mean Gaussian

random variables, with respective covariance matrices given by T and σnI. Additionally, we
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adopt the same definition of SNR as in [121]: SNR = 10 log10
min1≤i≤r(di)

σn
The normalized

mean-square-error (N-MSE) is defined as

N-MSE =
1

K

K∑
k=1

‖t̂#
k − t‖2

2

‖t‖2
2

(2.74)

where t̂#
k is the estimate of t (the first column of T) for kth Monte-Carlo run.

In Fig. 2.9, we compare the N-MSE as a function of SNR for different values of rank r

and number of snapshots L. It can be seen that for the same value of n = 30, SPA performs better

for smaller value of r, whereas our algorithm outperforms SPA when r = 28, which corresponds

to a maximally compressed setting. Additionally, the performance of both algorithms improve

as L increases. We also compare the frequency estimation performance of both algorithms by

reproducing a similar plot from [121] (corresponding to sparse arrays) in Fig. 2.10 which shows

the estimated values of frequencies and powers over several Monte Carlo runs. 5. Both methods

exhibit similar frequency reconstruction performance. Unlike SPA, although the proposed

method is not provably asymptotically Maximum Likelihood for Gaussian signals, its frequency

reconstruction performance seems to be similar to SPA, and for near-critically compressed

measurements, it can even outperform SPA in terms of covariance estimation error.
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Figure 2.9: Normalized mean-square-error (N-MSE) as a function of SNR, N = 40,
n = 30. The results are averaged over 100 Monte Carlo runs. (Top) r = 10 (Bottom)
r = 28.

5We only show the non-negative frequencies for convenience
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Figure 2.10: Estimates of frequencies and power ({fi, di}) produced by SPA and the
proposed algorithm. Here, r = 10, n = 12, N = 40, L = 500 and we consider 200
Monte Carlo runs. (Top) Proposed method. (Bottom) SPA [121]

.

2.6.5 Study on Frequency Separation

Recall that the stability of prediction in Theorem 3 is established under a separation

condition on the frequencies, that is inversely proportional to n. We now study the effect of

frequency separation as a function of n on the reconstruction error. We generate T of size

N = 20, with four symmetric frequencies (two positive and two negative) where one of the

positive frequencies is fixed at 0.1 and the other is located at 0.1 + ∆. We consider two values for

the frequency separation ∆: (i) ∆ = 0.02 and (ii) ∆ = 0.2. For each value of ∆, we compare the

performance of our algorithm against (2.72) and (2.71).

For each of the following experiments, we assume that (2.71) samples all of the N entries

of T, (implying M = O(
√
N)). As stated earlier, this same setting was used in the numerical

experiments of [57]. Similarly, we assume that (2.72) uses Mr = N measurements. However, for

our proposed algorithm, we use two different values of n (for each ∆), in order to understand

how changing n affects the quality of prediction for small and large ∆.

In the first experiment, we assume n = 12, implying that the number of measurements

for the proposed algorithm is smaller than both nuclear-psd and random, and we need to predict

the remaining N − n = 8 entries of T. Fig. 2.11 shows the performance of all the algorithms

for ∆ = 0.02 and ∆ = 0.2. Here, N-MSE denotes the covariance estimation error given by

(2.74) and F-MSE is the mean squared error for frequency estimation defined as F-MSE =
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1
K

∑K
k=1

∑r
i=1 |fi,k − f

#
i,k|2 where K is the number of Monte-Carlo runs and f#

i,k is the estimate

of fi in kth run. It can be seen that for ∆ = 0.02 (small frequency separation), (2.71) outperforms

the proposed algorithm. However, for a larger separation of ∆ = 0.2, the proposed algorithm

shows similar performance as (2.71), although it uses smaller number of measurements.

In the second experiment, we assume that the proposed algorithm also samples the entire

matrix T, (i.e. n = N ) and therefore uses the same number of measurements as nuclear-psd and

random. Fig. 2.12 shows the corresponding performance of all the algorithms in this setting. It can

be seen that proposed algorithm outperforms both nuclear-psd and random in terms of N-MSE,

regardless of the separation between frequencies. From these experiments, it can be concluded

that when the proposed algorithm uses fewer measurements than nuclear-psd, its performance

depends on the separation ∆ between frequencies. For small ∆, nuclear-psd outperforms the

proposed method, but for larger ∆, both algorithms exhibit similar N-MSE for different values of

L. On the other hand, when both algorithms use the same number of measurements, the proposed

algorithm outperforms nuclear-psd in terms of N-MSE, regardless of frequency separation.

2.6.6 Computational Complexity

Finally, we compare the computational complexity of the proposed method with nuclear-

psd and random. Fig. 2.13 shows the run-time of these algorithms as we increase the problem size

N . We simulated all algorithms on a Dell OptiPlex 7020 desktop with Intel(R) Core(TM) i7-4790

CPU @ 3.60GHz, and 16 GB Memory, using the CVX toolbox for MATLAB, and on the same

dataset. Since the problem size (number of unknown variables) of the proposed algorithm is O(n),

rather than N , the complexity of our method is smaller than the other algorithms. Moreover, our

complexity does not grow with N . This may turn out to be especially advantageous in the high

dimensional setting when N is very large.
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Figure 2.11: N-MSE and F-MSE as a function of the number of snapshots (L) for
two different values of ∆: (Top) ∆ = 0.02 and the frequencies in the positive half are
[0.1, 0.12] (Bottom) ∆ = 0.2 and the frequencies in the positive half are [0.1, 0.3]. Here,
random uses N rank-one random measurements and similarly, nuclear-psd samples the
entire N ×N matrix T. The proposed algorithm only observes T(n) with n = 12 and
uses less measurements than random and nuclear-psd. Here, N = 20, σn = 0.09, r = 4
and the results are averaged over 200 runs.
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Figure 2.12: N-MSE and F-MSE as a function of the number of snapshots (L) for
two different values of ∆: (Top) ∆ = 0.02 and the frequencies in the positive half
are [0.1, 0.12] (Bottom) ∆ = 0.2 and the frequencies in the positive half are [0.1, 0.3].
The experimental settings are identical to that in Fig. 2.11 except that in this case, the
proposed algorithm also observes the entire matrix with n = N .

25 30 35 40 45 50 55 60 65
10

−1

10
0

10
1

10
2

matrix dimension N

ti
m

e
 u

s
e
d
 i
n
 s

e
c
o
n
d
s

 

 

proposed

nuclear−psd

random

Figure 2.13: Comparison of run-times of the proposed method and the nuclear norm
based recovery algorithms in [38, 57]. Here, r = 10, SNR = 20 dB and n = 20. The
run-time is averaged over 100 runs.
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2.6.7 Numerical Performance of Coarray ML-MUSIC

We compare the performance of the (Co-MLM) framework with several other algorithms

that attempt to estimate the co-array covariance matrix Tca from R̂yy. Since the ML problem

(2.62) is highly non-convex, we adopt the idea of Extended Invariance Principle proposed in [137],

which provides an approximation of the ML objective given sufficient number of snapshots [4,121].

In particular, we solve the following convex problem

min
T,X

Trace(X) + Trace(R̂−1
yy STST )

X R̂
1/2
yy

R̂
1/2
yy STST

T

 � 0

T is Toeplitz (2.75)

We compare (2.75) with the nuclear norm based algorithm in [57] (henceforth referred as nuclear-

psd) and the Co-array MUSIC algorithm of [45, 138]. Consider a nested array with M = 6

sensors located at {1, 2, 3, 4, 8, 12}. It receives signals from D? = 10 > M narrowband sources

whose spatial frequencies are equi-spaced in the range [−0.4, 0.4]. The sources are assumed

to be of equal power, i.e. p?1 = p?2 = · · · = p?D? = 5. We first compute an estimate T̂ of the

co-array covariance matrix using the three algorithms, and then apply the MUSIC algorithm on

T̂ to estimate the DOAs. The smallest singular value of T̂ serves as an estimate of the noise

power. After estimating the DOAs, the source powers can be obtained from T̂ using the Least

Squares method. A typical MUSIC spectrum for all three algorithms is shown in Fig. 5.2. It can

be seen that for this realization, (Co-MLM) correctly identifies the DOAs, whereas the other two

algorithms exhibit spurious peaks.

We also study the Mean-Squared-Error (MSE) of DOA estimates for all three algorithms.

Following [4, 121], to compute the MSE, we use the estimated DOAs that correspond to the D?
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largest values of the estimated source powers. Fig. 2.15 shows the MSE as a function of σn and L.

For both cases, (Co-MLM) outperforms the other two algorithms, and the gap in MSE is larger

for smaller L.

2.7 Conclusion

In this chapter, we considered the problem of compressing and recovering a low rank

PSD Toeplitz matrix using minimal number of measurements. As a major contribution of this

work, we showed that it is possible to recover a rank r PSD Toeplitz matrix from a sketch of

size O(
√
r) × O(

√
r), which is order-wise optimal. The sketch can be obtained by using a

newly proposed class of structured sampler, namely, the Generalized Nested Sampler (GNS), or

sparse ruler based sampling techniques. In absence of noise, these structured samplers provably

outperform random sampling where the number of required measurements exhibits a logarithmic

dependence on ambient dimension N . We further reformulated the reconstruction problem in

terms of line spectrum estimation and studied the performance of gridless techniques, such as

MUSIC, for recovering T from its sketch produced by the GNS. By using the Vandermonde

decomposition of PSD Toeplitz matrices, we show that a simple least squares denoising with PSD

constraints suffice to guarantee stable reconstruction of a N ×N Toeplitz covariance matrix of

rank r from a sketch of size O(
√
r)×O(

√
r). The proposed method is regularization-free and

has low complexity. In the presence of noise and finite snapshots, we developed an explicit bound

on the prediction error in terms of r, noise power and the observation length n.

Motivated by the Vandermonde decomposition, we also studied the maximum likelihood

problem for estimating the DOAs of O(M2) sources that exploits the co-array structure of a

nested array with M antennas. We showed that a certain constrained ML framework (with PSD

and Toeplitz constraints) for estimating the co-array covariance matrix provably produces a ML

estimate for the DOAs when the number of sources is assumed to be unknown. In addition, under
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a certain orthogonality condition on the source signal waveforms, the PSD Toeplitz constrained

ML algorithm can exactly recover the true DOAs even with a finite number of temporal snapshots.

The numerical simulations validated the theoretical claims established in this chapter

Future work will be directed towards understanding the need for separation condition for frequency

estimation in presence of noise, and establishing optimal error bounds.

Chapter 2, in part, is a reprint of the material as it appears in following papers:

• H. Qiao and P. Pal, “Gridless Line Spectrum Estimation and Low-Rank Toeplitz Ma-

trix Compression Using Structured Samplers: A Regularization-Free Approach, IEEE

Transactions on Signal Processing, vol. 65, no. 9, pp. 2211-2226, May 2017.

• H. Qiao and P. Pal, “On Maximum Likelihood Methods For Localizing More Sources than

Sensors, IEEE Signal Processing Letters, vol. 24, no. 5, pp. 703-706, 2017.

• H. Qiao and P. Pal, “Generalized Nested Sampling for Compressing Low Rank Toeplitz

Matrices, IEEE Signal Processing Letters, vol. 22, no. 11, pp. 1844-1848, Nov. 2015.

• H. Qiao and P. Pal, “Stable Compressive Low Rank Toeplitz Covariance Estimation With-

out Regularization, in the Proceedings of Asilomar Conference on Signals, Systems and

Computers, 2016.

• H. Qiao and P. Pal, “Generalized Nested Sampling for Compression and Exact Recovery of

Symmetric Toeplitz Matrix, in the Proceedings of IEEE Global Conference on Signal and

Information Processing (GlobalSIP), Atlanta, GA, USA, 2014.

The dissertation author was the primary investigator and author of these papers.
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Chapter 3

Super-Resolution and Support Recovery

with Non-Negative Constraint

This chapter simultaneously considers the problems of super-resolution and support-

recovery with non-negative constraint. The two problems have similar measurement models

and analysis tools in the proof of stable recovery. In the following, we will first discuss super-

resolution and provide an intuitive explanation of the usefulness of non-negative constraint. Then,

we will study the problem of joint support recovery with multiple measurement vector model.

The non-negative constraint naturally arises as we explicitly exploit the correlation information

of the jointly sparse signals. We establish a universal analysis framework that is independent

of the chosen objective functions in the optimization program. The universal upper bound on

the estimation error is shown to be tight by explicitly constructing an example. As another

important contribution, we propose a computationally efficient algorithm for exactly recover the

support by simply hard-thresholding the estimated signal power. Next, we try to further generalize

the universal analysis framework by introducing the concept of modulus of continuity. This

quantity fundamentally bounds the estimation error and is only dependent on the measurement

model. We show that non-negativity constraint will give a better modulus of continuity in terms
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of an amplification factor compared to the general case. Finally, we will discuss a particular

super-resolution problem known as fluorescence microscopy. Sparse array idea is shown to be

useful to identify more sources than sensors by exploiting the Gaussian point spread function and

the statistical property of the point sources.

3.1 Introduction

The problem of super-resolution is fundamental across imaging applications such as

astronomy [150], medical imaging [151], microscopy [152] and radar [153]. In these systems, the

resolution of the captured image is always limited by the physical measurement process which

necessitates the use of sophisticated signal processing techniques to retrieve finer details that are

apparently lost.

The problem of super-resolution with noisy measurements was analyzed in the pioneering

work by Donoho [139] and further developed in recent works [141,142] where total-variation (TV)

and l1 norm based convex algorithms were used for promoting sparse structure in super-resolution

reconstruction. The analysis technique of [141, 142] involves an explicit construction of a certain

dual polynomial (based on the Fejér kernel), whose properties can be exploited to analyze the

performance of convex super-resolution algorithms for noisy line spectrum estimation [59] and

low-rank Toeplitz covariance estimation [4].

More recently, the role of positive constraints in super resolution was analyzed in [61]

by imposing a new notion of Rayleigh regularity on the underlying signal. Using the same dual

polynomial as [141, 142], the authors in [61] established stability guarantees for a simple l1

norm based denoising problem with non-negative constraint. In another recent work [148], the

author established robust recovery guarantees of positive streams of spikes by imposing strong

structural constraints on the admissible blurring kernel. It should be noted that existing analysis

of noisy super-resolution focus on solving convex problems. In this chapter, we show that positive
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constraints on the unknown target signal can be exploited in a suitable way alongside its sparsity,

leading to a non-convex super-resolution problem which minimizes the l1/2 quasinorm of the

signal. Such lq(0 < q ≤ 1) norm based non-convex constrained optimization problems and

corresponding algorithms to (approximately) solve them, have been studied in recent literature

[154–157, 163]. However, in order to establish stable reconstruction guarantees, these techniques

either rely on exploiting certain properties of the measurement matrix such as the Restricted

Isometry Property (RIP) [96]) [156, 158–160, 163–166], or Kruskal rank [155]. However, the

measurement matrix arising in super-resolution imaging is a deterministic rank-deficient matrix

composed of DFT matrices for which RIP cannot be established. Besides, l1/2 quasinorm is

not differentiable and recent advances in non-convex gradient descent based algorithms are

inapplicable [86, 158, 164].

The problem of joint sparse support recovery from Multiple Measurement Vectors (MMV),

is of significant interest in compressive sensing and sparse signal recovery [16, 135, 147, 168,

170–174]. The goal is to identify the common support (denoted by S) of a set of L vectors

x[l] ∈ CN , 1 ≤ l ≤ L using L (compressed) measurement vectors y[l] ∈ CM , 1 ≤ l ≤ L

(M < N ) acquired using a common measurement matrix A ∈ CM×N and contaminated with

additive noise w[l]

y[l] = Ax[l] + w[l], Supp(x[l]) = S, |S| = s (3.1)

The MMV model is originally inspired by measurement models in sensor array processing

[172,174] where y[l] denotes the lth temporal sample (or snapshot) of the measurements collected

at an array of M sensors. The MMV model arises in a wide range of applications such as

EEG/MEG source localization [188, 189], DOA estimation [184, 185, 199, 200], sub-Nyquist

sampling [41, 194], channel estimation [195] and MRI [196], to name a few.

The MMV problem has been widely studied in the past decade, giving rise to a large

68



number of computationally efficient algorithms that exploit the joint sparsity of {x[l]}Ll=1 as

well as the rank of the measurement matrix YL = [y[1],y[2], · · · ,y[L]] for better performance

and/or recovery guarantees [170–173, 181, 201]. On the other hand, rigorous guarantees for

support recovery in MMV models (in terms of achievability as well as converse results) have

been developed using information theoretic tools [143, 145], exhaustive search decoders [146],

joint typicality decoder [144], and recent unification of such guarantees for linear and non-linear

measurement models [143, 202]. However, a common feature of most of these results is that their

theoretical guarantees are applicable only when the size of the support is less than M , and cannot

be applied in the regime s > M . A main reason is that the sparse signal x[l] is modeled as a

(unknown) deterministic quantity and statistical priors on x[l] (such as its correlation structure)

are not fully exploited by appropriate design of the measurement matrix. We now review the role

of sparse arrays on the design of the measurement matrix A. Such arrays have drawn considerable

attention in recent times due to their ability to recover supports of size s > M .

3.1.1 Difference Co-Arrays, Correlation-Awareness and Localization of

More Sources than Sensors

Sparse sensor arrays such as nested [45] and coprime arrays [17] are gaining increasing

attention owing to many associated benefits over the conventional and widely-used Uniform

Linear Array (ULA) [41, 130, 203]. One of the striking features of these arrays is that their

difference co-array [204] contains an ULA segment of length Θ(M2). This difference co-array

controls the correlation structure of the measurements, and can be utilized to resolve more

sources than sensors. In recent times, clever extensions of these arrays such as super nested

arrays [198] and generalized coprime arrays [199] have been proposed in literature to combat

mutual coupling and avoid small inter-element spacings. Besides applications in Direction-of-

Arrival (DOA) estimation and super-resolution imaging [7, 175], the idea of sparse array as a

sampling operator has intimate connections to the important problem of compressive covariance
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sensing [4, 18, 40, 41, 130]. Statistical performance of sparse arrays in estimation of more source

directions than sensors has been recently analyzed in terms of Cramér-Rao bounds [130,169,179],

mean squared error (MSE) of estimators based on the Co-array MUSIC algorithm [130] and

(nonlinear) Least Squares algorithms [203].

However, these results are asymptotic in nature (i.e. tight only when L → ∞) and are

either loose or inapplicable when L is finite. Moreover, they also require the number of sources

to be known apriori, or assume certain stringent conditions on correct identification of the signal

subspace, which may be unrealistic in practice (or at best, very difficult to ensure with finite L).

On the other hand, recent advances in analysis of super-resolution algorithms based on Total

Variation (TV) norm and atomic norm minimization 1 cannot ensure absence of spurious spike

estimates and cannot be directly utilized to characterize the MSE of source localization [59, 141].

Sparse Arrays and MMV: As pointed out in [135, 172], the MMV model has its origins in sensor

array and multichannel signal processing. Inspired by their success in array processing, sparse

arrays have been successfully used in MMV models in recent times to empirically demonstrate

the possibility of recovering more sources than sensors in applications ranging from radar,

sonar, satellite based navigation (GNSS) to super-resolution optical imaging [16, 135, 175, 176,

183, 186, 187, 190]. Contrary to standard MMV algorithms [173, 201], these techniques aim to

directly recover the sparse support (bypassing the recovery of the unknown vectors x[l]) from the

data correlation matrix 1
L

∑L
l=1 y[l]yH [l] captured by a sparse array, under the assumption that

the non-zero elements of x[l] are statistically uncorrelated. The idea of using such correlation

priors on x[l] for source localization has been of continued interest in MMV models for over a

decade [120, 174, 180, 181, 184, 185, 189, 205], giving rise to powerful Bayesian algorithms for

sparse signal recovery, such as the M-SBL framework [181, 188, 197].

However, theoretical conditions under which these algorithms can recover supports of size

larger than M with finite L, have so far only been partially developed in two distinct lines of work.

1Contrary to MMV models that assume sources to be located on a grid [120, 147, 174, 175, 180], these algorithms
assume a “gridless” model for source locations.
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In the first line of work, the authors of [135] make a very interesting observation that as long as

the rows of the matrix XL = [x[1],x[2], · · · ,x[L]] are orthogonal, M-SBL can identify supports

of size larger than M . However, such a deterministic condition does not lead to meaningful

statistical guarantees on support recovery. In the second line of work [16], we proposed solving

a new convex optimization problem called “Correlation-Aware LASSO” (or Co-LASSO) that

utilizes the structure of the data correlation matrix 1
L

∑L
l=1 y[l]yH [l] to recover the joint support of

more sources than sensors. Although Co-LASSO provably recovers supports of size s = Θ(M2)

when the exact correlation matrix is available (i.e. when L→∞), establishing such guarantees

for finite L has been an open problem in the regime s > M [16, 101, 147]. To address this

issue, we recently cast the correlation-aware support recovery problem in terms of a multiple

hypothesis testing framework [168] (where each hypothesis corresponds to one of
(
N
s

)
possible

supports), and derived non-asymptotic bounds on the probability of error in the regime s = Θ(M2)

as a function of L. Although this result applies to general measurement matrices (including

sparse arrays), the algorithm for support recovery involves testing
(
N
s

)
hypotheses which can

become computationally intractable even for moderate N and s. In this paper, we overcome this

drawback by analyzing a computationally efficient framework (which is closely related to our

convex Co-LASSO algorithm from [16]) for support recovery in the regime s = Θ(M2), and

developing non-asymptotic guarantees on the probability of support recovery, as a function of L.

Our guarantees do not require the knowledge of s and the source powers can be unequal.

3.1.2 The Modulus of Continuity

In this chapter, we consider the same problem setting as in [61] where the goal is to

reconstruct a sparse non-negative discrete signal from low-frequency measurements. In contrast to

previous works, our goal is to perform a unified analysis of positive super-resolution independent

of particular algorithms. To achieve this, we revisit the concept of Modulus of Continuity

(MC) [139, 140] which essentially provides an upper bound on the error of any algorithm,
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simply by leveraging the structure of signals. We study the explicit role of positivity on the

Modulus of Continuity and our results show that the scaling factor of MC can be improved

from O(N3) [139, 140] to O(N2.5) where N is the dimension of the underlying signal. This

improvement is due to positive constraints imposed on the desired signal, which is not considered

in [139].

3.1.3 Notations

Throughout this chapter, scalars, vectors and matrices are denoted by lowercase, boldface

lowercase, and boldface uppercase alphabets respectively. The Kruskal rank of a matrix X

(the maximum integer k such that any k columns of X are linearly independent) is denoted by

Krank(X). The notation vec(X) denotes the column-wise vectorization of a matrix X. The

notation X�Y represents the Khatri-Rao product (column-wise Kronecker product) of matrices

X,Y with the same number of columns.

3.2 Understanding the Role of Non Negativity Constraint in

Super Resolution

3.2.1 Problem Formulation

The goal of discrete positive super-resolution [61, 148, 206] is to reconstruct a signal (or

image) x? ∈ RN from measurement y ∈ CN of the form [61]

y = Qx? + w x? ≥ 0 (3.2)

where x? is a sparse vector with non-negative entries, w is the measurement noise and Q ∈ CN×N

is the measurement matrix. Here, Q represents a low-pass filter such that y only retains the
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low-frequency components of x?, and the high-frequency components are lost. This imparts the

following special structure to Q [61],

Q = FH
NΛnFN (3.3)

where FN ∈ CN is given by [FN ]k,l = 1√
N
e−j2πkl/N , −N/2 + 1 ≤ k ≤ N/2, 0 ≤ l ≤ N − 1

and Λn = diag([λ−N/2+1, · · · , λN/2]) with

λk =

 1, k = −n−1
2
, · · · , n−1

2

0, otherwise

2. Hence, Q only collects the n low-frequency DFT coefficients of x?. The goal of super-

resolution is to accomplish the difficult task of recovering the lost high frequency components of

x? by utilizing its sparsity.

In recent efforts to solve the positive superresolution problem with provable guarantees,

the authors in [61] proposed the following convex optimization problem to estimate sparse

non-negative x?

min
x
‖y −Qx‖1 s.t. x ≥ 0 (Pden)

Inspite of its simple formulation, (Pden) is quite effective in finding x? with provable guarantees.

In fact, it is shown that if x# is an optimal solution to (Pden), then the l1 norm of the estimation

error ‖x# − x?‖1 gets amplified by a factor of ( N
n−1

)2 where N
n−1

is the so-called super-resolution

factor (SRF).

Notice that the formulation (Pden) does not explicitly enforce any sparsity penalty on x,

and only uses the prior that it is non-negative. If we assume that ‖w‖1 ≤ δ1, we can further

2For ease of presentation, we assume that the ambient dimension N is even and n is odd [61]
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promote sparsity by using the l1 norm of x as a convex surrogate for its sparsity [96]. This will be

equivalent to adding a non-negative constraint to the convex super-resolution problem proposed

in [141, 142]:

min
x
‖x‖1 s.t. ‖y −Qx‖p ≤ δp,x ≥ 0 (P1)

where p is usually chosen as p = 1, 2. Although (P1) is reminiscent of standard l1 minimization

problem from compressed sensing, conventional analysis tools such as Restricted Isometry

Property (RIP) [96] or neighborly-polytope conditions [207, 208] are inapplicable in this case.

This is because Q is a deterministic rank-deficient matrix composed of DFT matrices, for which

neither RIP nor neighborly-polytope properties can be readily established. The problem (P1)

without the positivity constraint and for p = 1 was analyzed in [141,142] using a different analysis

technique that constructs a certain dual certificate in the form of a trigonometric polynomial, and

obtained similar error bounds as [61].

3.2.2 Motivation for using l1/2 quasinorm in positive super-resolution

As a simple fact, any non-negative vector x can be represented as x = h ◦ h, where ◦

represents the Hadamard product. Thus, the convex l1 norm minimization problem (P1) can be

equivalently rewritten in terms of h as

min
h
‖h‖2

2 (P̃1)

s.t. ‖y −Q(h ◦ h)‖p ≤ δp,h ≥ 0

Without loss of generality, we can assume h is also non-negative. The formulation (P̃1) has

convex objective and non-convex constraints. Clearly, (P̃1) is equivalent to the convex problem

(P1) due to a one-to-one mapping between h and x, and the optimal h has the same support as
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the optimal x. As evident from (P̃1), minimizing l1 norm of x is equivalent to minimizing the l2

norm of h. A natural question to ask is: what happens if we enforce sparsity of h by replacing

its l2 norm with l1 norm in the objective function? In other words, we consider the following

problem

min
h
‖h‖1 s.t. ‖y −Q(h ◦ h)‖p ≤ δp,h ≥ 0 (P̃2)

Using x = h ◦ h, (P̃2) can be rewritten as

min
x
‖x‖ 1

2
s.t. ‖y −Qx‖p ≤ δp,x ≥ 0 (P2)

where we use the fact that ‖x‖0.5
1
2

= ‖h‖1. The problem (P2) minimizes the non-convex l1/2

quasinorm of x over a convex feasible set. It is well known that minimizng the l1/2 quasinorm

favors even sparser solutions over minimizing l1 norm [162, 163, 209, 210]. While l1/2 quasinorm

minimization has been explored and analyzed as a better alternative to l1 norm for promoting

sparsity, the corresponding theoretical guarantees (which are based on RIP) [160, 163, 165, 166]

do not apply to Q which represents a low-pass filter in super-resolution imaging. We bridge this

gap by first proposing an iterative reweighted l1 norm minimization algorithm (for approximating

the l1/2 quasinorm) and developing theoretical guarantees under which this algorithm can provide

stable solution in presence of noise.

3.2.3 Iterative Algorithm to approximate l1/2 quasinorm minimization

Since (P2) is non-convex and has non-differentiable objective function, recent advances

in non-convex gradient descent based algorithms [86, 158, 159, 164] are not applicable. Inspired

by [163], we propose an iterative reweighted l1 norm minimization algorithm to solve (P2), by

explicitly enforcing positivity of the desired signal.
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Table 3.1: Algorithm 1: Non-negative Reweighted l1 Minimization

Input: Noisy measurements y, parameters δp and ε > 0
Output: An estimate x# of x?.

1. Initialization: An initial feasible guess x0 such that ‖y −
Qx0‖p ≤ δp,x0 ≥ 0, and a sequence of non-increasing positive
numbers {εn} such that limn→∞ εn = 0.

2. Iteration: Given xn, obtain xn+1 as

xn+1 = arg min
z∈RN

N−1∑
i=0

zi

(xn,i + εn)
1
2

(P3)

s.t. ‖y −Qz‖p ≤ δp, z ≥ 0

3. Stopping Criterion: Stop when ‖xn − xn+1‖1 ≤ ε. Return xn+1

as the estimate of x?.

The problem (P3) in Algorithm 1 can be identified as a reweighted l1 minimization

problem, where the weights are given by (xn,i + εn)−0.5, i = 0, · · · , N − 1. 3 The motivation

stems from prior works in Majorization-Minimization (MM) algorithms that iteratively minimizes

simple (possibly convex) surrogates for a given objective function [157]. In our case, we want

to minimize the non-convex l1/2 quasinorm g(z) , ‖z + ε‖0.5
1/2 =

∑N−1
i=0

√
zi + ε, for z ≥ 0. We

instead iteratively minimize the first-order linear approximation of g(z) at z = xn, giving rise to

the following formulation

min
z≥0

{
g(xn) +

N−1∑
i=0

1

2

zi − xn,i√
xn,i + ε

}
, s.t. ‖y −Qz‖p ≤ δp, (3.4)

Here,
∑N−1

i=0
zi√
xn,i+ε

can be identified as the weighted l1 norm of non-negative z, implying that

(3.4) identical to (P3).

3The positive parameter εn is used to avoid zero denominator [157].
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3.2.4 Analysis of l1/2 minimization: Convergence and Error Bound

A main contribution of our paper is to analyze Algorithm 1 given the special structure of

the low-pass filter Q, and develop explicit bounds on the estimation error ‖x? − x#‖1. Although

Algorithm 1 does not solve a convex problem, we show that the error bound behaves similar to

the convex non-negative superresolution algorithm proposed in [61] and gets amplified by SRF2.

We begin by defining the set of signals obyeing separation condition [4, 59].

Definition3 (Set of Non-Negative Signals Obeying Separation Condition) Given N and n, the

set ∆+
sep is given by

{x ∈ CN ,x ≥ 0 | ρ(
k

N
,
l

N
) ≥ 4

n− 1
∀k 6= l ∈ supp(x)}

where ρ(·, ·) is a wrap-around distance function [142] such that for ∀µ1, µ2 ∈ [0, 1], we have

ρ(µ1, µ2) , min(|µ1 − µ2|, |µ1 + 1− µ2|, |µ2 + 1− µ1|)

The following theorem shows that the sequence of iterates produced by Algorithm 1 has a

converging subsequence, and whenever x? ∈ ∆+
sep, the limit of this convergent subsequence

produces a stable estimate of x? (and in particular, exactly recovers x? in absence of noise).

Theorem6 Given any non-increasing positive sequence {εn} and a feasible initial point x0, the

solution sequence {xn} of Algorithm 1 has a convergent subsequence which converges to a

feasible point x# of (P2). Furthermore, if x? ∈ ∆+
sep, the limit x# obeys

‖x# − x?‖1 ≤ C

(
N

n− 1

)2

δ1 (3.5)

where C is a positive constant.
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Proof. Notice that

N−1∑
i=0

(xn+1,i + εn+1)1/2

(a)

≤
N−1∑
i=0

(xn+1,i + εn)1/2

(xn,i + εn)1/4
(xn,i + εn)1/4

(b)

≤

[
N−1∑
i=0

(xn+1,i + εn)

(xn,i + εn)1/2

]1/2 [N−1∑
i=0

(xn,i + εn)1/2

]1/2

(c)

≤

[
N−1∑
i=0

(xn,i + εn)

(xn,i + εn)1/2

]1/2 [N−1∑
i=0

(xn,i + εn)1/2

]1/2

=
N−1∑
i=0

(xn,i + εn)1/2

where (a) is due to εn+1 ≤ εn, (b) follows from Hölder’s inequality and (c) is true because xn+1 is

the optimal solution of (P3). We further use the fact that [163]

‖xn‖∞ ≤

[
N−1∑
i=0

(xn,i + εn)1/2

]2

≤

[
N−1∑
i=0

(x0,i + ε0)1/2

]2

This shows that the sequence {xn} is bounded, and thus it has a converging subsequence.

Additionally, the feasible set of (P3) is the intersection of non-negative orthant and closed lp ball

(where p = 1, 2) and hence any cluster point of {xn} will be feasible [211].

To prove the second part, we use the following fact about Q from [61]. Let v = x# − x?,

and Tv = {l|vl < 0, 0 ≤ l ≤ N − 1}. If x? ∈ ∆+
sep, there exists q ∈ RN and c

(
n−1
N

)2 ≤ η < 1

where c = 0.0036, such that Qq = q and [61]

ql = −η If l ∈ Tv; η < ql < 1− η otherwise
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Given the existence of such a q, we have

|qTv| = |(Qq)Tv| = |qTQv| ≤ ‖q‖∞‖Qv‖1

≤ (1− η)‖Qx# −Qx?‖1

≤ (1− η)
(
‖Qx# − y‖1 + ‖Qx? − y‖1

)
≤ 2(1− η)δ1

On the other hand, we also have

|qTv| = |
N−1∑
l=0

qlvl| =
N−1∑
l=0

qlvl ≥ η‖v‖1

The proof completes by using η = c
(
n−1
N

)2.

3.3 Background on Sparse Arrays and Correlation-Aware Sup-

port Recovery

We consider the MMV model introduced in (3.1). Following [16, 168, 181, 182], we make

the following assumptions on the correlation of XL:

• [(A1)] Uncorrelated Source Signals. The source signals x[l], 1 ≤ l ≤ L are assumed to

be zero-mean, independent and identically distributed (i.i.d.) random vectors. Furthermore,

the non-zero elements of x[l] are assumed to be statistically uncorrelated, i.e.,

E(x[l]) = 0, 1 ≤ i ≤ L

E
(

[x[l]]i[x[m]]∗k

)
= p?i δ(i− k)δ(l −m), i, k ∈ S
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where p?i is the power of ith component, δ(·) is the Kronecker delta function and ∗ denotes

conjugate.

• [(A2)] Noise. The additive noise vectors {w[l]}Ll=1 are statistically uncorrelated with XL

and distributed as

w[l]
i.i.d∼ CN (0, σ2I)

In our analysis, σ2 is assumed to be unknown.

• [(A3)] Measurement Matrix. Throughout the paper, the measurement matrix A is as-

sumed to be a fixed deterministic matrix, representing the array manifold of a sparse array

(as described later). The theoretical guarantees of this paper will be developed for such a

deterministic A. 4

3.3.1 Fundamental Limits of Correlation-Aware Support Recovery from

MMV

The goal in MMV problems is to detect the common support S from YL [16, 147, 182].

Most MMV algorithms achieve this by first recovering XL and then detecting its common

support [171, 174, 201]. The need to exactly recover XL first automatically restricts the size of

recoverable support to |S| < M [170–173]. In particular, it is well-known that XL can be exactly

recovered if [172, 173]

s <
Krank(A) + rank(YL)

2
(3.6)

4Our results deviate from usual guarantees in compressed sensing which rely on the measurement matrix A being
random and following appropriate distributions [96].
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Since Krank(A) ≤ M and rank(YL) ≤ M , (3.6) implies that s < M . However, a recent

line of work [16, 135, 168] has shown that by exploiting correlation priors on XL (given by

Assumption (A1)), it is possible to recover S from the correlation matrix Ryy = E( 1
L
YLYH

L ) of

the measurements without having to first estimate XL. The idea behind such “correlation-aware”

techniques for support recovery is also closely related to an important body of research on

compressive covariance sampling [4, 16, 38, 40, 41] where the goal is to recover the covariance

matrix of XL from its compressed sketch Ryy. The main idea behind these methods is to design

the measurement matrix appropriately so that it becomes possible to recover supports of size as

large as s = Θ(M2). To see this, notice that Assumption (A1) implies

Ryy = Adiag(p?)AH + σ2I (3.7)

where p? ∈ RN is a sparse vector satisfying

[p?]i =


p?i , i ∈ S

0 otherwise

In other words, the support of p? is exactly S . Hence, we can recover S by first finding a sparse

p? that satisfies (3.7). Assuming we know 5 the noise power σ2, this amounts to solving the

following l0 quasi-norm minimization problem

min
z�0
‖z‖0 s.t (A∗ �A)z = vec(Ryy − σ2I) (P0)Co

where we used the fact that vec(Ryy) = (A∗ �A)p? + σ2vec(I). Using standard results from

compressed sensing [96], it follows that the solution to (P0)Co will be unique, and identical to p?

5This assumption will be relaxed later.
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if

s ≤ 1

2
Krank(A∗ �A) (3.8)

Hence, the Kruskal-rank of A∗�A (and not of A) controls the maximum size of support that

can be recovered by solving (P0)Co. Since the matrix A∗�A is of size M2 × N , (i.e. it has

the same number of columns as A but its number of rows is M times larger), its Kruskal-rank

can be as large as Θ(M2). To understand what kind of measurement matrices permit such large

Kruskal-rank, we turn to the scenario when A represents the manifold of a suitable sparse array,

such as a nested or coprime array [17, 45].

3.3.2 Sparse Arrays and Difference Sets

In many imaging problems using sensor arrays, the measurement matrix A has a Fourier

structure, since the acquired measurements naturally correspond to Fourier transform of the

underlying signal of interest [23, 175, 193, 194]. For example, in DOA estimation and super-

resolution microscopy, 6 the location of each point source of interest (which can represent a

far-field target or a molecule) can be mapped to a spatial frequency ω ∈ [0, 2π). By discretizing

the range of spatial frequencies into N bins as ωn = 2πn/N, 0 ≤ n ≤ N − 1, one obtains the

measurement matrix A as [7, 61, 120, 175, 176, 199, 200]

[A]m,n = e−jdm
2πn
N , 1 ≤ m ≤M, 0 ≤ n ≤ N − 1 (3.9)

where dm is an integer denoting the location of the mth sensor (or pixel), normalized with

respect to the wavelength of the impinging narrowband waveform. This discretized model

for source localization has been widely used, especially in conjunction with MMV models

6For ease of exposition, we consider a one-dimensional source localization problem, although the results can be
directly extended to two dimensions.
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[16, 120, 175, 177, 183, 199, 200].

Under assumption (A1), we know from (3.8) that the Kruskal-rank of AKR = A∗ �A

dictates the size of recoverable support. Upon close inspection, it can be verified that AKR is

given by

[AKR](m−1)M+l,n = ej(dm−dl)
2πn
N , 1 ≤ m, l ≤M (3.10)

Comparing (3.9) and (3.10), each column of AKR can be thought of as the steering vector

(corresponding to a candidate spatial frequency) of a virtual array (also called the difference

co-array) whose elements are located at positions given by the following difference set [32,41,45,

199, 204]

Ddiff , {dm − dl, 1 ≤ m, l ≤M} (3.11)

The structure of Ddiff and the number of its distinct elements directly control the Kruskal-rank

of AKR, and therefore the largest size of recoverable support [16]. If we carefully design the

set of sensor location S = {dm}Mm=1, then it is possible to ensure that its difference set Ddiff has

Θ(M2) distinct consecutive integers. In other words, the virtual array (whose element locations

are given by Ddiff) will have a ULA segment with Θ(M2) elements. This is precisely the main

idea behind the design of sparse arrays. Sparse arrays such as minimum redundancy arrays [204],

nested arrays [45, 124] , coprime arrays [17], and their generalizations and extensions [199] are

carefully designed so that their difference sets satisfy this property. We now briefly review nested

and coprime arrays and compare their difference sets with the popular ULA.

1. ULA: For a uniform linear array,

di = i− 1, 1 ≤ i ≤M.
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It can be easily seen that in this case

Ddiff = {m,−M + 1 ≤ m ≤M − 1}

and hence | Ddiff |= 2M − 1. In fact, it can be verified that in this case Krank(AKR) =

2M − 1. Hence, (3.8) implies the following upper bound on the size of the recoverable

support s < M . This is consistent with the popular belief that the number of resolvable

directions is ultimately upper-bounded by the number of sensors or antennas.

2. Nested Array: For a nested array [45], the set of sensor locations is given by

{di}Mi=1 = {m− 1, 1 ≤ m ≤M/2} ∪

{(M/2 + 1)n− 1, 1 ≤ n ≤M/2} (3.12)

The difference set is

Ddiff =

{m,−M2/4−M/2 + 1 ≤ m ≤M2/4 +M/2− 1}

Since Ddiff contains all consecutive integers within the above range, AKR is a Vandermonde

matrix with M2

2
+M − 1 distinct rows. Hence,

Krank(AKR) =
M2

2
+M − 1

Hence the Kruskal-rank of AKR for nested arrays is as large as Θ(M2), whereas that for

ULA is 2M − 1.

3. Coprime Array: A coprime array is an array of M = 2M1 +M2 − 1 sensors, where M1

84



and M2 are coprime integers. The locations of the sensors are given by

{di}Mi=1 =

{M1m, 0 ≤ m ≤M2 − 1} ∪ {M2n, 1 ≤ n ≤ 2M1 − 1}.

The difference set in this case contains all integers in the range

{n,−M1M2 ≤ n ≤M1M2}.

Thus, the rows of AKR contain a Vandermonde submatrix with 2M1M2 + 1 distinct rows,

implying

Krank(AKR) ≥ 2M1M2 + 1.

For M2 = M1 + 1, we have M = 3M1 and Krank(AKR) = Θ(M2).

From the above discussions, it is clear that for nested and coprime arrays, we can find an integer

Mca such that (i) Ddiff contains all consecutive integers in the range −Mca and Mca, and (ii) Mca

is as large as Θ(M2). The same is true for generalizations of nested and coprime arrays, such as

super nested [198], and generalized coprime arrays [199]. More generally, for all these arrays,

Ddiff contains a ULA segment given by the set

U = {n,−Mca ≤ n ≤Mca}, Mca = Θ(M2) (3.13)

This prompts us to unify the treatment of nested arrays, coprime arrays (and their extensions) by

defining a family of “Order-Optimal Sparse Arrays (OOSA)”:

Definition4 (OOSA) An array is an OOSA if its difference set Ddiff contains a subset U of the

form (3.13) with Mca = Θ(M2).
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The criterion for any array to be an OOSA is that its difference set should contain a ULA segment

of size Θ(M2). Since the maximum size of Ddiff can only be Θ(M2), these arrays are called

“Order-Optimal” since the ULA segment U is of maximum possible size order-wise with respect

to M .

Remark9. Virtual Array Manifold corresponding to U: For the remainder of this paper,

we will assume that A represents the measurement matrix corresponding to an OOSA (which

includes nested, coprime and their extensions). From (3.9) and the structure of the difference

set (3.11) of any OOSA, it can be seen that AKR ∈ CM2×N contains a Vandermonde sub-matrix

AU
KR ∈ C2Mca+1×N with 2Mca + 1 rows, whose elements are given by

[AU
KR]m+Mca,n = e−j2πmn/N

−Mca ≤ m ≤Mca, 0 ≤ n ≤ N − 1 (3.14)

In other words AU
KR represents the virtual array manifold corresponding to the largest central

ULA segment U in the difference set of an OOSA. Fig. 3.1 shows non-negative halves of Ddiff

and U (denoted D+
diff and U+ respectively) for ULA, nested and coprime arrays.

3.3.3 Limitations in Existing Guarantees With Finite Number of Measure-

ment Vectors when |S| > M

It is clear from the above discussion that an OOSA can ensure unique support recovery

in the regime s = Θ(M2) via solving (P0)Co. However, this requires exact knowledge of Ryy,

which is only available as L → ∞. In practice, with a finite number (L) of measurement

vectors, we use the sample covariance matrix R̂yy , 1
L
YLYH

L as an estimate of Ryy. As

a practical and computationally tractable approach to correlation-aware support recovery, we
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Figure 3.1: Examples of ULA, nested array (M = 10) and coprime array (M1 =
3,M2 = 5) with their difference co-arrays (non-negative part) respectively.

proposed to solve the following convex problem, also referred to as “correlation-aware” LASSO

(or, Co-LASSO) [16]

min
z�0

1

2
‖r̂y −AKRz‖2

2 + λ‖z‖1 (Co-LASSO)

where r̂y , vec(R̂yy). The first term in the objective function of (Co-LASSO) captures the

mismatch between ideal covariance matrix and its estimate, while the second term promotes

sparsity by replacing l0 quasi-norm with its convex surrogate l1 norm. While LASSO is a well-

studied problem that with provable guarantees for support recovery in the regime |S| < M [101],

it is currently unknown if (Co-LASSO) can provably recover support of size s > M with high

probability in L. Existing analysis of Co-LASSO is based on the mutual coherence of AKR

(Theorem 7 in [16]), which scales as O(1/M). As a consequence, current non-asymptotic

guarantees for (Co-LASSO) are only valid in the regime s < M and they fail to predict its

performance when s = Θ(M2). This is a major current limitation of existing analysis of
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correlation-aware support recovery with finite data. Evidently, the limitation is due to the fact

that these guarantees rely on mutual coherence, which is known to yield sub-optimal sample

complexity. The limitation can be potentially overcome if one can establish Restricted Isometry

Property (RIP) [96] of the Khatri-Rao product matrix A∗ �A in the regime s > M . However,

establishing the RIP of AKR when A is a deterministic matrix representing the array manifold

of a sparse array is a challenging open problem, since construction of deterministic matrices

satisfying RIP even in the well-studied regime s ≤M is currently unknown [96].

3.4 The Role of Non-Negativity and Universal Recovery Guar-

antees with Order-Optimal Sparse Arrays (OOSA)

In this chapter, we will overcome the above mentioned bottleneck by utilizing the fact

that besides being sparse, p? is also non-negative. By utilizing (i) the non-negativity of p? (or

positivity of its non-zero elements) and (ii) the geometry of sparse arrays as captured by the

matrix AKR = A∗ �A, we will show that it is possible to obtain universal guarantees for stable

reconstruction of p? (as a function of L) that will be obeyed by a large class of correlation-aware

support recovery algorithms (to be introduced later) in the regime of interest s = Θ(M2).

3.4.1 Why Positivity Alone Suffices

In order to understand why the positivity of p? can alone ensure its exact reconstruction

from M = Ω(
√
s) measurements (without even explicitly using its sparsity), we first revisit

the case when we have perfect knowledge of the covariance matrix Ryy = E
(

1
L
YLYH

L

)
of

the measurements. As discussed earlier, the non-negative l0 quasi-norm minimization problem

(P0)Co from [16] can uniquely recover p? with support as large as s = Θ(M2), when A represents

the manifold of a suitable sparse array. We now strengthen this result from [16] by showing
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that in this case, there is actually no need to minimize the l0 quasi-norm, (or, explicitly enforce

sparsity) to recover p?. As long as s ≤Mca, non-negativity of p? alone is sufficient to uniquely

recover it from Ryy even when the noise power σ2 is unknown, as given by the following result

Theorem7 Suppose we are given the exact covariance matrix Ryy = E( 1
L
YLYH

L ). Assuming

that the noise power σ2 is unknown, it is possible to exactly recover p? (using a variant of the

Co-array MUSIC algorithm [126]) as long as s ≤Mca.

Proof. The proof uses an algorithm similar to Co-array MUSIC [45, 126] to guarantee unique

recovery. Please See Appendix 3.11.1 for details.

Remark10. When N > M2 (i.e. when AKR is a fat matrix), vec(Ryy) = AKRz + σ2vec(I)

represents an underdetermined system of equations in z with possibly infinite solutions. However,

Theorem 7 shows that by utilizing the fact that p? is non-negative, it is possible to exactly recover

it even when the noise power is unknown. Therefore, there is no need to minimize the l0 quasi-

norm in (P0)Co, or explicitly utilize the sparsity of p?. Since for an OOSA, Mca = Θ(M2), we

can uniquely recover supports of size as large as Θ(M2).

Remark11.The fact that non-negative constraints (or more generally, conic constraints) can

lead to unique signal recovery in noiseless underdetermined problems has been previously

utilized in compressed sensing [100, 207, 208], super-resolution imaging [61] and phase retrieval

[212]. However, these results do not exploit the structure of the correlation matrix Ryy of the

measurements (especially when acquired using a sparse array), and therefore cannot guarantee

the recovery of supports of size s > M . In contrast, our result shows that using sparse arrays

and the non-negativity of p?, it is possible to uniquely recover the support from Ryy (without

minimizing any objective) even when s = Θ(M2).
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3.4.2 Stable Recovery in the regime |S| > M with estimated covariance

matrix: Preliminaries

Theorem 7 shows that it is possible to exactly recover p? even when s�M assuming we

have exact knowledge of the correlation matrix Ryy. In practice however, we can only estimate

Ryy from a finite number of (L) of multiple measurement vectors (MMV) y[1], · · ·y[L]. An

important question therefore is

“Can the positivity of the non-zero elements of p? still be exploited in a useful way to derive

performance guarantees for support recovery algorithms in the regime s = Θ(M2)?”

A main contribution of this paper is to show that this is indeed possible, even without explicitly

utilizing the sparsity of p?. We first model the deviation of R̂yy from the ideal covariance matrix

Ryy as follows. Let r̂y = vec(R̂yy) ∈ CM2 and ry , vec
(
Ryy − σ2I

)
= AKRp?. Define

∆r , r̂y − ry = vec(R̂yy −Ryy)︸ ︷︷ ︸
∆f

+σ2vec(I) (3.15)

where ∆f represents the finite sample correlation estimation error and the second term accounts

for the unknown noise power σ2. We will first develop stability guarantees in terms of ∆r, and in

Sec.3.5.1, we will utilize the statistical model of ∆f (in terms of L) and develop probabilistic

guarantees as a function of L.

Extracting the ULA segment from Difference Co-Array: From Remark 9 and (3.14), we know that

one can construct a sub-vector rUy ∈ C2Mca+1 such that rUy = AU
KRp?. We can extract the same

2Mca + 1 indices from r̂y to obtain the vector r̂Uy such that

r̂Uy = rUy + ∆U
r = AU

KRp? + ∆U
r (3.16)

where ∆U
r is composed of the corresponding indices of ∆r.
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Remark12. In this paper, we have only exploited the central ULA segment U of the difference

coarray Ddiff. Consequently, the size of the recoverable support is governed by Mca which

represents the size of U. For certain sparse arrays, such as coprime array, Ddiff contains holes.

In recent literature [191, 192], it has been shown that the full degrees of freedom of Ddiff can

be exploited for DOA estimation, if we allow array motion, or solve a l1 regularized LASSO

for on-grid source detection. Another option is to perform co-array interpolation, for which we

developed a unified analysis framework in [13]. In future, we plan to utilize these results to

exploit the full degrees of freedom of Ddiff for support estimation.

3.4.3 Universal Upper Bounds on Error with Non Negative Constraint

when |S| > M

Given any p# ∈ CN such that p# � 0, we will now derive a universal upper bound on

the estimation error ‖p? − p#‖2 in terms of ‖AU
KR(p? − p#)‖2. To begin, we define a set of non-

negative sparse signals whose supports obey a certain “separation condition”. Such separation

condition (without non-negative constraint) has been utilized in recent times for analyzing the

performance of super-resolution imaging algorithms [4, 59, 61, 141].

Definition5 (Set of Non-negative Signals Obeying Separation Condition) Given N and Mca,

define the set P+
sep

P+
sep ,

{p ∈ CN | p � 0, φ(
k

N
,
l

N
) ≥ 2

Mca

,∀k 6= l ∈ Supp(p)}

where φ(·, ·) : R2 → R+ is a wrap-around distance function [141] such that for ∀µ1, µ2 ∈ [0, 1]

φ(µ1, µ2) , min(|µ1 − µ2|, |µ1 + 1− µ2|, |µ2 + 1− µ1|)
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The set P+
sep consists of non-negative sparse signals such that the indices belonging to their support

are separated by at least 2N
Mca

. 7 We present our main result in the following theorem, which holds

for any p? ∈ P+
sep. Our proof (presented in Appendix 3.11.2) utilizes a key Lemma from [61]

where it was used to analyze a specific l1-norm minimization algorithm. The separation condition

used in [61] automatically restricted the sparsity to be smaller than M (i.e. s < M ). Theorem

25 significantly generalizes this result by showing that it can be used to derive performance

guarantees for a larger class of algorithms, even in the regime s > M by exploiting the difference

co-array of an OOSA.

Theorem8 Suppose p? ∈ P+
sep , Mca ≥ 128 8 and N ≥ 3.03(2Mca + 1). Given any p# � 0, we

have

‖p# − p?‖1 ≤
1− ρ
ρ
‖AU

KR(p# − p?)‖2 (3.17)

where ρ = 0.0295
(
Mca

N

)2.

Proof. See Appendix 3.11.2 Notice that Theorem 25 only requires p? to obey the separation

condition; there is no constraint on the other vector p# except requiring it to be non-negative. We

now show that the upper bound (3.17) can be used to bound the estimation error of the following

class of optimization problems, where p# is interpreted as the optimal solution to the respective

problem.

7The separation condition can be relaxed to the more general Rayleigh Regularity condition [61]. However, for
ease of exposition, in this paper we assume that p? obeys separation condition.

8For nested array, this holds if M ≥ 22.
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3.4.4 Stability Guarantees for A Class of Correlation-Aware Algorithm

As direct application of Theorem 25, consider the following class of optimization problems

for estimating p?.

min
z
f(z) (PCo-den)

‖r̂Uy −AU
KRz‖2 ≤ ε, z � 0

The non-negative constraint is natural since the optimization variable z corresponds to the

unknown signal powers. The parameter ε > 0 captures the effect of (finite sample) covariance

estimation error. 9 The following corollary to Theorem 25 shows how (3.17) can be used to obtain

stability guarantees for (PCo-den).

Corollary4 Suppose the objective f(z) of the optimization problem (PCo-den) is a continuous

function and ε ≥ ‖∆U
r ‖2. Assume the conditions of Theorem 25 hold. If p# is a solution to

(PCo-den), then

‖p# − p?‖1 ≤
1− ρ
ρ

(‖∆U
r ‖2 + ε) (3.18)

Proof. Since ε ≥ ‖∆U
r ‖2, the feasible set of (PCo-den) contains p? and is non-empty. Moreover,

since the objective function f(z) of (PCo-den) is continuous and the constraint set {z � 0, ‖r̂Uy −

AU
KRz‖2 ≤ ε} is compact, the minimizer p# exists [211]. The result then directly follow from

Theorem 25 via the triangle inequality

‖AU
KR(p? − p#)‖2 ≤ ‖r̂Uy −AU

KRp?‖2 + ‖r̂Uy −AU
KRp#‖2

9We call this optimization framework (PCo-den) (where “Co-den” is abbreviation for “correlation-aware denois-
ing”) since it resembles the popular basis pursuit denoising [26], except that r̂Uy is the estimated correlation of the
measurements.
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Remark13. Notice that (PCo-den) actually represents a class of optimization problems which can

be either convex or non-convex depending on the choice of f(z). The stability guarantee from

Corollary 4 applies to the estimate produced by each optimization problem from this class. In fact,

the bound (3.18) is independent of the specific choice of f(z) and actually applies to any point

p# belonging to the feasible set. However, as demonstrated by the simulations in Sec. 3.9.2, the

actual performance of (PCo-den) will depend on the choice of f(z). In the future, we would like to

tailor the universal upper bound in Corollary 4 to specific choices of the objective function f(z).

Remark14. Exact Reconstruction and Size of Support: In absence of noise (i.e. σ = 0) and

correlation estimation error (i.e. ∆f = 0), Corollary 4 ensures exact recovery of p?. In this case,

the only assumption is that p? should obey the separation condition, which in turn determines

the size of the recoverable support as follows. The separation condition dictates that any two

indices in S are separated by at least 2N/Mca. This implies that the size of the support must

satisfy |S| ≤Mca/2. Since Mca = Θ(M2) for an OOSA, Corollary 4 indicates that it is possible

to recover well-separated supports of size Θ(M2).

Remark15. On Error Amplification and Stability: The upper bound (3.18) on the estimation

error ‖p# − p?‖1 is an amplified version of the covariance estimation error ‖∆U
r ‖2, where the

amplification factor is ≈ (1/ρ) = c(N/Mca)
2, c being a universal constant. Such amplification of

noise during signal reconstruction has been recently observed/analyzed in the context of super-

resolution imaging [61], where the goal is to recover an N -dimensional sparse signal (with both

high and low frequency components) from only K low-frequency DFT coefficients. The noise

amplification factor (NAF) in such cases is known to scale as (N/K)2 [61, 139, 141]. From the

structure of AU
KR as given by (3.14), we can easily identify the vector AU

KRp? as the K = 2Mca+1

low-frequency DFT coefficients (symmetrically located around 0) of p?. Hence our error bound

is consistent with known results from super-resolution image reconstruction. In Sec. 3.7, we will
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further show that the amplification factor in (3.17) is tight with respect to N , by constructing

specific p? and p# that attain this bound.

3.5 Universal Support Recovery via Thresholding and Finite

Snapshot Guarantees

Theorem 25 shows that it is possible to perform stable reconstruction of p? from the

estimated correlation matrix, by exploiting its non-negativity. However, in many applications

(such as direction-of-arrival in radar, source localization using EEG measurements), it is the

support S of p? that carries the information of interest. Hence, it is crucial to understand how

the error bound in (3.17) can be utilized to overcome this weakness and ensure support recovery

in the regime |S| = Θ(M2). Notice that (3.18) is derived in terms of the covariance estimation

error ‖∆U
r ‖2. Since we estimate the covariance matrix using a finite number L of snapshots,

∆r is a random variable whose distribution depends on L. Hence, the guarantees of Theorem

25 are actually conditioned on ∆r. In this section, we will develop probabilistic guarantees on

recovering S in the regime |S| > M , by utilizing the distribution of ∆r, which will explicitly

reveal the role of the number of measurement vectors L. To make the analysis tractable, we make

the following additional assumption on the distribution of y[l] similar to [130, 181, 182]:

• [(A4)] The measurements {y[l]}Ll=1 are zero mean i.i.d complex Gaussian random vectors

distributed as y[l] ∼ CN (0,Ryy).
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3.5.1 Simple Hard Thresholding For Support Recovery with Finite L and

Unknown σ2 when |S| > M

To recover S from the estimate p#, we propose the following simple element-wise

Hard-Thresholding operatorHT : RN → RN (with threshold T ∈ R+)

[HT (x)]i =

 xi If xi > T

0 If xi ≤ T

Define

pmin , min
i∈S

p?i (3.19)

The following theorem provides explicit conditions on pmin, L, as well as the choices of parame-

ters ε in (PCo-den) and T , which ensure recovery of S (with high probability in L) by applying the

Hard-Thresholding OperatorHT on the solution of (PCo-den). The novel contribution of the theo-

rem is that the guarantees continue to hold in the regime M < |S| ≤Mca, where Mca = Θ(M2)

for any OOSA.

Theorem9 Consider the MMV model (3.1) satisfying the assumptions (A1-A4). Further assume

that p? ∈ P+
sep, Mca ≥ 128, N ≥ 3.03(2Mca + 1) and

pmin > 4
1− ρ
ρ

σ2 (3.20)

L >
32M2(‖p?‖1 + σ2)2

(pmin − 41−ρ
ρ
σ2)2

(
1− ρ
ρ

)2

(3.21)

If p# is a solution to (PCo-den) (where f(z) can be any continuous function), then, with probability
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at least 1− 2e−2c
√
L, we have

Supp
(
HT (p#)

)
= S (3.22)

provided we choose the parameter ε of (PCo-den), and the threshold T from the following ranges:

σ2 +

√
2M(‖p?‖1 + σ2)√

L
≤ ε <

(
ρ

1− ρ

)
pmin

4
, (3.23)

and

(
1− ρ
ρ

)
(ε+

√
2M(‖p?‖1 + σ2)√

L
+ σ2) ≤ T

< pmin −
(

1− ρ
ρ

)
(ε+

√
2M(‖p?‖1 + σ2)√

L
+ σ2) (3.24)

The constants ρ and c are specified in Theorem 25 and Lemma 17 (Appendix 3.11.3) respectively.

Proof. The proof combines the universal error bound (3.17) with certain concentration inequalities

on the finite-sample estimation error ∆r. Please refer to Appendix 3.11.3 for details.

Remark16.Guaranteed Support Recovery with finite L when |S| > M : Theorem 9 shows

that as long as L is larger than the threshold (3.21) and the minimum source power pmin is large

enough compared to the noise power σ2 (as given by (3.20)), it is possible to exactly recover

supports that obey the separation condition. In particular, such supports can be recovered by first

solving (PCo-den) (with any continuous objective f(z)) with the parameter ε tuned to be in the

range (3.23), followed by hard-thresholding with the threshold T chosen from the range (3.24).

The size of the recoverable support is implicitly controlled by the separation condition and as

discussed in Sec.3.4.3, the size can be as large as s ≤ Mca = Θ(M2). Hence, for any OOSA

(such as nested and coprime arrays), it is indeed possible to recover supports of size Θ(M2) with
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overwhelming probability (that increases to 1 exponentially in
√
L). Theorem 9 thereby settles

an open question from [16] where such finite snapshot guarantees could only be developed for

supports of size no larger than O(M). Moreover, the guarantees in [16] were only established

for a specific algorithm (Co-LASSO), whereas the analysis framework in this paper applies to a

larger family of optimization problems, with convex as well as non-convex objectives. Finally,

we also extend our recent non-asymptotic support recovery guarantees from [168] (that used

multiple hypothesis testing) by showing that support recovery in the regime s > M is possible

with computationally efficient algorithms, without assuming the sources to be equi-power, or

knowing the sparsity s.

3.6 Modulus of Continuity: A Universal Benchmark for Eval-

uating Super-Resolution Algorithms

In this section, we will perform a unified analysis of positive super-resolution independent

of particular algorithms. We revisit the concept of Modulus of Continuity (MC) [139, 140] which

essentially provides an upper bound on the error of any algorithm, simply by leveraging the

structure of signals. We consider following discrete measurement model

y = Qx? + w x? ≥ 0 (3.25)

where x? ∈ RN is sparse with positive non-zero entries, and w is the measurement noise. In the

context of super-resolution, the measurements y only retain low-frequency components of the

signal x?. Following the notations in [61], Q is defined by

Q = FH
NΛnFN (3.26)
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where FN ∈ CN is given by [FN ]k,l = 1√
N
e−j2πkl/N , −N/2 + 1 ≤ k ≤ N/2, 0 ≤ l ≤ N − 1

and Λn = diag([λ−N/2+1, · · · , λN/2]) with

λk =

 1, k = −n−1
2
, · · · , n−1

2

0, otherwise

We assume N is even and n is odd. Intuitively, Q only collects n low-frequency coefficients of

the DFT of x?. This model popularly arises in discrete super-resolution problems with positive

constraints [61, 148, 206]. Let x# be any estimate of x?. Our goal in this paper is to address

following question:

(Q): How to obtain a universal upper bound on the estimation error ‖x? − x#‖2 in terms of

‖w‖2, that will be obeyed by any algorithm? Can we improve this bound by constraining x# to

be non-negative?

3.6.1 Modulus of Continuity and Universal Bounds

In order to address (Q), the authors in [61,139] have used the following notion of Modulus

of Continuity (MC):

Definition6 Let X ?,X# ⊂ RN be classes of signals, ‖.‖p be the p−norm, and Q be a linear

operator. Then, the modulus of continuity is defined as

MC(Q,X ?,X#, p) = sup
x1∈X#,x2∈X ?

x1 6=x2

‖x1 − x2‖p
‖Q(x1 − x2)‖p

(3.27)

The sets X ?,X# capture desired structures of the signal of interest, such as sparsity, positivity

etc. In estimation problems, X ? often represents a class to which the true signal belongs, and

99



X# represents the feasible set to which the estimator belongs. In most cases, either X# = X ? or

X ? ⊂ X#. In order to see how MC fundamentally controls the estimation error of any algorithm,

we first need to define admissible estimates as follows:

Definition7 Consider the measurement model (3.40) with ‖w‖p ≤ ε and x? ∈ X ?. Any estimate

x# of x? is said to be admissible if

x# ∈ X#, ‖y −Qx#‖p ≤ ε

The quantity MC(Q,X ?,X#, p) then provides an upper bound on the error of any admissible

estimate as follows:

Lemma8 Consider the model (3.40) with ‖w‖p ≤ ε, and suppose x# is any admissible estimator

of x?. Then,

‖x? − x#‖p ≤ 2εMC(Q,X ?,X#, p)

Remark17. The Modulus of Continuity therefore determines a universal upper bound on the

estimation error ‖x?−x#‖p. The value ofMC(Q,X ?,X#, p) is algorithm-independent and only

depends on the choices of X ?,X#,Q and the choice of the norm. However, exact computation

of MC(Q,X ?,X#, p) is a challenging task, which was first studied in the pioneering work

by [139] in the context of super-resolution reconstruction of spike signals from low-frequency

measurements and further developed in recent work on discrete positive super-resolution [61].

We will review this result by introducing the following class of signals that obey a separation

condition [61].

Definition8 (Set of Signals Obeying Separation Condition) Given N and n, the set ∆sep is given
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by

∆sep , {x ∈ CN | ρ(
k

N
,
l

N
) ≥ 4

n− 1
∀k 6= l ∈ supp(x)}

where ρ(·, ·) is a wrap-around distance function [142] such that for ∀µ1, µ2 ∈ [0, 1]

ρ(µ1, µ2) , min(|µ1 − µ2|, |µ1 + 1− µ2|, |µ2 + 1− µ1|)

Additionally, the set ∆+
sep is given by

∆+
sep , {x ∈ ∆sep,x ≥ 0}

If we assume X ? = X# = ∆sep, then the following result provides an explicit upper

bound on MC(Q,X ?,X#, 2) in terms of n and N :

Lemma9 [61, 139] Let X ? = X# = ∆sep, and let Q be given by (3.26). Then,

MC(Q,∆sep,∆sep, 2) ≤ C(n)N3 (3.28)

where C(n) is a function of only n (independent of N ) implicitly defined in [139].

Given the measurement model (3.40), the goal of super-resolution is to reconstruct the N DFT

coefficiens of sparse x? (or equivalently, the signal x?) from observations that only preserve the

lowest n < N frequency components. If we assume that both the true signal and its estimate x#

belong to ∆sep (i.e., they satisfy the separation condition), then Lemma 9 and Lemma 8 show that

given n, the estimation error grows as O(N3).

However, in practice, it is difficult to develop algorithms that can actually constrain x#

to belong to ∆sep. 10 In recent work [61], the authors developed an l1 minimization framework

10Partly because ∆sep is a non-convex set
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for super resolution reconstruction, where they only constrained the estimate x# to be positive

and developed algorithm-specific error bound (with respect to l1 norm of the error). Inspired by

this work, we will develop a new bound for MC(Q,X ?,X#, 2) where X ? imposes minimum

separation as well as positivity on the true signal, whereas X# only imposes a positive constraint

on x#. Our analysis will show that this bound grows as O(N2.5) and is therefore tighter than

(3.28).

3.6.2 New Bound on Modulus of Continuity for Positive Super-Resolution

and Applications

Our new upper bound for the modulus of continuity is based on a recent result from [4] for

continuous Direction-of-Arrival estimation. For any vector x, let Toep(x) denote the Hermitian

Toeplitz matrix with x as the first column. Consider r? ∈ CK such that

Toep(r?) =
D∑
i=1

a(θi)a
H(θi)di (3.29)

where D < K, di > 0, θi ∈ [0, 1] and

a(θi) = [1, e−j2πθi , · · · , e−j2π(K−1)θi ]T

It can be easily seen that Toep(r?) � 0. We invoke the following result from [4]:

Theorem10 [4] Let r? be given by (3.29), and r# ∈ CK be any vector such that Toep(r#) � 0.

If the frequencies {θi}Di=1 satisfy the separation condition

min
l 6=m

ρ(θl, θm) >
2

h
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and h > 128, then there exist positive constants c̄1, c̄2, c̄3, c̄4 such that for h ≤ k < K

|r?k − r
#
k | (3.30)

≤
(
c̄1 +

c̄2πk

h
+
c̄3π

2k2

h2

)(
c̄4D√
h

+ 1

)
‖r?h − r#

h ‖2

where r?h = [r?0, · · · , r?h−1]T , r#
h = [r#

0 , · · · , r
#
h−1]T .

Equipped with Theorem 10, the main result of this paper is given by

Theorem11 Let X ?,X# be chosen as

X ? = ∆+
sep, X# = RN

+ ,
{
x ∈ RN : x ≥ 0

}
Furthermore, let the matrix Q be given by (3.26). If n > 256, the Modulus of Continuity is upper

bounded as

MC(Q,X ?,X#, 2) ≤
√

2 + (N − n+ 1)β(n,N) (3.31)

where

β(n,N) ,

(
c̄1 +

c̄2πN

n+ 1
+
c̄3π

2N2

(n+ 1)2

)2
(
c̄4

√
n+ 1

8
+ 1

)2

Here c̄1, c̄2, c̄3, c̄4 are the same constants as in Theorem 10.

Proof. For ∀x? ∈ X ?, ∀x# ∈ X#, x? 6= x#, FNx? and FNx# are symmetric and we can define

r?, r# ∈ CN
2

+1 as

r?i = [FNx?]i+N
2
−1, r#

i = [FNx#]i+N
2
−1, 0 ≤ i ≤ N

2
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Since x?,x# ≥ 0, it follows that [4]

Toep(r?) � 0 Toep(r#) � 0

Moreover r? has the form r? =
∑‖x?‖0

k=1 a(θk)a
H(θk)x

?
k where θk = k/N, k ∈ supp(x?). Since

x? ∈ ∆sep, this implies ρ(θk, θl) ≥ 4
n−1

. Hence, Theorem 10 applies (by replacing K, h, and D

with N
2

+ 1, n+1
2

, and ‖x?‖0 respectively)

N
2∑

i=n+1
2

(r?i − r
#
i )2 ≤ N − n+ 1

2
‖r?n+1

2
− r#

n+1
2

‖2
2 ·

(
c̄1 +

c̄2πN

n+ 1
+
c̄3π

2N2

(n+ 1)2

)2
(
c̄4

√
n+ 1

8
+ 1

)2

where we use the fact that ‖x?‖0 ≤ n+1
4

owing to the separation condition. Also note that

‖FN(x? − x#)‖2
2 ≤ 2‖r? − r#‖2

2

≤ 2‖r?n+1
2
− r#

n+1
2

‖2
2

(
1 +

N − n+ 1

2
β(n,N)

)

Moreover,

‖Q(x? − x#)‖2
2 = ‖ΛnFN(x? − x#)‖2

2

= 2‖r?n+1
2
− r#

n+1
2

‖2
2 − (r?0 − r

#
0 )2 ≥ ‖r?n+1

2
− r#

n+1
2

‖2
2

This implies

‖x? − x#‖2
2

‖Q(x? − x#)‖2
2

=
‖FN(x? − x#)‖2

2

‖Q(x? − x#)‖2
2

≤ ‖FN(x? − x#)‖2
2

‖r?n+1
2

− r#
n+1
2

‖2
2

≤ 2

(
1 +

N − n+ 1

2
β(n,N)

)
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thereby proving the theorem.

3.6.3 Comparison with Lemma 9

Our result in Theorem 25 significantly differs from the result in Lemma 9 in the following

ways:

• In Lemma 9, the signal classesX ?,X# are identical, while in Theorem 25, they are different.

In particular, X ? (the set to which the true signal belongs) contains all non-negative vectors

that satisfy separation condition, whereas X# (the set to which the estimate belongs) simply

contains all non-negative vectors. Such distinction of X ?,X# enables better analysis of

practical estimation algorithms since it is difficult for an algorithm to actually impose the

constraint x# ∈ ∆sep.

• The upper bound on MC in Lemma 9 is given by

MC(Q,∆sep,∆sep, 2) ≤ C(n)N3 (3.32)

On the other hand, Theorem 25 shows that

MC(Q,∆+
sep,RN

+ , 2) . O(

√
N − nN2

n1.5
) (3.33)

When N is large (and n is fixed), Lemma 9 shows that the upper bounded is O(N3) while

Theorem 25 suggests that this can be tightened to O(N2.5). This 0.5 improvement in the

exponent with respect to N is mainly due to the introduction of positive constraints. To the

best of our knowledge, this improvement is the first result of its kind.
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3.6.4 Unified Analysis of Specific Algorithms

In Lemma 8, we have shown that MC(Q,X ?,X#, 2) provides an upper bound on the

estimation error of any algorithm that produces an admissible estimate. To illustrate this further,

we study the following three convex problems to estimate x? from the measurement model (3.40).

find z ≥ 0 s.t ‖y −Qz‖2 ≤ ε (Algo-F)

min ‖z‖1 s.t. ‖y −Qz‖2 ≤ ε, z ≥ 0 (Algo-l1)

min ‖y −Qz‖2 s.t z ≥ 0 (Algo-l2)

Applying Theorem 25 and Lemma 8, we have the following unified analysis of the preceding

algorithms

Corollary5 Consider the noisy measurement model (3.40) with ‖w‖2 ≤ ε. Suppose the true

signal satisfies x? ∈ ∆+
sep. Let x#

F ,x
#
1 ,x

#
2 be the optimal solutions of (Algo-F), (Algo-l1), and

(Algo-l2) respectively. If n > 256, we have

max{‖x? − x#
F ‖2, ‖x? − x#

1 ‖2, ‖x? − x#
2 ‖2}

≤ 2ε
√

2 + (N − n+ 1)β(n,N)· (3.34)

3.7 Achievability of the Universal Upper Bound

Our guarantees on support recovery builds on the universal upper bound (3.17) on the

distance between p? ∈ P+
sep (obeying the separation condition) and any non-negative vector p#

that serves as an estimate of p?. As discussed in Remark 15 and Theorem 25, for large grid sizes,
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(in particular, when N/(2Mca + 1) ≥ 3.03) the universal upper bound essentially scales as

‖p? − p#‖1 ≤ A(N,M)‖AU
KR(p? − p#)‖2 (3.35)

where

A(N,M) = 34
N2

M2
ca

represents the amplification factor, i.e., the factor by which ‖AU
KR(p? − p#)‖2 gets amplified in

the reconstruction/estimation error ‖p? − p#‖1. In this section, we investigate if this exponent

(i.e. 2) of N in A(N,M) is tight or achievable assuming M is constant. Notice that (3.17) is valid

for any non-negative pair of signals (p?,p#) as long as p? also obeys the separation condition.

Hence, in order to show tightness, we need to construct a specific pair of vectors (p?1,p
#
1 ) with

p?1,p
#
1 � 0 and p?1 ∈ P+

sep, such that

‖p?1 − p#
1 ‖2 ≥ CN2‖AU

KR(p?1 − p#
1 )‖2 (3.36)

where C is a constant (possibly depending only on M which is assumed to be constant). Estab-

lishing such a lower bound that also scales quadratically in N , will establish that the exponent of

N in the upper bound (3.35) is indeed tight. In the following theorem, we show that such p?1,p
#
1

satisfying (3.36) indeed exist.

Theorem12 There exist p?1 ∈ P+
sep and p#

1 � 0 such that whenever Mca ≥ 128 and N ≥

3.03(2Mca + 1), we have

‖p?1 − p#
1 ‖1 ≤ C1(M)N2‖AU

KR(p?1 − p#
1 )‖2
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and

‖p?1 − p#
1 ‖1 ≥ C2(M)N2‖AU

KR(p?1 − p#
1 )‖2 (3.37)

where C1(M) and C2(M) are constants (which are functions of M ) given by

C1(M) =
34

M2
ca

, C2(M) =
1

KM2.5
ca

with K = π2
√

7
15

+ 0.1973π3.

Proof. The upper bound is due to Theorem 25. For the lower bound, please refer to Appendix

3.11.4. The explicit construction of p?1 and p#
1 shows that the exponent of N in A(N,M) is

indeed tight and for fixed M

‖p?1 − p#
1 ‖1

‖AU
KR(p?1 − p#

1 )‖2

= Θ(N2) (3.38)

The construction of p?1 and p#
1 also sheds further light into what kind source power and its

estimate may result in the worst-case estimation error. In the proof of Theorem 12, we construct

p?1 as a single non-negative spike at index l and hence it automatically satisfies the separation

condition. The vector p#
1 , on the other hand, consists of two non-negative spikes symmetrically

placed on either side of the true spike at indices l−1 and l+1. This represents a classical scenario

where two very closely spaced spikes can be misdetected as a single spike, or when a single spike

splits into two closely spaced neighboring spikes [15]. Under these scenarios, Theorem 12 shows

that the estimation error indeed grows as Θ(N2).
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3.8 Covariance-Driven Super Resolution Imaging: Applica-

tion of Coarray in Fluorescence Microscopy

Optical super-resolution microscopy overcomes Abbe’s diffraction limit in diffractive

optical imaging [216,217]. Two popular microscopic methods are PALM [218] and STORM [219]

where the key idea is to image only a fraction of fluorophores once a time. The point sources can

be switched between a fluorescent and a dark state by using different laser pulses. A drawback of

PALM and STORM is that tens of thousands of diffraction limited images are required and the

corresponding total exposure time can be as long as several minutes [219, 220]. To reduce the

total acquisition time, another super-resolution microscopy algorithm named SOFI was proposed

in [221, 222] where the basic idea is to utilize the temporal correlation structure of photons from

different emitters. For Gaussian point-spread-functions (PSF), the width of the equivalent PSF

in correlation domain is decreased by a factor of
√

2, provided the fluctuations of point sources

are uncorrelated. The resolution can be further improved if higher order statistics (HOS) of the

measurements is exploited. However, more frames are needed to estimate the HOS and weak

sources can be severely masked by strong ones [220, 222]. Consequently, SOFI cannot achieve

the same resolution levels as PALM or STORM.

In a very recent work [220], the authors proposed a new algorithm called SPARCOM to

overocme the drawbacks of SOFI. To exploit the sparsity structure in the images, the authors

assume the point sources to lie on a high-resolution grid. To enforice sparsity, a LASSO problem

was formulated in the correlation domain. This method is motivated by earlier work on correlation

aware LASSO [16] and the main advantage over aforementioned methods is that it can achieve

high resolution as STORM and PALM while the data acquisition time is significantly faster. For

large field of view and high target resolution, the computational complexity of SPARCOM can be

prohibitive owing to large grid size.

In this paper, we propose a new algorithm called spatially smoothed SOFI-MUSIC (SS-
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SOFI) by exploiting the correlations among point sources in a novel manner. In contrast to

SPARCOM, the sources are not required to lie on known grid and SOFI-MUSIC is computa-

tionally more efficient. For Gaussian PSF, we show that a novel sum co-array structure emerges

owing to the correlation structure of the measurements. Motivated by our earlier works on sparse

arrays [124, 125], we show that it is possible to resolve more sources than sensors by carefully

placing the physical sensors and building a suitable large covariance matrix.

3.8.1 Problem Formulation

Consider L fluctuating point sources with fluorescence source distribution at time t given

by [220, 221]:

J(r, t) =
L−1∑
k=0

δ(r− r?k)sk(t) (3.39)

where δ(·) is the Dirac Delta function. Here, r?k = [x?k, y
?
k]
T ∈ R2 denotes the location of kth

source and sk(t) represents its time-dependent brightness. The measured intensity at any position

r is the convolution of J(r, t) and the point spread function u(r) of the microscope, which is

typically assumed to be known [220, 221]. The measurement at the mth sensor (located at r̃m), is

given by

f(r̃m, t) =
L−1∑
k=0

u(r̃m − r?k)sk(t) (3.40)

Our measurement model is similar to [220–222], and we also make the following statistical

assumptions as in [220]:

A1 The locations {r?k}L−1
k=0 are fixed over the acquisition time.

A2 The brightness functions {sk(t)}L−1
k=0 are wide sense stationary, with E{sk(t)} = s?k and

Cov(s(t), s(t)) = P with s(t) = [s0(t), · · · , sL−1(t)]T .
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3.8.2 Review of SOFI

In [221, 222], the authors assume that the point sources are statistically uncorrelated,

implying that P is diagonal with P = diag(p0, · · · , pL−1). The PSF u(r) is assumed to be a

Gaussian kernel, given by

u(r) = e−α‖r‖
2
2 (3.41)

Consequently, the correlation of the measurement at the mth sensor (with location r̃m) is given by

ρm = Cov(f(r̃m), f(r̃m)) =
L−1∑
k=0

u2(r̃m − r?k)pk (3.42)

Comparing the correlation representation (3.42) and the physical measurements (3.40), we can

say that ũ(r) is the equivalent point spread function for second-order statistics is

ũ(r) = u2(r) = e−2α‖r‖22

Notice that the width of the “new” PSF is reduced by a factor of
√

2 and the resolution is

accordingly increased. In general, given the nth order statistics of the physical measurements,

the resolution can be improved by a factor of
√
n. However, this straightforward method has

following drawbacks in practice [220]

• Computing higher order statistics of measurements requires a larger number of frames and

decreases its temporal resolution.

• As indicated by (3.42), for the new PSF, the weak emitters are masked even more by the

stronger ones. This is known as dynamic range expansion and it worsens for higher order

statistics.
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3.8.3 Review of SPARCOM

In general, SOFI cannot achieve the same resolution as STORM and PALM, since a large

number of temporal snapshots is needed to realize the effect of the equivalent PSF u2(r). To

remedy this drawback, the authors of [220] proposed the idea of correlation-aware LASSO [16]

to recover the source locations. Suppose M2 sensors are placed on a M ×M low-resolution grid

Ωl with spacing ∆l and the point sources are assumed to lie on a N × N high-resolution grid

Ωh with separation ∆h � ∆l. We further assume Ωl ⊂ Ωh. Under this setting, the temporal

measurements (3.40) can be rewritten as

f(m∆l, n∆l, t) =
N−1∑
i,l=0

u(m∆l − i∆h, n∆l − l∆h)sil(t) (3.43)

where L out of {sil(t)}N−1
i,l=0 are non-zero. For efficient implementation, the authors of [220]

computed the Fourier transform of the physical measurements:

Y (km, kn, t) =∑
[i,l]∈Ωh

sil(t)
∑

[m̂,n̂]∈Ωl

u(m̂− i, n̂− l)e−j2π
kmm̂
N e−j2π

knn̂
N (3.44)

where 0 ≤ km, kn ≤ M − 1. Let y(t), s(t) be the column-wise vectorized forms of Y(t) =

[y(km, kn, t)] ∈ CM×M , and S(t) = [sil(t)] ∈ RN×N respectively. It is shown in [220] that

y(t) = As(t) Ry = Cov(y(t),y(t)) = AP̃AH

where A ∈ CM2×N2 is a suitably defined matrix that can be derived from (3.44). When the

sources are uncorrelated, P̃ is diagonal and the source locations are estimated by solving following
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Correlation-aware LASSO [16]

min
x≥0

λ‖x‖1 +
1

2
‖R̂y −

N2∑
l=1

ala
H
l xl‖2

F (SPARCOM)

Here al is the l-th column of A and R̂y is the empirical covariance of y(t) given by

R̂y =
1

T

T−1∑
t=0

(y(t)− ȳ)(y(t)− ȳ)H

where ȳ is the empirical mean. The key idea in [220] is based on the correlation-aware sparse

recovery framework proposed in [16]. However, SPARCOM has following disadvantages in

practice:

• In [218, 219], the field of view is a few microns while the target resolution level is tens of

nanometres. Thus, to obtain comparable performance, the dimension N should be ∼ 102

or 103. Thus, A will be a huge complex-valued matrix and solving (SPARCOM) may be

both memory and computationally inefficient.

• To reveal the sparsity, the sources are assumed to be on a prescribed N × N dense grid

Ωh while in practical imaging [218, 219], the point sources are often clustered, and not

necessarily located on a uniform grid. Increasing N will not eliminate grid mismatch, and

will worsen the computational complexity.

• In compressed sensing theory [96], the regularization parameter λ is dependent on the

noise or approximation error. In practice, it is not easy to find the optimal λ without partial

knowledge of ground truth and/or noise level.
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3.8.4 Gridless Covariance Driven Super-resolution Imaging

In this paper, the locations of L sources and sensors are not restricted to lie on a known

grid. Suppose we have M sensors located at {r̃m}M−1
m=0 . From (3.40), the vector of measurements

is given by

f(t) = Us(t) [U]m,k = u(r̃m − r?k) (3.45)

The covariance of f(t) can be expressed as

Rf , E[f(t)− E(f(t))][f(t)− E(f(t))]T = UPUT

In this case, the empirical covariance matrix using T samples is given by

R̂f =
1

T

T∑
t=1

(f(t)− f̄)(f(t)− f̄)T = UP̂UT

where f̄ = 1/T
∑T

t=1 f(t). Inspired by Direction-of-Arrival (DOA) estimation algorithms [47],

we propose to use the MUSIC [149] algorithm to identify the source locations {r?k}L−1
k=0 . We name

this variant of MUSIC for super-resolution imaging as SOFI-MUSIC since it is based on the

statistical assumptions in [221, 222].

MUSIC is a gridless algorithm and its success depends on the algebraic structure of U. In

classical 1D narrow-band DOA estimation, U is typically Vandermonde structured. However,

this is not true for 2D non-uniform sensor arrays used in SOFI-MUSIC [47]. To guarantee the

uniqueness of recovery, we first need to define the following notion of identifiability.

Definition9 (Identifiability) Consider the measurement model (3.40) acquired at an array of

sensors located at {r̃m}M−1
m=0 . A set of L sources with locations {r?k}L−1

k=0 are said to be identifiable

with this sensor array if U satisfies the following conditions:
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• U is full column rank

• For any r̂ /∈ {r?k}L−1
k=0 , define û = [u(r̃0 − r̂), · · · , u(r̃M−1 − r̂)]T . Then [U, û] is full

column rank.

Remark18. In above definition, the locations of sensors and sources are fixed. In ID however, if

the sensors are on a uniform linear array (ULA), then U is Vandermonde structured regardless of

the source locations. Thus, identifiability is ensured uniformly for any collection of L sources, as

long as M ≥ L + 1. As discussed in [125], the identifiability of 2D DOA estimation depends

on both the sensor and source locations which is fundamentally different from 1D case with

Vandermonde structure.

We can now state a general theorem about recovery guarantees of SOFI-MUSIC algorithm:

Theorem13 If U satisfies the identifiability condition from Def. 9 and P is full rank, the source

locations {r?k}L−1
k=0 can be exactly recovered via SOFI-MUSIC.

Proof. Suppose U satisfies the identifiability property. Then we have, L ≤ M − 1 and

the range spaces R(Rf ) = R(U) = N⊥(Rf ) given P is full rank. For any r̂, define û =

[u(r̃0 − r̂), · · · , u(r̃M−1 − r̂)]T . Then û ∈ R(U) if and only if r̂ ∈ {r?k}L−1
k=0 . Thus the source

locations can be exactly recovered as the nulls in the spectrum of the MUSIC algorithm [47].

3.8.5 Novel Sum Co-array Structure with Gaussian PSF

The identifiability condition in Def. 9 implies that SOFI-MUSIC can identify no more

than M − 1 sources with M sensors. This is the source localization limit in classical DOA

estimation [47] which suggests that the number of sources should be less than the number

of sensors. However, we now show that this limitation can be overcome if the sources are

uncorrelated and the PSF is a 2D Gaussian. The idea is to exploit the structure of a certain

sum co-array. This is by our earlier line of work [4, 16, 45, 124, 125], which suggest that it is
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possible to localize more sources than sensors using non-uniform arrays with extended difference

co-arrays. However, these results cannot be directly used here due to the presence of a Gaussian

PSF. Interestingly, we will show that the covariance matrix of the measurements in this case

permits a novel decomposition of the Gaussian PSF, revealing a sum co-array, and allowing

localization of more sources.

Note that since P is diagonal, we can write

vf , vec(Rf ) = (U�U)︸ ︷︷ ︸
UKR

p (3.46)

where p = [p0, · · · , pL−1]T and � denotes the Khatri-Rao product ( column-wise Kronecker

product of U). Specifically, we have

[UKR]m1M+m2,k = e−α(‖r̃m1−r?k‖
2
2+‖r̃m2−r?k‖

2
2)

= e−α(‖r̃m1‖
2
2+‖r̃m2‖

2
2)e2α〈r̃m1+r̃m2 ,r

?
k〉e−2α‖r?k‖

2
2 (3.47)

Notice that the first term in the exponent is−α(‖r̃m1‖2
2 +‖r̃m2‖2

2) which is only a function

of known sensor locations. Similarly, the third term −2α‖r?k‖2
2 is only a function of the unknown

source locations r?k. The second term 2α〈r̃m1 + r̃m2 , r
?
k〉 is an inner-product between the source

location r?k and the elements of the following set

Ssum , {r̃m1 + r̃m2 , 0 ≤ m1,m2 ≤ L− 1} (3.48)

The set Ssum contains pair-wise sum of sensor locations and it represents the so-called sum

co-array. We will now show how we can perform source localization by leveraging the structure

of the sum co-array.
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First, define diagonal matrices Ds ∈ RM2×M2
,Dp ∈ RL×L as

Ds ,


. . .

eα(‖r̃m1‖
2
2+‖r̃m2‖

2
2)

. . .



Dp ,


. . .

e−2α‖r?k‖
2
2

. . .


Since Ds is known, we can construct ṽf from vf as

ṽf , Dsvf

From (3.46), it can be easily seen that

ṽf = UsumDpp (3.49)

The elements of Usum are characterized by the source locations and the sum co-array

Ssum as

[Usum]m1M+m2,k = e2α〈r̃m1+r̃m2 ,r
?
k〉 (3.50)

The vector p̃ = Dpp consists of unknown source parameters. We can now think of performing

MUSIC on ṽf to localize more sources, provided Usum satisfiesthe identifiability condition in

Def. 9.
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3.8.6 Spatial Smoothing based 2D SOFI-MUSIC

The expression (3.49) is similar to the measurement model (3.45) of a single snapshot

DOA estimation problem, where the sources are captured by the sum co-array Usum instead of

the physical array U. We follow similar ideas as in [124, 125, 223, 224] and construct a PSD

matrix of suitable rank on which we can apply SOFI-MUSIC algorithm.

For ease of exposition, we will assume that the physical array is a rectangular separable

2D nested array [124]. In this case, the sum co-array Ssum has locations given by

Ssum = {[i, j]T , 0 ≤ i ≤ I − 1, 0 ≤ j ≤ J − 1}

In Fig.3.2, we give an example of physical nested array and its sum co-array. For a 2D nested

array with O(I + J) sensors, Ssum is a uniform rectangular array with IJ elements.

Figure 3.2: (Left) Physical sensor locations. (Right) Sum co-array locations

The sum co-array consists of overlapping subarrays as follows

Sm,n(i, j) = S0,0(i, j) + [m,n]T

where S0,0 is the fundamental subarray given by

S0,0(i, j) = [i, j]T , 0 ≤ i < I1, 0 ≤ j < J1
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It can be easily seen that a total of NmNn shifted subarrays can be obtained from Ssum where

Nm = I + 1− J1, Nn = J + 1− J1. Corresponding to each subarray, we can partition ṽf into

NmNn overlapping vectors ṽ
(l)
f , l = 0, · · · , NmNn − 1 and define a smoothed covariance matrix

as

Rsum =
NmNn−1∑

l=0

ṽ
(l)
f ṽ

(l)T
f

It can be shown [124, 125] that if I1 = I+1
2
, J1 = J+1

2
, Rsum has the form

Rsum = (S0,0PST0,0)2 (3.51)

where P = diag(p0, · · · , pL−1) and S0,0 is specified by

[S0,0]J1i+j,k = e2α(x?ki+y?kj)

with r?k = [x?k, y
?
k]
T .

From (3.51), it can seen that the fundamental subarray S0,0 (and equivalently S0,0) controls

the performance of 2D MUSIC algorithm. Similar to Theorem 13, we have the following

guarantee for resolving more sources via spatial smoothing with 2D nested array:

Theorem14 Assuming P is diagonal, the source locations {r?k}L−1
k=0 can be exactly recovered via

spatially smoothed SOFI-MUSIC if S0,0 satisfies the identifiability condition in Def. 9.

3.8.7 Experiments

We generate synthetic data similar to [220], to verify the SOFI-MUSIC algorithm. In

the experiments, the PSF is assumed to be Gaussian with α = 100 in (3.41). There are 9 point

sources in the ground truth and 36 sensors are placed on a 6× 6 grid with separation 0.16. The
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correlation matrix P = 10I for uncorrelated sources. In Fig. 3.3, we compare the performances

of SOFI-MUSIC and SPARCOM. It can be seen that SOFI-MUSIC outperforms SPARCOM in

terms of the reconstructed source locations.
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Figure 3.3: (Upper Left) Ground truth of emitter locations. (Upper Right) Diffraction-
limited images obtained using Gaussian PSF averaged over 50 frames (Bottom Left)
SPARCOM with λ = 10−4 (Bottom Right) The log-spectrum of SOFI-MUSIC

3.9 Numerical Results

3.9.1 Non-convex Algorithms for Super-Resolution with Non-negative Con-

straint

We now conduct numerical experiments to demonstrate that the proposed reweighted

iterative algorithm for approximating l1/2 quasinorm minimization can produce better estimate of

x? both in terms of sparsity and smaller estimation error. We chooseN = 64, n = 21, and the true

sparsity is set at ‖x?‖0 = 6. The non-zero entries of x? are produced by first generating uniform
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random variables between 1 and 2 and then normalizing the entries so that ‖x?‖1 = 1. Similarly,

the measurement noise w is produced by generating complex standard Gaussian random variables

and then normalizing w such that ‖w‖1 = δ1. We will compare the performance of different

algorithms by varying δ1. To implement Algorithm 1, we set the stopping parameter to ε = 0.001

and select εn = 10−4

n
.
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Figure 3.4: (Left) Comparative performance of different algorithms as a function of
Signal-to-Noise ratio (SNR). The results are averaged over 1200 Monte Carlo runs.
(Right) Noise Amplification Factor (NAF) of (Pden), (P1) and proposed l1/2 minimiza-
tion, as a function of Super-Resolution Factor (SRF) N

n−1
. The results are averaged over

800 runs.

In Fig. 3.4, we compare the performance of (Pden), (P1), and (P2) 11 by varying δ1 which

represents the l1 norm of the noise w. The Signal-to-Noise ratio (SNR) is defined as 20 log(‖x
?‖1
‖w‖1 ).

It can be seen that the proposed algorithm produces the smallest normalized estimation error

‖x# − x?‖1/‖x?‖1 and outperforms both (Pden) and (P1).

We finally demonstrate the reconstruction quality of the Algorithm 1 for 2D super-

resolution. The proposed algorithm can be readily extended to two dimensions by choosing Q

as a 2D DFT matrix. Fig. 3.5 shows the performance of Algorithm 1 and (P1) on synthetic 2D

data. The ground truth is a sparse N ×N image where N = 24. We generate the low-frequency

measurements by only retaining the 49 low frequency DFT coefficients. We further normalize

w so that ‖w‖1 = 0.1. It can be clearly seen that Algorithm 1 exactly recovers the true support

while (P1) produces several false peaks. This further corroborates the fact that the proposed l1/2
11we choose p = 1 for solving (Pden) and (P1)
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minimization framework indeed favors and identifies sparser solutions.
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Figure 3.5: (Top Left) Ground truth image with positive emitters. (Top Right) Mea-
sured image consisting of only low frequency components. (Bottom Left) Estimate
produced by solving convex problem (P1) (Bottom Right) Estimate produced by the
proposed iterative l1/2 minimization algorithm.

3.9.2 Simulations for Joint Support Recovery Using Difference Co-Arrays

We now perform a series of numerical experiments to study the performance of sparse

arrays for support recovery in the regime s > M . We implement the proposed correlation-aware

support recovery framework where A represents the array manifold of a nested array (an OOSA)

given by (3.12).The joint support S is generated uniformly at random obeying the separation

condition in Def. 5. The non-zero elements of p? are assumed to be all equal to 10 (i.e. pmin = 10)

and the noise power is assumed to be σ = 1. We consider two metrics for evaluating performance:

(i) Power Estimation Error, and (ii) Success Rate of Support Recovery.

Similar to [170–172, 182], we claim that support recovery is successful if the support of

the s largest non-zero entries of p# is identical to the true support S . Notice that (PCo-den) actually
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represents a class of optimization problems, which can be convex or non-convex depending on

the choice of f(z). In this paper, we consider the following three specific instances of this family

• Case 1: f(z) = ‖z‖1. We call this problem (P1Co-den) and implement it using standard

CVX package.

• Case 2: f(z) = ‖z‖0. We call this problem (P0Co-den). Since it is a non-convex problem,

we approximate it using a reweighted l1 minimization heuristic [157].

• Case 3: f(z) = ‖z‖1/2. We call this (P1/2,Co-den). This is a non-convex quasi-norm

minimization problem with non-negative constraints, which we solve using a majorization-

minimization based heuristic [14].

Power Estimation Error and the Universal Upper Bound

We first compare the normalized power estimation error ‖p# − p?‖1/‖p?‖1(denoted by

NE) for each of (P1Co-den), (P0Co-den) and (P1/2,Co-den) against the theoretical upper bound from

(3.18). For this experiment, we let M = 12, N = 200 and s = 20. We vary the number of

snapshots L and compute the empirical mean covariance perturbation error ‖∆r‖2 for each L

by averaging over 100 runs. Fig. 3.6 shows the mean normalized power estimation error as a

function of the (empirical) mean covariance perturbation ‖∆r‖2, establishing the validity of the

upper bound (3.18) for both convex and non-convex problems.

Comparison of Support Recovery as a function of L and s

We compare the success rate of (P1Co-den) (using nested arrays), against two conventional

MMV algorithms: MMV-BP [201] and RA-ORMP [172]. 12 Similar to the experimental settings

in [172] 13, we implement these algorithms either using a random Gaussian A with i.i.d zero-mean

12We implemented MMV-BP using the SPGL1 solver for MATLAB available at http://www.cs.ubc.ca/ mpf/spgl1/.
13Since MMV-BP and RA-ORMP do not utilize correlation of the measurements, they are unable to exploit the

difference co-array of sparse arrays and hence are unsuitable to be used with such measurement matrices.
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Figure 3.6: Mean Normalized Power Estimation Error and the Upper Bound (3.18)
as a function of ‖∆r‖2. Here M = 12, N = 200, s = 20, and A is generated using a
nested array with Mca = 41. The results are averaged over 100 runs.

unit-variance elements, or the manifold of a uniform linear array (ULA) with elements given by

Am,n = e−j2πmn/N , 1 ≤ m ≤ M, 0 ≤ n ≤ N − 1. Let M = 24, N = 400. Fig. 3.7(a) shows

the success rate of the algorithms as a function of L in two distinct regimes (a) s = 8 < M

and (b) s = 72 > M . When s < M , Fig. 3.7(a) shows that RA-ORMP with random Gaussian

measurement matrix A has the highest success rate for a given L. On the other hand, when

s > M , MMV-BP, and RA-ORMP completely fail to localize the sources since they do not use

the correlation structure of the data. However, (P1Co-den) successfully recovers the sources in this

regime with probability > 0.9 when L > 800. Notice that the number of snapshots (L) needed

to ensure success rate of 1 is higher in this case than when s < M . Fig. 3.8 shows the success

rate of all the algorithms as a function of s for a fixed L = 100. As expected MMV-BP and

RA-ORMP are unable to recover supports of size s > M = 24 while (P1Co-den) is able to recover

supports of size significantly larger than 25.

Comparison with Vector Approximate Message Passing

Very recently, the authors of [213] proposed a new sparse signal reconstruction algorithm

called Vector Approximate Message Passing (VAMP). Compared to traditional Approximate

Message Passing [214], VAMP is applicable to a larger class of measurement matrices A. In this

section, we conduct numerical experiments to compare (P1Co-den) with VAMP, especially in the

124



(a) (b)

Figure 3.7: Probability of successful support recovery as a function of L. Here,
M = 24, N = 400, and the results are averaged over 300 runs. (a) s = 8 < M = 24.
(b) s = 72 > M = 24.

Figure 3.8: Probability of successful support recovery as a function of sparsity s. Here,
M = 24, N = 300, L = 100. For nested array, we have Mca = 155. Results are
averaged over 100 runs.
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regime s > M . We implemented VAMP using the code from the website of the authors of [213]

and used similar simulation settings as suggested by the demo code. The non-zero entries of

signal and noise are generated as zero-mean i.i.d Gaussian random variables. The nonzero signal

powers are assumed to be equal to p, while the noise power is denoted by σ2. We implemented

VAMP with two types of measurement matrices: (i) A representing a nested array and constructed

according to (3.9), and (ii) A with i.i.d Gaussian entries as defined in the demo code of [213].

VAMP returns an estimate for XL and we estimate the support by retaining the indices of s rows

of this estimate with the largest l2 norm. We consider two simulation settings:

• Case 1: We use i.i.d Gaussian A for VAMP and choose N = 200, p = 10000, σ2 =

1, L = 1000.

• Case 2: We use A corresponding to a nested array for VAMP and choose N = 200, p =

1000, σ2 = 1, L = 100.

For both cases, we implement (P1Co-den) using nested arrays. The probability of successful

support recovery as a function of sparsity s is plotted in Fig. 3.9. From the simulations, it

appears that when A corresponds to a nested array, VAMP fails to detect support in the regime

s > M = 150. On the other hand, when A is an i.i.d. Gaussian matrix, both algorithms are able

to recover supports of size larger than M . For example, both (P1Co-den) and VAMP can recover

supports of size larger than 100 with M = 36 and M = 80 measurements respectively.

Phase Transition

We study phase transition of (P1Co-den), MMV-BP and RA-ORMP by plotting their

success rates as functions of both M and s. As before, we implement (P1Co-den) using nested

arrays, while we use a ULA measurement matrix for MMV-BP and RA-ORMP. We fix N =

600, L = 2000. For each (M, s) pair, we compute the success rate over 100 Monte Carlo runs.

Fig. 3.10 shows the average success rate with respect to the number of sensors M and number of
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Figure 3.9: Comparative probability of successful support recovery for (P1Co-den) and
VAMP as a function of sparsity s. Results are averaged over 100 runs.

sources s, where black pixels represent zero success rate and white pixels denote 100% success

rate. For comparison, we also overlay the curve s = 0.18M2 on the phase transition plot of

(P1Co-den) which roughly matches the phase transition boundary and validates our claim that it

is possible to localize s = Θ(M2) sources with nested arrays. The phase transition regions of

MMV-BP and RA-ORMP, on the other hand, show that the number of resolvable sources scales

linearly with M , matching their theoretical performance limits [172, 201].

Achievability of Upper Bound

In Theorem 12, we showed that for fixed M , there exist p?1 and p#
1 such that (3.38) holds.

In this section, we demonstrate this scaling with respect to N by plotting ‖AU
KR(p?1 − p#

1 )‖2

against N for fixed ‖p?1 − p#
1 ‖1. We generate p?1 and p#

1 according to the proof of Theorem 12,

such that p?1 contains a single spike and p#
1 consists of two neighboring equal power spikes given

by (3.68). Fig. 3.11 clearly shows that ‖AU
KR(p?1 − p#

1 )‖2 indeed scales as Θ(N2).

Performance of Other “Correlation-Aware” Algorithms for MMV models

In our final set of experiments, we demonstrate the superior performance of a family of

related “correlation-aware” algorithms for MMV models, namely M-SBL [181], M-FOCUSS

[174] and SPICE [120] that also utilize the correlation of the measurements, and are potentially
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(a)

(b)

(c)

Figure 3.10: Phase transition of success rate as function of sparsity s and number
of measurements M : (a) (P1Co-den), (b) RA-ORMP, and (c) MMV-BP. White pixels
indicate perfect recovery and black pixels denote total failure. Here L = 2000, N = 600
and the results are averaged over 50 runs. The overlaid red curve represents s = 0.18M2

in (a) and s = M in (b) and (c).
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Figure 3.11: Log-log plot of ‖AU
KR(p?1 − p#

1 )‖2 as a function of N , for fixed ‖p?1 −
p#

1 ‖1 = 2. Here p?1 and p#
1 are constructed according to the proof of Theorem 12. The

plot is overlaid with the function −2 logN + 14. The two plots share the same slope of
−2, demonstrating the order-wise tightness of (3.17) with respect to N .

capable of resolving more sources than sensors when used with OOSA. However, these algorithms

are non-convex and difficult to analyze, especially with finite L. Nonetheless, they show excellent

empirical performance with nested arrays, as demonstrated in Fig 3.12. We fix M = 24, N =

300, L = 100, and plot the success rate of these three algorithms as a function of L, for both

ULA and nested array (with same number of sensors). It can be seen that MSBL, MFOCUSS,

and SPICE have significantly higher success rate with nested arrays, and cannot resolve more

sources than sensors with ULA. Hence, Fig. 3.12 empirically demonstrates that exploiting the

difference co-array of OOSA can help these algorithms identify more sources than sensors with

finite measurements. A rigorous non-asymptotic analysis of this behavior is a very interesting

problem for future research.

3.10 Conclusion

In this chapter we analyzed the problem of super-resolution where the desired signal is both

sparse and non-negative. We proposed a constrained non-convex l1/2 quasinorm minimization

problem to promote sparsity in the reconstructed signal. Such a formulation naturally stems from

exploiting non-negative constraints on the signal. Although l1/2 quasinorm is non-convex and
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Figure 3.12: Success rate of M-SBL, M-FOCUSS and SPICE as a function of sparsity
s. Here M = 24, N = 300, L = 100. For nested array, Mca = 155. The results are
averaged over 200 runs.

non-differentiable and the measurement matrix does not satisfy RIP, the stability of the solution

can still be guaranteed by constructing appropriate dual certificates. An iterative reweighted l1

minimization algorithm is proposed to approximate the l1/2 quasinorm and simulations show that

it has better performance than l1 norm minimization, in terms of both accuracy and sparsity of the

solution.

By exploiting the difference co-array of order-optimal sparse arrays, we developed proba-

bilistic guarantees on exact support recovery in the regime s > M , as a function of the number of

snapshots L, that is applicable for a large class of “correlation-aware” support recovery algorithms.

The guarantees involve developing upper bounds on the estimation error of source powers for any

algorithm in this class, which was shown to scale quadratically with the dimension N . As a result

of independent interest, we showed that such quadratic dependence is tight (for a given number

M of sensors).

In future, we will extend the analysis framework of this paper to other non-convex

“correlation-aware” algorithms such as M-SBL which exhibited excellent empirical performances

in our simulations. Another interesting direction is to extend our analysis to the “gridless” case by

integrating results from [215] to characterize the performance of subspace based algorithms that

exploit the co-array structure. Finally, the proof of achievability in Sec. 3.7 can be generalized to

understand how the locations of spikes fundamentally affect estimation error.
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Chapter 3, in part, is a reprint of the material as it appears in the papers:

• H. Qiao and P. Pal, “Guaranteed Localization of More Sources than Sensors with Finite

Snapshots in Multiple Measurement Vector Models Using Difference Co-Arrays, IEEE

Transactions on Signal Processing, vol. 67, no. 22, pp. 5715-5729, Nov. 2019.

• H. Qiao and P. Pal, “A Non-Convex Approach to Non-Negative Super-Resolution: Theory

and Algorithm”, in the Proceedings of 44th International Conference on Acoustics, Speech

and Signal Processing (ICASSP), Brighton, UK, May 2019.

• H. Qiao and P. Pal, “ On modulus of continuity for noisy positive super-resolution, in

the Proceedings of 43nd IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP 2018), Calgary, Canada.

• H. Qiao and P. Pal, “Performance Limits of Covariance-Driven Super Resolution Imaging”,

in the Proceedings of Asilomar Conference on Signals, Systems and Computers, 2017.

• H. Qiao and P. Pal,“Unified Analysis of Co-Array Interpolation for Direction-of-Arrival

Estimation, in the Proceedings of 42nd International Conference on Acoustics, Speech and

Signal Processing (ICASSP), New Orleans, March 2017.

The dissertation author was the primary investigator and author of these papers.

3.11 Appendices

3.11.1 Proof of Theorem 1

Since A represents an OOSA, AKR = A∗ �A contains a Vandermonde sub-matrix AU
KR

given by (3.14). We further select the last Mca + 1 rows of AU
KR, and collect them in a matrix
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V ∈ CMca+1×N given by

Vm,n = e−j2πmn/N , 0 ≤ m ≤Mca, 0 ≤ n ≤ N − 1

Let vy , vec(Ryy). From (3.16), we can extract an appropriate sub-vector of vy, viz. vU+

y ∈

CMca+1 such that

vU+
y = rU

+

y + σ2e1 = VSp
?
S + σ2e1 (3.52)

where e1 = [1, 0, · · · , 0]T ∈ RMca+1, the matrix VS ∈ CMca+1×s consists of the columns of V

indexed by S, and p?S is the vector of non-zero entries of p?. Given Ryy, the Co-array MUSIC

algorithm [126] produces an estimate Ŝ of the support S as follows:

Step 1: Extract the vector vU+

y from Ryy and construct a Hermitian Toeplitz matrix

T ∈ C(Mca+1)×(Mca+1) with vU+

y as the first column.

Step 2: Let σ̂2 be the smallest singular value of T, and U ∈ CMca+1×K be an orthonormal

basis for Null(T− σ̂2I) where K = dim(Null(T− σ̂2I)). Construct the set Ŝ ⊂ [0, N −1]

such that

Ŝ = {i ∈ [0, N − 1] s.t. ‖UHvi‖2 = 0}

Step 3: Return Ŝ and σ̂ as estimates for S and σ.

We show that as long as s ≤Mca, we will have

Ŝ = S, σ̂ = σ
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Firstly, it can be verified that

T = VSdiag(p?S)VH
S + σ2I (3.53)

Since p?S > 0 and s ≤ Mca, the smallest singular value of T is σ2, implying that σ̂ = σ and

rank(T− σ̂2I) = s. Therefore, from (3.53), we have

VH
S u = 0, ∀u ∈ Null(T− σ̂2I)

which implies that S ⊆ Ŝ. Suppose there exists k0 ∈ Ŝ, k0 /∈ S. Then, we must have

[VS ,vk0 ]
Hu = 0,∀u ∈ Null(T− σ̂2I) (3.54)

Now [VS ,vk0 ] ∈ C(Mca+1)×(s+1) is a row-Vandermonde matrix and hence its (s + 1) columns

must be linearly independent since s ≤Mca. However, (3.54) implies that these s+ 1 columns

should also be orthogonal to Null(T−σ̂2I). Since rank(T−σ̂2I) = s, the orthogonal complement

of Null(T− σ̂2I) has dimension s and cannot contain s+ 1 independent vectors. Hence such a k0

cannot exist, implying Ŝ = S . Once the support and σ are correctly recovered, the vector p?S can

be recovered as the unique solution to the system of equations (3.52), since VS is full-column

rank.

3.11.2 Proof of Theorem 2

Consider the matrix ÃU
KR ∈ CN×N obtained by zero-padding AU

KR as follows:

ÃU
KR = [0T(dN/2e−Mca−1)×N , (A

U
KR)

T
,0T(bN/2c−Mca)×N ]T (3.55)
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It can be easily verified that ÃU
KR = DNFN where the elements of FN ∈ CN×N are given by

[FN ]k,l = e−j2πkl/N ,−dN/2e+ 1 ≤ k ≤ bN/2c, 0 ≤ l ≤ N − 1 and

DN = diag(d̂−dN/2e+1, · · · d̂bN/2c)

is a diagonal matrix with

d̂m =


1, −Mca ≤ m ≤Mca

0, otherwise

We utilize the following lemma (Lemma 1 in [61]) adapted to our measurement model.

Lemma10 [61] If p? ∈ P+
sep, Mca ≥ 128 and N ≥ 3.03(2Mca + 1), then for any non-negative

vector p̂ ∈ RN and h = p̂− p?, there exists q = [q0, · · · , qN−1]T ∈ RN such that

ÃU
KRq = FNq, ‖q‖∞ ≤ 1

where ρ = 0.0295
(
Mca

N

)2 and

ql = 0 if hl < 0 ; ql > 2ρ if hl ≥ 0

Given the existence of the vector q from Lemma 10, define q̃ , q− ρ1. Let h = p#−p?. Then,

we have

|〈q̃,h〉| = |
N−1∑
l=0

q̃lhl| =
N−1∑
l=0

|q̃l||hl| ≥ ρ‖h‖1 (3.56)
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On the other hand, using properties of q from Lemma 10, it follows that

ÃU
KR(q− ρ1) = FN(q− ρ1)

Then, we have

|〈q̃,h〉| = |〈 1

N
FH
NÃU

KRq̃,h〉| = |〈 1

N
FH
NDNFN q̃,h〉|

= |〈q̃, 1

N
FH
NÃU

KRh〉| ≤ ‖q̃‖2‖
1

N
FH
NÃU

KRh‖2

= ‖q̃‖2
1√
N
‖ÃU

KRh‖2 ≤ (1− ρ)‖AU
KRh‖2 (3.57)

where we used the facts that 1− ρ > ρ, FH
NFN = N , ‖q̃‖∞ ≤ 1− ρ and ‖AU

KRh‖2 = ‖ÃU
KRh‖2.

Combining (3.56) and (3.57), we have

‖h‖1 ≤
1− ρ
ρ
‖AU

KRh‖2

which completes the proof.

3.11.3 Proof of Theorem 9

Let p# be a solution to (PCo-den). If ε ≥ ‖∆U
r ‖2, we can use the bound (3.18) in Corollary

4 to obtain

‖p#
Sc‖1 ≤

1− ρ
ρ

(‖∆U
r ‖2 + ε), (3.58)

‖p?S − p#
S ‖1 ≤

1− ρ
ρ

(‖∆U
r ‖2 + ε) (3.59)

If we choose T ≥ 1−ρ
ρ

(‖∆U
r ‖2 + ε), then from (3.59), it follows that [HT (p#)]i = 0 if i ∈ Sc.

This implies that the support of HT (p#) will be contained in S. On the other hand, suppose
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pmin > 21−ρ
ρ

(‖∆U
r ‖2 + ε) and we choose T in the range T < pmin− 1−ρ

ρ
(‖∆U

r ‖2 + ε). Then, from

(3.59), it follows that

[p#
S ]i ≥ pmin −

1− ρ
ρ

(‖∆U
r ‖2 + ε) > T i ∈ S,

implying that the support ofHT (p#) will contain S. Summarizing, if

pmin > 2
1− ρ
ρ

(‖∆U
r ‖2 + ε), ε ≥ ‖∆U

r ‖2 (3.60)

and the threshold T is selected from the range

1− ρ
ρ

(‖∆U
r ‖2 + ε) ≤ T < pmin −

1− ρ
ρ

(‖∆U
r ‖2 + ε) (3.61)

we can ensure that Supp
(
HT (p#)

)
= S . Hence, if pmin is large enough and T is chosen from a

suitable range, it is possible to exactly recover S via hard-thresholding. Notice that the results

so far are conditioned on the covariance estimation error ∆r. We now make these guarantees

probabilistic by utilizing appropriate concentration bound on ∆r that exploits the Gaussian

distribution of the measurements YL. Since ∆r is a complex random variable (as A is complex),

we first represent each complex measurement vector y[l] in terms of real and imaginary parts as

y[l] = yR[l] + jyI[l]. Define

v[l] = [yTR [l],yTI [l]]T

Since {y[l]}Ll=1 are i.i.d complex Gaussian vectors, v[l] are i.i.d and real-valued Gaussian vectors.

Define the true and empirical covariance matrices of v[l] as

Rvv = E
(
v[l]vT [l]

)
R̂vv =

1

L

L∑
l=1

v[l]vT [l]
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It can be easily verified that

‖Ryy − R̂yy‖F ≤
√

2‖Rvv − R̂vv‖F

trace(Ryy) = trace(Rvv) (3.62)

We now invoke the following concentration bound on the covariance estimation error of real-

valued Gaussian vectors.

Lemma11 (Proposition A.3 in [129]) Let {z[l]}Ll=1 be zero mean i.i.d real Gaussian random

vectors distributed as z[l] ∼ N (0,Rz). Then,

P
{
‖Rz − R̂z‖F ≥

trace(Rz)√
L

}
≤ 2e−2c

√
L (3.63)

where R̂z = 1
L

∑L
l=1 z[l]z[l]T and c is a positive universal constant.

Proof. (of Theorem 9) Since v[l] are real zero-mean i.i.d Gaussian vectors with covariance Rvv,

Lemma 17 implies

P
{
‖Rvv − R̂vv‖F ≥

trace(Rvv)√
L

}
≤ 2e−2c

√
L (3.64)

Recall from (3.15) that ‖∆f‖2 = ‖Ryy − R̂yy‖F . Using (3.62) and (5.25), it follows that

P

{
‖∆f‖2 ≥

√
2trace(Ryy)√

L

}
= (3.65)

P

{
‖Ryy − R̂yy‖F ≥

√
2trace(Ryy)√

L

}
≤ 2e−2c

√
L
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Notice that trace(Ryy) = trace(Adiag(p?)AH + σ2I) = M(‖p?‖1 + σ2). If (3.21) holds, we

can say that

√
2trace(Ryy)√

L
<

ρ

1− ρ
pmin

4
− σ2 (3.66)

Since ‖∆U
r ‖2 ≤ σ2 + ‖∆f‖2, the concentration bound (3.65) implies that, with probability

exceeding 1− 2e−2c
√
L,

‖∆U
r ‖2 <

√
2trace(Ryy)√

L
+ σ2 <

ρ

1− ρ
pmin

4
(3.67)

Since ε and T are selected according to (3.23) and (3.24) respectively, it can be easily seen that

(3.67) ensure that the sufficient conditions (3.20) and (3.21) hold with probability exceeding

1−2e−2c
√
L. Hence, we conclude that Supp(HT (p#)) = S with probability at least 1−2e−2c

√
L.

3.11.4 Proof of Theorem 12

Let l be an integer in the range 0 < l < N − 1. We construct p?1 ∈ RN and p#
1 ∈ RN as

follows

[p?1]n =
η

2
δ[n− l], [p#

1 ]n =
η

4
(δ[n− l − 1] + δ[n− l + 1])

where δ[n] denotes the Kronecker delta function. Obviously, p?1 satisfies the separation condition

as it contains only one spike. Notice that ‖p?1 − p#
1 ‖1 = η. Define s = [s−Mca , · · · , sMca ]

T ,

AU
KR(p?1 − p#

1 ). From the definition of AU
KR, we have

sm =
N−1∑
k=0

e−j2πmk/N([p?1]k − [p#
1 ]k), −Mca ≤ m ≤Mca
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We can further simplify sm as

sm =
η

2

N−1∑
k=0

e−j2πmk/N(δl −
1

2
δl−1 −

1

2
δl+1)

= η sin2(
πm

N
)e−j2πml/N

Then, ‖s‖2
2 =

∑Mca

m=−Mca
|sm|2 = η2

∑Mca

m=−Mca
sin4(πm

N
)

Using Taylor series expansion with Lagrange remainder, we have

sin4(
πm

N
) =

π4m4

N4
+
f (6)(ξ)

6!

π6m6

N6
|m| ≤Mca

where f(x) = sin4(x) and 0 < ξ < πm
N

. Thus,

‖s‖2
2 = η2

Mca∑
m=−Mca

π4m4

N4
+
f (6)(ξ)

6!

π6m6

N6

=
η2π4

N4

(
2

5
M5

ca +M4
ca +

2

3
M3

ca −
1

3
Mca

)
+η2

Mca∑
m=−Mca

f (6)(ξ)

6!

π6m6

N6

≤ η2π4

N4

(
2

5
M5

ca +M4
ca +

2

3
M3

ca −
1

3
Mca

)
+ c2

1η
2M

7
ca

N6

for any constant c1 such that c2
1 ≥ maxξ∈[0,πMca

N
] 2π6

∣∣∣f (6)(ξ)6!

∣∣∣. For Mca ≥ 16, it can be verified

that

2

5
M5

ca +M4
ca +

2

3
M3

ca −
1

3
Mca ≤

M4
ca

15
7Mca

Using the fact that for positive numbers α, β,
√
α + β ≤

√
α +
√
β , it follows that

‖AU
KR(p?1 − p#

1 )‖2 ≤ η
( π2M2

ca√
15N2

√
7Mca +

cM3
ca

N3

√
Mca

)
(3.68)
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Therefore, we finally have

‖p#
1 − p?1‖1 = η ≥

1(
π2

√
7
15
M2.5

ca + cM2.5
ca

Mca

N

)N2‖AU
KR(p?1 − p#

1 )‖2 (3.69)

It can be verified that whenever Mca

N
≤ 0.25,

max
ξ∈[0,πMca

N
]
2π6

∣∣∣∣f (6)(ξ)

6!

∣∣∣∣ ≤ 1.43π6 (3.70)

Since N > 3.03(2Mca + 1) (i.e.Mca

N
≤ 0.165), we can choose c1 as c1 =

√
1.43π6 = 1.1958π3.

Using this value of c1 and the fact that Mca

N
≤ 0.165, (3.37) follows from (3.69) where the constant

K is given by K = π2
√

7
15

+ 0.165c1 = π2
√

7
15

+ 0.1973π3.
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Chapter 4

Phase Retrieval and Structured Fourier

Sampler

The problem of phase retrieval is considered in this chapter, where the measurement

vectors are deterministic and Fourier-like. Under some mild assumptions, O(slogN) measure-

ments are proved to be sufficient to recover an s-sparse complex vector of dimension N from its

phaseless measurement via convex programming. The key contribution is to show that unlike

existing work in sparse phase retrieval, the so-called “collision-free” condition is not needed

for the proposed approach, and hence, there is no upper bound on s for which the sparse vector

can be recovered. Even for non sparse complex data, the number of measurements needed by

this approach almost attains the lower bound conjectured in current literature. The algorithms

developed in this work are based on a newly introduced class of Fourier samplers, namely Partial

Nested Fourier Samplers, which can naturally avoid the “collision-free” condition by performing

a novel decoupling of quadratic terms arising in the phaseless measurements.
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4.1 Introduction

Reconstruction of signals from magnitudes of linear samples has recently received great

research interest. In many problems, the measurement scheme is such that only the amplitude of

the linear measurement is kept and the phase information is lost. The problem of recovering the

original signal from these “phaseless” measurements is known as phase retrieval or phaseless

reconstruction. The earliest work in phase retrieval [75] draws its motivation from speech

processing where the authors show that it is possible to reconstruct signals up to some minor

ambiguities only from magnitude measurements. Besides speech processing, phase retrieval has

applications in X-ray imaging, crystallography, electron-microscopy, coherence theory, quantum

mechanics, differential geometry and other fields [76, 77].

Two types of measurement models are primarily studied in literature: Fourier based, and

random. In [77, 81–83, 92], the authors consider the Fourier measurement model for acquiring

phaseless measurements. We will propose novel variations of the Fourier measurement model to

establish the claims of this paper. In [70, 79, 84, 97], the authors use random measurements to

exploit ideas from compressed sensing for performing phase retrieval. The phase retrieval problem

is converted to a low-rank matrix recovery problem in [77] which allows convex programming

based solutions. It is shown that under some mild conditions, the convex approach produces the

desired solution even with Fourier measurements [79]. In [75, 76], the authors consider abstract

measurement models for deducing universal lower bound (sufficient conditions on the number of

measurements).

The number of phaseless measurements can be significantly reduced if the underlying x

is s-sparse (i.e. with s non zero elements). Using standard DFT measurement vectors, the phase

retrieval problem is often transformed into that of recovering x from its autocorrelation function

(ACF) [84]. Following [85], the authors impose the so-called collision-free [84] condition on x

so that the ACF is guaranteed to be sparse. Under this condition, O(s2) Fourier measurements
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are proved to be sufficient for uniquely recovering x up to a global phase. In [81, 82], the

authors are able to avoid the collision-free property by employing a combinatorial recovery

algorithm. However, the sparsity s cannot be larger than O(N1/3). In [171], O(slog(N/s)) is

proved to be sufficient for sparse phase retrieval when random measurements are used. In [87], the

authors follow the convex formulation of [79] and show that O(s2log(N/s2)) is enough for phase

retrieval. Finally, in [93], the authors adopt the idea of [164] and prove that O(slogN) Fourier

measurements are sufficient for recovering a sparse x after it is modulated using four different

masks. The interested readers may refer to [78], for an overview of the current state-of-art in the

phase retrieval algorithms.

In this chapter, we introduce a new design of Fourier measurement vectors, namely the

Partial Nested Fourier Sampler (PNFS), drawing inspiration from our past and current work in

nested sampling and its extensions [2, 10, 45]. As will be demonstrated, the idea of partial nested

sampling is highly effective for the phase retrieval problem since it naturally allows decoupling

of terms arising in the equivalent quadratic measurement model. We show that O(slogN) PNFS

measurements are sufficient for recovering x up to global phase factor by solving a suitable l1

programming problem. Unlike [84], the PNFS can completely avoid the need for a collision-free

condition on x and hence there is no restriction on the maximum size of the sparse support in our

framework. In contrast to [93], we do not need masks to modulate x and our algorithm may be

easier to be implemented in practice. Furthermore, for a non-sparse complex x, the PNFS needs

only 4N − 5 Fourier measurements using a simple reconstruction scheme, that comes very close

to the universal lower bound conjectured in current literature [76].

Then, we further develop the theory of PNFS for sparse phase retrieval by proposing

a randomized version of the basic PNFS, namely the R-PNFS. By using a certain decoupling

property of the R-PNFS, along with a new cancellation based algorithm (that effectively cancels

out certain unwanted quadratic terms in the autocorrelation of the signal), we are able to demon-

strate that O(s logN) measurements are sufficient to recover the sparse signal with probability 1.
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We also prove that the proposed algorithm is stable in presence of bounded noise, and present

numerical simulations to validate the theoretical claims.

4.2 Problem Setting and Related Work

4.2.1 Problem Setting

Let x ∈ HN be an unknown vector of interest where the field H can either be R or C, and

F = {f1, f2, · · · , fM} be a set of M measurement vectors where fi ∈ HN . To be precise, we have

the following general measurement model

yi = |< x, fi >| 1 ≤ i ≤M (4.1)

where y = [y1, y2, · · · , yM ]T ∈ RM
+ . Hence, we only collect a set of magnitude (or energy)

measurements and we lose the phase information of < x, fi >. The key question in phase retrieval

is: Can we recover x from phaseless measurements y? If the answer is positive, we will say that

the measurement vectors F are successful at phase retrieval [76]. Before answering this question,

it is straightforward to notice that there is some intrinsic ambiguity in recovering unknown x

from (5.1). When H = R, we cannot distinguish ±x as they provide the same measurements.

Similarly, if H = C, we will not be able to separate x from its ambiguities x̃ where x̃ = cx

with |c| = 1. So, x can only be recovered in sense of H \ T where T = {±1} for H = R and T

denotes the unit circle in the complex plane if H = C. Hence x can be at best recovered upto a

global phase ambiguity.

As pointed out in [77], the phase retrieval task is tightly related to that of recovering

low-rank matrices using quadratic measurements. Particularly, we have

y2
i = fHi xxHfi 1 ≤ i ≤M (4.2)
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Since xxH is rank 1, phase retrieval can be interpreted as a rank-one matrix recovery problem

given measurement y [77, 79]. Equivalently, the quadratic form (4.2) can be written as

y2
i =

(
fTi ⊗ fHi

)
Vec

(
xxH

)
(4.3)

We will use this equivalent representation of the phaseless measurements throughout this paper.

We will mainly focus on the case where fi are complex Fourier-type [77, 81, 84, 92] measurement

vectors, and x will be assumed to be s-sparse with H = C.

4.2.2 Sufficient Condition with Generic Measurements

In [75, 76], sufficient and necessary conditions have been discussed for both non-sparse

and sparse phase retrieval problems. In particular, we have the following lemma from [76].

Lemma12 [76] Let H = C. A set F with M ≥ 4s − 2 generically chosen vectors in CN

succeeds in phase retrieval of s-sparse vector x.

By generic, we mean an open dense subset of the set of all M−element frames in HN [75]. To

the best of our knowledge, the necessary bound for complex case has not yet been proved. It

is conjectured that M ≥ 4N − 4 (or M ≥ 4s − 2) is necessary for recovering arbitrary x (or

s-sparse) in the complex case [76, 78]. It should be noticed that the generic measurement vectors

F considered in [75, 76] may not be Fourier. Hence these necessary and sufficient conditions do

not necessarily apply to Fourier measurements.

4.2.3 Related Work with Fourier Measurements

We first define a general model for Fourier measurement vector as follows.

Definition10 (General Fourier Measurement:) A General Fourier Measurement (GFM) vector
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is defined as

fi = α [zn1
i , z

n2
i , · · · , z

nN
i ]T (4.4)

where zi is on the unit circle in complex plane, α is a normalizing constant and N = {n1, n2,

· · · , nN} are non-negative integers.

Typically, two general kinds of Fourier measurement vectors are considered in literature.

In [77, 81, 92, 93, 95, 164], the measurement vectors are drawn from conventional DFT matrix.

Specifically, in this case, N = {0, 1, · · · , N − 1}, α = N−1/2 and zi = ej2π(i−1)/N . On the other

hand, in [84, 85], the authors transform the phase retrieval problem to that of recovering x from

its autocorrelation vector rx ∈ C2N−1 defined as

[rx]l =

min{N,N−l}∑
k=max{1,1−l}

xkx̄k+l 0 ≤ |l| ≤ N − 1 (4.5)

where x̄ denotes the complex conjugate of x. An important observation in this regard is even

when x is s-sparse, rx may not be sparse. In order to impose a required sparsity on rx (so that l1

minimization can be applied on rx to recover the support) the so-called collision-free condition is

proposed.

Definition11 (Collision Free Condition) [84,85] A sparse vector x has collision free property if

for pairs of distinct entries (p, q), (m,n) in the support of x, p−q 6= m−n unless (p, q) = (m,n).

Given any set of distinct integers of size s, we have a total of (s2 − s)/2 positive pair-wise

differences. So if the dimension of x is N , the upper bound for s such that an s-sparse x satisfies

collision-free condition is given by s ≤ χN , (1 +
√

8N − 7)/2. With collision-free property, rx

is guaranteed to have sparsity s2 − s+ 1 [84] and compressed sensing based recovery algorithms

can be used with M = O(s2) measurements. In a later section, we show by simulations that in
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practice, collision-free property holds only for a small range of values for s, and the upper limit

can be very small compared to N . This prompted us to find another way to reconstruct a sparse

x (without any restriction on the sparsity s) given the quadratic measurement model (4.3) and

develop the main results of this chapter.

4.3 Nested Fourier Measurements and Phase Retrieval

4.3.1 Nested Fourier Measurement and Decoupling

We know that for a sparse x, its autocorrelation sequence rx may not be sparse. One

way to enforce sparsity on rx is to impose a collision-free condition (see Def. 11) on the indices

of support. However, the collision-free condition only holds for small values of s. As a major

contribution of this paper, we now propose a Fourier type measurement model namely the Partial

Nested Fourier Sampler (PNFS), built upon the nested sampling idea in [2,10,45], that completely

avoids the need for a collision-free condition and provides good performance guarantees.

Definition12 (Partial Nested Fourier Sampler:) We define a Partial Nested Fourier Sampler

(PNFS) as a special form of GFM vector defined in (4.4) whereN = {1, 2, · · · , N − 1, 2N − 2},

α = (4N − 5)−1/4 and zi = ej2π(i−1)/(4N−5).

Substituting this choice of fi in (4.3) and combining identical columns, we have

y2
i =

1√
4N − 5

[
z
−(2N−3)
i , · · · , z−1

i , 1, z1
i , · · · , z2N−3

i

]
x̃ (4.6)
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where x̃ ∈ C4N−5 is the corresponding rearranged version of Vec(xxH) with following form

[x̃]m =



∑N
k=1 |xk|2 m = 0

∑N−1−m
k=1 xkx̄k+m m = 1, 2, · · · , N − 2

x2N−2−mx̄N N − 1 ≤ m ≤ 2N − 3

[x̃]−m m < 0

(4.7)

where we re-number the indices of x̃ in range [−2N + 3, 2N − 3] for simplicity and clearance.

Decoupling Effect And Basics of Recovery: The most important property of PNFS is that for

|m| ≥ N − 1, [x̃]m only consists of single terms instead of a sum. Moreover, each of these terms

has a constant factor xN . The important advantage of decoupled products is that if xN is

nonzero, the sparsity of the sub-vector consisting of x̃ for |m| ≥ N − 1 reveals the support

of x. In addition, for s ≥ 2, [x̃]m will vanish for |m| ≥ N − 1 if and only if xN = 0. However,

without any prior knowledge about the support of x, there is no guarantee that xN is nonzero and

for this reason, we define the following column-permuted version of the PNFS sampling vector fi

as

f
(l)
i =

1
4
√

4N − 5

[
z1
i , z

2
i , · · · , zN−1

i , z2N−2
i

]
Π(l) (4.8)

where zi = ej2π(i−1)/(4N−5) and Π(l) is a permuting matrix such that the vector x(l) = Π(l)x

satisfies [x(l)]l = xN , [x
(l)]N = xl, [x

(l)]i = xi, i 6= l, N . The basic idea of using the permuted

PNFS vector is that for some l, we can ensure that [x(l)]N is non zero. For that choice of l, we

can then recover x̃(l) from measurements y(l)
i with model (5.1), and use the decoupled entries
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(guaranteed to be non zero since [x(l)]N 6= 0) to estimate the support of x(l) (or equivalently of

x) and the corresponding non zero elements (upto a global phase ambiguity). For each l, we

collect M̃ phaseless measurements y(l)
i , i = 1, 2, · · · , M̃ using the permuted PNFS vector (4.8)

and obtain

ỹ(l) = Zx̃(l) (4.9)

where [ỹ(l)]i = (y
(l)
i )2, [Z]i,m = 1√

4N−5
ej2π

(i−1)m
4N−5 , 1 ≤ i ≤ M̃, −2N + 3 ≤ m ≤ 2N − 3. It is

easy to see that Z is invertible if M̃ = 4N − 5 and x̃(l) can be recovered from ỹ(l).

4.3.2 Iterative Algorithm

We now describe the details of an iterative algorithm that uses the permuted PNFS vectors

iteratively to find a non zero entry of x. Noting that [x̃(l)]m will be all zero for |m| ≥ N − 1 if

and only if the last entry is non zero given s ≥ 2, the algorithm starts with l = N and reduces l in

each step until it finds a non zero xl. It then successively recovers x̃(l) and x upto a global phase.

Table 1 summarizes the algorithm

4.3.3 Performance Guarantees of the Iterative Algorithm

In this section, we will show x# is a valid estimation of x provided the iterative algorithm

is feasible. Obviously, the number of measurements needed is determined by the smallest index

lmin such that xlmin is non zero in Table 1. We define best case for lmin = N and worst case for

lmin = s. Formally, we have the following result

Theorem15 Let x ∈ CN be s-sparse with s ≥ 3. The estimate x# produced by the iterative

algorithm described in Table 1 is equal to x (in the sense of C\T) if the total number of phaseless

measurements M equals 4N − 5 for the best case and (N − s+ 1)(4N − 5) for the worst case.
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Table 4.1: Iterative Algorithm for Phase Retrieval using PNFS

Input: data x Output: estimation x#

1. Initialization: l = N

2. Loop:

(a) Step S1: Using the permuted PNFS vectors (4.8), obtain
4N − 5 phaseless measurements

y
(l)
i = | < x, f

(l)
i > |, i = 1, 2, · · · 4N − 5

Using (4.9), recover x̃(l) = Z−1ỹ(l)

(b) Step S2: If [x̃(l)]m = 0,∀|m| ≥ N − 1, declare xl = 0.
Assign l→ l − 1 and go back to Step S1.
If [x̃(l)]m 6= 0 for some m with |m| ≥ N − 1, proceed to the
recovery stage.

3. Recovery:

(a) Choose m∗ ∈ {1, 2, · · · , N − 2} such that [x̃(l)]m∗ 6= 0 and
compute

|x(l)
N | =

√
[x̃(l)]m∗/β

& β =
∑N−1−m∗

k=1 [x̃(l)]2N−2−k[x̃(l)]2N−2−k−m∗

(b) Obtain estimate x# as

[x#]q =


(

[x̃(l)]2N−2−q

|x(l)N |

)
q 6= {l, N}

|x(l)
N | q = l

[x̃(l)]2N−2−l

|x(l)N |
q = N
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Proof. It is easy to see that if x has sparsity s, the total number of iterations required by the

algorithm is 1 in the best case (i.e. when xN 6= 0) and N − s + 1 in the worst case. In each

iteration, we collect 4N − 5 phaseless measurements y(l)
i , and hence we need to collect 4N − 5

measurements in the best case and (4N−5)(N−s+1) measurements in the worst case. The final

step is then to show the correctness of this algorithms in recovering x upto a global phase. We

prove correctness for the case when the algorithm terminates in 1 step (i.e. when xN is non zero)

since the proof remains identical for other cases just by exchanging l and N . The first idea in

the proof is to show the existence of m∗ such that [x̃(l)]m∗ 6= 0. Denote x̆ = [x1, x2, · · · , xN−1]T

and let rx̆ ∈ C2N−3 be the autocorrelation vector of x̆. Suppose m∗ does not exist, implying

[x̃]m = 0 for 1 ≤ |m| ≤ N − 2. Hence, [rx̆]n = γδ(n) where γ = [x̃]0 − |xN |2 and δ(n) is

Kronecker delta. This means that r̂x̆(ejω) ,
∑N−2

n=−N+2[rx̆]ne
−jωn is an all-pass filter. However,

r̂x̆(ejω) = |ˆ̆x(ejω)|2 where ˆ̆x(ejω) ,
∑N−2

n=−N+2[x̆]ne
−jωn. This implies ˆ̆x(ejω) is also an all-pass

filter. Since ˆ̆x(ejω) is an FIR filter, this is not possible unless we have [98]

[x̆]n = λδ(n− n0) (4.10)

for some n0 satisfying 1 ≤ n0 ≤ N − 1 and λ is a constant. However, since s ≥ 3, x̆ has at least

two non zero entries which contradicts (4.10). Therefore, the existence of m∗ is guaranteed. It is

then easy to see that x# is equal to x in sense of C\T. In particular, assuming lmin = N , we have

[x#]N =
√

[x̃]m∗/β = |xN |. Now, for 1 ≤ q ≤ N − 1, from (4.7), we have [x̃]2N−2−q = xqx̄N .

Therefore, [x#]q =
[x̃]2N−2−q
|xN |

= cxq where c = x̄N/|xN | is the global phase term. Note that this

iterative algorithm imposes no upper bound on s. We also have following corollary for non-sparse

x.

Corollary6 If x is not sparse (i.e. s = N ), the number of measurements needed for recovering

x is M = 4N − 5.
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4.4 Phase Retrieval with Prior Information on Support

It is straightforward to see that Theorem 15 is not efficient in recovering a sparse x since

the iterative algorithm does not fully exploit the sparsity of x. However, the result of Theorem

15 is still important for the following reasons. Firstly, Theorem 15 does not require any prior

knowledge of Supp(x) and it is valid for all s ≥ 3 (unlike the algorithms requiring collision-

free requirement). Secondly, for non-sparse x, 4N − 5 measurements needed by Theorem 15

is consistent with the universal lower bound 4N − 4 conjectured in literature for recovering

arbitrary x. Above all, the structure of (4.7) reveals the possibility for using l1 minimization on

the sub-vector consisting of decoupled elements.

In practice, we may assume some mild prior knowledge about the support of x. For

instance, in [93], the authors assume the first entry of x is nonzero. Similarly, in this section, we

assume to know any one index in the support of x. Without loss of generality, we may assume

that xN is nonzero (since, by using a permuting matrix for the known entry, we can ensure xN to

be non zero).

4.4.1 A Cancellation Based Approach for Sparse Recovery

It can be seen from (4.7) that the subvector of x̃ indexed by 1 ≤ |m| ≤ N − 2 is not

necessarily sparse. We propose a novel variation of the basic PNFS to cancel out this “non-

sparse” segment and produce a difference-vector that is guaranteed to have the same sparsity as

that of x. Assuming that xN is nonzero, we propose to use two sets of measurements, ỹ, ỹ′ ∈ CM̃

as

[ỹ]i = | < x, fi > |2 (4.11)

[ỹ′]i = | < x, f
′

i > |2 (4.12)
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where fi denotes the PNFS vector (as in Def. 12) and f
′
i is defined as

f
′

i =
1

4
√

4N − 5

[
z1
i , z

2
i , · · · , zN−1

i , 0
]

(4.13)

where zi = ej2π(i−1)/(4N−5). Denoting ŷ = ỹ − ỹ′, we have

ŷ = Zx̂ (4.14)

where

[x̂]m =



|xN |2 m = 0

0 m = 1, 2, · · · , N − 2

x2N−2−mx̄N m = N − 1, · · · , 2N − 3

[x̂]−m m < 0

and Z ∈ CM̃,4N−5 defined as in (4.9). Notice that x̃ has sparsity 2s− 1 and support of x (except

the N th entry) is identical to that of the subvector of x̃ indexed by m = N − 1, · · · , 2N − 3. We

next discuss how large M̃ should be for perfectly recovering x̂ from ŷ.

4.4.2 Number of Measurements

We can recover x̂ by solving the l1 minimization:

min
θ
‖θ‖1 subject to ŷ = Zθ (P1)
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The vector x can then be recovered from the solution of (P1). The following theorem establishes

the total number of measurements sufficient to recover x from the proposed cancellation based

approach.

Theorem16 Let x ∈ CN be a sparse vector with s non zero elements and xN 6= 0. Suppose we

construct the difference measurement vector ŷ as in (4.14) using M̃ pairs of sampling vectors

{fik , f
′
ik
}M̃k=1 where indices ik are selected uniformly at random between 1 and 4N − 5. Then x

can be recovered (in sense of C \ T) by solving (P1) if M̃ = CslogN for some constant C.

Proof. Since the indices {ik}M̃k=1 are chosen uniformly at random between 1 and 4N − 5 to

construct the measurement vectors f
′
ik

and fik , the resulting matrix Z in (4.14) consists of M̃ rows

of a DFT matrix (of dimension 4N−5) which are chosen uniformly at random. Well known results

from compressed sensing using random Fourier matrices [22, 84] guarantee that the solution to

(P1) will be x̂ with high probability, provided the total number of measurements 2M̃ satisfies

M̃ = Cŝ logN where ŝ = 2s − 1 is the sparsity of x̂. After recovering x̂, x#
N = |xN | can be

obtained by observing [x̂]0. The remaining entries can then be estimated as x#
q = [x̂]2N−2−q/|x#

N |.

The validity of estimation x# can be proved in the same way as in proof of Theorem 15.

4.5 Sparse Phase Retrieval Using Randomized PNFS

We introduce a randomized version of the PNFS for sparse phase retrieval as follows:

Definition13 (Randomized PNFS) A Randomized PNFS (R-PNFS) consists of measurement

vectors

f (R-PNFS)
i = [IN,N v] f

(N+1)
i

where v ∈ CN is a random vector with independent entries, and f
(N+1)
i is defined in Def.12 for

dimension N + 1.
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Given the unknown signal x? ∈ CN , the phaseless measurement obtained using a R-PNFS

vector can be expressed as

yi =
∣∣∣(fR-PNFS

i

)H
x?
∣∣∣2 + ni =

∣∣∣f (N+1)
i

H

 x?

vHx?

 ∣∣∣2 + ni (4.15)

The basic idea of R-PNFS is to concatenate an extra element xN+1 = vHx? to form the vector

x = [x?T xN+1]T , and then measure x using PNFS for dimension N + 1. Since the elements of

v are independent random variables, it follows that the last entry of x satisfies xN+1 6= 0 with

probability 1. This enables us to devise an efficient cancellation based algorithm for sparse phase

retrieval as follows.

4.5.1 A Cancellation Based Algorithm for R-PNFS

We measure a sparse x? (with s non zero elements) using two sets of PNFS samplers,

and perform sparse recovery on the difference between the two measurements. This enables us

to “cancel” out certain non-zero terms in the autocorrelation of x? and retain only “decoupled

terms” (singletons) which have a maximum sparsity of 2s+ 1. We begin by introducing a second

sampling vector f̃
(N+1)
i ∈ CN as

f̃
(N+1)
i = [IN,N 0] f

(N+1)
i

This sampler can be thought of as a masked version of the PNFS sampler defined in Def. 12.

Following are the main steps of the algorithm:
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1. Collect two sets of (noisy) phaseless measurements y(1),y(2) ∈ CM̃ as

y
(1)
i =

∣∣∣(fR-PNFS
i

)H
x?
∣∣∣2 + n

(1)
i

y
(2)
i =

∣∣∣(f̃
(N+1)
i

)H
x?
∣∣∣2 + n

(2)
i (4.16)

We assume the noise is bounded, i.e. |n(k)
i | ≤ η, k = 1, 2. Notice that we collect a total of

M = 2M̃ measurements.

2. Compute the difference measurement ∆y = y(1) − y(2). The key step is to notice that

∆y = Zx̂ + ∆n (4.17)

where the unknown vector x̂ ∈ C4N−1 consists only of “decoupled” quadratic terms

(singletons of the form x̄N+1xi, i = 1, 2, · · · , N ) given by

[x̂]m =



|xN+1|2 m = 0

0 m = 1, 2, · · · , N − 1

x2N−mx̄N+1 m = N, · · · , 2N − 1

[x̂]−m m < 0

Since xN+1 = vHx? where v is a random vector with independent entries, it holds that

xN+1 6= 0 with probability 1. Hence x̂ has exactly 2s + 1 non zero elements. We also

have ∆n = n(1) − n(2), and the matrix Z ∈ CM̃,4N−1 is a partial DFT matrix with

[Z]i,k = 1√
4N−1

ej2π
nik

4N−1 .
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3. Obtain an estimate of x̂ as the solution to the following l1-minimization problem:

min
θ
‖θ‖1 subject to ‖∆y − Zθ‖2 ≤ η

√
M̃ (P1)

4. Given the solution x̂# to (P1), the estimate for each entry of x? is given by x#
q =

[x̂#]2N−q/|
√

[x̂#]0| for 1 ≤ q ≤ N and x#
N+1 = |

√
[x̂#]0|.

4.5.2 Stability of Noisy Phase Retrieval with R-PNFS

To analyze the performance of the proposed algorithm, we use the following lemma

from [96] which is tailored for the form (P1):

Lemma13 [96] Consider a sparse x̂ ∈ C4N−1 with 2s+ 1 non zero elements and Z ∈ CM̃,4N−1

be the DFT matrix with M̃ rows whose indices are chosen uniformly at random from [0, 4N − 2].

If M̃ ≥ c0(2s+ 1) log(4N − 1) log(ε−1), then with probability at least 1− ε, the solution x̂# of

(P1) satisfies

‖x̂− x̂#‖2 ≤ c1

√
2s+ 1η (4.18)

where c0, c1 are universal constants.

Theorem17 Given a sparse x? ∈ CN (with s non zeros), and the measurement vector v ∈ CN ,

consider the measurement model (4.16) where the indices ni of f
(N+1)
i , i = 1, 2 · · · ,M are

chosen uniformly at random from [0, 4N − 2]. If M̃ ≥ c0(2s + 1) log(4N − 1) log(ε−1) and
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|xN+1|2 > c1

√
2s+ 1η, with probability at least 1−ε, the estimates x#

q of x?q, 1 ≤ q ≤ N , satisfy

N∑
q=1

|x?q − ejφ0x#
q | ≤

c1

√
(2s+ 1)(4N − 1)√

|xN+1|2 − c1

√
2s+ 1η

η

+‖x?‖1

 1√
1− c1

√
2s+1η
|xN+1|2

− 1

 (4.19)

where xN+1 = vHx?, φ0 = argφ∈[0,2π)xN+1/|xN+1|, and c0, c1 are universal constants given in

Lemma 13.

Proof. According to the proposed algorithm, the estimate for each entry of x? is given by

x#
q = [x̂#]2N−q/x

#
N+1 for 1 ≤ q ≤ N . Then, we have

|x?q − ejφ0x#
q | = |

xN+1

|xN+1|

(
[x̂]2N−q
|xN+1|

− [x̂#]2N−q

|x#
N+1|

)
|

≤ β
ε2N−q
|xN+1|

+ |1− β||x?q| (4.20)

where ε2N−q , |[x̂]2N−q − [x̂#]2N−q| and β = |xN+1|
|x#N+1|

. It follows that

N∑
q=1

|x?q − ejφ0x#
q | ≤ β

∑N
q=1 ε2N−q

|xN+1|
+ |1− β|

N∑
q=1

|x?q|

≤ β
‖x̂− x̂#‖1

|xN+1|
+ |1− β|‖x?‖1 (4.21)

Since ‖x̂− x̂#‖1 ≤
√

4N − 1‖x̂− x̂#‖2, Lemma 13 gives us

N∑
q=1

|x?q − ejφ0x#
q |

≤ c1β

√
(2s+ 1)(4N − 1)η

|xN+1|
+ |1− β|‖x?‖1 (4.22)
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Since [x̂]0 = |xN+1|2, it follows from Lemma 1 that |1 − 1
β2 | ≤ c1

√
2s+1η
|xN+1|2

. If |xN+1|2 >

c1

√
2s+ 1η, we have

1− c1

√
2s+ 1η

|xN+1|2
≤ 1

β2
≤ 1 + c1

√
2s+ 1η

|xN+1|2
(4.23)

The proof completes by plugging (4.23) in (4.22).

Remark 1. In absence of noise, setting η = 0 in (4.19) implies exact recovery of x? with a

global phase ambiguity φ0 which is explicitly given. This is achieved using a total of M = 2M̃

measurements, where M̃ = O(s logN). Hence, our algorithm recovers x? with an order-wise

minimal (up to a logarithmic factor) number of measurements.

Remark 2. Unlike “lifting” based approaches [77, 90], our method is based on l1-minimization

with only O(N) variables. This implies significant computational saving and allows faster

implementation.

4.6 Numerical Results

4.6.1 Phase Retrieval with Prior Knowledge

In Fig. 4.1, we simulate the probability of “no-collision” as a function of sparsity s with

fixed ambient data dimension N = 10000. For each run and sparsity s, we randomly choose the

support and test whether it satisfies the collision-free property. The probability of collision-free

is computed by averaging over 2000 such random runs. It can be seen that for s much smaller

than the ideal upper bound χN ≈ 142, the probability of “no-collision” goes to zero. As a

consequence, the ACF based method has undesirable restriction on the allowable sparsity. To
validate the theoretical claims of this paper, we now focus on Theorem 16 because the correctness

of Theorem 15 can be easily verified in a deterministic way. We choose N = 150 and vary
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Figure 4.1: The probability of “no-collision” as a function of sparsity s. The ambient
dimension is N = 10000 and the result is averaged over 2000 runs.

the sparsity s. Nonzero part of x is generated with complex Gaussian distribution. We assume

xN 6= 0 and obtain the estimate x# of x by constructing the difference vector ŷ and solving

(P1) with CVX tool for MATLAB. The global phase ambiguity is ρ = xN/x
#
N . Using ρ we can

compute the entry-wise estimation error as |xi − ρx#
i | for 1 ≤ i ≤ N . In Fig. 4.2, we show the

phase transition plot of Theorem 16. We declare the recovery is successful if |xi − ρx#
i | ≤ 10−6

for all entries and failed otherwise. For each pair (M, s), we generate random s-sparse complex

signal x and compute the probability of success over 100 runs. As a reference, we also draw

the line representing 3slogN where the choice of 3 is for ease of comparison. We find that the

simulation matches the claim given in the theorem regarding the sufficient measurement size

being O(slogN).

4.6.2 Phase Retrieval with R-PNFS

We consider a complex valued signal x? ∈ CN with s non zero elements, and ‖x?‖2 = 1.

Both the nonzero indices and amplitudes are generated randomly.

The phase transition plots of the proposed method for both noiseless and noisy signal

models is depicted in Fig.4.3. Here N = 100. In the noiseless setting, for each M and s, we

declare success if maxq |x?q − ejφ0x#
q | < 10−6. For the noisy model, we assume the entry wise

noise to be upper bounded by ε = 0.01 and plot the reconstruction error 1
N

∑N
q=1 |x?q − ejφ0x#

q |.

We also superpose the line corresponding to M = 3s logN to demonstrate that the proposed
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Figure 4.2: The phase transition plot for Theorem 16. M = 2M̃ is the total number
of measurements needed and N = 150. The red line represents 3slogN . The color bar
denotes probability of success from 0 to 1. The white cells denote successful recoveries
(i.e. |xi − ρx#

i | ≤ 10−6 for all entries) and black cells denote failures.The results are
averaged over 100 runs.

10 20 30 40 50

50

100

150

200

250

300

350

m
e
a
s
u
re

m
e
n
t 
n
u
m

b
e
r 

M
 

sparsity s 

 

 

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

50

100

150

200

250

300

m
e
a
s
u
re

m
e
n
t 
n
u
m

b
e
r 

M
 

sparsity s 

 

 

0.01

0.02

0.03

0.04

0.05

0.06

Figure 4.3: (Left) Phase transition for noiseless case, averaged over 100 runs with
N = 150. White and black boxes denote success rates of 1 and 0 respectively. (Right)
Phase transition for noisy case averaged over 50 runs with N = 100, and entry-wise
noise bounded by 0.01. Each box denotes 1

N

∑N
q=1 |x?q−ejφ0x#

q |. The red line represents
M = 3s logN for both.
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approach recovers the true x? with M = O(s logN) measurements.

In Fig. 4.4, we show an example of sparse phase retrieval using the proposed R-PNFS

sampler and cancellation based algorithm. Here N = 350, s = 6,M = 100. It can be seen that

the proposed technique recovers the true x? faithfully up to a global phase ambiguity, the value of

which is easily obtained from the complex plane representation.
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Figure 4.4: (Top left) Amplitudes of the original data. (Top right) The complex plane
representation of the nonzero part of the original data.(Bottom left) Amplitudes of the
recovered data. (Bottom right) The complex plane representation of the recovered data.
Here, N=350, s=6 and M = 100.

4.7 Conclusion

We consider the sparse phase retrieval problem using a newly introduced class of Partial

Nested Fourier Sampler (PNFS). The PNFS avoids the need for the so-called “collision-free”

condition required by most existing work in sparse phase retrieval and proposes a simple and

effective algorithm for reconstructing the sparse signal using only O(s logN) measurements. A
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key contribution of this chapter is to exploit and extend the idea of nested sampling to design

general Fourier measurements for phase retrieval which is simple and applicable for most cases.

If no prior knowledge is available, we proposed a new structured sampling scheme, namely

the Randomized Partial Nested Fourier Sampler (R-PNFS), along with a novel cancellation

based algorithm which can provably recover sparse complex valued signals from their amplitude

measurements. The proposed technique requires only M = O(s logN) measurements which is

near-optimal compared to the underlying degree of freedom of the sparse signal. We also showed

that under mild conditions, the approach is stable to bounded measurement noise.

Chapter 4, in part, is a reprint of the material as it appears in the papers:

• H. Qiao and P. Pal, “ Sparse Phase Retrieval with Near Minimal Measurements: A Struc-

tured Sampling Based Approach”, in the Proceedings of 41st IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 2016.

• H. Qiao and P. Pal, “Sparse Phase Retrieval Using Partial Nested Fourier Samplers, in the

Proceedings of IEEE Global Conference on Signal and Information Processing (GlobalSIP),

Orlando, FL, USA, 2015.

The dissertation author was the primary investigator and author of these papers.
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Chapter 5

Coarray Interpolation, Sparse Bilinear

Problem with Non-Negative Constraint

and Nested Array based Kriging

5.1 Introduction

In this chapter, we will discuss three separate but implicitly related problems. Array

interpolation is of great importance in many applications especially in the case of missing data

and failing sensor. Previous study on array interpolation is mainly in physical domain and an

optimal linear mapping is constructed to interpolate the physical sensors. However, coarray

interpolation is in the correlation domain that the second-order statistic of the signal is explicitly

exploited. Moreover, coarray interpolation is by nature a non-linear mapping of the physical

measurements. The key constraint for stable coarray interpolation is the positive semidefinite of

the corresponding Toeplitz matrix.

We will next study the problem of sparse bilinear problem with non-negative constraint.

For the first time in literature, we show that it is possible to estimate the true solutions up to a
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global scaling factor when there are more unknowns than the number of equations. We exactly

characterize the set of ambiguous solutions and state the necessary and sufficient conditions for

exact recovery.

in the end, we will consider the application of nested array idea to an important geostatis-

tical problem, Kriging. By assuming the field of interest is stationary, we relate the compressive

Kriging to Toeplitz covariance matrix estimation using nested array. We propose a robustness

analysis based on total least squares.

The common underlying characteristic of these problems is the non-negative constraint.

By studying these three different problems, we again demonstrate the fact that non-negative

constraints are crucial for stable recoveries in variant inverse problems.

5.2 Unified Analysis of Co-Array Interpolation with Applica-

tion in Direction-of-Arrival Estimation

This section considers the problem of co-array interpolation for direction-of-arrival (DOA)

estimation with sparse non-uniform arrays. By utilizing the much longer difference co-array

associated with these arrays, it is possible to perform DOA estimation of more sources than

sensors. Since the co-array may contain holes (or missing lags), interpolation algorithms have

been proposed to fully utilize the remaining elements of the co-array beyond that captured in

the contiguous ULA segment. However, the quality and stability of interpolation performed by

such algorithms (especially in presence of modeling errors) have not been analyzed. This paper

provides a unified analysis of co-array interpolation algorithms to bound the interpolation error in

terms of modeling errors. The results are universal in the sense that they can be applied to analyze

any algorithm that utilizes the positive semidefinite (PSD) structure of the interpolated covariance

matrix. The general framework is then applied to analyze specific algorithms and simulations are

conducted to study their interpolation errors.
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5.2.1 Introduction

Direction-of-arrival (DOA) estimation of energy-emitting sources is a central problem

arising in diverse applications such as radar, sonar, medical imaging and communications [49].

Sparse non-uniform arrays such as nested, coprime and minimum redundancy arrays are known

to offer distinct advantages over traditionally used Uniform Linear Arrays (ULA) owing to their

ability to resolve more sources than sensors [17, 45, 204]. The basic idea is to create a longer

virtual difference co-array [17] by judicious array design, whose degrees-of-freedom (DOF) can

be exploited by well-designed algorithms such as Co-array MUSIC [19, 88].

For many non uniform arrays (such as coprime arrays), the difference co-array is not

continuous and has holes or missing lags. Since co-array MUSIC algorithms are capable of only

exploiting the DOF of a continuous ULA segment of the co-array, several array interpolation

techniques such as positive definite Toeplitz completion [225], co-array interpolation/extrapolation

[226,227], and nuclear norm minimization [228] have been proposed to interpolate the correlation

values at the missing lags and use the interpolated co-array for DOA estimation.

In this section, we propose a unified framework for analyzing co-array interpolation

algorithms by developing an explicit upper bound on the interpolation error, in terms of the

measurement error. Our analysis framework is very generic and can be applied to any algorithm

that utilizes the positive semidefinite (PSD) structure of the interpolated covariance matrix. As

special cases, we use this general framework to develop algorithm-specific error bounds for the

algorithms in [225, 228]. Our results establish stability of these interpolation algorithms with

respect to modeling errors (such as that due to finite snapshot averaging) and demonstrate that

perfect interpolation is possible as the error decays to zero.

Related Work. While the performance of traditional array interpolation techniques have been

analyzed in the past in terms of bias and mean squared error [177,178], these methods are primarily

based on interpolating the physical array using linear transforms, and cannot be used for co-array

interpolation since the co-array is a non-linear function (Kronecked product) of the physical array.
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On the other hand, interpolation algorithms that directly work in the co-array domain [225, 228],

have not been analyzed. In this paper, we bridge this gap by providing a unified analysis of

co-array interpolation algorithms. Our analysis is based on recently developed tools from super

resolution theory and positive semidefinite Toeplitz covariance compression [4, 6, 59, 141, 142].

5.2.2 Co-array based signal model and need for interpolation

Consider D narrowband statistically uncorrelated sources impinging on a linear sensor

array from directions θ̄i, 1 ≤ i ≤ D. The array contains K sensors with the kth sensor located

at zkd, where zk is an integer and d = λ/2 (λ being the carrier wavelength of the narrowband

sources). The signals received at the K sensors are given by

x =
D∑
i=1

ciaS(θi) + nS (5.1)

where ci denotes the amplitude of each source (assumed to be zero-mean random variables) and

aS(θi) ∈ CK represents the steering vector corresponding to the normalized DOA θi ∈ T =

[−1/2, 1/2], which is given by θi = (d/λ) sin θ̄i (θ̄i being the DOA satisfying θ̄i ∈ [−π/2, π/2]).

The steering vector satisfies [aS(θi)]k = [ej2πzkθi ]. Here, nS represents zero-mean additive noise

at K sensors, statistically uncorrelated with the source amplitudes ci. The statistical assumptions

on source signal and noise are summarized as [49, 228]

E[c∗i cj] = σ2
i δi,j,E[c∗inS] = 0,E[nSn

H
S ] = σ2I

Under the above assumptions, the correlation matrix RS ∈ CK×K of the received signals is given

by

RS =
D∑
i=1

σ2
i aS(θi)a

H
S (θi) + σ2I (5.2)
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Denoting S = {zk, 1 ≤ k ≤ K} as the set of sensor positions (normalized with respect to d), its

difference co-array is defined as [45]

D , {zk − zj|zk, zj ∈ S}

Let us associate a vector aD with this difference set, such that [aD(θi)]m = [ej2πnmθi ], nm ∈ D.

The vectorized version of (5.2), after removal of repeated rows, is given by

rD =
D∑
i=1

σ2
i aD(θi) + σ2e0 (5.3)

where e0 has zero entries everywhere except at the location corresponding to the lag 0 [88, 228].

Due to similarities between (5.3) and (5.1), we can treat (5.3) as the signal received at a virtual

sensor array with sensors positions given by D.

Depending on the geometry of S, the difference co-array D may be continuous (i.e. it

can itself be a uniform linear array or a ULA, consisting of only consecutive integers), or it may

contain holes. The former is known as a fully augmentable array and the latter is called a partially

augmentable array [225]. Following [228], we associate the following two uniform linear arrays

U and V with D as follows:

Definition14 [228] Let U be the maximum ULA contained in D such that

U = {m|{−|m|, · · · ,−1, 0, 1, · · · , |m|} ⊆ D}

and V be the smallest ULA containing D such that V = {m|min(D) ≤ m ≤ max(D)}.

As an example, let S = {0, 1, 2, 6}, then D = {−6,−5,−4,−2,−1, 0, 1, 2, 4, 5, 6}, U =

{−2,−1, 0, 1, 2} and V = {−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6}. For fully augmentable

arrays, we have U = D = V. Examples include ULA, nested array [45] and minimum redundancy
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array [204]. On the other hand, for partially augmentable arrays, we have U ⊂ D ⊂ V. Coprime

array [17] is an example of partially augmentable array.

5.2.3 Co-Array MUSIC for Partially Augmentable Arrays

Co-array based DOA estimation algorithms (such as co-array MUSIC [19]) can utilize

the degrees of freedom (given by the cardinality) in the virtual ULA segment U contained in D,

and for well-designed arrays, it is possible to resolve more sources than sensors. For nested and

coprime arrays with K sensors, |U| = O(K2) and hence it is possible to resolve O(K2) sources

using only K sensors.

For partially augmentable arrays, the virtual ULA V is strictly larger than U. However, co-

array MUSIC [19] cannot directly utilize the DOF in V since certain entries of V do not appear in

D. To address this issue, a preprocessing step based on interpolation has been suggested [225,228].

Similar to rD, let rU be the sub-vector of rD, containing the correlation values evaluated at lags

given by U, and rV be a vector that consists of correlation values at lags given by the set V.

Co-array MUSIC can be applied on rV to fully exploit the DOF of partially augmentable arrays

(provided rV can be estimated using rD).

5.2.4 Interpolation Algorithms

Let r̃D and r̃U be the corresponding estimates of rD and rU computed using finite number

of snapshots. In particular, r̃U is a subvector of r̃D and

r̃D = rD + wD (5.4)

where wD captures the finite-snapshot estimation error. We now briefly describe two algorithms,

one based on maximum entropy method [225], and the other based on nuclear norm minimization

[228] that aim to estimate rV from r̃D. For convenience, we denote U+,V+,D+ as the non-
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negative subsets of U,V,D respectively, and let T (v) be the Hermitian symmetric Toeplitz matrix

with v as the first column.

(a) Maximum Entropy Method:

In [225], the authors used maximum entropy (ME) as a criterion for extrapolation of correlation at

lags in V outside the range of D. The algorithm consists of two steps. Firstly, given r̃U+ , it aims

to find the closest positive semidefinite (PSD) Toeplitz matrix T (rME
U+ ) fitting the data as follows:

rME
U+ = arg min

xU+
‖xU+ − r̃U+‖2 (ME-1)

s.t. T (xU+) � 0 (5.5)

In the next step, the vector of autocorrelation values rME
V+ (extrapolated at lags in V+), is computed

as

rME
V+ = arg max

xV+
det(T (xV+)) (ME-2)

s.t. [T (xV+)]n,1 = [rME
U+ ]n, n ∈ U+

‖[T (xV+)]D+\U+,1 − r̃D+\U+‖2 ≤ ε1,

T (xV+) � 0 (5.6)

Here ε1 is a parameter that can be tuned to ensure non-empty feasible set. In particular it can be

made equal to ‖wD+\U+‖2. Co-array MUSIC can be finally applied on T (rME
V+ ) to perform DOA

estimation using the DOF of V. Notice that the ME method utilizes PSD constraint in both steps

so that the Toeplitz matrix constructed using the extrapolated values continues to be PSD.

(b) Nuclear Norm Minimization:

In [228], the authors assumed that the desired covariance matrix T (rV+) exhibits low rank and

proposed to minimize its nuclear norm (as a surrogate for rank) to perform interpolation. In

its original form, the algorithm does not impose any PSD constraint on the solution. Since
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our analysis framework will explicitly use PSD constraint, we consider the following modified

problem instead which uses PSD constraint:

rNUCV+ = arg min
x̂V
‖T (x̂V+)‖∗ (NUC-PSD)

s.t. ‖[T (x̂V+)]U+,1 − r̃U+‖2 ≤ ε

‖[T (x̂V+)]D+\U+,1 − r̃D+\U+‖2 ≤ ε̃

T (x̂V+) � 0

where ε, ε̃ are parameters (dependent on estimation error) to ensure that (NUC-PSD) feasible (i.e.

so that the true solution is contained in the feasible set).

5.2.5 A Unified Analysis of Extrapolation Error

For notational simplicity, let rn denote the nth entry of rV+ . Then, using the representation

(5.3), the desired value of rn is given by

rn =
D∑
i=1

σ2
i e
j2πnθi + σ2δ(n) n ∈ V+

Let r#
V+ denote any estimate of rV+ such that

T (r#
V+) � 0 (5.7)

Notice that this automatically implies T (r#
U+) � 0. We now present a fundamental result, upper

bounding the extrapolation error |r#
n − rn| (for any missing or unobserved lag n outside the range

of D) in terms of the estimation error in the correlation values for the lags in D. The proof follows

from a closely related lemma in [4,6]. The stability analysis requires a separation condition on the

true directions and we define ρ(·, ·) as the distance function in wraparound manner over T [141].
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Theorem18 Let r#
V+ denote any estimate of rV+ such that (5.7) holds. If the true DOAs {θl}Dl=1

in (5.2) satisfy

min
p6=q

ρ(θp, θq) > 4/|U+| (5.8)

and |U+| > 256, then there exist positive constants c̄1, c̄2, c̄3, c̄4 such that for |U+| ≤ n < |V+|

|rn − r#
n | (5.9)

≤
(
c̄1 +

c̄2πn

|U+|
+
c̄3π

2n2

|U+|2

)(
c̄4Dξ

|U+|
+ [r#

U+ ]0 − [rU+ ]0

)
≤
(
c̄1 +

c̄2πn

|U+|
+
c̄3π

2n2

|U+|2

)(
c̄4Dξ

|U+|
+ ‖r#

U+ − rU+‖2

)

where ξ , supθ∈T |〈aU+(θ), r#
U+ − rU+〉|

Remark 1. Notice that the above bound on extrapolation error holds irrespective of any specific

algorithm used as long as the algorithm enforces the PSD constraint (5.7).

Remark 2. Theorem 26 indicates that the upper bound on extrapolation error bound (on missing

lags) is controlled by estimation error of the correlation supported on the observed set U+. Depend-

ing on the algorithm used, the extrapolation error can be magnified by a factor of O(n2/|U+|2)

(with respect to the estimation error on the observed entries in U). A similar quadratic scaling

between high frequency reconstruction error and low frequency observation error has also been

reported in [61, 141, 142] for super-resolution imaging using TV-norm based reconstruction.

5.2.6 Analysis of Specific Extrapolation Algorithms

We now apply the result from Theorem 26 to perform a unified analysis of the extrapolation

algorithms presented earlier.
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Analysis of Maximum Entropy Method

In this case, r#
V+ = rME

V+ and (ME-2) ensures that T (rME
V ) � 0. Hence Theorem 26

applies, and we have following result:

Theorem19 If the true DOAs {θl}Dl=1 satisfy

min
p6=q

ρ(θp, θq) > 4/|U+|

and |U+| > 256, then there exist positive constants c̄1, c̄2, c̄3, c̄4 such that for |U+| ≤ n < |V+|

and n /∈ D+, the solution rME
V+ to (ME-2) satisfies

|rn − rME
n | (5.10)

≤
(
c̄1 +

c̄2πn

|U+|
+
c̄3π

2n2

|U+|2

)(
c̄4D√
|U+|

+ 1

)
‖r#

U+ − rU+‖2

≤ 2

(
c̄1 +

c̄2πn

|U+|
+
c̄3π

2n2

|U+|2

)(
c̄4D√
|U+|

+ 1

)
‖wU+‖2

where wU+ denotes the finite-snapshot estimation error (supported on U+) as given in (5.4).

Proof. By triangle inequality, we have

ξ ≤ ‖aU+(θ)‖2‖r#
U+ − rU+‖2 =

√
|U+|‖r#

U+ − rU+‖2 (5.11)

From (ME-1), we have

‖r#
U+ − rU+‖2 ≤ ‖r#

U+ − r̃U+‖2 + ‖r̃U+ − rU+‖2

≤ 2‖r̃U+ − rU+‖2 = 2‖wU+‖2 (5.12)

Since T (rME
V+ ) � 0 and the separation condition is satisfied, we know from Theorem 26 that (5.9)
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holds. The proof then follows by substituting (5.11) and (5.12) in (5.9).

Nuclear Norm Minimization

In this case, r#
V+ = rNUCV+ and the PSD constraint ensures that T (rNUCV+ ) � 0. Then

Theorem 26 applies, leading to the following results

Theorem20 If the true DOAs {θl}Dl=1 satisfy

min
p6=q

ρ(θp, θq) > 4/|U+|

and |U+| > 256, then there exist positive constants c̄1, c̄2, c̄3, c̄4 such that for |U+| ≤ n < |V+|

and n /∈ D+,

|rn − rNUCn | (5.13)

≤
(
c̄1 +

c̄2πn

|U+|
+
c̄3π

2n2

|U+|2

)
c̄4D√
|U+|

(ε+ ‖wU+‖2)

Proof. For any feasible PSD Toeplitz matrix, we have

‖T (xV+)‖∗ = N [xV+ ]0

where [xV+ ]0 denotes the entry corresponding to the zero lag. Therefore, the minimizing solution

rNUCV+ of (NUC-PSD) satisfies [rNUCV+ ]0 ≤ [rV+ ]0. Also, notice that

‖rNUCU+ − rU+‖2 ≤ ‖rNUCU+ − r̃U+‖2 + ‖r̃U+ − rU+‖2

≤ ε+ ‖wU+‖2
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The proof completes by applying the triangle inequality (5.11) on ξ and using these results in (5.9).

Letting ε = ‖wU+‖2 ensures a non-empty feasible set in (NUC-PSD) and the bound in (5.13)

becomes proportional to ‖wU+‖2. Hence, using the universal result presented in Theorem 26, we

have derived upper bounds on the extrapolation error corresponding to (ME-2) and (NUC-PSD),

explicitly in terms of the finite snapshot error wU+ . These results indicate that the extrapolation

error for these algorithms goes to zero asymptotically in the number of snapshots (since ‖wU+‖2

tends to zero with increasing snapshots), indicating stability of extrapolation. To the best of our

knowledge, Theorems 19,20 present the first results on stability of both algorithms in terms of

extrapolation error.

5.2.7 Numerical Results

We follow the same experimental setting as in [228] which uses a coprime array with

sensors located at S = [0, 3, 5, 6, 9, 10, 12, 15, 20, 25]. In this case, |D| = 43, |U| = 35 and

|V| = 51. For a given number (D) of sources, we generate the true DOAs as θi = −0.4 + 0.8(n−

1)/(D− 1) for 1 ≤ n ≤ D [228]. We choose both signal and noise powers to be 1 (i.e. SNR of 0

dB). We estimate the correlation matrix at the output of the coprime array by averaging over L

snapshots as

R̃S =
1

L

L∑
i=1

xix
H
i

Hence, the error wD in (5.4) is due to finite snapshot averaging. We study the interpolation error

of (ME-2) and (NUC-PSD) as a function of L. Let r#
V+ be the estimate of rV+ obtained from

either algorithm. The normalized interpolation error is defined as

NMSEint =
1

‖rV+\D+‖2
2

E
(
‖r#

V+\D+ − rV+\D+‖2
2

)
(5.14)
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In Fig. 5.1, we plot the NMSEint (averaged over 100 Monte Carlo runs) as a function of L for

both algorithms corresponding to different number of sources. The interpolation error decreases

monotonically with increasing L, indicating stability of reconstruction. It can also been that

(NUC-PSD) performs better than (ME-2), especially for larger L.
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Figure 5.1: NMSEint (averaged over 100 runs) as a function of L for (NUC-PSD)
and (ME) algorithms.

In Fig. 5.2, we compare the MUSIC spectra obtained by applying co-array MUSIC

algorithm on T (r̃U+) (i.e. the correlation matrix corresponding to only the contiguous ULA

segment U+) and on T (rNUCV+ ) (correlation matrix interpolated using (NUC-PSD)). It can be seen

that the quality of DOA estimation can be improved by using the full interpolated co-array V+

instead of using only the contiguous ULA segment U+.
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Figure 5.2: MUSIC Spectrum obtained by using co-array MUSIC algorithm on (Left)
T (r̃U+), and (Right) T (rNUCV+ ), interpolated using (NUC-PSD) algorithm. Here, D =
16, L = 50.
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5.2.8 Conclusion

In this section, we analyzed the problem of co-array extrapolation that allows us to estimate

correlation values at missing lags (or holes) in the co-array of partially augmentable arrays. We

provided a universal upper bound on the extrapolation error for these missing correlation values,

in terms of the estimation error corresponding to the contiguous ULA segment of the co-array.

This bound is universal in the sense that it is obeyed by any extrapolation algorithm that exploits

the PSD constraint on the autocorrelation matrix. Using this unified framework, we analyzed

the performance of two extrapolation algorithms and established the stability of extrapolation

(with respect to finite-snapshot error). Their performance is further illustrated through numerical

experiments.

5.3 Understanding the Role of Positive Constraints in Sparse

Bilinear Problems

This section considers a certain class of sparse bilinear problems that arises in blind

spike deconvolution and array calibration. Existing works based on the idea of lifting attempt

to solve this problem by imposing subspace constraints to reduce the number of unknowns, and

developing probabilistic guarantees. The goal of this section is to understand the role of positivity

in sparse bilinear problems and develop deterministic guarantees for exact support recovery

without additional subspace constraints on the unknown quantities. We derive the necessary and

sufficient number of measurements needed to exactly recover the location of two spikes simply

by exploiting positivity of the spike amplitudes and the blurring kernel. This is the first result of

its kind. An interesting consequence of this analysis is to show that exploitation of positivity can

lead to exact support recovery even when the number of equations is fewer than the number of

unknowns. The theoretical claims are verified through simulations and compared against lifting
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based algorithms.

5.3.1 Introduction

Sparse spikes deconvolution is an important class of bilinear problems that finds applica-

tion in single-molecule microscopy [229, 230], radar signal processing [231], nuclear magnetic

resonance spectroscopy [232] and inverse scattering in seismic imaging [233]. The fundamental

goal therein is to localize a set of underlying point sources using measurements that are generated

via convolution with an unknown point spread function (PSF).

Blind spike deconvolution is an ill-posed problem [31, 234] and it becomes necessary

to impose appropriate constraints or priors in order to guarantee exact recovery up to a scaling

factor. In [234], the authors introduce the idea of lifting [77, 79] for blind deconvolution. In this

case, the PSF is assumed to belong to a known lower-dimensional subspace and the problem

is recast as a low rank matrix reconstruction problem [235]. In [31, 236], the spiking signal is

assumed to contain only K non-zero elements (corresponding to spike locations) and the PSF

is assumed to lie in a P dimensional subspace. Atomic norm minimization [59] is used in [31]

to show that M = O(K2P 2) noiseless measurements are sufficient for exact recovery. In [236],

the authors consider the problem of blind array calibration which is equivalent to the blind spike

deconvolution problem in Fourier domain, and M = O(KP ) measurements are proved to be

sufficient.

In contrast to recent works that use subspace constraints to reduce the number of unknowns,

the focus of this section is to understand how positive constraints can help solve the ill-posed blind

spike deconvolution problem. The role of positivity in solving undetermined linear problems

(such as those arising in compressed sensing) has been well investigated [207, 208, 237–240],

leading to reduced number of measurements, and deterministic guarantees on support recovery.

In [60, 61], the authors study the problem of super-resolution and assume that the unknown spike

signal is positive. In this case, the separation conditions on the spikes [141, 142] can be relaxed.
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Positivity is also widely observed in real applications. For example, in fluorescence microscopy,

both the PSF and the sparse signal are positive [220, 241].

Although the role of positivity in sparse linear problems is well understood, to the best of

our knowledge, there are no corresponding results for bilinear problems. This work provides the

first result of its kind to show how positivity alone (without any additional subspace constraints)

can help resolve ambiguities in ill-posed bilinear problems. We consider a blind deconvolution

problem consisting of two spikes and derive the necessary and sufficient number of measurements

to guarantee exact spike detection. Unlike the probabilistic guarantees of [31,234,236], our results

are deterministic, and more relevant for practical scenarios. Another significant consequence of

our analysis is to show that positivity can ensure exact spike detection even when the number of

equations (or measurements) is smaller than the number of unknowns. The analysis framework

of [31, 234, 236, 242, 243] will fail in such a setting since they use subspace constraints to reduce

the number of unknowns with respect to the number of equations.

5.3.2 Signal Model for Blind Spike Deconvolution: From Bilinear to Lin-

ear

Consider the measurement model

y = diag(g?)Ap? (5.15)

where A ∈ CM×2N is an overcomplete DFT dictionary with columns

an = [1, e−j2π
n
2N , · · · , e−j2π

(M−1)n
2N ]T ,−(N − 1) ≤ n ≤ N
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, g? ∈ RM , and p? ∈ C2N is a sparse vector with K � N non-zero elements. Each column of A

corresponds to one of 2N on-grid (normalized) frequencies

FN = {n/(2N),−(N − 1) ≤ n ≤ N}

and the indices of the non-zero elements of p? determine which frquencies contribute to the

measurement. This model arises frequently in a wide variety of problems including blind spike

deconvolution, and array calibration [31, 236]. In the context of blind spike deconvolution, y

represents the frequency domain measurements of a blurred spike train with K spikes whose loca-

tions are revealed by the support of sparse p?, and g? represents M low frequency measurements

of the blurring kernel [142]. For array calibration, y represents the measurements received at an

array with M antennas, g? represents the unknown gain of each antenna, and the support of p?

reveals the direction-of-arrival (DOA) of point sources illuminating the array.

5.3.3 Bilinear Model and Equivalent Linear Formulation

The signal model (5.15) is a bilinear function of p? and g?. Bilinear problems have

received great attention in recent times, and fundamental results on bilinear identifiability, as

well as algorithms (such as those based on the idea of lifting) for solving g? and p? have been

developed [30, 234, 242–244]. However, in addition to the sparsity of p?, these results constrain

g? to lie in some known subspace. In sharp contrast to these results, we will investigate the role of

positivity in bilinear problems and understand if it is at all possible to guarantee perfect recovery of

the spiking instants, without imposing any subspace constraint on g?. In particular, we will assume

p?,g? ≥ 0, and determine the number of measurements M needed to guarantee exact recovery

of the support of p?. Our result is the first of its kind to show that blind spike deconvolution is

possible with positive constraint, and specify the minimum number of measurements necessary

and sufficient for exact support recovery.
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Without loss of generality, we can assume gi 6= 0 (otherwise the ith measurement is 0 and

can be discarded). Using hi = 1/gi, the bilinear model (5.15) can be linearized as

diag(h?)y = Ap?

In order to recover the support of p?, we now consider the following combinatorial problem that

enforces positivity of p and g:

min
p,h
‖p‖0 (P0)

s.t. diag(h)y = Ap

p ≥ 0,h ≥ ε

where ε > 0 is chosen to avoid trivial solution h = p = 0. The main advantage of formulation

(P0) over (5.15) is that it can be relaxed to a linear problem if ‖ · ‖0 is replaced by ‖ · ‖1. In this

paper, we will establish necessary and sufficient conditions for exactly recovering the support

of p? in terms of M . The key idea is to show how positivity can help remove the ambiguities in

support recovery.

5.3.4 Identifiability Analysis with Positive Constraint

In this section, we develop conditions under which the solution to (P0) will reveal the

true support. For ease of exposition, we will consider the special case of K = 2 (representing two

on-grid frequencies) and leave the more general case for future. The case of K = 2 frequencies

is quite interesting in its own right since it is often used for studying resolution limits of spike

detection and DOA estimation. As we will show, even this relatively simpler case requires

a detailed characterization of ambiguity sets and provides brand new insights into the role of

positivity in resolving the ambiguities of bilinear problem (P0).
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5.3.5 Single Frequency (K = 1) and Role of Positivity

We first consider the simplest case where the model (5.15) consists of K = 1 on-grid

frequency ω? ∈ { n
2N
}Nn=−(N−1) and amplitude p? > 0. Let h? be the true PSF with h? ≥ ε.

Notice that the solution of (P0), being the sparsest solution, will also consist of only 1 frequency.

The frequency of the solution to (P0) can only belong to the following set

S1 ,

{
ω ∈ FN

∣∣∣∃h ≥ ε, p > 0,
pe−j2πiω

hi
=
p?e−j2πiω

?

h?i
, i = 0, · · · ,M − 1

}

The following lemma shows that S1 = {ω?} as long as we have at least M = 2 measurements.

Theorem21 Consider the signal model (5.15) consisting of K = 1 frequency ω? with amplitude

p? > 0. Then S1 = {ω?} if M ≥ 2.

Proof. Suppose S1 contains a spurious frequency ω̂ 6= ω?. Then we must have

e−j2πiω
?

e−j2πiω̂
=
h?i

ĥi
> 0 i = 0, · · · ,M − 1

For i = 1, we have ej2π(ω̂−ω?) > 0, which implies 2π(ω̂−ω?) = 2kπ, k ∈ Z. Since |ω̂−ω?| < 1,

k = 0 is the only feasible solution and ω̂ = ω?. This simple but intuitive result shows that by

simply using the positivity of h? and p?, we can exactly identify a single frequency with M = 2

measurements.

5.3.6 Two Symmetric Frequencies with Equal Power

We now consider the more interesting case of two frequencies with equal positive power,

p?1 = p?2 = p?. We first assume that the two frequencies are symmetric with respect to 0, given by

ω? and −ω?, and then extend the result to the more general case of two asymmetric frequencies.

As earlier, our analysis is based on characterizing the solution set of (P0). Since K = 2, the
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solution to (P0) can consist of either one, or two frequencies, which can respectively belong to

the following two sets

Ssym2,1 (ω?) ,

{
ω ∈ FN

∣∣∣ ∃h ≥ ε, p > 0

pe−j2πiω

hi
=
p?(e−j2πiω

?
+ ej2πiω

?
)

h?i
, i = 0, · · · ,M − 1

}
Ssym2,2 (ω?) ,

{
(ω1, ω2) ∈ FN ×FN ,

∣∣∣∃h ≥ ε, p1, p2 > 0,

p1e
−j2πiω1 + p2e

−j2πiω2

hi
=
p?(e−j2πiω

?
+ ej2πiω

?
)

h?i

ω1 < ω2, i = 0, 1, · · · ,M − 1

}

Notice that ω? 6= 0 (since we have two sources) and we assume 0 < ω? < 1/2. Our goal is to

derive a condition on M such that the solution of (P0) consists of exactly two spikes (−ω?, ω?).

As a first step, we show that Ssym2,1 (ω?) is an empty set:

Theorem22 Consider the signal model (5.15) consisting ofK = 2 on-grid frequencies (−ω?, ω?)

satisfying −1
2
< −ω? < 0 < ω? < 1

2
and equal amplitudes p?1 = p?2 = p? > 0. If M ≥

1 + max{d 1
4ω?
e, d 1

2−4ω?
e}, then Ssym2,1 (ω?) = ∅

Proof. We prove by contradiction. Suppose Ssym2,1 (ω?) is non-empty and ω̂ ∈ Ssym2,1 . Then, from

the definition of the set Ssym2,1 (ω?),

cos(2πiω?)ej2πiω̂ =
h?i p

2hip?
> 0 i = 0, · · · ,M − 1 (5.16)

For i = 1, (5.16) implies that ω̂ ∈ {0, 1
2
}. We now show that both choices will lead to a

contradiction.

We first consider ω̂ = 0. In this case, since ω? < 1
2
, it follows that 1

4ω?
≤ d 1

4ω?
e ≤ 3

4ω?
.

Since M ≥ d 1
4ω?
e, we can find a positive integer î = d 1

4ω?
e such that cos(2πîω?) ≤ 0. This will

contradict (5.16) for i = î < M .
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Now consider ω̂ = 1
2
. In this case, the condition (5.16) can be rewritten as

cos(2πiω?)ejπi = cos[2πi(
1

2
− ω?)] > 0, 0 ≤ i ≤M − 1 (5.17)

Defining ω̃ , 1
2
− ω?, we have 0 < ω̃ < 1

2
. If 1

4
≤ ω̃ < 1

2
, we have cos(2πω̃) ≤ 0 which

contradicts (5.17) for i = 1. On the other hand, if 0 < ω̃ < 1
4
, then cos(2πîω̃) ≤ 0, again

contradicting (5.17) for i = î = d 1
4ω̃
e. Summarizing, if M ≥ 1 + max{d 1

4ω?
e, d 1

2−4ω?
e}, there

does not exist any ω̂ ∈ Ssym2,1 (ω?).

Note that max{d 1
4ω?
e, d 1

2−4ω?
e} ≤ dN

2
e and the equality holds for ω? = 1

2N
or N−1

2N
.

Hence, Theorem 22 implies that M ≥ 1 + dN
2
e is sufficient to ensure Ssym2,1 = ∅, regardless of the

value of ω?. The following corollary shows that this value of M is also necessary.

Corollary7 If M ≤ dN
2
e, then Ssym2,1 ( 1

2N
) is non-empty.

Proof. We will show that Ssym2,1 (ω?) contains ω̂ = 0 in this case. If M ≤ dN
2
e, then

cos(2π
i

2N
) > 0 i = 0, 1, · · · , dN

2
e − 1

Given h? ≥ ε and p? > 0, choose a p̂ satisfying p̂ > 2p? and construct ĥ as

ĥk =
p̂h?k

2p? cos(2π k
2N

)
0 ≤ k ≤M − 1

It can be easily verified that ĥ ≥ ε. From the definition of the set Ssym2,1 ( 1
2N

) it follows that

ω̂ = 0 ∈ Ssym2,1 ( 1
2N

) We now show that the set Ssym2,2 (ω?) only contains (−ω?, ω?). Our result is

based on the following lemma, which we state without proof.

Lemma14 Let −1
2
< ω̂1 < ω̂2 ≤ 1

2
and p̂1, p̂2 > 0. Define ξk = p̂1e

−j2πkω̂1 + p̂2e
−j2πkω̂2 . Then

p̂1 = p̂2, ω̂1 = −ω̂2 or ω̂1 = 0, ω̂2 = 1
2

if ξ1, ξ2 are real valued.

The following theorem shows that Ssym2,2 (ω?) does not contain any spurious frequencies
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other than (−ω?, ω?).

Theorem23 Consider the signal model (5.15) consisting ofK = 2 on-grid frequencies (−ω?, ω?)

satisfying −1
2
< −ω? < 0 < ω? < 1

2
and equal amplitudes p?1 = p?2 = p? > 0. Assuming N ≥ 4,

then Ssym2,2 (ω?) = {(−ω?, ω?)} for all ω? ∈ { n
2N
}N−1
n=1 if M ≥ 1 + dN

2
e.

Proof. Due to limitations in space, we briefly describe the basic idea of the proof, and leave

the details in the future full journal paper. Lemma 14 can be used to argue that any frequency

pair belonging to Ssym2,2 (ω?) is symmetric. Suppose that Ssym2,2 (ω?) contains a frequency pair

(−ω̂, ω̂). As earlier, we prove by contradiction by showing the existence of an integer î ≤ dN
2
e

such that cos(2πω?î) cos(2πω̂î) ≤ 0. From the definition of Ssym2,2 (ω?), this actually implies

that ω̂ /∈ Ssym2,2 (ω?) for any ω? ∈ { n
2N
}N−1
n=1 . Combining Theorems 22, 23 and Corollary 7, we

establish the main result on exact support recovery (for K = 2) by solving (P0).

Theorem24 Consider the signal model (5.15) consisting ofK = 2 on-grid frequencies (−ω?, ω?)

satisfying −1
2
< −ω? < 0 < ω? < 1

2
and equal amplitudes p?1 = p?2 = p? > 0. Assuming N ≥ 4,

then the solution p̂ to (P0) satisfies Support(p̂) = Support(p?) if and only if M ≥ 1 + dN
2
e.

Remark19. For two symmetric spikes with equal power, the measurement y is real valued. In

this case, there are M equations and M + 2 unknowns (h? ∈ RM , p? ∈ R and ω? ∈ R). Since the

number of equations is fewer than the number of unknowns, standard identifiability analysis based

on dimension counting [242, 243] will fail to gaurantee exact recovery (even probabilistically). In

fact, the number of unknowns in [242, 243] is always assumed to be fewer than the number of

equations, by imposing suitable subspace constraints on h. Additionally, the results in [242, 243]

hold with probability 1, while the analysis of this paper is deterministic. In contrast, the key

contribution of this paper is to show that exact recovery of support is guaranteed with positive

constraint even the number of equations is strictly smaller than the number of unknowns.

Remark20. If h is known, the solution of (P0) is guaranteed to recover the true frequencies if
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M ≥ 4 [96]. However, when h is unknown, Theorem 24 suggests that at least M = 1 + dN
2
e

measurements are needed to uniquely recover the support of two symmetric spikes. This is due to

the ambiguity caused by unknown h and will be further demonstrated via numerical simulations.

5.3.7 Extension to Asymmetric Spikes with Equal Power

Finally, we generalize the above analysis to asymmetric spikes. Assume the true spikes

are located at −1
2
< ω?1 < ω?2 ≤ 1

2
with equal power p?. As before, the frequencies associated

with the solution to (P0) can belong to one of the following two sets

Sasym2,1 ,

{
ω ∈ FN | ∃h ≥ ε, p > 0

pe−j2πiω

hi
=
p?(e−j2πiω

?
1 + e−j2πiω

?
2 )

h?i
, i = 0, 1, · · · ,M − 1

}
Sasym2,2 ,

{
(ω1, ω2) ∈ FN ×FN |∃h ≥ ε, p1, p2 > 0,

p1e
−j2πiω1 + p2e

−j2πiω2

hi
=
p?(e−j2πiω

?
1 + e−j2πiω

?
2 )

h?i

ω1 < ω2, i = 0, 1, · · · ,M − 1

}

Following previous analysis, we can first convert the measurement with asymmetric frequencies

into an equivalent form with symmetric frequencies and argue that Sasym2,2 = {(ω?1, ω?2)}.

5.3.8 Experiments

In this section, we demonstrate our theoretical claims with different numerical experiments,

and compare with lifting based methods in [31,236]. We choose the true frequencies from the grid

points { n
2N
}Nn=−N+1. We use p? = 1 and ε = 1 in (P0) for all the experiments. To compare with

AtomicLift [31] and SparseLift [236], we generate random subspaces of dimension L (spanned

by the columns of B ∈ RM×L with uniformly distributed entries in range (0, 1)) and construct
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g? = Bλ? where λ? = 1
M

satisfies h? ≥ ε. We choose N = 17 and the support of p? is selected

by (−1, 1).

Since (P0) is not convex, we solve it using exhaustive search over the grid of 2N points

and considering all possible frequency pairs (when K = 2). Indeed, the aim of this paper is not to

develop an efficient algorithm, but to understand if it is at all possible to recover true frequencies

using only positivity of h? and p?. The recovery is claimed to be successful if this search only

yields the true frequency pair. For AtomicLift and SparseLift, we use the same criterion in terms

of normalized error for successful recovery as described in [31, 236] respectively. As discussed

earlier, when h is known, the support of 2−sparse p can be uniquely determined when M ≥ 4.

However, for unknown h, we have shown in Theorem 24 that at least dN
2
e+ 1 measurements are

needed. In Fig.5.3, we demonstrate this fact by choosing true support (−1, 1) and exhaustively

searching the feasible set of (P0) for all possible supports of size 1 or 2. The probability of

success shows a sharp transition exactly happens at M = dN
2
e+ 1 as indicated by Theorem 22

and 23. Note that the performance of both AtomicLift and SparseLift algorithms show degraded

performance when compared against this threshold. In fact their performances depend on the

subspace dimension L, while our results are independent of knowledge of B. Moreover, the

lifting based algorithms cannot work when the number of unknowns approaches the number of

equations (i.e. as L approaches M ) and AtomicLift almost always fails.
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Figure 5.3: Probability of success vs. the number of measurements M .
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5.3.9 Conclusion

In this section, we investigated into the role of positivity in sparse bilinear problems that

arise in blind spike deconvolution and blind array calibration. In contrast to existing results that

assume subspace constraints to reduce the number of unknowns, we merely exploit positivity of

the unknown quantities to develop explicit bounds on the number of measurements that guarantee

exact support recovery. Our analysis shows that positivity is a powerful constraint that can lead

to exact support recovery even when there are more unknowns than the number of equations.

Additionally, our theoretical claims are deterministic and hence better applicable to real problems.

In future, we will extend our analysis to guarantee exact recovery of an arbitrary number of spikes

(beyond K = 2) using results on the algebraic variety of trigonometric polynomials.

5.4 Compressive Kriging Using Multi-Dimensional General-

ized Nested Sampling

This section considers the problem of Kriging in statistical geophysics where the goal

is to interpolate the value of a physical quantity of interest at an unsampled spatial location by

exploiting the correlation between measurements collected from a (possibly limited) number of

suitably spaced sensors. We introduce the idea of two-dimensional nested array in Kriging to

reduce the number of sensors deployed in the field and enable efficient interpolation. Using spatial

stationarity (which is a standard assumption in Kriging), we leverage the so-called “difference set”

of nested arrays to enable robust spatial compression. Additionally, we can also make predictions

beyond the field of view by constructing a virtual covariance matrix of larger dimension from the

covariance matrix of the physical measurements. We present robustness analysis based on total

least squares and concentration bounds of sample covariance.
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5.4.1 Introduction

Estimating the value of a physical quantity (such as temperature, pressure, etc) at an

unsampled spatial location using measurements collected from neighboring sensors, is a central

problem in geostatistics with applications in oil exploration, seismic data analysis and environ-

mental monitoring [245]. Given data collected from a limited number of sensors distributed over

a spatial region of interest, the goal of Kriging is to predict the value of a missing data point at

an unknown sensor location, via a probabilistic approach that heavily exploits the correlation

structure in the measurements. The basic idea in Kriging is similar to prediction of space-time

series, where one computes the best linear function of the observed data, based on prior knowledge

of the second order statistics.

Given the limited number of sensors, it is important to determine an appropriate placement

that allows efficient interpolation. In prior works on sensor placement [246, 247], the spatial

quantity of interest has been modeled as Gaussian processes [248] and near-optimal sensor

placement strategies have been developed in terms of entropy or mutual information criterion with

the prior knowledge of the covariance kernel. In this paper, we will assume that the measurements

are spatially stationary, i.e., the correlation between the measurements collected at any two

locations only depends on the difference between their coordinates. However, how the correlation

depends on the spatial differences, is not assumed to be known. This is a standard assumption for

Kriging-based problems. We will show that such spatial stationarity can be readily utilized to

develop near-optimal sensor placement strategies based on the idea of “difference sets”. Building

on our prior works on nested array geometry, we will demonstrate how to reduce the number of

physical sensors by exploiting such multi-dimensional difference sets [124,125]. Additionally,

we will show that predictions can be made beyond the field of view under certain conditions by

exploiting the idea of Toeplitz covariance extrapoolation [4, 61].

Our contributions in this section can be summarized as follows

• Under the assumption of spatial stationarity, we show that the number of predictable
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locations is determined by the distinct mutual location differences of the sensors. Using

two dimensional nested array geometry, we can reduce the number of sensors for a certain

number of mutual differences.

• We will further relate the Kriging problem to Toeplitz matrix estimation and show that

prediction beyond the field of view is possible if certain conditions hold. This is possible

because extrapolation of positive semidefinite Toeplitz matrix can be made which allows

more mutual differences than those from measurements.

5.4.2 Problem Formulation

In the following, we first introduce a particular mathematical model for Kriging, called

”universal Kriging” [245]. Let X ⊂ Rn denote a spatial region of interest, and z(x),x ∈ X be

the function we are interested in estimating. Under probabilistic model of Kriging, the function

z(x) is assumed to be a random process of the form

z(x) = m(x) + y(x) (5.18)

where m(x) is an unknown deterministic mean function, and y(x) denotes a spatially stationary

zero-mean random fluctuation, i.e.

E
(
y(x1)y(x2)

)
= r(‖x1 − x2‖2) (5.19)

where r(·) is a deterministic function over Rn. This implies that the correlation between the

values of y(x) at any two locations only depends on the difference between their coordinates. It

should be noted that we will not assume the function t(·) is known. Instead, we will estimate

the correlation function from the measurements. The mean function m(x) is modeled as a linear

190



combination of known basis functions {f l(x)} [249]

m(x) =
L∑
l=0

alf
l(x) (5.20)

where al are fixed but unknown coefficients. A standard choice for f l(x) in one dimension is

monomials of the form f l(x) = xl.

Given measurements z(xi), i = 1, 2, · · · , N , we extrapolate the value of z(·) at a given

spatial point x? of interest by computing a linear combination of these N measurements. In

particular, we solve for optimal coefficients λ?i , 0 ≤ i ≤ N of linear combination as

λ? = arg min
λ

E

[
z(x?)− (

N∑
i=1

λiz(xi) + λ0)

]2

s.t. m(x?) =
N∑
i=1

λim(xi) + λ0 (5.21)

where {xi}Ni=1 are the locations of the physical sensors. The constraint in the above optimization,

which is also known as the universal conditions [249], ensures that the extrapolated value of z(x?)

is unbiased. Note that it is due to the constraint of unknown mean function m(x) that universal

Kriging is different from Linear Minimum Mean Squared Error (LMMSE) Estimator. The optimal

coefficients can be computed as the solution to the following system of equations [245]


∑

j λjrij +
∑

l µlf
l(xi) = r?i i = 1, · · · , N∑

i λif
l(xi) = f l(x?) l = 0, · · · , L

 . (5.22)

where rij = E(y(xi)y(xj)), r?i = E(y(xi)y(x?)) and {µl} are Lagrange multipliers.

In this paper, we first study the simple case that the mean function is zero, for which the
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optimal linear combination coefficients λ? is given by

Rλ? = r? (5.23)

where Rij = rij and r? = [r?1, · · · , r?N ]T . The equation (5.23) reduces to the celebrated Wiener-

Kolmogorov linear prediction equation [250].

5.4.3 Two Dimensional Nested Array and Robust Compressive Kriging

Suppose x? is a spatial point at which the function y(x?) needs to be estimated. The

correlation vector r? is not known a priori if no assumption is made on the underlying random

field. However, if spatial stationarity holds, we can identify r? from R if the mutual differences

D? , {‖xi − x?‖2}Ni=1 is a subset of DR , {‖xi − xj‖2}Ni,j=1.

Thus, to predict as many spatial points as possible, we expect the difference set DR to

contain enough distinct elements for fixed N . In the following, we will utilize a special sensor

array geometry called two-dimensional nested array to achieve this [124, 125].

5.4.4 Two Dimensional Nested Array

Two-dimensional nested array is a multidimensional extension of one-dimensional sparse

arrays that include minimum redundancy array (MRA) [204], nested array [45] and Co-prime

array [17]. As discussed later, the advantage of two dimensional nested array is that the size

of mutual difference set DR can be O(N2), which in turn may allow prediction of more spatial

points of interest.

In the next, we will follow [124] to introduce the main concepts of two dimensional nested

array. Given a D×D nonsingular matrix V, the D dimensional lattice generated by V is defined
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as

LAT(V) = {t : t = Vn}

where n ∈ ND is an integer vector. The matrix V is known as the generator of the lattice. The

fundamental parallelepiped (FPD) of the lattice LAT(V) is defined as

Definition15 The FPD of V in D dimensions is defined as the set of all vectors of the form

{Vx,x ∈ [0, 1)D}

Conceptually, FPD(V) consists of all points contained in the parallelepiped whose sides are

given by the columns of V. In Fig.5.4, we show an example of FPD(V). The volume of

FPD(V) is given by | det(V)|.

Figure 5.4: An example of FPD(V) for V = [v1,v2] [124]

The two-dimensional nested array consists of two lattices: LAT(N(s)) and LAT(N(d)).

The two lattice generators N(s) and N(d) is related as

N(s) = N(d)P

where P is a 2 × 2 integer matrix. By the definition of lattice, we can see that LAT(N(s)) is

193



a sublattice of LAT(N(d)) and sparser. We can generate arbitrary sublattice of LAT(N(d)) by

choosing proper P. In Fig., we present a particular pair of lattices.

Figure 5.5: A pair of lattces LAT(N(s)) and LAT(N(d)), where N(s) = N(d)P. It can
be seen that LAT(N(s)) is a sublattice of LAT(N(d)) [124]

Now we are ready to state the two-dimensional nested array configuration proposed

in [124]. Particularly, the sensor locations S is given by

S = {N(d)n(d),n(d) ∈ FPD(P)}
⋃

{N(s)[k1, k2]T , 0 ≤ k1 ≤ N
(s)
1 − 1, 0 ≤ k2 ≤ N

(s)−1
2 }

The first part of S is on the dense lattice LAT(N(d)) where the number of sensors is given by

N (d) = | det(P)|. The second is from the sparse lattice LAT(N(s)) with N (s) = N
(s)
1 N

(s)
2

elements. It is shown in [124] that the difference set of S contain N (d)N (s) distinct points on the

dense lattice LAT(N(d)).

Remark21. Compared to entropy or mutual information based methods [246, 247], the two

dimensional nested array configuration is deterministic and easy to deploy on the field X . As

revealed later, the nested array configuration also avoids the problem of entropy based method

that tend to place sensors on the boundary.
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5.4.5 Robustness Analysis of Compressive Kriging

If ideal covariance R is available and r? can be identified from R, the optimal linear

combination coefficients are given by

λ? = R†r? (5.24)

where R† is the pseudo-inverse of R. In practice however, we only collect a finite number of

snapshots for each sensor, from which we compute the sample covariance

R̂ =
1

L

L∑
l=1

yly
T
l

where yl = [yl(x1), · · · , yl(xN)]T is the lth snapshot of all N sensors. As in ideal case, we can

construct the finite estimate r̂ of r? from R̂. To be general, we assume

R̂ = R + ∆R r̂ = r? + ∆r

Since we have estimation error on both sides of (5.23), we will use Total Least Squares to

provide robustness guarantee of estimating λ?. In particular, from [251], we have the following

result

Lemma15 Let λ? be the solution given by (5.24). Assume rank(R) = rank(R̂), ‖∆R‖ ≤ ε‖R‖

and ‖∆r‖2 ≤ ε‖r?‖2. If κε < 1, then

‖λ̂− λ?‖2

‖λ?‖
≤ κε

(
1 +

2

1− κε

)

where λ̂ = R̂†r̂ and κ = ‖R‖‖R†‖

To apply Lemma 15, we assume the perturbation is small enough such that the rank of
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sample covariance R̂ is consistent with that of R. Additionally, there is a trade-off between the

condition number κ and the allowable perturbation ε.

To bound the perturbation of R̂ and the associated r̂, we will borrow results on multivariate

concentration inequalities from high-dimensional statistics. First, we will bound the perturbation

of R̂ in operator norm using the following lemma adapted from Theorem 4.7.1 and Exercise 4.7.3

in [252].

Lemma16 [252] Let {yl}Ll=1 be zero mean i.i.d Gaussian random vectors distributed as yl ∼

N (0,R) and sample covariance is given by R̂. Then for any u ≥ 0,

‖R̂−R‖ ≤ C

(√
N + u

L
+
N + u

L

)
‖R‖

with probability at least 1− 2e−u and C is a positive constant.

Since we estimate r̂ from R̂, the perturbation error ‖∆r‖2 is bounded by ‖∆R‖F . The following

lemma gives a probabilistic bound on ‖R− R̂‖F .

Lemma17 (Proposition A.3 in [129]) Let {yl}Ll=1 be zero mean i.i.d Gaussian random vectors

distributed as yl ∼ N (0,R). Then,

P
{
‖R− R̂‖F ≥

trace(R)√
L

}
≤ 2e−2c1

√
L (5.25)

where R̂ is sample covariance and c1 is a positive universal constant.

Remark22. As revealed by Lemma 16, the relative perturbation ratio has an upper bound of

order
√

N+u
L

+ N+u
L

. For large L and fixed N , the upper bound decreases as O( 1√
L

). On the

other hand, we know that with high probability, the perturbation ‖∆r‖2 is upper bounded by

trace(R)√
L

=
∑N
i=1 σ

2
i√

L
where σ2

i = E(y(xi)y(xi)). Thus, given L large enough, we can make κε < 1

and apply Lemma 15.
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To sum up, we have the following result on the robustness of (5.24) with finite (L)

snapshots.

Theorem25 Assume {yl}Ll=1 be zero mean i.i.d Gaussian random vectors distributed as yl ∼

N (0,R) and R full rank. Let κ be the condition number of R. Given any u ≥ 0, if

L > max

 4(N + u)

(1 +
√

1 + 4
κC

)2
,

(
trace(R)κ

‖r?‖2

)2

 (5.26)

then with probability at least 1− 2e−u − 2e−2c1
√
L, we have

‖λ̂− λ?‖2

‖λ?‖
≤ κε

(
1 +

2

1− κε

)

where

ε = max

{
C

√
N + u

L
+
N + u

L
,

trace(R)√
L‖r?‖2

}
(5.27)

and C and c1 are constants from Lemma 16 and Lemma 17.

Proof. From Lemma 16 and Lemma 17, we know that with probability at least 1 − 2e−u −

2e−2c1
√
L,

‖∆R‖ ≤ C

(√
N + u

L
+
N + u

L

)
‖R‖ (5.28)

‖∆R‖F ≤
trace(R)√

L
(5.29)

hold simultaneously. Additionally, if (5.26) hold and we choose ε as in (5.27), we have

‖∆R‖ ≤ ε‖R‖ ‖∆R‖F ≤ ε‖r?‖2

197



and εκ < 1. Note that the first inequality implies

‖∆R‖ < ‖R‖
κ

= smin(R)

where smin(R) is the smallest singular value of R. Thus R̂ has the same rank as R. Hence, we

can apply Lemma 15 and the proof completes.

5.4.6 Toeplitz Covariance Extrapolation and Prediction Beyond Bound-

ary

To solve λ̂, we need the difference lags in r? to be contained in R. In previous section, we

showed that the use of two-dimensional nested array will allow prediction of more spatial points

of interest. However, the maximum difference lag is restricted by the range of sensor locations S.

In this section, we will briefly discuss the possibility of predicting locations outside the range of

the difference set DS of S. This is due to the recent work in [4] on Toeplitz covariance matrix

extrapolation. For positive semidefinite Toeplitz matrix, we have following important result

Lemma18 [4, 68] A positive (semi) definite Toeplitz matrix T ∈ CN×N has the following

unique decomposition :

T = VN×N ′DVH
N×N ′ + σIN (5.30)

Here σ is the smallest singular value of T, IN ∈ RN×N is the identity matrix and D =

diag(d1, d2, · · · , dN ′) with di > 0. The matrix VN×N ′ ∈ CN×N ′ = [vN(f1),vN(f2), · · · ,vN(fN ′)]

is a Vandermonde matrix satisfying N ′ < N with the ith column vN(fi) given by

[vN(fi)]k = ej2πfik 0 ≤ k ≤ N − 1
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It is shown in [4] that if the associated frequencies {fi} satisfy a separation condition, we can

have stable extrapolation of T to include more difference lags. Particularly, we have following

result

Theorem26 Let r̃ ∈ CN denote any Hermitian Toeplitz matrix such that T (r̃) � 0. If the angles

{θl}Dl=1 associated with low rank T (r) satisfy

min
p 6=q

ρ(θp, θq) > 4/m (5.31)

and N > m > 256, then there exist positive constants c̄1, c̄2, c̄3, c̄4 such that for m ≤ n < N

|rn − r̃n|

≤
(
c̄1 +

c̄2πn

m
+
c̄3π

2n2

m2

)(
c̄4Dξ

m
+ ([̃rm]0 − [rn]0)+

)

where ξ , supθ∈T |〈am(θ), r̃m − rm〉| and ρ(·) is wrap-around distance function.

However, Theorem 26 cannot be readily applied here as R is not Toeplitz structured. If the

sensor locations form a uniform rectangular array, the covariance matrix R is multi-level Toeplitz

structured [253]. In the future work, we will find a particular unfolding of R so that we can apply

Theorem 26 to allow predictions beyond the boundary.

5.4.7 Experiments

In this section, we will show a sample configuration of two-dimensional nested array and

the performance of (5.24) with finite snapshots. In Fig.5.6, we choose N(d) = [−1, 0; 0,−1],

P = [−2, 0; 0,−2] and N (s)
1 = N

(s)
2 = 3. It is clear from the example that the sensors are

not concentrated on the boundary and the difference set contains a rectangular array with more
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Figure 5.6: A sample configuration of two-dimensional nested array. Blue solid dots
represent the sensor locations and red circles denote the difference set in positive orthant.

difference lags than the physical sensor locations S.

The sample covariances R̂ and r̂ are computed from L snapshots of a zero-mean spatially

stationary Gaussian process. In Fig.5.7, we show the relative estimation error ‖λ̂− λ?‖2/‖λ?‖2

as a function of L. The relative error decreases as L increases.
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Figure 5.7: Relative estimation error as a function of snapshot number L, averaged
over 100 runs.

5.4.8 Conclusion

In this section, we analyzed the problem of co-array extrapolation that allows us to estimate

correlation values at missing lags (or holes) in the co-array of partially augmentable arrays. We

provided a universal upper bound on the extrapolation error for these missing correlation values,

in terms of the estimation error corresponding to the contiguous ULA segment of the co-array.
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This bound is universal in the sense that it is obeyed by any extrapolation algorithm that exploits

the PSD constraint on the autocorrelation matrix. Using this unified framework, we analyzed

the performance of two extrapolation algorithms and established the stability of extrapolation

(with respect to finite-snapshot error). Their performance is further illustrated through numerical

experiments.

Chapter 5, in part, is a reprint of the material as it appears in the papers:

• H. Qiao, M. C. Hucumenoglu and P. Pal, “Compressive Kriging Using Multi-Dimensional

Generalized Nested Sampling, in the Proceedings of Asilomar Conference on Signals,

Systems and Computers, 2018.

• H. Qiao and P. Pal, “Understanding the Role of Positive Constraints in Sparse Bilinear

Problems”, in the Proceedings of 7th IEEE International Workshop on Computational

Advances in Multi-Sensor Adaptive Processing (CAMSAP), Dec. 2017.

The dissertation author was the primary investigator and author of these papers.
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