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Abstract 
 

The Value of Time in Intercity Transportation  
-A Study of Thresholds and Discontinuities  

 
By Rui Wang 

 
Doctor of Philosophy in Civil and Environmental Engineering 

University of California, Berkeley 
Professor Adib Kanafani (chair) 

 

Previous research studies have provided evidence of the non-uniformity of the value of 
time, which usually shows a decreasing trend as travel time increases. This work takes an 
in-depth look at thresholds and discontinuities in the value of time function. A theoretical 
framework is provided based on microeconomic theory. It is postulated that because of 
the multiple activities involved in an individual’s activity pattern, and the minimum time 
requirements associated with these activities, there exist discontinuities in the travel cost 
function as the travel time encroaches upon the time originally assigned to other 
activities. The derivation of the indirect utility function of a trip is made in a multi-
activity scenario, which shows the existence of discontinuous changes when the lowest 
time requirements of one or more activities are violated. In such cases, the activity may 
or may not be canceled.  Two models are constructed depending on whether the 
cancellation is included. In Model 1, which assumes that the activity (of which the lowest 
time requirement is to be violated) cannot be canceled, the time assigned to the activity 
cannot be further reduced. As a result, further increase in travel time is at the expense of 
another activity. Therefore, Model 1 reflects a change of slope in the utility function. In 
the case of Model 2, the activity can be canceled. The cancellation of the activity results 
in a quantum change in utility function. Consequently, Model 2 reflects a change in slope 
together with a quantum decrease in utility. 

The impact of the thresholds and discontinuities has long been overlooked, especially in 
intercity transportation. Using discrete choice modeling, empirical evidence of these 
discontinuities is found in air travel route choice. The thresholds where the 
discontinuities occur change with trip characteristics such as direction, and travel 
purpose. In general, the thresholds of business travelers are lower than those of leisure 
travelers. Additionally, there is evidence of a second threshold in the data. This is 
because as travel time keeps increasing after the first threshold is met, travel time starts to 
encroach on a second activity. The second threshold is hence possible as the binding 
condition may change again.  

Because of the fewer variables involved in the estimation process, Model 1 is generally 
more stable and requires less computational effort. Based on the estimation results, 
whether the changes of utility at the thresholds are quantum (model 2) or not (model 1) 
remains an open question. Due to the limited data available for this study, the comparison 
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results between the two models are tentative. More detailed data and in-depth research 
are needed to ascertain these results.  

Numerical examples are used to illustrate the proposed models’ impact on airline network 
design in the choice of hub location. For future research, suggestions are made to 
incorporate the notion of thresholds in travel survey design in order to provide better 
bases for estimating their values and their impact on traveler behavior.  
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1 Introduction and Research Objective 
 

Imagine the following scenario: a businessperson working in San Francisco wants to join a 
three-hour meeting that could occur in any one of three locations: Seattle, Houston, or 
Boston. Assume that the only consideration in this decision is travel time, everything else 
being equal. At first glance, Seattle may appear to be an outlier as compared with the other 
two choices. Although in terms of travel time, the choices follow the sequence of Boston > 
Houston > Seattle, the perception is likely to be that the difference between Houston and 
Seattle is considerably larger than that between Houston and Boston. For instance, it is 
likely that the businessperson can attend the conference by taking an early-morning flight 
from San Francisco to Seattle and then returning the same day. On the other hand, for a trip 
to Houston or Boston, a same-day return may not be possible such that the businessperson 
will be obliged to arrange an overnight stay. These factors, such as the possibility of an 
overnight stay and the need to miss a day’s work, give rise to significant inconvenience, 
which is translated into disutility. As a result, the stronger disturbance to activity pattern 
and the resultant inconvenience once violated contribute to increasing the overall cost of 
travel in the second scenario. This increase goes significantly beyond the cost reflected in 
simply comparing the travel time to Seattle with that to either Houston or Boston.  

A review of data pertaining to rail systems around the world reveals an interesting 
phenomenon whereby the travel demand does not vary smoothly with travel time. That is, 
when rail travel time drops below a certain threshold (around 2.5 hours), there is a drastic 
increase in travel demand (Vickerman 1997, De Rus 2009, Adler et al. 2010). This 
phenomenon suggests that there is a need to revise travel demand and mode choice model 
methodologies by incorporating the time attribute. In current models, the impact of most 
factors on the utility function is assumed to be constant or to change smoothly per unit 
change (and hence the level of service and the level of demand are assumed to follow the 
same pattern). And, in these same models, such relationships are described mathematically 
in the form of continuous functions. However, observations suggest that there is a 
threshold value for time such that there is a corresponding discontinuity in the value of the 
time function, or the utility function.  

Failing to account for the discontinuity in the value of time can result in a distortion 
of the utility function and subsequent errors in demand models derived from it. In trip 
generation estimation, the overlooked increase in terms of the generalized cost of short- 
and medium-haul trips tends to lead to an overestimation of demand. Furthermore, in mode 
choice estimation, ignoring the discontinuity in the value of time and its resultant demand 
shift between modes leads to an underestimation of the demand for the faster mode (or an 
overestimation of the slower). Such inaccuracies can be significant enough to bias policy 
decisions. From the operator’s perspective, it can also distort the estimation of traffic and 
revenue, and hence can be very critical in system design. 

The present research study takes an in-depth look at the impact of travel time on the 
demand for intercity travel and explores the existence of the threshold and discontinuities 
in the value of time. The study reconsiders the microeconomic theoretical background of 
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travel cost. It also justifies the hypothesis of ‘thresholds’ and ‘discontinuities’ both 
theoretically and empirically. The reformulation of travel time disutility implies ‘economy 
of travel time difference’ and shows significant impact in analyzing the inputs of 
transportation system design, which is also discussed by numerical example in this work. 

This study is organized as follows: Section 2 reviews related literature covering a 
range of topics from time allocation theory to scheduling. Section 3 provides an 
introduction to the methodological framework used herein. Some preliminary models are 
estimated empirically in Section 5. A more developed model is presented in Section 6, 
with a cross-comparison between datasets. Section 7 provides the conclusion and a 
discussion of possible future research directions. 
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2 Literature Review 
It should not be difficult to accept the concept of nonlinear VOT. However, that said, any 
concept requires theoretical support from multiple aspects in order to test the hypothesis 
and search for evidence of nonlinearity and discontinuity both in analytical and empirical 
terms. First, we need to know what the concept encompasses.  

It is likely that researchers first encounter the concept in reference to the “activity-
based model” and the “travel time budget.” The key aspect of the travel time budget is the 
belief that people either consciously or unconsciously allocate a certain amount of their 
everyday time budget (24 hours) to traveling. Rather than minimizing the total travel time, 
the traveler’s objective is to minimize the departure from that budget (in either direction). 
This idea originally grew from researchers’ dissatisfaction with the traditional four-step 
model—i.e., Urban Transportation Planning System (UTPS) modeling—for regional travel 
demand forecasting. The concept of a stable travel time budget was probably introduced by 
Tanner (1961) followed by Robinson et al. (1972). Zahavi (1979) developed a Unified 
Mechanism of Travel (UMOT), which is based on the assumption that travel time and 
money expenditure are each consistent. Furthermore, Goodwin (1981) discussed how these 
budgets, if indeed they exist, can be incorporated into the traditional four-step modeling 
procedure.  

Two important facts to note here are that most if not all studies pertaining to the 
notion of the travel time budget consider only urban travel contexts and that the 
geographical scale of most of these studies is limited to a metropolitan transportation area. 
Empirical evidence has shown that a relative constant travel time expense does exist in an 
aggregated scale. However, when researchers compared the regularity of travel time across 
space and time (particularly time), they found only limited evidence to support the notion 
that travel time is regular. There are some studies substantiate the position that travel time 
is stable over time (Zahavi and Talvitie, 1980; Zahavi and Ryan, 1980; Chumak and 
Braaksma, 1981; Hupkes, 1982; Barnes and Davis, 2001). .  

The activity-based model is another attempt to improve UTPS modeling by trying 
to introduce a series of representations underlying travel behavior. The model is based on 
“a common philosophical perspective, whereby the conventional approach to the study of 
travel behavior … is replaced by a richer, more holistic, framework in which travel is 
analyzed as daily of multi-day patterns of behavior” (Jones et al., 1990). Also, this 
approach appears to be inherently incompatible with intercity or long-distance 
transportation, which does not follow a daily or weekly activity pattern in most cases.  

I, therefore, decided to consider the fundamental theoretical assumption of the 
linear value of time functions. In traditional consumer behavior theory, utility was 
frequently considered a function of the consumption of goods before Becker’s (1965) first 
attempt to develop a methodology to account for the allocation of time in all non-work 
activities. In Becker’s postulation, a household’s basic activities such as sleeping and 
eating are produced through a combination of market goods and time, and thus time should 
be considered a factor that directly enters the utility function. Therefore, an additional time 
constraint is introduced into the model. In this theory, by assigning more time to work 
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rather than to commodity consumption, time is implicitly converted into money. Therefore, 
according to this concept, non-work time can be valued in the same way as wages are in 
terms of utility. Johnson (1966) further developed Becker’s model by including work time 
in the utility function, the subjective value (pleasantness or unpleasantness) of which is 
then summed with the wage rate to explain the variance of the value of non-work time. Up 
to this point, time was considered in regard to only two categories: work and non-work. 
Oort (1969) argued that the value of travel time should be considered an additional 
category. According to Oort, the value of travel time differs from non-work time because 
of the additional benefit or travel time in regard to saving time; e.g., travel time can be 
transformed into additional working time, and the reduction of subjective value of travel 
discomforts. 

De Serpa (1971) provided the first general model that defines the Value of Time 
(VOT) of all activities. The major difference between De Serpa’s model and previous 
models is that he considered time and goods to be complements rather than substitutes. 
Based on this, he introduced another constraint according to which the consumption of 
certain goods requires a minimum amount of time referred to as the technology constraint. 
De Serpa also defined three kinds of VOT: the value of time as a resource (VOR), the 
value of time as a commodity (VOC), and the value of time savings (VTS). Because it can 
be generalized, this model provides better compatibility than previous models, and it has, 
therefore, frequently been used as the foundation of later models. Another revolutionary 
step was taken by Evans (1972), who argued that only time assigned to activities should be 
considered in regard to determining utility. This position, however, has not been 
sufficiently recognized. Jara-Diaz (2007) developed a model with a utility function 
specified in the Cobb-Douglas form with constraints similar to those specified in the De 
Serpa model. 

Some recent research focuses on determining the nonlinearity factor in regard to the 
value of time functions. In the neo-classical model presented by Train and McFadden 
(1978), the value of time equals the wage rate. Blayac and Causse (1999) may be the first 
to provide a theoretical legitimization of some nonlinear representative utility, based on 
which Kato (2005) developed a model that captures the impact of second- and third-order 
utility in respect to travel time. In addition, many research studies have discussed 
variations in the value of time over travel time or distance. According to a number of these 
studies, the value of travel time decreases as travel distance increases (Hensher 1997, 
Wardman 1998, 2001, 2004; Hulkrantz and Mortazavi 2001). However, evidence that 
leads to different or contrary conclusions does exist (De Lapparent et al. 2002, Axhausen 
et al. 2005) reported in studies predominantly by European and Japanese researchers.  

Because the study I designed required intercity travelers’ choice information, and in 
the U.S. the most widely available intercity transportation information lies in the air travel 
sector, in the empirical analysis of this work, I focused on the itinerary choice modeling 
among air travelers. The present study relies on air transportation data. The reasons for 
adopting data of this type will be discussed in detail in the theoretical framework. There is 
abundant literature on itinerary choice modeling in the context of air transportation, but 
this literature seldom overlaps with the kind of studies discussed above. Most of the 
relevant studies rely on stated preference data, and the behavioral frameworks are mostly 
some form of logit model: the simple logit model (Abou Zeid et al., 2006), the error 
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component logit model (Hess et al., 2007), the continuous cross-nested logit model (Lemp 
et al, 2010), or the mixed logit (with latent variables) model (Brey and Walker, 2011). 
Estimation of the willingness to pay for delay is usually based on two types of trip 
purposes: business and leisure, and the numerical results of these estimations vary, from 
30.30 $hour and 4.80 $/hour (Proussaloglou and Koppelman,1999) to 60 $/hour and  17 
$/hour (Adler et al., 2005). It should be noted, too, that, business travelers have a greater 
standard deviation in regard to their willingness to pay than do leisure travelers.  

In schedule preference distribution estimation, Mehndiratta and Hansen (1997) 
adapted time allocation theory by assuming that schedule preference distribution depends 
on whether the schedule delay occurs during work, leisure, or sleep time.  

Although there has been so much discussion on the issues of activity-based 
modeling, travel time budge, and the non-uniformity of the value of travel time etc., the 
questions of ‘discontinuity’ and ‘threshold’ are still left to be answered, especially in 
intercity traveling. I tried to substantiate the proposition of ‘discontinuity’ with a 
microeconomic theoretical model (Chapter 3) and empirical evidences (Chapter 4 and 5).  
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3 Theoretical Framework 
The choice process as it relates to intercity travel is often based on the travel time of modes 
that are substantially larger than in urban cases. The travel time values for intercity travel 
are often on the order of hours rather than minutes as in urban cases. For intercity travel, 
the travel time often interferes significantly in the daily activities of travelers. It is 
expected, and has sometimes been observed, that a discontinuous change occurs in demand 
in response to changes in the travel time of a particular one or when there is a switch 
between modes. This indicates a change in the value of time. An intuitive explanation for 
this would be that when the travel time of a certain activity becomes exceedingly long, 
travel has a significant chance of interfering with other daily activities. For example, if the 
one-way travel time between two cities is at 2 hours, a traveler can make a round-trip 
during the day without a significant impact on other activities. With travel time increasing, 
initially a traveler may be no longer be able to make a one-day round-trip such that the 
traveler has to arrange for overnight accommodation. This suggests that at a certain level 
travel time will encroach on other activities in the decision maker’s original plan. Given 
that the value of time can differ depending on the activity, there will be a discontinuity in 
the travel time value. This may be perceived as an abrupt increase (or decrease) in the 
value of time, which is then reflected in the demand for travel. This explanation is in 
accord with that offered by Time Allocation Theory, introduced by De Serpa (1971).  

In this part of the research, I focused on establishing a theoretical framework to 
connect TAT with the traveler’s decision-making with the purpose of producing a travel 
behavior model that reflects the discontinuity of the value of time. First, I reviewed the 
theoretical framework by De Serpa. I also reviewed the derivation of the disutility function 
of a trip. Based on these theories, I introduced two microeconomic explanations for the 
discontinuity of the value of time.   

Before going into the details of the models, I introduce the following notation 
system: 

• i (from 1 to n) represents a series of activities under consideration during one unit 
of overall time expansion.  

o i is 1 in the case of the model in section 3.1.2, because only 1 activity is 
under consideration. As a result, i is omitted in this model for 
simplification. 

•  j (from 1 to m) denotes the different transportation modes under consideration in 
order to perform an activity.  

o j is 1 in the case of the model Section 3.1.1, because only activities, not 
travel modes are under consideration. Similarly, j is omitted in this model 
for simplification. 

• T is a vector with i entries that indicates the time allocated to the i activities 
respectively. 

o T is a scalar in section 3.1.2 because i = 1. 
• t is a matrix with dimension (i, j). The entry tij is time of travel to conduct activity i 

if taking mode j (both can be zero if the activity does not involve travel). 
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o t is a vector with j entries in section 3.1.2, because i =1. 
• d is a matrix with dimension (i, j). The entry tij is time of travel to conduct activity i 

if taking mode j (both can be zero if the activity does not involve travel). dij = 1 if 
chosen, dij = 0 otherwise.  

o d is a vector with j entries in section 3.1.2, because i =1. 
• x is a vector with i entries that indicates the quantity consumed of activity i. 

o x is a scalar in the in section 3.1.2 because i = 1. 
• P is a vector with i entries that indicates the unit price of activity i. Pi is assumed to 

be exogenous. 
o P is a scalar in the in section 3.1.2 because i = 1. 

• p is a matrix with dimension (i, j). The entry pij is the price of travel to conduct 
activity i if taking mode j (both can be zero if the activity does not involve travel). 
pij is assumed to be exogenous. 

o p is a vector with j entries in the in section 3.1.2, because i =1.  
• ai indicates the minimum time needed to consume a unit of activity i. 
• 𝑻 is a vector with i entries that indicates the lowest time requirement of activity i. 

Ti  is assumed to be exogenous. 
o 𝑇 is a scalar in section 3.1.2 because i = 1. 

• 𝒕 is is a matrix with dimension (i, j). The entry tij  is the lowest time requirement of 
travel to to conduct activity i if taking mode j (both can be zero if the activity does 
not involve travel). tij  is assumed to be exogenous. 

o 𝒕 is a vector with j entries i in section 3.1.2, because i =1.  
• R is the overall income of the individual (assumed exogenous).  
• TT is the total temporal endowment (assumed exogenous). 

3.1 Theoretical Background 
 
As mentioned at the beginning of this work, the inspiration of the study is that the 
thresholds and discontinuities in the value of travel time is a result of that when travel time 
becomes exceedingly long, its impact on other activities becomes significant. That is to 
say, the thresholds and discontinuities are suspected to be the impact of a long trip on the 
multiple objectives of an individual during a certain period of time. In order to construct a 
theoretical framework that reflects such schemes, the review of two models is provided. 

3.1.1 The De Serpa Model 
As discussed in Chapter 2, the model by De Serpa provides the foundation of many 

models. Therefore, the theoretical background review starts with De Serpa’s model. In this 
model, a series of activities are under consideration in an individual’s activity pattern. The 
individual tries to maximize his/her overall utility through resource allocation of time and 
money. The resource allocation problem can be defined as the following utility 
maximization: 
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Maximize U (x, T)                                                (3.1) 

Subject to 

𝑃!𝑥! = 𝑅                                                        (3.2) 

𝑇! = 𝑇𝑇                                                         (3.3) 

𝑇! ≥ 𝑎!𝑥!                                                          (3.4) 
 

Where there are three sets of constraints:  

• Income constraints that reinforce the overall expenditure equals the individual’s 
income,  

• Time constraints that reinforce the total time spent equals the total temporal 
endowment, 

• Technical constraints that require the time spent on each unit of activity to satisfy 
a certain lower bound requirement. 

In the following part of the research, the constraints of the utility maximization problems 
have similar structures. 

3.1.2 The MVA Model 
MVA (1987) developed the first rigorous relationship between the discrete choice 
modeling functional form and the individual time allocation microeconomic framework. 
This framework is also based on De Serpa’s time allocation model, in which the exogenous 
variables are only for the one activity of which mode choice is under consideration. The 
neo-classical program can be presented as follows: 

Max (x, T, t)                                                       (3.5) 
Subject to 

Px + dj pj
j=1

m

∑ = R

T + djt j
j=1

m

∑ = TT

t j ≥ tj

λ[ ]

µ[ ]
kj#$ %&

 

The model is also designed with three sets of constraints, similar to that of the De Serpa 
model:  the income constraints, the time constraints, the technical constraints.  

λ, µ, and kj  is each the Lagrangian multiplier of the respective constraint. As a result, λ 
indicates the marginal utility of income, whereas µ is the marginal utility of an additional 
unit of time. kj is the marginal utility of decreasing the travel time required of mode j.  

  (3.6) 
 
 
  (3.7) 
 
  (3.8) 
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The Lagrangian of the problem can be formulated as 

L =U x,T, t1,...tm( )+λ R−Px − dj pj
j=1

m

∑
#

$
%%

&

'
((+µ TT −T − djt j

j=1

m

∑
#

$
%%

&

'
((+ djkj t j − tj( )

j=1

m

∑
 

(3.9) 

The first-order conditions are 

∂U
∂x

= λP , 

€ 

λ > 0                                                      (3.10) 

∂U
∂T

= µ , 

€ 

µ > 0                                                      (3.11) 

∂U
∂t j

= µdj − djkj , kj ≥ 0 , j = 1,…., m                                 (3.12) 

The first-order approximation of the utility function is 

U ≈ c+ ∂U
∂x

x + ∂U
∂T

T + ∂U
∂t j

t j
j=1

m

∑
                                     (3.13) 

Substituting the first-order conditions gives the indirect utility function. This value is 
called the ‘indirect utility’ because of the assumption that the utility is maximized while 
the expenditure is minimized at the same time. The term ‘indirect’ implies the dual 
problem. 

V ≈ c+λpx +µT + µdj − djkj( ) t j
j=1

m

∑
                                  (3.14)

 

After simplification, and based on the assumption that the mode j is taken, the indirect 
utility function of choosing mode j can be rewritten as  

Vj = c−λpj − kjt j                                                   (3.15) 

which is a standard form in neo-classical models.  
To provide a theoretical framework for the hypothesis, a more generalized theoretical 
framework is introduced to capture multiple activities within one day. The original four-
element structure of each activity is retained: the quantity consumed and the time spent on 
the activity as a composite good except for traveling are denoted by X and T, respectively, 
and the monetary cost and time cost of traveling in order to conduct the activity are 
denoted by p and t. An individual is facing multiple activities during a certain time period. 
One important characteristic of this model is that a fourth set of constraints is introduced, 
which reflects the lowest time spent requirement on conducting the activity. For instance, 
if the individual is planning to watch a movie, there would be a lowest time consumption 
requirement of Tmovie, which is the overall show time. Two theoretical models with a 
similar ideology are proposed and then compared.   
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3.2 Theoretical Model 1 
In the theoretical background review of Section 3.1, two models are presented and 
discussed. In the De Serpa’s model (Section 3.1.1), multiple activities are involved while 
no travel mode choice is taken into consideration. In the MVA model (Section 3.1.2), 
while mode choice is the focus, only one activity is considered. I combined these two 
models to introduce a theoretical framework that taken into consideration of multiple 
activities as well as multiple travel modes to conduct each of the activity.  
A visual representation of the model structure is illustrated in Figure 3.1. 

 
Figure 3.1: Model 1 Illustration Example A 

As travel time increases, at the beginning, it encroaches upon Activity 1. However, there is 
a point where the time assigned to Activity 1 can be no longer decreased (which is called 
the lowest time requirement of Activity 1, and is discussed in more details later). For 
example, one may need 30 minutes for lunch. He/she may first assign 1 hour for it to 
ensure some flexibility. If his/her travel time to lunch increases, the person would decrease 
the time assigned to lunch to account for the extra travel time. However, when 30 minutes 
are taken away from lunch, which means only 30 minutes are left, his/her time for lunch 
can be no longer decreased. In such cases, the person may reduce the time assigned to a 
different activity (grocery shopping for instance), which is represented as Activity 2 in 
Figure 3.1. The point where the travel time is increase by 30 minutes is hence a threshold.  
This is Model 1, the mathematical formulation of which is as follows:  
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Max U (x, T, t)                                                        (3.16) 

Subject to 
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Similarly, the first two sets of constraints are the income and time constraints, respectively, 
whereas the third and fourth sets of constraints are the technical constraints. Therefore, the 
Lagrangian of the problem is 
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(3.21) 
At optimality, 
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= λPi , 
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kij ≥ 0 , i = 1,…., n, j = 1,…., n                   (3.23) 
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µ > 0, ηi ≥ 0                                    (3.24) 

The first-order approximation of the utility function would be 
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with c as an intercept. 
The indirect utility of a given set of activity and travel mode choices can be approximated 
as 

 (3.17) 
 
 (3.18) 
  
 (3.19) 
 (3.20) 
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where R and TT are constants. To determine the indirect utility of an activity, a given 
mode b is chosen, and if conditioning on the transportation modes of all the other activities 

is taken, 

€ 
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n

∑ pij
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∑  is constant. The indirect utility function can be rewritten as 
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where the vector d is assumed to be known and the travel time constraint is binding such 
that kij is continuous. There will be a point of discontinuity when the constraint condition 
of one of the activities goes from unbinding to binding (

€ 

η j  changes from zero to non-zero), 
which is not considered in the neo-classical model. However, in the neo-classical model  

€ 

Vab = c − λpab − kabtab                                               (3.28) 

It can be observed that the neo-classical model is obtained by assuming that the binding 
conditions of other constraints do not change. Or, more generally, any continuous utility 
function is based on this assumption, which is certainly not true in real life. If we consider 
the point at which the constraint changes from binding to non-binding to be a “threshold,” 
especially in long-distance travel, such as intercity travel, where the activity-based model 
of urban travel is no longer valid, the threshold effect cannot be incorporated. However, as 
the travel time increases, the probability of encountering thresholds will increase. From the 
empirical framework, it can also be postulated that there can be multiple thresholds in the 
value of travel time. 
Please Recall Figure 3.1, which is a simplified interpretation of model 1 showing how the 
disutility function (travel cost) changes with travel time. Figure 3.1 represents how the 
time budget is allocated to different activities when travel time is considered as the only 
exogenous variable. Again, Tab denotes the travel time of the trip under discussion. Three 
activities (1 to 3) are considered in this example. The area underneath represents the time 
allocated to the trip or the activity. It should be noted that the examples used in this chapter 
are all simplified and illustrative. They are presented in order to establish the working 
mechanism underlying the different optimization schemes.  The resultant utility function 
profile is presented in Figure 3.2. 
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 Figure 3.2: Model 1 Illustration Example B 

  When the travel time is relatively short (at point A), the disutility function increases 
continuously with travel time before exceeding the first threshold. This is primarily 
because the travel time takes up only the time allocated to activity 1. At point B, the time 
allocated to activity 1 reaches its lower-bound requirement, and thus when the travel time 
requirement increases further, it starts to encroach on other activities, which is activity 2 in 
this case. As a result, the slope of the disutility function changes after the first threshold. 
So the value of time changes after point B. A similar process takes place when the time 
allocated to activity 2 reaches its lower-bound requirement. The travel time disutility 
function encounters a second threshold, where the value of time changes again. 
Theoretically, it is possible to assume that even more thresholds exist. However, in 
empirical research, due to geographical limits, a traveler will encounter only a limited 
number of thresholds. Model 1 establishes a continuous utility function with a 
discontinuous value of the time function, which is reflected in slope changes as presented 
in Figure 3.2.  

3.3 Theoretical Model 2 
The second model proposed is very similar to the first but with stronger conditions. The 
main difference lies in the cancellation of activities. In model 1, the problem is stated so 
that each activity requires a minimum time consumption. For example, if the technical 
constraint of the activity “watching a movie” is 2 hours, the time spent in the theatre will 
be at least 2 hours. However, in real life, the individual has the choice of missing the 
movie. That is, if the time assigned to other activities keeps increasing and the time 
assigned to watching a movie touches the lower bound, the individual can make the choice 
to miss the movie.  
Please recall Figure 3.1 again, similar to which, a illustration of Model 2 is represented in 
Figure 3.3 
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 Figure 3.3: Model 2 Illustration Example A

 Figure 3.3 shows that when travel time increases to the extent that Activity 1’s lowest time 
requirement is to be violated, the individual may choose to cancel it. The time assigned to 
Activity 1 is then taken away by other activities (Activity 2 in the illustrative example).   

This consideration is in line with the technical constraint in De Serpa’s model where the 
lower-bound requirement of each activity is proportional to the number of activities 
consumed. In model 2, the cancellation of the activity means that the unit of consumption 
drops from 1 to 0. This will only be reflected in terms of the technical constraint. As the 
result, the most important difference between model 1 and model 2 lies in the last set of 
constraints for the time allocated to activity i, where Ti can be either greater than a certain 
lower-bound requirement, or can equal zero. Model 2 can be expressed mathematically as: 

Max U(x, T, t)                                                     (3.29) 
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With the implied assumption that Ti ≥ 0 , the last set of constraints can be rewritten as 
(Ti −Ti )Ti ≥ 0 . 

 (3.17) 
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 (3.19) 
 (3.20) 
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Therefore, the Lagrangian of the problem is 
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At optimality, 
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The first-order approximation of the utility function would be 

   
U ≈ c+ ∂U

∂xii=1

n

∑ xi +
∂U
∂Tii=1

n

∑ Ti +
∂U
∂tijj=1

m

∑ tij
i=1

n

∑
                           (3.25)

 

with c as an intercept. 
Similar to the previous model, the indirect utility of a given set of activity and travel mode 
choices can be approximated as 
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Figure 3.4: Model 2 Illustration Example B 
The utility function profile is presented in Figure 3.4. The beginning of the story is exactly 
the same: when the travel time is relatively short (at point A), the disutility function 
increases smoothly with travel time before exceeding the first threshold. The major 
difference between model 1 and 2 occurs at point B, when the time allocated to activity 1 
reaches its lower-bound requirement. In model 2, the traveler may have the choice of 
canceling activity 1. In this case, there will be a discontinuous change in the disutility 
function as the travel time exceeds the first threshold. This change is primarily due to the 
fact that the time originally allocated to activity 1 is now taken up by other activities. The 
following process is similar: when the travel time requirement continues to increase, it 
starts to encroach on activity 2. So the slope of the disutility function also changes after the 
first threshold. Model 2 reflects a change in slope together with a quantum increase in 
disutility.

 3.4 Model Interpretation 
How can the thresholds and discontinuities with respect to travel time be found 
empirically? Ideally, if access to all the information required to represent the model can be 
obtained, i.e., the overall activity pattern of travelers (Ti, tij,, etc.), then we will be able to 
determine the threshold values and their weights in the disutility function. This approach 
would be similar to that adopted in the activity-based model for urban settings. Perhaps the 
most important difference will be the magnitude of the respective time durations. That is, 
the difference in magnitude may result in completely different problems. This is due to the 
differences between urban and intercity travel listed as:  
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Table 3.1: Comparison between urban and intercity traveling 

 

 Urban Intercity 

Different choice set of travel 
modes 

Bicycle or walking, etc. Airplane, etc.  

Different collection of activities 
to be concerned 

Picking up kid from school, 
etc. 

An entire day of work, etc. 

Significance in the overall 
activity pattern 

Low  High 

 
It should be emphasized again that the change in magnitude will result in a non-linear 
change in disutility. In addition to the differences between the models given in Table 3.1, 
the fundamental cause is that the total time budget must be binding for the magnitude of 
intercity travel, but not necessarily for the magnitude of urban travel. Due to the smaller 
magnitude in urban travel models, the activity set is more flexible. That is, as the present 
study only looks at one piece of the daily activity pattern in reference to the magnitude of 
urban cases, it is not necessary for the individual to complete all the compulsory activities 
within the time window, and hence, the overall time budget constraint in the urban setting 
is not necessarily binding. More importantly, because the time constraints and the activity 
sets are less flexible in the intercity context than in the urban context, there are more 
reasons to suspect that the thresholds of certain groups of travelers’ (business, leisure, etc.) 
in intercity traveling may coincide or at least fall into a certain interval with statistical 
significance. The threshold(s) can be found with econometric tools. Also, because the 
thresholds coincide, the group behavior of travelers facing the thresholds would be critical 
in their respective mode/itinerary choice decisions. From the system operator’s (supplier’s) 
perspective, the phenomenon also has essential economical implications, as discussed 
previously. Therefore, the lack of knowledge in intercity traveling leads to a more 
important question of intercity traveling when travel time becomes exceedingly long. 

Due to the change of model settings as well as the lack of information, the 
empirical work conducted as part of the present study is very exploratory in nature. As a 
result, rather than incorporating every possible factor into the model, I have adopted simple 
models in order to capture the discontinuity at a macroscopic level.  
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4 One-Threshold Model Estimation with Stated Preference 
(SP) Data 

In the previous section, two theoretical explanations are offered to account for the 
discontinuities of VOT. However, due to the field’s very limited understanding of the 
issue, the present research offers only an initial-stage inquiry: mere empirical knowledge 
and no ideal data resource. I decide to take the ambitious step of looking for empirical 
evidence of the discontinuities with data that was not collected for this particular purpose. 
My goal in taking this approach was to reach conclusions that would be generalizable.  

In this chapter, I start by discussing the choice of mathematical formulation of the utility 
function. After choosing piecewise linear models, a discussion was made on the properties 
of the model. Then I introduce a stated preference (SP) data set collected by Boeing, and 
estimated with one-threshold assumption. I also further stratify the data by travel directions 
and travel purposes. The results are presented and discussed afterwards. 

4.1 Travel Time Utility Function Choice: Piecewise Linear 
As suggested in the theoretical framework illustrations and given the limited 

existing insights into the problem, piecewise linear functions are probably the best 
representation. It is postulated that the utility function is linear in respect to time between 
thresholds. The slopes of different segments should also change. For model 2, in particular, 
a dummy variable should be included at the threshold to simulate the discrete impact.  

The estimation began on the basis of observing the change of the likelihood 
function with respect to different heuristic threshold assumptions. Non-parametric 
measures were not used for the estimation because it was not feasible to do so given the 
limitations of the data. With a non-parametric model, the time horizon should be divided 
into a series of small intervals and the parameter of each interval can be estimated 
accordingly. Unfortunately, if the interval is defined to be small, there will be too many 
variables in the utility function, such that both convergence and significance will become 
problematic. Therefore, the model becomes non-estimable with small time intervals. 
However, if the interval unit is large, the rough capture of the nonlinearity hinders the 
model’s intuitive sense. The model becomes non-interpretable, as the parameters may 
change back and forth drastically and signs can also differ significantly from what is 
expected. 

From another perspective, the piecewise linear model is a simplified version of the 
non-parametric model. The threshold can be estimated by moving the threshold(s) across 
the travel time horizon, dividing the travel time into segments accordingly, and then 
estimating and comparing the log-likelihood values. According to my “simple is best” 
principle, within my empirical analysis, the research started from the very basic one-
threshold assumption. After the estimation comparison results were obtained, the next 
steps were to determine which model to adopt and whether it made empirical sense to 
move to a double-threshold estimation. With a confirmation as the answer, the estimation 
results of the respective datasets were compared in order to determine the relative 
robustness of the models. The travel time can be entered into the model by cutting it into 
segments according to the thresholds. In model 2, additional dummy indicators should be 
added to represent the “jump” at each threshold. 
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Figure 4.1: Model 1 Estimation Illustration 

 
 

Figure 4.2: Model 2 Estimation Illustration 
 

The disutility that results from the travel time is denoted as 
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Figure 4.3: Continuous VOT Change Illustration 

With the mathematical formulation 

€ 

−Vab
T = kab

1 tab + Iabkab
2 tab −τ( ) = kab

1 + Iabkab
2( )tab − Iabτ  

(4.1) 

In model 2, where both the utility function and the value of the time function are 
discontinuous, the disutility function can be represented as 

 
Figure 4.4: Non-continuous VOT Change Illustration 

With the mathematical representation 
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(4.2) 

Secondly, it is necessary to decide on the data resource to use for the empirical estimation. 
As suggested previously, the contribution of this study pertains to the public transportation 
sector and the result can be considered as a policy indicator. In intercity settings, the major 
public modes under consideration are rail and air. Due to the better availability of traveler 
information data in air transportation in the U.S., the stated preference data (SP) were used 
from air travel for the empirical estimation. There are several advantages to adopting this 
type of data. Firstly, as stated at the beginning of the present study, previous research has 
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shown that a threshold impact does exist in rail travel with revealed preference (RP) data. 
SP air travel data are an adequate complement for achieving the conclusion of the 
threshold impact for intercity passenger demand in general. Secondly, as the issue is being 
discussed within the context of the US, air travel is perhaps the only mode used on a 
nationwide basis.  

The first SP dataset adopted in this section is from the Internet choice survey 
conducted by Boeing in the fall of 2005. In this survey, the respondents faced three air 
travel alternatives: alternative 1 is a non-stop flight, alternative 2 is a one-stop flight with 
no airline change (an in-line connection), and alternative 3 is a one-stop flight with a 
change of airline (an off-line connection). Other features of the flights are also provided on 
the survey interface (webpage) as depicted in Figure 3-1. 
The dataset records responses from 3,613 respondents (10,839 records), including 
information such as origin, destination, flying time, trip purpose, round-trip fare, and the 
direct payer of the trip.  

 
Figure 4.5: Boeing Survey Webpage Design 
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In the preliminary estimation with the SP data, the nested logit model was used as 
the framework. This model allows a correlation between alternatives within the same nest, 
whereas in the classical logit model all the alternatives are assumed to be Identically 
Independently Distributed (IID). That is, the alternatives within the same nest are likely to 
be of a similar nature. For instance, in travel demand modeling it is frequently assumed 
that all public transportation modes are in one nest, and all the private modes are assumed 
to be in another. The nested logit model can be expressed as  

 
(4.3) 

where  

• n denotes the specific individual facing the choice situation. 
• i (i = 1, 2, 3) denotes the mode or itinerary alternative  
• Pni denotes the probability of the individual n choosing alternative i. 
• V represents the indirect utility function of the individual n for scenario i. 
• k denotes the nesting structure assumptions. In our estimation, the two connecting 

flights are in the same nest, whereas the direct flight is in another. 
• λk is the nest parameter of nest k.  

A technical problem occurs once the threshold is introduced: the profile of the log-
likelihood value is no longer continuous or derivable. For investigation purposes, the 
intuitive method is to observe visually. I estimated the maximum log-likelihood value 
based on different travel time threshold assumptions. In the following figures, the 
horizontal axis represents the threshold value assumption; the vertical axis indicates the 
estimated maximum log- likelihood value. The log-likelihood values are then compared 
with the linear assumption (equivalent to the threshold value set to zero).  

Another important gap that the present study is designed to address is that of using 
clock travel time to analyze travelers’ responses. Elapsed travel time has always been the 
measure adopted in model estimations. However, following the logical implication in 
every time allocation model, including the two in the present study, when travelers make 
travel-related decisions, the factor of time should be considered in the form of clock time. 
That is, for a flight from SFO (San Francisco) to JFK (New York), the elapsed travel time 
in the airplane is 5 hours; however, the actual time subtracted from an individual’s overall 
time budget is the clock travel time, which is 9 hours (taking into account the time zone 
difference). To be consistent with the theoretical setup, I used the clock travel time for the 
estimation. In traditional linear models, this factor would not be an issue because as long as 
the same OD pair is concerned; the time zone difference will always be the same. In a 
linear model, only the difference in the utility function matters. The time zone impact for 
the same OD pair will not result in any utility difference between different options. 
However, in the new models proposed herein, the time zone difference will have an 
additional impact. Additionally, 1.5 hours is added to the clock travel time to simulate the 
access/egress time. Of course, more detailed access/egress information could be considered 
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independence within nest k, that is, no correlation. When λk = 1 for all
k, representing independence among all the alternatives in all nests, the
GEV distribution becomes the product of independent extreme value
terms, whose distribution is given in (3.2). In this case, the nested logit
model reduces to the standard logit model.

As shown by the authors cited earlier, this distribution for the unob-
served components of utility gives rise to the following choice proba-
bility for alternative i ∈ Bk :

(4.2) Pni =
eVni /λk

( ∑
j∈Bk

eVnj /λk
)λk−1

∑K
"=1

( ∑
j∈B"

eVnj /λ"
)λ"

.

We can use this formula to show that IIA holds within each subset
of alternatives but not across subsets. Consider alternatives i ∈ Bk and
m ∈ B". Since the denominator of (4.2) is the same for all alternatives,
the ratio of probabilities is the ratio of numerators:

Pni

Pnm
=

eVni /λk
( ∑

j∈Bk
eVnj /λk

)λk−1

eVnm/λ"

( ∑
j∈B"

eVnj /λ"
)λ"−1 .

If k = " (i.e., i and m are in the same nest) then the factors in parentheses
cancel out and we have

Pni

Pnm
= eVni /λk

eVnm/λ"
.

This ratio is independent of all other alternatives. For k #= " (i.e., i and m
are in different nests), the factors in parentheses do not cancel out. The
ratio of probabilities depends on the attributes of all alternatives in the
nests that contain i and m. Note, however, that the ratio does not depend
on the attributes of alternatives in nests other than those containing i
and m. A form of IIA holds, therefore, even for alternatives in different
nests. This form of IIA can be loosely described as “independence from
irrelevant nests” or IIN. With a nested logit model, IIA holds over al-
ternatives in each nest and IIN holds over alternatives in different nests.
This property of nested logit models is reinforced in the next section
when we decompose the nested logit probability into two standard logit
probabilities.

When λk = 1 for all k (and hence 1 − λk = 0), indicating no correla-
tion among the unobserved components of utility for alternatives within
a nest, the choice probabilities become simply logit. The nested logit
model is a generalization of logit that allows for a particular pattern of
correlation in unobserved utility.



	   23	  

should such information be available in future studies. In linear VOT models, neither of 
the two revisions would have any impact because the relative utility cancels out.  

 
 

Figure 4.6: Utility Comparison 
 

Figure 4.4 depicts the estimation mechanism. The horizontal axis indicates different 
assumed threshold values, whereas the vertical axis refers to the negative log-likelihood 
values. Each point on each line represents a different threshold assumption and its 
corresponding log-likelihood estimation. For maximum likelihood estimation, the lowest 
point is optimal. The dashed line indicates the estimation results from model 1, and the 
continuous line represents the estimation results from model 2. Obviously, the estimation 
results from model 1 are smoother than those from model 2, which means the parameter of 
the threshold can be estimated analytically with model 1, but not for model 2. Tables 4.1 
and 4.2 provide the optimal estimation results (points circled in black) of some of the 
variables. The estimation results of linear model can be observed when the threshold is 
assumed to be zero.  
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Table 4.1: Optimal Estimation Result of Model 1 

Threshold 3.67 
Log-likelihood -2429.6378 
Variable Name Estimation SE 

Time Segment 1 -1.1001 0.0809 
Time Segment 2 -0.8433 0.0327 

 
 

Table 4.2: Optimal Estimation Result of Model 2 
Threshold 3.95 

Log-likelihood -2425.0305 
Variable Name Estimation SE 

Time Segment 1 -1.2174 0.0884 
Time Segment 2 -0.8739 0.0355 

Jump 0.2890 0.0874 
 

4.2 Comparison of Models 
I have set out the previous estimation example in order to show the respective advantages 
and disadvantages of the two models proposed herein. For the specific estimation I 
conducted with this dataset, model 1 shows a strong advantage over model 2. As illustrated 
in Figure 4.1, model 1 can be estimated without linear search, which is not possible in the 
case of model 2. This difference between the estimation algorithms of the two models 
implies that more computational effort is necessary for model 2 than for model 1. 
Additionally, for the same reason that it requires this additional computational effort, 
model 2 is also less robust than model 1. The high computational effort and low robustness 
of model 2 is further complicated by another major problem with the current model: the 
lack of intuitive sense associated with the estimation results. For instance, in the estimation 
results just listed, the estimation parameter of the “jump” turned out to be positive, which 
indicates that indirect utility increases once travel time exceeds the threshold. That is, at 
the threshold boundary, passengers prefer a longer trip. This is not always the case and can 
even be a killing factor in regard to choosing between models, as the results are obviously 
anti-intuitive according to classical models.  
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Table 4.3: Comparison between models 1 and 2 
 

 

 Pros Cons 

Model 1 

• The threshold can be 
estimated analytically as an 
exogenous variable 

• Less computational effort 
• Robust for almost all of the 

cases 

• Relatively weak conditions 
• Less sensible implications 

Model 2 

• Implications are closer to real 
travelers’ behavior 

• Stronger condition with more 
significant economic and 
political implications 

• Requires abundant 
computational effort 

• Lacks robustness 
• Estimation results sometimes 

do not make intuitive sense 
 
Although it is certainly possible to list the reasons to criticize the estimation results of 
model 2, the question under consideration is whether this anti-intuitive result might 
actually make sense. The answer is yes. Redmond and Mokhtarian (2001) found that 
people may assign positive utility to the travel time of commuting due to several reasons: 
‘the benefits associated with a typical work destination (such as opportunities for 
socializing, shopping and other activities), the benefits associated with activities that can 
be conducted while traveling (listening to music, making phone calls, reading, 
transitioning between work and home roles), and an intrinsic enjoyment of travel itself’ 
(Redmond and Mokhtarian, 2001). 

The explanation lies in the bundling effect of the activities. That is, as travel time 
increases, the possibility that the travel time duration can accommodate another activity 
also increases. For example, when the travel time is less than 2.5 hours, the major portion 
of the trip is spent on access, egress, acceleration, and deceleration. This means that it is 
difficult for a traveler to perform any work productively during the trip. However, when 
the travel time increases, the passenger has a disproportional increase in the travel time 
during which he/she can conduct some work efficiently. The same principle can be applied 
to overnight flights. It is only when the travel time is exceedingly long (transcontinental) 
that overnight flights are possible. Although the airfare for overnight flights may not be as 
low as that of non-overnight flights, the former bring savings on accommodation, which is 
not taken into account when only the travel activity is considered. As a result, it is certainly 
possible to consider the at first glance anti-intuitive results to be reasonable. To understand 
the underlying working mechanism and consequences, it is necessary to improve the 
models and survey methods, which will be discussed later. For the purpose of this 
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dissertation and given the limitations of the data, I conclude that model 1 is more sensible 
and robust than model 2 is. Therefore, I consider only model 1 in the following sections.  
 

4.3 Variance Across Travelers 
The value of travel time changes depending on the travel group because different travelers 
willingness differ in regard to the amount they are willing to pay depending on the purpose 
of their travel. The value of travel time for business travelers is always higher than that of 
leisure travelers. Similarly, I also suspect that the thresholds change between traveler 
types. Travel purpose is one of the variance factors taken under consideration, and thus I 
compared the difference in thresholds between business and leisure travelers in the same 
way as I did for the value of travel time. Additionally, as I am concerned with clock time, 
travel directions should also affect the threshold values. This is because for instance, for 
east–west bound travelers, the travel clock time is shorter than the elapsed time (longer in 
the case of west–east bound, equal in the case of north–south or south–north bound). As a 
result, the binding conditions, and hence the travel time threshold values, change among 
the three types of travelers. Therefore, I also stratified the samples according to the three 
types of travel directions.  
  

Table 4.4: Comparison of Results 
 

 

 
Table 4.4 lists the estimation results with the stratified data. The result is still far from 
conclusive. As indicated in the previous log-likelihood plot, Figure 4.4 is to a certain 
extent bi-modal, which implies that one-threshold estimation is not sufficient. Although the 
second threshold may not be significant, its impact on the distortion of the overall 
estimation result should be understood. As a result, it is still critical to determine whether 
and to what extent it has a bias on the results. Therefore, I continue with the two-threshold 
estimation in the next chapter, in which only model 1 was adopted for estimation.   

  
Threshold (±Standard Error) 

Overall 3.7 (± 0.2) 

D
ire

ct
io

n 

North–South 3.4 (± 0.4) 

East–West 4.1(± 0.7) 

West–East 5.1 (± 1) 

Pu
rp

os
e Business 2.8 (± 0.4) 

Leisure 3.8 (± 0.4) 
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5 Estimation of the Two-Threshold Model 
In the single threshold estimation, our goal was to determine only the global maximum of 
the likelihood values (the lowest point in the negative log-likelihood plot). But if I take 
another look at Figure 4.4, it is evident that there always appears to be a local maximum at 
the far tail of the time span (6–8 hours). The evidence presented in the previous chapter 
leads us to suspect that a second threshold does exist, especially on a national basis, where 
the longest direct flight travel time is on the scale of 5–10 hours. It has already been shown 
in our theoretical framework that as travel time increases, it may encroach on the time 
originally allocated to multiple activities, and hence changes the binding conditions of 
multiple constraints. Consequently, it is already evident in the theoretical framework that 
there can be multiple thresholds in the value of travel time.  

I tested the model with the hypothesis of two thresholds in this chapter. Based on a 
comparison between the one-threshold estimations of the two proposed models, I 
concluded that model 1 fits better for our current data and knowledge condition.  Due to 
this reason, although I used both model 1 and 2 to test the two-threshold hypothesis, only 
the results from model 1 is presented here. 

This chapter starts with the two-threshold estimation results of the Boeing survey 
data set, which is adopted in Chapter 4 (single threshold estimation). Then I introduced a 
second data set, collected by Resource Systems Group (RSG) in 2012. I estimated used 
model 1 and two-threshold assumptions to calibrate the utility function. The results from 
the two data sets are compared afterwards. 

5.1 Two-Threshold Estimation with Boeing Survey Data 
I used the same data source as the one adopted in the previous chapter. All the other 

variables under consideration are the same except for the additional piece of segmentation 
of travel time. In this model, two travel time thresholds are considered and the time 
disutility function is therefore a 3-segment piecewise linear function. 
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Figure 5.1: Estimation Result of two thresholds with overall Boeing Data 

 
I used methods similar to one-threshold estimation. Figure 512 is also a plot of the 
negative log-likelihood against the threshold values. This time, I allowed two thresholds to 
change at the same time. In this figure, the first threshold changes from 2 to 5 hours, 
whereas the second changes from 5 to 8 hours. The optimal combination will again be the 
lowest point in the figure (approximately 3.7 vs. 7). 

 
Figure 5.2: Estimation Result of two thresholds with overall Boeing Data by axes 
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5.2 Two-Threshold Estimation with RSG Survey Data 
In order to obtain more conclusive evidence, I included an additional survey dataset. The 
Stated Preference dataset was collected by the Resource Systems Group (RSG) in 2012. In 
this survey, the respondents were asked to recall a recent trip they had made. Choice 
scenarios were simulated based on these trips. The survey comprised 3,123 respondents, 
each facing 8 choice scenarios with 2 choices within each. Flight information included in 
this dataset is similar to that of the Boeing data (e.g., origin, destination, travel time, fare, 
number of connections, and socio-demographic information about the travelers). One point 
to note here is that because the travel scenarios are simulated the differences between 
alternatives are exaggerated and the travel time is usually much longer than travel time in 
real life. I used a neo-classical model to estimate this model (without nests). Figure 5.1 
presents a case of the estimation results using the RSG dataset.  
 

 
Figure 5.3: Estimation Result of two thresholds with overall RSG Data 
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Figure 5.4: Estimation Result of two thresholds with overall RSG Data by axes 

 

5.3 Analysis of the Results 
I also checked the results against those of model 2 in this case. In the two-thresholds 
estimation, model 1 remains robust for most of the cases. Based on the comparison 
between and the integration of models 1 and 2, the following is a list of the thresholds 
estimated with each of the two datasets. The threshold values left blank are the ones 
insignificant. As can be observed from the log-likelihood surface, the confidence intervals 
of the first threshold do not change much comparing the single threshold estimation. 
However, the confidence interval of the second threshold is usually 1 or larger. There are a 
lot more details about the second threshold left to be explored.  

 
Table 5.1: Comparison of Results 

 

      Boeing 2005 RSG 2012 

      Threshold 1 Threshold 2 Threshold 1 Threshold 2 

Overall 3.8 (± 0.3) 7 (± 0.9)     

D
ire

ct
io

n North–South 5.7 (± 0.4)   6 (± 0.8)   

East–West 3.8 (± 0.7) 7.2 (± 1.1) 5.9 (± 0.9)   

West–East 3.6 (± 0.8)       

Pu
rp

os
e Business 

Business 
2.9 (± 0.5) 6.7 (± 1.0) 

4.3 (± 0.9) 6.9 (± 0.8) 
Conference 3.5 (± 1.1)  

Leisure 3.9 (± 0.4)   6 (± 0.8)   

 
 



	   31	  

It can be observed that  
• For the Boeing survey dataset, the first threshold generally lies between 3 to 4 

hours, whereas the second threshold (once observed) is around 7 hours.  
• As for the RSG dataset, probably due to survey design differences, the first 

threshold observed is usually around 6 hours, which is significantly higher than the 
results from the Boeing survey. The second threshold in the RSG data is not 
significant for most of the cases. As a matter of fact, the first threshold in the RSG 
data is more consistent with the second threshold shown in the Boeing data, which 
may be because the first threshold in the RSG data is not significant, again due to 
survey design differences.  

• Business travelers show a stronger inclination to shorter threshold values than to 
higher threshold values. 
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6 Numerical Example and Illustration 
In this chapter, I am using some numerical examples to illustrate the contribution of the 
proposed model. Model 1 is used for the demonstration because of its stronger empirical 
evidence and robustness in utilization as compared to model 2. However, the impact of 
model 2 can be expected to be greater than that of model 1—a point that can be considered 
in future work when more established results become available.  
The chapter starts with a simple illustration of the change of value of travel time difference 
between models (the traditional one and the proposed one). The illustration shows that 
around 10% overestimation or underestimation may occur in the traditional model. A 
second implication of ‘asymmetrical system design’ can also be obtained from the 
piecewise linear model, which shed light on hub location in airline decisions. From there I 
used two different hub choice scenarios to discuss the optimal strategy with the proposed 
model. 

6.1 Value of Travel Time Difference: Comparison with Linear Model 
To start with, I use the parameters estimated in Chapter 5 to set up the illustrative 

example. Imagine the following case: there is a direct flight connection between airports A 
and B. The airline is considering introducing a connecting flight through airport C. For the 
connecting flight to be considered competitive, the generalized cost of this flight for 
travelers cannot exceed that of the direct flight. The generalized cost includes only travel 
expense and travel time in this case. In this experiment, I try to investigate the decrease in 
airfare of the connecting flight as compared with the direct flight fare—a decrease that 
makes the connecting flight more “competitive.” More importantly, I want to determine 
how the difference in airfare changes with the travel time of the direct flight, which is 
defined as the base time and the increase in travel time from base time to the connecting 
flight travel time, i.e., the value of the travel time difference between the connecting flight 
and the direct flight. I introduce the term “value of travel time difference,” which is the 
total monetary value of the travel time difference between two equivalent flights. In the 
following section, I explore some of the properties of the “value of travel time.” 

 
Figure 6.1: Airport Connection Illustration 

A	  

C	  

B	  
Direct	  Flight	  	  

Connecting	  Flight	  	  
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As discussed before, the travel time cost function can be presented as: 

Vab = c−λpab −Vab
T

……………………………….(6.1) 
where Vab

T  is the disutility function of travel time.  
Therefore, for the two itineraries to maintain the same level of utility, we need  

Vab1 =Vab2………………………………………(6.2) 
and hence 

Vab1 = c−λpab1 −Vab1
T =Vab2 = c−λpab2 −Vab2

T
…………………..(6.3) 

Therefore we need the fare difference pab2 − pab1 to have the property of  

 
pab2 − pab1 = (Vab1

T −Vab2
T ) / λ……………………………..(6.4) 

So we can calculate the fare difference accordingly 
 

 

  
Figure 6.2: Monetary value of the travel time difference 

Figure 6.2 depicts how the airfare difference changes with the travel times and travel time 
differences. The horizontal axis indicates the base time. Each line represents a different 
assumption of travel time increase between the direct and connecting flights, ranging from 
0 to 2 hours. The vertical axis is the fare decrease of the connecting flight compared with 
that of the direct flight (in dollars), in order for the connecting flights to maintain the same 

0	  

50	  

100	  

150	  

200	  

250	  

1.5	   2	   2.5	   3	   3.5	   4	   4.5	   5	  

M
on
et
ar
y	  
	  V
al
ue
	  o
f	  t
he
	  In
cr
ea
se
	  in
	  

Tr
av
el
	  T
im
e	  
($
)	  

Travel	  Time	  of	  the	  Base	  Flight	  

2	  hours	  

1	  hour	  

1.8	  hours	  

1.6	  hours	  

1.4	  hours	  

1.2	  hours	  

0.8	  hours	  

0.6	  hours	  

0.4	  hours	  

0.2	  hours	  



	  
	  
	  
	  

	   34	  

level of generalized cost with the direct ones, or the value of the travel time difference. For 
example, the line at the top of the figure represents the case in which there is a 2-hour 
travel time difference. As a result, the line indicates the monetary value equivalence of a 2-
hour difference based on the travel time cases. As the base time increases from 1.5 hours to 
approximately 1.75 hours, the value of the travel time difference does not change. From 
1.75 hours, however, the travel time difference starts to decrease until 3.7 hours, after 
which the difference is constant. It can also be observed that the slope or the rate of 
decrease is the same for all the cases.  

Based on the assumptions I made in model 1, the value of the travel time difference 
decreases with the magnitude of the difference. Because of the decreasing value, the lines 
do not intersect with each other. Instead, they present in an ascending order as the time 
difference increases. Therefore, the lines become “denser” toward the right-hand side of 
the axis. An intuitive interpretation of the figure is that the line space “shrinks” as the base 
time increases, which causes the decreasing slope in between of the two turning points in 
every value of time function plot. Although this is only a simplified numerical example we 
are discussing now, similar results and changes are expected to appear in general.  

Figure 6.2 is a comparison of the fare difference (or the value of the travel time 
difference) predicted by the proposed model and the traditional model for the 2-hour travel 
time increase case. Because of the constant value of time adopted in traditional models, the 
value of the travel time difference does not change throughout the base time horizon. In the 
proposed model, the line retains the shape described in the previous paragraph. In the 2-
hour difference case, and compared with the prediction produced by our proposed model, 
in low travel time cases, the fare difference may be as high as 10%. In long travel time 
cases, the overestimation in the fare difference may reach as high as 20%. 

 

 
Figure 6.3: Comparison of the monetary value of the travel time difference 
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We can observe from Figures 6.1 and 6.2 that depending on the particular case the fare 
difference can be positive or negative. This error will be carried into the demand 
estimation later. In the traditional model, the fare difference is underestimated when travel 
time is short, which implies that the travel demand of the connected flight will be 
underestimated for the same travel expense assumption. However, when the travel time is 
long, the fare difference tends to be overestimated, which results in an overestimation of 
demand. 

Although the elaboration is relatively tedious and manipulative, the actual 
misinterpretation in terms of monetary value can be quite significant, as discussed. As a 
matter of fact, the assumption of a 2-hour travel time increase from a direct flight to a 
connecting flight is probably a very reasonable one. Given the rerouting, the acceleration 
and deceleration processes, together with the layover time at the airport, the extra time a 
connection takes usually exceeds 2 hours. That is, in reality, the estimation error has a 
pretty good chance of exceeding 10 or even 20%. 

The even smaller difference in travel time (0–1.9 hours) in the example is a 
representation of a comparison between different connected cases, which allows a closer 
travel time difference. These cases still happen very often in reality, and also have 
implications for the hub choice problem in reality.  

The previous numerical simulation illustrated the contribution of the new model in 
a quantitative way. In returning to the fundamental interpretation of the calibrated model 
and summarize its implications, I find that the central contribution of this model can be 
captured in the following statement: the value of saved time in a shorter connection or 
network should be given more weight than the same amount of travel time saved in a 
larger connection or network. This point also has suggests the importance of the hub-and-
spoke system for a second time: it implies that as travel time increases passengers become 
more indifferent to additional travel time increases. Especially in the traditional model, 
other factors—monetary cost, operation convenience etc.—start to reveal their significance 
at an increasing speed. 

It is intuitive to think that in considering the hub (or connecting airport) that a 
traveler would choose the one closest to the mid-point of the connection (in case 1), or as 
close as possible to the mid-point, if such a location exists. Here, I want to consider the 
operation factor, which constitutes another level of complexity in regard to airline network 
design. This factor is parallel to the attracted demand issue that we are discussing. One 
obvious issue associated with operation complexity is that of average speed. The high 
maximum speed of which airplanes are capable coupled with the limited acceleration that 
passengers can withstand means that airplanes take a long time to reach full speed. For 
instance, in the case of a 1-hour flight, the plane may only be at full-speed for 10 minutes. 
The same problem arises when it comes to other high maximum-speed modes, such as 
high-speed rail. However, I will leave the issue of operation to future research. At this 
point, I want to note that travel distance is seldom a good representation of travel time for 
air travelers (and it is likely that the same holds true for high-speed rail travelers as well). 

However, what our findings imply is that an economy of travel time does exist such 
that there is a diminishing marginal cost when travel time exceeds the threshold. This is in 
addition to the well-known economy of distance in air and rail travel. When the travel time 
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is below the threshold, the economy of travel time does not prevail, which is probably the 
reason this fact was not discovered. This is also the reason why the symmetrical intuition 
will not work in long-distance travel modeling. 

6.2 Asymmetrical Connecting Condition 
In this section, I begin with the simplest connecting conditions with certain assumptions to 
analyze the change of generalized cost with respect to different connecting points. In 
traditional models, the generalized cost does not change with connecting locations as long 
as the overall travel time does not change. However, based on the proposed models, the 
utility function does have an advantage when the hub is located relatively close to the 
origin and/or the destination.  

 
Figure 6.4: Case 1 

 
Figure 6.5: Case 2 

The model implies that the asymmetrical design in Case 2 (Figure 6.5) only has an 
advantage over the symmetrical design in Case 1 (Figure 6.4) (for the same connection 
situation, such as layover time, online or offline, etc.) in terms of the value of travel time. 
This will always be true for long flights, but needs to be at the same time under the 
assumption of one threshold.  
By providing services for the three airports, the airline is facing three markets: A-B, A-C, 
C-B (where the location of C may change as implied in Figure 6.4 and Figure 6.5).  If I 
assume that the market size of A-C1 is equal to A-C2, and C1-B is equal to C2-B, I want to 
decide the optimal hub location. For the purpose of system optimization, and with all the 
other conditions assumed to be the same, I want to minimize the overall travel time 
disutility. Because the travel time disutility between A and B is the same, it does not have a 
impact on the final result. So I only need to sum up the travel time Disutility of A-C and C–
B. 
To provide a numerical illustration, I also assumed that: 

a) For different connection points on the same route, the travel times are also 
different, due to the significant impact of the economy of distance. In this example, 
I simplified the problem by assuming that the fly times are always the same for 
different connecting cases.  

A	   C1	   B	  

A	   C2	   B	  
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b) More importantly, when a connection point is introduced, it usually involves a 
detour from the shortest path between the origin and the destination. In the 
simplified example, I only assumed that the connection points exist continuously 
on the shortest path between the origin and the destination. 

c) I also assumed that different connecting situations all have the same layover time, 
which is already included in the overall flying time.  

With the stated simplified assumptions, I also assumed that the total flying time is always 6 
hours. In other words, I defined that  

TAB ≅ TAC + TCB + TLayover = 6 hours…………………….(6.5) 

Figure 6.5 is a simplified illustration of how the cost or disutility changes with the 
location of the connection point for the same route.  

 
Figure 6.6: Disutility vs. Connecting airport location with long travel time 

If I recall cases 1 and 2, the horizontal axis represents the travel time between A and C. 
Therefore, the connecting location approaches B as the point moving toward the right-hand 
side of the axis. This is a very simplified example in that 

The location of the connection is represented by TAC. The disutility decreases as the TAC 
approaches either end of the axis. The disutility, or generalized cost, is highest when the 
connecting point is located around the mid-point of the connecting path. Therefore, when 
the connection is located relatively close to the origin or the destination, it incurs lower 
disutility on the users.  

Traditional models assume that the introduction of a connection has an impact on 
the generalized cost of a flight. Our model actually implies a smoother shift from the direct 
flight to connecting flights. As Figure 6.6 shows, as the connection point approaches the 
origin or the destination, the disutility decreases. Additionally, the disutility of the travel 
time is highest when the connection point is around the mid-point, which is counter-
intuitive according to traditional models. Further, as predicted before, the disutility may 
not change with changing connection points, as depicted in Figure 6.7.  
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Figure 6.7: Disutility vs. Connecting airport location with short travel time 

When the total travel time is relatively short compared with the threshold time and the two 
segments do not incur the issue of the non-uniform value of time, then the location of the 
connection point (based on the pre-mentioned simplification conditions) will not affect the 
overall disutility caused by travel time.  

Now I recall the three simplifying assumptions pertaining to 
acceleration/deceleration, detouring, and layover times. What will happen if these assumed 
conditions are relaxed? The non-linearity would become more significant because of the 
detouring and acceleration/deceleration processes. That is, the nonlinearity impact I 
discovered from our model is complementary, and hence adds to the original embedded 
non-linear impact. 

6.3 Hub-and-Spoke System 
 
The insight of asymmetrical optimality also coincides with our current hub-and-spoke 
system, which is asymmetrical as most of the cases show. This is due to the geographical 
situation of the nation to a very large extent. Figure 6.8 depicts the locations of major 
airports, which have the potential of becoming hubs, in the US, which clearly indicates 
non-uniform density across the nation. The density appears to be particularly low in the 
Midwest region. There are clusters of major airports along the East and West Coasts at the 
same time. Therefore, for long-distance travel especially transcontinental travel, airlines 
face the choice of placing the hub in the less-populated area in the middle of the country or 
somewhere close to either the origin or the destination. 
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Figure 6.8: Major U.S. Airports (Potential hub airports) 
(Obtained http://www.allairports.net/maps/airport-map.asp, accessed 10 Oct. 2013) 

I start by asking what the resulting network change will be once the new model is 
introduced. And, I expect to answer that the airline will prioritize shorter connections over 
longer connections for the same travel time saving. This expectation can be illustrated by 
comparing case 3 with case 4. 

  
Figure 6.9: Case 3 
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Figure 6.10: Case 4 

 
Cases 3 and 4, as shown in Figure 6.9 and Figure 6.10, is a qualitative representation of the 
connection between cities A, B, C, and D. Assume that an airline company is considering 
choosing to locate a hub city between cities E and F in order to serve markets in A, B, C, 
and D, with major connections between A and C and between B and D. It should be 
emphasized that this is a qualitative example; our intention is not to calculate the travel 
time from the link lengths.  

The major difference between the two networks is that there is a longer detour in 
the B–D connection in case 3, while the longer detouring occurs in A–C connection in case 
4. Therefore, case 3 favors the markets in A–C whereas case 4 favors B–D. In traditional 
models, case 4 may be valued as equivalent to case 3, or in some extreme cases case 4 may 
even be valued more highly than case 3 for the same (or in some cases a longer) detour. 
However, based on the conclusions I just provided above, the new models proposed herein 
would value case 4 more highly than case 3. This is because the penalty it introduced via 
the detour only affects the longer connection, and hence the penalty is less valued in the 
utility function.  

Of course, if the market of A–C is significantly larger than that of B–D, the 
implications will be quite different than the current ‘same size’ assumption, because the 
airline would certainly prioritize the A-C marker. I will only look at the generalized cost 
without the impact of demand. The demand issue can be introduced later without 
interrupting the original analysis. 

6.3.1 Example I 
In this extreme case example, I focus on three cities: San Francisco, Los Angeles, and San 
Antonio. And, I only consider two of the possible markets: San Francisco–Los Angeles 

A	  

B	  

D	  

C	  

E	  
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and San Francisco–San Antonio. The market of Los Angeles–San Antonio is not 
considered.  

 
 

Figure 6.11: Example I 

The airline is considering introducing a connection between San Francisco and San 
Antonio to serves as its southwestern hub. Two options are under consideration: Las Vegas 
and Los Angeles. The connecting cases and their respective travel times are given in Table 
6.1.  
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Figure 6.12: San Francisco, Los Angeles, San Antonio - Scenario 1 
With hub located at Las Vegas 

In the case of connecting through Las Vegas, the connecting airport is almost exactly on 
the shortest path between San Francisco and San Antonio; therefore, there is no detour for 
the flights between San Francisco and San Antonio, and hence a limited penalty besides 
that of the connection itself. However, for the market between San Francisco and Los 
Angeles, the detour is significant, and so, therefore, is the penalty it introduces.  

Table 6.1: Travel Time (from the Internet) 
Origin–Destination Travel Time 
San Francisco–Las Vegas 1 hr 30 min 
Las Vegas–Los Angeles  1 hr  5 min 
Las Vegas–San Antonio 2 hr 40 min 
Overall Travel Time 5 hr 15 min 

 

In the case of connecting through Los Angeles, although the detour between San 
Francisco and San Antonio is much more significant than the detour in the Las Vegas case, 
its advantages in the San Francisco–Los Angeles market is way more significant. The 
advantages include the direct flight itself and the reduced penalty in regard to travel time. 
However, in comparison with the San Francisco–Los Angeles market, the Los Angeles 
case has an advantage that overrides the disadvantage just stated. Yet, the total travel time 
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difference is not very significant, especially if I consider the fact that the layover times at 
the connecting airports are not included.  

 
 

Figure 6.13: San Francisco, Los Angeles, San Antonio - Scenario 2 

with the hub located in Los Angeles 
It could be argued that the overall travel time in the Las Vegas case (5 hours 15 minutes) is 
longer than that in the Los Angeles case (4 hours and 30 minutes). Therefore, merely 
attributing the disadvantage to the economy of travel time is far-fetched. However, even 
though the layover time at Los Angeles airport is 45 minutes longer than that at Las Vegas, 
would the airline choose Las Vegas as the hub for the case I constructed? The answer is 
still probably not. The reality, which is entirely expected, is that travelers are seldom 
willing to transfer for a connection that is as short as SF–LA. Consequently, the idea of 
using Las Vegas as a hub airport serving SF–LA is unrealistic.  

Table 6.2: Travel Time (from internet) 
Origin–Destination Travel Time 
San Francisco–Los Angeles 1 hr 25 min 
Los Angeles–San Antonio 3 hr  5 min 
Overall Travel Time 4 hr 30 min 
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Travelers’ unwillingness to make such a transfer is due at least in part to the 
competition between air travel and other modes of transportation, such as rail and highway. 
However, the highway (8 hours) and rail (12+ hours) each entail more than double the 
travel time of flying. Therefore, the impact in terms of modal competition is very limited. 
There is still a disadvantage in regard to connecting through Las Vegas because there it is 
not possible to control travel time below the threshold and because of the economy of 
travel time.  

6.3.2 Example II 
In this section, I use a more realistic example to discuss some more realistic and  broader 
problems than I have considered so far. I focus on four cities: San Francisco; Washington, 
DC; Minneapolis; and San Antonio. These markets are similar to those of cases 3 and 4, as 
discussed above: San Francisco–Washington, DC, and Minneapolis–San Antonio. The hub 
airports through which the flights connect could be Pittsburgh, Dallas, or Washington, DC.  

 
 

 
Figure 6.14: Example II 

As noted, given that this example involves a broader geographic region, more complicated 
airline operational and competition issues may arise. I do not want to introduce more 
assumptions to make this example into an “ideal case”; instead, our focus is on the overall 
operations. Instead of coming up with a conclusion whereby a certain case is posited as 
ideal, I analyzed the three cases in terms of their respective pros and cons.  
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Figure 6.15: San Francisco; Washington, DC; Minneapolis; and San Antonio – Scenario 1 

with the hub located in Pittsburgh 

Table 6.3: Travel Time (from the Internet) 
Origin–Destination Travel Time 
San Francisco–Pittsburgh 5 hr 10 min 
Pittsburgh–Washington, DC  1 hr  5 min 
Minneapolis–Pittsburgh 2 hr  5 min 
Pittsburgh–San Antonio 2 hr 10 min 

 

Table 6.4: Travel Time by Direction 
Direction Overall Travel Time 
Minneapolis–San Antonio 6 hr 15 min 
San Francisco–Washington, DC  4 hr 15 min 
Overall Flying Time 10 hr 25 min 
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Figure 6.16: San Francisco; Washington, DC; Minneapolis; and San Antonio, – Scenario 2 

with the hub located in Dallas 

Table 6.5: Travel Time (from the Internet) 
Origin–Destination Travel Time 
San Francisco–Dallas 3 hr 30 min 
Dallas–Washington, DC  2 hr 55 min 
Minneapolis–Dallas 2 hr 20 min 
Dallas–San Antonio 1 hr  5 min 
Overall Flying Time 9 hr 55 min 

 
Table 6.6: Travel Time by Direction 

Direction Overall Travel Time 
Minneapolis–San Antonio 6 hr 25 min 
San Francisco–Washington, DC  3 hr 25 min 
Overall Flying Time 9 hr 50 min 
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Figure 6.17: San Francisco; Washington, DC; Minneapolis; and San Antonio – Scenario 3 

with the hub located in Washington, DC 

Table 6.7: Travel Time (from the Internet) 
Origin–Destination Travel Time 
San Francisco–Washington, DC 5 hr 10 min 
Minneapolis–Washington, DC  2 hr 40 min 
Washington, DC–San Antonio 2 hr 20 min 
Overall Flying Time 10 hr 10 min 

 

Table 6.8: Travel Time by Direction 
Direction Overall Travel Time 
Minneapolis–San Antonio 5 hr 10 min 
San Francisco–Washington, DC  5 hr  
Overall Flying Time 10 hr 10 min 

 

In the case of Pittsburgh, there is a long detour in the North–South bound (Minneapolis–
San Antonio connection), whereas the East–West bound (San Francisco–Washington, DC) 
is close to the direct flight path. The situation is the opposite in the case of Dallas. The case 
of Washington, DC, is close to that of Minneapolis, except that the conditions are even 
stronger for Washington, DC: the East–West bound is exaggerated into a direct flight, 
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whereas the detour in the North–South bound is even longer. It should be noted that only 
Washington, DC, includes a direct flight, and its overall travel time is the lowest. It should 
also be noted that, as discussed in Example I, the travel time could be leveraged by layover 
time. Therefore, although the overall flying time is different, the actual travel time 
difference could be a lot shorter than at first appears. Also due to the layover time, the 
East–West bound flights have a good chance of exceeding the second threshold, which is 
around 7 hours. As estimated in Chapter 5, the value of the travel time decreases even 
more after the second threshold has been passed. Consequently, even though both the 
North–South and the East–West bounds exceed the first threshold, only the East–West 
bound exceeds the second one, and hence the economy of travel time still prevails.  

Table 6.9: Overall Travel Time Comparison 
Hub Airport Overall Flying Time 
Minneapolis 10 hr 25 min 
Dallas  9 hr 55 min 
Washington, DC 10 hr 10 min 

 
Although the overall flying time for Dallas is shorter than that for Washington, DC, the 

disutility of the case of the latter is probably less. If I consider the optimality of the utility 
function as the primary reason, without considering other operation issues, the case of 
Washington, DC, is probably the most optimal even though the flying time in the case of 
Dallas is shorter. Example II, in this sense, has implications very similar to those of 
Example I.  

The insights that can be obtained from the comparison are as follows:  

A. Travel Time Penalty: Minneapolis > Dallas > Washington, DC 
 
B. North–South Bound Advantage: Pittsburgh > Dallas > Washington, DC 

 
C. East–West Bound Advantage: Washington, DC > Pittsburgh > Dallas 

 
D. Northeastern Market: Pittsburgh ≥ Washington, DC > Dallas 

 
E. Southwestern Market: Dallas > Pittsburgh = Washington, DC 

 

Once the emphasis of the markets is clarified, there may also be other issues to consider, 
such as the issue of demand. For instance, the East–West (San Francisco–Washington, DC) 
direction would probably be the one with the higher travel demand. However, the actual 
demand of the market that the airline is targeting depends on how it positions itself. For 
instance, the airline may decide to enter the heated competition of the East–West bound 
(connecting through Washington, DC), or it may consider itself to be more competitive in 
the North–South market (connecting through Dallas). It may already be primarily serving 
the Northeastern region, and hence prefer to connect its flights with all the major airports 
in the region (connecting through Pittsburgh). The airline may not have a hub in certain 
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airports. American Airlines, for example, does not have a hub in Washington, DC; 
therefore, to prioritize its East–West bound connection, it would have to connect flights 
through Pittsburgh.  

The steps from A to E can serve as metrics for an airline system evaluation based on 
different markets or issues that an airline is considering. After all, disutility is still the first 
factor to be analyzed.  
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7 Summary and Conclusion 

7.1 Findings 
It can be imagined that when travel time increases from 1 hour to 2 hours, the impact on 
travelers’ decisions is significantly greater than the impact of an increase from 5 to 6 
hours. Travelers become less sensitive to travel time as it increases. The decreasing 
marginal cost of travel time has long been recognized. In the present research, I 
hypothesized that there are thresholds in travel time beyond which a decrease in the value 
of travel time becomes significant. There exist discontinuities of value of travel time at this 
threshold.  

To test our hypothesis, I proposed 2 models for explanation, both of which are 
piecewise linear, which may (model 2) or may not (model 1) be associated with quantum 
changes at the thresholds. I used two air travel survey datasets: one conducted by Boeing 
in 2005 and one conducted by RSG in 2012. In order to take into account the access and 
egress process, I added 1.5 hours to the travel time to simulate the impact. The models are 
grounded in a theoretical framework derived from De Serpa’s time allocation theory. To 
estimate the models, clock travel time, meaning the difference between local arrival time 
and local departure time, was used for estimation. 
The estimation results suggest the following findings: 

1. There is clear evidence of a threshold at a travel time of around 3.7 hours 
(including the 1.5-hour access and egress time). This result could be considered 
consistent with the travel time threshold (3 to 3.5 hours) found in rail travel 
demand analysis.  

2. The value of time changes with descriptive factors of the trip such as travel 
purpose and travel direction. The results showed that the threshold of business 
travelers (2.8 hours) is lower than that of leisure travelers (3.8 hours). The 
threshold should also change with travel directions because of the time zone 
difference. Travelers “gain” time by traveling from east to west, and “lose” time 
traveling in the opposite direction. From the theoretical point of view, the change 
is due to the overall time budget change associated with different time zones. With 
limited data, I was only able to conclude that the threshold does change with travel 
directions with a certain level of significance.  

3. Again, based on limited data, I found model 1 to be more stable and robust than 
model 2. As stated in Chapter 3, model 2 has stronger conditions, but also requires 
more data. Our results also show some evidence of the quantum change suggested 
in model 2, although this is far from conclusive.  

4. There is evidence suggesting the existence of a second threshold, which is also 
consistent with the theories in both models 1 and 2. I concluded that within the 
travel time scope of air travel within the US, there are two travel time thresholds. 

The quantitative results of the thresholds from the two datasets should be considered 
tentative, especially as the datasets are very limited in regard to details. However, I can 
conclude that thresholds and discontinuities do exist in regard to the value of travel time. 
Whether the changes at the thresholds are quantum (model 2) or not (model 1) remains an 
open question.  
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It should be noted that the decreasing marginal cost of travel time, which has been 
observed for decades, is usually captured by multinomial functions. However, our findings 
suggest that smooth functions may not be an adequate form of travel time disutility. The 
change of the value of time is only the most significant at the threshold. The decrease of 
marginal cost, or the economy of travel time, only prevails when travel time exceeds the 
threshold. 

Therefore, for the same amount of increase in travel time, travelers suffer a greater 
penalty when the travel time is below the threshold. In air travel, where the travel time 
cannot decrease below the direct flight time, the implication can be rephrased as follows: 
for the same amount of travel time increase (usually caused by a connection and/or a 
detour), the penalty is higher for a shorter connection.  

In practice, the findings imply the need for a network of hubs predicated on an 
asymmetrical design, when transfers do not take place centrally. It is intuitive to think that 
when a connection is introduced, the midpoint or somewhere close to the middle is ideal. 
However, via a simplified numerical simulation of the change of travel time disutility with 
respect to different hub locations, the disutility, or the cost, is highest when the hub is 
located close to the middle. The disutility decreases as it approaches the origin or the 
destination. Similar implications can be drawn from the demand for rail travel. 

For system designs that involve more than three airports, the implication is still that 
the system designer should favor the shortest possible connections. However, our results 
show that the detours and/or connections should be directed toward the longer connections 
if possible, sometimes even at the cost of longer overall travel time. Additionally, the hub 
should be located close to major airports instead of at the geographical mid-point.  

Airlines face differ in regard to the respective reality constraints they face and in 
regard to the marketing strategies they use, and hence they also differ in terms of market 
preference. Travel time is not the only criterion based on which airlines choose their hub 
locations. Still, with the proposed model estimation, I am able to provide better and clearer 
evaluation metrics than have been presented to date. 

Although in our study, I considered air travel in regard to route choice, the theories 
and the findings can be applied to all intercity transportation modes, in both mode and 
route choice situations. Some revision should be considered for other modes, however. For 
instance, the working mechanism of rail transportation systems is quite different from that 
of air transportation systems. For instance, whereas the speed of air travel cannot be 
increased, rail systems still have great potential to increase speed, which leads us to the 
topic of high-speed rail. When travel speed becomes a controllable variable, there are more 
available options for the network design. And, thus, the threshold and potential causal 
optimality in operations become even more critical. The travelers’ behavior theory itself is 
completely transferable to other transportation modes. 

Similarly, the results can contribute to demand analysis and to policy-making, 
especially for multimodal transportation system design. The threshold affects the 
evaluation of the level of service significantly. 
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7.2 Future Work 
As discussed, the present research is limited by the limited nature of the available datasets. 
Specifically, the limitations are as follows: 

• Insufficient travel time information in regard to access and egress time.  
• Insufficient number of travel respondents to achieve close stratification. 
• Insufficient details to test the model exactly in line with the theoretical framework. 

Most of these limitations could be resolved by better data support.  

In future studies, improvements could be made both to the theoretical framework 
and to the empirical study. In regard to the theoretical framework, it is necessary to explain 
the decrease in disutility at thresholds in the previous estimations. In the present study, I 
have tended to explain the positive jump as arising from bundling activities.  

Consequently, the model could be improved by accommodating the bundling effect 
between activities. For instance, a traveler might bundle traveling and sleeping together 
during an overnight flight, or she/he might bundle working and traveling together. In these 
situations, the other activities that travelers might conduct simultaneously with traveling 
provide extra utility. However, the question remains unanswered as to whether the positive 
parameter estimated for the dummy variable at the threshold is a result of the bundling 
effect or of insufficient relevant data. Future studies should be able to answer this question.  

If the answer is activity bundling, the thresholds of bundling would need to be 
understood. For instance, at what threshold would a traveler start to consider bundling a 
trip with a work activity? What should be the threshold of bundling with sleeping, or even 
other activities that I have not yet taken into consideration? Furthermore, it is necessary to 
keep in mind the thresholds for “utility-consuming” incidents such as canceling other 
activities in the activity pattern, such as I have included in the present research. Under 
what conditions do positive quantum utility changes prevail, and what are the conditions of 
the negative cases? Or do quantum utility changes and negative cases occur 
simultaneously? All these questions suggest that there are many more factors and questions 
to explore before we can be said to have reached a full understanding of the discontinuity 
of the value of travel time. 

In terms of data collection, the problem can be tackled in two directions: survey 
that asks about traveler’s perception of thresholds directly and indirectly. For the direct 
survey methods, questions about travelers’ perception of different travel times can be 
asked and aggregated. For the indirect survey methods, questions that relates to every 
single detail about the traveler’s activity pattern, itinerary details should be included.  

A study of the overall daily activity patterns of travelers should be considered with 
a designed survey, and investigated thoroughly. However, even before such research is 
conducted, more work is needed to understand the exact time magnitude and level of detail 
required for the data collection–the survey design. New intercity transportation survey 
design methods should be considered. The survey should emphasize the correlation 
between the trip and other activities in which the traveler engages. Better links should be 
provided between intercity travel analysis and daily activity patterns, in much the same 
way as is done in urban travel analysis. The driven utility is the foundational aspect in 
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efforts to understand the value of time and even in terms of understanding transportation 
economics in general. To ignore the links results is to disregard the non-linearity of the 
value of time.  

One stratification factor that should be taken into consideration is the change of 
threshold with the departure and arrival times. For instance, if a traveler is considering 
making a business trip from San Francisco to New York on an overnight flight because 
otherwise he/she would miss a day of working time, especially when time zone difference 
is considered. There are also many other activities that are closely connected with some 
particular clock time, such as lunch, dinner, and exercise. Due to the nature of this topic, 
the role of clock time should also be emphasized. The emphasis should be seen both in the 
data collection process and the analyzing process.  
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