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ABSTRACT

Natural salt deposits contain small brine inclusions which can be set
into motion by a temperature gradient arising from storage of nuclear wastes
in the salt. Inclusions totally filled with liquid move up the temperature
gradient, but cavities which are filled partly with liquid and partly by
an Insoluble gas move in the opposite direction. The velocities of these
gas-1liquid inclusions are calculated from a model which includes: heat
transport in the gas/liquid/solid composite medium; vapor transport of water
in the gas bubble as the principal mechanism causing cavity motion; and the
effect of molecular and thermal diffusion on transport of salt in the liquid
phase. An analytical expression for the inclusion velocity is obtainable
with certain simplifications, which include: approximating the cubical cavity
in the solid as a spherical hole containing a central gas bubble and an
annular shell of liquid; neglecting interface kinetics (i.e., slow dissolution
and crystallization steps) and assuming the process to be diffusion-controlled
and disregarding fluid motion generated by surface tension gradients at the
gas/liquid interface. The theory predicts a change in the migration direction
at a critical volume fraction gas in the cavity. For gas fractions greater
than this critical value, the theory gives the velocities of migration down
the temperature gradient which are in satisfactory agreement with available

experimental data.
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A.  INTRODUCTION

Natural salt deposits contain small cubical inclusions of brine dis-
tributed through the saltb(l) Temperature gradients resulting {rom storage of
heat-generating wastes can cause the inclusions to move through
the salt,(z) (3) Prediction of the rate and amount of brine-inclusion
migration is necessary for the evaluation of bedded or domed salts as
possible media for waste repositoriese(4) )

Inclusions filled exclusively with liquid migrate up the temperature
gradient towards the heat source. However, some inclusions also contain
a gas phase consisting of water vapor and an inert gas. These two-phase
inclusions usually migrate down the temperature gradient away from the
heat source, remaining more-or-less cubical as they do so. A two-phase
inclusion also forms when an all-liquid inclusion reaches the waste pack-
age; upon opening up at the salt-package interface, the brine partially
evaporates and the inclusion reseals with some insoluble gas trapped

inside. These gas-liquid inclusions proceed to move down the temperature
gradient, in the opposite sense of the all-liquid inclusions. The
behavior of gas-liquid inclusions in a thermal gradient is particularly
relevant to the technology of nuclear waste disposal because the phenomenon
provides a pathway by which radionuclides leached from the wasteform by
the brine can be transported away from the waste package and thus have
greater access to the biosphere.

The mechanism of thermal gradient migration of gas-liquid inclusions
is shown in Fig. 1. Water vapor evaporates from the hot side of the gas
bubble in the brine and is transported to the cold side where it condenses.

The condensed water is recycled to the hot side by backflow of the brine,



which provides the mechanism for moving salt from the cold face of the
inclusion to the hot face. The inclusion moves in the opposite direction
from the salt flow.

The object of the analysis is to determine the velocity of the two-
phase fluid inclusion in the thermal gradient imposed on the solid salt.
We present a more detailed theory of this process than that offered by
(6)

Anthony and Cline In particular, we allow for:

i) non-uniform flow field in the liquid;
ii) the effect of the heat of vaporization of water on the tempera-
ture distributions;
iii) non-uniform concentration distribution of the salt dissolved in

the liquid phase.

Detailed fluid flow, heat and mass transport calculations cannot be
done analytically for the actual geometry of the inclusion, which is a gas
bubble in a cubical brine cavity in an infinite medium of solid. Therefore,
the cubical shape of the cavity is approximated by a sphere of radius b
with a central spherical bubble of radius a. The spherical shell between
the gas bubble and the solid is filled with liquid. This composite sphere
is embedded in an infinite medium of solid which supports a temperature
gradient VT _ at large distances from the inclusion.

The calculated temperature distribution in a single-phase spherical
inclusion embedded in an infinite solid(7) shows that the temperature gradient
inside the sphere is wmiform across the cross section, Thus, the vapor flux
which is driven by the temperature gradient inside the sphere (via the
temperature dependence of the vapor pressure) is also uniform over the sphere

cross section, We assume that the one-dimensional nature of the vapor flux

.



across the central bubble is also applicable to the two-phase inclusion,
which can be justified at the completion of the calculation. We define j
as the flux of water vapor (mole/cmzasec) across the gas bubble (hot-to-cold).
In Section B, the flow field in the liquid shell necded to return the
water flux arriving from the vapor phase is determined. In Section C, the
temperature distributions in the gas, liquid, and solid phases are calculated,
In Section D, the concentration distribution of salt dissolved in the liquid
shell is determined. The water flux is calculated in Section E and in
Section F, the velocity of the inclusion is computed. The theory is

compared with data from the literature in Section G.

B.  FLUID FLOW IN THE LIQUID SHELL

The flow of water in the liquid phase which returns the water vapor
flux j requires a pressure drop in the liquid. The pressure drop is denoted
by 4p, and represents the liquid pressure on the cold side of the inclusion
minus that on the hot side, Ap, is determined by the quantity of fluid which
is moved (which is proportional to the vapor flux j) and by the flow resist-
ance in the liquid shell. The pressure drop must be estimated in order to
determine whether it is sufficiently large to affect the vapor flux j. The
connection between Ap, and j arises from the relation between pressure in a
liquid and the curvature of the gas-liquid interface, The latter in turn
affects the vapor pressure of water, which is the driving force for the vapor
flux j.

Rather than deal with the complexity of laminar flow in a spherical
liquid shell with a continuous distribution of mass flux on its inner

boundary, we estimate p, by using the Hagen-Poiseuille formula for flow in



a straight duct:

Apz = 32 e e (1)

4

where 11, is the viscosity of the liquid, L and dh are the channel length and
hydraulic diameter, respectively, and u is the mean speed of the flowing
liquid. Tn applying Eq. (1) to the liquid shell of the spherical inclusion
the flow path is considered to run fram the cold side of the inclusion to
the hot side around half of the circumference through the middle of the liquid

shell, or

The hydraulic diameter is defined as 4 tines the cross sectional area for
flow divided by the wetted perimeter. For the liquid shell, the flow area
is ﬁ(bzmaz) and the wetted perimeter is 2mb (the inner boundary of the shell

does not contribute to the wetted perimeter because it offers no frictional

resistance to the flow). Therefore, the hydraulic diameter is:

2 7hb b

o = 41 b%-a%)  _ 2 (bra) (b-a) 3

The maximm backflow through the liquid shell occurs at the midplane where

the average velocity is:

. 1 ‘(ﬂaz) . aZ
o= 1ot g el @)
pz ﬂ(b —a ) Q)Q (el A

where P, is the density of the liquid.
Substituting Egs. (2) - (4) into Eq. (1) yields:
41 Ho HZ

Ap, = . (5)
2 bga @) ? m-1)°




where H = b/a. It is to be noted that Ap, increases very rapidly as the
liquid shell becomes thin (i.e., as > 1). An idea of the magnitude of Ap, can

be obtained by using physical property data for NaCl brine at ~ SOOC, assuming a

10 ym diameter inclusion containing 35% by volume of gas, and taking

j o= 2x10w7 moles/cn?~secn (This value of j is computed in Section E but we
borrow it for the purpose of this calculation). Using these figures, Eq. (5)
gives Ap2 = Z.X.‘M)m4 Pa (2x10“9 atm). Thus, only an exceedingly small pressure
drop is needed to drive the water backflow.

Because of the curvature of the bubble surface, the pressure in the
liquid is smaller than the pressure of the gas, which is wniform throughout
the gas bubble, The difference of the liquid pressures at the hot and cold
sides of the bubble is related to the radii of curvature of the interfaces

at these two locations by:

11 )

where v is the surface tension of water and.Rh and,RC are the radii of
curvature on the hot and cold sides of the bubble, respectivelyo Thus, the
bubble must depart slightly from spherical shape in order to provide the
pressure driving force bp, to return the flux of vapor crossing the bubble
in the gas phase.

The vapor pressure over a curved liquid surface is different from that

(8).

over a flat surface. This phenomenon is described by Kelvin's equation

P, RTp, R ) Rrp, /R (7)



where pw(R) is the vapor pressure above a surface with radius of curvature

R and R is the gas constant. Ignoring for the moment the effect of temper-
ature (and salt concentration) on P, the vapor pressure difference due only
to bubble distortion is, from Eq. (7):

P (Ry - D (Rh)
e *“("“Y“R?y)(%%) (8)
pw pﬁ h C.

Eliminating the difference in the reciprocal radii of curvatures between

Fgs. (6) and (8) yields:

~
i(pw)cold - (Qw)hot] Apl
bubble

= e 9
Py, RTp,

distortion
where (pw)cold = pw(ﬁc) and (pw)hot = pw(izh)° Using the value of Apg
estimated previously, the fractional change in water vapor pressure due to
the bubble distortion needed to drive the backflow is ~ 10°129
This number is to be compared with the vapor pressure difference due

to the temperature gradient across the bubble, which is primarily

responsible for the water flux. This is:

| o dp,\ (ar op
(pw>cold (pw)hot =1 (Eﬁ;ﬁ (qu) a = - L (—mﬁg a VI (10)
5 Py dz Py dr
W
enp.
gradient

where dpw/dT is the variation of the vapor pressure of water with tempera-
ture. The temperature gradient across the bubble, dTg/dzs has been
approximated by the gradient in the solid far from the inclusion, VT_.
Note that the vapor pressure difference due to bubble distortion is in the
opposite sense as that due to the thermal gradient, and in this way the

flow resistance to the liquid backflow acts to reduce the flux j. However,

-6-



using VI = 5 oK/cm and a = 5}(10«4 cm, we find that the fractional difference
in water vapor pressure due to the‘temperature gradient is mlGudﬁ which is

8 orders of magnitude larger than that due to bubble distortion. Thus we
conclude in agreement with Anthony and Cline(é)ﬂ but for a different reason -
that the resistance to the backflowing liquid is so small that it has a

negligible effect upon the vapor flux j.

The flow field in the liquid shell can be estimated for a prescribed
vapor flux without the necessity of confronting the Navier-Stokes equations,
The radial and angular components of the velocity in the shell a <r=<b

are denoted by u and u It is convenient to deal with the molar flow

o
distribution, with components jr and J@ which are related to the velocity

components by:

(11)
Jo 7 Py
where Py is the total molar density of the liquid. »
The flow field is computed by neglecting the presence of dissolved salt
in the liquid phase (the mole fraction of salt in saturated brine is ~ 0.1)
and calculating the flow of a pure water layer. In this approximation,
Jp and Jg vanish at r = b because the outer boundary of the shell is assumed
to be impervious.
With reference to the section of the liquid shell shown as the shaded
area in Fig. 2, the supply of water to this volume element comes from the

vapor flux j across the circular cross section of the central sphere which

passes through points 1 and 2. Since the rear surface of the volume element



(at r = b) is impervious to water, all of the water vapor crossing the
circular cross section must return as backflow through the liquid shell,

which yields:

vy

2 sind jﬁ T (njg) dr = jnaz sjnZO (a2
a

The radial distribution of the Jg flow is sketched in Fig. 2. We assure
that the shape of this profile is independent of O but that its magnitude
changes with 0 as water is condensed or evaporated at the inner boundary

of the shell. Thus, we seek a solution for J. in the separable form:

0

J, = k(0) F(r) (13)
The function F(x) is chosen to satisfy the boundary conditions

Jo(r=b) = F(b) =0 (14)

) - - a9

Eq. (15) is a reflection of the absence of a shear stress at the
gas/liqu&d boundary. Surface shear generated by surface tension gradients
1s not considered. A function which satisfies Eqs. (14) and (15) is:

P = - 60 [20-2) - 0] (16)
Inserting Eq. (16) into Bg. (13) and thence into Eq. (12) determines the
magnitude factor k (0) by:

a’x(e) = 4500 (17)
where

h=f@-1°+1/4 @-D° (18)

and H = b/a.



Using Egs. (16) and (17) in Eq. (13) gives:

Jo = - JF(n) sind (19)
where n = r/a and

FM) = %0-n) (H-2+1)/h (20)

The flow component J,. can be calculated from Eq. (19) and the overall

continuity equation:

1 3, 2 1 3, . . _
‘;2 -5}*(1“ Jr) + Em “a”é"($ln@ JO) = (21)

Integrating this equation from r = r to r = b and noting that Jr(r:b) = 0,

we have:

b
2 1 o [, . » .
-3 jr = mw Lsm@ j‘r (“‘Je) dr] (22,)
X

Substituting Eg. (19) into Eq. (22) results in:

Jr = =3 U(n) cosO (23)
where:
u(ny :[(%sz ) @ n%) + En @- nd) - n'- n4)]/h (24)



C. TEMPERATURE DISTRIBUTION IN A GAS-LIQUID INCLUSION

The temperature distribution in a stationary sphere imbedded in an
infinite medium of different thermal conductivity which supports a temperature

(7)

gradient in the z-direction VI is well-known. However, if the sphere
moves under the influence of a mass transport process driven by the
tenperature gradient, additional factors affecting heat transport appear,
First, the movement of the sphere introduces a convective heat transfer term
in the infinite medium, so that the temperature distribution in this region
is no longer a solution of Laplace's equation. This moving-medium effect
is quite small because the velocity of sphere motion is generally very small
and is neglected here. The second effect is related to the change of phase
which occurs at the surface of the sphere to generate the mass flux which
moves the sphere. This phase change, which in the present case is vaporiza-
tion of water, entails an enthalpy change which must appear in the heat
transfer analysis. Finally, since the inclusion consists of a liquid contain-
ing a bubble of gas the temperature distributions must be determined by solu-
tion of the heat conduction equations in the composite medium consisting of
a central sphere of gas of radius a, a shell of liquid of outer radius b
surrounding the central bubble, and an external infinite medium of solid.
Vaporization of the liquid from the hot portions of the surface of the bubble
and condensation on the cold parts of the surface generates a mass flux j
in the negative z-direction within the bubble.

In order to calculate the temperature distribution in this three-
phase system, Laplace's equation must be solved for each phase and the
solutions joined by appropriate conditions at a and b.

Temperature Distribution in the Solid

The general solution of Laplace's equation for the axisymmetric

-10-



. J .. (9
spherical coordinate system 15( ):

[oe]

1= 2 (ap" o™ 76 (25)
7 n=0

where TS is the temperature in the solid atn = r/a and 1 = cos®, and
b are the Legendre polynomials. The boundary conditions at large distances
from the inclusion are:

NF

oT_

= VI for r>>a
3z 0

aT ol

S

e 5§§~+ 0 for r>>a
where x and y represent the two rectangular coordinates perpendicular to

the direction of the thermal gradient. Gradients in these directions vanish

far from the inclusion.

Performing the transformation from rectangular to spherical coordi-

nates(lez the boundary conditions are written:
oT 2, (1 %s
(8 v aed (F D) (26)
vosou (an )n:m N
oT G
G 1 S -
o = (=8) - w(s 5 (27)
N n oy )n "

where V = avT .

Application of Eqs. (26) and (27) to Eq. (25) gives:

a, = T
al =V (28)
az = aS = =

-11-



where T is the temperature of the solid at the z position of the middle
of the inclusion but far from the inclusion in the lateral direction.

Temperature Distribution in the Gas

Neglecting convection due to the sensible heat transported by the mass
flux j, the energy equation for the central pas sphere reduces to laplace's
equation, for which the solution is:

T = 3, con P_(n (29)
n
n=0
Solutions involving l/nn+1 are inadmissible because they are unbounded

at the center of the sphere.

Tenperature Distribution in the Liquid Spherical Shell

Convective heat transfer is also neglected in the spherical shell of
liguid even though the flux j down the temperature gradient in the sphere
must be returned by a comparable backflow up the thermal gradient in the
liguid surrounding the sphere. That the convective hegt transport effect
is small compared to conduction in the liquid can be demonstrated by the
following argument.

The energy equation for the liquid in the spherical shell is:

9T u_ 9T
L o 2 2
s i v o= T
0 Coy [ur g ] k, VoI, (30)

where Py Cpg° and kQ are the total density. heat capacity and thermal
conductivity of the liguid, respectively and VZ is the Laplacian operator

in axisymnetric coordinates. The fluid velocity components are related

-12-



to the molar flux components J. and.JO by Eq. (11), so that BEq. (30) is:

T or r 90 T % (31)
Pl
Substituting Je and Jr given by Egqs. (19) and (23) into Eq. (31) and
using dimensionless coordinates yields:
oT 2 9T
_ L 1-1 '8 - 1 2
where the Laplacian v is now in terms of n while F{y) and U(n) are the functions
defined by Egs. (20) and (24).
The Peclet number for heat transfer, Peh, is the product of the Reynolds

and Prandtl numbers,

p,u.a\ C u
= A1 pLe

where u; = j/pg is a characteristic system velocity, in this case equal to
the liquid velocity at the bubble surface due to condensation or evaporation

of water.

Using typical values of the factors in Eq. (33) for brine, the constant

Peh is found to be < 1O°4°Since the terms on the left-hand side of

Eq. (32) are of order unity, so must be the right-hand side. The only

way that this can be achieved with Peh very small is for VZTQ to be approxi-
mately zero. Thus, convective heat transfer can be neglected and the
energy equation in the liquid shell reduces to Laplace's equation for pure

conduction. The temperature distribution is thus given by:

_ . n n+1 2

The coefficients bn’ s drl and e in the solid, liquid and gas
temperature distributions are determined by the following conditions at
the interfaces at r = a and r = b,

-13-



Vapor-Liquid Interface (r=a)

The requirement of temperature continuity at the gas-liquid boundary is:

Tg(rﬁa) = Tg(rﬁa) | (35)

The energy balance at the gas-liquid interface takes the form:

oT . BTQ\
Kg (§Ew> + j oost HQ = kg (5}“}1 -+ j cos0 Hg (36)

a <
where kg is the thermal conductivity of the gas and.Hg and H, are the specific
enthalpies of the vaporizing species in the two states. The difference

Hg ~ H,  is the heat of vaporization AH Eq. (36) is an energy balance normal

% A

to the surface, and jcos© is the radial component of the mass flux at r = a.

Liquid-Solid Interface (r=b)

The temperature and heat flux are continuous at this boundary:

Tﬁ(r:b) = Ts(rﬁb) (37)
and
oT ot
k(2) =k, (=4 (38)
S or b 2 ' 9r b

where k; is the thermal conductivity of the solid.

Bxplicit Solutions for the Temperature Distributions

The series solutions of Fgs. (25), (29) and (34) are substituted
into Eqs. (35) - (38) and the coefficients of each legendre polynomial

are equated to zero. This procedure yields:

b =e =0
0 o
CO = do =T
and
b =¢ =d =¢ =0 forn>l

-14 -



1y QI
b, = H [3 mwmjéfiziww - %] Vv (39)

1
. 9-1Q 40
cy = g v (40)
§ 20
7 . -
3(2y,,) ;1; (M- v,
d, = A (41)
1 g

3{1 = Ygﬁ) - Q[Z + ‘YQS)

. 42
o : (42)
where
1 3 3
f =2+ 1/H + (1-1/H) Yt (43)
- 3 3
£ o= 2 (1187 + (2/m7) v, (44)
2
o RV o —-— - 45
9 (24 ) (2+vy ) 3 (g @ Yoe) (45)
Joa
Q = f;“\/*"f;‘ (46)
- ] 47
Yo = Kk (48)

The equations above combined with Eq. (28) provide a complete description

of the temperature distributions, TS, Tg and TR‘

bl
To=T v o+ | (49)
n
Tg = T + clnu (50)
. €1
To=Tr << n ot ;7> 1 (51)

-15-



Solution for the Thermal Cradient Amplification Factor

Noting [from Eq. (50)]that ¢y = a(dTg/dz), and V = avT_, Eq. (40) is
equivalent to:

dT
g - 9 - fQ 3
- =10 (52)

The coefficient Q is treated as follows, The bubble contains an inert

gas through which water vapor diffuses in the negative z-direction. The water

{lux is given by(lO):
. Dvptot dpw (53)
? T\pRr Jz

where DV is the diffusion coefficient of water vapor in the gas, Peot is

the total gas pressure, pw,is the vapor pressure of saturated brine and

Py = Pegt ™ Py is the pressure of the inert gas in the bubble. For the present
analysis the effect of varying salt concentration on the vapor pressure can

be neglected and Eq. (53) becomes:

- Dvptot dpw dT =g ;Eg (54)
J PRl dT dz Iz

Substituting Eq. (54) into Bq. (46) and thence into Eq. (52) permits the

thermal gradient amplification factor to be determined:

1 dT 9
AR g Gt (55)
o0 £ SAHV
g+w
Yos \ K

-16-



When vaporization is neglected and the liquid and solid have the same thermal

conductivities (YQS = 1), Bq. (55) reduces to the classical result for a

7

stationary sphere

A 1 dTg 3 5
(vge=1) TG T o (56)

The amplification factors of ILgs.(55) and (56) are compared in
Fig. 3 and some of the properties for the calculations are shown in Tables 1 - 4,
The volume fraction of gas in the inclusion is assumed to be 35%.. The three-
phase calculation predicts a large influence of the latent heat on heat
transport in the bubble. If Yoo in Eq. (55) were very large, the high
conductivity of the liquid shell would climinate the perturbation of the
temperature distribution due to the necessity of transporting the latent
heat of vaporization across the bubble. For the brine/NaCl combination,
however, Yoo © 1/6, and the liquid phase is a poorer conductor of heat than
the solid. Thus, the "insulating blanket" of liquid around the gas sphere
impedes ‘dissipation of the heat of vaporization moved by the flux j across
the bubble. In the limit as Yoo ” 0, dTg/dz + 0 because there arc no means
of returning the latent heat transported across the bubble by conduction in

the liquid or in the solid.

-17-



D. CONCENTRATION DISTRIBUTION OF SALT IN THE LIQUID SHELL
The flux of dissolved salt in the liquid has radial and angular components,
each of which consists of a convective term and a diffusion term. These

components are:

j_ =D, R OBV LAY I -
ST 5T ‘s Py o o,

o 2& ii%. - oC Py~ Cg oT, . JoCs (58)

Jso T T 7|90 s \ o, 56 oy

where the total flow components jr and J@ are those calculated in Section B,
D2 is the diffusion coefficient of salt in water, and Cs is the concentration
of dissolved salt at position (r,0) in the shell. The Soret coefficient, o, is
taken as negative when solute moves towards the cold end (which is the case for

NaCl or KCI solutions). In these expressions (pg - Cs)fpﬁ may be approximated by

unity without greatly affecting the Soret term,
The conservation equation for salt in the liquid shell is:

div j = 0 (59)

Substituting Eqs. (57) and (58) into this relation results in the diffusion

equation:
D VZC = SCS fﬁ.% D, o 33&1 + L ESE, £§.+ zﬁwz, bfzi, (60)
[} s or Py ) or T 90 0y T 90
aT
Using Lgs. (19) and (23) for I, and Jg, Eq. (51) to calculate <§?£> and

T ~ .
<55~>aﬁd casting Fq. (60) into dimensionless terms, we have:

-18-



temperature.

2 28y )
omn

Vg = - PemU(r;] e dl”?“ Mo PemFCﬁj+d‘ d.

. . . sat

where ¢ is the salt concentration relative to CS :
@:ﬁ rE..LS.,,m
csat

and Pem is the Peclet number for mass transfer:

peu.a H
Pe = 271 . L
n Yy Pgly
where

1

KX

1)1 - u° o0
0 N ou
(61)

(62)

(63)

(64)

is the characteristic velocity upon which the Reynolds number is based and

Ug/png is the Schmidt number of the liquid. Using properties of NaCl

brine and a typical value of the water vapor flux j, Pem is found to be

<1077

the diffusion equation can be reduced to the Laplacian form

Vo =0

, and the Soret term in the brackets of Eq(61) are 1ONS, Therefore

(65)

At the outer boundary of the liquid shell, the concentration in the

liquid is assumed to be equal to the saturation concentration at the local

Kinetic restrictions to dissolution of the solid salt or

precipitation from the liquid phase are not considered in this analysis.

Because the temperature variation around the inclusion is small, the

saturation concentration may be expressed as a Taylor series about the

value at the mean temperature:

-19-



dcsat
Cs(rmb) - CzaL +:<~?§}->[%S(rxb) N Tj (66)

Evaluating the temperature change around the circumference of the solid-
liquid interface from Eq. (25) and the coefficients derived thereafter,
we have

)
© (r=b) = T+ (Vb /) (67)

This equation is exact because the coefficients of the higher order
Legendre polynomials in Bq. (25) are all zero. Substituting Fq. (67) into

(66) yields:

sat
ac 2 68
C (r=b) = Ciat:%< d; > mﬁHbl/H Y 1 (6%)
s ¢

sat

In this equation, <?C; /dT> is the change in salt solubility in water with

Tempe rature.,

In dimensionless temms, Eq. (68) is:

¢(n::1-1) = ] au (69)
where:
sat
1 (9 Py .
q = P I7 1+ §?§4 Ha VT (70)
8

CS

The factor q tends to drive a salt flux in the opposite sense as does
the water backflow. This term is the one responsible for the movement of

all-liquid inclusions up the temperature gradient. Using typical values
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for NaCl brine, H = 1.4, VI_ = 5 K/cm, a = 5 yn and byVh® from Fq. (39), we
find that q = 1077,
The boundary condition at r = a which prevents f{low of salt into the

gas phase is

(Far),, =0 (1)
/r=a
Expressing jsr by Eq. (57) and noting that (jsr> = j cos6, this boundary
T=3a

condition beceomes:

aC T j C_(r=a) u
D s - oC_(r=a) <_w&> - (72)
2 0T r=a s oT r=a p2

Using the liquid temperature distribution given by Eq. (51), this boundary

condition can be written in dimensionless terms as:
on

where Pem 1s the Peclet number of Eq. (63). The Soret term is much smaller

- = - Epem - o(dy - 261)] ¢(n=1) u=-Pe! ¢(n=1u (73)

than the convective temm.

The task at hand is to solve Eq. (65) subject to Egqs. (69) and (73).
An accurate approximate method isavailable because g and Pe& are very
small. In the limit that these two parameters approach zero, the
solution is ¢ = 1 (i.e., the liquid is everywhere saturated with salt at
temperature T). Thus we are led to a solution which includes first order

perturbations in q and.Pe&s where Pe& is the bracketed term in Eq. (73).

¢ =1+ gf + PG&Q ‘ (74)

where £ and Q are functions of n and p which are to be determined. Higher

order terms (i.e., with coefficients qZ?CPC%), and q Pe&) are neglected,

Substituting EBq. (74) into Egs. (65), (69) and (73), collectins and equating
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to zero those terms with coefficients Pe% and q yields:

v = 0 (75)
Q(n=H) = 0 (76)
052
(“sﬂnzl == a7)
and:
v = 0 78)
E(n=H) = u (79)
9
o) =0 ®0)
(BnLFl
The solution of Eq. (75 is:
_ n n+l

8 = 2;% %rnn + sn/n > Pn(u) (81)

Substituting Eq. (81) into Egs. (76) and (77) shows that r =s = 0

forn # 1 and:
r o= 1 (
o S T 82)
1 207 + 1
3
H
8 2 e (83)
1 ZH3 + 1
so that:
(H/n) >-1
Q = n mw%m—; ] U (84)
[ 2H 41
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The general solution of Eg. (78) for ¢ is of the same form as that for O given
by Eq. (81). Using this series in Egs. (79) and (80) gives:
2
H 1
£l e 1) (85)
ZH™+1 n
It is to be noted that the perturbation functions & and @ do not contain

higher order legendre polynomials (i.e., P,, Payennn).

E. WATER FLUX IN THE BUBBLE

The next step in determining the velocity of the two-phase inclusion
is to calculate the water vapor flux across the bubble, j. The angular
dependence of the vapor/liquid interface termperature, Tg(nzl)s and salt
concentration at the surface, ¢(n=1), contain only constant terms and temms
linear in up = cos® (but no higher order Legendre polynomials). Therefore,
the flux j, which depends only upon these two quantities, is constant
over the entire cross section of the bubble perpendicular to the z-axis,
as was initially assumed.

Since both j and the coefficient in the parentheses in Eq. (53) are
constants, p is a linear function of z and dp /dz can be regarded as the
difference in the vapor pressures of water at the points on the bubble
surface intersected by a chord parallel to the z-axis divided by the
length of the chord. Interpreting p,, as the vapor pressure of water
over a brine solution of temperature Tg and salt concentration CS allows
the gradient in Eq. (53) to be written as:

¢ AT ] dCC
By (f?w) (ZM§> %ﬂ(ff31> (-M;Q (86)
dz — \oT dz 5C_ ). \dz -

C r=a g 'l r=a
S
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It is convenient to express the effect of salt on the water vapor pressure
over brine sclutions by the boiling point elevation function NPCP,CS),

which is defined in terms of the vapor pressure of pure water p@ by«
- m A = O ATV -«
b, .C) = B [tr. AI(i,LS)] (87)

That is, the water pressure over a brine solution at temperature T and
salt concentration Cs is equal to the vapor pressure of pure water at
a temperature AT lower than the actual temperature T. Using Eq. (87)
and neglecting the temperature dependence of AT (which is small), the

coefficients of the temperature and concentration gradients in FEq. (86)

are:
O . 0
() < (3 (-um) - (D)
aT CS ar T AT T ar T AT
and (88)
d °
(§Vi> = ~(52) (,f)
Cslp T oy \OC
Inserting Eq. (88) into (86) and the result into Bq. (53) gives:
ar dc
s |(Se) (o (s
=8 [(dz (ac d€z (89
r=a s r=a
where
0
g ?V%EQE,(f§¥> 9
p.RT \dl /-t (90)
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The brine concentration at the gas/liquid interface is, from Egqs. (62) and

(74):

Cs (r=a) = Ciat [1 + g&(n=1) +,Pe1;l§2(nzl):l ©1)

At the bubble surface, z = a cos® = au, so using Eqs. (84, and (85)

for Q and &, results in:

at
idcsé 1 BCS} - C: TSH o+ wHBwl Pe’ ©2)
S R S 2 +1 a1 ™

Using Eq. (52) for the temperature gradient and Eq. (92) for the salt

concentration gradient in Eq. (89) and eliminating the parameters Q,

Pe) and q by use of Fgs.(46), (63), (70) and (73) yields an equation which can

be solved for j. The result is:

9 SV, (1-eq-¢,)/g

- (93)
staH, ) scsat AT /51 hUAH
0w (58 ()

1+ 1
ik, Doy NI\ Gfar) 1P B

where £, g and S are given by Egqs. (44), (45) and (90) respectively, and

sat
I TS <.i§£> s (94)
1 1 oC_ J\ dT
e, = -y oCat -1 9AT (95)
2 - g 77s Zgﬂ BCS

sat
BT (am) <dcs > o)
3 ey \9G, daT
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h? = 2 ,,2H3+1 + Y HSMl

H e H e

and f' is given by Eq. (43)

T

F. INCLUSION VELOCITY

The inclusion velocity is related to the salt flux crossing the
midplane of the liquid shell by the mass balance over the control cylinder
shown in Fig. 4. This volume moves with the inclusion at velocity v, so
that solid salt enters the left-hand face at a rate ﬁprSVe Salt moves
out of the control cylinder across the ammulus formed by the liquid shell
on the right-hand face at a rate equal to the integral of the salt flux

canponernt (~j5®)p$0 over the ammulus, or:
be
J 2 (’%e)mo dr

At steady-state, the rate of salt input over the left-hand face of

the control cylinder must equal the output rate from the right-hand face, or:

b H
2 : -2 - 98
v w?[ r gl u=0 ar Wf n 35@3u;0 dn (98)
p Ps
[ a 1

ﬁsing Eq. (58) for Jegs Eq. (62) for the dimensionless concentration ¢,
expressing Jg by Eq. (19) and calculating (3T,/00) with the help of

Eq. (51) results in:

b e
. ) at ) - 1
(“Jselx , c [ “§5§>Hmo* o $0u=0) (% * ;zﬂ
+ Lo mm) 27 gm0y (99
Py S
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The function ¢ is given by Eq. (74) wherein the perturbation functions

are determined by Egs. (84) and (85). Substituting these into Eq. (99)

yields:
- Dy sat <H/n>3“1 i 1
0 S S N e Pe  + <2”+—->
SY T us0 an S 2H§+1 m ZH3+1 n2 14
sat
D e . C
£ .sat ‘1 Comy S
tan G oo <d1 + ;%** j F(n) 5, (99)
Inserting this result into Eq. (98) yields the migration velocity:
p, ¢ 3pe - 2q0-1/m [ ze
fs 2H7+1 1y

q, Pem, dl and e, are defined by Egs. (70), (63), (41) and (42) respectively,
Noting that these parameters are proportional to (aVI ), the above
expression yields a linear dependence upon the temperature gradient but
none on inclusion size.
In the 1limit as H - o (i.e., an all-liquid inclusion), Eq. (100)

reduces to:

at 3
- Gci ?m:w§z§) VT, (101)

p, [acsat
Wipe = = == | =
Hreo o dT

which is the formula derived by Anthony and Cline(ll) when interface kinctics

are neglected; The negative sign of v in Eq. (101) means that the all-liquid
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inclusion moves up the temperature gradient. For all-liquid inclusions,
it has been shown by Anthony andACline(ll) that interface kinetics is
generally rate-controlling. Therefore, Eqs. (100) and (101), which are based
on a diffusion-limited transport model, are expected to overestimate the
velocities of migration.

In the limit as H ~ 1, v should become zero. However, as H - 1 in
Eq. (100), v approaches the value Czatj/(pspg)9 and j of Eq., (93) does not
vanish. The reason that the model fails in this limit is that the water backflow
is assumed to occur without flow resistance in the liquid shell. As the
liquid shell becomes thinner, the backflow still returns the vapor flux j
but at ever higher speeds. Eventually, however, the assumption of negligible
frictional resistance to the backflow fails because Apg of Eq. (5) approaches
infinity as H + 1, The djffereﬁce in the radii of curvature of the liquid-gas
interface on the hot and cold sides become significant in order to provide
the pressure drop bp, . The required distortion of the gas-liquid interfaces
on the hot and cold sides becomes impossible to achieve for a very thin
liquid film adhering to the inside of the solid cavity and the hot face simply
dries out, leaving a puddle of liquid at the cold side. However, the exact
geometry of the inclusion is a bubble in a cubical inclusion. For a volume
gas fraction equal to 0.52, the bubble would be tangent to the six inner
sides of the inclusion. This constitutes a significant departure from the

geometry adopted in these calculations. Therefore this model is not expected
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to provide a good description of the phenomena involved when Il < 1,25 and so

the failure of the model as H ~ 1 does not appear to be practical significance.

G. COMPARISON OF THEORY AND EXPERIMENT

A compilation of the varlous parameters appearing in Eq. (100) has
heen prepared for the systems: sodium chloride-water-air and potassium
chloride~water~air(13), Using the compiled values, shown in Tables 1 - 4

?
the resulting migration velocities are plotted in Figs. 5 and 6 together with

(6) [(3) (12)

data obtained by Anthony and Cline“ ”, Wilcox and Olander et al,

For sodium chloride brines (Fig. 5), the theory predicts a change in
direction of inclusion migration at a gas volume fraction between 0.03 and
0.06 depending on the temperature. The experimental velocities obtained in
Ref. (12) (for gas volume fractions between 0.06 and 0.22) are lower than
the computed values while Wilcox's data (gas volume fractions unreported)
are within the range of calculated valucs.

For potassium chloride brines (I'ig. 6), the theory predicts a change in
direction of inclusion migration at a gas volumc [fraction cqual to~ .15,

The experimental and theoretical values of the migration velocitics are in
pood agreement.

In swmary, by assuming a spherically symmetric system, an analytical
expression for the migration velocity of a two-phase inclusion in a salt matrix
has been derived. The theory predicts changes in direction of inclusion
migration and velocities in the direction of decrecasing temperatures in good
agreement with available experimental data.
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s [gm

Properties of Saturated Agueous Solutions

(13)

Table 1
Salt Temperature Solubility in Water Ligquid Density Solid Density
~sat 2 mole Z mole 2  mole
oc S 107, % Py X 107, —= by X 107, —=
cm cm cm
NaCl 25 0.540 5.448 3.689
50 0.545 5.378 3.687
75 0.551 5.304 3.676
100 0.560 5.228 3.664
125 0.569 5.138 3.653
150 0.580 5.041 3.640
175 0.594 4.937 3.628
200 0.609 4,830 3.615
225 0.627 4.720 3.601
250 0.648 4,611 3.587
KC1 40 0,454 5.165 2.66




Factor, S {Eq. (90)} as

Table Z Parameters for Calculating the Mass Transfer
Salt Temperature Water Diffusivity Boiling Point Water Vapor Inert Gas dpo Mass Transfer
In Air Flevation Pressure Pressure W Factor
ar T-AT
2
o bar-cm o o bar 7 mole
C Dp, ., —m—elee AT, TC {p ) bar p+, bar —_ sxig, ———
vttot sec ? W. T—A’E‘ I 4 sec-emX
NaCl 25 0.262 4,76 0.024 1.01 0.0015 0.15
50 0.303 5.71 0.092 1.09 0.0048 0.49
75 0.347 6,82 0.288 1.18 0.013 1.28
100 0.393 8.09 0.753 1.26 0.028 2.84
125 0.442 9.55 1.716 1.35 0.056 5.54
150 0.493 11.22 3.491 1.43 0.09% 9.75
175 0.546 13.11 6.483 1.51 0.163 15.8
200 0.602 15.25 11.17 1.60 0.251 24.1
225 0.661 17.64 18.09 1.68 0. 366 34,7
250 0.722 20.27 27.84 1.77 0.511 48.0
K 40 0.287 3.78 0.060 1.06 0.003 0.34




Table 3 Thermal Conductivities (13)

mggﬁ.

Salt Temperature Solid Saturated Liquid Water + Air
°c k, x 102 —2 ky x 100 H K ox 107 M
cm-X cm-K g cm-X
NaCl 25 5.51 5.81 2.59
50 5.01 6.11 2.72
75 4.57 6.33 2.81
100 4.20 6.47 2.88
125 3.87 6.53 2.96
150 § 3.58 6.52 3.09
175 3,33 6.45 3.30
200 3.12 6.31 3,58
225 5 2.93 6.12 3,93
250 § 2.76 5.85 4.36
|
KC1 40 | 5.99 5.81 2.67
i
i




.,f7€..4.

(1%}

Table 4 Transport Parameters
Concentration effect| Temperature effect
Sait Temperature Heat of Salt Diffusivity Soret on Boiling Point on salt
Vaporization In Water Coefficient Elevation solubility
2 2 dCSat
o kJ S B 1 SAT 3 M-cm” s & mole
C A&ﬂ ole D;’L x 10} Sec o x 10 7 = X 10; ol g ¥ 10’ cm‘g—K
NaCl 25 44 .29 1.66 -2 1.56 1.58
50 43,29 2.65 -2 1.77 2,11
75 42,30 4,00 -2 2.00 2.97
160 41.29 5.77 -2 2.26 3.40
125 40.25 8.05 -2 2.53 4,15
150 39.19 10.90 -2 2.82 4,95
175 38.10 14.42 -2 3.13 5.78
200 36.96 18.69 -2 3.44 6.67
225 35.80 23.85 -2 3.78 7.62
250 34.60 30.01 -2 4,19 8.68
KC1 40 43,69 3.13 -1.8 1.14 25.2




FIGURE CAPTIONS

Figure 1 Cubical Gas-liquid Inclusion

Figure 2 Flow in the Liquid Shell

Figure 3 Temperature Gradient in Bubble

Figure 4 Diagram for Calculating the Inclusion Velocity

Figure 5 Migration of Two-Phase Inclusions in NaCl (25° - 250°)

Figure 6 Migration of Two-Phase Inclusions in KC1 (40 OC)
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FIGURE 2
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(NO VAPORIZAT?Oy ~

THREE- PHASE MODEL ¢\

(WITH VAPORIZATION)

| !

I

820

>

~.

N -

ke

o

516k

-

O -

|,..<,

<

&L;, &

ZQZ”“’

O

[

a |

O

e

o

o 08

<

}gm

Z =

tw

=

Di -

o 0.4

.

q e

=

1

e

= O
0

100

TEMPERATURE ,

FIGURE 3

-38-

200

o

300

XBL 803~ 5728



FIGURE 4
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NORMALIZED INCLUSION VELOCITY, v/¥T,,, cm/sec per K/ecm
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