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Abstract

Studies in Empirical Policy Evaluation: New Methods and Applications to
the Energy Transition

by
Stephen J Jarvis
Doctor of Philosophy in Energy and Resources
University of California, Berkeley

Professor Severin Borenstein, Chair

The electricity sector is experiencing a period of significant change as pol-
icymakers grapple with a range of economic and environmental challenges.
Climate change, health, equity, efficiency, reliability and safety are all front
of mind. Formulating and enacting policy to tackle these challenges and en-
sure prosperity in an environmentally stable world means making big decisions
with limited understanding of how they will play out. A critical requirement
for making progress on these pressing issues is the ability to interrogate the
decisions that have been made, quantify their effects, and use that knowledge
to make better decisions in the future. The research set out here aims to do
exactly that, through developing new empirical methods and applying them
in novel ways to two key policy areas in energy and environmental economics.

First I study the phase-out of nuclear power in Germany. Many countries
have phased out nuclear electricity production in response to concerns about
nuclear waste and the risk of nuclear accidents. In joint work with Olivier De-
schenes and Akshaya Jha, we examine the impact of the shutdown of roughly
half of the nuclear production capacity in Germany after the Fukushima ac-
cident in 2011. We use hourly data on power plant operations and a novel
machine learning framework to estimate how plants would have operated dif-
ferently if the phase-out had not occurred. We find that the lost nuclear
electricity production due to the phase-out was replaced primarily by coal-
fired production and net electricity imports. The social cost of this shift from
nuclear to coal is approximately 3 billion euros per year. The majority of this
cost comes from the increased mortality risk associated with exposure to the
local air pollution emitted when burning fossil fuels. Even using alternative
assumptions regarding the value of avoided health damages and the impact
of the phase-out on the deployment of renewable power, the social costs still
range from 1 to 8 billion per year. It is challenging to find estimates of the ben-
efits from reduced nuclear operating costs, accident risks and waste disposal
that can outweigh social costs of this magnitude.

Second, I study the deployment of renewable energy in the United King-
dom. Large infrastructure projects can create widespread societal benefits and
are often critical to tackling major national or global challenges. However, they



also frequently prompt strong opposition from local residents and businesses.
This is sometimes pejoratively labeled NIMBY (Not In My Backyard) behav-
ior, and while it is thought to be common in many settings the economic costs
it imposes are poorly understood. In this paper I estimate the economic costs
of so-called NIMBYism. To do this I examine the case of renewable energy in
the United Kingdom, where I draw on detailed planning data for all renewable
energy projects spanning three decades, including projects that were proposed
but not approved. I first use hedonic methods to estimate how the construction
of a wind or solar project is capitalized into local property values. I find that
wind projects have significant negative local impacts whilst solar projects do
not. I then quantify the weight that planning officials place on various factors
during the planning process and find evidence that they are indeed particu-
larly responsive to local impacts. The result has been a systematic refusal of
societally beneficial projects. Ultimately misallocated investment due to the
planning process may have increased the cost of the UK’s deployment of wind
power by 10-25%. A significant portion of this can plausibly be attributed to
NIMBYism.
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Preface

The research set out here develops new empirical methods and then applies
them in novel ways to key policy areas relating to energy and environmental
economics. This thesis is divided into four chapters, grouped together in two
parts based on the two policy applications I study. In both cases I first devote
a chapter to making methodological contributions to the toolkit for evaluating
energy policies. I then use a second chapter to take the insights created by
these new methods to evaluate the policy in question.

Part [I| focuses on the phase-out of nuclear power in Germany. In Chapter
[ 1 develop a new machine learning framework for simulating electricity mar-
kets. Chapter [2| then takes the findings from applying this new approach and
conducts a valuation analysis to understand the costs and benefits created by
the phase-out policy. This work is joint with Olivier Deschenes and Akshaya
Jha, particularly with respect to the valuation analysis.

Part |[1 focuses on the deployment of renewable energy in the United King-
dom. In Chapter [3] I use hedonic methods to estimate the local impacts of
wind and solar projects. As well as building on an existing literature, I also
make a number of methodological contributions that enhance the findings from
this particular empirical strategy. Chapter [4 then takes these estimates of the
local impacts of wind and solar projects and uses them to examine flaws in
the process for planning and permitting new renewable energy projects.

il
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Part 1

The Phase-Out of Nuclear
Power in Germany



Chapter 1

Simulating the Electricity
Market using Machine Learning
Methods

1.1 Introduction

There is a growing need to evaluate the many policy changes currently being
enacted on energy and environmental issues to understand their realized im-
pacts. Historically studies of the electricity sector have utilized some form of
electricity dispatch model that combines engineering and economic modeling
tools to simulate the operation of the power grid. These models must explicitly
specify firm incentives, such as whether or how firms exercise market power.
They must also capture operational constraints such as transmission conges-
tion and plants’ start-up and ramping costs. In principle more sophisticated
models do include components aimed at tackling these dynamics. However,
this inevitably increases model complexity, raising barriers to entry for new
users and researchers. Making the assumptions necessary to model these fea-
tures of electricity markets is also non-trivial.

There is now a wealth of data available on electricity markets in many
countries, providing rich opportunities to leverage recent developments in data-
driven analysis. Here we set out a new application of machine learning methods
to the power sector for the purpose of ex post policy evaulation. Our approach
seeks to recover how plants are dispatched based on a host of different variables
pertaining to plant operations, demand, and electricity transmission. The
primary benefit of this empirical approach is that it requires fewer assumptions
regarding firm incentives or operational constraints. We allow the data to tell
us how these factors impact plant operations.

There are a wide range of possible applications for the approach we develop



here. As an illustration we apply it to study the phase-out of nuclear power in
Germany. This was a major piece of energy policy that saw Germany commit
to rapidly shutting down its fleet of nuclear reactors, in large part as a response
to the Fukushima nuclear crisis in 2011. Our machine learning approach pre-
dicts which power plants increased their output in response to the nuclear
plant closures. In doing so, this paper contributes a new method that builds
on |Davis and Hausman| (2016) in order to empirically assess how a change in
electricity production or consumption at one location propagates throughout
the electricity transmission network. This new methodology is useful in a num-
ber of different empirical contexts. For example, recent studies have explored
how production at different fossil fuel-fired plants responds to changes in elec-
tricity consumption at a given location, whether it be plugging in an electric
vehicle (Holland et al., 2018)), installing a more energy efficient appliance, or
siting new wind and solar resources (Callaway, Fowlie and McCormick, [2018a).
Finally, our paper also contributes to the small but growing literature in en-
ergy and environmental economics that integrates machine learning into causal
inference techniques (Burlig et al., [2017; |Abrell, Kosch and Rausch, 2019).

Our novel machine learning approach combines hourly data on observed
power plant operations between 2010-2019 with a wide range of related in-
formation, including electricity demand, local weather conditions, electricity
prices, fuel prices and various plant characteristics. Using these data, we first
replicate prior empirical approaches in order to document that production
from nuclear sources declined precipitously after March 2011. This lost nu-
clear production was replaced by electricity production from coal- and gas-fired
sources in Germany as well as electricity imports from surrounding countries.
We then more formally estimate the impact of the nuclear phase-out on mar-
ket outcomes using our machine learning algorithm. This algorithm predicts
the quantity of electricity produced by each power plant in Germany in each
hour-of-sample under two scenarios: one with the nuclear phase-out and one
without it. Consistent with the aforementioned descriptive trends, the results
of this estimation procedure indicate that the lost nuclear electricity produc-
tion due to the phase-out was replaced primarily by coal-fired production and
net electricity imports.

In developing this data-driven approach we also discuss its strengths and
weaknesses relative to the more structural modelling methods that have tended
to dominate studies in this area. For instance, we can only examine scenarios
that are sufficiently similar to observed outcomes. This is why other empirical
models of wholesale electricity markets tend to focus either on ex-post policy
assessments or identifying how marginal changes in electricity demand impact
plant operations. Indeed, our chosen application focuses on an ex-post eval-
uation of the nuclear phase-out in Germany on aggregate market outcomes.
Our approach also does not offer robust insights for a given plant in a given
hour. As such, our empirical modeling should be seen as a complement rather
than a substitute for more explicit simulation modeling of electricity markets.



This is particularly true when the behavior of individuals plants or short-term
physical constraints are of interest rather than aggregate market outcomes.

The rest of this paper proceeds as follows. Section sets out the data we
use, the policy application we examine, and the details of the machine learning
approach we develop. Section provides the results of our application of
this approach to the case study of the phase-out of nuclear power in Germany.

Section concludes.

1.2 Empirical Strategy

1.2.1 Context of Policy Application and Data
History of Nuclear Power in Germany

The first nuclear power stations were constructed in Germany in the 1960s.
Germany’s nuclear production capacity expanded rapidly over the next three
decades; the last nuclear reactor was commissioned in 1989. Despite no new
reactors coming online in the 1990s and 2000s, roughly 25% of Germany’s
electricity production came from nuclear plants prior to 2011.

Nuclear power has long been controversial in Germany. There were protests
as far back as the 1970s at a number of sites where nuclear facilities were either
proposed or under construction. However, the Chernobyl disaster in Ukraine
in 1986 created a focal point in the politics of nuclear power in Germany.
Specifically, radioactive fallout affected much of the country and led to grow-
ing public concern. In 1998, the Schroder government took power through a
coalition between the Social Democratic Party (SPD) and the Green Party.
Over the next two years, the Schroder government banned the construction of
new reactors and negotiated a policy of phasing-out nuclear power completely.
This plan called for all nuclear reactors to be shut down by 2022.

The center-right Merkel government came to power in 2009. This govern-
ment renegotiated the original phase-out policy by committing to extending
the lifetimes of the newest reactors. This revised policy pushed back the
shutdown of the last nuclear reactor into the 2030s. However, the specter of
nuclear disaster rose again due to the Fukushima incident on March 11, 2011.
In response, public opposition to nuclear intensified again, with an estimated
250,000 people taking to the streets nationwide to protest in the days and
weeks following March 11, 2011. The resulting political pressure forced the
Merkel government to declare a moratorium on planned extensions at existing
nuclear power plants almost immediately after the Fukushima incident. In
addition, eight older reactors were taken offline for testing.

By May of 2011, German policymakers decided to return to a version of



the original plan: phase out all nuclear power by 2022. Specifically, of the
seventeen reactors operating in 2011, the eight reactors already temporarily
offline were closed immediately (8.4 GW of capacity), a ninth reactor was
closed in 2015 (1.3 GW), a tenth in 2017 (1.3 GW), an eleventh in 2019 (1.4
GW), and the final six reactors (8.1 GW) will close in 2022. Our sample period
ends in 2019. Consequently, our empirical analysis focuses on the closure of
the nuclear reactors in 2011, 2015, 2017 and 2019, but not the subsequent
closures in 2022.

The phase-out of nuclear power is part of a wide-ranging transformation
of Germany’s energy sector known as the FEnergiewende. The primary goal
of this policy is to reduce Germany’s carbon emissions by at least 80% by
2050 relative to 1990 levels (BMWi, [2018)). To achieve this, Germany has un-
dertaken major investments in renewable electricity production, transmission
grid infrastructure, and energy efficiency measures. The sweeping scope of
the Energiewende policy highlights the importance of accounting for a host of
potential time-varying confounders when assessing the impact of the nuclear
phase-out. This motivates the development of the machine learning approach
set out here.

The Germany Electricity Sector

This paper brings together a wide range of publicly available data on the Ger-
man power sector from a variety of different sources. First, we obtain data
on the hourly operation of the electricity grid in Germany from the European
Network of Transmission System Operators for Electricity (ENTSOE). This
includes hourly data on total electricity demand, aggregate electricity pro-
duction by source type, imports and exports in and out of Germany at border
points, and hourly day-ahead electricity prices. ENTSOE also provide data on
unit-level electricity production for all power plants with production capacity
greater than 100MW.

Importantly the ENTSOE data are only available from 2015-2019. We
therefore supplement these with additional data on hourly total production by
source (e.g. nuclear, coal, natural gas, oil, etc.) from the European Energy Ex-
change (EEX) from 2010-2019. Additional data on wholesale electricity prices
comes from Thomson Datastream. We also integrate data from Germany’s
four different transmission system operators (TSOs) that are each responsi-
ble for a different geographical area on the German grid: Amprion, TenneT,
TransnetBW and 50Hertz. Each TSO reports hourly production from wind
and solar sources for the period 2010-2019. The TSOs also provide data on the
hourly level of electricity imports and exports in and out of Germany at border
points, as well as the hourly total quantity of electricity demanded for their
portion of the grid. Combining the data from ENTSOE with the additional
data from EEX, Thomson and the TSOs allows us to construct consistent



hourly series from the entire 2010-2019 period.

We construct each plant’s marginal cost over time using data on input
fuel prices and carbon emission prices gathered from the following two main
sources. First, Thomson Datastream provides data on daily natural gas prices
in Germany and neighboring countries. The Intercontinental Exchange (ICE)
lists monthly coal and oil prices as well as the monthly permit prices for
carbon dioxide emissions set by the European Union Emissions Trading System
(EUETS). Assumptions on marginal costs for other sources such as nuclear,
wind and solar are taken from a range of industry sources.

Finally, we compile other electricity sector data and power plant level char-
acteristics from a variety of different sources (Open Power System Datay, 2018;
BNetzA| 2018; Egerer, [2016)).

Taken together, our main estimation sample covers the period 2010-2019
and contains hourly data on wholesale electricity prices, hourly total and
net electricity demand, hourly production by dispatchable sources, individual
power plant characteristics (including hourly marginal costs of production),
and hourly plant-level generation (for the 2015-2019 only).

Figure presents annual total electricity production in Germany by
source as well as total imports and exports. This figure documents the pre-
cipitous drop in nuclear production following the 2011 closure of nine reactors
as well as the rapid growth in production from wind and solar resources over
our 2010-2019 sample period.

Figure shows the estimated marginal cost of each power plant in our
sample operating in 2011. We assume that biomass, waste, hydroelectric, wind
and solar resources have zero marginal operating cost. Marginal costs for fossil
fuel plants are calculated as the sum of fuel costs and an assumed amount of
variable operating and maintenance costs that differs by fuel typeﬂ Lastly, we
assume that nuclear plants have a marginal operating cost of approximately
€10/MWh based on prior research on Germany’s power sector (Egerer, 2016)).
This is confirmed by company reports from two European nuclear plant op-
erators: RWE and EDF which also have marginal fuel costs of approximately
€10/MWhP]|

Figure|l.2| highlights that nuclear units uniformly have lower marginal costs
than fossil-fuel-fired units. Nuclear power plants also emit virtually no carbon
dioxide or local pollutants. We would thus expect that the shutdown of nuclear
reactors will lead to increases in both production costs and pollution emissions.
We test this hypothesis using a simple event study framework in the next

'Fuel costs are converted to euros per MWh using the plant’s thermal efficiency: how
well the plant converts units of input heat to units of electricity output.

2Later in the analysis we do account for non-fuel costs as these can be substantial. The
same industry reports indicate these likely amounting to a further €20/MWh resulting in
overall costs for the continued operation of existing nuclear plants of roughly €30/ MWh.



Figure 1.1: Electricity Production by Source: 2010-2019
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Notes: This figure plots the annual total quantity of electricity produced by different
types of sources in Germany from 2010-2019. We also plot the annual total quantity of
electricity imports and exports for this same sample period. The data underlying this
figure are from BNetzA Monitoring Reports.



Figure 1.2: Marginal Cost Curve in 2011
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Notes: This figure plots the estimated marginal costs for power plants in Germany in
2011. Specifically, plants are ordered in terms of marginal cost to create an aggregate
supply curve. For a given marginal cost ¢ (plotted on the y-axis), the x-axis provides
the sum of the production capacity (in GW) over all plants with marginal cost less than
or equal to c. For coal, gas and oil plants, marginal costs are calculated as the sum of
fuel costs and an assumed variable operating and maintenance cost that differs by fuel
type. Fuel costs are converted to dollars per MWh using the plant’s thermal efficiency (a
measure of how well a plant converts units of input heat to units of electricity output).
For this figure, we consider the fuel costs on February 1st, 2011. Nuclear plants are
assigned a marginal cost of €10 per MWh as in (Egerer}, 2016). Hydro, wind and solar
are assumed to have zero marginal costs. For simplicity, the small amount of remaining
sources are also assigned a marginal cost of zero (i.e. biomass, waste and other). For
ease of presentation, this figure does not show how electricity imports and exports factor
into the aggregate supply curve; importantly, we account for imports and exports in our
analysis.



section and then build on this to look more comprehensively using our machine
learning approach.

1.2.2 Event Study Approach

In response to the Fukishima nuclear accident, the German government sud-
denly and unexpectedly shut down eight nuclear reactors on March 15" 2011.
We can thus analyze the impact of these closures on market outcomes using
the event study framework formulated in Davis and Hausman (2016)) and more
recently implemented by (Grossi, Heim and Waterson| (2017)). Specifically, our
event study framework estimates how total electricity production by each fuel
type ¢ in each hour-of-sample ¢t responds to changes in electricity demand be-
fore versus after March 15th, 2011.

The independent variables of interest are equally-spaced bins of net elec-
tricity demand interacted with an indicator for observations after March 15
2011. As in the rest of this paper, “Net electricity demand” is defined to be
electricity demand net of production from renewable sources. We consider net
demand because production from renewable sources has near-zero marginal
costs and is “non-dispatchable”: wind and solar sources produce only when
the wind is blowing or the sun is out. In order to implement the event study,
we restrict the sample to observations less than 12 months before or after
March 15 2011 and estimate the following regression:

Gis = Y [1{Li € B}y + Bip- 1{t > 3/15/2011})] + v + €54 (L.1)
b

where G, is the total quantity of electricity produced by fuel type 7 in
hour-of-sample ¢ in Germany. L, is net demand in hour ¢, and 1{L; € By}
is an indicator that takes on the value one if L, is in bin B, and is zero
otherwise. Next, the indicator 1{t > 3/15/2011} takes on the value one if the
observation corresponds to an hour-of-sample on or after March 15" 2011 and
is zero otherwise. Finally, we include month-of-year fixed effects (i.e.: 7,,) and
cluster standard errors by week-of-sample.

Figure plots the coefficient estimates of interest (i.e.: f;,) along with
their 95% confidence intervals. Panel[a of this figure shows that average hourly
electricity production from nuclear sources dropped by roughly 5 GWh across
all levels of net demand. Panels [bl{d]demonstrate that this lost nuclear produc-
tion was offset in large part by increases in electricity production from fossil
fuel fired sources. Specifically, production from lignite increased by roughly
1 GWh on average at low levels of net demand. Production from hard coal
increased by 2-3 GWh on average across all levels of net demand. Finally,



gas-fired electricity generation also increased by roughly 2 GWh on average,
and by as much as 6 GWh for hours-of-sample with very high net demand.

Figure 1.3: Fvent-Study Estimates of the Effect of the 2011 Nuclear Closures
on Fossil Electricity Production
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Notes: This figure plots the results from an event study analysis of the effects of
the nuclear phase-out in Germany in 2011. The estimates correspond to changes in
electricity production by source after the phase-out, relative to before March 15, 2011.
Panel [a] presents the estimates for nuclear production, separately for each bin of net
demand (i.e., electricity demand minus production from renewables). Panels present
the corresponding estimates for production from lignite, hard coal, and natural gas,
respectively. The panels also include the point-wise 95% confidence interval around
each of the estimated effects; the standard errors used to construct these confidence
intervals are clustered by week-of-sample.

While these results provide a simple examination of the data, the event
study approach has several limitations in our context. First, hourly plant-level
data on electricity production are not available prior to 2015. Consequently,
the event study framework cannot be used to explore heterogeneity in how
different plants respond to the nuclear phase-out beginning in 2011. This het-
erogeneity is especially important because the amount of local air pollution
emitted per MWh of production can vary significantly across plants burning
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the same type of fuel. In addition, the monetary damage from local air pol-
lution emissions is also tied directly to the number of people exposed to this
pollution; the same level of pollution emissions from two different plants can
have very different damages based on the number of people living near each
of these plants.

Second, the event study framework relies on the assumption that changes
in power plant operations around March 15, 2011 are caused by the nuclear re-
actor closures rather than changes in other factors that determine production
behavior. To ensure that this assumption holds, we examine the impact of the
phase-out in a fairly narrow window around the initial 2011 shutdowns. Focus-
ing on this narrow window allows us to argue that firms could only respond
to the nuclear shutdowns in the very short-run by adjusting output. How-
ever, subsequent nuclear plant shutdowns occurred incrementally and were
pre-announced. As such, firms may have been able to take actions in antici-
pation of these later closures.

Finally, other important economic factors also changed over our 2010-2019
sample period independent from the nuclear phase-out in 2011. For example,
coal and natural gas plants had similar marginal costs in 2011. However,
coal prices decreased precipitously from 2011-2015 while natural gas prices
increased over this period. Coal plants were thus increasingly more likely to
produce in place of natural gas plants from 2011-2015 even absent any changes
in nuclear power production. In addition, many older coal and gas plants were
retired between 2010 and 2019, and a number of new fossil fuel-fired plants
came online during this period as well. Summarizing, it is unlikely that market
outcomes before versus after March 2011 were driven solely by the phase-out,
especially as we look further in time after the 2011 shutdown decision.

1.2.3 Machine Learning Approach

We develop a machine learning approach to more credibly estimate the full
market and environmental impacts of policy changes in the electricity sector.
In this case we study the series of nuclear plant closures that occurred over the
entire period between 2011 and 2019. This machine learning approach has two
advantages over the event study framework discussed in the previous section.
First, hourly plant-level data on electricity production are not available prior
to 2015; for this reason, we estimate the event study regressions using data
on hourly aggregate electricity production by fuel type. As we noted earlier,
plant-level heterogeneity is particularly important for estimating the damages
from local air pollution exposure: different plants burning the same type of
fuel may have very different emissions factors and number of people living
nearby. The machine learning algorithm allows us to use hourly plant-level
data from 2015-2019 to estimate plant-level heterogeneity in response to the
nuclear phase-out over our entire 2010-2019 sample period.
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Second, as discussed earlier, a variety of economic factors relevant for elec-
tricity production decisions changed over time independently from the nuclear
phase-out. The event study framework affords us only limited ability to con-
trol for these factors. In contrast, the machine learning approach allows us to
estimate the impact of the nuclear phase-out on plant-level economic and en-
vironmental outcomes controlling for a wide range of observed market factors.

Importantly, the goal of our machine learning framework is to best predict
market outcomes for different values of the input variables. This differs from
traditional econometric methods in two ways. First, we do not seek to identify
the causal effect of one variable on another. Second, though we are able to
provide bounds on our estimates, it has proven impossible to derive standard
errors on the predictions from machine learning models absent randomization
of treatment and control groups (Wager and Athey, 2018). Summarizing, our
machine learning algorithm gives us substantially more accurate predictions
of market outcomes than the event study approach at the cost of being unable
to conduct traditional statistical inference on these predictions.

Constructing the Training Dataset

We train our machine learning algorithm to predict power plant operations
using a data set of roughly 4.5 million observations. The outcome of interest
is the hourly quantity of electricity produced by each “dispatchable” plant in
our sample. We subtract “non-dispatchable” renewable output from electricity
demand because renewables have near-zero marginal cost and thus produce
whenever nature permits (e.g., the sun is out or the wind is blowing). Hourly
data on plant-level electricity production are available for all EU member states
since 2015 from ENTSOEE] We incorporate electricity imports and exports at
each border interconnection between Germany and its neighboring countries
into our framework by treating each border interconnection point as if it is
a power plant. For example, consider the hourly net electricity imports from
France to Germany. If France exports 50MWh of electricity to Germany, this
border point would be “producing” 50MWh. Conversely, if France imports
50MWh of electricity from Germany, this border point would be “producing”
-50MWh.

The dependent variables considered in our machine learning framework are
the production levels from each power plant and border points in our sample.
In all cases, we normalize the relevant dependent variable by dividing output

3More specifically, the data are available for plants with capacity greater than 100 MW.
This covers 100% of production from nuclear plants, 95% from lignite plants, 85% from
hard coal plants, 50% from gas plants and 45% from oil plants. We treat the operating
behavior of these plants as being representative of the remaining plants with capacity less
than 100MW, conditional on a range of other plant characteristics such as technology type,
combined heat and power functionality, location, and so on.
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by the maximum production capacity of each power plant or the maximum
transfer capacity of the border point as applicable. Our algorithm focuses on
dependent variables that are bounded between 0 and 1; we rescale the flows
from border points from their original scale of -1/1 to 0/1 when applying the
algorithm. We refer to this rescaled output as the operating rate for each
power plant.

The independent variables include net electricity demand, local weather,
each plant’s marginal cost, the availability of other power plants, and a wide
range of power plant characteristics such as fuel type, efficiency, technology,
and location. We estimate a predictive model that takes these independent
variables as inputs and outputs a predicted operating rate for each power plant
in each hour. Importantly, we have data on these independent variables from
2010-2019. This allows us to predict hourly, plant-level electricity produc-
tion from 2010-2019 using our model despite only observing hourly plant-level
production from 2015 onward.

We also build a predictive model for wholesale electricity prices. However,
there is no cross-sectional variation in these prices; the hourly wholesale elec-
tricity price is the same throughout Germany. In this case, the independent
variables for the time-series model of electricity prices include electricity de-
mand, national average weather, and the marginal cost associated with the
marginal unit (i.e.: the unit with the largest marginal cost that produces a
positive quantity in that hour-of-sample).

Random Forest Algorithm

We predict outcomes using a Random Forest regression algorithm (Breiman),
2001). In particular, we use the Quantile Regression Forest algorithm (Mein-
shausen) 2006). Random forests are especially well-suited for our empirical
context for several reasons.

First, each plant’s production is based on a potentially complex combi-
nation of factors such as the marginal costs and availability of other plants,
electricity demand at different locations, and transmission constraints. Conse-
quently, the relationship between plant-level production and the independent
variables listed above is likely to be highly non-linear and include multiple
interactions. Random forest methods are well-suited to use variation in the
data in order to find these interactions rather than pre-specifying how inde-
pendent and dependent variables relate using polynomials or splines as in a
more standard regression frameworkf_f]

“4In their application for predicting housing values, [Mullainathan and Spiess| (2017) report
that the Random Forest method results in the most accurate predictions, as measured
by out-of-sample R?, among the various methods evaluated (e.g., OLS, Regression Tree,
LASSO, and Ensemble).
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Second, the Random Forest algorithm ensures that the support of possible
outcome predictions is bounded by the support of the outcome values in the
training data set. This prevents nonsensical predictions such as plants produc-
ing negative amounts of electricity or producing greater than their capacity
(e.g. operating rates above 100% or below 0%).

Third, the Quantile Regression Forests algorithm produces predictions for
the full conditional distribution of the outcomes rather than just their expected
value. This property both allows us to better understand the uncertainty in
our analysis and to make corrections that ensure that our predicted outcomes
meet certain physical constraints (e.g., that electricity supply equals electricity
demand). This is important because there is clearly uncertainty about whether
a given plant will operate in a given hour conditional on the covariates for that
plant-hour. However, being able to characterize the distribution of potential
outcomes means we can (a) examine the uncertainty in our results, and (b)
adjust our final estimation to calculate the most likely changes to in plant-
level production that still meet physical requirements (i.e. that demand equals
supply). For example, though our primary specifications report the conditional
averages of predicted outcomes, we find that both the mean and median of
the potential predictions produced by our model perform reasonably well (see

Figure [1.0).

Feature Scaling and Importance
The most important independent variables for our analysis are:

e Net Load. Net load is defined as total electricity demand minus produc-
tion from low marginal cost or non-dispatchable sources. Specifically,
we subtract production from renewables (wind, solar, hydro, biomass,
waste) and nuclear. This net load variable thus measures the amount of
production required by “flexible” (typically fossil-fuel fired) sourcesE]

e Marginal Cost. A plant decides whether to produce primarily based on
whether its marginal cost is less than the electricity price it will be paid
for its output. In electricity markets such as Germany’s, the electricity
price is typically set by the highest marginal cost plant necessary to meet
demand (i.e. the clearing plant that is on the margin). Consequently,
we first construct estimates of each plant’s marginal cost over time. We
then estimate the marginal cost of the clearing plant: the last fossil plant
(or border point) necessary to meet net load in a given hour. Finally, we
construct a “standardized” marginal cost for each plant as the plant’s
marginal cost minus the marginal cost of the clearing plant for that hour.

5We also include lags and leads of net load to capture the fact that many power plants
have dynamic production constraints (e.g. the speed at which they can “ramp up” their
output, or the minimum amount of time they have to be offline before they can restart).
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Plants typically produce (don’t produce) if this standardized marginal
cost is negative (positive).

o Available Capacity. Where the “marginal cost” variable captures the
position of a plant in the supply curve in terms of price, the “available
capacity” variable captures the position of a plant in the supply curve
in terms of quantity. For each plant, we calculate the total amount of
capacity from other fossil plants (or border points) with a lower marginal
cost. Our “available capacity” variable is then calculated as the total
amount of capacity with a lower marginal cost than the plant minus net
load for that hour. Once again, plants with negative available capacity
are likely to produce, while plants with positive available capacity are
unlikely to produce.

Figure illustrates the relative importance of each of our covariates. As
expected, net demand, marginal cost and available capacity are all particu-
larly important covariates. However, it is noteworthy that two of the other
important covariates are the type of source (i.e. lignite, hard coal, gas, oil or
border point) and whether a fossil-fuel-fired plant is combined-heat-and-power.
This reflects the fact that different types of electricity generators face different
operational constraints. For example, many natural gas plants in Germany
are combined-heat-and-power. As such, whilst they may have higher marginal
costs than coal plants, they receive revenues both for their electricity output
and from providing heating services. Consequently, combined-heat-and-power
plants operate more frequently than would be suggested by simply comparing
their marginal cost to electricity prices.

When making out-of-sample predictions using a predictive model such as
this, it is important to ensure that the training data-set provides sufficient
support across the predictor variables. This is because our algorithm is ill-
suited to extrapolate beyond the economic conditions seen in the training
data. We are confident that assessing the impacts of nuclear phase-out is an
interpolation exercise rather than extrapolation exercise in part because the
portfolio of fossil-fuel power plants and the underlying transmission grid does
not change very much over our 2010-2019 sample period.

Rescaling certain variables can also help to ensure that our out-of-sample
prediction is not extrapolating too far outside the support of the training data.ﬂ
The three main variables we use to approximate the interaction between supply
and demand are net load, plant marginal costs, and the amount of available
capacity. Almost by definition, the counterfactual no-phase-out scenario will
contain some periods where these variables fall outside the range in the training

SFor example, we rescale the marginal costs of each plant by the marginal cost of the last
plant needed to clear the market. Even if fuel costs doubled from 2010-2019, for example,
the rescaling would ensure that the rescaled marginal costs fed into our algorithm stay
within a reasonable range over our sample period.
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dataset. Even so, there is such wide variation in electricity demand, production
from renewables and marginal costs that the overlap in support between these
variables in the factual versus counterfactual scenarios is very good. This can
be seen in Figures [1.4b| [1.4c| and [1.4d}

Implementation for our Policy Application

We use the trained machine learning model to construct two data series. First,
we predict hourly plant-level electricity production at each dispatchable plant
(i.e., each fossil plant or border point) using the observed values of the inde-
pendent variables over 2010-2019. This provides us with electricity production
levels at each plant in the “factual” scenario with the nuclear phase-out. We
note that the machine learning model is necessary for estimating plant-level
production even in the factual scenario because there is no hourly plant-level
production data prior to 2015.

Second, we use the model to estimate hourly production for the same set of
dispatchable plants in the counterfactual scenario where there was no nuclear
phase-out. Put another way, we predict plant-level production assuming that
the nuclear reactors that were shut down in 2011, 2015, 2017 and 2019 would
have remained operational until the end of 2019. To do this, we first calculate
the amount of electricity these nuclear plants would have produced in each
hour-of-sample if they had remained online.m We subtract this counterfac-
tual nuclear output from net electricity demand, thus reducing the production
needed from the remaining dispatchable plants.

The machine learning application we use is designed to predict how dis-
patchable flexible sources such as fossil-fuel plants and border flows increase or
decrease their output in order to meet the residual demand left after account-
ing for output from renewables and nuclear sources. Net load, the relative
marginal cost of each plant, and the amount of alternative available capacity
are key predictors in the analysis not only because they play a significant role
in explaining plant operating decisions, but also because they are the variables
we modify in order to construct the counterfactual scenario. For the scenario
with the phase-out, the net load variable is the observed net load given the
phase-out decision as shown in Figure [I.5a] For the counterfactual scenario
without the phase-out, nuclear production would have been higher and so net
load would have been lower, as shown in Figure [1.5b] This reduction in net

"We assume that the nuclear plants that were shut down would have operated at 80%
of their capacity on average. We choose this relatively conservative 80% operating rate
because the nuclear plants that were shut down tended to be older; newer nuclear plants
often achieve operating rates of 90-95%. We adjust this counterfactual nuclear output based
on observed fluctuations in monthly total nuclear production from 2012 to 2014 because
there were no nuclear shutdowns during this period. This adjustment primarily reflects
the fact that nuclear plants tend to go on maintenance during the summer months when
demand is lowest.
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Figure 1.4: Machine Learning Model Diagnostics
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Notes: This figure illustrates a range of key model diagnostics related to the machine
learning estimation. Panel (a) shows the importance scores for each of the variables
included in the estimation. Importance scores indicate the relative importance of each
variable in predicting the outcome of interest. The abbreviated names in the figure
are as follows: source = source type (e.g. lignite, hard coal, gas, oil or border); mc =
marginal cost relative to the clearing unit; mcB = marginal cost relative to the clearing
unit including border capacity; lowercap = amount of capacity with a lower marginal
cost; lowercapB = amount of capacity with a lower marginal cost including border
capacity; chp = presence and scale of combined-heat-and-power capability; technology
= technology type (e.g. steam turbine, combined cycle turbine or transfer); temp =
local temperature; south = indicator for whether the plant or border point is located in
the south of the country; moy = month-of-year; dow = day-of-week; hod = hour-of-day;
netload = electricity load minus production from wind, solar, hydro and nuclear sources;
netloadX = difference between current net load and net load X hours ago; netload X =
difference between current net load and net load X hours ahead. Panels (b-d) show the
support of three key variables: net demand, standardized marginal cost and available
capacity. The grey area shows the distribution of observations in the 2015-2019 training
data-set (i.e.: where we have hourly, plant-level production data). The blue area shows
the distribution of observations in the missing 2010-2015 data (i.e.: where we only
have hourly data on production by fuel type). The red area shows the distribution of
observations in the counterfactual scenario (i.e.: without the nuclear phase-out) across
the full 2010-2019 analysis period.

17



load also changes the marginal cost and available capacity variables. Specif-
ically, if net load is lower, the marginal cost of the clearing plant would also
be lower. Moreover, the amount of capacity below net load is also lower for

lower values of net load. This is illustrated in Figures and

Using the median predictions we find around 40 TWh per year of additional
supply from higher fossil-fuel plants and net imports. However, it is important
to note that there is no constraint in our estimation process that the total
amount of estimated replacement production should match the lost nuclear
output. In fact, the amount of lost nuclear production is around 50 TWh per
year and so using the median predictions actually leads us to under-estimate
the level of replacement generation. To remedy this, we utilize the information
our quantile regression model provides us on the full conditional distribution
of potential changes to output. Specifically, we generate predictions for the
10th, 25th, 40th, 50th, 60th, 75th and 90th percentiles of each of our outcomes.
We then find the combination of these percentiles that fully replaces the lost
nuclear generation with the most likely set of plant-level changes (i.e. closest
to the median). Put another way, we find the percentiles closest to the median
that produce a change in annual total generation equal to the annual lost
nuclear output. Ensuring that additional supply exactly meets lost nuclear
output only requires moving a few percentiles from the median.

Finally, our exposition here has focused on hourly plant-level production.
However we do also utilize a similar approach to assess the impact of the
phase-out on wholesale electricity prices.

Accounting for Other Impacts of the Policy

A natural concern with the approach as set out thus far is that the phase-out
led to changes in other independent variables beyond the direct reduction in
nuclear electricity production. For the vast majority of the other independent
variables that do not depend on net demand we hold them fixed at their ob-
served values. Given these generally relate to factors like plant characteristics,
temperature, and seasonality of demand this assumption seems reasonable.
The main exception to this that we account for is the impact of the phase-out
on investment in renewable production sources such as wind and solar.

In the absence of the phase-out the incentives to invest in renewables might
not have been as strong. To account for this, we assume that renewable pro-
duction in the no-phase-out scenario would have been 30 TWh lower by 2020.
We chose 30 TWh based on changes made to Germany’s renewable energy tar-
gets in response to the phase-out decisionﬁ Reducing renewable production

8Specifically, in 2010, Germany planned on producing at least 30% of its electricity from
renewables by 2020. However, this target was increased to 35% following the 2011 phase-
out decision (Jacobs| 2012). The difference between these two targets requires a change in
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Notes: This figure illustrates the role of the net electricity demand variable in the
analysis. Net demand is defined as total electricity demand minus production from low
marginal cost or non-dispatchable sources. Specifically, we subtract production from
renewables (wind, solar, hydro, biomass, waste) and nuclear. Panels (a) and (b) show
the level of net demand both with and without the phase-out respectively. Note that
production from renewables is growing over time, which results in less net demand to be
satisfied by flexible sources such as fossil-fuel fired plants. Comparing panel (a) to panel
(b) shows that more nuclear production without the nuclear phase-out leads to less net
demand to be satisfied in this scenario. Panels (c¢) and (d) provide an illustration of how
changing net demand impacts the estimation process. This happens because altering
net demand alters the position where net demand intersects with the supply curve of
dispatchable capacity. This intersection point is indicated by the clearing fossil-fuel
plant (or border point) that is “on-the-margin” (purple). Altering the clearing fossil
plant (or border point) affects the relative marginal cost (AP) and available capacity
(AQ) values for all dispatchable supply. These two variables are illustrated for a high
marginal cost plant (red) and a low marginal cost plant (blue).
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by 30 TWh amounts to an 8% increase in net electricity demand by the end of
our study period for the counterfactual case where the phase-out had not gone
ahead. We argue that this 8% change in net electricity demand is a relatively
large response to attribute to renewables being incentivized by the phase—out.ﬂ
To demonstrate the sensitivity of our findings to these kinds of shifts in net
electricity demand we also explore a lower bound scenario where there is no
response from renewable investment and an upper bound scenario where the
response from renewables is twice as largem These findings are presented and
discussed in the robustness analysis.

It is also plausible that the phase-out altered the incentives to invest in
fossil power plants as well. Prior studies have demonstrated that, if the phase-
out had not occurred, the amount of fossil fuel-fired capacity necessary to
ensure that demand is met during peak hours in Germany would have been
4 GW lower by 2020 (Traber and Kemfert, 2012) and 8 GW lower by 2030
(Knopf et al., 2014)). However, this reduction in capacity could be due either to
fewer new fossil plants being built or to older existing plants closing early. As
such the impact on the composition of fossil fuel plants in terms of operating
costs and emission intensities is unclear and accounting for this response to
the phase-out is unlikely to significantly alter our findings.

In addition to altering the incentives to invest in electricity production
capacity, reductions in wholesale electricity prices in the absence of the phase-
out may have increased total consumer demand for electricity. In general this
kind of effect would lead to an increase in net electricity demand. Thus it has
the same directional impact as the various renewable investment scenarios we
explore. We therefore argue that our existing renewables sensitivity analysis
should help capture the scope for total customer demand to also respond to
the phase-out. Specifically, our central assumption of shifts in renewables
investment leading to an 8% change in net demand due to the phase-out is
already a large response. We consider that there are good reasons to think
that changes in wholesale prices would only have a muted impact on customer
demand by comparison[]

renewable production of roughly 30 TWh between 2010 and 2020.

9For example, previous research on the phase-out assumed that investments in renewables
did not accelerate due to the nuclear plant closures (Traber and Kemfert] [2012; [Knopf et al.,
2014). Furthermore, the increases in wholesale electricity prices resulting from the phase-
out were unlikely to impact the profitability of investment in renewable capacity. This
is because all renewable capacity in Germany is remunerated through feed-in-tariffs that
provide a guaranteed above-market price for the electricity produced.

10Tn this case we assume there are 60 TWh of additional renewables by 2020 directly as
a result of the phase-out.

HThis is because the commercial and residential customers that make up around half of
Germany’s total demand are highly price-inelastic. Moreover, wholesale electricity prices are
only roughly a quarter of their overall retail price, with the remainder being network charges,
taxes, and renewable subsidy fees(BNetzA||2018). The latter of these is also inversely related
to changes in wholesale prices. It is true that larger industrial customers may be more
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1.3 Results

1.3.1 Model Performance

Figure compares observed hourly plant-level operating rates (i.e., per-
centage of capacity utilized) with the predictions from the machine learning
model. Specifically the predicted electricity production (scaled on the y-axis)
is plotted against the observed production (x-axis) so that observations on
the 45 degree line indicate perfect prediction accuracy. Each pixel in the fig-
ure represents the predicted vs. actual operating rate in increments of 2%
and darker areas correspond to a higher number of plant-hour (or plant-year)
observations.

We check the out-of-sample cross-validated performance to avoid overfit-
ting and give a fair assessment of how the model may perform when used to
make predictions about our counterfactual no-phase-out scenario. The cross-
validated out-of-sample R? is 0.53 and the mean squared error (MSE) is 0.059.

However, even this small level of prediction error understates the relevant
prediction accuracy of the machine learning model. Specifically, we will pri-
marily use the predictions from our model to compare outcomes with versus
without the phase-out at the plant-month and plant-year levels. We there-
fore also evaluate the predictive performance of the model at these levels of
aggregation. Specifically, Figure plots predicted versus observed annual
average operating rates. As the figure shows, the performance is substan-
tially improved, with most of the observations clustered close to the 45 degree
line, and the areas of systematic error largely disappear. The cross-validated
out-of-sample R? rises to 0.96 and the mean-squared error falls to 0.004.

Lastly, our equivalent modeling to predict counterfactual hourly wholesale
prices performs well with a cross-validated out-of-sample R? of 0.88. By far
the most important predictor is the estimated marginal cost of the clearing
plant. This makes sense as it is consistent with the core process by which
prices are determined in the wholesale market.

1.3.2 Findings for Phase-Out Application

Figure shows the median model predictions for how the nuclear phase-
out impacted aggregate plant-level electricity production in Germany. As ex-
pected, points on this figure tend to lie above the horizontal axis; the nuclear
phase-out reduced nuclear generation, with fossil-fuel-fired production filling

price-elastic, and the rates they pay are more responsive to changes in wholesale electricity
prices. Still, even a relatively conservative assumption regarding the price-elasticity of these
consumers is unlikely to produce an 8% change in demand based on the change in prices
that is attributable to the phase-out.
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Figure 1.6: Machine Learning Model Performance: Plant-Level Electricity
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Notes: This figure illustrates the accuracy of the plant-level predictions from the ma-
chine learning model presented in Section 5. The model predicts the operating rate of
each power plant in each hour, where a value of 0% means that a plant is offline and
a value of 100% means that the plant is running at maximum capacity. Values on the
45 degree line indicate perfect accuracy, and we summarize this both visually and by
computing measures of Mean Squared Error and R-Squared. We compute these metrics
using out-of-sample five-fold cross-validation. Darker areas indicate higher numbers of
plant-hour (or plant-year) observations. Each pixel represents the predicted vs. actual
operating rate in increments of 2%. Panel (a) shows prediction accuracy at an hourly
timescale. The number of observations is 4,304,350, and the MSE and R-square are
0.059 and 0.633, respectively. Panel (b) shows prediction accuracy after taking annual

averages of our hourly predictions. The number of observations is 846, and the MSE
and R-square are 0.004 and 0.955, respectively.
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the gap. The largest response to the phase-out comes from the hard coal
plants.

Figure illustrates which plants and border points increased production
to meet the reductions in nuclear output due to the phase-out. Most of the
fossil-fuel generation comes from the industrial regions in the west and south
of the country. Changes to net imports come primarily at the borders with
Denmark, France and the Czech Republic.

Finally, Figure [1.9] shows how the predicted changes to electricity genera-
tion vary across the different renewables scenarios we study. As expected, in
the low renewables scenario the entirety of the difference in production has to
come from additional fossil fuel-fired generation and changes to net imports.
As the assumed response from renewables to the phase-out grows, a greater
wedge of additional wind and solar production reduces the need for increases
from fossil sources and net imports.

Interestingly, the scenarios with higher renewables also demonstrate the
ability of the machine learning approach to capture important constraints in
the dispatch of coal plants. This is clearest in the high renewables sceneario
where net decreases in production at coal-fired plants is visible in later years.
This almost certainly reflects the ramping constraints these plants face as the
penetration of renewable production on the system grows.

1.4 Conclusion

This chapter has set out a new application of machine learning methods to
the study of electricity markets. It has also described an initial application to
a policy evaluation of the phase-out of nuclear power in Germany. The results
indicate this new approach has promise in that it can replicate many of the
features of electricity markets that are of interest. This includes basic features
like the dispatch of lower marginal cost plants ahead of higher marginal cost
plants. However, the modeling results also demonstrate a capacity to capture
more complex aspects of electricity market outcomes that are less readily dealt
with using traditional simulation modeling tools. For instance, the simple
inclusion of a dummy variable for combined heat and power is able to pick
out many of the unique operational characteristics of these plants. Similarly,
the ramping constraints faced by inflexible coal plants during periods of high
renewables production also appear to be incorporated into the patterns picked
out by the machine learning approach. There are undoubtedly improvements
to be made, and additional tweaks necessary in each specific context, but the
initial findings here are certainly encouraging.
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Change in Operating Rate due to Phase-Out

Change in Operating Rate due to Phase-Out

Figure 1.7: Plant-level Changes in Production due to the Phase-Out
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Notes: This figure illustrates the plant-level disaggregation of the machine learning
prediction model results. The model predicts the operating rate of each power plant in
each hour, where a value of 0% means the plant is offline and a value of 100% means it is
running at maximum capacity. These figures plot plant-level annual average operating
rates. The x-axis corresponds to each plant’s operating rate in the baseline scenario
with the phase-out. The y-axis corresponds to the impact of the phase-out on plant-
level operations. This is determined by the difference between the predictions in the
scenario with the phase-out versus the scenario without the phase-out. Darker areas
indicate higher numbers of plant-year observations. Each panel refers to a different type
of dispatchable electricity source. Panel (a) covers lignite plants, panel (b) covers hard
coal plants, panel (c) covers gas plants and panel (d) covers border points. Oil plants
are not shown because they are a very small portion of total capacity and are largely
invariant to the phase-out.
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Figure 1.8: Map of Plant-Level Changes in Production due to the Phase-Out

Notes: This map illustrates the location of the fossil-fuel-fired plants or border points
that increased their electricity production as a result of the nuclear phase-out policy.
The size of the circle reflects the amount of additional production provided by the
fossil-fuel plant or border point. Points in red are border points and points in grey are
fossil-fuel plants. Lignite plants are depicted in the darkest grey, followed by hard coal,
then natural gas, and finally oil plants are depicted in the lightest grey.
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Figure 1.9: Estimated Impact of the Nuclear Phase-Out on FElectricity
Production by Renewables Scenario
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Notes: This figure plots the monthly difference between the predictions from our ma-
chine learning model with the phase-out minus without the phase-out. The start of
the phase-out is in March 2011. Panel (a) reports the estimates for the low renewables
scenario where there is no response from renewables investment to the phase-out. Panel
(b) reports the estimates for the central renewables scenario where there is a 30 TWh
per year increase in renewables production by 2020 due to the phase-out. Panel (c)
reports the estimates for the high renewables scenario where there is a 60 TWh per year
increase in renewables production by 2020 due to the phase-out.
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Chapter 2

The Private and External Costs
of the Phase-Out of Nuclear
Power in Germany

2.1 Introduction

The Fifth Intergovernmental Panel on Climate Change Assessment Report
(IPCC 2013) and the 21st United Nations Climate Change Conference (“COP21”)
have both recommended that nuclear power should be a part of the global solu-
tion to climate change. This is because nuclear electricity generation produces
minimal carbon emissions under normal operating conditions (Markandya and
Wilkinson, 2007). In contrast, burning fossil fuels to produce electricity is
known to emit both global pollutants that contribute to climate change and
local pollutants that have negative consequences on human health (NRC and
NAS| 2010; Jaramillo and Muller, 2016 Deschenes, Greenstone and Shapiro),
2017; Holland et al.; 2018]). Despite this, many countries have substantially
decreased the share of their electricity production from nuclear sources. For ex-
ample, Belgium, Spain, and Switzerland all have policies in place to phase-out
nuclear power entirely. This is due in large part to concerns about long-term
solutions for storing nuclear waste and public fears of catastrophic nuclear ac-
cidents. These fears intensified considerably following the incidents at Three
Mile Island in 1979, Chernobyl in 1986, and Fukushima in 2011.

The decision to phase-out nuclear production in many countries seems to
suggest that the expected costs of nuclear power exceed the benefits. Yet,
there remains considerable uncertainty about some of these costs and benefits
as there is a glaring lack of empirical studies quantifying the full range of
economic and environmental impacts from large-scale nuclear sector closures.

This paper presents a first attempt at filling this important gap by docu-
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menting the impact of the phase-out of nuclear power in Germany on multiple
market and environmental outcomes. In particular we focus on the shutdown
of eleven of the seventeen nuclear reactors in Germany that occurred between
2011 and 2019 following the Fukushima accident in Japan. This context af-
fords us several advantages over previous research studying the impacts of
nuclear power plants closures. First, and most importantly, Germany shut
down over 8 GW of nuclear production capacity over a few months in 2011,
representing close to a 5% reduction in total capacity. By 2019 this had in-
creased to a total of 12.4 GW of closed nuclear production capacity. This is
far larger than the reductions in capacity studied by previous research that fo-
cused on the shutdown of a small number of nuclear plants in the United States
(Davis and Hausman), 2016; |Severnini|, 2017)). Second, Germany plans to shut
down all of its remaining nuclear reactors by 2022. Our study thus provides
timely policy-relevant information on the consequences of Germany’s nuclear
phase-out moving forward. Third, studying electricity markets in the Euro-
pean context gives us the opportunity to examine how cross-border trade was
impacted by a large shock to production in one country. Finally, Germany’s
nuclear phase-out was the direct result of political actions taken following ex-
tensive anti-nuclear campaigning in Germany as well as a sudden increase in
the perceived risk of nuclear power following the Fukushima accident (Goebel
et al.| [2015). Importantly, the phase-out was not caused by changes in the eco-
nomic or environmental conditions pertaining to nuclear production in Ger-
many. This facilitates a causal interpretation of our analysis of the initial
phase-out decision based on comparing the conditional averages of economic
and environmental outcomes before versus after the nuclear phase-out.

This paper adds to the relatively small literature that explores the effects
of the nuclear phase-out on the German electricity sector. For instance, both
Traber and Kemfert (2012) and |[Knopf et al. (2014)) used mixed economic-
engineering models of the power sector to forecast changes to capacity invest-
ments, electricity prices and carbon emissions. More recently, (Grossi, Heim
and Waterson (2017) uses an event study framework to econometrically es-
timate the impact of the initial nuclear plant closures in 2011 on electricity
prices over a three year window between 2009 and 2012. The broad consensus
across this small existing literature is that nuclear power was replaced primar-
ily by fossil fuel-fired production, resulting in higher electricity prices and more
carbon emissions. However, by focusing on aggregate outcomes, the previous
research ignores several important impact margins of the nuclear phase-out.
Specifically, we show that much of the social cost of the switch from nuclear
to fossil fuels is driven by changes in local air pollution concentration levels
around individual power plants before versus after the phase-out.

This paper goes beyond the aggregate electricity sector by estimating the
economic and environmental costs of the nuclear phase-out in Germany us-
ing rich plant-level data and ambient pollution monitor data. We contribute
and expand on the existing literature in several important ways. First, our
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empirical analysis considers both the initial nuclear reactor closures in 2011
as well as the subsequent incremental shutdowns up until the end of 2019.
Second, in addition to electricity prices and carbon emissions, we estimate the
spatially disaggregated impacts of the phase-out on production costs, net elec-
tricity imports, and local air pollution. This is especially important because
the increases in local air pollution as a consequence of shifting production
from nuclear to coal represents the majority of the overall costs of the nuclear
phase-out.

To proceed, we utilize a new machine learning framework to derive the ap-
propriate counterfactual outcomes under a “no phase-out” scenario. We use
our predicted changes in plant-level electricity production due to the nuclear
shutdowns to calculate the costs of the shift away from nuclear power. We first
show that the average operating cost per MWh of German electricity produc-
tion increased as a consequence of the phase-out. This is unsurprising given
that nuclear plants have lower marginal costs than fossil fuel-fired plants. In
addition, we find that the switch from nuclear power to fossil fuel-fired produc-
tion resulted in substantial increases in global and local air pollution emissions.
Overall, we estimate that the social cost of the phase-out to German produc-
ers, residents, and non-residential consumers is around 3 billion euros per year.
Even using alternative assumptions regarding the value of avoided health dam-
ages and the impact of the phase-out on the deployment of renewable power,
the social costs still range from 1.4 to 8.7 billion euros per year. Consistently
we find that the majority of this cost is due to the increased mortality risk
from local air pollution exposure as a consequence of producing electricity by
burning fossil fuels rather than utilizing nuclear sources. The majority of the
cost of the phase-out is thus borne by German residents rather than producers
or non-residential consumers of electricity.

The nuclear phase-out had benefits as well. In particular, shutting down
nuclear plants avoids any operating costs associated with keeping these plants
open and running. Shutdowns also reduce the risk of nuclear accidents and
decrease the costs associated with storing nuclear waste (D’haeseleer] 2013;
JECR], [2019). However, even the largest estimates of the benefits of the nu-
clear phase-out are unable to outweigh the substantial social costs we find.
Moreover, consistent with previous work, we find that electricity prices in
Germany are higher due to the phase-out. This increase in electricity prices
results in increases in the profits earned by most electricity producers but
imposes additional costs on German electricity consumers ]

Despite the substantial costs to German citizens, the nuclear phase-out
still has widespread support. Specifically, more than 81% of German residents

INeidell, Uchida and Veronesi (2019) similarly finds an increase in electricity prices due
to the phase-out of nuclear power in Japan following the Fukishima accident. This phase-
out-induced increase in prices resulted in a decrease in energy consumption, which in turn
caused substantial increases in mortality during very cold temperatures.
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were in favor of the phase-out in a 2015 survey (Goebel et al 2015). Existing
evidence suggests that the average person greatly overestimates the expected
costs of a nuclear accident, both in terms of likelihood and number of fatali-
ties (Slovic, Fischhoff and Lichtenstein, [1979; |Slovic and Weber| 2002; Slovic,
2010)). In addition, the health costs associated with local air pollution expo-
sure may simply be less salient than the risk of a nuclear accident, especially
after the Fukishima accident in Japan. Regardless of the underlying causes,
widespread anti-nuclear sentiment around the world has made it difficult to set
policy pertaining to nuclear power based solely on a dispassionate benefit-cost
analysis.

This paper proceeds as follows. The next section provides background
on the German electricity sector. In Section we briefly recap the machine
learning approach we use to estimate the impact of the phase-out on electricity
production and prices. We also set out the approach we take to valuing the
private and external costs and benefits of these changes. Section [2.3| presents
our estimates of the economic and environmental impacts of the phase-out.
Finally, we discuss the policy implications of our findings in Section [2.4]

2.2 Empirical Strategy

2.2.1 Estimating Changes to Generation, Net Imports
and Prices due to the Phase-Out

The primary impacts of the phase-out are the reduction in nuclear electric-
ity production, and the corresponding increase in production from alternative
sources. We employ the machine learning approach set out in the previous
chapter to estimate which alternative sources stepped in to fill the gap left
by the shuttered nuclear plants. Specifically, our machine learning approach
predicts which power plants increased their output in response to the nuclear
plant closures. Any shift towards dirtier fossil fuel sources could be mediated
by the potential scope for the phase-out to have incentivized additional invest-
ment in renewable energy sources such as wind and solar power. We therefore
explore a range of scenarios to test the sensitivity of our findings to this. We
also expand the approach to look at changes to electricity prices.

2.2.2 Estimating Private Costs

Costs are a combination of variable and fixed costs. Variable costs are the prod-
uct of each plant’s hourly production with our estimates of hourly marginal
cost. We then add additional information on plant-level ongoing fixed costs.
For fossil plants we take source-level assumptions for these from the US Energy
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Information Administration. For nuclear plants we rely on a range of indus-
try sources which indicate that the overall ongoing costs of existing nuclear
plants are likely roughly €30/MWh. Renewable plants are assumed to have
zero marginal costs. To account for the fixed operating and capital costs from
renewables we rely on levelized cost values for wind and solar plants from the
International Renewable Energy Agency. These values are specific to Germany
and capture annual average changes in costs for plants built in each year.

We also account for a number of important differences in investment due
to the phase-out policy. For nuclear plants Keppler (2012) argues that ex-
tending the lifetime of the nuclear reactors in Germany would have required
investments of roughly €500 million per reactor, or €8.5 billion in total. These
investment costs are avoided due to the nuclear phase-out. However, Knopf
et al.| (2014) argues that the phase-out led to 8GW of additional fossil-fuel-fired
capacity being required by 2030. If we assume coal-fired capacity has capital
costs of €3000/kW while gas-fired capacity has capital costs of €1000/kW,
the total additional investment costs in fossil-fuel-fired capacity as a result
of the nuclear phase-out range from €8-24 billion. Subtracting the avoided
investment costs in nuclear from this range, the net investment costs of the
phase-out are between -€0.5 billion to €16 billion. In the long-term then it
seems plausible that the phase-out likely increased overall capital investment
costs, particularly. We incorporate the portion of these additional investment
costs that would likely have been incurred by the end of our sample period
into our analysis of costs presented below. In general though these are small
relative to the changes driven by shifts in marginal operating costs.

For reference we also calculate revenues and profits. Revenues are calcu-
lated as the product of plant-level production and wholesale electricity prices;
we thus ignore any additional revenues plants may receive, such as capacity
payments, ancillary services payments, subsidies etc. Profits are calculated
as revenues minus costs. For net imports, we quantify revenues and costs as
the net import of electricity multiplied by the wholesale price in the relevant
neighboring countryE] Note that because we do not account for revenues from
subsidies, some sources will likely have negative profits. This particularly ap-
plies to renewable plants which derive a large portion of their revenues from
subsidies.

20ur analysis implicitly assumes that the phase-out caused no change to the electricity
prices of neighboring countries. Fully modeling electricity markets for each of these inter-
connected countries would entail a prohibitive amount of additional data collection. This
additional modeling would also be unlikely to dramatically alter the overall findings given
the dominant role of domestic production in meeting Germany’s electricity demand. Finally,
since prices in interconnected electricity markets likely increased due to the phase-out, our
net import cost estimates are likely to be a lower bound.
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2.2.3 Estimating External Costs Using Reported Emis-
sions Rates

Our analysis of the environmental costs caused by burning fossil fuels to pro-
duce electricity combines data from multiple sources. The European Environ-
ment Agency (EEA) reports annual carbon dioxide emissions for each plant
that participates in the EU ETS. The EEA also reports annual plant-level
data on fuel inputs and local pollution emissions.rf]

First, we estimate the change in carbon emissions due to the phase-out.
To proceed, we calculate the change in the amount of fuel burned by each
plant associated with the phase-out impact on each plant’s hourly production
and using each plant’s thermal efficiency (i.e.: how well the plant translates
input heat energy to output electricity). We then use the carbon intensity
of different fuels documented in industry reports to convert changes in fuel
burned to changes in plant-level CO, emissions []

We also estimate the change in local pollution emissions due to phase-
out-induced changes in plant production levels. Similar to the approach for
CO, emissions, we translate changes in fuel use into changes in emissions
using plant-level emissions rates for each local pollutant from the EU Large
Combustion Plant Directive (LCPD). The LCPD database provides annual
plant-level data on fuel inputs and emissions of sulfur dioxide (SOz), nitrogen
oxides (NOy) and particulate matter (PM). The LCPD data covers the vast
majority of large fossil plants in Germany[| We assign the small number of
plants not in the LCPD database an emissions factor based on the average
emissions factor of plants with the same fuel type.

We next monetize the damages caused by CO, and local air pollution
emissions. For CO,, we monetize damages assuming a social cost of carbon of
$50/tCO2. To assess the health damages from increases in local air pollution,
we rely on two studies that estimate the health impacts of local pollution in Eu-
rope (EEA| 2014; Jones et al., 2018). In particular, Jones et al. (2018) provide
estimates of the annual health damages from the local air pollution emitted
by roughly four hundred of the largest coal-fired power plants in Europe. We
use these data to convert our predicted increases in plant-level kilotons of SOs,
NO, and PM emissions into monetized health damagesf]

3These data are collected as part of monitoring for the EU Large Combustion Plant
Directive.

4The carbon intensities we use are 93.6 tCO2/TJ for hard coal, 55.9 tCO2/TJ for gas
and 74.0 tCO2/TJ for oil. We consider three different intensities for lignite depending on the
mining region that the plant sources its coal from. These are 113.3 tCO2/TJ (Rhineland),
111.2 tCO2/TJ (Lusatian) and 102.8 tCO2/TJ (Central).

5Specifically, the data covers 99% of lignite capacity, 98% of hard coal capacity, 90% of
gas capacity and 91% of oil capacity.

6Specifically, we assume that increased emissions at a given fossil-fuel-fired plant in Ger-
many would have the same health damages as if they were emitted at the nearest location
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2.2.4 Estimating External Costs Using Ambient Air Pol-
lution Monitors

As an alternative to calculating damages using fuel inputs and reported emis-
sions, we also compute damages using the estimated relationship between
plant-level production and recorded air pollution at nearby monitoring sta-
tions. Station-level weather data comes from Germany’s national meteorolog-
ical service (DWD) and local pollution monitor data are from the German
Environment Agency (UBA).

To do this we regress daily average local pollution concentration levels on
daily unit-level electricity production. We focus on coal and oil fired electricity
generating units in Germany over the sample period 1/1/2015-12/31/2019. For
these regressions, we drop units that produce both heat and electricity (i.e.:
combined heat and power plants). The unit of observation is a fossil fuel unit
matched to an air quality monitor in a day-of-sample. All specifications include
fixed effects for each unit/monitor pair as well as month-of-year fixed effects
and year-of-sample fixed effects. We also further examine the robustness of our
approach by including interactions with an indicator for whether the unit is
upwind or downwind from the monitor. This should capture the way pollution
will be dispersed from each source to nearby monitors according to the wind
direction.

Table presents the results from regressing daily average PMs 5 concen-
tration levels on daily unit-level electricity production. Table repeats the
analysis for NO2. As expected we find that increases in electricity production
lead to increases in local air pollution concentrations. This increase remains
positive and significant even after controlling for production at other nearby
plants. The effect is also concentrated at monitors where the change in pro-
duction is at a plant upwind from the monitor, which makes sense. However,
these effects are only clear for PMy 5, with the NO2 analysis less able to pick
out an obvious distinction between upwind and downwind changes.

2.3 Results

This section presents the primary results on the full range of impacts of the
nuclear phase-out over our entire 2010-2019 analysis period. Specifically, we
compare the market and environmental outcomes with versus without the
nuclear phase-out using the predictions from our machine learning model.

for which we have health damages estimates. The mean distance between each of the power
plants in our data set and closest of the 400 locations with damage estimates is 29km. The
median is 14km. Jones et al.| (2018) provides estimates for roughly 10% of the plants in our
data-set, noting that these plants are among the 400 largest coal plants in Europe.
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Table 2.1: Estimated Effect of FElectricity Production on Ambient PM2.5
Concentration

Dependent Variable: PM2.5 in micrograms per cubic meter
(1) (2) (3) (4)

Electricity Production (GWh) 0.178**  0.057***
(0.026)  (0.010)

Upwind x Production (GWh) 0.115**  0.123***
(0.016) (0.016)
Downwind x Production (GWh) 0.013 -0.010
(0.011) (0.011)
Neither DW nor UW x GWh 0.051***  0.046™**
(0.010) (0.009)
GWHh from Other Plants 0.033***  0.030***  0.026%**
(0.004) (0.003) (0.003)
GWh from Other Upwind Plants 0.009***  0.009***
(0.002) (0.001)
GWHh from Other Downwind Plants -0.003* -0.002**
(0.001) (0.001)
Distance Bandwidth 250 250 250 300
Unit/Monitor Pair FE Yes Yes Yes Yes
Month-of-Year FE and Year FE Yes Yes Yes Yes
Month-of-Sample FE No No No No
Number of Obs. 2,341,993 2,341,993 2,341,993 3,108,471

Notes: This table presents the results from regressing daily average PMs 5 concen-
tration levels on daily unit-level electricity production. We focus on coal and oil fired
electricity generating units in Germany over the sample period 1/1/2015-12/31/2019;
for these regressions, we drop units that produce both heat and electricity (i.e.: com-
bined heat and power plants). The unit of observation is a fossil fuel unit matched to
an air quality monitor in a day-of-sample. Standard errors, reported in parentheses,
are two-way clustered by unit/monitor pair and month-of-sample. For Columns 1-3,
we consider all units within 250km of the air quality monitor; Column 4 focuses on all
units within 300km of the air quality monitor. All specifications include fixed effects for
each unit/monitor pair as well as month-of-year fixed effects and year-of-sample fixed
effects. In Column 1, we regress the daily average PMs 5 on electricity production from
the unit (in GWh) with no additional controls. In Column 2, we regress PM3 5 on unit-
level generation controlling for the production from all other units within the relevant
distance bandwidth. The specifications in Columns 3-4 instead include generation in-
teracted with an indicator for whether the unit is upwind from the monitor, generation
interacted with an indicator for whether the unit is downwind from the monitor, and
generation interacted with an indicator for whether the unit is neither upwind nor down-
wind from the monitor. The regressions presented in Columns 3-4 additionally include
total generation from other units within the bandwidth, total generation from other
units in the distance bandwidth that are upwind from the monitor, and total generation
from other units in the distance bandwidth that are downwind from the monitor.
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Table 2.2: Estimated Effect of Electricity Production on Ambient NO2
Concentration

Dependent Variable: NO2 in micrograms per cubic meter
(1) (2) (3) (4)

Electricity Production (GWh) 0.340™*  0.102***
(0.031) (0.009)

Upwind x Production (GWh) 0.107*** 0.099***
(0.012)  (0.011)
Downwind x Production (GWh) 0.105**  0.087***
(0.011) (0.010)
Neither DW nor UW x GWh 0.098*** 0.077***
(0.009) (0.008)
GWh from Other Plants 0.063*** 0.059*** 0.050***
(0.003) (0.003) (0.002)
GWh from Other Upwind Plants 0.008***  0.008"**
(0.001) (0.001)
GWh from Other Downwind Plants 0.006*** 0.004***
(0.001) (0.001)
Distance Bandwidth 250 250 250 300
Unit/Monitor Pair FE Yes Yes Yes Yes
Month-of-Year FE and Year FE Yes Yes Yes Yes
Month-of-Sample FE No No No No
Number of Obs. 6,578,216 6,578,216 6,578,216 8,557,854

Notes: This table reports estimates from regressions of daily average NOs concentra-
tion levels on daily unit-level electricity production. We focus on coal and oil fired
electricity generating units in Germany over the sample period 1/1/2015-12/31/2019;
for these regressions, we drop units that produce both heat and electricity (i.e.: com-
bined heat and power plants). The unit of observation is a fossil fuel unit matched to
an air quality monitor in a day-of-sample. Standard errors, reported in parentheses,
are two-way clustered by unit/monitor pair and month-of-sample. For Columns 1-3,
we consider all units within 250km of the air quality monitor; Column 4 focuses on all
units within 300km of the air quality monitor. All specifications include fixed effects for
each unit/monitor pair as well as month-of-year fixed effects and year-of-sample fixed
effects. In Column 1, we regress the log of daily average NOs on electricity production
from the unit (in GWh) with no additional controls. In Column 2, we regress NOg on
unit-level generation controlling for the production from all other units within the rele-
vant distance bandwidth. The specifications in Columns 3-4 instead include generation
interacted with an indicator for whether the unit is upwind from the monitor, generation
interacted with an indicator for whether the unit is downwind from the monitor, and
generation interacted with an indicator for whether the unit is neither upwind nor down-
wind from the monitor. The regressions presented in Columns 3-4 additionally include
total generation from other units within the bandwidth, total generation from other
units in the distance bandwidth that are upwind from the monitor, and total generation
from other units in the distance bandwidth that are downwind from the monitor.
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2.3.1 Changes to Generation, Net Imports and Prices
due to the Phase-Out

Figure presents our estimates of the aggregate impact of the nuclear phase-
out on electricity production and wholesale prices. First among these is Figure
2.7p, which reports the monthly average difference in predicted production
and net imports (in TWh) with minus without the phase-out policy. We
report monthly average differences in fossil-fired electricity production (grey
diamonds), net imports (red circles), renewable electricity production (green
triangles) and nuclear electricity production (purple squares). The start of the
nuclear phase-out in March 2011 is marked by the vertical black dashed line.
By construction, we find a stark reduction in total nuclear production of 4 TWh
per month after this point, rising to 6 TWh per month as additional plants
close throughout the period. The cyclicality of this impact is due primarily
to the fact that nuclear reactors typically schedule their maintenance and
refuelling outages in the summer months.

In our baseline scenario we assume that at least some of this lost nuclear
production was replaced by accelerated investment in renewable sources as
a direct response to the phase-out. This can be seen in the steady rise of
additional renewable electricity production, with 2.5 TWh per month expected
2020, again by construction. Our machine learning analysis then estimates the
remaining contribution of various dispatchable sources. Here we see the phase-
out caused a large increase in fossil-fuel-fired electricity production of 2-3 TWh
per month, as well as a smaller increase in net imports of electricity of around 1
TWh per month. Importantly, all of these changes are calculated after taking
into account any overall trends that were occurring independent of the phase-
out policy. This includes the large rise in renewable energy production over
this period. Another notable result in Figure is that the stark increase in
fossil production starting in March 2011 persists over our entire sample period.

Figure is constructed similarly and reports the impact of the nuclear
phase-out on wholesale electricity prices in Euros per MWh. The estimates
show that the phase-out resulted in an increase in wholesale prices of around 1
euro per MWh. Another key result in Figure is that the increase in whole-
sale prices persists through the end of 2019, as was similarly noted for fossil
fuel electricity production. Finally, the figure also shows that the phase-out
may have exacerbated episodic increases in prices, such as the large price spike
in January 201 due to an unusual cold spell in Europe (European Commission),
2017).

Table further summarizes these findings. Column (1) complements
the information in Figure by reporting annual average predicted wholesale
electricity price and electricity production in the scenario with the phase-out.
Column (2) reports these predicted outcomes for the scenario without the
phase-out. Column (3) reports the difference between the first two columns
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Figure 2.1: Estimated Impact of the Nuclear Phase-Out on Electricity
Production and Prices
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Notes: This figure plots the monthly difference between the predictions from our ma-
chine learning model with the phase-out minus without the phase-out. The start of the
phase-out in March 2011 is marked by the vertical black dashed line. Panel (a) reports
the estimates for all fossil-fuel-fired electricity production (grey diamonds), net imports
(red circles), renewable electricity production (green triangles), and nuclear production
(purple squares). Panel (b) presents the change in wholesale electricity prices.
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Table 2.3: Estimated Impact of the Nuclear Phase-Out on Wholesale
Electricity Prices, Electricity Production by Source, and Net Imports

Average Average Change Change (%)

with without
Phase-Out Phase-Out
(1) (2) (3) (4)
Production (TWh/vear) 477.1 472.7 44 0.9
Nuclear 82.7 139.1 -56.4 -40.5
Lignite 155.0 148.6 6.4 4.3
Hard Coal 99.7 82.6 17.1 20.7
Gas 37.2 30.8 6.4 20.8
Oil 9.7 7.9 1.8 22.8
Net Electricity Imports -18.1 -32.1 14.0 -43.6
Wind + Solar 110.9 95.9 15.0 15.6
Wholesale Prices (Euros/nMwh) 39.4 38.2 1.2 3.1

Notes: This table reports annual average electricity production by type and wholesale
electricity prices with versus without the nuclear phase-out, as estimated using our
machine learning algorithm. These annual averages are calculated using data spanning
from immediately after the phase-out in March 2011 to the end of 2019.

and Column (4) provides this estimated effect as a percentage by dividing
column (3) by column (1). The estimates reveal that the phase-out caused
inflation-adjusted wholesale electricity prices to increase by €1.2 per MWh
on average, a 3.1% increase relative to the prices that would have prevailed
if the phase-out had not occurred. Consistent with Figure 2.1p] nuclear pro-
duction fell by an average of 56.4 TWh per year during the phase-out period,
corresponding to a 40.5% decline. The next rows decompose the previously
documented increase in fossil production by source. The largest increases,
both in absolute and percentage terms, are from hard coal and gas-fired pro-
duction. Specifically, annual average production from hard coal increased by
17.1 TWh (20.7%) while gas-fired production increased by 6.4 TWh (20.8%).
Finally, the phase-out caused net imports to increase by 14.0 TWh per year
on average. In sum, the 2011 phase-out lead to large changes to Germany’s
electricity generation mix.

2.3.2 Private Costs and Benefits of the Phase-Out

Table [2.4] examines the impact of the nuclear phase-out on financial outcomes
for power plants, once again organized by plant fuel type. We report predicted
annual average revenues, costs, and profits. Revenues are calculated as the
product of plant-level production and wholesale electricity prices; we thus
ignore any additional revenues plants may receive, such as capacity payments,
ancillary services payments, subsidies etc.
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Table 2.4: Estimated Impact of the Nuclear Phase-Out on Revenues,
Operating Costs, and Operating Profits

Average Average Change Change (%)

with without
Phase-Out Phase-Out
(1) (2) (3) (4)
Revenues (BrEuros 19.30 18.54 0.76 4.10
Nuclear 3.35 5.46 -2.11 -38.67
Lignite 6.27 5.82 0.45 7.73
Hard Coal 4.05 3.27 0.78 23.84
Gas 1.53 1.22 0.31 25.40
Oil 0.39 0.31 0.08 26.12
Net Electricity Imports -0.68 -1.22 0.54 -44.32
Wind + Solar 4.37 3.68 0.69 18.75
Costs (Br Puros 33.17 31.98 1.19 3.72
Nuclear 2.51 4.61 -2.10 -45.53
Lignite 5.30 5.09 0.22 4.33
Hard Coal 4.72 4.11 0.60 14.59
Gas 2.41 2.09 0.32 15.32
Oil 1.39 1.14 0.25 21.96
Net Electricity Imports -0.90 -1.48 0.58 -39.30
Wind + Solar 17.74 16.42 1.32 8.04
Profits ( “'Yga‘fos -13.88 -13.44 -0.44 3.27
Nuclear 0.84 0.84 -0.01 -1.18
Lignite 0.97 0.74 0.24 32.60
Hard Coal -0.66 -0.84 0.18 -21.45
Gas -0.88 -0.87 -0.01 1.15
Oil -1.00 -0.83 -0.17 20.43
Net Electricity Imports 0.22 0.26 -0.04 -15.53
Wind + Solar -13.37 -12.74 -0.63 4.95

Notes: This table reports average annual operating revenues, costs and profits with
versus without the nuclear phase-out, as estimated using our machine learning algo-
rithm. All values are annualized averages based on predictions from after the nuclear
shutdowns in March 2011 to the end of 2017. Operating revenues are the product of
each plant’s hourly production with the hourly wholesale electricity price. We ignore
any additional revenues plants may receive, such as capacity payments, ancillary ser-
vices payments, subsidies etc. Operating costs are the product of each plant’s hourly
production with its hourly marginal cost. Operating profits are operating revenues mi-
nus operating costs. Other sources such as renewables are excluded from this table as
we avoid making explicit assumptions about their marginal costs or their revenues (e.g.,
additional non-market subsidies).
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The nuclear phase-out had a large effect on the revenues and profits of the
firms that owned the nuclear plants that were shut down. Specifically, annual
average revenues across all nuclear plants declined by $2.1 billion per year.
Annual average profits earned by nuclear plants did not fall after accounting
for the reactor extension investments that plants would have had to make in
the no phase-out scenario.

The revenues previously earned by the shut-down nuclear plants were pri-
marily redistributed to fossil plants, most notably hard coal and natural gas
plants. This shift occurred at a less than one-for-one ratio since nuclear plants
have a much lower operating costs per MWh than fossil plants. Despite this,
annual average operating profits at fossil plants increased by roughly $0.24 and
$0.18 billion due to the phase-out at lignite and hard coal plants respectively.
Profits at natural gas plants were largely unchanged.

The redistribution of profits amongst electricity producers has interesting
implications for the political economy surrounding the phase-out policy. In
particular, the four large firms that owned nuclear plants in Germany clearly
opposed the policy both privately and publicly. However, there are two im-
portant factors that may have tempered their opposition. First, these firms
would have been allowed to operate their nuclear plants into the 2030s only if
they paid a nuclear fuel tax. This nuclear fuel tax would have taxed away a
large portion of the inframarginal rents that these nuclear plants earn. Second,
the four firms that owned nuclear plants also had large fossil plant portfolios
both in Germany and across Europe. As we have seen, these fossil plants
earned larger profits due to the nuclear phase-out, which likely cushioned any
reduction in profits earned by the four firms as a result of the nuclear closures.

2.3.3 External Costs and Benefits of the Nuclear Phase-
Out

External Costs of Changes to Local Pollution Emissions

This subsection presents two separate analyses of environmental costs associ-
ated with the phase-out-induced increase in fossil-fuel-fired production docu-
mented in the previous subsection. Specifically, burning fossil fuels emits both
global pollutants such as carbon dioxide that contribute to climate change and
local pollutants that adversely impact the health of exposed populations.

Table [2.5] presents the results of this analysis. Specifically, this table reports
the fuel-specific annual emissions for COs (in Megatonnes, Mt) as well as the
emissions of three local pollutants: SOs, NO,, and PM (in kilotonnes, kt).
Lignite and hard coal are by far the two largest polluters, contributing more
than 90% of emissions. Lignite and hard coal also contribute the most in terms
of monetary damages from emissions.
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Table 2.5: Estimated Impact of the Nuclear Phase-Out on COy Emissions
and Local Air Pollution Mortality Damages

Average Average Change Change (%)
with without
Phase-Out Phase-Out

(1) (2 (3) (4)

CO, Emissions (9) 267.4 244.7 22.7 9.3
Lignite 177.1 169.8 7.4 44
Hard Coal 90.2 74.9 15.3 20.4

o e K
SO, Emissions (Ye;r 132.8 122.2 10.5 8.6
Lignite 91.7 88.3 3.4 3.9
Hard Coal 41.0 33.9 7.1 20.9
NO, Emissions (5t 174.7 160.2 14.5 9.0
Lignite 117.7 112.8 4.9 4.3
Hard Coal 57.0 474 9.6 20.3
PM Emissions (gt 4.9 4.5 0.4 8.9
Lignite 3.2 3.1 0.1 3.2
Hard Coal 1.7 1.4 0.3 21.6
Mortality (Excess Deaths) 7,069.8 6,369.0 700.9 11.0
Lignite 4,005.8 3,840.8 165.0 43
Hard Coal 3,064.1 2,528.2 535.9 21.2
Pollution Damages (B2 Eures 18.31 16.49 1.82 11.03
Lignite 10.37 9.95 0.43 4.32
Hard Coal 7.94 6.55 1.39 21.23

Notes: This table reports estimates for emissions of CO4y as well as three local pollu-
tants: SOz, NO, and PM. The final row presents estimates of the mortality damages
from all three of these local air pollutants. All values are annualized averages based
on predictions from immediately after the March 2011 to the end of 2017. Emissions
are the product of each plant’s hourly generation with our estimate of their emissions
rate. Emissions rates are the product of (a) the amount of fuel required to produce
one unit of electricity, and (b) the emissions intensity of the fuel. Emissions estimates
are limited to fossil-fuel-fired plants in Germany. We ignore other potential sources of
emissions in the electricity sector, such as emissions from smaller biomass, landfill gas
or waste plants. We also focus on emissions and damages in Germany and so do not
estimate changes in emissions in neighboring countries due to changes in net imports.
For the pollution damages reported in the last row of the table, we present only the
monetary costs associated with premature mortality due to air pollution exposure in

order to ensure consistency with the complementary analysis using pollution monitor
data.
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In aggregate, the phase-out led to an increase in COs emissions of 22.7
Mt per year. This corresponds to a 9.3% increase relative to the scenario
without the nuclear phase-out. This increase in CO4y emissions was primarily
attributable to an increase in emissions from hard coal plants, with lignite
and gas making up the remainder. Valuing these carbon emissions at a social
cost of carbon of €50/tCO2 would mean the phase-out resulted in climate
change damages of €1.1 billion per year. However, when considering that the
German power sector is part of the EU ETS, the increase in carbon emissions
in Germany must have been offset by reductions in carbon emissions elsewhere
in Europe in order to meet the cap. As such we do not include these climate
damage costs in our final estimate of the costs of the phase-out.

The phase-out also led to a roughly 9% increase in the emissions of each the
three local air pollutants we consider (SOy, NOy, and PM). Again, this increase
is due primarily to increased emissions from hard coal plants. The bottom
panel of Table 2.5 reports annual average mortality damages summed across
all three local air pollutants. From 2010-2019, local pollution emissions from
fossil plants were responsible for around €18 billion in mortality costs each
year. €1.8 billion of this annual mortality cost can be attributed to the nuclear
phase-out, representing an 11% increase in damages relative to the scenario
without the nuclear phase—out.m Put another way, the phase-out resulted in
around 700 additional deaths per year from increased concentrations of SOs,
NOy, and PM. The increase in production from hard coal plants is again the
key driver here, making up roughly 80% of the increase in mortality impacts.

Given the importance of these health impacts to our analysis, we also use a
secondary approach to value the costs imposed by increased local air pollution.
This uses pollution monitor data to examine how changes in generation are
linked to changes in ambient air pollution concentrations. We then calculate
the increase in premature mortality due to any increase in air pollution con-
centrations using dose-response estimates from the ESCAPE project (Beelen
et al., [2014)

“We use a Value of Statistical Life of €2.56 million for Germany in line with |Jones et al.
(2018). We also examine a higher value of €6.7 million taken from |Viscusi and Masterman
(2017) as this is more in line with the approach taken by the US EPA.

®The European Study of Cohorts for Air Pollution Effects (ESCAPE) is one of the few
studies on the health impact of air pollution exposure in Europe. It is based on 22 European
cohort studies with a total study population of more than 350,000 participants. Specifically,
the ESCAPE project reports that mortality rate when PMs 5 exposure is X + 5 micrograms
per cubic meter divided by the mortality rate when PMs 5 exposure is X micrograms per
cubic meter is 1.07. The corresponding hazard ratio for a 10 micrograms per cubic meter
increase in NOg is 1.01. Based on these hazard ratios, we can calculate the increase in
mortality caused by the additional air pollution due to the phase-out using the following
formula:

1
VSL x POP x MR x <1 — eXp(ijPOLLj)> (2.1)

for j=PMjs 5 or NOs. POP and MR are the population and mortality rate in the exposure
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Table 2.6: Impact of the Phase-Out on Local Air Pollution Mortality
Damages

Average Average Change Change (%)
with without
Phase-Out Phase-Out

(1) (2) (3) (4)

NO; Concentrations (% 26.9 26.9 0.05 0.19
Lignite 24.6 24.6 0.03 0.12
Hard Coal 29.3 29.2 0.06 0.21
PM, .5 Concentration (Zcrosrams 14.5 14.5 0.02 0.14
Lignite 15.5 15.5 0.01 0.06
Hard Coal 13.6 13.6 0.03 0.22
s Ex Death
Mortality (>3 =228 367.8
Lignite 101.1
Hard Coal 266.8
s Bn. Eur
Pollution Damages (=75 7> 0.99
Lignite 0.27
Hard Coal 0.72

Notes: This table reports estimates of the monetary damages associated with the pre-
mature mortality resulting from the additional air pollution exposure as a consequence
of the nuclear phase-out. The changes in daily concentrations of PMs 5, PM;g, and NOq
are obtained by panel regressions of air pollution at the monitor-level on daily, plant-
level electricity production; these regressions include plant fixed effects, month-of-year
fixed effects and year-of-sample fixed effects. The coeflicients from these regressions give
us an estimated relationship between electricity production and pollution concentration
levels for each pollutant and each fuel type. We multiply the relevant estimated relation-
ship by our predicted changes in production by each plant due to the phase-out. The
resulting changes in air pollution concentrations are converted to a change in premature
mortality using dose-response estimates from the ESCAPE project (Beelen et al., [2014)).
We monetize this additional premature mortality using a value of statistical life of €2.56
million for Germany. We do not report the absolute levels of mortality or damages, only
the change due to the phase-out, because the baseline levels of pollution recorded at
monitors are not attributable entirely to power plant activity; for example, industrial
facilities, cars, and trucks also emit these pollutants.
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The estimates of monetized mortality damages are reported in Table [2.6]
Specifically, we present the annual average impact of the phase-out on pollution
concentrations, premature mortality and the monetized damages from this
premature mortality. A few key results emerge. First, there is again clear
evidence that the phase-out resulted in an increases in local pollution that in
turn led to increases in premature mortality. Second, the changes in PMy 5
and PMj, concentration levels due to the phase-out were responsible for much
larger health impacts than the change in NOy air pollution (about 10 times
more). Finally, the primary drivers of excess mortality are the hard coal and
lignite power plants. The estimates in column (3) suggest that the phase-
out resulted in just under 400 hundred additional excess deaths per year,
amounting to €1 billion in annual damages.

Taken together, the results in Tables and [2.6] paint a consistent picture
of the monetized mortality damages attributable to the nuclear phase-out.
That being said, our preferred estimate is the €1.8 billion per year in damages
calculated based on reported emissions (Table [2.5). This is because the anal-
ysis using reported emissions considers a more complete set of pollutants and
implicitly draws on a more sophisticated analysis of pollution transport and
exposure. The results presented in Table based on our estimated relation-
ships between pollution concentrations and electricity production (Table [2.6))
serves as a valuable complementary validation exercise, especially given it was
derived using an entirely distinct approach. Lastly, we want to emphasize that
the air pollution costs of the phase-out are economically sizable, amounting
to a roughly 10% increase in damages from premature mortality due to air
pollution emissions from Germany’s power sector.

External Benefits due to Reduced Risk from Nuclear Accidents and
Waste Storage

Nuclear power plants emit virtually no global or local air pollution. However,
nuclear energy does come with catastrophic accident risk and requires storing
the waste that results from nuclear production, which has important costs as
well. For instance, |JECR] (2019) estimates that the cost of the Fukushima ac-
cident over the next forty years is between 35-80 trillion yen ($330-750 billion).
Most of this cost will not be incurred by the firm that owned the Fukishima
nuclear power plant; the costs of the Fukishima accident are largely borne by
Japanese society as a whole.

More generally, estimates from the literature suggest that the external costs
of nuclear power due to waste storage and accident risk fall between €1-4 per
MWh (D’haeseleer, 2013)). This wide range is due to differing estimates of
accident probabilities and severity, as well as varying assumptions on discount

group. The parameter p; corresponds to the hazard ratios described above and APOLL;
is the change in ambient air pollution caused by the phase-out for air pollutant j.
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Table 2.7: Overall Estimated Impact of the Nuclear Phase-Out on Total Costs

Average Average Change Change (%)

with without
Phase-Out Phase-Out
(1) 2) (3) (4)
Total Costs ($7/vear) 53.7 50.6 3.0 5.9%

Private Costs

Costs 33.2 32.0 1.19 3.7%

External Costs

Local Pollution Mortality
Method 1: Reported Emissions 18.3 16.5 1.82 11.0%

Method 2: Pollution Monitors 0.99
Local Pollution Morbidity 1.9 1.6 0.13 9.9%
Nuclear Waste and Accidents 0.25 0.42 -0.17 -40.7%

Notes: This table reports the estimates of the different intensive margin costs incurred
with versus without the phase-out. Private costs are the operating costs of the power
plants in our analysis plus any changes in net imports (valued at the electricity price).
We assume that the production costs of renewable and other sources are equal to zero
when calculating these operating costs. External costs consist of climate damages from
carbon emissions, mortality and morbidity costs from air pollution emissions, as well
as the costs associated with nuclear accident risk and nuclear waste disposal. For the
total costs row in bold, we use the estimates from the reported emissions method when
adding in the external costs of local pollution on mortality.

rates. If we value the external costs of nuclear power at €3 per MWh, the
expected benefits from the nuclear phase-out are very small at just €0.2 billion
per year.

2.3.4 Total Costs and Benefits of the Nuclear Phase-
Out

This subsection bring the analysis together by summarizing the full range of
private and external costs and benefits of the nuclear phase-out. The pri-
vate costs of the phase-out consist of changes in the operating costs of the
power plants in our sample as well as any net costs from changes to imports
and exports. The external costs of the phase-out include the monetized cli-
mate change damages from carbon emissions, the damages from mortality, and
morbidity caused by the air pollution attributable to the change in electricity
production mix. Finally, the benefits of the phase-out consist of reductions in
the costs associated with nuclear waste and accident risks.
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Table reports the aggregate cost and benefits of the phase-out. The
phase-out resulted in replacing low cost nuclear production with higher cost
sources such as fossil fuels and net imports; this increases average operating
costs in Germany by €1.2 billion per year. Whilst not trivial, these private
costs are smaller than the external costs associated with the phase-out. Specifi-
cally, burning fossil fuels to produce electricity rather than using nuclear plants
emits global pollutants such as CO5 as well as local pollutants such as PMs 5,
SO, and NO,. Overall we estimate the annual costs of the nuclear phase-out
as approximately €3 billion per year.

Robustness Checks

Three key assumptions play a key role in our estimates: (a) the extent to
which renewables investment increased due to the phase-out, (b) the Value of
Statistical Life (VSL) used to monetize the additional mortality due to phase-
out-induced local air pollution, and (c) the external costs of nuclear waste and
accident risks. To explore the sensitivity of our findings to these parameters
we conduct a number of robustness checks using alternative values.

Our central estimate is €2.56 million. We also examine the impact of
using an alternative VSL of €6.7 million, taken from Viscusi and Masterman
(2017). This is more in line with the approach taken by the US EPA. Viscusi
and Masterman| (2017) also discusses the shortcomings of the lower VSL we
use in our analysis, which comes from analysis by the OECD. Switching to
this higher VSL naturally increases the external costs of the phase-out by a
factor of three. This suggests the external costs from health damages due to
local air pollution could plausibly be €5.4 billion per year.

Similarly, the high degree of uncertainty in the external costs associated
with nuclear waste and nuclear accident means that we explore parameters
spanning an order of magnitude above and below our central assumed value
of €3 per MWh. The resulting upper end value of €30 per MWh is 10 times
larger than the external costs of nuclear power estimated in previous studies
(D’haeseleer;, [2013)). This extremely conservative (i.e.: high) estimate increases
the benefits of the phase-out from €0.2 billion per year to €2 billion per year.
Even in this case the expected benefits from the nuclear phase-out are still
unlikely to larger than the other social net costs, which consistently exceed €2
billion per year.

Lastly, we also examine three scenarios for renewables investment in re-
sponse to the phase-out. Our central case has 30TWh per year of additional
renewables by 2020. In the low renewables case we assume no additional
renewables investment due to the phase-out. This scenario increases external
costs because fossil fuel fired production plays a greater role in substituting for
the lost nuclear output. However, the reduced investment in costly renewables
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lowers private costs, and so the change to overall net costs is negligible. The
reverse is the case for the high renewables scenario where we assume 60TWh
per year of additional renewables by 2020. By the end of our analysis period
this is almost enough to entirely replace the lost nuclear production. As such
any increase to external costs from local pollution is minimal in this scenario.
However, the additional investment costs for renewables are substantial and
so again, the overall net costs of the phase-out are broadly in line with our
central scenario.

Taking these various sensitivities together we find that the net social costs
of the phase-out range from €1.4 to €8.7 billion per year, with the largest
source of any changes being the change to the assumed VSL.

2.4 Conclusions

Following the Fukashima disaster in 2011, German authorities made the un-
precedented decision to: (1) immediately shut down almost half of the coun-
try’s nuclear power plants and (2) shut down all of the remaining nuclear
power plants by 2022. We quantify the full extent of the economic and envi-
ronmental costs of this decision. Our analysis indicates that the phase-out of
nuclear power comes with an annual cost to Germany of roughly $12 billion
per year. Over 70% of this cost is due to the 1,100 excess deaths per year
resulting from the local air pollution emitted by the coal-fired power plants
operating in place of the shutdown nuclear plants. Our estimated costs of the
nuclear phase-out far exceed the right-tail estimates of the benefits from the
phase-out due to reductions in nuclear accident risk and waste disposal costs.

Moreover, we find that the phase-out resulted in substantial increases in
the electricity prices paid by consumers. One might thus expect German citi-
zens to strongly oppose the phase-out policy both because of the air pollution
costs and increases in electricity prices imposed upon them as a result of the
policy. On the contrary, the nuclear phase-out still has widespread support,
with more than 81% in favor of it in a 2015 survey (Goebel et al., [2015]). This
support cannot be chalked up to a lack of concern regarding climate change.
Indeed, German citizens widely support the transition to renewables as part
of the Energiewende program even though the costs of this transition were
€26 billion in 2017 alone. German citizens are also highly aware of the costs
associated with the transition to renewables, with charges for renewable subsi-
dies now making up about a quarter of the electricity price paid by residential
households.

This raises the question: what drives the global shift away from nuclear
power despite the substantial economic and environmental costs associated
with this policy?” We discuss two potential mechanisms. First, the nuclear
phase-out may be the result of rational decision-making by risk averse agents.
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Specifically, we compare the social costs of the phase-out against the expected
benefits of this policy. However, nuclear accident risk imposes uncertainty on
citizens and the costs associated with nuclear waste disposal are also arguably
relatively uncertain. It is thus possible that a sufficiently risk-averse policy-
maker could phase-out nuclear to avoid the tail risks associated with nuclear
accidents and waste disposal, even though the air pollution costs associated
with the phase-out are higher in expectation.

To get a sense of the level of risk aversion required to justify the phase-out,
we calculate the probability of a major nuclear accident that would result in
the expected benefits from the phase-out being equal to the costs. For this
back-of-the-envelope calculation, assume that, absent the phase-out, nuclear
plants would have been shut down in the same order but by 2032 instead of
2022. This gives 2032-2011 = 21 years over which the phase-out would reduce
nuclear production. Our estimated cost of the phase-out is €3 billion per year;
this implies a cumulative cost of the phase-out of €63 billion over 2011-2032.
The upper bound estimates of the cost of the Fukushima accident are roughly
$750 billion, or €640 billion (JECR) 2019)). Assume for simplicity that there
can either be no accidents or there can be one Fukushima magnitude accident
during this 21 year window. The probability of this Fukushima-scale accident
occurring would have to be 0.1 ~ % in order for the expected benefits
of the phase-out to be equal to the costs of the phase-out. This 1 in 10 chance
is far greater than even the most conservative estimates of the probability of an
accident of this magnitude occurring in Germanyl’] This in turn suggests that
policymakers would have to exhibit an extremely high level of risk aversion in
order to rationalize the phase-out based on risk aversion alone.

That being said, citizens may also be anti-nuclear because the risks associ-
ated with nuclear power are more salient than the air pollution costs associated
with fossil-fuel-fired production. Specifically, the literature on the harmful ef-
fects of air pollution is becoming more definitive by the day. However, there is
still relatively limited public understanding of the scale of the adverse health
consequences of local air pollution exposure. This might be because it is diffi-
cult to attribute any single death entirely to pollution exposure from a single
power plant. Instead, pollution concentration levels are the result of a wide
range of different emitters and air pollution slightly but persistently increases
the mortality risk of large exposed populations. Similarly, the costs of climate
change will primarily be born by future generations, and linking a future cli-
mate event to the carbon emissions from a power plant smokestack is even
less straightforward. In contrast, a nuclear accident is a highly visible, yet
low probability, event that can be clearly linked back to the offending nuclear

9For instance, Wheatley, Sovacool and Sornette (2017) estimates that there is a 50%
chance that a Fukushima event (or larger) occurs every 60-150 years across the entire global
fleet of nuclear reactors. Germany had less than 4% of the world’s nuclear reactors in 2011.
Moreover, nuclear reactors in Germany almost certainly come with less accident risk than
other parts of the world.
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reactor. This may lead both policymakers and the public to over-estimate the
ex-ante probability that nuclear accidents will occur as well as costs of these
accidents (Slovic, Fischhoff and Lichtenstein, (1979; Slovic, |2010).

Regardless of the underlying causes, it is clear that the German citizenry
cares deeply about climate change yet is distinctly anti-nuclear. Policymakers
around the world thus face a difficult trade-off. On the one hand, many climate
change experts have argued that nuclear power is a necessary part of the shift
away from carbon-intensive fossil fuels. Moreover, many voters are willing to
incur substantial costs to reduce the risk of climate change. However, many
of these same voters are also unwilling to support nuclear power due to fears
surrounding nuclear accidents and nuclear waste disposal. Facing this political
pressure, countries around the world are shifting away from nuclear production
despite the substantial increases in operating costs and air pollution costs
associated with this policy. This highlights that it is essential for policymakers
and academics to convey the relative costs of climate change and air pollution
versus nuclear accident risk and waste disposal to the voting public.
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Part 11

The Planning Process for
Renewable Energy Deployment
in the United Kingdom

50



Chapter 3

Estimating the local impacts of
renewable energy projects

3.1 Introduction

Renewable energy projects create a number of local economic impacts. Of
primary interest here are the various visual and noise disameneties gener-
ally associated with these projects. Credibly estimating the scale of any of
these impacts is challenging. Hedonic property value models have become
the primary empirical tool for estimating willingness to pay for environmental
quality (Bishop et all 2020). Studies using this approach have shown capi-
talization into property values of numerous environmental disamenities, such
as hazardous waste (Currie et all 2015), road noise (von Graevenitz, 2018)
and water pollution (Keiser and Shapiro|, [2018)). The primary measure of local
impacts utilized here is therefore based on estimating capitalization into prop-
erty values. In general, the hedonic analysis undertaken here does not seek
to differentiate between the various local impacts associated with wind and
solar projects, but rather considers them in aggregate through their effects on
property values.

To approximate the impacts of a new wind or solar power project on nearby
residents and businesses I focus on estimating how the construction of a project
is capitalized into local property values and rents. There is a burgeoning litera-
ture that uses hedonic methods to estimate the value of various environmental
amenities, including those affected by large infrastructure projects (Bishop
et al) 2020). One area of focus has been power projects, such as fossil or
nuclear power plants (Davis, 2011; [Tanaka and Zabel, 2018)). Increasingly re-
search has turned to looking at the local impacts of renewable power projects;
primarily the visual and noise disamenities caused by wind farms. On balance
these studies find negative effects on property values, although the magnitudes
can range significantly from finding no effect (Lang, Opaluch and Sfinarolakis|,
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2014; [Hoen and Atkinson-Palombo, 2016), to finding modest or even large re-
ductions (Gibbons, 2015, Sunak and Madlener, 2016} Droes and Koster], 2016;
Jensen et al., [2018; Droes and Koster, [2020). I find that the median wind
project causes a roughly 3-4% reduction in residential property values at dis-
tances of around 2km. Effects are larger at closer distances and also increase
with the size of a project, although at an attenuating rate. Effects are larger
when a property is likely to have direct line-of-sight to the wind farm, and
when properties are located in wealthier, less deprived areas. This suggests
the bulk of the adverse impact is due to visual intrusion. In reaching these
estimates this paper makes a number of important methodological improve-
ments; the most important of which is that I use information on planned but
unsuccessful projects to more credibly construct a plausible comparison group
and increase confidence in the observed effects.

In addition to looking at wind farms I also provide one of the first estimates
of the impact of solar projects on nearby residential property values (Droes
and Koster| [2020). Interestingly, I do not find any statistically significant ef-
fects, even at relatively small distances of 1km. This seems consistent with
the lower levels of visual intrusion created by solar panels when compared to
wind turbines. In addition to looking at solar projects I also expand the scope
of my analysis beyond the prior literature and look at impacts on commer-
cial property values. Existing research has focused exclusively on residential
property values, with the exception of |Haan and Simmler, (2018) who look
at agricultural land values. The impact on commercial property values is as
yet unstudied and seems potentially important if these projects have adverse
effects on tourism or displace existing agricultural activity. I do not find sta-
tistically significant effects from either wind or solar projects on commercial
property values, although these results are less precisely estimated.

The first commercial wind farms in the UK were constructed in the early
1990s. Rapid adoption of wind power took off in the 2000s such that capacity
has now grown to 24GW as of 2019, producing 20% of the UK’s electricity
(BEIS| |20204). This expansion is set to continue, with wind power forecast to
provide 40-55% of the UK’s electricity by 2030 (NGET), 2019). Projects have
tended to be located in the windier and more remote regions of the north and
west of the country. Many projects have also been sited in coastal areas with
roughly half of the total wind capacity now located offshore. The emergence of
solar power in the UK has been more recent with capacity only really starting
to grow in 2010 following the adoption of a more generous subsidy regime. By
2019 the UK’s solar capacity stood at 13GW and produced 4% of the UK’s
electricity (BEIS, 2020d). Future growth is expected to be modest with solar
power forecast to provide 6-7% of the UK’s electricity by 2030 (NGET, 2019)).
Most of this capacity has been located in the flatter agricultural areas in the
south of the country where solar potential is highest. Unlike wind power, small-
scale residential and commercial solar installations are widespread making up
roughly a third of total solar capacity.
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Figure 3.1: Renewable Energy Projects in the UK
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Notes: These figures show the location of projects and the timing of when they were
submitted for planning permission. Project sizes are determined by their capacity (in
MW). Projects are classified by their development status. “In Review” are projects that
have submitted a planning application but have yet to receive a final decision. “Com-
pleted” are projects that have been approved and are either awaiting construction, under
construction, operational or have been subsequently decommissioned. “Abandoned” are
projects that were refused planning permission or were otherwise withdrawn or halted.
The administrative boundaries depicted are the local planning authorities responsible
for processing planning applications.
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3.2 Empirical Strategy

3.2.1 Property values

Residential property transactions data is from Her Majesty’s Land Registry
and covers virtually all sales of residential properties in England & Wales since
1995. Each transaction includes a unique identifier for a given property, as well
as the date of the sale and the postcode location of the property. Postcodes
in the UK are a very granular geographic unit with around 15 households per
postcode (approximately equivalent to census blocks in the US). Summary
statistics can be found in Table 3.1l

Commercial property rents data is from the Valuation Office Agency (VOA)
and provides average annual assessed rental values for commercial properties in
England and Wales since 2000. The underlying source of this data is property-
level information that VOA collects as part of its role in setting taxes levied
on commercial properties, known as business rates. Unfortunately the raw
property-level data is not yet available for use in academic research. However,
the VOA does still publish detailed data on annual average rents at the Lower
Layer Super Output Area (LSOA) level. Fortunately LSOAs are sufficiently
granular geographic units (approximately equivalent to census tracts in the
US) to ensure there is meaningful variation in exposure to renewable energy
projects. Summary statistics can be found in Table [3.2]

3.2.2 Defining treatment

The capitalization analysis throughout this paper consistently uses some vari-
ation on a difference-in-differences framework. Treatment is therefore deter-
mined by the combination of 1) whether projects are nearby (distance), 2)
whether projects have come online yet (post), and 3) the intensity of exposure
as measured by the size of a project (capacity).

T, = (distancey € k) - posty, - f(capacityy) (3.1)

The proximity of a property to a nearby renewable energy project (distance)
is determined by whether the distance between that property’s location and
the centroid of the project falls into a given distance bin, k. For residential
properties their location, [, is based on the centroid of their postcode. For
commercial properties promixity is taken to be the average of the proximity
values for the postcodes within each LSOA. T use five distance bins (K = 5).
For wind projects these are: 0-2km, 2-4km, 4-6km, 6-8km and 8-10km. This
is informed by prior studies which found the primary effects for wind projects
are concentrated within distances of less than 3km (Droes and Koster, 2016;
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Table 3.1: Residential Property Transactions Summary Statistics

Total Detached Semi-Detached Terraced  Flat

Sale price (thousands) 185.1 278.1 165.9 149.3 169.0
(223.4)  (261.2) (160.8) (224.6)  (225.3)
New property 0.0909 0.134 0.0608 0.0563 0.155
(0.287)  (0.341) (0.239) (0.230)  (0.362)
Leasehold tenure 0.222 0.0388 0.0731 0.0924 0.974
(0.416)  (0.193) (0.260) (0.290)  (0.160)
Floor area 90.48 127.9 89.05 82.84 59.70
(58.06)  (85.30) (48.95) (38.97) (28.01)
Energy efficiency rating 61.32 60.55 60.02 60.30 66.55
(12.98)  (13.52) (12.13) (12.61)  (13.11)
Rural 0.177 0.339 0.175 0.129 0.0645
(0.381)  (0.473) (0.380) (0.336)  (0.246)
Index of Multiple Deprivation — 19.48 12.84 18.21 23.96 21.17
(13.95)  (9.207) (13.10) (15.65)  (13.05)
N (millions) 23.90 5.55 6.64 7.34 4.37

Notes: This table shows means and standard deviations are shown for the entire dataset
and then for each of four broad housing types. Floor areas and energy efficieny ratings

are taken from Energy Performance Certificates and are available for a subset of prop-
erties. The rural control is based on whether the output area (OA) that a postcode
belongs to was classed as rural in 2011. The Index of Multiple Deprivation is a compos-
ite measure of regional living standards where higher numbers refer to more deprived
areas. The unit of observation is a sale of a residential property on a given date.

Table 3.2: Commmercial Property Rents Summary Statistics

Total Industrial Retail Office  Other

Average rental value (thousands) 16.85 19.64 21.60 2420  9.122

(20.38)  (37.58)  (48.33) (49.65) (13.27)

Average floorspace 303.3 612.8 189.8 240.0 147.6

(524.7)  (1078.5) (280.4) (355.8) (185.8)

Rental value per m2 61.78 34.93 89.64 89.67 63.43

(47.17)  (19.14)  (59.70) (49.76) (58.80)

Number of properties 64.37 31.34 33.47 34.43 24.54

(130.4)  (39.46)  (51.70) (101.3) (45.58)

Rural 0.217 0.310 0.142 0.199 0.274

(0.402)  (0.450)  (0.344) (0.387) (0.434)

Index of Multiple Deprivation 22.44 23.02 25.35 22.82 22.45

(1559)  (15.33)  (16.24) (15.90) (15.54)

N (millions) 0.57 0.41 0.33 0.31 0.43

Notes: This table shows means and standard deviations for the entire dataset and then
for each of four broad sector categories. The rural control is based on the population-

weighted share of output areas (OA) classed as rural in 2011. The Index of Multiple
Deprivation is a composite measure of regional living standards where higher numbers
refer to more deprived areas. The unit of observation is at the lower layer super output
area (LSOA) by year level.
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Jensen et al., |2018; Droes and Koster, [2020) and have completely decayed by
around 10km (Gibbons, 2015)). For solar projects the distance bins are: 0-
1km, 1-2km, 2-3km, 3-4km and 4-5km. The smaller bins are consistent with
the likely smaller distance over which these projects are visible.

The temporal specificity of treatment (post) is based on the year when a
project becomes operational. Though the project data do include exact dates,
fully specifying treatment at the postcode-day level is not necessary. This
is because there is unlikely to be a sharp change in property values on the
date when projects become operational because of the presence of significant
anticipation and adjustment effects that persist over several years. This is
substantiated by the event study regressions discussed later.

The nature of the treatment effect estimated is then determined by a mea-
sure of project size, which I capture as a function of the cumulative wind or
solar capacity from all nearby projects (capacity). 1 focus on the cumulative
capacity across all projects because this accounts for the fact that many loca-
tions have multiple wind or solar projects nearby, and so only focusing on the
nearest or the first project will understate the true nature of exposure. Simi-
larly, limiting the analysis to locations that are only near to a single project
also risks undermining the external validity of the analysis. 1 use project
capacity as my measure of the intensity of treatment because it is a straight-
forward measure of the size of a project. Larger capacity solar projects have
more solar panels spread across a greater area. Larger capacity wind projects
have more wind turbines and/or taller wind turbines. As a robustness check,
I also estimate additional specifications using alternative measures of the size
of projects (e.g., the number of wind turbines)[[] For reference the results for
these alternative measures of project size can be found in the appendix.

Prior studies generally use a simple binary indicator for the presence of any
project. In a limited number of cases this is extended by looking at differential
effects based on the intensity of exposure (e.g., using different bins for small
vs large projects). One of the most recent studies on this topic demonstrates
that a log specification does a good job of capturing the general response of
the treatment effect to increasing exposure (Jensen et al., 2018). In particular,
a log specification captures the attenuation of the treatment effect as project
size increases. As we might expect, the first wind turbine or acre of solar

'For wind projects an obvious choice is the number of turbines, in line with prior work.
This seems particularly important because the relationship between MW of capacity and
the number of turbines has been changing over time as turbines become larger. Examining
the capitalization effects of both measures can offer valuable insights into whether the move
to projects with fewer, larger turbines is mitigating or exacerbating local impacts. For solar
projects I considered the land area covered by solar panels to be the most appropriate choice.
Unlike wind turbines though, the relationship between solar panel capacity and surface area
has remained relatively constant at roughly 5-6 acres per MW (Ong et al., [2013). As such,
the results estimated using solar capacity can be simply rescaled where an effect in terms
of area covered is desired.
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panels should probably have a larger incremental effect than the tenth or the
hundreth. I also found a log specification to perform well, and so my preferred
functional form is the log of cumulative wind or solar capacityﬂ The resulting
treatment effects show how a 1% increase in wind or solar capacity nearby
leads to a x% change in property values. For ease of presentation many of the
results shown later will convert this into an estimate of the absolute impact
for the median project, which is generally around 10MW in size. For reference
the results using alternative functional forms (e.g., linear in capacity) can be
found in the appendix.

Figure 3.2: Treatment FExposure
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Notes: This figure shows the proportion of postcodes over time that are exposed to at
least one renewable energy project at a given distance range. The closest distance bin is
in red and the furthest is in light blue. Treatment is clearly increasing over time as more
projects come online. Treatment begins earlier in the period for wind projects whereas
solar projects only began meaningful development after a change in the subsidy regime
in 2010. In all regressions I drop any properties at locations that do not fall into one of
these distance bins by the end of the analysis period.

3.2.3 Difference-in-difference specification

Throughout this analysis I employ a quasi-experimental difference-in-difference
approach. This hinges on comparing changes in property values for locations
that have a new renewable energy project constructed nearby to changes in
property values for other similar locations that do not have a new renewable
energy project constructed nearby. The basic difference-in-difference specifi-
cation used here is of the general form:

2When taking logs of variables that contain zeroes I use the approach set out in (Bellego
and Pape, 2019)).
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K

log(Pyrt) = Z BT + v Xit + Ore + N + €1t (3.2)
k=1

Here P is a measure of the value of a property (or group of properties), 7, at
location, [, within region, r, in year, . For the residential property sales this is
the transaction price of a property and for the commercial property rents this
is the annual average rental value per square meter. Unless otherwise specified
the treatment effect coefficients, (3, capture the % change in property values
from a 1% increase in wind or solar capacity in distance bin k. Regressions are
estimated separately for wind and solar projects and jointly for all & distance
bins. In addition to estimating the regressions jointly for all k distance bins,
I also repeat the analysis in a sequential manner for a set of distance circles.
In this case separate regressions are estimated with treatment determined by
distances of 0-2km, 0-4km, 0-6km, 0-8km and 0-10km for wind projects, and
0-1km, 0-2km, 0-3km, 0-4km and 0-5km for solar projects. This alternative
approach helps make comparisons to other studies, as well as facilitating the
examination of possible sources of heterogeneity (discussed later).ﬂ Standard
errors are clustered based on location to account for correlation between nearby
observations [

In all regressions I limit the sample to properties in locations that ever fall
into one of the included distance bins. For the joint regressions this means the
analysis is limited to locations within 10km of a wind or 5km of a solar project
by the end of the periodﬁ Properties are treated in a given time period when
a project is completed nearby (i.e. within a relevant nearby distance bin).
The resulting control group is formed by properties that do not experience a
change in their treatment status during that period. This includes locations
that have yet to have a project completed and locations where a project was
already completed in previous time periods. This ensures that the control
observations are broadly comparable to those undergoing treatmentﬁ

3The primary benefit here is computational. For the regressions with all k distance bins
estimated jointly, the memory requirements when estimating these in an event study setup
with multiple interactions for heterogeneous treatment effects quickly becomes prohibitive.
The distance circles approach that estimates treatment effects based on one distance at a
time mitigates this somewhat, whilst still producing coefficients that are broadly similar.

4For the residential property regressions I cluster at the output area (OA) level and for
the commercial property regressions I cluster at the middle layer super output area (MSOA)
level

5For solar projects this is 34% of the residential sales sample and 32% of the commercial
rents sample. For wind projects this is 34% of the residential sales sample and 30% of the
commercial rents sample.

6To further ensure the focus is on the rural and suburban areas where these visual and
noise disamenities are likely to be most relevant I also dropped any remaining properties
located in the core of major urban areas. In most cases these locations had already been
dropped due to wind and solar projects not being sited in built up areas. However, there
were a small number of exceptions where a few small wind or solar projects were sited in
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I account for unobservable time-invariant determinants of property values
using a rich set of location fixed effects, \;. For the residential property regres-
sions these are at the postcode-by-housing-type level. Properties in a given
postcode of a given housing type are likely to be highly comparable, par-
ticularly because postcodes only include around fifteen properties each.m To
explore purely within-property variation I also estimate versions with address-
level unit fixed ef‘fectsﬁ For the commercial property regressions the data are
already aggregated to regional annual totals by LSOA. As such the location
fixed effects are at the LSOA level. This presents a challenge in that any
LSOA may have a range of different commercial activities contributing to the
average. However, this is mitigated somewhat by estimating these regressions
both for the average of all commercial properties, and for four sectors within
each LSOA: retail, office, industrial and other. Moreover, whilst an LSOA is a
more aggregated unit than a postcode it is still relatively small, corresponding
to roughly one thousand households. As such, commercial activities within
a given LSOA are still likely to be relatively homogenous, particularly at the
sector level.

To account for unobservable time-variant determinants of property values
all regressions include time fixed effects, 6,;, at the year-of-sample-by-region
level. T also explore the sensitivity of my results to using more granular regions
to increase the richness of these fixed effects| Of course, allowing the time
fixed effects to vary by region does risk absorbing a portion of the treatment
effect of interest and so this should be kept in mind when interpreting the
results[1]

industrial areas (e.g., along the River Thames in London). Dropping these manually ensured
the analysis was not unduly influenced by the very large number of observations in these
dense urban areas.

"As can be seen in Table there are clearly substantial differences between property
types and so controlling for these is important. Where this isn’t the case though, a postcode
fixed effect can be averaging across very different property types. Increasing the granularity
of the fixed effects to the postcode-by-housing-type level resolves this in a far more robust
manner than including a simple aggregate control for housing type.

8This has the benefit of capturing property-specific factors that can’t be captured by the
post code fixed effect. The drawback here is that the estimation can only use the subset of
addresses with multiple sales, which reduces statistical power and raises the issue that these
repeatedly sold properties are not representative of properties more generally.

9First I use the eleven regions that were formerly known as Government Office Regions.
These comprise nine English regions and then Wales and Scotland and range in size from
roughly 1 to 4 million households so are fairly analogous to small US states. Second I use
the roughly four hundred local authorities in the UK which are more analoguous to US
counties.

10T did explore just using a single set of year-of-sample effects for the whole of the UK.
However, different parts of the UK have clearly experienced differential rates of economic
growth and property value appreciation over this period, and these divergences are probably
at least partially correlated with treatment. For instance, the more prosperous south is also
where the majority of solar projects are located, whilst the north where economic growth
has lagged behind has also seen a larger portion of wind projects.
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Finally, to capture observable time-variant determinants of property values
a limited set of additional controls, X, are included. For residential properties
the available controls include whether a sale is for a new home and the type of
tenure (e.g., freehold vs leasehold).m For a subset of the residential proporties
there is also information on house floor areas and energy efficiency ratings.
For commercial properties the available controls include average floor areas.

Identification of a credible causal effect using a difference-in-difference ap-
proach faces a number of challenges in this context. Key to this is the parallel
trends assumption; namely that in the absence of treatment the treated and
control locations would have experienced similar changes in property values. If
the location and timing of wind and solar projects was randomly assigned we
could be confident that this assumption holds. However, here the treatment
is obviously not randomly assigned. Instead there is selection of locations into
treatment in terms of where projects are actually approved and built. More-
over, conditional on ever being treated there is also selection in terms of when
treatment happens (earlier vs more recent projects). Some of the major factors
driving selection into treatment may be seemingly unrelated to residential or
commercial property values (e.g., wind speed). However, other factors almost
certainly are related to selection into treatment during the planning process
and directly or indirectly related to local property values (e.g., visual or histor-
ical appeal of local landscape, local political preferences, presence of important
ecological habitats and wildlife). The primary solutions to this challenge that
I have set out thus far are the decision to a) limit the controls to locations
that are near to a completed project by the end of the period, and b) make
the parallel trends assumption conditional on a rich set of fixed effects and
controls. This ensures that the control properties forming the counterfactual
are very similar to treated properties and that the variation being used for
identification is not confounded by other factors.

I augment the difference-in-difference setup using a series of event studies.
Here the treatment variable is now interacted with a series of event dummies
indicating whether a given observation is s years before (pre) or after (post) the
date when a project became operational. I include ten years of pre-periods
(Spre = —10) and five years of post-periods (Spest = 5), the last of which
also captures any observations that are more than five years after a project
becomes operational. This should allow for sufficient time for the any effects
to materialize. The resulting specification is of the form:

Spost K

log(Pyrt) = Z Z Br,sTie + v Xt + Opp + N 4 €t (3.3)

5=Spre k=1

1Someone with a freehold property owns the property and the land it stands on. A
leaseholder owns the property but not the land is built on. The latter is more commonly
used for flats and apartments where the property owner is only purchasing a part of an
entire building.
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The event study approach has a number of benefits in this setting which
is why it is my preferred specification. First, it helps identify potential antic-
ipation and adjustment effects. Because planning and construction can last
several years we might expect anticipatory effects well before a project be-
comes operational. It also seems plausible that it could take time for the
housing market to adjust before the true scale of the local effects from a new
project become clear. Both of these factors mean that the standard difference-
in-difference treatment coefficients estimated using Equation may underes-
timate or overestimate the true effect. Properly accounting for these anticipa-
tion and adjustment effects is therefore important for understanding the true
capitalization effect and the manner in which it manifests. Second, the event
study can help provide some supporting evidence that parallel trends hold in
the pre-period. Third, a number of recent papers have shown that difference-
in-difference estimates can be biased when there is variation in treatment tim-
ing (Goodman-Bacon|, 2018). One partial solution is to employ some form of
event study as it can more consistently pin down the source of identifying vari-
ation and how it is affected by variation in treatment timing (Borusyak and
Jaravel, |2017; |Callaway and Sant’Anna;, [2019). Of course, the main drawback
to the event study approach is that it requires estimating a far larger number
of coefficients which reduces statistical power.

3.2.4 Comparing approved and refused projects

At present the analysis follows prior studies by using locations near completed
projects to define both the treated and control groups. However, it seems
reasonable to think that locations near to completed projects are not the only
areas with properties that could act as plausible controls. For example, there
are many remote windy areas in the UK that have properties that are com-
parable to treated ones, but that have not yet themselves had a wind farm
completed nearby. I take advantage of the unique information available in the
UK’s renewable energy planning database to construct an alternative compar-
ison group based on properties near to proposed projects that ultimately were
not built.

To do this, I first construct a full secondary set of treatment variables in the
exact same manner set out previously, but this time derived from projects that
were proposed but ultimately failed. For failed projects treatment happens
based on the date when a project would have become operational if it had been
approved and completed ] These additional treatment variables for the failed
projects, T, are included in the regression alongside the original treatment
variables for the completed projects, 7¢. This can be seen in the modified
version of Equation below, and the intution is the same for modifying

12Note that this is based on the final planning decision and so is after accounting for any
delays created by the appeal process.
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Equation

K K
log(Par) = Y BET + Y BT+ Xaw + O+ N+ € (3.4)
k=1 k=1

Coefficients are estimated as before but now a direct comparison can be
made between the coefficents for the completed projects and the coefficients
for the failed projects. This change has a number of possible benefits. First,
the sample size of properties available for use in the estimation is larger which
improves statistical power. This is because I still include any properties at lo-
cations that ever fall into one of the included distances bins, but the distance
bins now refer to both completed and failed projects. Second, the control
groups for each distance bin are now more targeted because I can more ex-
plicitly compare areas that were or could have been a certain distance from
a project. Third, there is the possibility of looking more explicitly at sorting
behavior. However, this expansion of the control group has some clear draw-
backs, not least the fact that comparing locations with completed projects to
those with failed projects puts concerns about selection bias into even sharper
relief.

To tackle possible concerns about selection, I exploit information about the
planning processes for projects. I repeat the estimation for all specifications set
out thus far but now interact treatment with whether a project was subject to
an appeal. This offers a potential way to mitigate concerns about selection bias
by focusing on the effects for a subset of more “marginal” projects (i.e. projects
that only just got built or only just failed). Marginal completed projects are
those where the appeal overturns the initial refusal and marginal failed projects
are those where the appeal upholds the initial refusal. Limiting the analysis to
properties treated by this subset of projects rules out locations with projects
that a) were almost certain to be approved and likely imposed smaller local
disamenities, and b) were almost certain to be refused and likely imposed
larger local disamenities. The remaining projects were clearly thought to be
sufficiently undesirable by the local planning authority to warrant refusal and
thought to be sufficiently valuable by the developer to warrant appealing. As
such it seems plausible that this subset of projects is more credibly comparable
than simply using the entire sample of projects.

3.2.5 Differential impacts by visibility

The visual impact of wind and solar projects is consistently cited as a key
reason that projects are refused planning permission. Prior work has also
found that negative impacts on local property values are primarily due to visual
disamenity (Gibbons, 2015; Sunak and Madlener, 2016)). I examine whether
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properties that are likely to have direct line-of-sight to a project experience
different effects than properties where projects are obscured by the landscape
(e.g., behind a hill).

To isolate the visual impacts of wind and solar projects I conduct a geospa-
tial analysis to determine whether properties are likely to have direct line-
of-sight to a project. An illustration of this analysis can be seen in Figure
[3.3l This figure shows a map of the area surrounding the Caton Moor Wind
Farm, denoted by the red diamond in the center. The top panel shows the
surrounding 6km and the bottom panel shows the surrounding 12km. The
black/grey/white points denote the postcodes where properties are located.
Postcodes in black have no direct line-of-sight to the project. Postcodes in
white have full direct line-of-sight to the project. Postcodes in grey have some
partial line-of-sight (e.g. the tip of the turbine blades might be visible, whilst
much of the base of the turbine is obscured).

This visibility metric was calculated using the GB SRTM Digital Elevation
Model compiled by Pope (2017). Project coordinates were taken from the
Renewable Energy Planning Database. In the limited number of cases where
the coordinate was missing, or appeared erroneous, the postcode centroid from
the address listed in the planning database was used. Postcode coordinates
were taken from the ONS postcode lookup file. All spatial data was converted
to the Ordanance Survey National Grid reference system.

In addition to specifying coordinates in the east-west and north-south di-
rections, determine line-of-sight also requires specifying an elevation for each
point. The default is to simply use the ground-level elevation from the digital
elevation model. No person standing by their property is realistically looking
out at ground level, and so I assumed that the coordinate for each post code
should be set at head height, around 1.5m off the ground.

For the wind and solar projects what matters is the visibility of the struc-
tures being installed (i.e., wind turbines or solar panels). For solar projects
this is relatively trivial because panels are very homogenous and usually in-
stalled in very similar ways. As such I assume that the top of the solar panels
are located at 3m off the ground. For wind projects the height of the turbines
is far more heterogenous, particularly as turbines have increased substantially
in size over time. The planning dataset also does not include information on
wind turbine tip heights. Fortunately it is possible to calculate the average
capacity of the turbines installed by dividing the total capacity by the num-
ber of turbines. Turbine capacity has a fairly stable relationship to turbine
size. I use data on thousands of different turbine models in The Wind Power
Turbine Database (Pierrot, 2019) to fit a simple regression model that traces
out the effectively quadratic relationship between turbine capacity and tur-
bine height. I then apply this to the information on turbine capacity in the
project database. The resulting turbine tip heights range from around 50m to
in excess of 200m. This is the height off the ground that I use for the project
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locations.

Finally, I conduct a direct line-of-sight analysis using the digital elevation
model and each project-postcode pair within a 20km radius. For this I use
the intervisibility algorithm developed by |Cuckovic| (2016) in QGIS. As well as
calculating a binary indicator of whether there is direct line-of-sight between
two points, it is also possible to use this algorithm to calculate what portion
of the target structure is visible. So, if the top 40m of a 100m wind turbine is
visible then I calculate a visibility metric of 0.4. Ultimately I convert this to a
binary indicator which takes the value one if any of the project is visible. The
results do not appear particularly sensitive to the use of alternative cutoffs.
I did consider looking at the impact of partial visibility, but this is likely
not possible for this particular dataset given the measurement error in the
coordinate locations and the lack of information on the area covered by each
project.

It is worth noting that this approach is certainly not without its flaws.
For instance, it only uses the central point of a project rather than the area
covered, and it can’t account for other features that may act to block line-of-
sight such as trees or buildings. Nevertheless, it should still be sufficient to
isolate clear differences in visibility.

3.2.6 Differential impacts by deprivation

The second key source of differential impacts that I study is whether effects are
different in wealthy neigborhoods relative to poorer neighborhoods. In gen-
eral we might expect the impact of a nearby wind or solar project on property
values to be larger in both absolute and proportional terms for properties in
wealthier neighborhoods. This is because wealthier neighborhoods will tend
to already enjoy greater value from the kinds of environmental amenities that
a new renewable energy project would adversely impact, like unspoiled green
space, historic landscapes and beautiful views (Gibbons, Mourato and Re-
sendel [2014). Properties located in more deprived areas, on the other hand,
are already more likely to be characterized by unsightly and noisy industrial
development. To explore this possible distinction I examine whether properties
that are in more deprived areas experience different effects than properties in
less deprived areas. To do this I use the UK’s Index of Multiple Deprivation.
This measure classifies neighborhoods based on their relative level of depriva-
tion by weighting across a range of indicators covering income, employment,
education, health, crime, housing quality and environmental quality. I define
more deprived areas as those above the median on the index, and less deprived
areas as those below the median.
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Figure 3.3: Illustration of Postcode to Project Visibility
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Notes: This figures shows the visibility of a wind project from different postcodes. The
red diamond is the Caton Moor Wind Farm. The black and white points are postcodes.
Black points do not have direct line-of-sight. White points do have direct line-of-sight.
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3.3 Results

The capitalization results are primarily summarized by the event study plots.
Further detailed tables can be found in the appendix.

3.3.1 Impacts on residential property values
Wind projects

For wind projects the event study in Figure |3.4] shows a reduction in property
values of around 3-4% for properties located within 2km of a newly built 10MW
project. This effect is minimal at distances of 2-4km and decays to virtually
zero beyond 4km. The log specification also means the effect attenuates as
the size of a project increases, with the first wind turbine being the most
costly. The effects observed here are of a similar magnitude to those found in
previous studies. The event study plots make clear the presence of important
anticipation effects one to two years before projects ultimately come online,
as well as adjustment effects over the following two years. This is consistent
with the planning and construction process for wind projects generally taking
around two to three years.

In a novel addition to the existing literature, I am also able to check the
observed effects for the treated locations where projects were built against
the changes in the control locations where projects failed. The dotted lines
in Figure indicate that in locations where projects were proposed but
ultimately failed there is no significant negative impacts on property values. If
anything those locations see an appreciation in property values once the fate
of the proposed project becomes clear. This may be in part due to sorting
behavior and the increasing value placed on any remaining locations yet to be
“spoiled” by the construction of a wind farm.

The event study results provide strong supportive evidence that prior to
any anticipation in the pre-period there are parallel trends for both completed
and failed projects. This validation of the difference-in-difference empirical
strategy has been lacking in prior studies on this particular topic, in large
part due to studies relying on smaller datasets or failing to examine pre- and
post-treatment trends over a long time period.

Table [3.3] illustrates how these effect sizes vary across a range of specifi-
cations. Columns 1 to 3 are results from a standard difference-in-difference
estimation. Columns 4 to 6 are results from the equivalent event studies, with
the treatment effects calculated as the difference between the earliest five pre-
period coefficients and the five post-period coefficients. It is immediately clear
that the treatment effects using the event study approach are larger. This
is likely due to the event study better capturing anticipation and adjustment
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% change in property value

Figure 3.4: Residential Property Values Event Study Results for Wind
Projects
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Notes: All event bin coefficients for a given distance bin are normalized relative to the
fourth pre-period event bin (s = —4). All coefficients should be interpreted as the %
change in property values resulting from a location going from having no nearby project
to having a 10 MW at the relevant distance away. Distances are denoted throughout
using colors, with red being the closest and light blue the furthest. Solid lines and points
indicate the effects derived from the treatment variables based on completed projects.

Dotted lines indicate the effects derived from the treatment variables based on failed
projects. Shaded areas represent the 95% confidence intervals.
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effects, as well as mitigating potential biases due to the staggered nature of
treatment in this setting. The other source of variation across columns is the
choice of location fixed effects. The effects are stable across specifications,
even when limiting the data to repeat sales properties and using address-level

fixed effects.

Table 3.3: Residential Capitalization for Wind Projects

(1)

2

®3)

(4)

()

(6)

Completed
0to2km —2.38"*  —2.01"™* —1.76 —3.28"* 2.7 —3.37*
(0.55) (0.49) (0.78) (0.64) (0.65) (0.87)
2todkm 0.26 —0.22 0.04 —1.97*  —2.20"*  —1.69***
(0.29) (0.24) (0.32) (0.33) (0.30) (0.37)
4to6km 0.86*** 0.41 0.03 0.04 0.09 0.30
(0.21) (0.19) (0.25) (0.22) (0.21) (0.26)
6to8km 0.62** 0.33 1.05% 0.25 0.27 0.37
(0.20)  (0.17)  (0.24)  (0.20)  (0.18)  (0.24)
8to10km —0.47* —0.74**  —0.50* —0.84*  —0.93** —0.56*
(0.18) (0.16) (0.21) (0.19) (0.17) (0.21)
Failed
0to2km 2.52%* 3.07* 3.51%* 2,224 2.89*** 2.64**
(0.53) (0.50) (0.63) (0.56) (0.55) (0.68)
2todkm 2.80*** 2.29%* 1.52%* 2.57F* 2.51% 171+
(0.30) (0.26) (0.35) (0.32) (0.29) (0.35)
4to6km 0.09 0.04 —0.10 0.86™** 1.10™* 0.75**
(0.21) (0.19) (0.26) (0.23) (0.21) (0.26)
6to8km —0.29 —0.50"*  —0.59* —0.16 —0.03 0.14
(0.19)  (0.17)  (0.24)  (0.20)  (0.18)  (0.24)
8tol0km —0.84** —1.10"* —0.81"* —0.92"* —1.01"* —0.87"**
(0.17) (0.15) (0.20) (0.18) (0.16) (0.20)
R-Squared 0.96 0.90 0.82 0.96 0.90 0.82
N (millions) 5.71 8.07 8.21 5.71 8.07 8.21
Log Functional Form Y Y Y Y Y Y
Event Study — - — Y Y Y
Address Fixed Effects Y - — Y — —
Postcode Fixed Effects — Y — — Y —
LSOA Fixed Effects — - Y — - Y
County-Year Fixed Effects Y Y Y Y Y Y

***p < 0.001, **p < 0.01, *p < 0.05

Notes: Point estimates based on the event study specifications are calculated by taking
the difference between the earliest five pre-period coefficients and the latest five post-
period coefficients. All coefficients should be interpreted as the % change in property
values resulting from adding 10 MW of capacity at a given distance away.

One concern with the distance bins approach is that the time fixed effects
will be overwhelmingly determined by properties in the outermost distance
bins as these have the most observations. To check that this is not driving
the results I also estimate five separate regressions for a series of expanding
distance circles. In Table B.4] each column is based on a different distance
circle, with an increasing number of observations as the circle gets larger. The
effects using this approach are broadly comparable to those using distance
bins. Beyond this I also conduct a number of robustness checks of the analysis
using alternative fixed effects and by comparing the event study approach to
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the findings from directly estimating a single coefficient. All of these results
can be found in the appendix.

Table 3.4: Residential Capitalization for Wind Projects by Distance Clircles

(0-2km)  (0-4km) (0-6km) (0-8km) (0-10km)

Completed
. —3.27%  —3.06™* —1.25"* —0.56™* —0.57*
(0.64) (0.27) (0.16) (0.12) (0.10)
Failed
3.20"* 2.70%* 1.79%* 1.00%** 0.41*
(0.55) (0.26) (0.16) (0.12) (0.10)
R-Squared 0.90 0.90 0.90 0.90 0.90
N (millions)  0.68 2.69 4.82 6.61 8.07

***p < 0.001, **p < 0.01, *p < 0.05

Notes: Point estimates based on the event study specifications are calculated by taking
the difference between the earliest five pre-period coefficients and the latest five post-
period coefficients. All coefficients should be interpreted as the % change in property
values resulting from adding 10 MW of capacity at a given distance away.

Lastly, I look at differential effects. These results can be seen in Figure
[B.5] Note that these results also use the approach of estimating five separate
regressions for a series of expanding distance circles. As expected, I find that
the property value impacts of wind projects appear to be more pronounced
in locations near a project that was appealed, for properties that have direct
line-of-sight to a project, and for properties in less deprived areas.

Lastly, Table 3.5/ shows the results of the differential effects analysis. Note
that these results also use the approach of estimating five separate regressions
for a series of expanding distance circles.

The main approach taken in the capitalization analysis measures wind
project size as being a function of the capacity of a project in MW. How-
ever, there are other ways to capture the relative size of a project, such as
the land area covered by the solar panels, or the number of wind turbines. In
the case of solar projects, the relationship between total capacity and the land
area covered has been broadly stable. For wind projects though, the relation-
ship between total capacity and the number of turbines has been changing as
turbines have gotten larger.

To explore the possible implications of this for the findings on wind projects,
I re-run the capitalization analysis with number of turbines as the measure of
project size, rather than total capacity. Table |3.6 shows that the results are
largely unchanged. In fact the coefficient sizes are broadly similar because the
average size of wind turbines over this period has tended to be on the order
of around IMW.
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Figure 3.5: Residential Capitalization Event Study for Wind Projects with
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Notes: All event bin coefficients for a given distance bin are normalized relative to the
fourth pre-period event bin (s = —4). All coefficients should be interpreted as the %
change in property values resulting from a location going from having no nearby project
to having a 10 MW at the relevant distance away. Distances are denoted throughout
using colors, with red being the closest and light blue the furthest. Solid lines and points
indicate the effects derived from the treatment variables based on completed projects.

Dotted lines indicate the effects derived from the treatment variables based on failed
projects. Shaded areas represent the 95% confidence intervals.
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Table 3.5: Residential Capitalization for Wind Projects with Differential

Effects
(0-2km)  (0-4km) (0-6km) (0-8km) (0-10km)
Completed
Not Appealed, Not Visible, Deprived —2.09 —1.00 0.01 0.14
(1.03) (0.50) (0.33) (0.23)
Not Appealed, Not Visible, Not Deprived —2.59* —1.62* —1.04* —0.27
(0.95) (0.58) (0.41) (0.33)
Not Appealed, Visible, Deprived —0.25 —2.047*  —0.75*  —0.16 0.05
(0.85) (0.38) (0.25) (0.20) (0.16)
Not Appealed, Visible, Not Deprived =5.04***  —2.93** —0.19 —0.17 —1.39***
(1.04) (0.53) (0.35) (0.27) (0.22)
Appealed, Not Visible, Deprived 6.66* 4.62%* 3.45%* 2.047**
(2.60) (1.22) (0.73) (0.54)
Appealed, Not Visible, Not Deprived —2.48 —7.88*  —4.68** —3.18"*
(2.67) (1.74) (1.04) (0.75)
Appealed, Visible, Deprived —0.45 —0.30 1.01* 1.01 1.03*
(1.55) (0.65) (0.35) (0.28) (0.24)
Appealed, Visible, Not Deprived —8.05™* 772" —6.67*  —3.24"* —0.53
(2.12) (1.20) (0.82) (0.65) (0.50)
Failed
Not Appealed, Not Visible, Deprived 4.15%** 2.43** 1.92%* 1.13**
(0.86) (0.45) (0.30) (0.21)
Not Appealed, Not Visible, Not Deprived 1.76 2.39"* 0.91* 0.13
(0.92) (0.59) (0.38) (0.31)
Not Appealed, Visible, Deprived 2.26"* 2.09** 1.17%* 0.90** 0.57**
(0.61) (0.33) (0.23) (0.18) (0.14)
Not Appealed, Visible, Not Deprived 5,78 4.09** 2.46™* 1.02%* 0.09
(1.01) (0.48) (0.30) (0.26) (0.21)
Appealed, Not Visible, Deprived —2.81 0.16 —1.79 —0.47
(2.39) (1.24) (0.86) (0.64)
Appealed, Not Visible, Not Deprived 12.52%* 3.14* 0.32 —1.84*
(252)  (1.26)  (0.92)  (0.77)
Appealed, Visible, Deprived —3.78 —5.32"*  —-3.06"* —2.34"* —0.60
(2.04) (1.20) (0.79) (0.59) (0.45)
Appealed, Visible, Not Deprived 3.46 0.76 0.49 2.97 2.947**
(4.30) (1.46) (0.97) (0.91) (0.77)
R-Squared 0.90 0.90 0.90 0.90 0.90
N (millions) 0.68 2.69 4.82 6.61 8.07

***p < 0.001, **p < 0.01, *p < 0.05

Notes: Point estimates based on the event study specifications are calculated by taking
the difference between the earliest five pre-period coefficients and the latest five post-
period coefficients. All coefficients should be interpreted as the % change in property
values resulting from adding 10 MW of capacity at a given distance away.
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Table 3.6: Residential Property Values Results for Wind Projects with
Number of Turbines

(0-2km)  (0-4km) (0-6km) (0-8km) (0-10km)

Completed
—3.40%*  —2.43™*  —0.65* —0.20 —0.46***

(0.72)  (0.31)  (0.18)  (0.14)  (0.11)
Failed

3.86™* 3.64** 2.61** 1.52%** 0.81**

(0.68) (0.31) (0.19) (0.15) (0.12)
R-Squared 0.90 0.90 0.90 0.90 0.90
N (millions)  0.68 2.69 4.82 6.61 8.07

***p < 0.001, **p < 0.01, *p < 0.05

Notes: Point estimates based on the event study specifications are calculated by taking
the difference between the earliest five pre-period coefficients and the latest five post-
period coefficients. All coefficients should be interpreted as the % change in property
values resulting from adding 10 MW of capacity at a given distance away.

Solar projects

For solar projects I find no consistent evidence of an impact on residential
property values. Figure makes clear there is no noticeable change in prop-
erty values when a solar project is built nearby. This is the case even though
the distance bins being used are smaller, with the smallest capturing proper-
ties that are within 1km of a project. There is also no appreciation effect for
properties near failed projects either.

Table [3.7 largely confirms the findings in the event study plot, with again
no consistent effect emerging across a range of specifications.

Table shows the results of the analysis using the alternative distance
circles approach for solar projects. As with the wind projects the same broad
correspondence with the distance bins approach is still apparent. Lastly, I
check the robustness of my findings using a range of alternative specifications,
all of which can be found in the appendix.

Figure shows the results of the analysis of differential effects for solar
projects. Here again there is no consistent evidence of a statistically significant
effect, even for the properties with direct line-of-sight to appealed projects.

Table 3.9 and shows the results of the analysis of differential effects for
solar projects. Here again there is no consistent evidence of a statistically
significant effect, even for the properties with direct line-of-sight to appealed
projects.
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Table 3.7: Residential Capitalization for Solar Projects
(1) (2) (3) (4) (5) (6)
Completed
Otolkm —-0.17 0.46 —-0.54 —-1.31 —0.51 —1.49
(0.69)  (0.72)  (1.43) (0.77)  (0.86)  (1.45)
1to2km 1.26% 1.33% 1.21* 1.08** 0.98* 0.96
(0.34) (0.30) (0.48) (0.35)  (0.32) (0.47)
2to3km 0.46 0.56* 0.55 0.19 0.34 0.31
(0.28)  (0.24)  (0.32) (0.29) (0.25)  (0.33)
3todkm 0.84*** 0.98* 0.73 0.57* 0.73** 0.66
(0.21)  (0.19)  (0.32) (0.23) (0.21)  (0.33)
4tobkm —0.09 0.15 —-0.04 —-0.34 0.00 —0.32
(0.20) (0.17) (0.26) (0.21)  (0.19) (0.26)
Failed
Otolkm —0.96 —1.63 —0.12 0.10 —0.70 0.20
(1.10)  (L07)  (1.28) (1.33) (1.37)  (1.56)
1to2km —0.02 —-0.14 —0.30 0.30 —-0.18 0.07
(0.43) (0.37) (0.58) (0.50)  (0.46) (0.60)
2to3km —0.62 0.05 0.73 0.03 0.32 0.54
(0.39)  (0.31)  (0.43) (0.48)  (0.39)  (0.51)
3todkm —0.70* —0.19 0.04 —-1.08"* —-0.67 —1.05
(0.27)  (0.24)  (0.45) (0.34)  (0.31)  (0.71)
4tobkm —0.21 —0.16 —-0.17  —0.28 —0.51 —0.38
(0.26) (0.22) (0.37)  (0.32)  (0.28) (0.44)
R-Squared 0.96 0.91 0.83 0.96 0.91 0.83
N (millions) 5.82 8.18 8.31 5.82 8.18 8.31
Log Functional Form Y Y Y Y Y Y
Event Study — — - Y Y Y
Address Fixed Effects Y — — Y — —
Postcode Fixed Effects — Y — — Y -
LSOA Fixed Effects - - Y - - Y
County-Year Fixed Effects Y Y Y Y Y Y

***p < 0.001, **p < 0.01, *p < 0.05

Notes: Point estimates based on the event study specifications are calculated by taking
the difference between the earliest five pre-period coefficients and the latest five post-
period coefficients. All coefficients should be interpreted as the % change in property
values resulting from adding 10 MW of capacity at a given distance away.
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Figure 3.6: Residential Capitalization Fvent Study for Solar Projects
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Notes: All event bin coefficients for a given distance bin are normalized relative to the
fourth pre-period event bin (s = —4). All coefficients should be interpreted as the %
change in property values resulting from a location going from having no nearby project
to having a 10 MW at the relevant distance away. Distances are denoted throughout
using colors, with red being the closest and light blue the furthest. Solid lines and points
indicate the effects derived from the treatment variables based on completed projects.

Dotted lines indicate the effects derived from the treatment variables based on failed
projects. Shaded areas represent the 95% confidence intervals.

Table 3.8: Residential Capitalization for Solar Projects by Distance Clircles

(0-1km) (0-2km) (0-3km) (0-4km) (0-5km)

Completed
. —0.02 0.82* 0.57** 0.55*** 0.32**
(0.85) (0.30) (0.20) (0.14) (0.11)
Failed
—0.26 0.39 0.40 —0.08 —0.25
(1.37) (0.45) (0.30) (0.22) (0.17)
R-Squared 0.91 0.91 0.91 0.91 0.91
N (millions) 0.33 1.83 3.93 6.13 8.18

***p < 0.001, **p < 0.01, *p < 0.05

Notes: Point estimates based on the event study specifications are calculated by taking
the difference between the earliest five pre-period coefficients and the latest five post-
period coefficients. All coefficients should be interpreted as the % change in property
values resulting from adding 10 MW of capacity at a given distance away.
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Figure 3.7: Residential Capitalization Event Study for Solar Projects with
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Notes: All event bin coefficients for a given distance bin are normalized relative to the
fourth pre-period event bin (s = —4). All coefficients should be interpreted as the %
change in property values resulting from a location going from having no nearby project
to having a 10 MW at the relevant distance away. Distances are denoted throughout
using colors, with red being the closest and light blue the furthest. Solid lines and points
indicate the effects derived from the treatment variables based on completed projects.

Dotted lines indicate the effects derived from the treatment variables based on failed
projects. Shaded areas represent the 95% confidence intervals.
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Table 3.9: Residential Capitalization for Solar Projects with Differential

Effects
(0-1km)  (0-2km) (0-3km) (0-4km) (0-5km)
Completed
Not Appealed, Not Visible, Deprived 1.25 0.99 0.21 0.08 —0.22
(1.24) (0.50)  (0.33) (0.21) (0.16)
Not Appealed, Not Visible, Not Deprived —2.51 0.43 —-0.01 0.38 —0.08
(3.06) (1.07)  (0.57) (0.39) (0.31)
Not Appealed, Visible, Deprived 1.19 0.25 0.30 0.51 0.62**
(1.09) (0.41)  (0.29) (0.24) (0.19)
Not Appealed, Visible, Not Deprived —6.42 0.44 1.20 1.39** 0.91*
(2.95) (0.86)  (0.56) (0.43) (0.36)
Appealed, Not Visible, Deprived 3.63 1.93 —-1.20 0.46 0.67
(8.14) (2.12)  (1.54) (1.26) (1.06)
Appealed, Not Visible, Not Deprived —29.76 5.80 3.85 1.91 0.38
(67.70) (5.15)  (4.31) (3.50) (2.65)
Appealed, Visible, Deprived —53.11"* 2.68 1.18 —0.13 0.49
(6.23) (2.61)  (1.46) (1.33) (1.44)
Appealed, Visible, Not Deprived —130.90 3.93 2.77 1.37 —1.48
(67.99) (2.98) (2.02) (1.94) (1.69)
Failed
Not Appealed, Not Visible, Deprived 0.61 042 —0.09 —0.19 —0.06
(2.59) (0.88)  (0.46) (0.32) (0.27)
Not Appealed, Not Visible, Not Deprived 8.76 1.37 277 1.73* 1.47
(4.81) (1.10)  (0.74) (0.53) (0.43)
Not Appealed, Visible, Deprived —1.25 —-0.89 -—1.18 —1.25% —1.02%
(2.03) (0.75)  (0.61) (0.47) (0.36)
Not Appealed, Visible, Not Deprived —2.57 1.20 —0.01 —0.63 —0.89
(5.65) (1.29)  (0.90) (0.70) (0.55)
Appealed, Not Visible, Deprived —4.83 3.15 1.58 0.06 —0.15
(7.38) (2.34)  (1.44) (0.95) (0.77)
Appealed, Not Visible, Not Deprived 9.27 —4.80 3.32 4.85* 0.91
(6.18) (6.67)  (2.63) (1.74) (1.17)
Appealed, Visible, Deprived 5.36 4.03 4.05 1.17 0.52
(4.57) (3.16)  (2.09) (1.60) (1.39)
Appealed, Visible, Not Deprived —55.72"* =755  —6.00 —7.56 —5.28
(13.94) (3.46)  (2.92) (3.42) (2.93)
R-Squared 0.91 0.91 0.91 0.91 0.91
N (millions) 0.33 1.83 3.93 6.13 8.18

***p < 0.001, **p < 0.01, *p < 0.05

Notes: Point estimates based on the event study specifications are calculated by taking
the difference between the earliest five pre-period coefficients and the latest five post-
period coefficients. All coefficients should be interpreted as the % change in property
values resulting from adding 10 MW of capacity at a given distance away.
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3.3.2 Impacts on commercial property values
Wind projects

For wind projects the event study in Figure [3.8| provides some weak evidence
of a possible impact on commercial property values in the closest 0-2km dis-
tance bin. This appears to be supported by the fact that the divergence with
the effects for the failed projects is clearest for this closest distance bin. How-
ever, the more aggregated nature of the data on commercial rents means this
analysis has less statisical power than was the case when looking at residential
property values. This is reflected in the much wider confidence intervals. As
such any negative effect is not consistently statistically different from zero.

Figure 3.8: Commercial Capitalization Event Study for Wind Projects

10.00%

5.00%

0.00%

-5.00%

% change in property value

-10.00% -

5 0 5
Years relative to project completion

—®- (Oto2km —@- 2todkm -@- 4to6km -®- 6to8km 8to10km

Notes: All event bin coefficients for a given distance bin are normalized relative to the
fourth pre-period event bin (s = —4). All coeflicients should be interpreted as the %
change in property values resulting from a location going from having no nearby project
to having a 10 MW at the relevant distance away. Distances are denoted throughout
using colors, with red being the closest and light blue the furthest. Solid lines and points
indicate the effects derived from the treatment variables based on completed projects.

Dotted lines indicate the effects derived from the treatment variables based on failed
projects. Shaded areas represent the 95% confidence intervals.

Importantly, these results aggregate across all commercial property types.
As such I repeat the analysis for four sub-sectors of commercial property types.
Table largely confirms the findings in the event study plot. There is a
pronounced negative effect of around 4% in the 0-2km distance bin, but it is
not statistically significant. To see what might be driving this I repeat the
analysis for four sub-sectors of commercial property types. The specifications
using the “other” sub-sector are indeed the ones with the largest effect sizes
in the 0-2km distance bin. Even so, the sub-sector analysis still fails to find
statistically significant effects.
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Table 3.10: Commercial Capitalization for Wind Projects

(1) 2 ®3) 4) ©) (6) (7) (8) 9 (109

Completed
0to2km —4.00 —0.90 133 -3.73 —6.00 —4.31 -3.91 243 —0.23 —5.57
(2.59)  (3.17)  (4.08) (4.94) (3.30) (2.90) (3.36) (4.14) (6.27) (4.14)
2todkm 0.43 1.23 0.68 7.84* 260 —-0.52 —-0.80 —0.14 -—1.29 1.46
(1.77)  (2.20) (1.93) (3.28) (2.09) (1.73) (2.37) (1.99) (3.55) (2.20)
4to6km —0.43 —5.28** 0.65 —-0.74 -3.13 —-0.12 —4.12* 1.09 0.48 —3.49
(1.36) (1.68) (1.66) (2.52) (1.55) (1.32) (1.57) (1.75)  (2.50) (1.57)
6to8km —0.52 1.81 210 —2.23 1.34  —0.54 2.71 1.12  —4.36 1.83
(1.13)  (1.56) (1.53)  (2.21) (1.39) (1.15) (1.51) (1.41) (2.27) (1.43)
8to10km —0.50 —1.49 —1.98 3.0l -189 -—-1.65 -399* —-194 -—-1.37 -—-2.18
(0.92) (1.33)  (L.16) (L77) (L15) (0.93) (1.26) (1.24) (1.79) (1.22)
Failed
0to2km 1.14 3.33 —1.94 3.23 3.19 1.69 1.18 —2.50 1.22 6.31
(2.06) (3.18) (3.47)  (3.99) (2.89) (2.12) (3.14) (3.58) (4.61) (3.25)
2todkm 2.08 —1.42 2.20 1.06 0.94 1.05 —2.82 1.52 —-0.59 —1.39
(1.68) (2.20) (2.30) (3.15) (2.02) (1.58) (2.34) (1.98) (3.16) (2.22)
4to6km —-1.37 —0.02 2.46 1.04 —-1.40 -0.39 —1.53 1.92 1.17 0.91
(1.33)  (1.86) (1.79)  (2.59) (1.53) (1.19) (1.67) (1.74)  (2.35) (1.45)
6to8km —-2.10 —0.63 094 -0.14 -075 -299* —-033 —-130 —-1.93 —-3.63*
(1.23) (1.52) (1.50) (2.03) (1.32) (1.15) (1.31) (1.35) (2.02) (1.33)
8tol0km 1.94 2.26 —0.46 —0.36 0.03 1.51 0.36 0.65 1.84 1.47
(0.93) (1.16)  (1.16) (L.75) (L11) (0.83) (L1.13) (1.14) (1.65) (L1.04)
R-Squared 0.94 0.94 0.96 0.92 0.90 0.94 0.94 0.96 0.92 0.90
N (millions) 0.20 0.12 0.09 0.06 0.13 0.20 0.12 0.09 0.06 0.13
Log Functional Form Y Y Y Y Y Y Y Y Y Y
Event Study - - - - - Y Y Y Y Y
LSOA Fixed Effects Y Y Y Y Y Y Y Y Y Y
Region-Year Fixed Effects Y Y Y Y Y Y Y Y Y Y
Total Sector Y - - - - Y - - — —
Industrial Sector — Y — - - Y - — —
Retail Sector - — Y - — — - Y - -
Office Sector - — Y - — - Y —

Other Sector - - - — Y - - _ - Y

***p < 0.001, **p < 0.01, *p < 0.05

Notes: Point estimates based on the event study specifications are calculated by taking
the difference between the earliest five pre-period coefficients and the latest five post-
period coefficients. All coefficients should be interpreted as the % change in property
values resulting from adding 10 MW of capacity at a given distance away.
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Table shows the results of the analysis using distance circles. The
same general findings as with the pooled distance bins approach are evident.

Table 3.11: Commercial Capitalization for Wind Projects by Distance Circles

(0-2km) (0-4km) (0-6km) (0-8km) (0-10km)

Completed
—4.22 —2.19 —1.96 —1.54 —1.59*
(2.73) (1.46) (1.00) (0.73) (0.62)
Failed
2.08 0.53 —0.48 —0.99 —0.11
(1.67) (1.11) (0.78) (0.64) (0.52)
R-Squared 0.95 0.94 0.94 0.94 0.94
N (millions) 0.04 0.09 0.13 0.17 0.20

***p < 0.001, **p < 0.01, *p < 0.05

Notes: Point estimates based on the event study specifications are calculated by taking
the difference between the earliest five pre-period coefficients and the latest five post-
period coefficients. All coefficients should be interpreted as the % change in property
values resulting from adding 10 MW of capacity at a given distance away.

Lastly, table shows the results of the analysis of differential effects for
wind projects. Here again there is no consistent evidence of a statisically sig-
nificant effect. Interestingly the properties with direct line-of-sight to appealed
projects do have the largest reductions, and this is precisely the category we
would expect to have the most pronounced effects.

Solar projects

For solar projects, Figure [3.9] shows the results of the event study, and it is
clear that there is no noticeable change in property values when a nearby solar
project is built.

Table largely confirms the findings in the event study plot. There is
no consistent pattern in the direction and magnitude of the coefficients, and
the standard errors are consistently large when compared to the results for
wind projects. Looking at the four sub-sectors of commercial property types
also does not reveal any discernible trends.

Table shows the results of the analysis using the distance circles ap-
proach. As before the same general results are evident as those found using
the distance bins approach.

Lastly, table [3.15] shows the results of the analysis of differential effects
for wind projects. Here again there is no consistent evidence of a statisically
significant effect.
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Table 3.12: Commercial Capitalization for Wind Projects with Differential

Effects
(0-2km) (0-4km) (0-6km) (0-8km) (0-10km)
Completed
Not Appealed, Not Visible, Deprived 2.88 —3.27 —1.47 —0.70
(5.93) (2.95) (1.88) (1.32)
Not Appealed, Not Visible, Not Deprived —1.11 —3.68 —2.00 —2.92**
(2.92)  (1.69)  (1.19)  (0.98)
Not Appealed, Visible, Deprived —-1.52 —2.22 —0.02 0.56 —0.65
(5.29) (2.64) (1.78) (1.27) (1.05)
Not Appealed, Visible, Not Deprived —-5.18  —0.54 0.18 —1.59 —1.17
(3.56)  (2.07) (1.56) (1.15) (0.94)
Appealed, Not Visible, Deprived 4.45 1.57 —4.80 —4.70*
(6.68) (4.20) (2.55) (1.87)
Appealed, Not Visible, Not Deprived —0.13 2.84 3.69 1.50
(5.30) (2.90) (2.31) (1.73)
Appealed, Visible, Deprived —-10.36  —7.03 —7.26* —4.44 —3.62
(6.18)  (3.12)  (257)  (1.98)  (1.70)
Appealed, Visible, Not Deprived —2.08 —6.85 —2.74 —2.34 —3.81
(6.11)  (3.74) (2.48) (1.88) (1.86)
Failed
Not Appealed, Not Visible, Deprived —0.45 0.77 0.40 —0.04
(2.83) (1.70) (1.29) (0.87)
Not Appealed, Not Visible, Not Deprived —3.36 —2.41 —1.23 —0.39
(3.43) (1.65) (1.24) (0.98)
Not Appealed, Visible, Deprived 1.01 0.61 —1.03 —1.42 0.79
(2.25)  (1.70) (1.32) (1.03) (0.84)
Not Appealed, Visible, Not Deprived 3.56 1.73 0.26 —0.71 0.17
(2.55)  (1.83) (1.19) (0.99) (0.85)
Appealed, Not Visible, Deprived —2.83 2.18 0.87 1.55
(6.28) (3.11) (2.22) (1.66)
Appealed, Not Visible, Not Deprived —3.69 2.48 1.48 1.67
(4.69) (3.39) (2.36) (1.96)
Appealed, Visible, Deprived 0.67  —0.08 —0.38 —3.81 —5.23**
(6.68)  (3.23) (2.00) (1.90) (1.79)
Appealed, Visible, Not Deprived 580  —4.53 —1.42 0.52 —0.64
(5.92)  (4.10) (2.81) (2.02) (1.77)
R-Squared 0.95 0.94 0.94 0.94 0.94
N (millions) 0.04 0.09 0.13 0.17 0.20

***p < 0.001, **p < 0.01, *p < 0.05

Notes: Point estimates based on the event study specifications are calculated by taking
the difference between the earliest five pre-period coefficients and the latest five post-
period coefficients. All coefficients should be interpreted as the % change in property
values resulting from adding 10 MW of capacity at a given distance away.
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Table 3.13: Commercial Capitalization for Solar Projects

(1) (2) (3) (4) (5) (6) (7) (8) 9) (10)
Completed
Otolkm —3.44 —4.01 2.77 5.47 1.65 —2.80 —4.26 2.95 1.98 3.40
(2.60) (3.12) (4.18) (5.41) (3.55) (2.62) (3.27) (4.71)  (6.08)  (4.05)
1to2km 0.68 —-0.29 —0.07 —-3.57 -—3.57 021 -2.29 2.66 —0.61 —2.37
(2.17)  (298) (3.69) (441) (2.76) (2.11) (2.82) (3.73) (4.50) (2.82)
2to3km —2.64 1.17 -1.07 -=-3.77 244  —1.26 1.35 —4.16 —1.85 0.83
(1.78)  (248) (2.56) (3.66) (211) (1.48) (223) (2.37) (3.62) (2.15)
3todkm 240 -137 -0.13 2.87 =275 2.30 0.54 0.64 —-1.01 —-3.25
(1.50) (1.90) (2.08) (3.01) (1.83) (1.43) (1.81) (2.22) (3.03) (1.76)
4tobkm —146 -0.78 —-0.81 —1.41 273 —-182 -—-174 —221 -1.84 1.16
(1.39) (L70) (1.63) (2.55) (1.40) (1.31) (1.64)  (1.60) (2.40) (1.32)
Failed
Otolkm 2.40 6.22 —-9.40 —-5.01 -5.09 3.67 9.03 —14.51 —-7.07 —4.25
(2.77) (3.68) (6.37) (5.44) (4.19) (3.16)  (4.03) (7.19) (6.12) (4.93)
1to2km —0.66 1.03 025 —6.94 —1.13 083 —-0.89 —0.22 -—-252 -3.63
(2.55) (3.19) (4.69) (4.67) (3.53) (2.96) (3.74) (5.08) (5.23) (4.04)
2to3km —-3.13 —-2.94 3.08 3.71 8.28" —4.00 —4.97 1.89 6.51 11.49**
(2.14) (2.76) (3.18) (3.77) (2.67)  (2.36) (2.91)  (3.41) (4.55) (3.29)
3todkm —-1.26 -3.24 —-257 -—-266 -353 —2.10 —-0.75 —0.89 —5.48 —5.77
(1.96) (2.37) (2.57) (3.24) (2.37) (2.29) (2.49) (2.86) (3.79) (2.69)
4to5km 1.79 0.82 1.72 4.87 0.62 2.27 0.47 1.16 5.59 1.17
(1.38) (1.90) (1.94) (2.75) (1.78) (1.52) (1.87) (2.07) (3.05) (1.85)
R-Squared 0.94 0.94 0.96 0.92 0.90 0.94 0.94 0.97 0.92 0.90
N (millions) 0.21 0.13 0.09 0.06 0.14 0.21 0.13 0.09 0.06 0.14
Log Functional Form Y Y Y Y Y Y Y Y Y Y
Event Study - - - - — Y Y Y Y Y
LSOA Fixed Effects Y Y Y Y Y Y Y Y Y Y
Region-Year Fixed Effects Y Y Y Y Y Y Y Y Y Y
Total Sector Y - - - - Y — — — -
Industrial Sector - Y — — — — Y — - -
Retail Sector - - Y — - — — Y - —
Office Sector - - - Y — — — — Y —
Other Sector — — - - Y - — — - Y

***p < 0.001, **p < 0.01, *p < 0.05

Notes: Point estimates based on the event study specifications are calculated by taking
the difference between the earliest five pre-period coefficients and the latest five post-
period coefficients. All coefficients should be interpreted as the % change in property
values resulting from adding 10 MW of capacity at a given distance away.
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Figure 3.9: Commercial Capitalization Event Study for Solar Projects
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Notes: All event bin coefficients for a given distance bin are normalized relative to the
fourth pre-period event bin (s = —4). All coefficients should be interpreted as the %
change in property values resulting from a location going from having no nearby project
to having a 10 MW at the relevant distance away. Distances are denoted throughout
using colors, with red being the closest and light blue the furthest. Solid lines and points
indicate the effects derived from the treatment variables based on completed projects.

Dotted lines indicate the effects derived from the treatment variables based on failed
projects. Shaded areas represent the 95% confidence intervals.

Table 3.14: Commercial Capitalization for Solar Projects by Distance Clircles

(0-1km) (0-2km) (0-3km) (0-4km) (0-5km)

Completed

s —3.26 —1.91 —1.29 —0.87 —0.98
(2.10) (1.34) (0.89) (0.74) (0.66)
Failed

147 —027 —1.83 —1.35 —0.46
(2.35)  (1.68)  (1.16)  (0.97)  (0.88)

R-Squared 0.95 0.94 0.94 0.94 0.94
N (millions)  0.04 0.08 0.13 0.17 0.21

**p < 0.001, **p < 0.01, *p < 0.05

Notes: Point estimates based on the event study specifications are calculated by taking
the difference between the earliest five pre-period coefficients and the latest five post-
period coefficients. All coefficients should be interpreted as the % change in property
values resulting from adding 10 MW of capacity at a given distance away.

82



Table 3.15: Commercial Capitalization for Solar Projects with Differential

Effects
(0-1km) (0-2km) (0-3km) (0-4km) (0-5km)
Completed
Not Appealed, Not Visible, Deprived —2.25 —-1.88 —0.73 —0.51 —0.55
(3.08) (2.02) (1.25) (0.98) (0.93)
Not Appealed, Not Visible, Not Deprived —8.18 —4.05 =587 —2.07 —0.97
(6.08) (2.95)  (1.90) (1.42) (1.07)
Not Appealed, Visible, Deprived —3.41 —-0.95 —2.22 —0.35 —0.31
(2.58) (1.56)  (1.15) (0.98) (0.87)
Not Appealed, Visible, Not Deprived —0.42 —2.50 —0.74 —0.83 —1.58
(4.46) (2.40)  (1.68) (1.61) (1.40)
Appealed, Not Visible, Deprived 146.30 6.54 7.78 7.33 2.01
(91.58) (7.06)  (5.07) (4.69) (3.49)
Appealed, Not Visible, Not Deprived —16.91 —8.41 1.66 —0.58 7.85
(9.49) (5.61)  (5.19) (5.76) (4.47)
Appealed, Visible, Deprived —25.39*  —3.17 4.05 4.27 3.75
(7.44) (5.31)  (6.83) (4.29) (3.77)
Appealed, Visible, Not Deprived 16.54 —3.53 2.85 —1.26 2.07
(11.36) (8.06)  (5.20) (6.38) (5.44)
Failed
Not Appealed, Not Visible, Deprived —4.91 0.83 —2.75 —1.67 —1.21
(4.02) (2.28)  (1.69) (1.40) (1.21)
Not Appealed, Not Visible, Not Deprived ——0.71 —-0.70  —0.66 —0.64 —2.10
(6.73) (3.93)  (2.26) (1.70) (1.67)
Not Appealed, Visible, Deprived 2.83 0.85 1.26 0.94 1.37
(2.82) (2.23)  (1.99) (1.59) (1.36)
Not Appealed, Visible, Not Deprived —1.22 —2.46 —0.80 1.63 3.20
(5.10) (3.28) (2.37) (2.54) (2.41)
Appealed, Not Visible, Deprived 12.31 6.46 3.09 1.67 —0.70
(5.68) (3.97)  (3.03) (2.20) (1.91)
Appealed, Not Visible, Not Deprived —3.92 —11.63 0.68 0.45 —0.02
(12.40) (8.05)  (4.04) (3.13) (3.08)
Appealed, Visible, Deprived 1.03 0.51 2.97 —2.05 —3.26
(5.03) (3.42)  (3.09) (2.80) (2.40)
Appealed, Visible, Not Deprived 16.85 —0.51 2.83 —3.25 0.81
(11.76) (8.14)  (5.54) (4.44) (3.84)
R-Squared 0.95 0.94 0.94 0.94 0.94
N (millions) 0.04 0.08 0.13 0.17 0.21

***p < 0.001, **p < 0.01, *p < 0.05

Notes: Point estimates based on the event study specifications are calculated by taking
the difference between the earliest five pre-period coefficients and the latest five post-
period coefficients. All coefficients should be interpreted as the % change in property
values resulting from adding 10 MW of capacity at a given distance away.
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3.4 Conclusions

In this paper I have estimated the local costs imposed by wind and solar
projects, as measured by capitalization into nearby property values. I find
that wind projects can have significant negative impacts on the surrounding
area, primarily in the form of visual disamenity. This is captured by reductions
in nearby residential property values.

The overall magnitude of the observed effects is broadly consistent with
prior studies. Similar to |Gibbons (2015) I also find that using geospatial
methods to partition the effects by visibility shows that properties with direct
line of sight do indeed have larger negative impacts from wind farms. Building
on the work of [Jensen et al.| (2018) I find evidence that adding wind capacity
does have a declining incremental effect, such that the first turbine built has
a larger impact than the tenth or hundreth.

As well as confirming prior findings though, this paper provides a number
of valuable additions. First, I show that any negative impacts are concentrated
amongst properties in wealthier, less deprived areas. This fits with the fact
that these properties are likely to derive a larger proportion of their value from
environmental and neighborhood amenties such as pleasant views, historic
buildings and unspoiled green space. All these amenities are the ones that a
new wind project would be expected to adversely effect. The concentration of
these negative local impacts in wealthier communities therefore has important
distribution implications that are worthy of further study.

The use of planned but not approved projects is another valuable addition
to the literature. As well as validating the negative effects found near com-
pleted projects, this part of the analysis has also highlighted the importance of
potential sorting behavior, with property values actually increasing for areas
near a project that did not go ahead. This confirms survey-based evidence of
possible sorting set out by [Hoen et al. (2019).

The analysis of solar projects is one of the first in the literature (Droes and
Koster, 2020)). The finding of no significant effect is certainly consistent with
the fact that these projects have tended to be less controversial than wind
projects, at least in the UK context. This is not to say that solar projects
have no impacts on local communities, and it may be that looking at even
smaller distances may reveal statistically significant effects. However, in terms
of economic significance, this study provides strong evidence that any such
local impacts are likely to be small, at least when compared to wind projects.
Further study of this particular technology would still be beneficial, especially
given the major role solar power is expected to play in other parts of the world.

Lastly, the analysis of impacts on commercial property values here was
largely inconclusive. On one level finding no significant effect is perhaps un-
derstandable given the aggregated nature of the data and the narrow range
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of commercial activities we might expect to be impacted. Nonetheless, this
remains an area where other research is sorely lacking. A critical piece of
further work will be to examine impacts on commercial property values at a
more granular level.
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Chapter 4

The economic costs of
NIMBYism in renewable energy
deployment

4.1 Introduction

Large infrastructure projects can create widespread societal benefits and are
often critical to tackling major national or global challenges. A prime example
is climate change mitigation and adaption, which will require large investments
over the coming decades in areas such as renewable energy production, power
grid infrastructure and public transit (IEA, 2018]). However, large infrastruc-
ture projects such as these also create concentrated local impacts that can in
turn lead to fierce lobbying during the planning approval process. This lobby-
ing by local residents and businesses is sometimes pejoratively labeled NIMBY
(Not In My Backyard) behavior and is thought to be common in a range of
settings.

One area where the topic of NIMBYism has been debated extensively is
renewable energy deploymentE] Here a wealth of survey-based studies have ex-
amined the factors that determine community acceptance for wind and solar
projects (Wolsink, 2000; Bell et al., 2013; Burningham, Barnett and Walker],
2015; Rand and Hoen| 2017;|Hoen et al., [2019). Importantly though, the actual
economic consequences of local opposition and its influence on the planning
process remains poorly understood. There is some empirical evidence that
local residents that oppose wind farms respond by voting the politicians re-

INIMBYism can be more precisely defined as “the combined preference for the public
good and a refusal to contribute to this public good” (Wolsink, [2000). The public good of
interest here is the provision of renewable energy, with the aim of mitigating climate change
and ensuring secure energy supplies, and the refusal to contribute is most clearly expressed
by a locality’s decision to deny planning permission for a proposed project.
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sponsible out of office (Stokes, 2016), or by pushing for new zoning regulations
constraining development (Winikoff, |2019). There is also some limited evi-
dence that certain features of wind or solar projects may be associated with
projects being more likely to be approved (Roddis et al., 2018), but whether
this is resulting in insufficient or misallocated investment has yet to be studied.
Research on housing development has shown that local planning restrictions
can indeed result in chronic underinvestment that acts as a substantial drag on
the economy (Glaeser and Gyourkol 2018; Hsieh and Moretti, 2019). Given the
growing urgency of combating climate change, it seems plausible that similar
impediments to the deployment of renewable energy could also impose large
costs on society.

In this paper I estimate of the economic costs created by frictions in the
planning process for renewable energy projects. For this I focus on the United
Kingdom where I am able to draw on detailed planning data for all renewable
energy projects, including information on projects that were not approved.
The planning data allows me to credibly estimate the scale and distribution of
impacts on local residents in the form of changes to nearby property values. I
then link these local costs to the likelihood of projects gaining approval. The
vast majority of wind and solar projects in the UK must be approved at the
local level by county planning officials. This allows me to estimate how local
officials weigh local impacts during the approval process, including how this
compares to the weight they place on the other wider societal benefits of these
projects (e.g., carbon emissions reductions).

Using my estimates of the local impacts of wind and solar projects I then
examine how they influence the planning approval process. To do this I use
data on the planning outcomes of roughly 3,500 wind and solar projects span-
ning almost three decades. For each project I estimate both the local impacts
(e.g., on residential property values) and the wider societal impacts (e.g., the
market value of the electricity produced, the external value of any emissions
abated and the costs of constructing and operating the project). I then esti-
mate which factors have a stronger effect on the likelihood of projects receiving
planning approval. Here I find evidence that by far the most significant factor
guiding local planning officials is indeed local property value impacts. This
is consistent with the fact that wind projects are much less likely to be ap-
poved than solar projects. Interestingly these effects are more pronounced in
politically conservative areas.

That local officials pay attention to local factors is unsurprising. In fact,
there is a compelling argument to be made that local policymakers are in
fact making optimal private decisions for their respective jurisdictions. For
instance, Greenstone and Moretti (2003) show how local government policies to
attract new large manufacturing plants do actually increase the welfare of local
residents in the form of increased employment and local tax revenues| The key

2See |Slattery and Zidar| (2020) for a more recent review of the merits of these kinds of
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here is that what may be optimal for a given local area may in aggregate create
harmful outcomes for society as a whole. In the context of renewable energy,
I find that refusing a renewable energy project to avoid adverse local impacts
may indeed benefit local residents. However, the resulting underprovision of
renewable energy or the shift in development to more remote, more expensive
projects, raises the costs of climate change mitigation for society as a whole.
This problem is particularly acute for wind projects as they are most clearly
subject to misaligned planning incentives.

To quantify the potential scale of the problem and the scope for Pareto-
improving trades, I identify the set of projects that would have produced the
observed annual deployment of renewable energy at least cost to society. I
find that failure to allocate investment in a more societally efficient manner
has increased the cost of the UK’s deployment of wind power by as much
as £27 billion by 2019. Moreover, £20 billion of these foregone gains are
from projects that were refused planning permission, indicating that the main
driver of misallocated investment is the planning process. These frictions in the
planning process are substantial, amounting to 25% of the lifetime capital and
operating costs of all the wind projects built over this period. The equivalent
misallocation in solar power has been much smaller at £0.3 billion, or less than

2%.

Of the potential gains from reallocating wind power investment, a substan-
tial portion can be achieved by switching to wind projects that are cheaper to
build and less remotely located, even though these create larger local impacts.
This suggests that there are potentialy legitimate concerns around the impact
of NIMBYism on planning outcomes.

Interestingly, the extent of concerns about the planning process, and NIM-
BYism in particular, depends heavily on the tradeoff between onshore and
offshore wind. The UK’s early investments in offshore wind power have been
expensive, with large potential cost savings available from simply substituting
toward onshore wind, even where this incurs larger local costs. Studying on-
shore and offshore wind separately causes the misallocated investment costs
from the planning process fall to £7 billion, or around 10%, with a small
fraction plausibly attributable to NIMBYism.

Importantly, the merits of this substitution between onshore and offshore
wind depends heavily on the amount of learning and technological progress
that has been created by the growing shift toward offshore wind. Where
offshore wind learning has been substantial, NIMBYism may even have had the
beneficial unintended consequence of pushing development offshore, driving
down future costs for this nascent technology. Where offshore wind learning
has been minimal, NIMBYism will likely have cost the UK dearly.

There may also be important gains to be had from ensuring the planning

local tax incentives in the US context.
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process is better able to account for the declining incremental local impacts of
adding additional wind capacity. Current planning outcomes tend to try and
share the burden of renewable deployment across all jurisdictions, discouraging
the concentration of capacity at larger projects in fewer areas. Reversing these
tendencies could produce large gains. A key challenge here is addressing the
distributional implications of these changes.

Policymakers have already tried a range of policies that would appear to
address some of the undesirable planning outcomes identified here. These
policies include direct payments to local residents in the form of community
benefits funds, changes to tax regulations to allow more revenues from renew-
able energy projects to be kept locally, and efforts to encourage local ownership
of renewable energy projects. My findings suggest the scale of these sorts of
transfer mechanisms may have to increase significantly in some instances to
remedy concerns about NIMBYism. Having a more explicit process for pro-
viding compensation payments to affected local communities could also yield
real benefits. This includes finding ways to make transfers across jurisdictions
to incentivize some areas to host more concentrated deployment of renewable
energy projects.

The findings in this paper have important policy implications both in the
energy sector and beyond. Rapidly growing global demand for electricity and
concerns about climate change mean that a further $20 trillion in new power
plant investment is expected by 2040, mostly in renewable sources ([EA| 2018]).
The findings in this paper suggest that this expansion could be achieved at
much lower cost if more care is taken when incorporating the impacts on lo-
cal communities into the process. Finally, energy infrastructure projects such
as those studied here share many similarities with other major infrastruc-
ture projects, such as roads, railways, airports, landfill sites, water and waste
treatment works, and so on. There is every reason to think that NIMBYism
presents a similar problem in those sectors as well, and so exploring the gains
elsewhere remains a fruitful area for further research.

4.2 Empirical Strategy

To examine the planning process I conduct three pieces of analysis. First, I
quantify the various costs and benefits of each project. The goal is to under-
stand how large the local impacts are relative to various non-local factors that
are the reason for pursuing renewable energy in the first place. Second, I con-
duct a regression analysis to understand how sensitive planning officials are to
local versus non-local impacts. Third, I conclude by estimating the potential
costs created by the planning process in the form of misallocated investment.
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4.2.1 Project planning applications

Despite a relatively broad political consensus in the UK on the importance
of tackling climate change, the expansion of renewable energy has still been
uneven and contentious. Both wind and solar projects have historically been
dependent on carbon taxes and production subsidies, both of which are set at
the national level. In the 1990s and 2000s the vast majority of support went to
onshore wind, in part because this was the most well-established technology
at the time. In 2009 and 2010 a number of reforms were introduced that
supported the rapid expansion of both solar power and offshore wind. In 2015
a new Conservative government made a number of major changes that led
to a significant decline in new investment for both solar power and onshore
wind. These changes included freezing the UK carbon tax, cutting the funds
available to solar power and blocking future onshore wind farms from receiving
any subsidies. In the case of onshore wind these policy changes were driven
in part by the vocal opposition of rural voters to wind turbines. Their views
were echoed by the then-prime minister David Cameron who vowed to “rid”
the countryside of these “unsightly” structures. Interestingly offshore wind was
not subjected to the same hostile policy environment, perhaps because these
projects tend to be located a long way out at sea. In 2020 the moratorium on
subsidies for onshore wind was lifted, in part due to waning opposition from
Conservative voters.

Besides shifting national politics, arguably the most important determinant
of the deployment of renewable energy is the planning approval process. In
the UK the overwhelming majority of applications for planning permission
are managed by local planning authorities. These local authorities are the
primary unit of local government in the UK and on average cover around sixty
thousand households’| Project developers submit a planning application to
the relevant local planning authority. The local planning authority considers
the merits of the proposal in line with national and local planning guidelines.
A public consultation period is required where affected stakeholders have the
opportunity to provide comments. The local planning authority then decides
to either approve or refuse the planning application.

In making their determinations local planning authorities must weigh a
range of competing factors. Planning authorities have a legal duty under the
2008 Planning Act to mitigate and adapt to climate change. However, the na-
tional guidelines are relatively open-ended, stating that “all communities have
a responsibility to help increase the use and supply of green energy, but this
does not mean that the need for renewable energy automatically overrides en-
vironmental protections and the planning concerns of local communities”. In
considering any issues raised by local stakeholders, planning guidelines empha-
size the importance of promoting renewable energy, the suitability of the local

3This means UK local authorities are broadly analogous to US counties.
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area for the technology being proposed, and the impact (both individually
and cumulatively) on the character of the surrounding landscape, especially
where this affects nearby heritage assets of cultural significance (e.g., churches,
castles and monuments), national park designations, or sites of environmental
significance. In many cases EU law requires that applicants conduct an envi-
ronmental impact assessment. For wind projects there is also a requirement to
conduct a noise assessment, as well as a number of safety standards to ensure
the proposed turbines do not interfere with flight paths or radar installations.
Beyond these requirements there is a general preference against strict criteria
or zoning (e.g., setbacks, buffer zones or quotas). However, there is scope for
planning authorities to seek amendments to planning applications, or approve
them with certain conditions aimed at mitigating potential concerns that may
have been raised.

There are two main exceptions to local control of the planning process. The
first arises when projects are sufficiently large that they are deemed to have
substantial national or regional importance (e.g., motorways, airports, rail net-
works, ports etc.). In these situations the planning decision is made by the
national Planning Inspectorate, and any directly affected local authority is in-
cluded as a statutory consultee to the process. In the case of renewable energy,
projects with a capacity greater than 50MW have historically been deemed to
be of national significance. However, as part of the reforms introduced by the
Conservative government of 2015 this threshold was removed for onshore wind
projects such that all subsequent projects would be considered at the local
level irrespective of size. The second exception to local control arises when a
developer appeals the decision of a local planning authority. Once an appeal
is lodged the national Planning Inspectorate conducts a review and decides to
either uphold or overturn the initial decision. In both cases the split between
local and national control provides an interesting opportunity to examine how
decisionmakers at these different scales weigh planning applications.

To help document the impact of the planning process on the deployment
of renewable energy, the UK government maintains and publishes a database
on the planning applications for all major renewable energy projects that have
been proposed since 1990. Figure [3.1] shows where these projects have been
located and when they were submitted for planning approval. Table pro-
vides a range of additional summary statistics on outcomes from the planning
process for wind and solar projects as documented in the planning database.

The projects covered in the planning database comprise the overwhelming
majority of wind and solar capacity in the UK, and so many of the trends
described earlier are evident in Figure 3.1 There is a roughly even split of
projects across the two technology types, although wind projects are larger
on average and so account for the vast majority of total renewable capacity.
Despite this, it is noticeable from Table[4.1|just how much tougher the planning
process is for wind projects. Recieving a planning decision takes three to four
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Table 4.1: Summary Statistics on Project Planning Outcomes

Solar Wind
Number of Projects 1675 1775
Total Capacity (MW) 13737 58618
Average Capacity (MW) 8.2 33.0
Length of Planning Process to Initial Decision (days) 143 545
Length of Planning Process to Final Decision (days) 184 643
Initial Decision Approval Rate 0.724  0.391
Share of Projects subject to National Authority Decision 0.001  0.128
National Authority Initial Decision Approval Rate 1.000  0.648
Local Authority Initial Decision Approval Rate 0.723  0.353
Share of Projects Appealed 0.123  0.230
Appeal Success Rate 0.461  0.460
Final Decision Approval Rate 0.779  0.490

Notes: This table contains summary statistics for all wind and solar energy projects
in the UK with a capacity of 1MW or greater. This excludes projects that are under
review at the time of writing. Projects can be subject to approval by either a local or
national planning authority. The planning authority makes an initial decision to either
approve or refuse the project. Projects may then be appealed in which case the final
decision may differ from the initial decision.

times longer for wind projects. The approval rate is much lower as well, with
39% of wind projects being approved compared to 72% for solar projects.

Interestingly, Table[d.T| provides suggestive evidence that national planning
decisionmakers are more positively predisposed to renewable energy projects
and perhaps less influenced by local political considerations. This is reflected in
the higher approval probability for projects decided at the national level. This
is also further demonstrated by the impact of the appeals process. In total just
under 600 projects were subject to an appeal, representing roughly 10GW of
capacity. A larger proportion of these are wind projects, consistent with their
higher likelihood of refusal. The appeal success rate is 46%, giving a roughly
even split between projects that were upheld on appeal and projects that
were overturned on appeal. Accounting for appeals means the final planning
approval rates increase to 49% for wind projects and 78% for solar projects.

I provide further information on some of the key reasons why projects are
refused by collecting the planning decision letters for a sample of projects.
Based on the refusal decisions of 120 wind and solar projects I find that by
far the most cited reason is the visual impact of a project on nearby residents
and the overall character of the surrounding landscape. Visual impact reasons
were mentioned in 60% of solar refusals and 75% of wind refusals. The next
most common are a related set of concerns about the proximity of a project to
culturally important heritage sites. Heritage concerns were mentioned in 30%
of solar refusals and 50% of wind refusals. Unsuprisingly, noise concerns do
not appear in any of the solar refusals. Interestingly though, noise concerns
do not feature particularly heavily for wind projects either, with only 25%
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mentioning noise as a reason for refusal. This may seem puzzling at first given
the noise from rotating turbine blades is widely considered to be a major local
impact of any wind project. It may simply be that, whilst important, noise
impacts are still small relative to visual disamenities. However, the lack of
refusals due to noise concerns might also be driven by the fact that there are
already clear objective regulations for noise limits, and so developers are likely
to ensure these are met for all proposed projects. Visual impacts are harder
to explicitly include in planning procedures and so provide far greater latitude
for subjective interpretation by local decisionmakers.

The planning outcome data described here makes clear that a major chal-
lenge for the deployment of renewable energy is gaining the backing of local
residents and firms. In many ways this makes renewable energy projects similar
to most other large-scale projects, and so the findings here may be instructive
for other kinds of infrastructure. However, the particular importance of na-
tional and global factors (e.g., climate change) makes wind and solar projects
a particularly challenging case when planning processes are so dominated by
local decisionmakers. Unlike more traditional local infrastructure projects like
transport or housing, most of the benefits of wind and solar projects are spread
diffusely throughout wider society whilst many key costs remain concentrated
locally. The risk here is that, in the absence of some kind of direct payments,
local decisionmakers are unlikely to put much weight on benefits accruing to
non-local actors. This paper will assess the extent of the costs posed by these
misaligned incentives.

4.2.2 Estimating local project costs and benefits

I calculate the total local impacts of wind and solar projects using estimates
of the capitalization into local property values. To calculate this I start with
hedonic estimates of how the construction of a nearby project translates into
a percentage change in the value of a given property. I then multiply these
treatment effects by the total value of all properties near each project.

Capitalization effect assumptions

To estimate the local impacts of wind and solar projects I use the capitalization
into local property values. The rates of capitalization I examine are primarily
based on the treatment effects from my own analysis, combined with other
comparable estimates in the literature. The assumed effects for residential
property values are shown in Table [4.2] Impacts on commercial rents are not
explored given the inconclusive nature of my earlier findings and the lack of
any alternative studies.

For wind projects my analysis found that at 10MW wind project leads
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to a roughly 3% reduction in residential property values at distances of 0-
2km. Effects are smaller at 2-4km, roughly around 1.5% depending on the
specification. Beyond 4km it seems plausible that the effects have largely
decayed to zero. These numbers seem broadly consistent with other studies.
For instance, estimates from Jensen et al. (2018) imply that a similar I0MW
project should also lead to a roughly 2% decrease in residential property values
within 3km. Similarly, Droes and Koster| (2020) find that turbines lead to a
2.5% reduction for properties less than 2km away, rising to 5% for larger
turbines. Table [4.2] shows that the central case mirrors these broad effect
sizes.

My analysis also finds some limited evidence that effects are larger for
properties with direct line-of-sight, although this evidence is mixed and only
emerges clearly when looking at appealed projects. In this case the effect on a
visible property at 0-2km rises to 6%. This seems consistent with the findings
from Droes and Koster| (2020) regarding the increased impact of larger - and
presumably more visible - turbines. Similarly, (Gibbons, 2015) finds more
pronounced effects for directly visible properties, with those located within
2km experiencing reductions of 5-6%. To capture these more pronounced
effects due to direct visibility, Table shows that the assumed effects for
visible properties are twice as large as those for non-visible properties.

Lastly, my earlier capitalization analysis also extended on any prior re-
search in examining the impacts on property values for comparable areas where
projects were proposed, but ultimately did not go ahead. Beyond finding a
null effect in these areas, I actually found some evidence of an appreciation in
property values. The exact drivers of this are unclear, but it might plausibly
be the result of some kind of sorting behavior. Conventionally any treatment
effects from a new wind project are taken as the estimated effect on properties
near completed projects. However, there is a possible argument for calculating
the overall treatment effects by taking the difference between the reductions
in areas near completed projects and the increases in areas near abandoned
projects. This would have the effect of almost doubling the final treatment
effects from wind projects. I do not explore this approach directly, but instead
try to allow for the possibility of these larger effects with the “high” sensitivity
case shown in Table 4.2

For solar projects I do not find any clear evidence of an effect on residential
property values. At best I can rule out the possibility of either large positive or
large negative effects. There is also a lack of other studies that have examined
this question. |Droes and Koster| (2020) do suggest there is evidence of a
3% reduction in property values within 1km of a solar project. However,
the sample size for their analysis is very small and so they acknowledge the
evidence for this is weak. To reflect this my central case assumes the impact is
indeed zero. However, to explore the possibility of both positive and negative
effects the “low” and “high” sensitivity cases shown in Table allow for
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impacts on the order of 1.5% either way within 1km.

Table 4.2: Assumptions on Residential Property Capitalization Effects

Technology Distance Visible Deprived Effect (Low) Effect (Central) Effect (High)

Wind 0-2km Yes Yes -0.5% -1% -2%
Wind 0-2km Yes No 2% -4% -8%
Wind 0-2km No Yes -0.25% -0.5% -1%
Wind 0-2km No No -1% 2% -4%
Wind 2-4km Yes Yes -0.25% -0.5% -1%
Wind 2-4km Yes No -1% 2% -4%
Wind 2-4km No Yes -0.125% -0.25% -0.5%
Wind 2-4km No No -0.5% -1% 2%
Solar 0-1km Yes Yes 0.25% 0% -0.25%
Solar 0-1km Yes No 1% 0% -1%
Solar 0-1km No Yes 0.125% 0% -0.125%
Solar 0-1km No No 0.5% 0% -0.5%
Solar 1-2km Yes Yes 0.125% 0% -0.125%
Solar 1-2km Yes No 0.5% 0% -0.5%
Solar 1-2km No Yes 0.0625% 0% -0.0625%
Solar 1-2km No No 0.25% 0% -0.25%

Notes: This table contains the assumed values for the capitalization of a wind or solar
project into the value of a nearby residential property. Values shown are the equivalent
% change in property values for a 10MW project. The actual logarithmic coefficients
can be calculated by dividing these values by In(10).

Value of local property

To construct a panel dataset of the total value of all properties in the UK I start
with more aggregated data on property values, rents and counts at the local
authority level. I then downscale these to the postcode level for residential
properties and the LSOA level for commercial properties. This downscaling is
based on a range of data, including the residential property transactions and
average commercial rents data used in the prior hedonics analysis. Full details
can be found in the appendix.

To estimate of the total value of all residential properties near each project,
the transactions data used earlier is not quite suitable for this task. This is
because it does not include all properties, and for the properties it does include
it only has values at the time of sale, rather than in each year. To remedy this
and construct a panel of total residential property values at each post code I
start with a range of more aggregated data and then downscale these to the
post code level.

For residential property prices I start with annual average prices published
by the UK Office for National Statistics (ONS) at the local authority level.
The averages themselves are constructed based on the same transaction data
from HMLR used earlier. The main difference is that they correct for the
overall composition of the housing stock, as well as extending the coverage to
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include equivalent values for Scotland based on separate property-level data
held by the National Registers of Scotland (NRS). To downscale the average
property prices to the post code level I fit a predictive model that allows me
to estimate how house prices in a given post code vary relative to the local
authority average.

To be more explicit, when conducting this downscaling exercise I fit a pre-
dictive model based on other data that is correlated with prices whilst also
being consistently available at the post code level. This includes measures
of whether a post code is rural or urban, index scores of social deprivation,
census data on the socioeconomic status of residents and geospatial data on
terrain and landcover. I then use the transaction-level data for England &
Wales from HMLR to fit a predictive model that maps these covariates into
residential property values. I then construct a house price index for all post-
codes using the predictions from this model. Finally I downscale the local
authority annual average prices using this predictive index to get an equiva-
lent set of annual average residential property prices at the postcode-level that
also remain consistent with the original local authority values.

In order to get total residential property values I then combine these aver-
age prices with data on the number of residential properties. Here I use data
on counts of properties at the local authority level from the VOA for England
& Wales and from the NRS for Scotland. To downscale the property counts I
proportionally allocate the total number of properties in each local authority
based on census data of the number of households in each post code. The
result is a panel of average prices and property counts for each post code over
the entire period of interest.

The process of estimating the value of all commercial properties near each
project is more straightforward. The same LSOA data from the VOA that
was used in the capitalization analysis is sufficient for England & Wales in
that it provides both average values and numbers of commercial properties
for each LSOA. T supplement this with comparable data for Scotland from
the Scottish Government’s Local Government Financial Statistics. These are
at the more aggregated local authority level but are otherwise equivalent in
that they include both average values and numbers of commercial properties.
As with the residential property values I once again conduct a downscaling
exercise using the same approach set out above.

4.2.3 Estimating non-local project costs and benefits

The next step requires estimating the various non-local costs and benefits as-
sociated with each renewable energy project. The primary costs and benefits
estimated here are: 1) the market value of the electricity produced, 2) the
value of any carbon emissions abated, 3) the value of any local pollution emis-
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sions abated, 4) the capacity value from contributing to supply security, 5)
the capital construction costs of installing the project, 6) the operation and
maintainence (O&M) costs incurred over its lifetime, and 7) the benefits of
learning-by-doing.

There are undoubtedly other secondary costs and benefits created by these
projects not included here. For instance, the employment benefits from build-
ing and maintaining the project are not included here. In general though
these should be minimal for wind and solar projects. For instance, (Costa and
Veigal (2019) find evidence of a small temporary boost to employment from
wind projects during the construction phase, but no lasting impact on em-
ployment beyond that. I confirm this using employment data and the results
can be found in the appendix. Even so, the included costs and benefits are
not exhaustive and this should be kept in mind when interpreting the results
presented later.

Each of the costs and benefits I do estimate are still subject to significant
uncertainty, particularly those that are more challenging to quantify like the
benefits of learning-by-doing. To deal with this I examine additional low and
high sensitivities for some of the most uncertain categories. A final source of
uncertainty is the discount rate used when converting everything to present
value levelized quantities. Here again I examine a baseline real discount rate of
3.5% in line with UK Treasury guidance, as well as low and high sensitivities
of 1.5% and 7% respectively.

To keep the analysis tractable I treat each project as if it is “on-the-margin”
and being considered in isolation. The alternative would be to consider many
projects in aggregate or treat larger projects as non-marginal. Doing so would
require making complex alternative assumptions about equilibrium electricity
prices or project costs, which is beyond the scope of this study. Treating
each project as a marginal project also has the added benefit of mirroring the
government’s general approach to valuation, which in turn should be consistent
with the valuation guidance that planning officials should be following when
considering these projects.

An important limitation to the valuation undertaken here is that the data
and approaches used are necessarily based on our current understanding, which
may be quite different from the state of knowledge available to decisionmakers
at the time they were considering a project. Moreover, the use of a mixture of
observed historical data pre-2020 and forecasted data post-2020 is also slightly
incongruous. In reality, any decisionmaker appraising a project would be re-
lying exclusively on forecasts made at the time, or even sometime in the past.
Fully tackling these issues would involve assembling a dataset of the same set
of key inputs for all past years going back to 1990. This kind of exercise is
potentially a paper in its own right, and it is not clear that it would even be
feasible to locate the necessary data at this point. As such I continue to use
values based on current knowledge and methods, but the limitations of this
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should be kept in mind when considering the results presented later.

Capacity factors

To estimate the main benefits of the electricity produced by a wind or solar
project (items 1 to 3) requires estimating the amount of electricity a project
will produce over its lifetime. Electricity production for wind and solar projects
is almost entirely determined by three factors: the available wind or solar
resource, the capacity of the project and the characteristics of the turbines
or panels installed. A key statistic for summarizing the output from any
renewable energy project is the capacity factor: the average amount of power
the project produces normalized by the maximum power output capacity. In
the UK this is generally around 30% for wind projects and 10% for solar
projects.

To estimate the capacity factors at each project I start with estimated
capacity factors based on geospatial data. For solar projects I use the pho-
tovoltaic power potential estimates from the World Bank Solar Atlas. This
provides estimated solar power productions profiles on a 1km grid for a rep-
resentative solar installation. I use the coordinates of each project to extract
the nearest solar production profile from this grid.

For wind projects the capacity factor is much more heavily dictated by
the kind of turbine installed. To account for this I use data from Renewables
Ninja. Here a user can select a set of location coordinates, a wind turbine
model and a hub height, and then Renewables Ninja will calculate a wind
power production profile that accounts for the characteristics of the turbine
and the wind conditions in the specified location. For each wind project I
first assign a likely turbine model from the list of possible turbine models in
the Renewables Ninja database[]] T then use the location coordinates of each
project to extract an hourly power production profile from Renewables Ninja,
which I then collapse to a single average capacity factor value.

Lastly, I collect data on country-level annual average capacity factors from
the International Renewable Energy Agency (IRENA). I then use the IRENA
data to normalize my initial project specific estimates. This allows me to
ensure the original IRENA annual averages are maintained. The results are

shown in Figure

4To do this I start with the data on turbine manufacturers and models in The Wind Power
Database (Pierrot, 2019). I match these to the turbine models available in the Renewables
Ninja database. For each project in the planning database I calculate both the turbine
capacity (in MW) and the turbine power density (in MW per m? of blade swept area). For
each project I then find the closest turbine model on these two metrics that is also in the
Renewables Ninja database. Where possible I prioritize selecting turbine models that have
been more commonly installed in the UK.
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Capacity Factor

Figure 4.1: Estimated Project Capacity Factors
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Notes: This figure shows the estimated project capacity factors over time. Project sizes
are determined by their capacity (in MW). Projects are classified by their development
status. “In Review” are projects that have submitted a planning application but have
yet to receive a final decision. “Successful” are projects that have been approved and are
either awaiting construction, under construction, operational or have been subsequently
decommissioned. “Unsuccessful” are projects that were refused planning permission or
were otherwise withdrawn or halted.
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Market value of renewable electricity

To value the electricity produced by each project I rely on data from the UK
government’s guidance on cost benefit analysis and the valuation of climate
change policies. This primarily draws on data published by the Department
for Business, Energy & Industrial Strategy (BEIS) and the Department for
Environment, Food & Rural Affairs (DEFRA). The relevant data includes
historical values for key inputs like electricity prices, the social cost of carbon
and monetary damages from local pollution emissions. Projections of these
inputs out to 2050 are made based on the UK government’s modeling of the
future electricity grid. Where data is missing or projections are not available
I interpolate and extrapolate based on a range of additional industry sources.

I measure the market value of the electricity produced by each project
(item 1) using the prevailing wholesale price of electricity. The values for an-
nual average wholesale electricity prices are taken from the UK government’s
guidance on cost benefit analysis and the valuation of climate change poli-
cies. Pre-2020 the electricity prices are based on observed traded wholesale
market prices. Post-2020 the electricity prices are based on projections out to
2050 that were made based on the UK government’s modeling of the future
electricity grid. This modeling includes forecasting fuel prices, demand and
investment in new capacity, and then running a dispatch model to solve for
clearing market prices. The guidance includes a set of “low”, “medium” and
“high” scenarios which I use to form my own “low”, “medium” and “high”
sensitivities for this particular impact.

Wind and solar projects do also receive production subsidies in addition
to any wholesale market revenues| I do not include subsidy revenues in my
estimates of the market value of the electricity produced because from the per-
spective of a social planner they are simply transfers. However, these subsidies
may be of interest from a developer perspective, or even for county officials
in the event that local royalties and taxes are based on the total revenues a
project receives. As such I do separately estimate the value of the subsidies
each project using data from BEIS and Ofgem.

In valuing the electricity produced by a project I almost exclusively do
so in terms of annual average marginal values. In reality there is significant
temporal variation in the output from wind and solar resources, the price
of electricity, the emissions intensity of marginal generation, and even line
losses; all of which can affect the overall value of renewable energy production
(Borenstein and Bushnell, 2018; |Callaway, Fowlie and McCormick, [20188).
Fully simulating these dynamics at an hourly level is beyond the scope of
this paper. I do still capture some of this variability through the calculation
of capacity value (item 4), which reflects the contribution a project makes

5The main renewable subsidy programs over this time period are the Non-Fossil Fuel
Obligation, the Renewables Obligation, Feed-In-Tariffs and Contracts for Difference.
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to reliably matching demand, particularly during peak demand periods when
supply is tight. Beyond this it seems reasonable to assume that, to a first
order, annual averages should be sufficient for the purpose envisaged here,
especially given the focus on the value of projects over their entire lifetime.

External environmental benefits

The electricity produced by renewable projects has added non-market benefits
when it displaces other forms of environmentally harmful power production. In
particular, where increased production of renewable electricity displaces coal
or gas-fired power plants it will reduce both carbon emissions (item 2) and
local pollutant emissions (item 3).

To calculate the amount of emissions abated I start with historical data
on annual total electricity generation by source from BEIS and annual emis-
sions by source from DEFRA. T use this to calculate annual average marginal
emissions factors for COy, SOy, PMs 5, PM;g and NOx assuming that either
coal or natural gas has been the marginal source of generation. I then project
these marginal emissions factors forward to 2050 assuming they decline in line
with the forecast average carbon emission intensity of the total generation
mix. These forecasts are again taken from the UK government’s modeling of
the future electricity grid.

Marginal abated carbon emissions are then valued using the UK values for
the social cost of carbon and local pollution damages. In the 2019 guidance
the central values are £68/ton for CO,, £7,612/ton for SOy, £128415/ton
for PMy5, £82,442/ton for PM;g, and £7,521/ton for NOx. The resulting
marginal values per MWh of electricity produced are shown in Figure 4.2
alongside the wholesale price of electricity. Once again the guidance includes
a set of “low”, “medium” and “high” scenarios which I use to form my own
“low”, “medium” and “high” sensitivities for these two impacts.

Capacity value

The capacity value of a power project (item 4) reflects the contribution it
makes to reliably matching demand, particularly during peak demand periods
when supply is tight. For intermittent power sources like wind or solar this is
generally thought of in relative terms by starting with the capacity value of a
conventional dispatchable generator (e.g. a natural gas-fired power plant) and
then calculating “the proportion of installed renewable capacity that is able to
‘displace’ conventional generation or support extra demand while maintaining
system reliability levels” (Harrison et al., [2015]). Statistical modelling for the
UK indicates that at present a wind project can expect around 10-20% of its
capacity to provide this kind of reliable “firm” supply, whilst for solar the
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Net Present Value (£/MWh)

Figure 4.2: Marginal Market and Non-Market Values of Renewable
Electricity Production
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“Air Pollution Damages” refers to the external value of the local pollution emissions
abated by displacing generation from other sources. The lines are based on the UK

government’s central scenario values and the shaded areas are bounded by the low and
high scenario values.
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equivalent number is as low as 1%. These percentages are sometimes referred
to as “equivalent firm capacity” de-rating factors. The values for the UK
reflect the fact that peak demand periods in the UK occur on winter evenings,
and so whilst there is a decent probability the wind will be blowing at this
point, the sun will almost certainly have set.

My starting point for is National Grid’s recently published guidance on the
de-rating factors they will use for the upcoming UK capacity market auctions.
For the upcoming auctions in 2020 they have settled on de-rating factors of
roughly 8.5% for onshore wind, 13% for offshore wind, and 1.5% for solar.
Importantly though, these values can and will change over time. In particular
they will tend to fall as the generation share of wind or solar increases, and
tend to rise as demand shifts towards periods when the wind is blowing or
the sun is shining. This is particularly important to capture for wind power
because this is expected to provide such a large portion of the UK’s electricity
supply by 2050.

To capture the temporal variation in de-rating factors for wind projects I
therefore rely on estimates by (Harrison et al., 2015|) - namely those shown in
Figure 11 in their paper. Their analysis examines how de-rating factors for
onshore and offshore wind vary as the total wind power capacity in the UK
increases. I converted this to points in time using information on the past and
forecast growth of wind capacity from National Grid. Based on this, onshore
wind de-rating factors were around 20% in 1990, but have fallen to 9% today,
and will likely reach 7% by 2050. Offshore wind de-rating factors were likely
as high as 35% in 1990, but have fallen to 15% today, and will likely be as
low as 9% by 2050. I assume solar de-rating factors remain at 1.5% across the
entire period.

To get the capacity value of each wind or solar project I multiply the rele-
vant “equivalent firm capacity” de-rating factor by the capacity of each project
and then value the remaining “firm” capacity based on the UK government’s
capacity market guidance. The result is a capacity value for each project in
£/MW /year.

Capital and operating costs

To calculate project specific estimates of installed capital costs (item 5) I rely
primarily on data from IRENA. Unfortunately it is particularly challenging
to get detailed project-level data on costs as this is usually treated as com-
mercially confidential. The data provided by IRENA are country-level annual
average installed capital costs for onshore wind and solar projects and so for
these projects I use the UK values. For offshore wind IRENA only publishes
global average values, although given the UK makes up such a large portion
of offshore wind projects these values are a decent approximation of costs for
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the UK. Moreover, given the relatively small number of offshore wind projects
I supplement this part of the analysis with direct project specific estimates of
offshore wind costs taken from various industry sources. In all cases I convert
these to consistent £/ MW capital costs. I then make an additional adjustment
to account for variation in costs due to economies-of-scale. There is evidence
that large projects have consistently lower per MW capital costs than small
ones. To capture this I use additional US data from Lawrence Berkeley Na-
tional Laboratory (LBNL) on relative costs by project size. For example, they
show that the per MW capital costs for a 50MW solar project are 10% lower
than those for a 5MW solar project. The difference is even more pronounced
for wind projects where the equivalent cost reduction is 35%. As such I use the
LBNL data to ensure large projects have appropriately lower per MW capital
costs than small ones. After making this adjustment I once again normalize
the estimated per MW capital costs to ensure the original IRENA annual av-
erages are maintained. Lastly I multiply by the capacity of each project to get
project-level values for total installed capital costs.

To calculate project specific estimates of ongoing O&M costs (item 6) I
also rely primarily on data from IRENA to capture general trends over time.
Here no UK specific data is available and so for onshore wind I use US val-
ues whilst for solar I use the global values that IRENA applies to projects in
OECD countries. In both cases I convert these annual averages to consistent
£/MW /year values and compare to UK government estimates to ensure they
seem reasonable. For offshore wind I assume the O&M costs are twice those
of onshore wind to capture the increased costs of servicing turbines out at sea,
again consistent with UK government estimates. An important additional
contributor to O&M costs are grid connection and transmission use charges.
These costs can vary substantially depending on the location that a wind or
solar project is connected to the grid. To capture this I modify the average
O&M costs based on transmission system charging data from National Grid.
This ensures that projects connecting to the grid in remote regions have ap-
propriately higher costs than projects located close to demand centersﬂ This
includes accounting for the additional grid infrastructure costs associated with
the offshore Windﬂ See the appendix for full details. Finally I once again mul-
tiply by the capacity of each project to get annual project specific estimates
of O&M costs.

SFor example, the locational portion of National Grid’s transmission charge can vary from
more than £20,000/MW /year in Scotland to less than -£10,000/MW /year near London.

"These add an average of roughly £45,000/MW /year to the costs for offshore wind
projects.
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Capital Costs (million £/MW)

Operating Costs (£/MW/yr)

Figure 4.3: Estimated Project Capital and Operating Costs by Year
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Notes: This figures shows the estimated costs over time. Each point represents the
total amount of proposed capacity of a given technology type at a given cost level.
Capital costs are at the top and operating costs are at the bottom.
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Learning-by-doing

Finally, a potentially critical wider benefit of the wind and solar projects under
consideration here is learning-by-doing (item 7). The early adoption of these
technologies can create learning spillovers that drive down costs, providing an
external benefit to future projects and lowering the costs of climate change
mitigation (Borenstein|, 2012). The rapid decline in the costs of wind and so-
lar power over the past few decades suggests these learning effects could be
substantial. However, actually quantifying the value of this kind of learning
is very challenging. Here I rely on a paper by |[Newbery| (2018)) which sets
out a methodology for calculating the maximum justifiable learning-by-doing
subsidy for onshore wind and solar power. Unfortunately it is not straightfor-
ward to adapt this method for offshore wind. Recent cost declines could point
to significant learning occurring, so here I assume that the learning benefits
for offshore wind are twice the level for onshore wind. Given the important
role the UK has played in supporting this nascent technology the learning ef-
fects could be particularly important. I return to this issue when considering
aspects of the results that involve comparing onshore and offshore wind.

To measure the learning-by-doing benefits created by constructing a wind
or solar project I rely on a paper by Newbery| (2018]). The paper sets out a
methodology for calculating the maximum justifiable learning-by-doing sub-
sidy for wind and solar power. Based on this I estimate learning benefits in
2015 of £600,000/MW for solar and £250,000/MW for onshore wind. These
values decline steadily over time as each technology matures, and so can be
substantially higher for some of the earliest projects. Unfortunately it is not
straightforward to adapt this method for offshore wind. Recent cost declines
could point to significant learning occurring, so here I assume that the learning
benefits for offshore wind are twice the level for onshore wind.

To try and capture some of the uncertainty in this particular impact I also
create “low”, “medium” and “high” sensitivities. To do this I use the range of
scenario assumptions set out in the paper in Table 1. In particular, the “low”,
“medium” and “high” sensitivities for solar projects were taken from columns
F, C and B respectively, and for wind projects from K, J, and I respectively.
The optimal subsidy is scaled based on the average global installed capital cost
for wind and solar projects in 2015, based on data from IRENA. The resulting
values can be seen in Figure 4.4

4.2.4 Determinants of planning approvals

To evaluate the planning process I employ a relatively straightforward regres-
sion model that aims to identify which categories of costs and benefits drive
project approvals. The observations here are the roughly 3500 wind and so-
lar projects in my sample. The dependent variable is a binary indicator for
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Figure 4.4: Learning-by-doing Benefits from a New Wind or Solar Project by
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Notes: This figure shows the changing learning-by-doing gains from installing a new
wind or solar project in a given year over the sample period. “Low”, “medium” and
“high” sensitivities are shown by the different dashed lines.
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whether or not a project was approved. The independent variables of inter-
est are the various key costs and benefits associated with each project. All
these costs and benefits were calculated as described above and discounted to
consistent present value terms. The resulting regression is as follows:

approve;; = Brlocal; + Bononlocal; + 0, + A + €t (4.1)

The dependent variable is a binary approval decision indicator, approve,
for each project, 7, in county, ¢, in year, ¢t and it is regressed on both the local
net benefits, local, and the non-local net benefits, nonlocal. The resulting
coefficients capture the impact of a positive change in their respective value
categories. I also scale each coefficient such that it reflects the percentage
change in approval probability for a £10 million improvement in net benefits.
This improvement could be realized through higher benefits (e.g. earning a
higher electricity price or displacing a larger amount of emissions) or through
lower costs (e.g. cutting the costs of constructing the project or reducing the
impacts on nearby property values).

To control for unobservable determinants of planning approvals I also in-
clude a set of time, #, and location, A, fixed effects. The time fixed effects are
year-of-sample and capture general national trends in the likelihood of projects
being approved. The location fixed effects are for each local authority and
capture general differences in planning processes across jurisdictions. Because
local authorities are the administrative units responsible for reviewing plan-
ning applications this means the results are identified using within-authority
variation from the range of projects that each local authority receives. I esti-
mate these regressions first by pooling across all projects and then separately
for wind and solar projects.

This model allows me to test a number of interesting hypotheses. First,
for an idealized global social planner we might expect to find that all improve-
ments in new benefits have the same impact on approval likelihood, irrespective
of where they occur (i.e. Siocar = Brontocar > 0). A national planner is likely to
get pretty close to this, although most of the carbon emission reduction ben-
efits likely accrue to other countries. However, a local planner might deviate
significantly from this. In fact we might reasonably expect them to primarily
pay attention to the local net benefits as these are the ones that directly affect
actors in their jurisdiction (i.e. Bipear > ﬁn(mlocal:())ﬂ

To further explore some of the dynamics at work, I extend the analysis
to see if there are differential effects based on local political preferences. Sur-
vey data consistently shows that strong majorities in the UK express concern
about climate change and support for renewable energy, including when asked

8 Altruistic motivations that extend beyond narrow self-interest are an obvious exception
to this though.
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whether they would be happy to have a large scale renewable energy develop-
ment in their area (BEIS, 20205). Despite this broad support, it is still the
case that concern about climate change and support for renewable energy has
tended to be weaker amongst conservative voters (NatCenl 2018). As such
political voting behavior could plausibly act as a proxy for variation in local
attitudes towards nearby wind and solar projects. To explore this I collect
data on local elections from Election Centre. In the UK, councillors for each
local authority are elected at least every four years and the vast majority of
councillors are affiliated with one of the main UK political parties. Using this
data I construct an indicator for whether a local authority is politically con-
servative based on whether it has a majority of Conservative party councillors.
I then interact this with the local and non-local variables to see if the planning
process differs in conservative areas relative to more liberal areas.

A second possible source of differential effects that I examine is the impact
of a project being decided by the national planning agency rather than at
the local level. To do this I now interact the variables of interest with an
indicator for whether the planning authority in charge was national or local.
It was noted earlier that the decision to review a project at the national level
is based on whether the project is larger than 50MW. As such the projects
considered by national planners are systematically larger.ﬂ This is mitigated
slightly by the fact that I also included the appealed projects in the national
planner category. This is because the final decision for these projects was in
fact made by the national Planning Inspectorate. Given that the vast majority
of projects are below the 50MW threshold, the inclusion of appealed projects
has the added benefit of making the split between the numbers of local and
national projects more balanced.

4.2.5 Quantifying the extent of misallocated investment

The final analysis I conduct is to quantify the extent of insufficient or misallo-
cated investment. A key issue the regression analysis examines is the prospect
that not all costs and benefits may be weighed equally during the planning
approval process. For example, if particular emphasis were to be placed on
avoiding adverse impacts on local property values, the result may be that so-
cially beneficial projects are consistently refused, slowing the deployment of
renewable energy. Even if the aggregate deployment of renewable energy is
unaffected the planning process could still create a systematic bias towards
approving more expensive projects, again on the basis that they have smaller

9T did consider using a Regression Discountinuity design for this part of the analysis.
However, the data is simply not rich enough to have enough observations around the thresh-
old. This approach is also undercut by the fact the 50MW threshold is public information
and so it can be gamed if developers think having a national planning decisionmaker is
desirable.
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impacts on local property values. This could take the form of building solar
power instead of wind, even though the UK has far better wind resources than
it does solar potential. Alternatively this misallocation could take the form
of building more remote wind projects, or moving projects offshore, even if
they are ultimately more socially expensive due to higher construction costs
or requirements to transmit power over longer distances.

To try and quantify the potential for insufficient or misallocated investment
I identify the set of projects that would have produced the observed annual
deployment of renewable energy at least cost to society. To do this I group
projects by their actual or expected start year and then rank them in order of
their social net present value. I sum up the least cost set of projects necessary
to reproduce the actual observed capacity additions for each year. I then
compare the difference in cumulative total social net present value between
this least cost set of projects and the actual set of projects that were built.
This also allows me to examine which projects account for the difference, and
whether they were approved or denied planning permission.

In thinking about the role of NIMBYism and local interests in the planning
process, it is worth being clear about what is actually meant by NIMBYism.
NIMBYism can be more precisely defined as “the combined preference for the
public good and a refusal to contribute to this public good” (Wolsink| 2000)).
The public good of interest here is the provision of renewable energy, with
the aim of mitigating climate change, reducing local pollution, and ensuring
secure energy supplies. The refusal to contribute arises when there is local
opposition to having a project sited nearby. Much of the literature on commu-
nity acceptance of renewable energy has challenged the NIMBY characteriza-
tion as oversimplistic (Wolsink|, [2000; |Bell et al., |2013; |Burningham, Barnett
and Walker, [2015; Rand and Hoen| 2017; Hoen et al., |2019). For instance,
whilst NIMBYism is usually characterized by a narrow emphasis on individ-
ual self-interest, actual stated opposition is frequently expressed in terms of
concerns about the impact on the community, or the fairness of the political
process. Moreover, even classic narrowly self-interested NIMBYism need not
be widespread in a given locality for it to have an effect if the NIMBYs are
a particularly vocal minority that can exert outsize influence. Conflicts over
proposed projects can also be exacerbated by pre-conceived notions of local
residents as parochial obstacles and project developers as extractive corporate
outsiders.

In this study, I primarily think about local interests and NIMBYism in
terms of the community-level decisions made during the planning process. Part
of the motivation is that a decision to refuse a project in this way is probably
the most straightforward and impactful way that a “refusal to contribute to
[the] public good” could be expressed. These community-level decisions are
still determined by the complex interaction of individual attitudes, political
power and the idiosyncracies of local circumstances that prior studies have
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highlighted. Rather than examining these underlying drivers of each planning
decision, my main focus is on whether local communities in general make deci-
sions that systematically reflect their own economic self-interest, and whether
this imposes economic costs on wider society through the underprovision of
public goods that are otherwise broadly supported.

4.3 Results

Figure 4.5 summarizes the estimated costs and benefits for all the wind and
solar projects studied here. The top panel shows how annual averages of these
costs and benefits have changed over time. The large declines in project cap-
ital costs are clearly visible and reflect the substantial technological progress
that has taken place over this period. The declining environmental benefits
over time are also striking and reflect the fact that the marginal electricity
production being displaced by a project built in 1990 was much dirtier than
for a project built in 2020. The bottom panel shows the full ranking of projects
in order of their total net present value. This makes clear the significant het-
erogeneity across projects, particularly with regard to the local property value
impacts. Plots including the subsidies can be found in the appendix.

Table presents the results of the planning process analysis. When only
controlling for year fixed effects (columns 1-3) I do not find any significant
evidence of sensitivity to local impacts. However, when I add county fixed
effects to look at within-county variation (columns 4-6) the local impacts that
have a large, positive and statistically significant effect on the likelihood of
receiving planning approval. Here I find that if a wind project imposes £10
million in losses to nearby residential property values, it will be 3% less likely
to be approved. The results is that local authorities are responsive to local
factors for the range of projects in their jurisdictions.

The same magnitude of responsiveness is not apparent for non-local im-
pacts. For instance, a similar £10 million increase in capital costs or a £10
million decrease in electricity revenues has a negligible effect on the chance of
approval. This fits with the hypothesis set out earlier that local decisionmak-
ers are incentivized to focus on impacts on local actors whilst ignoring other
impacts that are largely externalized to non-local actors. Interestingly, the co-
efficient on non-local impacts is actually negative and statistically significant,
although the coefficient is an order of magnitude smaller than the coefficient
for local impacts. This small size of the coefficient highlights the relative lack
of attention paid to these non-local factors.

Table also examines whether these effects are heterogeneous by politi-
cal leaning or the extent of local control of the decision. When looking at the
signs of the interaction terms the results are as expected. More conservative
areas are more sensitive to local impacts, consistent with a pattern of con-
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Figure 4.5: Estimated Project Costs and Benefits
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Notes: This figures shows the estimated project-level costs and benefits for all the
projects submitted for planning approval since 1990. All value categories are consistent
with those described earlier and have been converted to consistent levelized net present
value terms in £/MWh. These values use a 3.5% real discount rate in line with UK
Treasury guidance. Assuming a higher 7% real discount rate produces estimates more in
line with industry figures on private developer levelized costs. The top panel shows how
average costs and benefits over time. In each year the median was calculated for each
value category across all projects that were or would have been commissioned in that
year. The black dashes at the bottom of the plot indicate the number of projects in a
given year to convey when the bulk of projects were being proposed and commissioned.
The bottom panel shows the full ranking of projects in order of their total net present
value. The width of each bar is determined by the capacity of each project.
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servative opposition toward wind farms. Similarly, national planning officials
are less sensitive to local impacts and more responsive to non-local impacts.
In both cases though it should be noted that the observed differences are not
statistically significant.

Table 4.3: Planning Process Regressions

(1) 2 3) 4) (5) (6)

Local 0.137 —0.550  0.277 2.956* 2.354 3.049*
(0.634)  (0.694) (0.816) (1.300)  (1.563) (1.502)
Local (Conservative) 2.854 1.739
(1.735) (2.770)
Local (National Planner) —0.542 —0.612
(1.287) (2.295)
Non-Local —0.285"* —0.218* —1.058 —0.282** —0.260* —0.962
(0.084)  (0.095) (0.836) (0.091)  (0.101) (0.879)
Non-Local (Conservative) —0.365" —0.110
(0.208) (0.229)
Non-Local (National Planner) 0.792 0.686
(0.841) (0.881)
R-Squared 0.060 0.066 0.068 0.236 0.235 0.243
N 1810 1804 1810 1810 1804 1810
Wind Y Y Y Y Y Y
Solar - - - - - -
Year FE Y Y Y Y Y Y
County FE - - - Y Y Y

**p < 0.001, **p < 0.01, *p < 0.05, Tp < 0.1

Notes: This table shows the impact on approval probability from changes to local vs
non-local project impacts. Each coefficient has been scaled to reflect the % change in
approval probability for a £10 million improvement in its respective value category.
Wind and solar projects are considered separately.

Given the lack of local impacts from solar projects, the extent of misal-
located investment is relatively minimal, amounting to roughly £0.5 billion
by 2018. This is small in both absolute and relative terms, amounting to 4%
of the aggregate lifetime capital and operating costs for all the solar projects
built over this period.

Wind power, on the other hand, is a different story. The significant hetero-
geneity in costs and benefits across wind projects, and the apparent tendency
for local factors to be weighted much more heavily than non-local ones, creates
real scope for insufficient or misallocated investment. The top row of Figure
[4.6] shows that the potential gains from more efficiently reallocating invest-
ment across all the proposed wind projects amounted to £27 billion by the
end of 2018. Moreover, around £20 billion of these gains come from switching
to projects that were refused planning permission, indicating that the main
source of this misallocated investment is the planning process itself. To give
some sense of scale, this £20 billion in foregone gains is equivalent to 25%
of the aggregate lifetime capital and operating costs for all the wind projects
built over this period.
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To understand which inefficiencies in the planning process might be driv-
ing this misallocation, I segment the foregone gains into those arising from
swapping an existing project for one that has a) larger local impacts, or b)
smaller local impacts.

I find that switching to projects with larger local costs is responsible for
£4 billion of the £20 billion in potential gains. This suggests that the kind
of NIMBYism concerns raised by the earlier regression analysis do appear to
manifest in real economic costs. These costs arise because of an apparent bias
toward approving projects that are more remote or located offshore, even when
these are more costly for society as a whole.

Interestingly, I also find that switching to projects with smaller local costs
is responsible for £6 billion of the £20 billion in potential gains. Given the
earlier finding that planning decisionmakers are particularly sensitive to local
impacts, it seems odd that high local cost projects would ever be approved
over some alternative project with lower local costs. However, a number of
important tendencies in the planning process might contribute to planning
officials allowing projects that impose substantial local costs to go ahead. For
example, the planning process emphasizes the need for all localities to do their
part in combating climate change through supporting renewable energy. This
creates a pressure for all local authorities to approve at least some wind or
solar capacity in their jurisdiction, even if there are less locally costly projects
located elsewhere. Table provided supportive evidence for this because
any responsiveness to local impacts was only found using the within-county
variation. Additionally, the planning process also allows for particular consid-
eration of the harms from cumulative impacts as multiple projects are added
or extended in a given area. This creates a bias toward building a small num-
ber of projects in each jurisdiction, reducing the scope for renewable energy
capacity to be concentrated in a select few areas.

The desire to share the burden of renewable deployment widely and avoid
large concentrated deployment seems understandable on its face. However,
this runs contrary to the non-linear nature of local impacts identified in this
study. The intuition that the first wind turbine in a given area has a much
larger incremental impact than adding a tenth or a hundreth is supported by
the capitalization analysis. This means there could be substantial gains from
concentrating capacity at larger projects in fewer areas. This is especially
true in the context of renewable energy where the good being produced is
perfectly homogenous and is provided over a national network that largely
removes the need for siting supply locally. A key challenge to achieving this
is overcoming distributional concerns and coordinating across jurisdictions. I
return to discuss this issue in the conclusion section.

An important caveat with the analysis set out here is that much of these
apparent gains could plausibly reflect shortcomings in the capitalization treat-
ment effects being used. Despite going further than any previous study to
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estimate the local and non-local impacts of these projects, my approach may
simply lack sufficient detail to fully account for the the idiosyncracies of each
local area and the projects being proposed. This is particularly the case for the
small number of very high local cost projects mentioned above. For any given
project, planning officials will have a better understanding of their specific
circumstances, and so some humility about the ability of this kind of analysis
to second guess those decisions is probably in order.

To illustrate this I repeat the analysis, but this time I drop the small num-
ber of projects with the largest local costs from being considered as possible
swap candidatesm This should prevent the analysis from being overly driven
by a small subset of outlier projects with very large local impacts.E

As expected, the bottom row of Figure makes clear that constraining
the portfolio of possible projects reduces the potential scope for misallocated
investment. The total foregone gains falls slightly to £24 billion, of which £17
billion comes from switching to projects that were refused planning permission.
Notably though, a much larger portion of these foregone gains (£12 billion) is
now achieved by switching to more locally costly projects. At the same time
the gains from switching away from high local cost projects is also drastically
reduced (£2 billion), consistent with the most locally costly projects being
excluded from the analysis. This strengthens the case for NIMBYism playing
an important role in driving planning outcomes that systematically refuse
societally beneficial projects.

A major contributor to the misallocation described here is an apparent
overinvestment in offshore wind, with the hypothetical least cost scenario con-
sistently reallocating towards cheaper onshore wind projects, even where these
onshore wind projects incur greater local costs. However, there is significant
uncertainty in one of the key determinants of this tradeoff between onshore
and offshore wind: the learning-by-doing benefits experienced by these two
technologies. Whilst I have already assumed that offshore wind has learning
benefits that are twice those of onshore wind, it is certainly plausible that the
difference is even greater.

To explore the impact of this issue I repeat the same least cost scenario
analysis, but this time I do so separately for onshore and offshore wind. The
total potential gains from reallocation now fall significantly to £10 billion. As
before the planning process continues to be a major factor, with £7 billion
of these foregone gains from projects that were refused planning permission.
This is equivalent to almost 9% of the aggregate lifetime capital and operating
costs for all the wind projects built over this period.

10Here I drop all projects with local costs that are more than 10% of a project’s total
capital and operating costs. This amounts to excluding roughly 5-15% of wind capacity.

1 This tends to be driven by the combination of placing a small amount of capacity near
a large urban area, such as in an industrial park near a town or city.
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Figure 4.6: Misallocated Investment Analysis for Wind Projects
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Notes: The potential gains from reallocating wind and solar investment are shown over
the 1990-2018 period. Colors indicate different subsets of the potential gains: total gain
(black); gains based on refused projects (orange); gains based on refused projects that
lead to lower local costs (green); and, gains based on refused projects that lead to higher
local costs (purple). The central line represents the median scenario from the estimated

sensitivities. The shaded area represents the range between the tenth and ninetieth
percentiles from the estimated sensitivites.
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The vast majority of the misallocated investment is driven by switches
made amongst onshore wind projects. Overwhelmingly this comes from switch-
ing away from a small number of high local cost projects, with misallocation
from possible NIMBYism falling to around £0.5 billion. This leads to an inter-
esting conclusion: if the UK’s investments in offshore wind have indeed resulted
in substantial learning-by-doing, one factor that can claim a large share of the
credit is the NIMBY objections to onshore wind. However, if offshore wind
learning-by-doing has been relatively muted, NIMBYism toward onshore wind
will have cost the UK dearly, increasing the cost of its deployment of wind
power by anywhere from 5-15%.

4.4 Conclusions

In this paper I estimate the economic costs from misallocated investment aris-
ing from the planning process for renewable energy projects. Based on my
analysis of the planning process I find that planning officials place particular
weight on local factors when making their decisions. This is consistent with
the fact that the vast majority of the planning decisions for wind and solar
projects are made at the local level. I estimate that this has resulted in soci-
etally beneficial projects being systematically refused, substantially increasing
the cost of the UK’s deployment of wind power. A significant portion of this
misallocation arises due to tendency to avoid projects that create signficant
local impacts, suggesting NIMBYism is a real concern. Interestingly another
large share of these misallocation costs also arise from a few smaller projects
with relatively large local impacts, pointing to a wider set of issues with the
planning process. Solar projects, on the other hand, do not appear to have
significant adverse local impacts. This has meant solar projects are approved
at much higher rates and are subject to negligible risks of misallocated invest-
ment.

There are a range of policy solutions that could remedy this misalignment
between local and wider societal incentives. The most straightforward solu-
tion involves making direct transfer payments to affected local residents and
businesses. Probably the clearest example of these kind of payments are com-
munity benefits funds. These provide payments from the project owner to
the local community, usually in the form of grants, awards, stipends for com-
munity organizations or even discounts on electricity bills. The decision to
provide these community benefits is currently voluntary so they can vary sig-
nificantly in prevalence, size and structure. Public registers where developers
provide information on their community engagement suggest that funds for
onshore wind projects have often amounted to around £2,000-3,000/MW /yr.
The latest government guidance calls for developers to adopt funds with a
value of £5,000/MW /yr. Whether this guidance is being followed is hard to
gauge, but the most recent register information for Scotland indicates that for
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many projects it is.

My analysis suggests the local impacts of wind projects on local property
values have a median of around £3,500/MW /yr, which may suggest that the
current scale of support being negotiated is appropriate. However, this masks
significant heterogeneity in local impacts: the top 25% of projects have local
impacts greater than £21,000/MW /yr and the top 10% have local impacts
greater than £75,000/MW /yr. As such there may be an argument for sig-
nificantly increasing the value of community payments in certain instances
to more adequately compensate local residents. This should help prevent so-
cietally beneficial projects being refused planning permission purely on the
grounds that they create local impacts that are not being adequately offset by
an equivalent level of local compensation.

The heterogeneity in local impacts also points to another way in which
transfer payments could be beneficial that has yet to be tested. My analy-
sis indicates that several projects with large local costs have gone ahead. It
is possible that this could be because planning officials and local residents
sometimes misperceive the true local impacts, or there is a lack of political
power amongst the affected communities to resist development. However, my
analysis suggests that this may also be due to a coordination problem across
jurisdictions. If building wind and solar capacity does indeed impose a de-
clining incremental cost on local communities, there is a compelling argument
for avoiding the tendency to “share the burden” by installing at least some
capacity in most jurisdictions. Instead there could be large gains from con-
centrating more capacity at larger projects in a smaller number of designated
areas.

This has clear distributional consequences for the communities that are
exposed to this kind of concentrated deployment of renewable energy. How-
ever, making transfer payments between jurisdictions could provide the nec-
essary compensation to facilitate a more societally beneficial reallocation of
investment. In this case communities that do not want to be exposed to new
renewable energy deployment would make payments that compensate other
communities that are willing to host a more concentrated deployment of re-
newable energy nearby. Ensuring both communities get appropriate credit for
investing in renewable deployment could go a long way to ensuring all juris-
dictions share the financial burden, even if they are not all physically hosting
capacity.

An alternative to providing compensation payments is outright local own-
ership. This has certainly been growing and there is some evidence in the
UK that the direct local benefits provided by these projects are in fact much
larger than for privately owned projects. A key challenge here is scalability.
There is currently roughly 250MW of community owned capacity in the UK
(Braunholtz-Speight et al.,|2018]). This represents about 1% of total renewable
electricity generation. Whilst it might be possible for this to be increased, it
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seems unlikely that local communities can deploy the kind of financial and
technical resources that larger private companies can in order to roll out re-
newable energy at the scale and pace that is required.

A final option raised by the findings in this paper could be to give national
planning officials a larger role in the approval process. My analysis suggests
that national decisionmakers have a more balanced approach to weighing the
local and non-local costs and benefits of these projects. This may be because
national planning officials are less beholden to local political considerations,
or perhaps they are just more likely to have the necessary institutional capac-
ity to effectively consider projects at this scale. In either case more national
oversight and support might be beneficial, especially if it can facilitate bet-
ter coordination across local jurisdictions. This could be achieved by setting
stricter national planning guidelines, lowering the threshold for projects to be
moved from local to national jurisdiction, or by streamlining the appeal pro-
cess. One potential downside of this solution is that shifting too much control
out of local hands could backfire if it results in local residents believing their
concerns are not being heeded.

Ultimately finding the best policy solution will require further research
and experimentation. The findings in this paper on the costs imposed by the
existing planning process suggest this work is sorely needed.
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