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Fungal genomes and insights into the evolution of the kingdom 

 Jason E Stajich1 

1. Department of Plant Pathology & Microbiology and Institute of Integrative Genome Biology, University of 
California, Riverside, CA 92521 USA 

Summary 

The kingdom Fungi comprises species that inhabit nearly all ecosystems. Fungi exist as both 

free-living and symbiotic unicellular and multicellular organisms with diverse morphologies [1]. 

The genomes of fungi encode genes that enable them to thrive in diverse environments, invade 

plant and animal cells, and participate in nutrient cycling in terrestrial and aquatic ecosystems. 

The continuously expanding databases of fungal genome sequences have been generated by 

individual and large-scale efforts such as Génolevures [2], Broad Institute’s Fungal Genome 

Initiative, and the 1000 fungal genomes project (http://1000.fungalgenomes.org). These efforts 

have produced a catalog of fungal genes and genomic organization. The genomic datasets can 

be utilized to better understand how fungi have adapted to their lifestyles and ecological niches. 

Large datasets of fungal genomic and transcriptomic data have enabled the use of novel 

methodologies and improved the study of fungal evolution from a molecular sequence 

perspective [3]. Combined with microscopes, petri dishes, and woodland forays, genome 

sequencing supports bioinformatics and comparative genomics approaches as important tools 

in the study of the biology and evolution of fungi. 

 

EVOLUTIONARY RELATIONSHIPS OF FUNGI 

Studies of fungal evolution require an understanding of the phylogenetic relationships and 

relative evolutionary divergence of organisms. The first approaches to organizing fungi into 

related groups relied on morphological characteristics.  These approaches were able to provide 

a broad framework to organize fungal organisms for taxonomic classification based on 



 

recognizable morphological characters such as spore shape, asexual and sexual structures, 

and in mushroom forming fungi on the shape and presence/absence of gills, veil attachments, 

and spore color. In zoosporic chytrid fungi the characteristics seen by scanning electron 

microscopy of zoospores reveal that the ultrastructure of the kinetosomes and flagellum are all 

diagnostic for the classification of many lineages [4].  However, the microscopic nature of many 

fungi and especially of yeast-forming fungi with limited visible differences, and the prevalence of 

convergent evolution to homoplasies or similar characters across a tree, has made taxonomic 

classification of groups of fungi difficult or easily mislead. The invention and application of DNA 

sequencing [5], polymerase chain reaction (PCR) [6], and the development of primers to amplify 

fungal ribosomal RNA (rDNA) enabled a new era of molecular phylogenetic studies in fungi [7]. 

These approaches provided invaluable information that was used to resolve the major fungal 

lineages [4,8–22] and the delineation of species [23–26].  Using DNA approaches to study the 

entire fungal tree of life provided new insight into the order of branching of major groups and the 

timing of morphological changes such as the loss of the flagellum found in zoosporic fungi 

[16,19,20,27].    

With improved resolution of the phylogeny of fungal species, the timing of the 

emergence and changes in species traits and lifestyles can be compared, such as the evolution 

of host associated symbioses and pathogenic interactions with plants or animals. Analysis of the 

evolution of morphological complexity along a phylogeny can establish the approximate time 

when complex growth forms, such as fruiting bodies and multicellular structures, or simplified to 

unicellular yeast morphology emerged [28]. Changes in subcellular characteristics such as 

septate hyphae, polarized hyphal growth, and the presence or absence of a flagellated life stage 

can be mapped on the tree to study the order and timing of their emergence relative to other 

structures or host associated lifestyles [29,30]. With the availability of genome sequence data, 

the history of these phenotypic changes can be mapped onto the phylogeny and compared to 

the evolution of individual genes, presence or absence of a gene family, or correlated with 



 

changes in evolutionary rates of gene sequences. These changes may reflect gains but also 

losses can drive morphological changes such as simplification [28]. The data and approaches 

are only recently becoming available to support robust analyses to link genes to phenotypes. 

Some examples of successful applications of the approaches include the acquisition of 

enzymes needed for anaerobic growth by Saccharomyces [31–33], gains of subtilase genes 

related to animal associated lifestyles [34–36], genome reduction correlated to a yeast growth 

form [37,38], and changes in structure of centrioles for microtubule attachments [39]. 

As technology advanced to support inexpensive high-throughput genome sequencing, 

improved phylogenetic software, and high-performance computing have further improved the 

resolution of the phylogenetic relationships of fungi (Figure 1). Fungi have been some of the 

first eukaryotes to benefit from these technological advancements to support the application of 

phylogenomic methods. Phylogenomics uses multiple orthologous genes, each sampled from a 

species genome to construct a composite phylogenetic tree from a concatenated dataset or 

individual gene trees [37,40–44]. A large collection of orthologous loci mined from genome or 

transcriptome sequences enables phylogenomic studies and tests for conflicting phylogenetic 

signals. These conflicts may be caused by genomic loci with different evolutionary histories due 

to, for example, incomplete lineage sorting, horizontal gene transfer, or different selective 

pressures [41,45–49]. Identification of gene tree and species tree conflicts can help to generate 

the best representation of the species tree and reveal current or historical selective pressures 

on genetic loci.  

IMPACTS OF ECOLOGICAL NICHE ADAPTATION ON FUNGAL GENOME 

EVOLUTION 

Genome sequencing has enabled comparisons of gene content and sequence changes 

to begin to predict the likely molecular basis for traits and adaptations. As heterotrophic 



 

organisms, fungi obtain carbon and nitrogen from external sources. A variety of cooperative and 

parasitic associations of fungi with other organisms are found throughout the fungal kingdom. 

Saprotrophic fungi liberate nutrients by degrading organic matter in habitats ranging from soils, 

dead insects and plants, compost piles, animal dung, and water-damaged homes. 

Ectomycorrhizal (ECM) and arbuscular mycorrhizal (AMF) fungi form mutualistic partnerships 

with plants and trade plant-produced carbon in the form of sugars in exchange for inorganic 

nitrogen, phosphorus, iron and other minerals.  Fungi can live as commensal associates of 

plants and animals, for example as plant endophytes or asymptomatic skin fungi, but also can 

cause devastating diseases in animals and plants via multiple invasive strategies. Some 

pathogenic fungi produce toxin molecules or effector proteins to kill host cells or disable host 

defenses while others are opportunistic pathogens that only cause disease when the host 

becomes sick or immunocompromised. 

ECM fungi have mutualistic lifestyles with plants that involve trading resources. Plant 

pathogens secrete enzymes to break down cell walls. These enzymes can induce a plant 

defense response [50,51].  Fungi engaged in mutualistic fungal-plant symbioses typically have a 

reduction in genes encoding enzymes for plant cell wall degradation to avoid eliciting a plant 

defense response [52]. Instead effectors including small secreted proteins are typically 

expressed in the ECM fungal-plant interface to establish and promote the two-way partnership 

[52–54]. AMF fungi also are important plant symbionts contributing to plant health. The 

molecular components of the interaction and roles of AMF-produced effectors are still emerging 

areas of research [55,56].  

Historical biotic and abiotic interactions have shaped the evolution of genes and the 

genome organization of fungi. Through the comparison of fungal genomes, the impact of natural 

selection and neutral processes have been assessed to indicate genes and genomic regions of 

importance in the evolution of species. For example, wood degrading fungi are classified as 

brown or white rot fungi depending on their ability to degrade recalcitrant lignin polymers. The 



 

woody material in trees and bushes is made up of cellulose and lignin, the latter providing 

strength to plants. Lignin is highly recalcitrant to degradation and when linked to hemicellulose 

and cellulose it can be inaccessible to ligninolytic enzymes. To access the lignin, white rot fungi 

secrete a combination of enzymes and organic acids to break down and later absorb 

carbohydrate degradation products of cellulose, hemicellulose, and lignin [57]. Comparative 

analysis of the genomes of brown and white rotters found metabolic and enzymatic gene 

families varied. The presence of specific families in the brown or white rot species was 

consistent with their classification and the chemical reactions these fungi can induce to break 

down woody material [43,58–61].  However, additional analysis have identified that some 

species of white rot fungi have unexpectedly missing genes that would typically predict they 

were unable to degrade lignin [62]. Exploration of genomes of two white rot fungi indicated that 

despite similar lignin degradation capabilities, the species contained different enzyme classes 

and this suggests that additional pathways of delignification exist and remain to be discovered 

[63]. 

Fungi can exist in extreme environments such as the anaerobic rumen stomachs of 

ruminants [64,65], the dry Atacama Desert in Chile [66,67], hypersaline salterns with NaCl 

concentrations up to 30% [68], and as endolithic inhabitants of rocks in Antarctica [69,70]. 

Thermophilic fungi that grow in the desert can survive at temperatures above 60°C [71,72]. 

Studies of these thermophiles and their genome sequences has led to the development of new 

enzymes for biotechnology and cell biology studies due to their thermostability [73–75]. 

Molecular adaptations that have allowed these fungi to colonize these extreme niches are still 

being uncovered, and genomic sequencing and comparisons among relatives of extremophiles 

should provide candidate genes that impact these abilities. 



 

EVOLUTION OF GENOME SIZE 

Genome sizes of fungi can vary by almost 3 orders of magnitude. A sampling of 325 

phylogenetically diverse fungi has shown that genome sizes vary from 2-Mb in Microsporidia to 

2-Gb in Pucciniales fungi with a median of 35 Mb (Data accessed 2017-05-15 from 

https://github.com/1KFG/genome_stats/; Figure 2). This vast range is the result of multiple 

genome reduction and expansion events. The total number of predicted protein-coding genes in 

these fungi varies by an order of magnitude, ranging from 1,800 genes in Encephalitozoon 

(Microsporidia) to 35,000 genes in Sphaerobolus (Agaricomyoctina), with a median gene count 

of 11,000 genes. Some of smallest and most compact genomes can be found in the obligate 

parasites Microsporidia with sizes in the 2- to 6-Mb range [76–79]. The free living yeasts in the 

Ascomycota and the Cryptomycota parasite Rozella typically have genomes in the 7- to 12-Mb 

range [80–84] and the Basidiomycota yeasts Cryptococcus are around 20 Mb [84–86]. Lineages 

containing yeast-forming species tend to have smaller genomes (such as Schizosaccharomyces 

and Ashyba), but this apparent reduction has occurred independently and multiple times in 

fungal history [37,38,87].  

At the upper end of the range of currently sequenced species are the 150 to 175-Mb 

genomes of Cenococcum geophilum (Dothidiomycetes; Ascomycota), Sphaerobolus stellatus 

(Agaricomyoctina; Basidiomycota), Tuber melanosporum (Pezizales; Ascomycota), and 

Blumeria graminis (Leotiomycetes; Ascomycota)  [52,88–90], which are primarily plant-

associated fungi with both biotrophic and mutualistic lifestyles. Genome expansions in these 

species appear to have been driven mostly by transposon element content expansion. The total 

gene count is also higher in these genomes, which may belie an increase in gene duplication or 

insertion events that accompany the evolutionary processes that enabled increased transposon 

copy number.   



 

Genomes of Entomophthoromycotina (Zoopagomycota) also are extremely large. The 

genome of Entomophaga aulicae is estimated to be as large as 8 Gb based on estimates using 

nuclear staining approaches [91], though sequencing has not yet been attempted. The genomes 

of the insect-killing zygomycete fungi Entomophthora muscae and Zoophthora radicans 

(Entomophthoromycotina; Zoopagomycota) appear to be in the ~700-Mb to 1.5-Gb range based 

on sequencing done through the Joint Genome Institute for the 1000 Genomes project and 

others (MB Eisen and H. de Fine Licht personal communication). The large genome size 

appears to be driven by increases in transposable elements, while gene count is not 

substantially expanded based on RNA-seq of these and related species [92,93]. Genome size 

estimation using flow cytometry has indicated that many of the rust fungi (Pucciniales; 

Pucciniomycotina) also have large genomes with estimated sizes of 300 to 900 Mb [94]. 

Genome reduction has also occurred in several fungal lineages, with the highly reduced 

genomes of the obligate parasitic Microsporidian fungi being some of the most prominent 

examples with tiny genomes (by fungal standards) in the 2- to 6-Mb range [76–79]. However, 

not all Microsporidia have tiny genomes; some are in the 16- to 20-Mb range, which seems to 

be due to transposon insertions in the few cases that have been examined [95].  A smaller 

genome lends itself to fewer genes; as such Microsporidia have a highly reduced gene set, 

dispensing with most small molecule production and energy production pathways in favor of 

uptake transporters to obtain these resources from hosts [79,96–98]. In addition to fewer genes, 

the length of gene sequences themselves are reduced as the selective pressures that resulted 

in reduced genomes size also contributed to reduced gene length [77,96,99]. Coding space is at 

such a premium, with genes found nearly every 1,000 bp in some species [76], that some 

transcribed genes overlap [99,100]. Other obligate parasites in the fungal kingdom such as 

Pneumocystis demonstrate reduced genomes in the 8-Mb range with approximately 3,700 

genes [101–103] suggesting the presence of common selective pressures to reduce genome 

size as part of a tight host association in some parasitic fungal-host interactions. 



 

Reduced genomes are a hallmark of yeast-forming lineages. Prominent examples 

include the Saccharomycotina yeast Ashbya gossypii with a 9-Mb genome and 5,300 genes and 

the Taphrinomycotina fungus Schizosaccharomyces pombe, also known as fission yeast, with a 

12-Mb genome and 5,100 genes [81,87,104]. The fern pathogen Mixia osmundae 

(Pucciniomycotina; Basidiomycota) has a 14-Mb genome [83] and 7,000 genes and the human 

pathogenic Cryptococcus yeasts (Tremellomycetes; Basidiomycota) [84–86] have 19-Mb 

genomes with around 7,000 protein coding genes. In each of these clades of yeast-forming 

fungi the genome sizes tend to be smaller than their filamentous sister clades. The filamentous 

Pezizomycotina filamentous fungi, sister to the Saccharomycetales yeasts, have genomes in 

the 35- to 45-Mb range and the Agaricomycotina fungi sister to the Pucciniomycotina are 

typically in the 45- to 60-Mb range. Analyses of gene gain and loss in yeast lineages have 

revealed that major gene losses occurred in the evolutionary history of these lineages indicating 

genome reduction in the transition to single-celled growth [37,38,87].  

Efforts to study how changes in gene content and evolution affect different lineages have 

identified classes of genes and genomic regions that change at different rates [105,106]. Within 

a genome, gene family copy number dynamics, transposable element transposition frequency, 

and individual gene evolution varies across a genome which could be a consequence of 

different selective pressures but also influenced random genetic drift. An important driver in the 

importance of random genetic drift vs selection in shaping a genome is the effective population 

size (Ne) of a species.  An organism’s mode of dispersal, outcrossing frequency, rapidity of cell 

division can all influence Ne though the driving factors that determine effective population size 

are not well explored in fungi, Some of these regions, like effectors and defense genes, can be 

important pathogenic or symbiosis associated genes. The processes that establish and maintain 

different rates of change are likely not universal but genome regions with extremely high rates of 

molecular evolution are particularly common in plants, fungi and oomycete species [107–112] 

and may be important sources for novelty within species. 



 

Many of the studies of genome size change are limited to lineages that diverged many 

millions of years ago. This divergence does not allow for the study of the mechanisms of 

genome size changes occurring at the population level. While aneuploidy and polyploidy 

manipulation or large scale acquisition of DNA has been explored in Saccharomyces [113–116], 

studies of recent changes in genome size by massive gene duplications or transposon 

proliferation could reveal fitness consequences and the relative role of neutral vs directional 

selection in the success of lineages with genome size expansions [117,118]. Increased genome 

size may also result from changes in effective population sizes leading to relaxed selection and 

genome size increase [117].  What might drive changes in population sizes? A newly acquired 

plant-associated lifestyle may impose constraints on reproductive modes (eg timing and 

availability of partners) or dispersal (eg, how spores are produced). A better understanding of 

the pressures that drive genome size change could help us to understand how demography and 

transposable element proliferation influence fungal evolution, and in some cases how they have 

enabled the emergence of many disease-causing plant pathogens.  

 

Gene and Gene Family Size Dynamics 

Sampling entire genomes has allowed for increased resolution regarding the relationships 

between fungal lineages as well as the history of individual genes. Reconstruction of individual 

trees for each gene in the genome can provide a means to establish the age and coalescent 

history of a gene eg, a gene could originate with the Eukaryotes, in the Animal-Fungi ancestor, 

or be fungal-specific. Tools such as PhylomeDB and Ensembl Genomes Compara provide 

interfaces to explore these reconstructions to understand the history of a single gene [119,120]. 

Other events that generate copy number expansions of a gene or gene family through 

duplication can be identified, and the timing of these duplication events can be established 

when comparing copy number of the same gene family across a phylogeny of species with 



 

sequenced genomes.  Likewise, a comparison of gene family contractions and gene losses can 

be studied to identify when potential function or diversity was lost. These changes in genome 

content provide important insights into adaptations that organisms may experience due to shifts 

in ecological niches or associations with a plant or animal hosts. 

  

Gene family expansions 

Comparisons of gene families between species have revealed several instances of gene 

gene copy number expansions possibly driven by evolutionary adaptations; such expansions 

have been instrumental in the evolution of pathogenicity traits. Copy number expansions of 

fungal genes containing the carbohydrate-binding LysM motif have been documented in both 

animal and plant pathogens [121–124]. LysM protein motifs bind chitin or chitin-like 

carbohydrates and peptidoglycans [121,125] and their role in fungi may be to bind the chitin in 

fungal cell walls to avoid triggering recognition by the plant or animal host defenses [126]. 

Expanded copy number of these genes and the domain may be a signature of species that have 

biotrophic interactions with a host and recent expansions could indicate a recent shift to this 

association from a saprotrophic lifestyle. The genomes of the human pathogenic fungi and 

basidiomycete yeasts Cryptococcus neoformans and C. gattii show expansions of sugar and 

major facilitator superfamily genes [84,85] hypothesized to play a role in increased uptake of 

these molecules from the environment [127] and could be important in synthesis and transport 

of the prominent capsule that is composed of the polysaccharides glucuronoxylomannan and 

glucuronoxylo-mannogalactan [128–130].  

Expansion of the subtilase and metalloproteases gene families have also been noted as 

important in the transition to an animal pathogenic lifestyle in the filamentous ascomycetes 

Onygenales [34,36,131]. The M36 metalloprotease family has expanded in Coccidioides fungi 

and their close relatives and is hypothesized to be linked to the switch from plant to animal 



 

associated ecologies and the switch from obtaining nutrients from plant-based carbohydrates to 

animal keratin and proteins  [34,35,132]. Research in animal-associated dermatophyte fungi has 

revealed similar, but typically independent, expansions of proteases in Blastomyces [133], 

Trichophyton and Microsporum [124]. Interestingly, the human pathogen Sporothrix, not an 

Onygenales fungi but a member of a different clade (Ophiostomataceae; Sordariomycete), does 

not show signatures of recent protease family expansion, suggesting a different transition to 

mammalian association. 

Comparison of the genes in the amphibian disease causing chytrid fungus 

Batrachochytrium dendrobatidis (Bd) to a non-pathogenic relative also identified expansions 

within protease families [134]. The copy number of aspartyl and multiple metalloprotease gene 

families and the chitin binding domain CBM18 are dramatically expanded in the pathogen as 

compared to non-pathogenic sister species [134]. The importance of these expansions in 

pathogenesis is suggested by several investigations. One study found that a subtilisin-like 

serine protease was upregulated in response to amphibian host expression of thyroid hormone 

necessary for amphibian development [135]. The CBM18 gene has the highest copy number of 

any fungus, ranging from 65-90 copies among sequenced strains, and has been under recent 

positive selection indicating it may be an important contributor to its pathogenicity [136,137]. 

Cloning and expression of the domain demonstrated that it also is capable of binding chitin 

[138]. Comparison with the closest relative, B. salamandrivorans, also a successful and recently 

emerging pathogen, supports a hypothesis that the timing of these protease and CBM18 gene 

family expansions coincide with the emergence of the two Batrachochytrium lineages [137].  

 Plant pathogenic fungi have also undergone gene copy number expansion effectively 

enabling host colonization and the ability to overcome plant defenses. One example is secreted 

effector proteins, which are expanded and diversifying in rust genomes (Pucciniomycotina; 

Basidiomycota) [139]. Recent transposable element expansion, which is associated with gene 

duplications and accelerated rates of effector gene evolution, is noted in Leptosphaeria 



 

maculans (Pleosporales; Dothideomycetes)[107,111]. Other members of the L. maculans 

species complex have small genomes and lack this genome expansion. The powdery mildew 

Blumeria graminis has a large genome with an expansion of atypical avirulence genes and 

signal peptide-containing genes [90]. Metalloproteases and alpha amylases are expanded in the 

important plant disease-causing fungus Zymoseptoria tritici (formerly Mycosphaerella 

graminicola) (Capnodiales; Dothideomycetes). In contrast contraction of CAZy family genes in 

Z. tritici suggest a specialization on the types of carbon sources utilized for nutrition [140].  

Recent gene gains and losses have occurred during the evolution of insect-associated 

fungi, and these changes appear to impact host specificity. The transition between generalist 

and specialist in Metarhizium species may have been driven by gene family contractions 

[141,142]. The “domesticated” fungus cultivated by leaf cutter ants, Leucoagaricus 

gongylophorus, has an expansion of CAZymes related to polysaccharide degradation. These 

enzymes are differentially expressed depending on the plant substrates ‘fed’ to the fungus 

garden by leaf cutter farming ants [143–149]. The specialized gongylidia that are swellings of 

the hyphal tip have evolved to provide a sugar nutrient source for the ants in exchange for the 

the input of leaf and plant material into the fungal garden. The expansion and specialization of 

the fungal enzyme families necessary for rapid extraction of carbohydrates from plant material 

has likely been driven by this highly mutualistic symbiosis [147–149]. 

Expansions are not always linked to pathogenicity. The extensive light responsive nature 

of the zygomycete Phycomyces blakesleaanus (Mucoromyoctina; Mucoromycota) is likely the 

result of the expansion of signaling pathways [150]. These signaling protein expansions are also 

seen in the relatively closely related species Rhizopus delemar (previously identified as 

Rhizopus oryzae) [151] which may have enabled these coprophilic fungi to optimize the timing 

of fruiting and spore maturation in sync with the ephemeral ecology of a dung. Producing and 

orienting spore forming structures at the right time of day can maximize the probability that 

offspring will be dispersed and establish the next generation. Genes encoding hydrophobin 



 

proteins, which are important for fruiting body development in mushrooms, are also expanded in 

copy number in Agaricomycotina species [152–155]. The p450 monoxygenase family is also 

highly expanded in mushroom-forming fungi, especially in white rot fungi such as 

Phanerochaete, which likely allow it to degrade a rich collection of substrates including lignin 

[63,152,156]. These expansions may have been important in niche adaptations and the 

evolution of specific traits such as lignin modifications and degradation, decomposition of 

complex hydrocarbons, and the ability to growth as a biotrophic plant pathogen [157–163]. 

 

Gene family contractions 

Gene family contraction and gene loss have contributed to the evolution of fungal 

genomes. Some of these changes can be correlated to recent shifts in ecology while other 

analyses have revealed ancient changes that appear to underlie a simplification in growth 

morphology. Researchers undertook a comparative analysis of 59 fungal genomes and 

examined changes in gene families corresponding to 5 independent lineages that grow primarily 

as single-cell yeast forms. The analysis used a newly developed method called COMPARE 

(comparative phylogenomic analysis of trait evolution) to infer that evolution of yeast growth 

forms occurred by convergent evolutionary processes leading to parallel, independent gene 

family losses [37]. The predominant pattern of observed losses were in plant cell wall degrading 

enzymes, fungal lysozymes, p450 families, and cyclophilins that serve as molecular 

chaperones.  

Gene family contractions are evident in the plant pathogen Colletotrichum 

(Glomerellales; Sordariomycetes) and are associated with host range contractions [164] 

suggesting that host specificity may be a result of gene losses. Extensive gene losses were 

noted in the genome of Escovopsis weberi, an ascomycete pathogen of the Leucoagaricus ant-

farmed basidiomycete fungi. These extensive gene losses in this species could result from 



 

specialization to mycoparasitism [165]. Gene family contractions are not seen in the related 

mycoparasitic Trichoderma sp., suggesting a different route of host specialization in Escovopsis. 

Loss of gene families, such as of dehydrogenases, have been documented in the insect 

pathogens Metarhizium and interpreted to reflect adaptation to host specificity [142]. 

A lack of duplicate genes is not always a direct result of gene loss. In species in which 

repeat-induced point mutation (RIP) occurs, gene duplications cannot persist because RIP, a 

genome defense mechanism, targets duplicated sequences so that they accumulate point 

mutations during the meiotic cycle [166,167].  RIP is hypothesized to be a potent defense 

against transposable element proliferation because both the source and transposed copy of an 

element will become mutated. The genome of the ascomycete Neurospora crassa has been 

shaped by RIP. N. crassa does not have a reduced genome (40 Mb, ~10,000 genes), but lacks 

nearly any active transposable elements but also does not have any large gene families 

[168,169].  

GENOME STABILITY AND PAN-GENOMES 

Gene content and genome copy number can vary, sometimes dramatically, in a 

population and across a species. Sequenced genomes represent a snapshot of the genomic 

information of a species or strain. The inventory of genes revealed by sequencing can be useful 

when comparing between isolates or sampling a population of individuals at different times. 

Changes in genomic content can occur among individuals in a population or even within a strain 

over time. Considering the complete set of genes across all strains or individuals of a species is 

deemed the pan-genome [170] which can be useful way to think about not just gene 

presence/absence compared to a “reference” but the complete set of genes that exists in a 

species or a collection individuals [171]. Genetic variation includes single nucleotide 

substitutions, insertion/deletions, or larger genetic content changes such as transposable 



 

elements and transposition events. The presence (1), absence (0), or amplification of copy 

number ( > 1 copies) a gene can also be evaluated among individuals in a population. Together 

these approaches can rank and identify fast or slow evolving genes and evaluate the 

evolutionary lability of genes and pathways which could underlie changes in function among 

populations and species. 

Investigations have revealed that gene content and genome copy number can vary, 

sometimes dramatically, in a population and across a species. In Saccharomyces cerevisiae, 

completed genomes of 100 individual strains have been used to generate a pan-genome of 

fungal genes, some of which are present in some but not all strains [172].  Changes are more 

common, but not exclusive to subtelomeric regions of chromosomes.  Variation in the tempo 

and mode of chromosomal rearrangements and gene shuffling can be seen in wild and 

domesticated species when comparing S. cerevisiae and Saccharomyces paradoxus [173] and 

wild or domesticated Aspergillus strains [174,175]. The human pathogen C. gattii has genomic 

segments that vary in copy number, segregate in the population,  and could be a contributing 

mechanism to virulence differences among strains [86,176].  

The importance of genome variation at the population level is also appreciated in plant 

pathogenic fungi where variation in virulence and prevalence from year to year can sometimes 

be linked to a single gene or to changes in chromosome content. Genes encoded on 

dispensable chromosomes are sources of rapid changes in gene content as these 

chromosomes can be transferred between individual strains and often lost without disruption of 

primary metabolic or cellular functions [177–179]. Also known as accessory chromosomes, 

these may accumulate transposable elements and evolve more quickly than other 

chromosomes because they typically do not encode essential genes  [109,180]. These 

chromosomes further support a mechanism of gaining or losing sets of genes that may be 

important in adaptation to new host plants [179]. The relative importance and molecular 



 

mechanism impacted by these genetic elements in modulating adaptability of species remains 

to be explored but can be important contributors to the timing and genome evolution.  

Conclusions 

Complete sequencing of fungal genomes has enabled comparisons of the dynamic genome 

size and gene content across a range of time in fungal evolution. Genome differences that are 

also identified through comparative genomics can help to form hypotheses about molecular 

mechanisms for adaptation to new ecological niches or fungal-host specialization. These 

identified changes establish guides for further genetic and molecular biology experimentation. 

Genome content comparisons also highlight the relative lability of fungal processes: core 

metabolism changes little, but copy number of transcription factors, secondary metabolites, and 

transporter families ebb and wane across the kingdom. Sequencing and analysis tools have 

permitted the detailed cataloging of where and how much change occurs across genomes, 

providing rationale for molecular experiments to study the functions of the genes implicated.  

 

  



 

Figure Legends 

Figure 1. Phylogenetic relationships of the Fungal Phyla and subphyla. A phylogenetic tree 

from 434 conserved protein coding genes resolves the relationships of most of the known 

lineages of fungi. This tree is a simplified version of that presented in Spatafora et al. [44]. Phyla 

are presented in Bold and subphyla in regular type. The Chytridiomycetes and 

Monoblepharidomycetes represent lineages for which there is not a sub-phyla yet named.   

 

Figure 2. Scatter plot showing relationship between genome size and gene count. 

Genome size varies among subphyla of fungi with some of the smallest genomes in the 

Microsporidia and the largest currently sequenced genomes in the Agaricomycotina and 

Pezizomycotina. Primary data are gathered from genome information available at National 

Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/) and Joint Genome Institute 

Mycocosm (https://jgi.doe.gov/fungi) and archived in the 1KFG genome_stats github project 

(https://github.com/1KFG/genome_stats). 
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