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ROBUST ITERATIVE METHOD FOR SYMMETRIC QUANTUM
SIGNAL PROCESSING IN ALL PARAMETER REGIMES

YULONG DONG ∗, LIN LIN † , HONGKANG NI ‡ , AND JIASU WANG §

Abstract. This paper addresses the problem of solving nonlinear systems in the context of
symmetric quantum signal processing (QSP), a powerful technique for implementing matrix functions
on quantum computers. Symmetric QSP focuses on representing target polynomials as products of
matrices in SU(2) that possess symmetry properties. We present a novel Newton’s method tailored
for efficiently solving the nonlinear system involved in determining the phase factors within the
symmetric QSP framework. Our method demonstrates rapid and robust convergence in all parameter
regimes, including the challenging scenario with ill-conditioned Jacobian matrices, using standard
double precision arithmetic operations. For instance, solving symmetric QSP for a highly oscillatory
target function α cos(1000x) (polynomial degree ≈ 1433) takes 6 iterations to converge to machine
precision when α = 0.9, and the number of iterations only increases to 18 iterations when α = 1−10−9

with a highly ill-conditioned Jacobian matrix. Leveraging the matrix product states the structure of
symmetric QSP, the computation of the Jacobian matrix incurs a computational cost comparable to
a single function evaluation. Moreover, we introduce a reformulation of symmetric QSP using real-
number arithmetics, further enhancing the method’s efficiency. Extensive numerical tests validate
the effectiveness and robustness of our approach, which has been implemented in the QSPPACK
software package.

1. Introduction. Many scientific computing problems can be viewed as im-
plementing matrix functions A 7→ f(A). For simplicity we can assume that A is a
Hermitian matrix with eigenvalues in [−1, 1], and that f : R→ R is a real polynomial.
Quantum signal processing (QSP) [13, 14, 10, 16] provides a systematic approach and
a compact quantum circuit for implementing a broad class of matrix functions on
quantum computers. This leads to efficient algorithms for various quantum applica-
tions, including linear system solving, Hamiltonian system simulation, ground-state
energy estimation, and quantum benchmarking [13, 10, 12, 16, 6, 4, 8, 17, 3]. Recently,
the construction of QSP has been studied and generalized using advanced theoretical
tools [21, 22, 20].

Since any continuous function can be approximated using polynomials, the key
idea behind QSP is to represent a target polynomial as a product of matrices in the
special unitary group SU(2), parameterized by a set of phase factors denoted as Φ.
However, due to the constraints of SU(2), the target polynomial must satisfy specific
conditions.

Definition 1.1 (Target polynomial of QSP). A polynomial f ∈ R[x] is called a
target polynomial of quantum signal processing if it satisfies (1) deg(f) = d, (2) the
parity of f is (d mod 2), (3) ∥f∥∞ := maxx∈[−1,1] |f(x)| ≤ 1. Furthermore, f is called
fully-coherent if ∥f∥∞ = 1.

The mapping from the target polynomial of degree d (described by its Chebyshev
coefficients denoted by c ∈ Rd+1) to phase factors Ψ ∈ Rd+1 can be abstractly written
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as

(1.1) F (Ψ) = c.

The mapping F is highly nonlinear and is not one-to-one. For a given c, and our goal
is to find a solution to the nonlinear system (1.1).

QSP in the fully-coherent regime (or near fully-coherent regime, where ∥f∥∞ =
1−δ for a small δ > 0) finds applications in quantum algorithms for Hamiltonian sim-
ulation [15] and time-marching based simulation of non-Hermitian dynamics [9]. As
will be discussed below, this problem is particularly challenging in the fully-coherent
regime where the Jacobian matrix of F is very ill-conditioned (see the numerical
section for an illustration of this phenomenon).

The contribution of this work is to propose a Newton’s method tailored for effi-
ciently solving the nonlinear system to solve the nonlinear system (1.1). Specifically,
we demonstrate that

1. Starting from a problem-independent initial guess proposed in Ref. [7], New-
ton’s method can converge rapidly in all parameter regimes, using standard
double precision arithmetic operations.

2. The computation of the Jacobian matrix can leverage the matrix product
states structure of QSP. Notably, the computational cost associated with
computing the Jacobian matrix is comparable to that of a single function
evaluation.

3. The prefactor of the numerical method can be further enhanced by reformu-
lating the symmetric QSP using real-number arithmetics.

We have conducted extensive numerical tests, which have consistently demon-
strated the efficiency and robustness of the method. Thus far we have not encoun-
tered any instances where the method fails. We have implemented the method in the
QSPPACK software package 1.

Related works:
The phase-factor evaluation was originally conceived to be a challenging task [13,

2]. In the past few years, significant progress has been made to develop efficient algo-
rithms to find phase factors. These algorithms fall into two categories: factorization
methods [10, 11, 1, 24], and iterative methods [7, 5].

For a given real polynomial f(x), factorization methods construct phase factors
from the roots of 1 − f2(x) in the complex plane, and the roots must be obtained
at high precision. As a result, as the polynomial d increases, direct implementation
of factorization-based methods is not numerically stable and requires O(d log(d/ϵ))
bits of precision [10, 11] (ϵ is the target accuracy). There have been two recent
improvements of factorization-based methods: the capitalization method [1], and the
Prony method [24]. Empirical results indicate that both methods are numerically
stable and are applicable to large degree polynomials. Furthermore, the performance
of factorization-based methods does not deteriorate near the fully-coherent regime.

Compared to the elaborate construction of factorization-based methods, iterative
methods are intuitive, numerically stable, and easy to implement. The idea is to
directly tackle the nonlinear system (1.1), or the equivalent optimization formulation

(1.2) Ψ∗ = argmin
Ψ

∥F (Ψ)− c∥22 .

1The examples are available on the website https://qsppack.gitbook.io/qsppack/ and the codes
are open-sourced in https://github.com/qsppack/QSPPACK.
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However, due to the complex energy landscape [23], direct optimization from
random initial guesses can easily get stuck at local minima and can only be used for
low degree polynomials. Ref. [7, 23] propose and study the symmetric QSP where
the set of phase factors are subjected to a symmetry condition that reduces the de-
grees of freedom. Ref. [7] further observes that starting from a carefully chosen but
problem-independent initial guess, standard optimization methods such as the LBFGS
method [18] can be robust and stable and can be applied to very high degree poly-
nomials. Recently, we propose the fixed point iteration (FPI) algorithm that directly
tackles the nonlinear system (1.1) and show that the symmetric phase factors have a
well-defined limit as the polynomial degree increases towards infinity when the poly-
nomial approaches a smooth (non-polynomial) function. However, it is important to
note that in many examples near the fully-coherent regime, the assumptions of those
theoretical results are violated. Consequently, gradient-based optimization methods
and the FPI method may exhibit slow convergence or fail to converge altogether. We
would like to remark that the symmetric condition is important for extending QSP
to quantum eigenvalue transformation of unitaries (QETU) [6]. Additionally, the ex-
isting factorization methods are not compatible with the symmetry condition of the
phase factors.

Organization:
The paper is organized as follows. The preliminaries are given in section 2. In

subsection 2.1, we review relevant concepts in QSP with symmetric phase factors.
Then, in subsection 2.2, we discuss the bottleneck towards the fully-coherent regime
and also review the iterative methods for finding phase factors in the literature. The
matrix product state and its relevance in the structure of QSP are presented in sub-
section 2.3. Our main algorithm and its implementation are given in section 3, where
we also discuss the acceleration of the algorithm by leveraging the structure of the
problem and a real-number arithmetic representation of QSP. Finally, in section 4,
we demonstrate our algorithm by presenting the results of numerical experiments.

2. Preliminaries.

2.1. Quantum signal processing with symmetric phase factors. Quan-
tum signal processing (QSP) represents a class of polynomials in terms of SU(2)
matrices, which is parameterized by phase factors [10, Theorem 4]. The phase factors
Ψ = (ψ0, ψ1, · · · , ψd) ∈ Rd+1 are symmetric if they satisfy the constraint ψi = ψd−i
for any i = 0, · · · , d. Ref. [23] proposes a variant of QSP representation focusing on
symmetric phase factors:

Theorem 2.1 (Quantum signal processing with symmetric phase factors
[23, Theorem 1]). Consider any P ∈ C[x] and Q ∈ R[x] satisfying the following
conditions:

1. deg(P ) = d and deg(Q) = d− 1,
2. P has parity (d mod 2) and Q has parity (d− 1 mod 2),
3. (Normalization condition) ∀x ∈ [−1, 1] : |P (x)|2 + (1− x2)|Q(x)|2 = 1,
4. If d is odd, then the leading coefficient of Q is positive.

There exists a unique set of symmetric phase factors Ψ := (ψ0, ψ1, · · · , ψd) ∈ Dd such
that

(2.1) U(x,Ψ) = eiψ0Z
d∏
j=1

[
W (x)eiψjZ

]
=

(
P (x) iQ(x)

√
1− x2

iQ(x)
√
1− x2 P ∗(x)

)
,
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where

(2.2) Dd =

{
[−π2 ,

π
2 )

d
2 × [−π, π)× [−π2 ,

π
2 )

d
2 , d is even,

[−π2 ,
π
2 )
d+1, d is odd.

In the above equations, X and Z denote Pauli matrices, and P ∗(x) represents
the complex conjugate of the complex polynomial P (x) obtained by conjugating all
its coefficients.

In most applications, only either the real or the imaginary part of the complex
polynomial P (x) = ⟨0|U(x,Ψ)|0⟩ is relevant. It can be shown that these two parts
can be exchanged by conjugating the unitary matrix product with π/4-Z rotation,
that is,

(2.3) Re[⟨0|U(x,Ψ)|0⟩] = Im
[
⟨0|eiπ4 ZU(x,Ψ)ei

π
4 Z |0⟩

]
.

This is equivalent to shifting the edge phase factors ψ0, ψd by π/4. For the simplicity
of presentation, this paper assumes that the imaginary part is relevant. Furthermore,
we denote it as g(x,Ψ),

(2.4) g(x,Ψ) := Im[⟨0|U(x,Ψ)|0⟩].

Given any symmetric phase factors Ψ := (ψ0, ψ1, . . . , ψd) of length d + 1, we define
the reduced phase factors Φ as

(2.5) Φ = (ϕ0, ϕ1, . . . , ϕd̃−1) :=

{
( 12ψd̃−1, ψd̃, · · · , ψd), d is even,

(ψd̃, ψd̃−1, · · · , ψd), d is odd,

where d̃ := ⌈d+1
2 ⌉. For the sake of simplicity, we do not explicitly distinguish the

full set of phase factors and the reduced phase factors when they are used as the
argument of some function. For example, U(x,Φ) and g(x,Φ) are assumed to represent
evaluations with respect to the full set of phase factors, U(x,Ψ) and g(x,Ψ). To
be embedded in a SU(2) matrix, it is naturally required that g(x,Ψ) ≤ 1 for any
x ∈ [−1, 1]. Hence, the target function f : R→ R is also normalized so that its norm
is bounded:

(2.6) ∥f∥∞ = max
x∈[−1,1]

|f(x)| ≤ 1.

Theorem 2.1 implies that if the target polynomial f of definite parity can be
represented as symmetric QSP, it admits a Chebyshev polynomial expansion:

(2.7) f(x) =

{∑d̃−1
j=0 cjT2j(x), f is even,∑d̃−1
j=0 cjT2j+1(x), f is odd.

Let F denote the linear mapping from a target polynomial to its Chebyshev-coefficient
vector

(2.8) c := (c0, c1, · · · , cd̃−1) ∈ Rd̃.

This induces the mapping from the set of reduced phase factors to the Chebyshev-
coefficient vector of g(x,Φ),

(2.9) F : Rd̃ → Rd̃, F (Φ) := F(g(x,Φ)).
4



2.2. Iterative methods for finding phase factors and numerical difficul-
ties near the fully-coherent regime. The QSP problem can also be solved using
numerical optimization

(2.10) Φ∗ = argmin
Φ
∥F (Φ)− c∥22 = argmin

Φ

d̃∑
j=1

|g(xj ,Φ)− f(xj)|2 .

Here, xj = cos
(

(2j−1)π

4d̃+1

)
is the j-th node of the Chebyshev polynomial T2d̃(x). The

equality in the optimization problem follows the discrete orthogonality on Chebyshev
nodes. In Ref. [7], the optimization problem is first solved using the LBFGS method
and the running complexity is numerically studied. The authors also propose the
use of an initial guess Φ0 = (0, 0, · · · , 0), from which the convergence of the LBFGS
method is numerically observed to be fast and stable. We remark that the initial guess
in the original paper is not identical to this form, due to the difference in the definition.
The original paper considers the real part of ⟨0|U(x,Ψ)|0⟩ to encode the polynomial of
interest, whereas this paper considers the imaginary part, with equivalence established
through (2.3). The choice of the initial guess is justified in the theoretical analysis
in Ref. [23], which is credited to a class of optima called the maximal solution. In
Ref. [23], the authors analyze the energy landscape of the optimization problem and
conclude that when the target function is scaled as ∥f∥∞ = O(1/d), the optimization-
based algorithm converges locally at O(d2 log(1/ϵ)) computational cost.

For the target function near the fully-coherent regime, it is hard to guarantee
the convergence of optimization-based methods. The ill-conditioned Hessian matrix
around the fully-coherent regime poses a challenge for the optimizer to be convergent.
The numerical study in Ref. [7] shows that the condition number of the Hessian
matrix at the optimum grows rapidly as the target function gets closer to the fully-
coherent regime. Furthermore, the theoretical analysis of the optimization landscape
also suggests that the region of convergence shrinks as the target function approaches
the fully-coherent regime. Hence, the convergence guarantee of optimization-based
methods is compromised near the fully-coherent regime.

Using the mapping F defined in (2.9), the problem of finding phase factors can
be formulated as solving a nonlinear equation given by (1.1). In Ref. [5], a fixed-point
iteration method (FPI) is proposed for solving (1.1):

(2.11) Φ0 = 0 ∈ Rd̃, Φt+1 = Φt − 1

2

(
F
(
Φt

)
− c

)
.

Notably, the initial guess of the FPI method coincides with that used in the LBFGS
method. The analysis in Ref. [5] demonstrates that the FPI method exhibits linear
convergence to the exact solution when ∥c∥1 ≤ 0.861. This result is based on the
observation that the update rule acts as a contraction mapping in a neighborhood
of the initial guess Φ0 = 0. However, this property does not hold universally across
the entire domain. The analysis in Ref. [5] reveals that the contraction property
is valid when the Chebyshev coefficient vector of the target function lies within an
ℓ1 ball centered at the origin. In cases where the target function contains significant
“high-frequency” components, the increasingly large Chebyshev coefficient vector may
hinder the contraction of the update rule in (2.11). This situation commonly occurs
in various applications; for instance, problematic convergence issues can arise when
dealing with functions sin(τx) and cos(τx), where τ ≫ 1 is large.

5



To conclude the discussion on the challenges faced by iterative methods in the
fully-coherent regime, we present a numerical result that substantiates these difficul-
ties. We consider the target function to be a degree-733 polynomial approximating
f(x) = 0.999 cos(500x) obtained by truncating the Chebyshev expansion. This func-
tion violates the convergence analysis of iterative methods, as discussed earlier. In
Figure 1, we plot the residual error at each iteration step. The FPI method does not
converge at all, while the LBFGS method eventually reaches the optimum. However,
the optimizer becomes trapped after the 100th step and requires over 1000 itera-
tions to converge. In contrast, Newton’s method, proposed in this paper, exhibits
fast and stable convergence in the numerical results. The residual error decreases
super-exponentially, consistent with the expected quadratic convergence described in
standard textbooks.

Fig. 1: The residual error after each iteration using three different methods to de-
termine phase factors for the target function f(x) = 0.999 cos(500x) (up to the first
100 iterations). The stopping criterion is that the residual error reaches below 10−13.
Newton’s method converges after 9 steps. The LBFGS method can eventually con-
verge but takes over 1000 steps. The FPI method fails to converge.

2.3. Matrix product state structure of quantum signal processing. The
QSP problem, being a well-structured product of SU(2) matrices, possesses inherent
properties that allow for a special tensor structure known as a matrix product state
(MPS) or tensor train (TT). These properties can be effectively leveraged to accelerate
our numerical algorithm. By exploiting this tensor structure, we achieve a significant
reduction in computation complexity, enabling the scalability of the solver for larger-
scale applications.

In this subsection, we present a concise overview of the theory and construction of
MPS/TT. Additionally, we establish its connection with our problem. To be specific,
QSP admits an MPS/TT structure with bond dimension 2 due to its SU(2)-product
defining equation (2.1).

Given a field F = R or C, an order-r tensor is referred to as a multidimensional
array G ∈ Fn1×···×nr where the r-tuple (n1, · · · , nr) ∈ Nr specifies the size of the
tensor. Each entry of the tensor can be accessed with multi-indices, G(i1, · · · , ir),
where 1 ≤ ij ≤ nj ,∀j = 1, · · · , r. The contraction of two tensors yields a new
tensor by summing over the specified indices. For example, if G1 ∈ Fn1×n2×n3 , G2 ∈
Fm1×m2×n3 are two order-3 tensors, G3(i, j, k, l) :=

∑n3

s=1G1(i, j, s)G2(k, l, s) element-

6



i G1 s s G2 l i G1 G2 l

j k

contraction

j k

Fig. 2: A graphical visualization of two order-3 tensors and their contraction.

wisely defines an order-4 tensor G3 ∈ Fn1×n2×m1×m2 by contracting the index s. A
graphical illustration is given in Figure 2. Specifically, the contraction of order-2
tensors (i.e. matrices) coincides with matrix multiplication.

A (parametric) tensor G(α) ∈ Fn1×···×nr is called an MPS or TT if each of its
entries can be expressed as a product of matrices [19]. To be precise, an MPS/TT
can be written as

G(i1, · · · , ir;α) = G1(i1;α)G2(i2;α) · · · Gr(ir;α).

In the above expression, each Gj(α) is an order-3 tensor. By fixing an index ij ,
Gj(ij ;α) = [Gj(k, l, ij ;α)]kl ∈ Fmj−1×mj becomes order-2 which is equivalent to a
matrix of size (mj−1,mj). The dangling index ij is referred to as the mode index
(or external index). The indices k, l which are dummy in contraction are referred
to as rank core indices. The right-hand side of the defining equation is a shorthand
for contracting all non-fixed indices by matrix multiplication. The contracted tensor
G(i1, · · · , ir;α) is assumed to be a scalar entry-wisely. Hence, the dangling com-
ponents G1 and Gr are set to order-2 tensors, namely, m0 = mr = 1. The bond
dimension of an MPS/TT is defined to be the maximal dimension in the contraction
max0≤j≤rmj .

Using the language of tensors, the upper-left entry of the QSP unitary matrix
defined in (2.1) can be interpreted as an MPS/TT of bond dimension 2. To see this,
assuming that x and a full set of phase factors Ψ := (ψ0, · · · , ψd) are given, the QSP
matrix entry of interest is

(2.12) ⟨0|U(x,Ψ)|0⟩ = R0(ψ0)W(x)R(ψ1)W(x) · · ·W(x)R(ψd−1)W(x)Rd(ψd) ∈ C.

Here, the boundary components R0(ψ0) := (eiψ0 , 0),Rd(ψd) := (eiψd , 0)⊤ are two-
dimensional complex vectors. Furthermore, W(x) := ei arccos(x)X and R(ψj) := eiψjZ

are 2-by-2 complex matrices. By identifying x, ψ as external indices, the graphical
visualization of this interpretation is given in Figure 3.

R0 W R · · · W R W · · · R W Rd

ψ0 x ψ1 x ψi x ψd−1 x ψd

Fig. 3: A graphical visualization of ⟨0|U(x,Ψ)|0⟩ as a MPS/TT structure (of bond
dimension 2).

3. Newton’s method. When using iterative algorithms discussed in the pre-
vious section to find phase factors, the issue of convergence becomes increasingly

7



significant when the target function is close to the fully-coherent regime. To remedy
these difficulties, we propose using Newton’s method to solve the nonlinear equation
(1.1) for phase-factor evaluation. In this section, we introduce this method and dis-
cuss its implementation. The core techniques to accelerate the algorithm are fast
Jacobian evaluation based on the MPS/TT structure and a real-arithmetic formalism
of symmetric QSP.

Newton’s method can be viewed as an improvement over the FPI method by
taking the local landscape into account. It can be verified that the Jacobian of the
nonlinear equation in (1.1) at the origin coincides with a doubled identity matrix,
that is, DF (0) = 2I. Hence, the FPI method is a variant of Newton’s method, where
the Jacobian is approximated along the iteration by that at the initial point, which is
the origin. To be precise, the update rules Φt+1 = T (Φt) of both methods are written
as

TNewton(Φ) = Φ−DF (Φ)−1(F (Φ)− c),
and TFPI(Φ) = Φ−DF (0)−1(F (Φ)− c), where DF (0) = 2I.

(3.1)

The algorithm based on the first update rule is outlined in Algorithm 3.1. In the
remainder of this section, we will discuss an accelerated implementation of this algo-
rithm leveraging the structure of the symmetric QSP problem.

Algorithm 3.1 Newton’s method for finding reduced phase factors

Input: Chebyshev-coefficient vector c of a target polynomial, and stopping criteria.

Initiate t = 0 and Φ0 to be zero vector 0;
while stopping criterion is not satisfied do
Compute DF (Φt);
Update Φt+1 = Φt −DF (Φt)−1 (F (Φt)− c);
Set t = t+ 1;

end while
Output: Reduced phase factors Φt.

3.1. Jacobian of the problem. The update rule of Newton’s method utilizes
the Jacobian matrix of F (Φ), which is denoted as DF (Φ). According to the defining
equation (2.9) of F , the i-th column of DF (Φ) is

(3.2)
∂F (Φ)

∂ϕi
= F

(
∂g(x,Φ)

∂ϕi

)
∈ Rd̃, i = 0, · · · , d̃− 1.

A straightforward approach for constructing the Jacobian matrix is to compute it
column-wise without any optimization. This method involves performing the fol-
lowing procedure independently for each 0 ≤ i < d̃: evaluating ∂g(xk,Φ)/∂ϕi at
approximately O(d) distinct points and then applying a discrete Fourier transfor-
mation. Each evaluation of ∂g(xk,Φ)/∂ϕi requires O(d) multiplications of SU(2).
Consequently, the complexity for computing a column of the Jacobian is O(d2). As
a result, the overall complexity of this Jacobian evaluation is O(d3). It is important
to note that this approach does not take into account the structural characteristics of
the problem, leaving room for potential optimization strategies.

In the subsequent subsection, we will present an accelerated evaluation method
that capitalizes on the MPS/TT structure of the problem. This improved approach
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leads to a notable reduction in the complexity of Jacobian evaluation, from O(d3) to
O(d2 log(d)).

In the remainder of this subsection, we delve into the structure of the Jaco-
bian matrix columns. For the sake of simplicity, we assume that d is even. As
a reminder, in the even case, the full set of phase factors can be represented as
Ψ = (ϕd̃−1, · · · , ϕ1, 2ϕ0, ϕ1, · · · , ϕd̃−1). This choice does not lose generality, as a sim-
ilar derivation can be obtained for the odd case.

We first observe that ∂g(x,Φ)
∂ϕi

= Im
[
⟨0| ∂∂ϕi

U(x,Ψ)|0⟩
]
, and that taking derivative

on the unitary matrix U(x,Ψ) is equivalent to the insertion of an additional iZ =
eiπZ/2 in the matrix product. Due to symmetry, the derivative leads to two matrix
products with insertion. Specifically, we have:

(3.3)
∂

∂ϕi
U(x,Ψ) = U(x,Ψ+

π

2
ed̃−1−i) + U(x,Ψ+

π

2
ed̃−1+i), ∀0 ≤ i ≤ d̃− 1.

We remark that Ψ+ π
2 ed̃−1+i is the reversed ordering of Ψ+ π

2 ed̃−1−i, which is helpful
for the simplification. Consequently, U(x,Ψ+ π

2 ed̃−1+i) is identical to the transpose
of U(x,Ψ + π

2 ed̃−1−i) since the transpose reverses the order due to the symmetry of
matrix Z. Hence

∂g(x,Φ)

∂ϕi
= Im

[
⟨0| ∂
∂ϕi

U(x,Φ)|0⟩
]

= Im[⟨0|U(x,Ψ+
π

2
ed̃−1−i)|0⟩] + Im[⟨0|U(x,Ψ+

π

2
ed̃−1+i)|0⟩]

= Im[⟨0|U(x,Ψ+
π

2
ed̃−1−i)|0⟩] + Im[⟨0|U(x,Ψ+

π

2
ed̃−1−i)

⊤|0⟩]

= 2Im[⟨0|U(x,Ψ+
π

2
ed̃−1−i))|0⟩] = 2g(x,Ψ+

π

2
ed̃−1−i).

(3.4)

While Ψ+ π
2 ed̃−1−i is not symmetric, the evaluation of the induced polynomial is still

well defined. To extract its Chebyshev coefficients, it suffices to sample this polynomial
on the Chebyshev nodes {xk = cos(2πk/(2d + 1)) : k = 0, · · · , d}. Subsequently, the
Chebyshev coefficients can be extracted from the sample by performing Fast Fourier
Transformation (FFT). The detail is given in Algorithm 3.2.

Algorithm 3.2 Compute F(g(x,Ψ♯)).

Input: A full set of phase factors Ψ♯ of length d + 1 (Ψ♯ is not necessarily sym-
metric).
Initialize g = (0, 0, · · · ) ∈ R2d+1.

Evaluate gj ← g(xj ,Ψ
♯), xj = cos

(
2πj
2d+1

)
, j = 0, · · · , d.

Evaluate gj ← g2d+1−j , j = d+ 1, · · · , 2d.
Compute vl ← Re

(∑2d−1
j=0 gje

−i 2π
2d+1 jl

)
, l = 0, . . . , d using FFT.

if (d mod 2) = 0 then
F(g(x,Ψ♯))← 2

2d+1 (
v0

2 ,v2,v4, · · · ,vd).
else
F(g(x,Ψ♯))← 2

2d+1 (v1,v3,v5, · · · ,vd).
end if
Output: F(g(x,Ψ♯)).
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3.2. Efficient evaluation of the Jacobian matrix. In practice, The evalua-
tion of the Jacobian matrix DF (Φ) constitutes the most computationally demanding
step in Newton’s method. In this subsection, we propose an efficient approach to com-
pute the Jacobian matrix, taking advantage of the MPS/TT structure of the problem.
By doing so, we can significantly reduce the overall computational complexity. As we
will illustrate, the computation of different columns of the Jacobian matrix exhibits
substantial overlap. This indicates that we can reuse intermediate computational
results and avoid redundancy, leading to increased efficiency.

Without loss of generality, we consider the case where d is even in the derivation.
The odd case can be analyzed similarly. Recall that the full set of phase factors is
defined as

(3.5) Ψ := (ψ0, ψ1, · · · , ψd) = (ϕd̃−1, · · · , ϕ1, 2ϕ0, ϕ1, · · · , ϕd̃−1),

where Φ = (ϕ0, · · · , ϕd̃−1) are the reduced phases factors. We observe that each col-
umn of the Jacobian matrix is directly associated with taking the derivative of a QSP
without symmetry, which arises from the insertion of the iZ matrix. In the absence of
symmetry constraint of phase factors, each phase factor ϕi is independent. When cal-
culating the derivative with respect to ϕi, we can separate the matrix multiplication
into three parts

(3.6) ⟨0|U(x,Ψ)|0⟩ =M(i)
lefte

iϕiZM(i)
right,

where

M(i)
left := R0(ϕd̃−1)

i+1∏
j=d̃−2

[W(x)R(ϕj)]W(x),

M(i)
right :=

0∏
j=i−1

[W(x)R(ϕj)]
d̃−2∏
j=0

[R(ϕj)W(x)]Rd(ϕd̃−1).

(3.7)

The left and right components are irrelevant to taking the derivative with respect to
ϕi because

(3.8) ⟨0|∂ϕi
U(x,Φ)|0⟩ = 2⟨0|U(x,Ψ+

π

2
ek−i)|0⟩ = 2iM(i)

leftZe
iϕiZM(i)

right.

Consequently, the intermediate quantitiesM(i)
left andM

(i)
right can be stored and main-

tained in the computation process. Figure 4 visually illustrates this idea.

R0 W R · · · W R W · · · W R W · · · R W Rd

ϕd̃−1 x ϕd̃−2 x ϕi x x 2ϕ0 x ϕd̃−2 x ϕd̃−1

M(i)
left M(i)

right

Fig. 4: A graphical visualization of the isolation and grouping when evaluating the
derivative ⟨0|∂ϕiU(x,Φ)|0⟩.
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Transiting to the next step, the intermediate quantities are updated through
matrix multiplications

M(i+1)
left ←M(i)

leftW
−1(x)e−iϕi+1Z , and M(i+1)

right ←W(x)eiϕiZM(i)
right.

By utilizing intermediate quantities, the computation of the derivatives, which are
the columns of the Jacobian matrix before FFT, can be performed simultaneously,
resulting in a computational cost of O(d2) rather than O(d3) in the straightforward
method. The overall complexity of computing the Jacobian matrix is O(d2 log d) due
to the use of FFT. The detailed procedure is summarized in Algorithm 3.3.

Algorithm 3.3 Compute Jacobian matrix DF (Φ) using the MPS structure.

Input: Reduced phase factors Φ of length d̃ and parity.
Set d = 2d̃− 2 + parity and initialize g as a zero matrix of size d̃× (2d+ 1).
for j = 0, · · · , d do

Set xj = cos
(

2πj
2d+1

)
.

Mleft(xj) = (1, 0)
∏1
i=d̃−1

(
eiϕiZW (xj)

)
.

Mright(xj) = eiϕ0ZMleft(xj)
⊤.

if parity is odd then
Mright(xj) =W (xj)Mright(xj).

end if
g0,j ← 2Im[MleftiZMright].

for i = 1, · · · , d̃− 1 do
Mleft(xj)←Mleft(xj)W

−1(xj)e
−iϕiZ .

Mright(xj)←W (xj)e
iϕiZMright(xj).

gi,j ← 2Im[MleftiZMright].
end for

end for
Evaluate gi,j ← gi,2d+1−j , j = d+ 1, · · · , 2d.
Compute vil ← Re

(∑2d−1
j=0 gi,je

−i 2π
2d+1 lj

)
, l = 0, . . . , d using FFT.

if parity = 0 then
∂F (Φ)
∂ϕi

← 2
2d+1 (

vi0

2 ,vi2,vi4, · · · ,vid).
else

∂F (Φ)
∂ϕi

← 2
2d+1 (vi1,vi3,vi5, · · · ,vid).

end if
Output: DF (Φ).

3.3. Formalism of symmetric QSP in real arithmetic operations. In the
existing literature, the conventional formalism of QSP is typically presented in terms
of the product of SU(2) matrices, which involves complex arithmetic operations. This
complex arithmetic formalism is both necessary and sufficient for general QSP, as
the induced polynomials P and Q are complex without any additional symmetry
constraints. However, in the case of symmetric QSP, according to Theorem 2.1, the
polynomial Q is a real polynomial. This observation raises the question of whether
the formalism of QSP can be simplified to accommodate this symmetry.

In this subsection, we will introduce a formalism for symmetric QSP that utilizes
real arithmetic operations. This alternative formalism not only proves to be beneficial
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for Newton’s method proposed in this paper but also enhances the implementation of
other algorithms designed to solve symmetric QSP, resulting in a constant improve-
ment in the prefactor of the overall computational complexity.

The core idea is that SU(2) is homeomorphic to S3 ⊂ R4, which arises from the
parametric form of general SU(2) matrices. By imposing the symmetric constraint,
the upper-right entry of the consequent SU(2) matrix is purely imaginary. Conse-
quently, we can associate any symmetric QSP matrix with a vector in S2 ⊂ R3. The
identification is

U(x,Φ) =

(
p(x,Φ) + ig(x,Φ) i

√
1− x2q(x,Φ)

i
√
1− x2q(x,Φ) p(x,Φ)− ig(x,Φ)

)
∈ SU(2)

↔V (x,Φ) :=
(
p(x,Φ), g(x,Φ),

√
1− x2q(x,Φ)

)⊤ ∈ S2.
(3.9)

Under the identification we introduced, the matrix multiplication in symmetric
QSP is equivalent to interleaved rotations in SO(3). This relation is quantified by the
following recurrence equation:

(3.10) V (x, (ϕk, ϕk−1, · · · )) = Rz(2ϕk)Rx(2 arccos(x))V (x, (ϕk−1, · · · )),

where the SO(3) rotations are

(3.11) Rz(2ϕ) =

cos 2ϕ − sin 2ϕ
sin 2ϕ cos 2ϕ

1

 and Rx(2θ) =

cos(2θ) − sin(2θ)
1

sin(2θ) cos(2θ)

 .

For further details on this identification, we refer readers to Appendix A. By
leveraging this identification, the QSP polynomials can be derived from the product
of real matrices, leading to a faster computation with a constant improvement in the
prefactor, compared to evaluating them using the product of complex matrices.

4. Experiments. In this section, we demonstrate the performance of Newton’s
method in solving phase factors through various numerical examples. These examples
are essential for solving scientific computing problems using quantum algorithms.
We begin by introducing the numerical examples, followed by the presentation and
discussion of the numerical results in the rest of this section.

4.1. Setup of numerical examples. The core of quantum algorithm design
based on QSP lies in the abstraction of the original problem as a matrix function
transformation. This transformation allows us to encode the desired function or its
polynomial approximation by finding the appropriate phase factors. In order to illus-
trate this procedure, we present the following examples.

Quantum Hamiltonian simulation. The problem of quantum Hamiltonian simu-
lation involves finding an efficient method for implementing the time evolution matrix
of a Hamiltonian matrix, denoted as H 7→ exp(−iτH), for a given evolution time τ . In
Ref. [13], a near-optimal quantum Hamiltonian simulation algorithm based on QSP is
proposed. This algorithm abstracts the problem into a function approximation task,
where the target function f(x) = e−iτx is parametrized using QSP. The Chebyshev
series expansion, known as the Jacobi-Anger expansion [13], is commonly employed
to approximate this target function:

(4.1) e−iτx = J0(x) + 2
∑
k even

(−1)k/2Jk(τ)Tk(x) + 2i
∑
k odd

(−1)(k−1)/2Jk(τ)Tk(x),
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where Jk’s are the Bessel functions of the first kind. As a result, by truncating
the Jacobi-Anger series, a polynomial approximation of the target function can be
obtained. The real and imaginary parts of the truncated series, which approximate
cos(τx) and sin(τx) respectively, serve as the target polynomials for two separate QSP
phase-evaluation problems. To ensure that the truncation error is upper-bounded by
ϵ0, it is sufficient to choose the degree of truncation as d = e|τ |/2 + log(1/ϵ0).

Quantum Gaussian filter. The quantum Gaussian filter is a matrix function pa-
rameterized by µ and σ. It is proportional to exp(−(H − µI)2/σ2), where H is the
Hamiltonian matrix. This matrix function is designed to localize around the given
“energy level” µ, with the degree of localization controlled by the bandwidth param-
eter σ. The function suppresses eigenvalues of H that are far from µ. Ideally, one
would choose µ to be close to an eigenvalue of H, allowing the matrix function to
approximate the projection onto the corresponding eigenspace.

The quantum Gaussian filter serves as an intermediate subroutine for near-optimal
quantum linear system solvers [12]. However, directly decomposing the defining func-
tion of the quantum Gaussian filter may result in exponentially large scaling factors
due to hyperbolic functions. To address this issue and improve numerical stability,
one can shift and rescale the Hamiltonian so that its eigenvalues lie in a smaller
subinterval Dκ = [1/κ, 1] within the positive half-axis. By employing this eigenvalue
shifting technique, it is sufficient to approximate the Gaussian density function in the
positive half-axis. Thus, the target function is set to f(x) = e−(|x|−µ)2/σ2

as an even
extension.

Heaviside energy filter. Heaviside function is widely used in classical applications
such as signal processing and filter design. It also plays a crucial role as a subroutine
in quantum algorithms for ground-state energy estimation and ground state prepara-
tion [6].

Consider a Hamiltonian matrix that has been shifted and scaled so that its eigen-
values lie in the interval [0, 1]. The Heaviside energy filter f(H) attenuates the high-
energy components of the Hamiltonian. The function f(x) is defined as follows:

(4.2) f(x) =


1 |x| < 0.5
1
2 |x| = 0.5

0 |x| > 0.5

.

To address the singularity at 0.5, we assume that the target function only needs to
be approximated within the interval Dδ = [0, (1 − δ)/2] ∪ [(1 + δ)/2, 1]. This allows
us to focus on the desired energy range and mitigate the effects of the singularity.

Matrix inversion. Matrix inversion is a fundamental topic in numerical linear
algebra with wide-ranging applications, including numerical optimization and least
squares problems. In the context of function transformation, the equivalent problem
is to implement the transformation H 7→ f(H) = H−1. If the matrix has a condition
number of κ = cond(H), it suffices to approximate the target function f(x) = 1/x on
the intervalDκ = [1/κ, 1] using an odd function. This allows us to focus on the desired
range of the function and effectively approximate the matrix inversion operation.

4.2. Constructing target polynomials approximating target functions.
To ensure numerical stability in the phase-factor evaluation method, we approximate
the target functions using target polynomials that satisfy the conditions outlined in
Theorem 2.1. Various methods have been proposed in the literature for constructing
these polynomial approximations in a streamlined manner.
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One approach is to directly truncate the Chebyshev series expansion of the target
function. This can be efficiently achieved using Fast Fourier Transformation (FFT)
applied to the transformed target function f(cos(θ)). However, when the target func-
tion is not defined on the entire interval [−1, 1], the truncated series polynomial may
not be bounded by 1 on the entire interval, making it unsuitable for representation
using QSP. To address this issue, one approach is to use the Remez exchange algo-
rithm proposed in Ref. [7] to find the best polynomial approximation for the partially
defined target function. Another method involves numerically finding the best poly-
nomial approximation using a convex optimization-based approach as described in
Ref. [6, Section IV].

In the presented numerical examples, we use the truncated Chebyshev series for
quantum Hamiltonian simulation and quantum Gaussian filter, where the target func-
tions are defined on the interval [−1, 1]. For other examples where the target function
is defined on a further subinterval, we employ the convex optimization-based method
to find the target polynomial approximation. The resulting target polynomials, ob-
tained using the convex optimization-based method, are visualized in Figure 5.

(a) Heaviside energy filter function and its
polynomial approximation with δ = 0.1.

(b) Matrix inversion function and its poly-
nomial approximation with κ = 10.

Fig. 5: Polynomial approximation of the target functions obtained by the convex-
optimization-based method.

4.3. Numerical results. We evaluate the performance of Newton’s method for
finding phase factors in the presented numerical tests. All experiments are conducted
using Matlab R2020a on a computer with an Intel Core i5 Quad CPU running at 2.11
GHz and 8 GB of RAM.

The performance metrics used to evaluate the performance of Newton’s method
are the runtime and the residual error. The runtime refers to the amount of time
it takes for the method to converge and find the desired phase factors. The residual
error measures the discrepancy between the polynomial parametrized by the computed
phase factors and the true polynomial which is defined as

(4.3) residual error = ∥F (Φ)− c∥1 .

The numerical results for the error metric of Newton’s method are presented in Fig-
ure 6. It is evident from the results that Newton’s method exhibits significantly faster
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convergence compared to other iterative methods for solving phase factors. The er-
ror curve aligns well with the expected quadratic convergence of Newton’s method
in general analysis. Besides, Newton’s method exhibits greater stability in terms of
runtime as the target function approaches the fully-coherent regime. Figure 7 depicts
the numerical results for the runtime of three iterative methods for determining phase
factors. It also clearly illustrates the superior speed of Newton’s method compared
to the other two iterative methods.

To further analyze the performance of Newton’s method near the fully-coherent
regime, the runtime and the number of iterations are plotted as a function of the
distance to the fully-coherent regime (1 − ∥f∥∞) in Figure 8. It is noteworthy that
even when the target function is extremely close to being fully-coherent (1−∥f∥∞ ≤
1×10−9), Newton’s method is capable of locating the optimum within a small number
of iterations. This result highlights the robustness of Newton’s method for finding
phase factors in the nearly fully-coherent regime.

Finally, we investigate the condition number of the Jacobian matrices at the
phase factors obtained by Newton’s method for different target functions, as presented
in Figure 9. The results indicate that as the target function approaches the fully-
coherent regime, the condition number of the Jacobian matrix becomes increasingly ill-
conditioned. Despite this challenge, Newton’s method continues to exhibit remarkable
performance in finding phase factors. This emphasizes the effectiveness and reliability
of Newton’s method in phase factor determination, even in challenging scenarios near
the fully-coherent regime.

5. Conclusion. This paper presents a novel approach to solving the vector-
valued, nonlinear system that arises in quantum signal processing (QSP) using New-
ton’s method. Numerical results indicate that the proposed method can robustly find
phase factors in all parameter regimes, in particular the challenging fully-coherent
regime with ill-conditioned Jacobian matrices. Our method takes advantage of the
matrix product states structure of QSP, enabling efficient computation of the Jacobian
matrix. Additionally, the use of real-number arithmetics further enhances the prefac-
tor of the numerical method. The method has been implemented in the QSPPACK
software package, providing a practical tool for solving QSP problems in scientific
computing on quantum computers.

From a theoretical perspective, there are open problems regarding the impressive
performance of Newton’s method. While convergence in an ℓ1 neighborhood of 0 can
be understood using the same contraction mapping technique as in [5], the theoretical
understanding of the effectiveness of the method in the fully-coherent regime remains
a mystery. Additionally, extensive numerical experiments consistently converged to
the maximal solution which is a special class of symmetric phase-factor solutions
proposed and studied in Ref. [23]. Further investigations are needed to understand
whether the mapping F admits a unique landscape within the injective neighborhood
near 0.
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(a) Hamiltonian simulation (b) Gaussian filter

(c) Heaviside energy filter (d) Matrix inversion

Fig. 6: Residual error as a function of iteration steps for different numerical examples.
The target polynomials in (a)-(d) are chosen to be near the fully-coherent regime,
with the maximum absolute value set to 0.99 in (a)-(c) and 0.998 in (d). (a) Quantum
Hamiltonian simulation with τ = 100. The target polynomials, obtained by truncating
the Jacobi-Anger series with truncation error ϵ0 = 10−14, have degrees of 1390 and
1391. (b) Quantum Gaussian filter with µ = 0.5 and σ = 0.1. The target polynomial
is derived from the Chebyshev series expansion using FFT, resulting in a degree-
100 polynomial. (c) Heaviside energy filter with δ = 0.1. The target polynomial
is a degree-250 polynomial obtained from a convex-optimization-based method. (d)
Matrix inversion with κ = 10. The target polynomial is a degree-301 polynomial
derived from a convex-optimization-based method.
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Appendix A. Details about the formalism of symmetric QSP in real
arithmetic operations. In the main text, we present a concise idea of the real-
number arithmetic representation of QSP. In this section, we aim to provide a more
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comprehensive discussion and present additional details on this topic.
The computation of the QSP matrix boils down to that of a sequence of unitary

matrix multiplications in (2.1). Furthermore, the QSP matrix admits the following
decomposition as a consequence of Theorem 2.1

(A.1) U(x,Φ) =

(
ad̃−1(x) + idd̃−1(x) iαd̃−1(x)

iαd̃−1(x) ad̃−1(x)− idd̃−1(x)

)
.

Here, ad̃−1(x), dd̃−1(x) and αd̃−1(x)/
√
1− x2 are real polynomials in the variable x.

According to the convention presented in the main text, dd̃−1 stands for the component
of interest, also known as g(x,Φ) in the main text to emphasize the dependence in
phase factors Φ. As the goal in this section is to derive a simple recipe for computing
the QSP matrix with a given set of phase factors Φ, we drop the Φ dependence in
this section for the notational simplicity.

Let the entry-wise value of the phase factors be Φ = (ϕ0, ϕ1, · · · , ϕd̃−1). For ease

of discussion, we refer to Φ(k) = (ϕ0, ϕ1, · · · , ϕk) as the k-th truncated phase factors

for each k = 0, 1, · · · , d̃− 1. The corresponding sequence of QSP matrices is denoted
entry-wise as

(A.2) U(x,Φ(k)) =

(
ak(x) + idk(x) iαk(x)

iαk(x) ak(x)− idk(x)

)
.

We remark that each truncated set of phase factors also gives a symmetric QSP.
Hence, the decomposition in (A.1) applies, implying that ak(x), αk(x) and dk(x) are
well defined. By appending ϕk to the (k − 1)-th truncation Φ(k−1), the recurrence
relation follows(

ak(x) + idk(x) iαk(x)
iαk(x) ak(x)− idk(x)

)
= eiϕkZW (x)

(
ak−1(x) + idk−1(x) iαk−1(x)

iαk−1(x) ak−1(x)− idk−1(x)

)
W (x)eiϕkZ .

(A.3)

It can be verified that the following rearrangement is equivalent to the recurrence
relation

(A.4)

ak(x)dk(x)
αk(x)

 = Rz(2ϕk)Rx(2 arccos(x))

ak−1(x)
dk−1(x)
αk−1(x)

 ,

where

Rz(2ϕ) =

cos 2ϕ − sin 2ϕ
sin 2ϕ cos 2ϕ

1


and Rx(2 arccos(x)) =

 2x2 − 1 −2x
√
1− x2

1

2x
√
1− x2 2x2 − 1

(A.5)

are the induced SO(3) rotation matrices. It can also be shown that the base cases of
the recurrence are
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(1) when d is even

(A.6)

a0(x)d0(x)
α0(x)

 =

cos(2ϕ0)
sin(2ϕ0)

0

 ,

and (2) when d is odd

(A.7)

a0(x)d0(x)
α0(x)

 =

cos(2ϕ0)x
sin(2ϕ0)x√

1− x2

 .

Remarkably, the equivalent recurrence relation (A.4) involves only real quantities, and
Rx and Rz only actively act as a rotation on two entries. In contrast to the complex
recurrence relation (A.3), the real recurrence has lower time and space complexity.
This improvement is due to the simplified structure of symmetric QSP compared with
the original formalism without symmetry.

The MPS/TT structure still holds in the real recurrence relation. We refer X
and Z to the parametric order-2 tensor standing for the induced SO(3) rotations,
namely, Z(ϕ) = Rz(2ϕ) and X (x) = Rx(2 arccos(x)). Let I be the order-1 tensor
representing the base of the recurrence in (A.6) and (A.7). Furthermore, to extract
the component of the computational interest, let H be the order-1 tensor representing
the last operation, which is

(A.8) H(ϕd̃−1) =
(
0 1 0

)
Rz(2ϕd̃−1) =

(
sin(2ϕd̃−1) cos(2ϕd̃−1) 0

)
.

Then, the recurrence relation in real-number arithmetic can be visualized graphi-
cally in Figure 10. In contrast to the computation in the complex-arithmetic represen-

H X Z · · · X Z X · · · Z X I

ϕd̃−1 x ϕd̃−2 x ϕi x ϕ1 x ϕ0

(a)

H X Z · · · X Z X · · · X I

ϕd̃−1 x ϕd̃−2 x ϕi x x ϕ0

N (i)
left N (i)

right

(b)

Fig. 10: A graphical visualization of the MPS/TT structure of the problem in the
real-number arithmetic representation. (a) The structure of the recurrence relation.
(b) The partition when computing the Jacobian.

tation, the symmetry constraint of the QSP phase factors is reflected in the doubled
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argument in the Z tensor of the real-number arithmetic representation. Hence, when
computing the derivative, it does not need tricks to arrange the derivatives coming
from two symmetric sites. Specifically, the following identity holds

(A.9)
∂g(x,Φ)

∂ϕi
= N (i)

left

dZ(ϕi)
dϕi

N (i)
right = 2N (i)

leftZ(ϕi + π/4)N (i)
right.

Here, the left and right parts under the partition are given by

N (i)
left := H

i+1∏
j=d̃−2

(X (x)Z(ϕj))X (x), N (i)
right :=

1∏
j=i−1

X (x)Z(ϕj)I,(A.10)

whose graphical visualizations are presented in Figure 10. The update of these quan-
tities in the computational process is

(A.11) N (i+1)
left ← N (i)

leftX
−1(x)Z(−ϕi+1), and N (i+1)

right ← Z(ϕi)X (x)N
(i)
right.

For completeness, we provide the algorithm for computing the Jacobian matrix
using the MPS/TT structure and the real-number arithmetic representation in Algo-
rithm A.1.

In Figure 11, we numerically demonstrate that using the real-number arithmetic
formalism of QSP improves the time complexity of iterative methods by a constant
prefactor. Notably, this improvement is not limited to Newton’s method but also
applies to other iterative methods for finding phase factors.

Fig. 11: Comparing the runtime of iterative methods for finding phase factors using
the real-number and complex-number arithmetic. The problem is set to quantum
Hamiltonian simulation with variable τ parameters. The target polynomial is derived
by truncating the Jacobi-Anger series with truncation error ϵ0 = 1 × 10−14. The
maximal value of the target polynomial is scaled by a constant so that ∥f∥∞ = 0.9.
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Algorithm A.1 computing the Jacobian matrix using the MPS/TT structure and
the real-number arithmetic representation.

Input: A set of reduced phase factors Φ, its length d̃ and its parity p ∈ {0, 1}.
Set d = 2d̃− 2 + p and initialize g as a zero matrix of size d̃× (2d+ 1).
for j = 0, · · · , d do

Set xj = cos
(

2πj
2d+1

)
.

Nleft(xj) = H
∏1
i=d̃−2 (X (xj)Z(ϕi))X (xj).

if parity is even (p = 0) then
Nright(xj) = (1, 1, 0)⊤.

else
Nright(xj) = (x, x,

√
1− x2)⊤.

end if
g0,j ← 2NleftZ(ϕ0 + π/4)Nright(xj).

for i = 1, · · · , d̃− 1 do
Nleft(xj)← Nleft(xj)X−1(xj)Z(−ϕi).
Nright(xj)← X (xj)Z(ϕi−1)Nright(xj).
gi,j ← 2Nleft(xj)Z(ϕi + π/4)Nright(xj).

end for
end for
Set gi,j ← gi,2d+1−j , j = d+ 1, · · · , 2d.
Compute vil ← Re

(∑2d−1
j=0 gi,je

−i 2π
2d+1 lj

)
, l = 0, . . . , d by using FFT.

if parity is even (p = 0) then
∂F (Φ)
∂ϕi

← 2
2d+1 (

vi0

2 ,vi2,vi4, · · · ,vid).
else

∂F (Φ)
∂ϕi

← 2
2d+1 (vi1,vi3,vi5, · · · ,vid).

end if
Output: DF (Φ).
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