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Abstract

Obesity has been linked to the human gut microbiota; however, the contribution of gut bacterial species to the obese
phenotype remains controversial because of conflicting results from studies in different populations. To explore the
possible dysbiosis of gut microbiota in obesity and its metabolic complications, we studied men and women over a range of
body mass indices from the Old Order Amish sect, a culturally homogeneous Caucasian population of Central European
ancestry. We characterized the gut microbiota in 310 subjects by deep pyrosequencing of bar-coded PCR amplicons from
the V1–V3 region of the 16S rRNA gene. Three communities of interacting bacteria were identified in the gut microbiota,
analogous to previously identified gut enterotypes. Neither BMI nor any metabolic syndrome trait was associated with
a particular gut community. Network analysis identified twenty-two bacterial species and four OTUs that were either
positively or inversely correlated with metabolic syndrome traits, suggesting that certain members of the gut microbiota
may play a role in these metabolic derangements.
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Introduction

Obesity, the accumulation of excess body fat has a negative

impact on morbidity, mortality, and quality of life through its

complications, which include cardiovascular disease, type 2

diabetes, osteoarthritis, and certain cancers [1]. Globally in step

with the increase in industrialization, obesity has reached epidemic

proportions such that overweight or obese humans now out-

number those suffering from malnutrition [2]. The etiology of

obesity and its metabolic complications, including hyperlipidemia,

hypertension, glucose intolerance and diabetes reflect the complex

interactions of multiple genetic, behavioral, and environmental

factors. Great inter-individual variation is apparent in the

propensity toward obesity, the location where excess fat is

deposited, and the extent to which this results in metabolic

derangements and adverse health outcomes. Available treatments

for obesity include lifestyle modification (diet and exercise), drugs,

and bariatric surgery. With the possible exception of surgery,

individuals often fail to maintain long term weight loss with these

modalities. To offer better treatment and prevention modalities,

deeper understanding of the etiology of obesity is needed. Novel

lines of investigation implicate chronic inflammation [3] and the

gut microbiome [4–6] in the development of obesity and its

metabolic complications.

A 2005 publication by Ley et al. [4] provided evidence for a link

between gut microbial ecology and obesity in a genetically

homogeneous strain of leptin-deficient mice maintained in a highly

controlled laboratory environment. More recent studies have

suggested that microbes present in the human gut may also play

a role in metabolism and adiposity; however, the results of these

studies have been more variable, perhaps reflecting the complexity

of human genetics and/or heterogeneity in lifestyle [7]. The

emerging evidence that the microbiota may contribute in

important ways to human health and disease has led us and

others to hypothesize that both symbiotic and pathological

relationships between gut microbes and their host may be key

contributors to obesity and the metabolic complications of obesity

[8–10]. We hypothesize that the gut microbiota influences host
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energy homeostasis, metabolism, and inflammation, and is an

important determinant of obesity and its adverse health con-

sequences.

To explore the possible dysbiosis of gut microbiota in obesity

and its metabolic complications in humans, we studied Old Order

Amish subjects from Lancaster County, Pennsylvania. The Amish

are a genetically closed homogeneous Caucasian population of

Central European ancestry ideal for such a study because of their

high degree of social cohesiveness and common lifestyle [11,12].

There is great uniformity of socioeconomic status and lifestyle

among the Amish, and prescription medication usage is minimal,

reducing the potentially confounding influences of variation in

environmental exposures on complex traits. Extensive genealogies

document a small number of founders and genetic analyses

confirm less genetic heterogeneity relative to the general popula-

tion. These attributes make the Amish a highly desirable

population in which to study the composition of the gut

microbiota, its heritability, and its relationship to obesity and

metabolic complications. The specific questions we set out to

address in this report were: (1) what are the major gut microbial

subpopulations in this population and how does their distribution

vary in obesity and with metabolic syndrome phenotypes? and (2)

are socio-demographic and other factors associated with the major

gut microbial subpopulations?

Results

We enrolled a total of 310 adult subjects, of whom 112 were

male and 198 were female. In this cohort, mean age and BMI was

higher, and manifestations of the metabolic syndrome [13], were

more common in women than in men (Table 1). We performed

16S rRNA multiplex pyrosequencing of V1–V3 amplicons using

bar-coded primers on the 454 Titanium platform [14] to

characterize the fecal microbiota. We obtained 10,35763764

pyrosequencing reads per sample, with an average read length of

303 bp (Table S1). Reads were binned into individual samples

based on the barcode sequence, and complementary phylogenetic

and taxon-based analysis methods were used to compare 16S

rRNA sequences across the fecal microbial communities (see

Methods). In total, 203 genera were identified in the gut

microbiota in the Amish; the 10 most abundant genera accounted

for 67% of the reads (Figure S1). Seven species were each

represented by more than 1% of the total sequence reads,

including three species in the Bacteroidetes (Prevotella copri,

Bacteroides vulgatus and Bacteroides plebius) and four species in the

Firmicutes (Faecalibacterium prauznitzii, Eubacterium rectale, Eubacterium

biforme, and Roseburia faecis) (Figure S1). The percent of reads for

which a species-level taxonomic assignment could not be made

averaged 47% across all the samples (range of 15% to 84%).

All but one of the twenty-five most abundant genera were

present in at least 75% of all subjects, and these include members

of the Firmicutes, Bacteroidetes, Tenericutes, Actinobacteria, and

Proteobacteria (Figure S2). The prevalence of genera in the gut

microbiota follows a bi-modal distribution, with a large peak above

zero associated with many genera that are present in a small

number of subjects and a second peak of 17 genera that are

present in 95% or more of the 310 subjects (Figure S3). These 17

genera were deemed to comprise the core microbiota [15] in the

Amish (Table 2) and represent members of the Firmicutes,

Bacteroidetes and Tenericutes.

Despite the substantial overlap in genera present in the gut

microbiota of the 310 subjects, a significant amount of inter-

individual variation was observed with respect to the relative

abundance of both the predominant and rare genera (Figure S4).

For example, the relative abundance of Bacteriodetes across all the

samples ranges between 3 and 81%. Phyla-level phylogenetic

binning of 16S rRNA data revealed a nominally significant

correlation between the Bacteroidetes:Firmicutes ratio and age-

and sex- adjusted BMI (r = 0.116; p = 0.04), but no significant

correlation with metabolic syndrome traits [fasting glucose

(r = 0.075; p = 0.19), systolic or diastolic blood pressure

(r = 0.016; p = 0.78 and (r = 0.043; p= 0.45), respectively), fasting

triglycerides (r = 0.078; p= 0.17), HDL-cholesterol (r =20.052;

p = 0.36); all adjusted for age and sex) Results from unweighted

UniFrac analysis [16] also did not distinguish among the subjects

based on BMI (Figure S5).

Using a random matrix theory-based framework [17] we

identified three networks of interacting bacteria in the human

gut, that correlated with the three gut enterotypes recently

reported by Arumugam et al. [18] (Figure 1A–C). In our dataset,

these groups appear to represent a strong gradient effect between

a few dominant taxa, rather than distinct clusters (Figure 2)

because the silhouette width statistic [19] does not prefer three

(mean silhouette width of 0.3) clusters over two (mean silhouette

width of 0.34). Each subject was assigned membership to one of

the bacterial groups based on the predominant genus present in

his/her microbiota. The most prevalent group (I) in this cohort

(47% of subjects: 55% male and 45% female) is dominated by

Prevotella, the most abundant genus in the OOA gut microbiota.

The least common group (II) in this cohort (14% of subjects: 23%

male and 77% female), is Bacteroides-dominated. A Firmicutes-

dominated group (III; 39% of subjects: 31% male and 69%

female) is characterized by diverse Firmicutes genera, Oscillospira

being the most abundant. Group III displays a statistically

significant higher Shannon diversity index of both OTUs and

named taxa than either network I or II (Figure 1D; p= 2.2610216

by Wilcoxon rank-sum test).

The three networks appear to reflect the main large-scale trends

in gut microbial populations and suggest that gut bacterial

community structures are driven by high abundance and high

variability in populations of Prevotella, Bacteroides, or Firmicutes

(with a degree of mutual exclusion between them). Prevotella and

Bacteroides appear to co-exist at lower levels if the community is

Firmicutes-dominated, but are nearly mutually exclusive when

either is abundant in Bacteroidetes-dominated communities.

Using community structure as a proxy, we examined the stability

of the dominant taxa in 19 second samples from the subjects in this

study 2–5 months following initial samples. The dominating taxa

in 15 of the 19 subjects (79%) did not change (Figure S6). The

communities became Prevotella-dominated in 4 subjects where

a change was observed; in 3 cases first samples were collected in

winter and the second samples were collected 3–5 months later in

the spring. These changes may represent seasonal changes in diet

that will need to be investigated further.

Our cohort of 310 subjects included 113 nuclear families having

two or more members phenotyped. These nuclear families

contributed a total of 54 spouse pairs, 76 sibling pairs, and 42

parent-offspring pairs. Community structure concordance rates

tended to be lower for the spouse pairs (38.9%) than for the sibling

(46.1%) and parent-offspring (52.4%) pairs (p = 0.32 for compar-

ison of spouse pairs with the combined set of sibling and parent-

offspring pairs). Larger sample sizes will be required to get better

estimates of the relative contributions of relatedness and household

effects to community structure.

We tested the association of groups (coded as a class variable

with 3 levels) with each available clinical factor, while adjusting for

age and sex (a 2 df test). Neither BMI nor any metabolic syndrome

trait was associated with a particular group (Table 3). These data

Obesity and the Gut Microbiota in the Amish
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suggest that individual traits associated with obesity and its

metabolic complications do not correlate with a major shift in the

relative abundance of these two predominant phyla in the Amish,

an observation reported in other cohorts [15,20].

To determine if gut community type was associated with

occupation, we classified study subjects into occupational classes

(farmers, tradesmen, farmer’s wives, teachers/shopkeepers, and

unknown/retired) and tested the association of phenotype with

each occupational class. In men, the occupation of farming was

over-represented among those with the Prevotella-dominated

network (71.4%) compared to those with either the Bacteroidetes-

dominated (21.4%) or Firmicutes-dominated (36.5%) networks

(p = 0.002; Table 4). The distribution of networks did not differ

significantly within any other occupational class in men or with

any occupational class in women (Table 4).

The availability of extensive clinical data from the OOA cohort

allowed us to evaluate the potential role of the microbiota (both

species and OTUs) in obesity and its metabolic derangements

using network analysis, independent of enterotype. Twenty-two

species of bacteria from the phyla Bacteroidetes, Firmicutes, and

Actinobacteria, and four OTUs from the order Clostridiales,

displayed both positive and inverse correlations with BMI, serum

triglycerides, HDL cholesterol, total cholesterol, fasting glucose

levels and C-reactive protein (Figure 3A) and with each other

(Figure 3B). These bacteria differ in both abundance and

prevalence. Collectively, this group of species and OTUs represent

between 0.03 and 31% of the total 16S rRNA sequence reads in

the 310 subjects. Phylogenetic analysis revealed that the majority

of these OTUs, along with the majority of known species

associated with clinical phenotype are members of the order

Clostridiales (Figure 3C). While a majority of the correlations

observed were between one metabolic trait and one taxon,

Lachnobacterium bovis and Anaerotruncus colihominis were inversely

correlated with both high BMI and elevated serum triglycerides.

Although these two species of gut bacteria are known to produce

short chain fatty acids as end-products of metabolism, a more

thorough understanding of the potential impact of these species on

host metabolism awaits further studies that will be facilitated by

completion of ongoing reference genome sequencing projects for

gut-associated bacterial species [21].

In a subset of 32 older ($59 years of age) obese subjects with

more severe manifestations of the metabolic syndrome there was

an increase in the relative abundance of three gram-negative

bacterial genera, Fusobacterium, J2–29, and Tenacibaculum, as

compared to younger subjects (Table S2). It is not possible to

determine whether these represent age- or disease-related changes

Table 1. Characteristics of subjects enrolled in this study.

Men Women

N 112 198

Age (yr) 46.0612.7 49.5613.4

BMI (kg/m2) 27.264.0 (19.3–42.3) 30.365.9 (16.7–51.1)

Waist circumference (cm) 95.6611.2 90.3612.3

Systolic BP (mmHg) 117.3612.2 118.2615.9

Diastolic BP (mmHg) 71.068.0 70.869.1

Total cholesterol (mg/dl) 208.7642.5 214.4650.2

HDL-cholesterol (mg/dl) 54.8613.1 62.0614.1

LDL-cholesterol (mg/dl) 138.6639.0 134.7645.6

Triglycerides (mg/dl) 76.4645.5 88.5654.0

Glucose (mg/dl) 87.468.0 87.3611.2

At Least 1 Metabolic Syndrome Trait (%)* 26.8 38.9

Blood Pressure (%) 14.3 21.2

HDL-C (%) 8.9 18.7

Triglycerides (%) 3.6 11.6

Glucose (%) 7.1 10.6

*Metabolic syndrome traits were defined by NHLBI criteria: (1) fasting triglycerides .150 mg/dl (or on triglyceride lowering medication prescribed by a physician); (2)
fasting HDL#50 mg/dl for women or,40 mg/dl for men (or on HDL raising medication prescribed by a physician); (3) either or both systolic or diastolic blood pressure
.130/85 mm Hg (or on anti-hypertension medication prescribed by a physician); (4) fasting glucose $100 mg/dl (or on anti-diabetes medication prescribed by
a physician). Waist circumference was not included in our definitions because of the high correlation between waist circumference and BMI.
doi:10.1371/journal.pone.0043052.t001

Table 2. Core gut microbiota at the genus level (present in
$95% of subjects).

Firmicutes Bacteroidetes Tenericutes

Clostridium Bacteroides Incertae sedis 32

Ruminococcus Prevotella

Faecalibacterium
Subdoligranulum

Oscillospira

Coprococcus

Blautia
Roseburia
Lachnospira
Incertae sedis 121
Lachnobacterium
Dorea
Eubacterium
Streptococcus

doi:10.1371/journal.pone.0043052.t002
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in the gut microbiota [26]; however, the increase in the abundance

of Fusobacterium is of interest in light of previous findings that

periodontal Fusobacterium species have been associated with in-

flammation, atherosclerosis [27] and colon cancer [28].

Discussion

The prevalence of obesity has dramatically increased around

the world over the last twenty years, in large part linked to the

Western life-style. Many lines of evidence point to a complex

etiology for obesity that includes both genetic and environmental

factors. Obesity is associated with a panoply of co-morbidities

including hypertension, dyslipidemia, insulin resistance, and

diabetes, collectively known as the metabolic syndrome, that

increase the risk of cardiovascular disease [1]. While numerous

obesity-related changes in human physiology have been described,

the gut microbiota has also been implicated in obesity, perhaps by

influencing energy homeostasis, host signaling, insulin resistance,

gut permeability, and inflammation and the innate immune

response.

The present study used sequencing of 16S rRNA amplicons to

characterize the gut microbiota in a metabolically well-character-

ized cohort of 310 Amish subjects over a range of BMI. The

Amish are an excellent population to study the relationship

between gut microbiota and metabolic traits because of their

relatively homogeneous lifestyle. Furthermore, we believe that

knowledge gained from the Amish is relevant to the general

population because the clinical characteristics of obesity and its

related complications in the Amish are indistinguishable from that

in the general Caucasian population [22], and the Amish gene

pool originates in Central Europe and thus host genetic findings in

the Amish are likely to represent a subset of those present in the

general Caucasian population.

Our analyses revealed several novel insights into the structure

and role of the gut microbiota in obesity and the metabolic

syndrome. First, we identified three groups of bacterial species,

each of which include dominant organisms in the three

enterotypes previously identified in a small set of European

subjects [18]. These bacterial groups likely define an interactive

functional community, where some members play redundant

functional roles. Approximately 50% of the subjects enrolled in

this study were members of nuclear families allowing us to

compare concordance rates of community structure groups

between related and unrelated individuals; however, these results

did not provide any evidence that these structure groups

aggregated within families. Interestingly, there was a correlation

between occupation and community structure with farmers more

likely than other occupations to harbor the Prevotella-dominated

Figure 1. Bacterial networks in the human gut microbiota. Bacterial networks were identified based on statistically significant correlations
among genera using the Louvain algorithm. Network I: Prevotella-dominated (A), Network II: Bacteroides-dominated (B) and Network III: Oscillospira-
dominated (C) are illustrated, where the dominant bacterial genus is highlighted in yellow and other genera in green. The size of the circles
represents the mean relative abundance of each genus in the OOA population. Solid lines represent positive correlations and dashed lines represent
inverse correlations (all p,0.001). Numbers connecting microbes are the correlation coefficient. (D) Diversity in the three networks as measured by
the Shannon Diversity metric.
doi:10.1371/journal.pone.0043052.g001
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microbiota. To the extent that Amish famers come in closer

contact with livestock than Amish in other occupations, this

observation is intriguing in that the gut microbiota of various

livestock species has been reported to contain a high relative

abundance of the xylanolytic bacterial species Prevotella [23–25],

although this result is also consistent with the interpretation that

the ‘over-representation’ of the Prevotella-dominated microbiota is

really due to an under-representation of the Bacteroidetes and

Firmicutes-dominated phyla. Regardless, this leaves open the

speculation that the environment may in some situations play an

Figure 2. UniFrac Principle Co-Ordinates Analysis plot, showing each study sample positioned according to its first two principle
coordinates. These are determined by the classical multidimensional scaling algorithm so that the Euclidean distance between points approximates
the unweighted UniFrac distance between the OTU profiles of the corresponding samples, colored by Abundance of (A) Prevotella, (B) Bacteroides,
and (C) Firmicutes.
doi:10.1371/journal.pone.0043052.g002

Table 3. Regression analyses between bacterial networks and metabolic phenotypes.

Variable Network 1 Network 2 Network 3
p-value for
Network Effect Contrast p-value

Age (yrs) 47.561.1 49.662.4 48.661.2 0.82

Sex (% male) 44.5 23.3 30.6 0.01 Network 2 vs. Network 3
Network 2 vs. Network 1
Network 3 vs. Network 1

0.37
0.02
0.02

BMI (kg/m2) 29.160.5 29.360.8 29.460.5 0.79

Waist (cm) 92.861.0 91.8629.3 91.861.1 0.95

HDL-cholesterol (mg/dl) 59.461.3 59.362.1 59.561.2 0.76

Triglycerides (mg/dl) 82.564.3 96.569.8 81.864.1 0.39

Glucose (mg/dl) 87.060.8 89.462.1 87.160.8 0.42

Systolic BP (mm Hg) 117.661.1 117.562.2 118.361.4 0.88

Diastolic BP (mm Hg) 71.160.7 71.361.3 70.460.9 0.69

Reached Menopause (%) 39.8 19.3 41.0 0.72

Has one or more metabolic syndrome traits (Yes/No) (%) 29.5 46.5 31.4 0.18

All analyses adjusted for age and sex except analyses of age and sex, which were unadjusted. See Table 1 legend for definitions of metabolic syndrome traits.
doi:10.1371/journal.pone.0043052.t003
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important role in modulating community composition, and may

even suggest that transmission of gut microbes may occur across

host species. This possibility is highly speculative, but suggests

a potential avenue for future follow-up.

We hypothesized that we would identify differences in the gut

microbiota that would be associated with body weight and/or

features of the metabolic syndrome in this cohort. Neither B/F

ratio nor community structure was associated with BMI or

metabolic syndrome traits. Further investigation using network

analysis identified 22 bacterial species and 4 OTUs that represent

between 0.03 and 31% of the total sequence reads that were

statistically significantly correlated with BMI and several features

of the metabolic syndrome. Approximately half of these species are

members of the core gut microbiota in the Amish and members of

the Bacteroidetes and Firmicutes phyla.

In summary, we have carried out a survey of the gut microbiota

and its relationship to obesity and metabolic syndrome in the

OOA, a population of common genetic background and similar

lifestyle. Our results have identified a subset of bacterial taxa that

are linked to metabolic syndrome traits; although the cross-

sectional nature of this study makes it difficult to infer cause and

effect with these data alone. Follow-on longitudinal studies can

begin to address whether specific gut bacterial taxa a play a causal

role in the predisposition to or development of the metabolic

syndrome, as well as the utility of interventions that modulate the

composition of the gut microbiota to mitigate the risk of

cardiovascular complications associated with metabolic syndrome.

Materials and Methods

Study Population and Sample Collection
Our study population consisted of Old Order Amish adults

from Lancaster County, Pennsylvania. The Amish sect originated

in Berne, Switzerland in 1693 as an ultraconservative wing of the

Mennonite movement [11,12]. Over approximately 50 years,

beginning in 1727, a small number of Amish immigrated to

eastern Pennsylvania. The Amish in Lancaster County have

expanded to over 30,000 today. Our analyses indicate the

Lancaster Amish population descended from a total of 275

founders, 76 of whom (31 men and 45 women) account for over

95% of the average founder contribution [29].

All recruitment was performed between April 2008 and

September 2010. Eligibility criteria included the following: of

Amish descent; age between 20 and 80 years. We recruited

subjects over a wide range of BMIs. Exclusion criteria included the

following: currently pregnant or have been pregnant in the last 6

months; antibiotic treatment within the prior 6 months; currently

taking a medication (e.g., antibiotic, anti-inflammatory agents,

glucocorticoids or other immune modulating medications), un-

willing to discontinue vitamin or supplements, including probio-

tics, potentially affecting the gut microbiome (vitamins/supple-

ments and medications that were judged to possibly affect the gut

microbiome were discontinued for at least 14 days prior to stool

collection); renal insufficiency (serum creatinine .2 mg/dl);

hematocrit ,32%; uncontrolled thyroid disease (TSH ,0.4 or

.5.5 mIU/; co-existing malignancy; history of intestinal surgery

(except appendectomy or cholecystectomy); history of inflamma-

tory bowel disease, celiac disease, lactose intolerance, chronic

pancreatitis or other malabsorption disorder.

Recruitment was performed during an initial home visit by

a field team consisting of a nurse and an Amish Liaison. A

screening questionnaire, height, weight, and hip measurement,

and blood tests (comprehensive metabolic panel, complete blood

count, thyroid stimulating hormone (TSH), celiac screen; Quest

Diagnostics, Inc, Horsham, PA) were obtained to rule out

exclusions (see below). Eligible and consenting volunteers were

provided with a stool sample collection kit and instructions for

collection (see below). A follow-up home visit was conducted after

an overnight fast to obtain additional information through

questionnaires (such as medical and family history, food frequen-

cy), blood pressure measurements, and collection of blood, urine,

and fecal samples.

All procedures were performed by trained personnel using

standard operating procedures following the guidelines of the

University of Maryland and the Amish Research Clinic [12].

Height and weight were measured by trained nurses in subjects

without shoes and in light clothing using a stadiometer and

calibrated scale. Body mass index was calculated as weight in

kilograms divided by height in meters squared. Waist circumfer-

ence was measured to the nearest 0.1 cm using an inelastic tape.

Blood pressure was obtained manually with the subject in the

sitting position after he or she had been sitting quietly for 5

minutes and the average of 3 measurements was used for analysis.

Blood was drawn after a .8 hour fast and serum glucose, total

cholesterol, HDL-cholesterol, and triglycerides, and C-reactive

protein were assayed by Quest Diagnostics (Horsham, PA). LDL-

cholesterol was calculated using Friedewald’s formula.

For collection of feces, subjects were instructed to collect a stool

sample within 1 day of the scheduled home visit. The sample was

collected in a disposable ‘‘nuns’’ hat, and a portion of the sample

(approximately 1–2 g) was immediately dispersed in RNALater

(QIAgen) and refrigerated overnight. RNALater-stabilized sam-

ples were then frozen at 280uC and transported on dry ice to the

Institute for Genome Sciences for long-term storage. In a subset of

Table 4. Distribution of subjects in each microbiota network, according to occupational class.

Men Women

Network 1
Prevotella
(n =65)

Network 2
Bacteroides
(n = 10)

Network 3
Firmicutes
(n=37)

Age adj.
p-value*

Network 1
Prevotella
(n = 81)

Network 2
Bacteroides
(n = 33)

Network 3
Firmicutes
(n =84)

Age adj.
p-value

Farmers 29 (44.6) 0 (0.0) 15 (40.5) 0.78 0 (0.0) 0 (0.0) 0 (0.0) –

Tradesmen 22 (33.8) 5 (50.0) 16 (43.2) 0.51 0 (0.0) 0 (0.0) 0 (0.0) –

Farmer’s wives 0 (0.0) 0 (0.0) 0 (0.0) – 11 (13.6) 1 (3.0) 8 (9.5) 0.25

Teachers/shopkeepers 12 (18.4) 3 (30.0) 4 (10.8) 0.32 69 (85.2) 29 (87.9) 73 (86.9) 0.92

Unknown/retired 2 (3.1) 2 (20.0) 2 (5.4) 0.09 1 (1.2) 3 (9.1) 3 (3.6) 0.13

*p-value for test of association of occupational class with microbiota network.
doi:10.1371/journal.pone.0043052.t004
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19 subjects, a second fecal sample was obtained 2 to 24 months

later through a home visit. An interval history and follow-up

anthropometry was also obtained at that home visit to assess any

changes in health status or medication usage (including anti-

biotics). Protocols and procedures for this visit were similar to

those in which the first fecal sample was obtained.

The Institutional Review Board at the University of Maryland

School of Medicine approved the protocol and informed consent

was obtained from all subjects.

DNA Extraction
For DNA extraction, a 0.3 g stool aliquot was transferred to

a DNA/RNA-free sterile tube, and 1 ml of phosphate-buffered

saline was added to the sample. Cell lysis was initiated by adding

50 mL of lyzosyme (10 mg/mL) and 6 mL of mutanolysin

(25,000 U/mL; Sigma- Aldrich). After a1 hour incubation at

37uC, each sample was further lysed by addition of 10 ml
Proteinase K and 50 ml 10% SDS, followed by incubation at

55uC for 45 minutes. The samples were then disrupted by bead

beating, which was performed in a FP120 FastPrep at 6.0 m/s for

40 sec using 0.1 mm silica spheres (QBiogen Lysis Matrix B). The

resulting crude lysate was processed using the ZYMO Fecal DNA

Kit (Zymogen) according to the manufacturer’s recommendations.

Negative extraction controls, where stool samples were omitted,

were performed to ensure the samples were not contaminated by

exogenous bacterial DNA during the extraction process. The

DNA concentrations in the samples were measured using the

Quant-iT PicoGreen dsDNA assay kit from Molecular Probes

(InVitrogen).

Pyrosequencing of Barcoded 16S rRNA Gene Amplicons
Universal primers 27F and 338R were used for PCR

amplification of the V1–V3 hypervariable regions of 16S rRNA

genes. The 338R primer included a unique sequence tag to

barcode each sample. The primers were as follows: 27F-59-

GCCTTGCCAGCCCGCTCAGTCAGAGTTT-
GATCCTGGCTCAG-39 and 338R-59-

GCCTCCCTCGCGCCATCAGNNNNNNNN-

CATGCTGCCTCCCGTAGGAGT-39, where the underlined

sequences are the 454 Life Sciences FLX sequencing primers B

and A in 27F and 338R, respectively, and the bold letters denote

the universal 16S rRNA primers 27F and 338R. The 8-bp barcode

within primer 338R is denoted by 8 Ns. Using 96 barcoded 338R

primers [30] the V1–V3 regions of 16S rRNA genes were

amplified in 96-well microtiter plates using AmpliTaq Gold DNA

polymerase (Applied Biosystems) and 50 ng of template DNA in

a total reaction volume of 50 mL. Reactions were run in a PTC-

100 thermal controller (MJ Research) using the following cycling

parameters: 5 min of denaturation at 95uC, followed by 20 cycles

of 30 s at 95uC (denaturing), 30 s at 56uC (annealing), and 90 s at

72uC (elongation), with a final extension at 72uC for 7 min.

Negative controls without a template were included for each

barcoded primer pair. The presence of amplicons was confirmed

by gel electrophoresis on a 2% agarose gel and staining with

SYBRGreen. PCR products were quantified using a GelDoc

quantification system (BioRad) and the Quant-iT PicoGreen

dsDNA assay. Equimolar amounts (100 ng) of the PCR amplicons

were mixed in a single tube. Amplification primers and reaction

buffer were removed from each sample using the AMPure Kit

(Agencourt). The purified amplicon mixtures were sequenced by

454 FLX Titanium pyrosequencing using 454 Life Sciences

primer A by the Genomics Resource Center at the Institute for

Genome Sciences, University of Maryland School of Medicine,

using protocols recommended by the manufacturer as amended by

the Center.

Sequence Analysis
Sequences were binned and trimmed, using the sample-specific

barcode sequences, using mothur and the following criteria: (i)

sequence length .199 bases, (ii) sequence length ,501 bases,

number of ambiguous bases = 0, exact barcode matching, 1

nucleotide mismatch in primer matching, and maximum homo-

polymer string of 8 bases [31]. Taxonomy assignments were done

by kmer-based naive-Bayes classification via mothur classify.seqs

applied to the GreenGenes [32] reference sequences and

taxonomy, with a confidence cut-off of 0.5. Operational

taxonomic units (OTUs) were determined using mothur by (i)

alignment to the SILVA 16S rRNA database [33], (ii) clustering by

bacterial family [31], and a distance matrix cutoff of 0.03. Jensen-

Shannon divergence between genus-level frequency distributions

was calculated for each pair of samples, and the square-root of this

was used to perform hierarchical clustering with complete linkage

via the R hclust command. The three top-level clades were then

used as the three groups.

Construction of Bacterial Networks
For each network, we transformed the 16S rRNA sequence

reads into relative abundance, computed the Spearman rank

correlation, and then constructed a genera network and identified

a sub-network (module) with those genera that have a direct

connection. The network was constructed with the cutoff p value

of less than 0.001.

Network Analysis with Integrated 16S rRNA Sequence
and Clinical Data
To visualize the interconnectivities between species in the

human gut microbiota and clinical phenotypes, we transformed

the number of 16S rRNA sequence reads from each sample into

relative percentages, and then computed the cross-correlation

matrix between clinical metadata and sequence data with the

Spearman rank correlation. The network was constructed with

correlations that have a p-value of 0.005 or less. The sub-networks

(modules) are identified with the Louvain algorithm [34].

Phylogenetic Tree Construction
Representative 16S rRNA sequences assigned to the 13 species

and 12 OTUs with correlations to MST, were aligned to the

SILVA database of reference 16S rRNA genes [33] using

Figure 3. Bacterial species and OTUs correlated with metabolic syndrome phenotype. (A) Known species and Operational Taxonomic
Units (OTUs) (green circles) linked to metabolic syndrome traits (yellow diamonds), illustrating statistically significant correlation coefficients using the
Louvain algorithm. The size of the circles represents the mean relative abundance in the Amish cohort studied. Numbers connecting microbes are the
correlation coefficient (p,0.001 for all). Solid lines represent positive correlations and dashed lines represent inverse correlations. (B) The same
network as shown in panel A, but also including the statistically significant associations between bacterial taxa. (C) Phylogenetic tree of 16S rRNA
sequences from the bacterial taxa in this network using the R implementation of DNADIST and FASTME. OTUs and known species that are inversely
correlated with metabolic syndrome traits are colored in red and that are positively correlated with metabolic syndrome traits are colored in blue
(p,0.001 for all).
doi:10.1371/journal.pone.0043052.g003
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MOTHUR (align.seq) and trimmed based on reference coordi-

nates using screen.seqs/filter.seqs to include sequences that were

atleast 200 bp over the V1–V3 region. Distances were calculated

with the trimmed multiple sequence alignment using DNADIST

[35] in the R APE package. A phylogenetic tree was constructed

using FASTME [36,37].

Association of Major Networks with Demographic and
Other Factors
We compared the distribution of the three major groups across

a variety of factors including age, sex, occupation, season of feces

collection, and metabolic syndrome-related phenotypic character-

istics of the study subjects. We tested the association of bacterial

groups with demographic and metabolic factors by regressing

group, coded as a class variable with 3 levels, against each

metabolic variable separately, and adjusting for age and sex. This

was a 2 df test. Continuously distributed variables were compared

across groups using analysis of variance. Whenever a significant

association was detected, we then tested each pairwise contrast

separately (e.g., group 1 vs groups 2 and 3; group 2 vs groups 1

and 3; and group 3 vs groups 1 and 2) to determine the relative

contributions of each contrast to the difference. These analyses

were run in SAS using the GLM procedure.

Because our sample of 310 individuals included 113 nuclear

families, we were able to estimate the heritability of enterotype by

comparing concordance rates for enterotype class between spouse

pairs (who are unrelated) and sib-pairs and parent-offspring pairs

(who share 50% of their genes in common). We estimated

heritability as twice the difference in concordance rates between

the first-degree relative pairs and the spouse pairs.

Supporting Information

Figure S1 Rank abundance of genera in the gut micro-
biota of the Amish. Relative abundance of the top 100 species

identified across all samples in this study.

(EPS)

Figure S2 Prevalence of bacterial genera in the Amish.
The prevalence of a genus was calculated as the percent of subjects

in which that genus is present. Genera are colored by percent

mean relative abundance, 0–0.42 (blue), 0.42–1.6 (purple), 2.6–5.4

(navy) and 6.1–28 (red).

(EPS)

Figure S3 Distribution of genera in the Amish. Histogram

of prevalences among all 203 genera observed in the Amish cohort

studied. The peak on the left represents the many genera observed

in a small number of samples, while the peak on the right

represents the core microbiota, observed in 95% or more of the

samples.

(EPS)

Figure S4 Bacteroidetes and Firmicutes composition in
the gut microbiota of 310 Old Order Amish subjects. Bar
plots show the fraction of total sequence reads assigned to the

bacterial families Bacteroidaceae, Prevotellaceae, Lachnospira-

ceae, and Ruminococcaceae in lean women (FN), lean men (MN),

overweight/obese women (FB) and men (MB) without, and

overweight/obese women (FM) and men (MM) with metabolic

syndrome traits.

(EPS)

Figure S5 UniFrac distribution of OOA subjects based
on BMI. UniFrac Principle Co-Ordinates Analysis plot, showing

each study sample positioned according to its first three principle

coordinates. These are determined by the classical multidimen-

sional scaling algorithm so that the Euclidean distance between

points approximates the unweighted UniFrac distance between the

OTU profiles of the corresponding samples. For this analysis,

subjects were divided into 5 non-overlapping phenotype groups:

Normal weight (BMI,25 kg/m2)(N= red, n= 73); overweight

(BMI 25.0–29,9 kg/m2) with no features of the metabolic

syndrome (OvB= yellow, n= 77); overweight with one or more

features of the metabolic syndrome (OvM=green, n = 23), obese

(BMI .30.0 kg/m2 ) with no features of the metabolic syndrome

(OB=green, n= 59), and obese with one or more features of the

metabolic syndrome (OM=violet, n = 77). Features of the

metabolic syndrome were defined by NHLBI criteria: (1) fasting

triglycerides .150 mg/dl (or on triglyceride lowering medication

prescribed by a physician); (2) fasting HDL#50 mg/dl for women

or #40 mg/dl for men (or on HDL raising medication prescribed

by a physician); (3) either or both systolic or diastolic blood

pressure .130/85 mm Hg (or on anti-hypertension medication

prescribed by a physician); (4) fasting glucose .100 mg/dl (or on

anti-diabetes medication prescribed by a physician). Waist

circumference was not included in our definitions because of the

high correlation between waist circumference and BMI.

(EPS)

Figure S6 Community profile comparison in samples
from the same subject. Principal Co-Ordinates Analysis plot,

showing each study sample positioned according to its first two

principle coordinates of the square root of the Jensen-Shannon

divergence. Samples belonging to the same sample are denoted

with the same symbol. Phenotype is indicated by specifically

normal weight, BMI,25 kg/m2 (red); overweight and obese with

no features of the metabolic syndrome, BMI .25.0 kg/m2

(purple) and overweight and obese with features of the metabolic

syndrome, BMI .25.0 kg/m2 (blue).

(EPS)

Table S1 Sequencing Statistics.

(DOCX)

Table S2 Regression analyses for phenotype clusters in
the OOA.

(DOCX)
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