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Abstract

The human body is able to generate a diverse set of high affinity antibodies, the soluble form
of B cell receptors (BCRs), that bind to and neutralize invading pathogens. The natural develop-
ment of BCRs must be understood in order to design vaccines for highly mutable pathogens such
as influenza and HIV. BCR diversity is induced by naturally occurring combinatorial “V(D)J” re-
arrangement, mutation, and selection processes. Most current methods for BCR sequence analysis
focus on separately modeling the above processes. Statistical phylogenetic methods are often used
to model the mutational dynamics of BCR sequence data, but these techniques do not consider all
the complexities associated with B cell diversification such as the V(D)J rearrangement process. In
particular, standard phylogenetic approaches assume the DNA bases of the progenitor (or “naive”)
sequence arise independently and according to the same distribution, ignoring the complexities of
V(D)J rearrangement. In this paper, we introduce a novel approach to Bayesian phylogenetic in-
ference for BCR sequences that is based on a phylogenetic hidden Markov model (phylo-HMM).
This technique not only integrates a naive rearrangement model with a phylogenetic model for BCR
sequence evolution but also naturally accounts for uncertainty in all unobserved variables, including
the phylogenetic tree, via posterior distribution sampling.

Introduction

One of the most important features of the adaptive immune system is its ability to create a wide variety
of high affinity antibodies, the soluble form of B cell receptors (BCRs), that bind to and neutralize
pathogens in the body. The initial BCR diversity is generated by randomly joining together various
gene segments in a process called V(D)J rearrangement; after an initial testing process the cells reach
the “naive” state. When stimulated by binding to foreign material called “antigen,” B cells diversify
further by entering germinal centers (GCs) in the secondary lymphoid organs and going through an
affinity maturation process. During the GC reaction, B cells mutate rapidly in a process called somatic
hypermutation (SHM), and the high affinity clones are positively selected for via clonal expansion.
We would like to better understand the GC mutation and selection processes, because insight into
mutational pathways from naive to mature BCR sequences could aid in the development of vaccines for
highly mutable pathogens such as influenza and HIV (Mascola and Haynes, 2013). We have developed
a new statistical inference framework that better estimates these mutational pathways and quantifies
uncertainty in these estimates.

Rational vaccine design efforts depend on accurate inference of full evolutionary paths from a given
naive sequence to the corresponding mature BCR sequences in a GC. By understanding the mutational
pathways that lead to broadly neutralizing antibodies (bNAbs), vaccines could then be constructed that
induce the production of these bNAbs in the body (Stamatatos et al., 2017). For instance, in the case
of HIV, most bNAbs are generally not observed until after a long period of chronic infection, requiring
prospective studies to characterize them (Liao et al., 2013). While there have been many such studies
that experimentally test longitudinal B cell samples spanning from an initial HIV infection to the devel-
opment of mature bNAbs (Liao et al., 2013; Doria-Rose et al., 2014, 2016), obtaining early prospective
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samples is difficult. One way to avoid the process described above is to infer intermediate lineage se-
quences computationally, synthesize them in the laboratory, and test their binding and neutralization
abilities (Doria-Rose et al., 2014; Simonich et al., 2019). Consequently, we will focus on inferring muta-
tional pathways through ancestral sequence reconstruction, a commonly used technique in computational
phylogenetics.

Much of the existing BCR sequence analysis literature focuses on modeling either the V(D)J re-
combination process, or the phylogenetic diversification process, but not both. Elhanati et al. (2015)
develop a likelihood-based model that encompasses the V(D)J rearrangement, SHM, and clonal selection
processes; however, they implicitly assume clonal sequences arise independently and do not consider the
phylogenetic structure of SHM. Hoehn et al. (2017, 2019) introduce novel codon substitution models for
ancestral lineage inference that encodes SHM context-dependent mutational effects but does not account
for V(D)J rearrangement dynamics in the naive sequence within their maximum likelihood phylogenetic
inference framework. Yaari et al. (2013) provide estimates of context-dependent SHM substitution prob-
abilities and motif mutability scores based on an aggregated dataset consisting of the synonymous codon
positions of productive antibody sequences. Ralph and Matsen IV (2016a) are able to infer naive BCR
sequences using an HMM-based approach that models the V(D)J rearrangement process but assumes
independent evolution across the different lineages. While these efforts have contributed greatly to our
understanding of GC dynamics, we believe that the performance of clonal lineage and ancestral sequence
inference procedures can be enhanced by using an evolutionary model for SHM that also accounts for
uncertainty in the naive rearrangement process.

Kepler (2013) has developed a likelihood-based SHM modeling framework that jointly estimates the
naive sequence and the associated clonal tree and incorporates information about the V(D)J rearrange-
ment process. However, this work does not consider phylogenetic or ancestral sequence uncertainty in
the naive sequence estimation procedure. While there is evidence to suggest that ancestral sequence
estimation is robust to phylogenetic uncertainty in other settings (Hanson-Smith et al., 2010), the pa-
rameter regime of BCR diversification is quite different from that of this previous work, leaving open the
question of whether incorporating phylogenetic uncertainty would aid in ancestral sequence inference.
Therefore, we would like to construct a phylogenetic inference procedure that not only allows for easy
quantification of phylogenetic and ancestral sequence uncertainty but also models the V(D)J recombi-
nation as an informative prior for the naive sequence at the root of a phylogenetic tree describing the
evolution of one clonal lineage.

In this paper, we propose a Bayesian approach to phylogenetic inference for clonal sequences that is
based on a phylogenetic hidden Markov model (phylo-HMM) (Siepel and Haussler, 2005). Our phylo-
HMM models both the naive rearrangement and SHM processes. The Bayesian framework allows us
to naturally account for uncertainty in all unobserved variables, including a phylogenetic tree, via pos-
terior distribution sampling. We perform simulation-based experiments to show that naive sequence
and phylogenetic inference performed jointly provides higher-quality estimates than those obtained by
considering these inferences separately. Our application to real data reveals significant uncertainty in
naive and ancestral sequences, confirming the importance of a Bayesian approach.

Methods

Overview

The immune system is able to generate a diverse set of naive BCR sequences due to the V(D)J rearrange-
ment process (Figure 1a). In this process, the B cell first randomly selects V, D, and J gene segments (i.e.
DNA sequences) from the respective gene pools in the body. Before joining the gene segments together,
the B cell randomly deletes nucleotides at both ends of the V-D and D-J junction regions and randomly
inserts nucleotides in the same junction regions (i.e. non-templated insertions). BCRs comprise both
heavy chain and light chain sequences, where the former goes through the VDJ rearrangement process
described above while the latter undergoes VJ recombination, a process similar to VDJ recombination
without D germline genes; in this paper, we focus solely on heavy chain inference, but our methods and
implementation extend to light chain inference too. Although the V(D)J rearrangement process samples
germline genes from the same gene pools for all the naive BCRs in a given individual, different people
may have different collections of germline genes (Watson et al., 2017). BCR sequences can be partitioned
into framework (FWK) and complementarity-determining (CDR) regions. The BCR binding affinity is
largely determined by the sequence segments in the CDR regions, and among all the CDR regions the
CDR3 region contributes the most to antigen-binding specificity and has the highest amount of sequence



variability. The partis software program (Ralph and Matsen IV, 2016a,b) treats the naive sequence
generative process as a discrete-time Markov chain (DTMC) going from left to right across the sequence
bases and also permits maximum likelihood inference of the associated model parameters, which are
defined according to the V(D)J rearrangement dynamics. We emphasize that the “time” of this DTMC
represents position along the sequence, in contrast to the continuous time Markov chain described below
modeling the substitution process through chronological time.

(A)
Vv D J

...CTGGGAACTCCCTACCTCT A%A ATXAA ATTAAG X TXC TCACGATTCG...

...CTGGGAACTCCCTACCTCT ATTAAG TCACGATTCG...
RS TCTTG s S AAAT s

...CTGGGAACTCCCTACCTCTTCTTGATTAAGAAATTCACGATTCG...

///

v NDN/J

FW1 CDR1 FW2 CDR2 FW3 CDR3 FW4‘

¥ oK reacon
vvvvvvvvv ACATGGCTIC...
. — ATACGTTCC...
TTACGGTTC. ..
ATCCGGTAC. ..

ATACAGTICT...

Figure 1: (A) A schematic representation of the naive rearrangement process. First, V (green), D
(orange), and J (purple) genes are randomly selected from the respective gene pools in the body. Then,
nucleotides are randomly deleted (red X’s) from both ends of the V-D and D-J junction regions and
random bases (blue) are added to the same junction regions before the V, D, and J germline genes can be
joined together. The BCR sequences can be partitioned into framework (FWK) and complementarity-
determining (CDR) regions. This image was taken from (Ralph and Matsen IV, 2016a). (B) Our
Bayesian phylo-HMM jointly models V(D)J recombination at the root of the tree (using an HMM) and
then subsequent diversification (via a phylogenetic tree). We do posterior inference conditioning on the
observed sequence alignment in a clonal family, but not on a fixed inferred naive sequence.

As we attempt to characterize the affinity maturation process in GCs, we use the concept of a
clonal family (CF) to help analyze BCR repertoire datasets that result from high-throughput sequencing
experiments. A clonal family represents a set of BCR sequences that originate from the same naive
rearrangement event; in practice, it is simpler to define these families as groups of BCR sequences that
share the same naive sequence (Ralph and Matsen IV, 2016b). In this work, we use the latter definition of
a CF. The CF definition used here relies on the basic assumption that the unmutated common ancestor
of a collection of clonally related sequences can only be identified by the corresponding DNA sequence.
There is a chance that two different naive B cells with identical BCR sequences could seed multiple
GCs and form their own lineages, but the observed clones from the two GCs would be collapsed into
a single CF because both lineages share the same naive sequence. Thus, a correctly inferred CF under
this definition will be a cluster of sequences that derive from naive B cells with the same BCR sequence;
because GC mutation and selection occur at the sequence level, all sequences in a CF go through the same
mutation and selection processes. Using this CF definition, Ralph and Matsen IV (2016b) describe how
to cluster BCR sequences from large-scale repertoire datasets into CFs with high accuracy using partis.
We want to emphasize that repertoire datasets can be clustered and pre-processed in many different



ways, but partis provides a convenient way to cluster repertoire sequences and produce CF-specific
multiple sequence alignments (MSAs).

As mentioned in the opening section, naive sequences accumulate mutations via SHM and the cor-
responding B cells undergo cellular replication. Phylogenetic tree models provide a realistic and math-
ematically convenient way to represent the aforementioned B cell evolutionary dynamics of a CF. In
particular, these models define a likelihood at each MSA position/site as a function of unknown param-
eters. These parameters consist of a tree topology, branch lengths, and continuous-time Markov chain
(CTMC) substitution model parameters. While B cell evolution in a CF is not independent across the
different site positions, site-specific phylogenetic likelihoods provide a convenient first approximation in
modeling this phenomenon. To help us illustrate how these phylogenetic models work, we provide an
example tree visualization for 4 sequences (Figure S1).

Given a tree topology with branch lengths, we use a CTMC substitution model to calculate the
probabilities of state changes along the branches of the tree. Specifically if ¢ denotes a branch length on
a tree, CTMC substitution models allow one to calculate p;;(t), which denotes the probability of going
from state ¢ to state j on a branch of length ¢, where i,j € {A,G,C,T}. It is common to use a reversible
CTMC substitution model on a tree (Felsenstein, 2004); a reversible substitution model is a Markov
substitution model that, if started at stationarity, can be run backwards in time, with the resulting
backward Markov model following the same probability law as the original forward model. The standard
phylogenetic generative process can be described at each alignment site as follows: 1) a DNA state at
the root node is drawn independently according to the same 4-state discrete distribution and 2) the
states at the other nodes are sampled in a pre-order traversal using the computed CTMC probabilities
at each branch p;;(t); this model is a special case of a directed graphical model (Lauritzen, 1996) that
probabilistically generates sequence alignments.

Clearly, standard phylogenetic models do not account for naive rearrangement dynamics at the root
because, as we discussed above, the root state at each sequence position is sampled independently
according to an identical distribution. Instead, if we draw root sequence states from the DTMC mentioned
earlier, we would obtain a sequence evolution model that more accurately describes B cell evolutionary
dynamics. Thus, we formulate our phylo-HMM to consist of a hidden state DTMC model for naive
sequences that explicitly incorporates V(D)J rearrangement information, and an emission distribution
that generates sequence alignments conditional on the naive sequence that is based on phylogenetic
likelihoods. This phylo-HMM hopefully leads to more accurate naive sequence estimates and, as a result
of that, higher-quality intermediate ancestral sequence estimates. We introduce a pictorial representation
of our Bayesian phylo-HMM to make clear our target of inference (Figure 1b).

Notation and Assumptions

We now introduce some notation and assumptions that will be used throughout this paper. Let D =
{DE”}iZl:m’jzlm denote the MSA of m clonal DNA sequences of length n. We define Y ave =
{Y(J ) }j=1:n and ?naive = {?(j ) }j=1:n to be the corresponding length-n naive sequence random vari-

naive naive
able and point estimate, respectively. We let 7 represent a tree topology with m tips and a root branch
length; in total, this topology has m internal nodes and 2m — 1 branch lengths. We assume that the

ancestral sequence at the root of 7 is Yyaive. Furthermore, we define t = {t;};—1.(2m—1) to be the branch
lengths associated with 7. Let Yi,, = {Y;'(])}izlt(m—l),jzl;n denote the internal nodes of 7 excluding

the naive sequence Ypaive. For convenience, we let DU) = {DEJ)}i:Lm and Yl(rjlt) = {Yi(J)}i:l:(m,l)
symbolize the observed sequence data and unobserved ancestral sequence data, respectively, at MSA site
j€{l1,...,n}. Conditioned on the root sequence Y aive, we assume that the ancestral states at each site
in the MSA evolve independently along the phylogeny 7 according to a general time-reversible (GTR)
substitution model (Tavaré, 1986). Let e = {eac,eaq,ear,eca,ecr,ecr} and w = {mwa, 70, 7, 71}
represent the GTR exchangeability rates and equilibrium base frequencies, respectively. We also account
for phylogenetic rate variation among sites by employing a discrete gamma distribution with a fixed
number of rate classes K (Yang, 1994, 1996) and define a to be the associated gamma shape param-
eter, denote r = {ry(«),...,rx(a)} as the set of discrete rates deterministically induced by «, and let

r* = {rz‘j)}jzlm represent the discrete rates chosen at each site in the MSA. In theory, we would like to
compute phylogenetic likelihoods with branch lengths scaled by rz‘j) and mix over r*j) ~ Gamma(a, a)
for j € {1,...,n}. However, these integrals are generally intractable so Yang (1994) suggested dividing
the Gamma(c, «) distribution into K equal-probability rate classes, with the mean rate in each class
used to represent all rates in that class. In practice, we use the Categorical(r, p) distribution to define



the models on TZ‘j) for j € {1,...,n}, where p is a, possibly unnormalized, probability vector; in addition,
this model is used to represent more general discrete distributions.

From a statistical point of view, it is common to assume the naive sequence root node is a leaf node
holding naive sequence bases connected to a “virtual root node” (i.e. what we call “root” node for our
phylogenetic model described in the previous subsection) via a branch length of 0. Even though it may
seem like we have described a rooted tree model above, it turns out that under the assumptions of a
reversible substitution model and a nucleotide distribution at the virtual root starting at stationarity,
the Pulley Principle, first discussed in (Felsenstein, 1981), states that the virtual root may be placed
anywhere on the tree without affecting the likelihood. This implies that the model described above does
not correspond to a single rooted tree, but an equivalence class of rooted trees that maps to a unique
unrooted tree. This is an important distinction as our phylo-HMM will in fact use an unrooted tree
model, which will be justified when we describe our posterior sampling approach.

Phylo-HMM Description

Phylo-HMMs are special cases of directed graphical models (Lauritzen, 1996) and treat evolution as a
combination of two Markov processes: one across the sites in the MSA and one down the phylogeny.
They are commonly used for sequence-level segmentation problems such as gene prediction and detection
of highly-conserved regions (Siepel and Haussler, 2005). In fact, a phylo-HMM is similar in structure
to a standard HMM; the main difference between the two model classes is that a phylo-HMM uses a
phylogenetic likelihood as its emission probability distribution, while standard HMMs usually specify
simpler emission distributions. Our BCR-specific phylo-HMM specifies a Markov process along Y paive
and, conditional on Y ive, & phylogenetic evolutionary process down the given tree. Phylo-HMMs have
not been applied to BCR sequence analysis before and we believe this biologically realistic probabilistic
model is uniquely suited to provide higher-quality naive sequence and ancestral sequence estimates
compared to those obtained under current state-of-the-art methods.

To help us describe the phylo-HMM generative process, we provide an illustration of the associated
graphical model diagram for an example alignment with m = 3 sequences and n = 3 sites (Figure 2). The

naive sequence “hidden state” prior distribution p(Y yaive) decomposes to p(Yn(;l)Ve) | p(Yn(;i)ve | Yn(;l;; ))
and the bases are generated sequentially; these prior probabilities depend on hyperparameters that can
be set using the partis software package (Ralph and Matsen IV, 2016a,b). For the tree topology T,
we assume that a tree is drawn from the Uniform distribution over (m + 1)-tip unrooted trees; this
seems like a strange choice given that we described 7 as a rooted topology above, but this decision
will be justified when we discuss how to perform Bayesian inference under the phylo-HMM. The branch
lengths t and the gamma shape parameter « are assumed to be a priori independent and to follow
Exponential(\) distributions, where A is some prespecified rate. The GTR exchangeability rates e and
equilibrium base frequencies 7 are usually assumed to come from six-dimensional and four-dimensional
Dirichlet distributions, respectively.

For each MSA site j € {1,...,n}, rz‘j) a priori follows the Categorical(r7 (%, ceny %)) distribution.
Then, at each site j € {1,...,n}, we assume that Yl(flt) and D) are generated by drawing DNA states
from CTMC transition probability matrices based on augmented branch lengths t x ra). For example,

in Figure 2, we first sample Yl(j ) from p(Yl(j ) | Yn(ii)ve), which is a row vector distribution in the CTMC

transition probability matrix for the “branch length” ¢; x r?j), where 7 € {1,...,n}. Once we have

sampled Yl(j) for j = 1,...,n, we can draw Yz(j) and ng ) using similar row vector distributions from

CTMC transition probability matrices for the “branch lengths” to x TEkj) and tg x ra), respectively. We
can recursively continue this process until we generate states at ng ) and Déj ) for je{l,..,n}.
Posterior Distribution Inference
We are interested in sampling from the posterior distribution p(7,t, 7, e, o, r,r*, Yyaive, Yint | D):

p<T7 t7 T, e, Qq,r, I'*, Ynaivea Yint | D)

X p(Ta ta m™eQ,r, I'*, Ynaive, Yinta D)

= p(r* ) Yintv D | T, tv T, e, Qq,r, Ynaive)p(T)p(t)p(ﬂ-)p(e)p(a)p(r | Oé)p (Ynaive)
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Figure 2: The phylo-HMM graphical model diagram for an example alignment with m = 3 sequences
and n = 3 sites. The 7, t, 7, and e nodes represent the 4-tip unrooted tree topology, the associated
5 branch lengths, the GTR exchangeability rates, and GTR equilibrium base frequencies, respectively.
The parameter o denotes the gamma shape parameter associated with the K-class discrete gamma
distribution, which is used to model phylogenetic rate variation among sites; r symbolizes the vector of
K discrete rates that is deterministically induced by a.. The set of nodes r* = {rz*l), T2 7‘(*3)} defines the

rates that are drawn from r at each particular site. The Ypaive = {Yn(;i)ve, Yn(azi)ve, Yn(:i)ve} “hidden state”
node collection represents the Markov process that stochastically generates the naive sequence in our
phylo-HMM. The node sets {n(J)}i:1:27j21:3 and D = {ng)}izlzg,jzl:g denote the internal nodes of 7
excluding the naive sequence Y,ive and the observed MSA, respectively. We draw plates around the
Yl(flt) and DY) node sets for j € {1,2,3} to indicate that any directed edges touching a plate apply to all
nodes in the plate (except for edges that originate from t, which apply element-wise to the nodes in the
plate).



- {Hp<D(j) T,t,']‘l’7e7’l’zkj),Yi(Ijlt))p(Yi(gt) T,t,ﬂ',e,rz‘j),Yn(;i)ve)p(rz‘j) ’r)}
Jj=1

x p(1)p(t)p(m)p(e)p(a)p(r | a)p(Ynaive),

where this model decomposition results from the definition of a directed graphical model. We also
factorize the posterior distribution in the following way:

p(r,t,m,e,a,r, v, Yyaive, Yint | D)
=p(r,t, 7, e ar|D)
X D(Ynaive | 7, t, 7, €, 0, 7, D)
X p(r*, Ying | 7, t, 7, €, @, v, Yiaive, D).

This formulation is useful because it suggests that we can generate draws from the posterior distribution
by sampling sequentially from three conditional probability distributions. Conceptually, to sample from
the posterior, we have to draw in-order: 1) the phylogeny-related parameters, 2) the naive sequence,
and 3) the ancestral sequences. We describe how to perform these three sampling steps in the following
subsections and provide a complete summary of the sampling process in Algorithm 1.

Tree Sampling

Our strategy for sampling from p(7,t, 7, e, a,r|D) is to first draw a large pool of observations from an
easy-to-sample proposal distribution ¢ and then perform weighted bootstrap with weights % on those sam-
ples to obtain approximate draws from the correct distribution. This “sampling-importance-resampling”
(SIR) algorithm is a sample filtering method that finds use in a wide variety of statistical applications
(Smith and Gelfand, 1992; Gordon et al., 1993; Andrieu et al., 2010). The original SIR algorithm re-
sampled observations with replacement, but there are theoretical and practical considerations that make
resampling without replacement more attractive (Skare et al., 2003; Gelman et al., 2013). A thorough
review of SIR sampling can be found in (Gelman and Meng, 2004, Chapter 24). We use the SIR algo-
rithm to sample from p(7,t, 7, e, a,r | D) because we want to take advantage of already-existing software
programs for Bayesian phylogenetic inference while incorporating biologically-realistic details into our
phylo-HMM.

Our phylogeny proposal distribution ¢ comes from the RevBayes software package (Hohna et al.,
2016) because this is a proposal that is close to the target distribution p while also being easy to sample
from. In short, this ¢ is traditional Bayesian phylogenetic analysis with a point estimate of the naive
sequence. In more detail, we first input the MSA D into the partis package, obtain a naive sequence
point estimate Y2 and create an augmented MSA D* = {D, YP%'"1. This allows us to generate
Markov chain Monte Carlo (MCMC) samples from ¢(7,t, 7, e, o, r | D*) and provides a convenient way to
sample trees that have m tips and an informative root branch length emanating from the naive sequence.
In our RevBayes analysis, we require that the prior components of ¢(7,t, 7, e, a,r | D*) be defined as we
discussed in the previous subsection for p(7,t, 7, e, a,r | D) and as we will see, this assumption is critical
to the validity of our technique.

For the purposes of this discussion, let us assume that we sample a large number (say Npool) of pa-
rameter values from ¢(7,t, 7, e, o, r| D*) in RevBayes. As we briefly mentioned above, we resample Ngpa1
times without replacement from the set of Npoo1 ¢(7,t, 7, €, ,r | D*) draws. Each ¢(7,t, 7, e, o, r|D*)
sample is assigned a sampling weight w = p(7,t, 7, e,a,r | D)/q(7,t,m, e, «,r| D*). While it seems odd
to use the ratio of posterior probabilities that are conditional on different datasets as bootstrap weights,
the only technical requirement on p and g is that the parameters of interest (i.e. 7, t, 7, e, o, and r) have
the same support, which is indeed the case in our situation. Smith and Gelfand (1992) suggest picking

Npool and Ngpay SO % > 10 while Rubin (1987) proposed a safe rule-of-thumb to be % = 20; we
use M = 20 in all the applied experiments conducted in this paper. It may not be immediately clear

how one would efficiently compute the numerator in w so we express w in the following form:

p(Tvtvﬂ-vea a, T | D)

p(T7 t7 71-7 e’ a? r7 D)

q(T7t7 7T7 e’ O[, r | D*)
p(D)

_ /
B q(T7t77r7e7 a’ r7 D*)/q(D )
_ p(D|71,t,m e ar) ¢(DY)

~ q(D*|r.t,m e a,r) p(D)




Algorithm 1: Posterior Sampling of p(7,t, 7, e, a,r,r*, Ynaive, Yint | D)

Input: CF multiple sequence alignment D, number of discrete rates K
Npooh Nﬁnal (Npool/Nﬁnal ~ 20)

OutPUt: Nﬁual Samples of (Ta ta T, e q,r, I‘*7 Ynaive; Yint) ~ p(Tv t7 T, e, Q,r, I‘*, Ynaive7 Yint | D)
Tree Sampling — p(7,t,7,e,a,r| D)

1. Run partis on input data D.
= D" = {Da?partis}aﬁ(Ynaive)

naive

2. Run RevBayes MCMC on the augmented MSA D*.
= Npool Samples Of (7—7 tv T, e, I‘) ~ (](T, tv ™, e, a,r | D*)
3. Run the SIR algorithm without replacement on the Nyoo1 (7,t, 7, €, o, r) proposal samples with

p(r.t,mear|D)
q(,t,me,ar[D*)"

= Nfnal samples of (7,t,m,e,a,r) ~ p(7,t, 7, e,a,r|D)

weights w =

Naive Sequence Sampling — p(Ynaive | 7, t, ™, €, a, v, D)
For each sample (7,t,7,e,a,r) ~ p(7,t,7,e,a,r|D):
For each site j € {n,...,1}:
1. Draw Yn(gi)ve using our phylo-HMM-based backward sampling procedure.

= Nﬁnal Samples of (7-7 tv ™ e, q,r, Ynaive) ~ p(Ta ta e, q,r, Ynaive ‘ D)

Intermediate Ancestral Sequence Sampling — p(r*, Yins | 7, t, 7, €, &, 1, Yhaive, D)
For each sample (7,t,7, €, a, 1, Ynaive) ~ p(7,t, 7, €, 0,1, Y paive | D):
For each site j € {1,...,n}:

1. Sample rz‘j) according to probabilities proportional to p(D(j) | T,t,7, e, Yy rz‘j)).

naive’

2. Sample Yl(rit) in a pre-order fashion using the standard ASR distribution at internal

nodes on a rz‘j)—scaled tree.

= Nﬁnal Samples of (Tv tv ™ e, q,r, I'*, Ynaivea Yint) ~ p(T7 t7 m™e,Q,r, I‘*7 Ynaivea Yint | D)

ZYnaive p(D ‘ T, ta T,eq,r, Ynaive)p(Ynaive ‘ T, t7 T, e, q, I') q(D*)

qg(D*|7,t, 7, e a,r) p(D)
. Zynaive p(D ‘ T,t,mer, Ynaive)p(Ynaive) q(D*)
o qg(D*|1,t,7,e,a,r) p(D)

W ) qn G) |3 G-D) r ) ‘ (k)
EYnaivc {p (Ynalve) H]:2 p(Ynalve Yvnalve ) Hk:l P(D T,t,m,e,r, Y—nalve) q(D*)
q(D* |1, t,7,e,a,r) p(D)’

where the transition from the second line to the third line is due to the priors on 7, t, 7, e, @, and r
for both p and ¢ being equal and the decomposition between the fourth and sixth lines is a result of d-
separation conditional independencies (Lauritzen, 1996) as follows. Specifically, Y paive L {7,t, 7, €, , 1}
because every undirected path in the graphical model between Ypave and {7,t,7, e, a,r} does not
contain any “conditioned” child nodes and D L «|{7,t,7, e,r, Yhaive} as all paths between D and «
are “blocked” by the intermediate node r. The final denominator term above ¢(D* |7, t, 7, e, a,r) is
the usual phylogenetic likelihood, here calculated by RevBayes. Note that the marginal likelihood ratio



q;(DD*)) does not affect the bootstrap sampling because the sampling probabilities are proportional to w

and the likelihood ratio is a constant with respect to 7, t, 7, e, a, and r in the Noo1 sampling weights.
The numerator term in the final equation for w looks complicated, but is actually the phylo-HMM
likelihood with the “hidden state” probabilities p(Y(l) ) and p(Y(J Y(J_l)) for j € {2,...,n} and the

naive naive | naive

“emission probabilities” p(D(k) | T,t,m e r, Yn(:i)ve) that marginalize over the site-wise rates rZ‘k) for k €
{1,...,n}. We can efficiently calculate the phylo-HMM likelihood using the forward algorithm (Rabiner,
1986), but this approach requires us to be able to compute the phylo-HMM emission probabilities in a
straightforward manner. The computation of the emission probabilities is of interest because the hidden
state probabilities in p(Ypaive) can be easily inferred using partis, which we now call p(Ynaive)-

It turns out that we can, again, leverage existing software tools to help us efficiently compute the

emission probabilities p(D(k) |T,t,7r,e,r,Y(k) ) for k € {1,...,n}. The key point is to recognize that

naive

p(D(’“) |T,t,7r,e,r,Y(k) ) is an entry in the Felsenstein likelihood vector at the y (k) node, which

naive naive

denotes the probability of the observed data at only the tips that descend from node y (k) given the

naive’
conditioned state of node Yn(;fi)vc. These vectors are commonly used within a post-order tree traversal
algorithm to compute standard phylogenetic likelihoods (Felsenstein, 1981). Let Fy, = (Fy1, ..., Fum)? be
the vector of partial likelihoods at node u, where F},; denotes the probability of the observed data at only
the tips that descend from node u, given that the state of node w is i. Because we utilize an unrooted

tree model in our phylo-HMM, we can use a Pulley Principle argument (Felsenstein, 1981) to show that
a standard phylogenetic likelihood on our tree can be represented as p(D(k) ‘T,t,ﬂ', e7r,Yn(:i)ve)7rY(k> .

naive

Thus, we can compute the phylo-HMM emission probabilities by first calculating the standard site-
wise phylogenetic likelihoods on the same tree and then dividing out the Yn(:i)ve stationary probabilities.
To compute these standard site-specific phylogenetic likelihoods, we make use of the 1ibpll C library
(Flouri et al., 2014), which is a versatile high-performance software library for phylogenetic analysis. Of
course, we could have instead used a rooted tree model in our phylo-HMM, performed our own post-
order tree traversal algorithm for likelihood computations, and extracted out the appropriate entries in
the site-wise Felsenstein likelihood vectors, but we want our inference technique to scale to the large
datasets that result from high-throughput BCR sequencing and no currently-existing software package
meets this requirement. In the next subsection, we describe how to generate naive sequence draws given
the approximate phylogenetic tree samples from p(7,t, 7, e, a,r|D).

Naive Sequence Sampling

To sample naive sequences, we exploit the fact that our phylo-HMM is essentially a standard HMM with
a naive-conditional phylogenetic likelihood as its emission distribution. We draw the “hidden state” naive
sequence Y paive from p(Ynaive | 7,t, 7, €, , v, D) by adapting the hidden state posterior sampling tech-
nique for standard HMMs to be used for our specialized phylo-HMM (Scott, 2002). Just as we perform
the forward algorithm by recursively computing and caching intermediate phylo-HMM likelihoods (i.e.
forward probabilities) going left to right across the MSA, we can sample Yaive by doing a backward pass

through the phylo-HMM and drawing the Yn(;i)ve states starting at site n and ending at the first alignment
site. In fact, the maximum a posteriori probability (MAP) estimate of the hidden state sequence Y paive
is obtained using a similar procedure called the Viterbi algorithm (Rabiner, 1986; Scott, 2002). This
backward sampling procedure can actually use the previously cached forward probabilities in the calcu-
lation of the sampling probabilities at each site, which is convenient because we already had to run the
forward algorithm to sample the phylogeny-related parameters from p(7,t, 7 e,a,r|D). Once Ypaive
has been sampled, we can proceed to draw the intermediate ancestral states Yi,; from the conditional

distribution p(r*, Yint | 7,t, 7, €, @, T, Yyaive, D).

Intermediate Ancestral Sequence Sampling

Just as we did for our naive sequence sampling, we sample the intermediate ancestral states Yi, by uti-
lizing a modified version of the standard ancestral sequence reconstruction (ASR) technique used in phy-
logenetics (Nielsen, 2002). It is important to note that sampling from p(r*, Yin | 7, t, 7, €, @, r, Ynaive, D)
can be reduced to drawing (rz‘j), Yl(rjlt)) pairs from p(rzkj), Yl(flt) | T,.t, 7 e a,r, Yn(ii)ve, D) for each MSA

site j € {1,...,n}, which is justified by d-separation conditional independencies (Lauritzen, 1996). At each



site j € {1,...,n}, we first sample rzkj) and then Yl(rjlt) according to the previously-described distribution:

naive’

p( (j),Yl(flt) T,t, 7 e a,r, y ) D(j))

:p<rfj) T,t, e a,r, v D(j)) (Y(]) T,t, e a,r Yn(&we,r(j),D(j)>,

naive’ int

where the above decomposition is based on the definition of conditional probability. We draw the site-
specific rates before the site-wise intermediate ancestral states because conditioning on the rates allows
for simpler and more efficient ancestral state sampling using an already-existing software package.

It turns out that we can draw r*j values from r with probabilities proportional to p(D(j )|T,t, e Yn(;l)vc, (]))’
which makes intuitive sense because it implies rates should be sampled according to the site-specific like-

lihoods with branch lengths scaled by the corresponding rates. To understand why the above statement
holds true, we express p(ra) |T,t, T,e,q,r, y ) D(j)) as follows:

naive’

naive’
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where the transition from the second line to the third line stems from the definition of conditional prob-
ability, the transition from the third to fourth line is a result of d-separation (Lauritzen, 1996), and the
fourth-to-fifth line transition is due to the fact that 1"( |r ~ Categorlcal( (%, ey K)) by assumption.
These site-specific likelihoods are in fact almost 1dent1caf to the naive-conditional phylogenetic likelihoods
discussed in the previous two subsections with the only difference being that we now condition on the
site-wise rates instead of marginalizing over them

from p( mt ’T t,m e a,r Yn(al)ve,

To illustrate why sampling YU ( j),D(j)) is similar to drawing

ASRs according to the procedure outlined by Nielsen (2002), we derive the sampling distribution of Yl(j ),

1nt

the most recent common ancestor of DU). The distribution p(Yl(j ) ‘T,t,ﬂ', e, q,r, Yn(al)ve,r(j),D(j)) can
be decomposed in the following manner:

p(Y1(j) ‘T t,m e a,r Ylfawe7 (j)’D(j))
O(p(Yl(J)vD(j) ’T t mw,e,Q,r Ynal)ve7r(j))

:p(yfj)‘m,reary() T(j))p(Du’Tt,,earY() e ij))

naive’ naive’ ' (j)»

:p(Yl(]) "7’ t T, e Yn(alve7 (j)) <D(J)

Tt,me r(j),Yl(j)),

where, as before, the transition between the second and third lines are due to the definition of conditional
probability and the transition from the third line to the fourth line is a result of d-separation (Lauritzen,

1996). The first term in the resulting expression above, p(Yl(j) |T7t77r,e Yy ), is the CTMC

naive’ (])

transition probability between Yn(;l)ve and Yl(j ) on a scaled branch length #; x T‘(j) and the second term,
©)

p(D(j) | T,t,7, e, TZ‘J.), Yl(j)), is an entry in the Felsenstein likelihood vector at the Y;*’ node on the given

tree with r?‘j)—scaled branch lengths. This expression for the sampling distribution of Yl(j ) corresponds

with the standard ASR distribution at internal nodes described in (Nielsen, 2002). Thus, by conceptually
treating YW

nive as a sampled root node and scaling the branch lengths by 7"2‘].), we can draw Yl(j )~

(Y(]) |T t,m e a,r, v\ r(j),D(j)) using equation (10) presented by Nielsen (2002). By recursively

naive’
using d-separation arguments (Lauritzen, 1996), we can use similar logic to that described above to sample
states at the other internal nodes Yl(gt) \YI(J )in a pre-order fashion as well. Once we have drawn Yl(it) at
each alignment site j € {1,...,n}, our three-stage sampling process of p(,t, 7, e, &, v, r*, Ynaive, Yint | D)
is completed.
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Implementation

The entire Bayesian phylo-HMM sampling process is implemented in a pipeline called 1inearham, which is
available at https://github. com/matsengrp/linearham. We developed our phylo-HMM data structure
in C++ and, as mentioned before, used the tree structures from the 1ibpll C library (Flouri et al.,
2014) to ensure our phylogenetic likelihood computations were as fast as possible. We have provided a
Docker container (https://hub.docker.com/r/matsengrp/linearham) so users can try out the software
without installation, as well as specifying the installation dependencies and provide an example command
in a Dockerfile.

Our linearham program also provides an interface to partis to obtain p(Ynaive). It accepts a
repertoire FASTA file as input and can infer the hidden state transition probabilities assuming either the
repertoire needs to be partitioned into individual CFs before phylogenetic inference or the “repertoire” is a
single CF already, which is useful for researchers that want to run 1inearham inference on a hand-curated
CF. It is also possible to specify an external set of p(Ypnaive) parameters.

In addition, linearham summarizes its phylogenetic inference output in a user-friendly format. It
provides an output FASTA file that contains each sampled amino acid naive sequence and its associated
posterior probability, creates a FASTA-like file that maps each sampled amino acid naive sequence
to its corresponding set of DNA naive sequences and posterior probabilities, and generates an amino
acid naive sequence posterior probability logo using WebLogo (Crooks et al., 2004) to visualize the per-
site uncertainties. Furthermore, we provide similarly-styled output files for particular naive-to-tip tree
lineages of interest by tabulating the posterior probabilities of sampled naive sequences and intermediate
ancestral sequences on the lineage. For naive-to-tip lineage analysis, we also create a posterior probability
lineage graphic using Graphviz (Gansner and North, 2000) that summarizes the different inferred naive-
to-tip sequence trajectories and their relative confidences (Gong et al., 2013).

Simulation Experiments

In our simulation experiments, we focus on validating the accuracy of the naive sequence and ancestral
sequence estimates produced by linearham. For naive sequence validations, we compare and contrast the
performance between linearham, partis, and the ARPP program (Kepler, 2013). The partis package
provides maximum likelihood naive sequence estimates (Ralph and Matsen IV, 2016a), but its model
assumes a star-tree configuration, which is unrealistic for many CFs going through long periods of SHM
and affinity maturation (Liao et al., 2013; Doria-Rose et al., 2014, 2016). The ARPP program is also
a likelihood-based framework that jointly infers a CF tree and the associated naive sequence using
information about the V(D)J rearrangement process, but does not quantify phylogenetic or ancestral
sequence uncertainty; we use this program in our validations because it is one of the only other programs
that estimates CF phylogenies and naive sequences at the same time. We did attempt to use the newer
version of ARPP (called Cloanalyst), but ran into difficulties with the program crashing and were unable
to successfully resolve this issue when we contacted the program author.

Similarly, for our ancestral sequence validations, we restrict our comparisons to the linearham,
RevBayes, and dnaml (Felsenstein, 2005) packages. As discussed before, the RevBayes program performs
Bayesian phylogenetic inference on a given MSA, but in this case, we sample CF trees and ASRs from
RevBayes using an augmented CF sequence alignment that contains the partis-inferred naive sequence
(i.e. D* from above). This approach to ASR was used in (Simonich et al., 2019) and is similar to
that of linearham with the main difference being that RevBayes ASR sampling is conditional on the
partis-inferred naive sequence whereas linearham ASR inference conditions on naive sequences drawn
from a posterior distribution. For all the experiments conducted in this section, we run RevBayes using
50,000 MCMC iterations, sampling every 10 iterations, discard the first 500 RevBayes samples as burn-
in, and sample without replacement 225 times from the 4,500 effective RevBayes samples in the case
of linearham inference. The dnaml package performs maximum likelihood phylogenetic inference and
generates an ASR conditional on this likelihood-based tree estimate. While it is possible to sample
ASRs on a maximum likelihood tree (Nielsen, 2002), dnaml only reports the most probable ancestral
sequences. We run dnaml on an augmented CF sequence alignment that contains the ARPP maximum
likelihood estimate of the naive sequence. In the following subsections, we describe our simulation
experiments in more detail from the data-generating mechanism to the validation results.
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Simulation Setup

To simulate tree topologies with a fixed number of tips in our experiments, we used the single-parameter
beta-splitting generative process (Aldous, 1996). The beta-splitting process is able to generate a wide
variety of tree topologies ranging from balanced topologies (i.e. trees with approximately equal root-to-
tip distances) to imbalanced topologies (i.e. trees with highly variable root-to-tip distances) by varying
the associated “balance” parameter (5. Intuitively, this process can be seen as a recursive partitioning
procedure that, at each tree split, partitions the Uniform(0,1) random numbers corresponding to the
“tips” on the current sub-interval according to a Beta(8+1, 8+ 1) distribution. As 8 — oo, the generated
trees get closer and closer to balanced binary trees and, as § — —2, the simulated topologies look more
and more “comb-like” (i.e. imbalanced) (Aldous, 1996).

We are motivated to use this topology-generating process because the level of balance of the tree
determines the extent to which a phylogenetic approach to naive sequence estimation improves over a
star-tree model. Informally speaking, a phylogenetic approach weights the information coming from tips
close to the root (in the imbalanced case) more strongly than tips more distant from the root. Thus
we expect a phylogenetic approach to be superior in the imbalanced case. On the other hand, partis
assumes evolution occurs according to a star tree, which implies the expected number of substitutions
from the root to each of the tip sequences should be approximately equal. Thus, for imbalanced trees,
that have a large variance in the root-to-tip branch length distances, we would expect partis to provide
poor naive sequence estimates for sequence datasets generated on those trees compared to a phylogenetic
approach. Throughout the rest of this section, we define “tree imbalance” to be the standard deviation
of a tree’s root-to-tip distances.

To generate branch lengths for our simulated trees that preserve the shapes induced by the beta-
splitting topology prior, we independently draw values from a Uniform(0,2M) distribution, where M is
a constant derived from HIV bnAb lineage trees. Specifically, we ran the PC64 (Landais et al., 2017) and
VRCO01 (Wu et al., 2015) datasets through partis to obtain augmented CF sequence alignments with
the partis-inferred naive sequence, inferred approximate maximum likelihood CF trees using FastTree
(Price et al., 2009, 2010), and set M to be the average across all estimated branch lengths in the two
trees (= 0.0179). We describe these two datasets in more detail in the next section when we discuss our
real-world dataset applications. In the subsequent parts of this section, we refer to the inferred FastTree
trees described above as the PC64 and VRCO01 phylogenies, respectively. We emphasize that these trees
are only used as the basis for a simulation study and their level of accuracy is not especially important.

Each simulated phylogeny also receives a root branch length, which is not accounted for by the above
generative processes. We use the mean of the PC64 and VRCO1 root branch lengths (= 0.01759) as the
default root branch length for simulation and also assign simulated trees root branch lengths of 0.1 to
validate inference in settings with long periods of shared mutational history. For each simulated tree,
we draw a naive sequence at the root according to the partis prior distribution that, as mentioned
previously, models the V(D)J rearrangement process. We use the default settings in partis for human
heavy chain data, since this represents the regime of most common interest.

To simulate DNA sequence data on the selected trees given the partis-generated naive sequences,
we use the simulator in the samm package (Feng et al., 2019). A complex collection of enzymes introduces
mutations to affinity-maturing sequences in a random pattern that is known to be highly sensitive to
the sequence motif (i.e. the subsequence of DNA bases surrounding the mutating position) (Rogozin and
Kolchanov, 1992; Dunn-Walters et al., 1998; Chahwan et al., 2012; Methot and Di Noia, 2017). The
samm program estimates these motif mutabilities (i.e. the probability a position will mutate given the
motif at that position) and substitution probabilities (i.e. the probability a position will mutate to a new
base given the motif at that position) using a penalized Cox proportional hazards model and simulates
sequence mutations given these inferred parameters. In our work, we use the default samm parameters
inferred for human heavy chain sequences (Feng et al., 2019).

In our simulation experiments, we set the beta-splitting “balance” parameter 5 to —1.5, —1.25, and
—1; the CF sequence count Ncp to 40 and 80; and the root branch length ¢y to 0.01759 and 0.1. There
are thus 12 different parameter combinations, and for each of these, we simulate 15 trees for a grand
total of 180 simulated trees. While 180 simulated trees does not seem like a large number of Monte Carlo
replicates, we are forced to constrain the number of trees on which we perform inference because the
ARPP program has to be run by hand via a GUI. Using these parameter settings allows for the simulation
of both balanced and imbalanced trees.
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Naive Sequence Validations

For each of the 180 simulated trees, we validate the accuracy of the naive sequence estimates generated
from the linearham, partis, and ARPP programs by computing the hamming distances (i.e. the number
of mismatched characters between two equal-length strings) between the estimates and the true naive
sequence. We did this for the inferred DNA sequences directly and also for those same sequences
translated to amino acids after inference was complete. The partis and ARPP packages provide naive
sequence point estimates, but linearham samples naive sequences from a posterior distribution so we
take the naive sequence with the highest posterior probability as the linearham “point estimate”.

We summarize the hamming distance results for all 180 simulated trees described above and plot this
performance metric against the corresponding values of tree imbalance (Figure 3); for reference, we plot
the tree imbalance values for the PC64 and VRCO1 trees as well. The performance of partis clearly
worsens as trees become more imbalanced, which makes sense given that partis assumes a star-tree
configuration for clonal family evolution. The linearham and ARPP programs provide accurate naive
sequence estimates and perform similarly across the observed tree imbalance spectrum, which is not too
surprising because they both incorporate phylogenetic information into their estimates. We also show
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Figure 3: The hamming distances between the simulated naive DNA sequences and their corresponding
linearham, partis, and ARPP estimates versus the tree imbalance values of the simulated trees. Linear
regression lines are superimposed for each method to indicate how the results vary as trees get more
imbalanced. For reference, we plot the tree imbalance values for the PC64 and VRCO1 trees.

a summary of these results, split into values for the full-sequence and CDR3 regions, as well as the
DNA /amino-acid sequence types (Table 1). Table 1 suggests that linearham and ARPP both perform
better than partis does by approximately 2-3 nucleotides (1.6-1.8 amino acids) in the whole sequence
and in the CDR3 region. Furthermore, it seems linearham and ARPP perform similarly across all the
different settings in Table 1.

We now present the mean hamming distance results, averaging over all trees generated under the
different simulation parameter settings. Specifically, we average over the trees that were simulated using
beta-splitting “balance” parameter values § = —1, —1.25, —1.5, CF sequence counts Ncr = 40, 80, and
root branch lengths ¢ty = 0.01759,0.1. The mean hamming distance values seem to increase slightly for
linearham and ARPP and considerably for partis as we go from 8 = —1,—1.25 to 8 = —1.5 (Table S1),
which is also suggested in Figure 3. The performance of 1inearham and partis deteriorates as Ncp goes
from 40 to 80, while the opposite result is true for ARPP (Table S2). Despite this, 1inearham is still better
than ARPP at predicting the whole naive sequence. As the root branch length ty increases from 0.01759
to 0.1, the mean hamming distances increase substantially for all three programs (Table S3), which is
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Sequence Region Program Sequence Type
DNA  Amino-Acid

linearham 192 L7

inear (3.14) (1.76)

, 4.81 3.02

Full-sequence partis (4.91) (2.84)
2.24 1.39

ARPP (5.06) (3.32)

linearh 166 108

earam (9 89) (1.69)

CDR3-only partis é'%) é'gg)
- 1.27 0.856

(1.78) (1.18)

Table 1: Mean hamming distances between the simulated naive sequences and their corresponding esti-
mates, where the hamming distances are averaged over all 180 simulated trees. Results are provided for
the linearham, partis, and ARPP programs; the full-sequence and CDR3 regions; and the DNA /amino-
acid sequence types. Standard errors are also presented in parentheses.

intuitive because we are essentially introducing a higher number of mutations that are shared across
all clonal sequences. While the linearham naive sequence validations did not take advantage of the
full naive sequence posterior distribution, we demonstrate the usefulness of accounting for phylogenetic
uncertainty in our ancestral sequence validations described below.

Intermediate Ancestral Sequence Validations

Our ancestral sequence validation experiments are centered around accurate inference of particular root-
to-tip ancestral sequence lineages of interest because immunologists frequently use ASR to estimate the
mutational pathways associated with antibody development (Doria-Rose et al., 2014; Simonich et al.,
2019). For each of our simulated trees, we determine the root-to-tip ancestral lineage of interest by
identifying the tip sequence that is farthest from the naive sequence in terms of branch length distance.

We quantify the results of our ancestral sequence validation by treating it as a machine learning
classification problem: do the posterior probabilities aid us in deciding if the ancestral lineage sequences
are correct? In all our experiments, we measure classification performance by recording the positive
predictive value (i.e. the fraction of sequences in the ancestral lineage prediction set that are on the
true ancestral lineage) and the true positive rate (i.e. the fraction of sequences on the true ancestral
lineage that are in the ancestral lineage prediction set). The “predicted classification” of these sequences
is obtained by applying a decision boundary p € {0.25,0.5,0.75} to the posterior probability. Thus, for
example, if p = 0.75 and a given ancestral sequence is on the true ancestral lineage and has posterior
probability 0.8, it is considered to be a “true positive” prediction. This analysis is straightforward for the
linearham and RevBayes programs, that do estimate posterior probabilities. We define dnaml “posterior
probabilities” to be either 0 or 1 depending on whether a lineage sequence is either outside or inside of
the dnaml-inferred set of most probable reconstructed lineage sequences.

We report the positive predictive values and the true positive rates for all 180 simulated trees and plot
these performance metrics against the corresponding values of tree imbalance (Figure 4); for reference,
we plot the tree imbalance values for the PC64 and VRCO1 trees as well. Notice that the superimposed
linear regression lines have negative slopes close to 0, which suggests that ancestral lineage inference is
not clearly sensitive to the “balance” of the tree. We also display the mean positive predictive values and
mean true positive rates aggregated over all 180 trees for the same three programs, the different decision
boundaries p € {0.25,0.5,0.75}, and the DNA /amino-acid sequence types (Table 2). Table 2 indicates
that linearham performs better than RevBayes in every setting, indicating that accounting for naive
rearrangement uncertainty in our posterior distribution rather than conditioning on the partis-inferred
naive sequence leads to more accurate ancestral lineage sequence estimates. At the lowest decision
boundary p = 0.25, 1linearham obtains slightly better positive predictive values and true positive rates
than either RevBayes or dnaml does (Table 2). As the decision boundary p increases, linearham and
RevBayes achieve higher positive predictive values at the expense of lower true positive rates, which
makes sense because high values of p imply that only lineage sequences with high posterior probabilities
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are predicted to be on the true lineage. In addition, note that the increases in positive predictive values
are greater than the decreases in true positive rates for linearham as p increases. Of course, dnaml
obtains the same positive predictive values and true positive rates regardless of p because its “posterior
probabilities” are either 0 or 1.

We also present the mean positive predictive values and mean true positive rates for decision boundary
p = 0.5, averaging over all trees generated under the different simulation parameter settings. The
validation performance of all the programs seems to decline, albeit slightly, from § = —1 to 8 = —1.5
(Table S4), which makes sense given the trends in Figure 4. For the most part, mean positive predictive
values and mean true positive rates increase for linearham, RevBayes, and dnaml as Ncp goes from
40 to 80 (Table S5), which seems surprising but for larger CFs, the root-to-tip lineage becomes larger
and may explain this observed pattern. As the root branch length ¢y increases from 0.01759 to 0.1, the
ancestral lineage validation results worsen considerably for all three programs (Table S6), which is logical
because, as we stated above, we are essentially introducing a higher number of mutations shared across
all clonal sequences when we utilize longer root branch lengths in our simulations.

These results help demonstrate why Bayesian ancestral lineage inference should be favored over
likelihood-based approaches to intermediate lineage inference as the Bayesian posterior probabilities
quantify the uncertainty in our sequence estimates. In a real-life experimental setting, the decision
boundary p should be chosen based on the desired level of positive predictive values or true positive rates
and our analysis provides some insight into the mapping between p and these classification metrics. In
practice, immunologists are probably more interested in controlling positive predictive values than true
positive rates because synthesizing computationally-inferred lineage sequences and testing their binding
and neutralization abilities is a laborious and expensive endeavor. Thus, knowing the approximate
fraction of inferred intermediate lineage sequences that are on the true lineage is of the utmost importance
to an immunologist.
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Figure 4: The positive predictive values and the true positive rates versus the tree imbalance values of
the simulated trees, stratified by decision boundary p. Positive predictive values and true positive rates
are computed on the DNA sequences and for the linearham, RevBayes, and dnaml programs. Linear
regression lines are superimposed for each package to indicate how the results vary as trees get more
imbalanced. For reference, we plot the tree imbalance values for the PC64 and VRCO1 trees (vertical
dashed lines).
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Performance Metric Program Sequence Type

DNA Amino-Acid

p=025 p=05 p=0.75 p=025 p=05 p=0.75

linearham 0.561 0.719 0.856 0.613 0.758 0.858

(0.139)  (0.157)  (0.176) (0.131)  (0.145)  (0.146)

Positive predictive value RevBayes 0.544 0.672 0.734 0.590 0.713 0.774
(0.141)  (0.160)  (0.166) (0.134)  (0.145)  (0.139)

dnaml 0.520 0.520 0.520 0.590 0.590 0.590

(0.139)  (0.139)  (0.139) (0.165)  (0.165)  (0.165)

linearham 0.545 0.428 0.304 0.640 0.533 0.398

(0.146)  (0.147)  (0.125) (0.139)  (0.144) (0.138)

True positive rate RevBayes 0.517 0.406 0.276 0.606 0.505 0.370
(0.147)  (0.144)  (0.116) (0.140)  (0.144) (0.134)

dnaml 0.521 0.521 0.521 0.584 0.584 0.584

(0.142)  (0.142) (0.142) (0.166)  (0.166)  (0.166)

Table 2: Mean positive predictive values and mean true positive rates, averaged over all 180 simulated
trees. Results are provided for the linearham, RevBayes, and dnaml programs; the different decision
boundaries p € {0.25,0.5,0.75}; and the DNA /amino-acid sequence types. Standard errors are also
presented in parentheses.

PC64/VRCO01 Ancestral Lineage Analysis

We illustrate the capabilities of linearham and ARPP/dnaml on real-world datasets by applying the
three methods to subsets of the PC64 and VRCO1 datasets. The PC64 dataset contains a set of clonal
sequences with multiple HIV-binding bNAbs that results from a longitudinal study over 46 months on
an African donor (i.e. donor PC64) within the International AIDS Vaccine Initiative Protocol C cohort
(Landais et al., 2016). Our VRCO1 clonal family dataset also originates from an HIV-infected donor and
contains many bNAb sequences that are part of a well-known class of HIV-binding antibodies (i.e. the
VRCO1 class) (Wu et al., 2011; West et al., 2012; Zhou et al., 2013; Wu et al., 2015). The tip sequences
of interest for the PC64 and VRCO1 datasets are chosen to be PCT64-35M and NIH45-46, respectively,
which are both monoclonal antibody sequences that have accumulated a large amount of SHM. We use
100 sequences from the PC64 CF dataset using a pruning strategy discussed in (Simonich et al., 2019)
and trim the VRCO01 CF dataset to 268 sequences using the cd-hit sequence clustering program (Li and
Godzik, 2006) with a 95% sequence identity cutoff. We perform inference on these subsetted datasets
using the same settings as described for our simulation experiments.

The PC64 amino acid naive sequence posterior probability logos suggest that there is little uncertainty
in the naive sequence reconstruction (Figure 5a) and, in fact, the most probable linearham amino acid
naive sequence has a probability of approximately 0.92. However, the VRC01 naive sequence seems
to have considerable uncertainty in the CDR3 region (Figure 5b), which shows that properly modeling
ancestral sequence and phylogenetic uncertainty is important for real-world datasets with highly-mutated
sequences. The most probable linearham VRCO01 naive sequence estimate has a posterior probability
approximately equal to 0.036. It is important to note that the VRC01 CF sequences were first collected
5 years after the diagnosis of the associated HIV-1 infection, whereas the PC64 CF sequences contain
samples drawn from the corresponding donor as early as 4 months post infection. This indicates that
the VRCO1 naive sequence reconstruction inherently has more uncertainty because there are not any
early time-point samples in the corresponding dataset. Furthermore, the most probable linearham
VRCO1 naive sequence amino acids do not perfectly match the corresponding ARPP-inferred residues
(Figure 5b). In total, these results suggest that in the absence of uncertainty, linearham and ARPP
produce similar naive sequence reconstructions. However, when there is a significant amount of naive
sequence uncertainty, linearham, unlike ARPP, provides alternate hypotheses that should be considered
along with corresponding uncertainty estimates.

Our linearham analysis demonstrates that there are many probable naive-to-tip sequence paths
(Figure 6), suggesting that intermediate ancestral sequences have high levels of uncertainty; we use
0.04 probability cutoffs in each 1inearham-inferred lineage graphic. In particular, the 1inearham lineage
diagram for the PC64 dataset (Figure 6a) shows many possible routes of evolution from the different naive
sequences to the PCT64-35M mature sequence and displays confidence values via posterior probabilities.
The VRCO1 lineage graphic in Figure 6b does not display connections between any naive sequences
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Figure 5: The linearham-inferred (top) and ARPP-inferred (bottom) amino acid naive sequence posterior
probability logos for the pruned PC64 dataset of 100 sequences and the trimmed VRCO1 alignment of
268 sequences.

and intermediate ancestral sequences, which reflects the fact that naive sequence inference is extremely
challenging on this dataset. In summary, there is considerable uncertainty in naive-to-tip mutational
trajectory inference in real-world BCR datasets. This finding contradicts the assertions of Kepler (2013),
who states that ancestral sequence and phylogenetic uncertainty is unimportant, and proceeds with a
single point estimate.

Discussion

In this paper, we introduce a novel Bayesian approach to CF phylogenetic inference that is based on a
phylo-HMM. Our phylo-HMM posterior sampling methodology not only allows for easy quantification
of phylogenetic and ancestral sequence uncertainty but also models the V(D)J recombination process
as an informative prior on the root sequence. Specifically, our phylo-HMM models both the naive
rearrangement and SHM processes by using a hidden state discrete-time Markov model on naive sequences
that explicitly incorporates V(D)J rearrangement information and an emission distribution generating
the clonal sequences conditional on the naive sequence that is based on phylogenetic likelihoods. We show
that our inference procedure, implemented in the software package linearham, provides higher-quality
naive sequence and ancestral sequence estimates compared to those obtained under current state-of-the-
art methods and augments these estimates with relative confidence values by reporting the associated
posterior probabilities.

From our simulation experiments, we see that the partis naive sequence estimates get substantially
worse as trees get more imbalanced. This is in contrast to those of 1inearham and ARPP, which is intuitive
because partis assumes a star-tree configuration whereas linearham and ARPP leverage phylogenetic
models. The 1inearham and ARPP programs perform similarly in our naive sequence validations regarding
their most highly supported inferences, but only linearham is capable of characterizing naive sequence
uncertainty. This is important because, as we see in our VRCO01 analysis (and in contrast to the findings
of Kepler (2013)), real datasets of significant practical importance can have very large uncertainties
associated with their naive sequence estimates. In addition, we demonstrate that linearham ancestral
lineage inference performs better, via mean positive predictive values and mean true positive rates, than
either RevBayes or dnaml does at the lowest decision boundary p = 0.25, which suggests that accounting
for naive sequence, phylogenetic, and ancestral sequence uncertainty does lead to slightly improved ASR
performance. Furthermore, our Bayesian ASR results indicate that p can be chosen according to a
prespecified trade-off between positive predictive values and true positive rates, which is an important
consideration for immunologists looking to synthesize computationally-inferred lineage sequences.

Based on all the evidence in this manuscript, we recommend using linearham to infer and visualize
naive-to-mature mutational pathways in CFs harboring antibodies of interest. Bayesian phylogenetic
inference has already been shown to be useful for identifying different possible routes of evolution from
a fixed naive sequence to a bNAb with relative confidence values (Simonich et al., 2019) and we believe
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Figure 6: The linearham-inferred (left) and dnaml-inferred (right) naive-to-tip amino acid sequence
trajectories for the pruned PC64 dataset of 100 sequences and the trimmed VRCO1 alignment of 268
sequences. The tip sequences of interest for the PC64 and VRCO1 datasets are chosen to be PCT64-
35M and NIH45-46, respectively, and we use 0.04 probability cutoffs for these lineage graphics. The
nodes correspond to unique ancestral sequences filled with red color, where the opacity is proportional
to the posterior probability of the associated sequence. Each node has a label that denotes whether
the associated sequence is a naive or intermediate ancestral sequence, the posterior probability rank
of the sequence among all sampled naive or intermediate ancestral sequences, and the sequence-specific
posterior probability itself. The directed edges connecting nodes represent ancestral sequence transitions,
are shaded blue with an opacity proportional to the posterior probability of the associated sequence
transition, and are annotated with the site-specific mutations between the two sequences.
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our Bayesian phylo-HMM analysis pipeline in 1inearham can be used to not only infer similarly-styled
maturation pathways but also visualize the uncertainties inherent in the naive sequence and ancestral
sequence estimates. From a practical standpoint, these different possible ancestral lineages allow im-
munologists to generate many different intermediate antibody candidates that bind and/or neutralize
HIV.

Our Bayesian phylo-HMM inference procedure admits a number of possible future extensions to
enhance the effectiveness of our technique. One drawback of our method is that it does not sample the
parameters of p(Ypaive) and uses partis (and its star-tree assumption) to estimate them. Ideally, our
Bayesian inference procedure would jointly sample all the model parameters, but currently this is not
practically feasible. In addition, our method implicitly assumes the CFs have been obtained from partis,
which uses the star-tree assumption to cluster repertoire sequences. It may be possible to, as Ralph and
Matsen IV (2016b) state, incorporate the phylo-HMM in the CF clustering procedure within partis to
obtain higher-quality CFs, but in our current Bayesian implementation that would be computationally
costly.
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Supplementary Figures and Tables

A T C T

Figure S1: An example phylogenetic tree. Letters z,y, z,w represent the unobserved internal node
states where w is associated with the root node, ¢, defines the root branch length, and (to, 1,2, ..., ts)
denotes the entire vector of branch lengths. Given this tree topology and set of branch lengths, we can
calculate the likelihood of observing the nucleotide vector (A, T, C,T) by marginalizing probabilities over
the unobserved states z, vy, z, w.

Sequence Region Program Sequence Type
DNA Amino-Acid
f=-1 pg=-125 p=-1.5 f=-1 pg=-125 p=-1.5
linearham 1.73 1.92 2.10 0.917 1.18 1.40
(3.94) (2.66) (2.71) (1.77) (1.66) (1.84)
Full-sequence partis 3.85 3.82 6.77 2.48 2.42 4.15
(3.26) (3.85) (6.48) (1.90) (2.41) (3.61)
ARPP 2.42 2.52 1.78 1.38 1.52 1.27
(6.89) (5.11) (1.98) (4.41) (3.47) (1.39)
linearham 1.45 1.67 1.87 0.833 1.10 1.30
(3.42) (2.55) (2.66) (1.63) (1.63) (1.81)
CDR3-only partis 3.53 3.47 5.50 2.38 2.25 3.45
(2.84) (3.45) (4.34) (1.81) (2.20) (2.64)
ARPP 1.12 1.32 1.38 0.667 0.867 1.03
(1.76) (1.95) (1.63) (1.07) (1.20) (1.26)

Table S1: Mean hamming distances between the simulated naive sequences and their corresponding
estimates, where the hamming distances are averaged over all trees generated under the different beta-
splitting “balance” parameter value settings. Results are provided for the linearham, partis, and ARPP
programs; the full-sequence and CDR3 regions; and the DNA /amino-acid sequence types. Standard
errors are also presented in parentheses.



Sequence Region Program Sequence Type

DNA Amino-Acid
Nor =40 Nop =80  Nop =40 Nop =80
Linearhon LT3 2.10 1.17 1.17
* (2.36) (3.77) (1.67) (1.86)
Full s 412 5.50 2.72 3.31
{-sequience partis (3.58) (5.90) (2.40) (3.20)
2.39 2.09 1.52 1.26
ARPP (4.36) (5.70) (2.92) (3.69)
Linearh 1.51 1.81 1.04 il
tnearhian - (9.26) (3.41) (1.59) (1.80)
‘ 3.84 4.49 2.57 2.82
CDR3-only partis (3.38) (3.98) (2.29) (2.30)
1.33 1.21 0.944 0.767
ARPP (1.63) (1.92) (1.21) (1.15)

Table S2: Table analogous to Table S1, but varying the CF sequence count Ncp.

Sequence Region Program Sequence Type
DNA Amino-Acid
to = 0.01759 ¢4 =0.1 to = 0.01759 ¢, =0.1
linearham 0.744 3.09 0.456 1.88
(1.27) (3.94) (0.889) (2.10)
Full-sequence artis 2.69 6.93 L 4.27
d P (2.97) (5.54) (1.91) (3.06)
0.80 3.68 0.467 2.31
ARPP (1.26) (6.76) (0.737) (4.46)
linearham 0.644 2.68 0.433 1.72
(1.17) (3.65) (0.875) (2.04)
. 2.50 5.83 1.68 3.71
CDR3-only partis (2.47) (3.97) (1.62) (2.42)
0.444 2.10 0.311 1.40
ARPP (0.751) (2.10) (0.574) (1.37)

Table S3: Table analogous to Table S1, but varying the root branch length ¢g.

Performance Metric Program Sequence Type
DNA Amino-Acid
f=—-1 pg=-125 pg=-15 b=—-1 pg=-125 pB=-15
linearham 0.742 0.715 0.700 0.782 0.759 0.733
(0.157) (0.157) (0.158) (0.164) (0.147) (0.118)
Positive predictive value RevBayes 0.691 0.676 0.649 0.725 0.726 0.689
(0.162)  (0.152) (0.165) (0.166)  (0.140) (0.124)
dnaml 0.519 0.528 0.512 0.575 0.605 0.590
(0.141) (0.149) (0.129) (0.179) (0.173) (0.141)
linearham 0.435 0.443 0.407 0.543 0.544 0.512
(0.149) (0.139) (0.152) (0.159) (0.139) (0.131)
True positive rate RevBayes 0.413 0.425 0.378 0.510 0.522 0.482
(0.142) (0.133) (0.154) (0.160) (0.136) (0.133)
dnaml 0.521 0.531 0.512 0.566 0.600 0.586
(0.144) (0.152) (0.132) (0.182) (0.166) (0.148)

Table S4: Mean positive predictive values and mean true positive rates for decision boundary p = 0.5,
where we average over all trees generated under the different beta-splitting “balance” parameter value
settings. Results are provided for the 1inearham, RevBayes, and dnaml programs and the DNA /amino-
acid sequence types. Standard errors are also presented in parentheses.



Performance Metric Program Sequence Type
DNA Amino-Acid
Ncrp =40 Ncep =80 Ncrp =40 Ncp = 80
linearham 0.714 0.725 0.759 0.756
(0.165) (0.150) (0.166) (0.121)
Positive predictive value RevBayes (8???) <8??£) (8122) (Sﬁ;)
dnaml 0.513 0.526 0.586 0.594
(0.146) (0.132) (0.177) (0.153)
T 0.430 0.427 0.527 0.539
(0.153) (0.141) (0.159) (0.127)
True positive rate RevBayes 0.403 0.408 0.501 0.509
(0.151) (0.137) (0.158) (0.129)
dnaml 0.514 0.528 0.573 0.595
(0.152) (0.132) (0.174) (0.156)

Table S5: Table analogous to Table S4, but varying the CF sequence count Ncp.

Performance Metric Program Sequence Type
DNA Amino-Acid
to =0.01759 t, =0.1 to =0.01759 tp =0.1
1inearham 0.728 0.711 0.768 0.748
(0.141) (0.173) (0.140) (0.150)
Positive predictive value RevBayes (8?22) (8?%) (8?))57)) (gigg)
dnaml 0.537 0.503 0.616 0.564
(0.133) (0.144) (0.154) (0.172)
linearham 0.450 0.407 0.560 0.506
(0.136) (0.154) (0.140) (0.143)
. 0.415 0.396 0.523 0.487
True positive rate RevBayes (0.131) (0.155) (0.135) (0.151)
dnaml 0.536 0.506 0.609 0.559
(0.136) (0.147) (0.157) (0.171)

Table S6: Table analogous to Table S4, but varying the root branch length ¢g.





