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Abstract

Shifting towards sustainable energy sources requires developing new storage sys-
tems and estimating their remaining energy over their lifetime. The remaining
energy of these systems depends on many operating parameters, resulting in
a large high-dimensional parameter space to explore. Testing cells exhaustively
on a dense grid in the parameter space is prohibitively expensive. This is espe-
cially true with considerable cell-to-cell variability in performance, even under
the same cycling conditions. Here, we develop a framework based on Gaussian
processes, equipped with domain knowledge, to implement Bayesian optimiza-
tion to explore the parameter space efficiently and quantify remaining energy
using failure distributions. Bayesian optimization identifies future experiments
that maximize information gain and minimize uncertainty. Experimental results
show accurate remaining energy predictions with significantly fewer experiments.
However, laboratory cycling conditions, including those in literature, may not
represent real-world cycling. We propose an approach based on laboratory results
to predict remaining energy under real-world cycling conditions.
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1 INTRODUCTION

In the fight against global warming, the demand for new energy storage technologies
has increased dramatically. Although solar and wind have great potential to fight
global warming, these intermittent sources hinder grid integration. Energy storage
systems have risen as a popular solution [1]. Within the grid, energy storage systems
store excess energy during peak generation periods and release energy when needed
during low-energy generation periods. While commercially available, batteries for both
electric vehicles and the grid require enhanced technology to improve energy density
and safety. One essential requirement for developing new technology storage systems is
the ability to predict their remaining energy over their lifetime under various operating
conditions without testing every possible system to failure.

Published lifetime studies generally aim to predict a battery’s expected life. We argue
that even a perfect ability to predict the expected life has little commercial value to
battery manufacturers or to utilities. For example, lifetime appears in a business plan
primarily through the cost of providing a warranty, which depends only on the fraction
of early outlier failures; and through inventory control, which depends on knowing the
fraction of failures as a function of time. Both require knowing the failure probability
distribution, which we will determine, rather than the expected life [2, 3].

Various parameters affect the remaining energy of storage systems throughout their
lifetime [4], including operating conditions like temperature [5], charging rate [6],
depth of discharge [7], rest periods and duty cycle [8]; as well as chemical and physi-
cal parameters of the cells [9]. Each parameter can take on multiple values, and any
combination of these values may result in a different remaining energy. All possible
combinations form an enormous multi-dimensional parameter space for researchers to
explore when optimizing remaining energy. Such a space cannot be studied using a
traditional design of experiments, even with a coarse grid. This daunting challenge
is being addressed with both physics-based models (involving how batteries degrade)
and machine learning-based models (focusing on when batteries degrade) [10, 11].
The most widely-used physics-based model, focusing on transport and electrochem-
istry, was developed by Newman and co-workers [12, 13, 14, 15, 16]. Multiple other
physical/empirical models have been developed, for instance, empirical aging mod-
els [17, 18, 19], equivalent circuit models [20, 21, 22], and numerous electrochemical
models [23, 24, 25].

Data-driven approaches based on machine learning models rely on experimental data
to make predictions. These can be “black-box” models, where the input variables are
external indicators extracted from the experimental data, and the output is some
prediction for lifetime [26]. These approaches include Gaussian processes (GPs) mod-
els [27, 28, 29, 11], Deep Neural Networks (DNN) [30, 31, 32, 33], and Long Short-Term
Memory Networks [34, 35, 36], support vector machine [28, 37], and relevance vector
machines [38, 39]. In our recent work [40], we developed a technology-agnostic frame-
work based on a domain-knowledge-informed Gaussian process (GP) model to estimate
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the failure distribution. Still, that work implicitly assumed that lifetime depends only
on the cycle number. Since degradation depends on the operating conditions of the
energy storage system, the failure distribution should ideally be predictable at any
point in the multidimensional parameter space. To achieve this aim, the parameter
space must be explored with extreme efficiency. Here, we develop a framework based
on Gaussian processes equipped with domain knowledge and a Bayesian optimiza-
tion approach to explore the parameter space efficiently and quantify the remaining
energy using failure probability distributions. Bayesian optimization identifies future
experiments that maximize information gain and minimize uncertainty.

The battery community uses the term “state of health” (SOH), which, to be informa-
tive, should enable some estimate of the remaining useful life. However, consider two
batteries that have lost 10% of their original capacity. The first battery was cycled at
a 10C charging rate for ten cycles and the second at 0.1C for 1,000 cycles. Although
a commonly used surrogate for SOH, remaining capacity, is 90% for both, and their
total charge throughputs are identical, their remaining useful lives are almost certainly
different and will depend on how they are used. Therefore, this work will not attempt
to define a state of health. Instead, we focus on predicting the remaining energy (and
the associated failure distribution) rather than the remaining capacity because energy
loss incorporates both capacity and voltage fade. Furthermore, energy, unlike capacity,
also translates directly to useful properties such as a vehicle’s range or a grid battery’s
duration.

At the end of this paper, we briefly address that published research pays scant attention
to the complex, dynamic cycling conditions experienced in the real world. That is,
laboratory testing is usually done at a single point in the operating parameter space,
where the operating conditions — charging rate (C-rate), temperature, maximum
state of charge (SOC), depth of discharge, etc — are held constant throughout a
given cycling test. Although the experiments described here are also carried out at a
single point in the operating parameter space, we use our results to propose a method
that allows us to predict, under certain conditions, the remaining energy under any
arbitrary pathway through our parameter space.

For our experimental dataset, we use commercial LiFePO4 cells. To generate data for
our model within the project time frame (weeks rather than years), we used intuition
and preliminary tests to identify the limits of the operating parameter space where
energy loss occurs rapidly. This is accomplished for LFP cells by inducing Li-plating
under fast charging conditions. [41, 42].

In what follows, we discuss our framework, represented in Figure 1, which efficiently
explores a four-dimensional parameter space spanning the operating conditions of
energy storage systems to estimate their remaining energy. In Section 2, we introduce
GP modeling, explain our modifications to the model, and offer the reader an intro-
duction to Bayesian optimization. In Section 3, we discuss experimental data collection
methodology and efficient parameter space exploration. In Section 4, we report and
discuss our framework results. Finally, we conclude this work in Section 5.

2 COMPUTATIONAL METHOD

One way to efficiently explore high-dimensional parameter spaces and accurately
quantify the failure distribution is to use machine learning, specifically the Gaussian

3



151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

Future
Experiments

GP
Predictions

Durability
TestingPa

ra
m

et
er

 2
Cycle #

En
er

gy

Pa
ra

m
et

er
 2

Cycle #

En
er

gy

Current
Experiments

Parameter 1

Parameter 1

Parameter 2

C
yc

le

Para
mete

r 1Parameter 2

C
yc

le

Para
mete

r 1

Gaussian
Process

Acquisition Function
Optimization

C
ur

re
nt

Vo
lta

ge

Durability Estimation under
Real-World Operating Conditions

Laboratory Cycling
Conditions

C
ur

re
nt

Vo
lta

ge
Fa

ilu
re

 D
is

tir
bu

tio
n

Warranty Setting

UncertaintyRemaining Energy

Cycle Number
Iterations
Start Here

5%
Failure

Fig. 1 Schematic representation of our framework that efficiently explores large parameter spaces
and predicts remaining energy using failure probability distributions to set warranties. The framework
starts by randomly choosing points in the parameter space and using laboratory cycling to extract
cell performance for each point. Then, a domain-knowledge-informed Gaussian process is used to
predict the remaining energy of cells and uncertainty at any point in the parameter space. Bayesian
optimization is also implemented to identify future points to be tested that maximize information
gain and minimize the overall uncertainty. Those experiments are then performed, and GP models
are updated and cross-validated for prediction accuracy. The identification and testing of future
experiments is repeated until the GP prediction accuracy becomes acceptable to the user. Then, the
laboratory experimental results are proposed to be used to predict remaining energy under real-life
cycling conditions.

process, enhanced with domain (“expert”) knowledge [40, 43, 44, 45]. We choose a GP
because it can stochastically approximate the (unknown) latent function relating the
operating conditions to measurable properties, such as energy and capacity loss, using
small datasets compared to the parameter space dimensionality. It can also quantify
the uncertainty in its predictions [27, 28, 46, 2], allowing the estimation of failure dis-
tributions. Additionally, it differentiates between aleatoric uncertainty, which is linked
to the inherent variability in the data, and epistemic uncertainty, which is linked to
insufficient training data for accurate predictions. Moreover, a GP can capture com-
plex, non-linear relationships without requiring explicit functional form specifications
that may bias the predictions. Unlike other machine learning models, the parameters
of a GP, the so-called hyperparameters, provide explicit insights into the character-
istics of the estimated function, allowing for the interpretability of the GP. Another
favorable characteristic of GP models is that the smoothness of the predicted func-
tion, among other properties, can be explicitly controlled using the kernel function.
As we discuss below, we use the ν = 3/2 Matèrn kernel since it allows for less smooth
functions than the commonly used squared exponential kernel. The ν = 3/2 Matèrn
kernel provides flexibility in modeling smooth trends and local variations in the data,
making it fit for our battery data. Overall, much work has been done to prove the
approximation power of GP models of unknown functions [47, 48, 49]. A GP model
can be entirely specified using three building blocks: the prior mean, noise, and kernel
functions whose role we explore next.

The parameter space X ⊂ R4 in this work is a bounded subdomain of the four-
dimensional (4D) Euclidean space spanning the maximum SOC (x1), C-rate (x2),
temperature (x3), and cycle number (x4) parameters. These parameters are used
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following Konz et al. [23], who reported that the onset of lithium plating in their
LFP batteries is a function of these operating parameters. After initial experiments
are chosen by intuition, we use the proposed domain-knowledge-informed GP model
to implement a Bayesian active learning approach that reliably identifies future
experiments with the objective of efficiently exploring the parameter space.

Our GP framework aims to predict the remaining energy of a cell as a function of
x = {x1, x2, x3, x4} ∈X. The remaining energy is approximated by an unknown latent
function f(x) that can only be sampled via noisy measurements y(x) = f(x) + ϵ(x)
with ϵ(x) being the noise. Using y(x), the GP provides a probabilistic representation
of the latent function f(x). Although we are interested in estimating the remaining
energy using four parameters x, our framework is not limited to this scenario. GP
modeling can be easily modified to predict other quantities of interest using other
input parameters.

GP models are defined by a prior multivariate normal probability distribution
N (µ,Cov[f ,f ]) over the latent function values f = f(xi) ∀ i ∈ {1, 2, . . . , n} (remain-
ing energy in this case), where n is the number of data points. Any finite subset of
function values follows a Gaussian (normal) distribution. This multivariate distribu-
tion is characterized by a mean vector µ = µ(xi;θ) ∀ i ∈ {1, 2, . . . , n} and a covariance
matrix Cov[f ,f ] = K = k(xi,xj ;θ) ∀ i, j ∈ {1, 2, . . . , n}, where k is the positive
semi-definite kernel function acting on pairs of inputs xi,xj . A GP is a Bayesian
method that requires a likelihood, in addition to the prior, to compute a posterior
probability distribution. The likelihood is defined over noisy observations y as the
normal distribution N (f ,V (θ)), where Vii = σ2

n(xi;θ) ∀ i ∈ {1, 2, . . . , n} defines the
diagonal noise matrix. The hyperparameters θ stemming from the prior mean, noise,
and kernel must be learned. This is often done by maximizing the log marginal like-
lihood (maximum likelihood estimation or MLE) of the data. Marginalizing over the
unknown f and conditioning on the data y = y(xi) ∀ i ∈ {1, 2, . . . , n} yields the pos-
terior p(f∗|y,θ), where f∗ are the predictions. Carefully choosing prior mean µ(x;θ),
kernel k(x,x′;θ), and noise σ2

n(x;θ) functions improves the prediction capabilities of
the GP model significantly, allowing the model to better extrapolate and quantify the
uncertainty for the estimation of the failure distribution accurately [40].

To integrate domain knowledge, the framework builds on the standard GP model by
customizing the prior mean, noise, and kernel functions. The standard GP model,
which is usually used for predicting the remaining energy/capacity of batteries [46, 50,
51], involves a constant prior mean µ(x), a stationary kernel, here, the Matèrn kernel
k(x,x′)ν=3/2, and an independently identically distributed (i.i.d.) zero mean noise ϵ.
This standard GP is characterized as

y(x) = f(x) + ϵ, (1a)

f(x) ∼ GP(µ(x) = c, k(x,x′)), (1b)

k(x,x′) = σ2
s

(
1 +

√
3d

l

)
exp

(
−
√
3d

l

)
, (1c)

ϵ ∼ N (0, σ2
n), (1d)

where d is the 4D-Euclidean-space distance between the data points. The hyperparam-
eters θ = {c, σ2, l, σ2

n} control the predictions of the GP. Within the kernel function,
the signal variance (σ2

s) controls the deviation of the predicted function from its mean,
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and the length scale (l) controls the covariance decay rate based on the distance
between the data points. The noise variance σ2

n quantifies the data variability. One of
the main benefits of GP modeling is its adaptability to the application of interest by
modifying the prior mean, noise, and kernel functions based on domain knowledge. For
example, the literature shows that remaining energy of batteries degrades with cycling
and that the degradation rate changes under different operating conditions [5, 6, 7]. We
show that accounting for this decay using a proper prior mean function significantly
enhances the extrapolation capabilities of the GP model. Moreover, the literature
reports that cell-to-cell variability often increases with cycling [52, 53], and accounting
for it enhances the aleatoric uncertainty quantification, which is linked to the inher-
ent variability in the data, improving the failure distribution estimation. To improve
the epistemic uncertainty quantification, we use a non-stationary kernel function. In
what follows, we dive deeper into the three building blocks of GP modeling, demon-
strating our integration of domain knowledge into GPs using different combinations
of the mean, noise and kernel and quantifying their performance.

2.1 The Prior Mean Function

The prior mean function µ : X → R encodes the expected general trend of the latent
function and can be tailored to the domain knowledge about energy degradation.
The prior mean function is usually set to a constant, resulting in poor extrapolation
capabilities [40]. Domain knowledge indicates that the remaining energy generally
degrades during cycling, depending on temperature, charging rate, and maximum
SOC. Integrating this knowledge into the GP without biasing the results requires
carefully choosing a flexible prior mean function that models this degradation. This
flexibility allows the model to adjust assumptions when they are inaccurate, including
switching to an uninformed prior if supported by the data.

A power law function in cycle number (x4), typically with a negative slope, is one
candidate for modeling energy degradation. However, any change in the degradation
rate depends, in our experiments, on maximum SOC (x1), charging rate (x2), and
temperature (x3). Therefore, the power law parameters are considered functions of
these operating condition parameters. For example,

µ(x) = axp
4 + b,

a(x̃) = c1x1 + c2x2 + c3x3 + c4,

p(x̃) = c5x1 + c6x2 + c7x3 + c8,

b(x̃) = c9x1 + c10x2 + c11x3 + c12.

(2)

This prior mean represents a flexible power law model where the degradation rate
(quantified by a), the non-linearity of the function (quantified by the power p), and the
initial battery energy (quantified by the intercept b) all vary based on x̃ = {x1, x2, x3}.
Equation 2 depends on the hyperparameters ci ∀ i ∈ {1, 2, ..., 12} estimated by MLE.

An alternative model composed of the sum of basis functions can also flexibly model
degradation with varying rates. This model depends on identifying centers within the
4D parameter space where changes in degradation trends occur. This model may also
be used to identify the location of the “knees” where new failure mechanisms, such as
loss of active material and mechanical deformation [54, 55, 56], could have occurred
while cycling. Here, we implement the sum of three linear basis functions (Bi) model

6
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for each parameter in the 4D parameter space with N = 34 centers (x0 ∈ R4) and
weights (c ∈ R). The general equation of this model is as follows

µ(x) =

N∑
i=1

ciBi(x,x0i). (3)

The first and last centers in each dimension are chosen as the minimum and maximum
of the corresponding dimension, whereas the ones in between are identified using MLE.
This results in 85 prior mean hyperparameters optimized by MLE — 81 weights and
4 centers. This formulation can be easily extended to include more basis functions
that allow for increased flexibility in the modeling of degradation rate. However, more
hyperparameters would be required.

2.2 The Noise Model

The noise function σ2
n : X → R quantifies the aleatoric uncertainty in the GP predic-

tions resulting primarily from the naturally occurring cell-to-cell variability, such as the
onset of additional failure mechanisms during cycling [29]. This variability depends on
the location of the data point in the parameter space (heteroscedastic). For example,
studies have often shown that variability increases with cycling (x4) [57, 3]. Although
variability may also be affected by {x1, x2, x3}, we ignore that to avoid overfitting.
Since quantifying the aleatoric uncertainty should be performed with the least data
possible, we integrate domain knowledge to reduce the required number of experi-
ments. We showed in our previous work that using a noise model that models the
increase in variability improves the quantification of failure distributions [40]. In addi-
tion to estimating the aleatoric uncertainty, the noise model is crucial for MLE and
Bayesian inference, allowing the GP to better predict the function values at unobserved
points in the parameter space.

A general, flexible function that models the increase in variability is the power law,

σ2
n(x) = mxp

4 + n. (4)

The hyperparameters {m,n, p} control the aleatoric uncertainty estimation as a func-
tion of x4. Specifically, nonlinearity is controlled by p. In the simplest case, the rate can
be assumed to be constant, setting p = 1. However, variability increases with cycling
at an increasing rate [3] if the knee appears for different batteries at different loca-
tions. The variability would become more pronounced after some batteries suffered an
additional failure mechanism and some did not. One drawback of this function is that
it assumes that the variability continues increasing at an increasing rate with cycling.
For cases where the variability increase slows down [57], we could use the sigmoid
function,

σ2
n(x) =

m

1 + e−n(x4−x∗)
. (5)

In this case, m represents the upper asymptote of the variability, n quantifies the
curve’s steepness, and x∗ denotes the inflection point signaling the transition of the
variability’s rate of increase from ascent to descent. A sum of linear basis functions
model similar to Equation 3 could also allow for this pattern.
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2.3 The Kernel Function

The kernel function k : X×X → R is the primary building block of a GP as it dictates
the properties of the predictions and estimates the covariance among and between
observed and unobserved function values. Within the context of efficient parameter
space exploration, the kernel function identifies where data is needed for accurate
predictions to help guide future experiments.

The kernel function serves as the covariance operator and estimates epistemic uncer-
tainty. It uses the values of two input points, x and x′, to estimate the covariance
between the corresponding function values f(x) and f(x′), even if they were not
observed yet. Additionally, the kernel function quantifies the epistemic uncertainty
— corresponding to the lack of data — to identify where future experiments are
needed for accurate predictions. Such an approach allows for efficient parameter space
exploration, where only experiments that maximize information gain are chosen.

Most GP studies employ stationary kernels that compute the covariance based on the
Euclidean distance between x and x′ [58]. This dictates the epistemic uncertainty,
which grows as the prediction points become more distant from the measured points.
Although this is logical when quantifying uncertainty, distance is not the only aspect of
data that controls it. One example of stationary kernel functions is the Matèrn kernel
with ν = 3/2, shown in Equation 1c. This isotropic kernel — all parameters in the 4D
parameter space have an equal length scale — assumes identical decay in covariance
in each direction as long as the distance is the same. This assumption is invalid in our
work since the parameters have different ranges and, most likely, different covariance
decay rates. To mitigate this, we make the kernel anisotropic with respect to the
norm || · ||2 by having an independent length scale for each dimension and determined
using automatic relevance determination (ARD), resulting in the covariance decay rate
varying from one dimension to another. We introduce the anisotropy by transforming
the Euclidean metric using Equation 6(b-c), where {l1, l2, l3, l4} are the length scales
corresponding to each parameter and setting the length scale l in Equation 1c to 1.

Unlike stationary kernels that may result in poor predictions and inaccurate quan-
tification of uncertainties, non-stationary kernels quantify the covariance based on
the data points’ explicit locations [59, 60]. These kernels have greater expressiveness
and flexibility in their calculations. To give them their flexibility, non-stationary ker-
nels require more hyperparameters. This increases their computational requirements
but in a predictable manner. Additionally, for non-stationary kernels, it is harder to
prove their positive semi-definite property, but past work has been done to develop
them [61, 62, 63]. For instance, deep kernels use deep neural networks to transform the
input parameter space to a latent space, possibly with a different number of dimen-
sions, and use it to calculate the covariance using a given stationary kernel. Deep GPs
are another example of how non-stationarity can be achieved; multiple GPs with sta-
tionary kernels are stacked, so the output of one serves as the input of the next to
achieve non-stationarity [64]. Here, we implement a parametric non-stationary ker-
nel where parametric equations replace the constant hyperparameters in stationary
kernels [65, 66]. More specifically, we consider that the signal variance changes with
maximum SOC, C-rate, and temperature but not with cycling since our previous
work showed no significant non-stationarity in the cycling dimension [40]. Modifying
the isotropic stationary kernel in Equation 1c with these modifications results in the

8
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following anisotropic non-stationary kernel

k(x,x′) = g(x̃)g(x̃′)
(
1 +
√
3d
)
exp

(
−
√
3d
)
, (6a)

d =
√

(x− x′)TM(x− x′), (6b)

M =


1/l21 0 0 0
0 1/l22 0 0
0 0 1/l23 0
0 0 0 1/l24

 , (6c)

g(x̃) =

27∑
i=1

wi exp

(
− d̃2

lg

)
. (6d)

The sum of exponential basis functions g(x̃) captures the non-stationarity in the max-
imum SOC, C-rate, and temperature parameter space centered at each parameter’s
initial, middle, and final point, where x̃ = {x1, x2, x3} is the input data, and d̃ is the
Euclidean distance in this 3D parameter space. This kernel function has 32 hyperpa-
rameters — four for the length scales in the distance (d), 27 for the weights (wi), and
one for the width (lg).

2.4 Overview of Bayesian Optimization

Bayesian optimization (BO) is used to efficiently explore and predict the remaining
energy at any point in parameter space X ⊂ R4. BO has found its place in the energy
storage field as an efficient approach to efficiently optimize black-box functions relat-
ing process parameters of energy storage systems to their key performance measures
such as remaining energy [67, 68, 69, 70]. Like other active learning approaches, BO
builds on the current experimental results to identify future points in X to be tested.
Several studies have shown the superiority of BO over other approaches like random
sampling, grid sampling, Genetic Algorithms, and Lagrange-Relaxation optimization
by requiring fewer data points and providing faster convergence rates to the desired
objective of the optimization [71, 72, 73, 74]. BO consists of two main components: a
stochastic predictor model of the black-box function and an acquisition function. Gen-
erally, a GP model is used as the probabilistic predictor of the black-box function f as
it provides the BO with an accurate prediction of the mean prediction and uncertainty
using a small number of experiments. A typical BO approach starts with performing
experiments at a few initial points in X. The experimental results are then used to
train a GP model. The BO builds on this GP to identify new points in X predicted to
optimize the acquisition function. Experiments are then performed at the newly iden-
tified points, and their results are used to improve the black-box function estimation
— by training a new GP model with all the available data — to identify the next new
points. Fitting a GP model, identifying new points, and performing measurements at
their locations constitute an optimization iteration.

Multiple acquisition functions have been developed throughout the years based on
the optimization objective. One widely used acquisition function is the probability
of improvement (PI), where the BO identifies the point(s) in parameter space with
the maximum probability of being more optimal than the current optimal point. PI
exploits the areas in the parameter space where it is likely to improve the objective
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and may get stuck in local optima [75]. Another acquisition function is the expected
improvement (EI) acquisition function, which balances the trade-off between exploita-
tion and exploration of uncertain regions in the parameter space [69]. PI and EI are
two examples of functions used to maximize an objective function. Here, we are inter-
ested in efficiently exploring the parameter space without exploiting a specific region.
One example of such an acquisition function is the total correlation, which we use to
identify multiple new points to test. Total correlation quantifies the expected informa-
tion gained from future experiments. More specifically, it identifies new points in the
parameter space whose function values are least correlated with each other — making
the new points x∗ mutually aware of each other — and with the function values at
the previously tested points x. Since the function values at the new points are least
correlated, performing experiments at those points will lead to maximum information
gain and uncertainty minimization throughout the parameter space. Mathematically,
total correlation can be expressed as

KL

(
p
(
f(x),f(x∗)

)
|| p
(
f(x)

)
.p
(
f(x∗)

))
= KL(A || B), (7a)

A ∼ N
([

µ(x)
µ(x∗)

]
,

[
k(x,x) k(x,x∗)
k(x∗,x) k(x∗,x∗)

])
, (7b)

B ∼ N
([

µ(x)
µ(x∗)

]
,

[
k(x,x) 0

0 k(x∗,x∗)I

])
, (7c)

and is defined as the Kullback-Leibler (KL) divergence [76] between the joint prior dis-
tribution of the function values where tested points x are correlated with the untested
points x∗ and the joint prior where the tested points are uncorrelated with the untested
points as shown in Eq. 7, where n is the number of points in x and x∗. In this regard,
the aim is to identify x∗ that minimize the total correlation, and therefore the KL
divergence between the joint distributions when x and x∗ are correlated and not cor-
related. When the KL divergence is minimized, it shows that the new points are truly
uncorrelated.

3 EXPERIMENTAL DATA COLLECTION

3.1 Data Collection

The bounds of the parameter space are identified by studying plating as a function
of temperature and maximum SOC at a C-rate of 6C. The onset of lithium plating
is detected by a drop in the coulombic efficiency of the cell after a fast charge cycle
followed by a normal discharge cycle. As shown in Figure S1 in Supplemental Material,
there does not appear to be an onset of plating at any maximum SOC charge at 303
K compared to 288 K and 293 K. For this reason, we consider the temperature range
between 285 K and 291 K. Additionally, there did not appear to be sufficient plating
at a maximum SOC of 10%, so we consider the maximum SOC to range from 20% to
80%. As plating is expected to grow rapidly with maximum SOC [23], we limited it to
80% to avoid excessive plating on any given cycle. Finally, since plating usually occurs
at 6C in these temperature and maximum SOC ranges, we set our C-rate range to be
2C to 8C.
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Table 1 The limits of the parameter space

Limits Maximum SOC [%] C-rate [C] Temperature [K] Loop Number

Minimum 20 2 285 0

Maximum 80 8 291 40

With the bounds of our parameter space identified, we designed our standard cycling
protocol to monitor remaining energy loss with cycling. The protocol consists of
repeated loops comprising fast and slow cycles to estimate the remaining energy while
cycling accurately. The initial loop consists of five slow-charging cycles at 1C to assess
the deliverable remaining energy from the cell. The remaining loops consist of two
fast-charging cycles depending on the chosen C-rate and maximum SOC for the cycled
cell and five slow-charging cycles at 1C. The remaining energy at the fifth slow cycle
in each loop is the experiment’s outcome to train the GP model at the corresponding
input point in parameter space — the cell’s maximum SOC, C-rate, temperature, and
loop number. The damage caused by each fast cycle is reflected in the subsequent slow
cycles as a loss in the remaining energy. Figure S2 in Supplemental Material shows
an example dataset of the remaining energy as a function of cycle number, where the
drops in remaining energy after each of the fast charging steps are apparent. Figure S2
also shows the relationship between loops and cycles. From hereafter, and due to this
accelerated testing protocol, we consider loop number as our fourth parameter instead
of cycle number. The full details of our experimental setup and cycling parameters
can be found in the Experimental Procedure section. In our setup, some cells may not
experience degradation in our testing time frame, especially those cycled at low SOC
and C-rate. To limit our testing in the loop number dimension, all cells are stopped
at loop number 40 if they did not fail earlier. Table 1 summarizes the bounds of the
parameter space used in this study.

3.2 Parameter Space Exploration

The parameter space is explored using a BO approach over multiple iterations. First,
two sets of p = 16 coordinates {x1, x2} (maximum SOC, charging rate) are randomly
selected to test 2p cells over two iterations, each iteration at a randomly chosen x3

(temperature). In this regard, we define an iteration as the fitting of a GP model using
the previous experiments (if any) and identification and simultaneous testing of p cells.
A GP model is fitted using all collected data. Then, a third iteration is initiated where
we extract a new set of p experiments {x∗

1,x
∗
2, . . . ,x

∗
p}, with x∗

i = {x1, x2, x3, x4}, that
are expected to maximize the information gain and minimize the overall uncertainty.
Although x4 is inherently identified for all p new experiments, we do not consider it
in our framework. Future cells are tested either until failure or until they reach the
maximum identified loop number. All collected data are then added to the training
dataset. Since the parameter space includes the loop number dimension, x4 is implicitly
determined by the BO. The loop number dimension cannot be excluded from the BO
because it leverages data from different loop numbers to guide the selection of future
experiments. The acquisition function identifying the future experiments is the total
correlation. It quantifies the expected information gain from the future p experiments.
Given our limitation of having only one temperature chamber, future experiments
must have the same x3. We employ a nested optimization approach, displayed in
Algorithm 1, to achieve this: the upper level optimizes x3 using a non-linear direct
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search optimization algorithm, the lower level optimizes x1, x2, and x4 (loop number)
while x3 held constant using a differential evolution global optimization algorithm.
When performing the new experiments, the cells are tested from loop 0 to either
failure or the upper limit of x4, whatever occurs first, and the results of all loops are
considered in the GP. The new data are added to the previous results to fit a new GP
model. We conclude our exploration effort after these three iterations. A new iteration
would have been initiated by asking for a new set of p experiments using the latest
GP model. However, as discussed in Section 4.1, our results show good prediction
performance; therefore, no additional iterations are considered.

Algorithm 1 Nested Optimization for h(x∗) = KL(A || B)

1: function NestedOptimization(h, [x1 init, x2 init, x3 init, x4 init])
2: ▷ Upper level optm. (for x3)
3: function UpperLevelObjective(x3)
4: ▷ Lower level optm. (for x1, x2, x4)
5: function LowerLevelObjective(x1, x2, x4)
6: return h(x1, x2, x3, x4)
7: end function
8: (x1 opt, x2 opt, x4 opt)← Minimize

(
LowerLevelObjective, [x1 init, x2 init, x4 init]

)
9: return h(x1 opt, x2 opt, x3, x4 opt)

10: end function
11: x3 opt ← Minimize

(
UpperLevelObjective, x3 init

)
12: return (x1 opt, x2 opt, x3 opt, x4 opt)
13: end function

The GP model consists of power law mean and noise functions and the ν = 3/2 Matèrn
kernel. We used a power law function as the prior mean to account for that batter-
ies may degrade with cycling at an increasing rate. To account for differences in the
degradation rate at different operating conditions, we allowed the parameters of the
power law function to vary with the operating conditions as discussed in Equation 2.
We also used a power law as the noise function to account for the fact that variability
may increase with cycling. We considered the noise function’s parameters constant,
assuming that the operating conditions do not affect the variability. Since our pre-
vious work [40] showed insignificant non-stationarity in the battery data in the loop
dimension, we used the ν = 3/2 Matèrn stationary kernel with ARD of the length
scales of different dimensions in the parameter space.

4 RESULTS AND DISCUSSION

4.1 Efficient Exploration of the Parameter Space

The proposed framework efficiently and accurately explores the 4D parameter space.
Here we show the prediction results of the GP model discussed in Section 3.2 when
all the experimental data from the BO iterations are used. We also show how our
GP model can quantify variability by repeating the testing of a randomly chosen cell
with multiple other fresh cells. To showcase the efficient exploration and prediction
accuracy of our framework, we also demonstrate the rapid decrease in prediction error
with new data compared to the random sampling approach.
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Fig. 2 GP prediction of the (a) posterior mean and (b)uncertainty of the remaining energy as a
function of maximum SOC, C-rate, temperature, and loop number. Each cube represents the pre-
dictions at a given temperature, where the color of the slices within the represents the value of the
posterior mean and uncertainty, respectively. These plots allow for the estimation of the failure dis-
tribution as a function of loop number at any point in the SOC, C-rate and temperature space using
the method outlined in [40].

Figure 2 presents the GP posterior mean and uncertainty in the 4D parameter space
using all the experimental data, where color represents the predictions of remaining
energy (a) and uncertainty displayed by one standard deviation (b). Following this
representation, the results of each tested cell are represented as vertical pillars within
the cubes. The 291 K cube shows multiple pillars that stretch from the bottom to
some loop number based on the extent to which the cells were tested. Some cells were
tested until loop 40 and the pillar reaches that upper plane; the rest failed earlier. The
32 cells at 285 K and 288 K failed before loop 20. For a clearer display of experiments
performed at each temperature, the tested points are displayed in Tables 1, 2, and 3
and as scatter plots in Figures S3, S4, and S5 in the Supplemental Material. Figure 2(a)
clearly shows the effect of the process parameters that follow the expected decay in
the remaining energy [5, 6, 7]. For instance, decreasing the temperature while keeping
everything else fixed increases the decay rate (from plating). Similarly, increasing the
maximum SOC, C-rate, or loop number individually while keeping everything else
constant increases the degradation rate. Thus, our modeling approach of the prior
mean, which allowed a change in the slope, power coefficient, and intercept of the prior
mean based on maximum SOC, C-rate, and temperature, has resulted in accurate
predictions.

Figure 2(b) shows the prediction uncertainty in the parameter space. The uncertainty
starts at a minimum for all temperatures and increases with cycling due to the natural
cell-to-cell variation (aleatoric uncertainty). To quantify this variability, we arbitrarily
chose a cell (x1 = 30%, x2 = 7.46C, and x3 = 291 K) to replicate its testing with ten
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Fig. 3 Eleven identically cycled cells quantifying the cell-to-cell variability. The blue points represent
the data, the red line represents the posterior mean, and the shaded region shows the 95% confidence
interval. This plot displays the increase of uncertainty as a function of loop number.

other fresh cells. The results of the eleven cells, along with the GP predictions and
95% confidence interval of p(y), are shown in Figure 3. Our results follow those in
the literature that variability increases with cycling [57, 3]. Figure 3 shows two main
clusters of cells, data points of nine cells within the confidence bounds and two outside.
These bounds can be extended based on the user’s confidence level preferences. They
are set to cover 2 standard deviations around the mean to get the 95% confidence.
Being outside the bounds suggests that the GP interprets the points as outliers at
the corresponding loop number. The percentage of points included within the bounds
changes with the loop number. All the data are within the bounds until loop number
5. For the loop numbers between 5 and 27, only 81% of data points are within the
bounds. Testing the lowest cell stops at loop number 27, where afterward, 90% of the
data becomes within the 95% confidence interval. However, these results may change
upon the addition of more cells. GP uncertainty increases with variability because the
GP becomes uncertain about the unseen true results. Additionally, Figure 2(b) shows
that the uncertainty also seems to increase when the temperature decreases. This
stems from the lack of data (epistemic uncertainty) at points beyond the 20 loops at
temperatures 285 K and 288 K. This increase in epistemic uncertainty is represented
by the lighter colors going from the right to the left cube while keeping everything
else constant.

Cross-validation and root mean square error (RMSE) are used to test the GP predic-
tion performance for unseen cells. Cross-validation is performed using 20 randomly
chosen cells, where the results of a given cell are removed from the GP training dataset
and used as the testing dataset for calculating the RMSE. Figure 4 shows three sets
of representative cross-validation results. After training the GP model with the train-
ing dataset, the GP posterior mean (red line) and the posterior uncertainty (shaded
region) are plotted on top of the testing data of the removed cell. Figure 4 shows
accurate GP predictions for the three testing cells. The results of the remaining test-
ing cells are shown in Figure S6 in the Supplemental Material. According to Figure
S6, not all predictions are perfect. Some cells behave differently than what the GP
predicts. However, these are still acceptable prediction errors since the testing data is
within the uncertainty bounds. For instance, consider the cells in S6 (g), (n), and (p),
which are roughly in the middle of the parameter space. According to Figure 2(a), for
each temperature, the remaining energy degradation increases with increasing the C-
rate and SOC for all loops. The GP model cannot accurately predict their degradation
pathway for these cases because the cells lie between no degradation (low maximum
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Fig. 4 Three representative cross-validation cases, where for each case, the data of a specific cell,
represented by the blue points in each panel, are removed from the training dataset and used for
testing the performance of the posterior predictions. The domain-knowledge-informed GP accurately
predicts unseen testing experiments.
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Fig. 5 Evolution of the GP prediction error as new experimental data are added. The markers
represent the mean RMSE from the 20 cross-validation cells, and the error bars represent the standard
error on the mean. Iteration 4 represents the 10 repeated cells. RMSE significantly decreases with more
data points resulting from the efficient exploration of parameter space and the excellent prediction
performance of the domain-knowledge-informed GP.

SOC and C-rate) and extreme degradation (high maximum SOC and C-rate) regions.
Therefore, the GP followed its prior mean and predicted a decreasing trend in power
law. However, as expected, the GP compensated for its prediction errors with increased
uncertainty, showing the most likely trend based on domain knowledge and the other
experiments. Even with these prediction errors, results show that the average RMSE
for the 20 cells is 0.085 Wh, corresponding to around 6% error when normalized by
the nominal cell energy (1.36 Wh). Figure 5 displays the decay in mean RMSE and
standard error on the mean using the 20 cross-validation cells as a function of iter-
ation number. Figure 5 clearly shows the significant improvement in the prediction
performance with additional data, resulting from the efficient exploration capability of
the parameter space and the use of domain-knowledge-informed GP. Therefore, these
results show we acquired an accurate GP model with only 3p = 48 cells and three iter-
ations. More iterations would have been required if 6% were not an acceptable error
to the user.

The proposed BO framework explores the parameter space more efficiently and accu-
rately than the random sampling approach. The comparison starts by randomly
identifying five points in the maximum SOC, C-rate, and temperature space and
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Fig. 6 Change in RMSE for the proposed BO framework and the random sampling approach with
iterations, where the lines represent the mean of ten different exploration trials, and the shaded region
represents the standard error on the mean. BO explores the parameter space more efficiently than
random sampling.

then collecting data for cells cycled at these points. To ensure adequate comparison
between the BO and random approaches, the fit in Figure 2 is considered a ground
truth function to collect data instead of going through the physical cycling experi-
ments. A separate GP model for each approach (BO and random) is fitted based on
the collected data for the five points in the space. Using the two new GP models, cross-
validation between these models and the ground truth is done using a grid of 4 points
in each dimension in the parameter space (total of 44 = 256 cross-validation points).
Then, a new cell is identified using BO and random sampling, respective remaining
energy data are collected, the GP models for the corresponding approach are updated,
and cross-validation is performed. Identifying a new cell, collecting data, and updat-
ing the GP model constitute an interaction. Multiple iterations are performed, where
Figure 6 shows the progression in RMSE as a function of iteration number. RMSE is
displayed as a percentage of the ground truth maximum of remaining energy. Using
a ground truth allows us to run many trials for each approach, where the lines in
Figure 6 represent the mean of ten different exploration trials, and the shaded region
displays the standard error on the mean. Figure 6 clearly shows the superiority of
the BO approach where the RMSE drops relatively faster than the random sampling
approach and achieves around 10% RMSE with less than ten iterations. These results
suggest that the proposed BO approach more efficiently explores the parameter space
than random sampling.

4.2 Varying GP Model Development

The prediction performance of the GP model depends on the choice of the prior
mean, noise, and kernel functions, and here, we aim to identify the best combination
of these functions based on the collected data. Multiple functions are tested for the
prior mean, noise and kernel functions. We judge the performance based on maximum
log marginal likelihood, lowest RMSE, and lowest continuous ranked probability score
(CRPS) of cross-validation cases. RMSE and CRPS both measure the accuracy of
predictions relative to the test data. However, CRPS also accounts for uncertainty in
the predictions. This means that even if a model’s predictions are inaccurate, a higher
level of uncertainty can result in a better CRPS score [77].
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The prior mean, noise, and kernel functions are varied to identify the combination with
the best performance. Each function has multiple options, and to limit the number of
tested combinations, we first identify the best prior mean function, then the best noise
function, and finally, the best kernel function from the considered options. We start
with the standard GP model with a constant prior mean, constant noise, and station-
ary ν = 3/2 Matèrn kernel with ARD. Then, we fit GP models with different prior
mean functions while keeping the noise and kernel functions fixed. Similarly, by fixing
the other two functions, we repeat that for the noise and kernel functions, one at a
time. Figure 7 shows the results of the different combinations based on the three pre-
diction performance measures: (a) log marginal likelihood, (b) RMSE, and (c) CRPS.
The bar graphs represent the mean of 20 cross-validation cases, and the error bars
represent the standard error on the mean. Similar to Section 4.1, the cross-validation,
which is repeated 20 times, is performed by removing the data of a random cell and
using all the remaining to train a GP model. The predictions from this GP model are
cross-validated with the removed cell. The results are divided within each panel based
on the GP function being tested, and the best-performing combinations for the prior
mean, noise, and kernel functions are highlighted. The power law prior mean func-
tion is superior to other alternatives as it has the maximum log marginal likelihood
and the least RMSE and CRPS. This shows that the degradation rate increases with
cycling. The power law performs better than the constant function since, in the lat-
ter case, the GP posterior mean approaches a constant value when extrapolating, and
this results in increased prediction errors, especially for high loop numbers where the
cells would have degraded. The power law captures the decreasing trend when extrap-
olating, keeping the prediction error small. The sum of linear basis functions (SLBF)
provides a flexible general model that quantifies complex trends in the parameter
space, especially when the location of the centers of the basis functions is optimized.
Cross-validation results show that the log marginal likelihood measure is comparable
to the power law, but the RMSE and CRPS are worse for SLBF. We believe that this
poor performance is due to using only three centers for each parameter, causing sud-
den changes in the prediction trends of the remaining energy and resulting in higher
RMSE and CRPS. The sum of cubic basis functions would be expected to show bet-
ter results as it models a gradual change in the predictions, similar to a power law.
Still, it would have required significantly more hyperparameters to optimize, increas-
ing the computational requirements. The power law model has few hyperparameters
and still results in favorable performance. The power law noise function also works
best compared to the other alternatives. While the sigmoid noise function performs
slightly better than the power law, it has higher RMSE and CRPS. These results sug-
gest that the variability indeed increases non-linearly and then continues constant.
Still, the constant variability is towards the upper edge of the loop dimension, and
therefore, the power law model performed comparably well. As for the kernel function,
using the non-stationary kernel did not improve the performance. This may indicate
no non-stationarity in the maximum SOC, C-rate, and temperature operating param-
eter space or the number of data points (3p = 48) in that 3D parameter space is
insufficient to capture the non-stationarity.

4.3 An Outlook Towards Real-World Cycling

Although we have shown an ability to predict the remaining energy in this 4D space,
the experiments themselves, like almost all experiments in the battery literature, are
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Fig. 7 Mean (bars) and standard error on the mean(error bar) of 20 cross-validation results for
the (a) log marginal likelihood, (b) RMSE, and (c) CRPS. In each case, a randomly chosen cell is
removed from the training dataset to be used as testing data. The orange bars represent the best-
performing combinations when changing the prior mean, noise, and kernel functions. Among the
compared combinations, a power law prior mean, a power law noise, and a stationary Matèrn kernel
(ν = 3/2) combination seems to be performing the best.

highly artificial because every cycle uses identical cycling parameters. In terms of our
experiments, each cell retains the same maximum SOC, C-rate, and temperature as it
increases the number of loops so that pathways through parameter space for a given
cell show up as pillars in Figure 2. In real-world use, each cycle is generally different in
duration, depth of discharge, C-rate, and nearly every other operating parameter [78].
This means that each cell may follow a complex pathway through parameter space.
It is our goal to create a framework allowing the prediction of the remaining energy
decay for any arbitrary pathway. The data in Figure 2 allow us to take the first step
in this direction by differentiating each point with respect to loop number (holding
other parameters constant) to produce Figure 8, where each point shows the energy
loss for an incremental cycle there. The total degradation on any arbitrary pathway
through parameter space is a path integral along that path, essentially adding up the
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Fig. 8 Energy loss at each point in the 4D parameter space, allowing for the estimation of the total
degradation of cell operated under any real-world cycling history.

losses at each point visited. On the other hand, such a strategy does not account for
previous history. The energy loss per cycle at a point (x,y,z,w) may depend on how
the battery got to that point. These issues will be explored in future work.

5 CONCLUSION AND FUTURE WORK

Predicting the energy storage degradation rate under real-world cycling conditions
requires efficiently exploring the parameter space. Results show that we can accurately
predict the remaining energy using only 48 different points in the 3D parameter space
(maximum SOC, C-rate, and temperature). This was achieved using the advanced GP
model, which allows for accurate interpolating and extrapolating previously untested
points in the space. This was also achieved using an active learning approach that
identified future experiments expected to maximize the information gained and mini-
mize the overall uncertainty in the predictions. We then quantified the performance of
the GP model when considering different prior mean, noise, and kernel function com-
binations. We showed that using functions that follow the data trends improves the
prediction performance of the GP model. We also proposed a framework to predict
the decrease in the remaining energy under real-world cycling conditions. For this,
the gradient of the GP predictions can be used to predict the incremental degrada-
tion level at each cycle and then sum or integrate the results to estimate the total
degradation under any cycling history.

The work presented in this manuscript suffers from some limitations that will be
addressed in future work. For instance, only one temperature chamber was available
to do the experiments, limiting us to one temperature at a time when searching for
future experiments. If it were not for this constraint, we expect that the parameter
space would have been explored more efficiently — less total uncertainty — since our
framework would have possibly identified a more optimal set of future experiments
that are spread over the temperature domain as they were spread over the maximum
SOC and C-rate domains. Additionally, we assumed that cell-to-cell variability only
increases with cycling. Future work will allow the variability to change based on the
other parameters. One way to accomplish this is to make the parameters of the noise
model — in our power law model, these are the slope, power, and intercept — functions
of maximum SOC, C-rate, and temperature similar to what we did for the power
law prior mean function. Another limitation is that we only performed one active
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learning step identifying future experiments at 291 K. With this one step, we got
a GP model that accurately predicts unseen results — prediction error is < 6% —
and this is considered a significant advantage to our work that we did not expect to
achieve. However, future work should test this prediction capability by performing
more active learning steps and quantifying the prediction performance as a function
of the active learning steps. Finally, in our work, we proposed an approach to predict
the degradation of batteries cycled under real-world conditions, ignoring the effects
of cycling history. This may not be accurate, and future work should investigate the
improvement in prediction performance when cycling history is considered.

In conclusion, the key outcomes from this work are as follows:

• Exploring the parameter space efficiently using domain-knowledge-informed GP
machine learning and expected information gain

• Quantifying the prediction performance of GP modeling under different definitions
• Using laboratory cycling to predict cell degradation under real-world cycling

6 EXPERIMENTAL PROCEDURES

6.1 Resource availability

6.1.1 Lead contact

Further information and requests for resources should be directed to the lead contact,
Maher Alghalayini (malghalayini@lbl.gov)

6.1.2 Materials availability

This study did not generate new materials.

6.1.3 Data and code availability

The data and the codes will be available upon the publication of the manuscript.

6.2 Cycling Protocol

LiFePO4 cells (14430 format) with added tabs were purchased from BatterySpace.com
/ AA Portable Power Corp. These are listed as having a nominal potential of 3.2V
and nominal capacity of 400 mAh, based on which C-rates were computed. Multiple
cells were tested simultaneously, all within a single temperature-controlled chamber.
Charging parameters, specific maximum SOC, C-rate, and temperature, were chosen
to give rapid degradation and shorten the experimental time. Below are summaries of
our cycling protocols to evaluate the energy loss of the batteries and our initial scan
of temperatures to identify proper plating conditions. Leads from a Maccor battery
tester were connected to the cell tabs, and the cells were placed in a vented, explosion-
resistant ESPEC temperature chamber, which held each set of cells at a specified
temperature for the duration of the tests.
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6.2.1 Standard Cell Aging Protocol

1. Rest for 10 minutes
2. Repeat the following, 40 times or until the cell shows signs of shorting
(a) Repeat the following, 5 times

(i) Charge at a rate of 1.0C until cell potential increases to 3.75 V or higher
(ii) Hold the cell potential at 3.75 V until the magnitude of the current decreases

to 0.2C or lower
(iii) Rest for 15 minutes
(iv) Discharge at a rate of 1.0C until cell potential decreases to 2.5 V or lower
(v) Hold the cell potential at 2.5 V until the magnitude of the current decreases

to 0.02C or lower
(vi) Rest for 15 minutes

(b) Repeat the following, 2 times
(i) Charge at a rate of RC until the charge passed has reached Q or higher or

the elapsed time has reached T
(ii) Rest for 15 minutes
(iii) Discharge at a rate of 1.0C until cell potential decreases to 2.5 V or lower
(iv) Hold the cell potential at 2.5 V until the magnitude of the current decreases

to 0.02C or lower
(v) Rest for 15 minutes

6.2.2 Procedure to Identify Plating Conditions

1. Rest for 10 minutes
2. Repeat the following, 5 times
(a) Charge at 6.0C for until reaching 10% maximum SOC
(b) Rest for 15 minutes
(c) Discharge at a rate of 1.0C until cell potential decreases to 2.5 V or lower
(d) Rest for 15 minutes

3. Repeat the following while increasing the maximum SOC with each charge cycle in
intervals of 10% from 10-80% maximum SOC
(a) Charge at 6.0C for until reaching the desired percent maximum SOC
(b) Rest for 30 minutes
(c) Discharge at a rate of 1.0C until cell potential decreases to 2.5 V or lower
(d) Rest for 30 minutes
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