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DIFFUSION CONTROLLED MULTI-SWEEP CYCLIC VOLTAMMETRY 

REVERSIBLE DEPOSITION ON A ROTATING DISC ELECTRODE 

P. C. Andricacos and P. N. Ross, Jr. 
Materials and Molecular Research Division 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, CA 94720 

ABSTRACT 

.. A model is proposed for the behavior of a diffusion controlled 

reversible deposition reaction· occurring on a rotating disc electrode 

under conditions of multi-sweep cyclic voltammetry. Results are presented 

for dimension'less concentration, current density, and charge density 

functions, obtained by the application of the Nernst-Siver approximation 

for transient convective diffusion. The existence of a periodic state 

is demonstrated for cycle times of the order of the characteristic time 

for the rotating disc. Diagnostic criteria of potential electroanalyti­

cal use associated with the periodic state are,developed in terms of di­

mensionless sweep rate, reversal time, and cathodic reversal overpoten-

tial. It is found that significant differences exist in the current and 

concentration functions as determined during the first and second - also 

periodic - cathodic sweeps. The potentiodynamic determination of diffu­

sion limiting current densities as well as the applicability of a tri­

angular periodic potential waveform in plating are also briefly discussed. 

Key Words: Electrode, deposition, mass transport, voltammetry. 
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Introduction 

It has been demonstrated (1,2) that the application of periodic 

current pulses to a rotating disk electrode (ROE) gives rise to an 

output signal which also becomes periodic after a short time. In multi­

sweep cyclic voltammetry (CV), a periodic triangular potential waveform 

is applied to the electrode and one might therefore expect the current 

response to become periodic after the passage of relatively few cycles. 

The purpose of the present investigation is to define conditions for the 

rapid attainment of the periodic state and to describe the characteris­

tics of the periodic state when electrodeposition reactions are studied 

by multi-sweep £V. 

In the analyses to be presented, we examine the behavior of an 

electrodeposition reaction under conditions of pure diffusion control. 

Capacitive contributions to the current and electrolyte resistance effects 

are neglected. The deposition reaction is assumed to occur reversibly 

with the deposit at unit activity. Here in Part I, we treat the problem 

of a rotating disk electrode (ROE), and employ the Nernst-Siver approxi­

mation (3) for transient convective diffusion. 

Even with the foregoing assumptions and perhaps the simplest 

electrochemical reaction, the complexity of the computational problem is 

still considerable, especially when the reaction occurs on an ROE under 

multi-sweep CV conditions. However, these assumptions enable one to 

obtain analytical expressions for most quantities of interest. With 

respect to the more general use of multi-sweep CV in electrodeposition, 

analysis of reversible deposition behavior is' expected to exhibit the 

characteristic features of a pure diffusion control, and can thus serve 
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as a guide for treatment of more realistic deposition problems. Such 

problems will have to be treated numerically and the existence of a guide 

would be very helpful for the optimal manipulation of parameters. 

It is shown from the analysis presented here that besides currents, 

methods exist for the computation of both the concentration of the react­

ing ion and the integral charge associated with the deposition process. 

This is achieved by the introduction of dimensionless current density, 

charge density, and concentration functions. It is shown that if the 

electrode potential, initially at equilibrium, is changed linearly in 

the cathodic direction for a time greater than the ROE characteristic 

time, then, upon cyclic potential reversal, all thr~e functions become 

periodic with respect to time. In other words, periodicity is attained 

immediately after the first cathodic sweep provided that it extends 

beyond the ROE characteristic time. 

The first cathodic sweep in mUlti-sweep CV is equivalent to linear 

sweep voltammetry (LSV). The LSV current response for reversible depo­

sition of an ROE has already been described in the literature (4). The 

periodic cyclic voltammogram is significantly different from the LSV. 

For instance, the height of the cathodic maximum is reduced, the extent 

of this reduction depending on the dimensionless sweep rate. In addition, 

its position on the potential axis is not fixed. Whereas the first sweep 

begins at zero current, the foot of the periodic CV current wave exhibits 

a dependence on dimensionless sweep rate which is of diagnostic impor­

tance. Concentrati~n functions during single and multi-sweep CV are 

shown to be complex, e.g. the existence of multiple concentration extrema 

into the electrolyte in the beginning of the periodic cathodic wave gives 
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rise to local mass fluxes away from both the electrode surface and the 

bulk electrolyte towards a depleted region within the boundary layer . 

However, concentration profiles are shown to provide physical insight 

towards understanding of the existence of a current maxima in mUlti-sweep 

CV. Finally, the charge density functions show that any complete CV sweep 

results in the formation of a net deposit on the electrode surface. 

Definitions and Analysis 

We begin our analysis by introducing dimensionless parameters. This 

is important not only because their number and range of variation is 

greatly systematized, but also because ROE behavior under CV conditions 

is described by a combination of dimensional sweep rate, v, and rotation 

speed, w, rather than by each alone. This combination appears (4-7) in 

the definition of the dimensionless sweep rate. 

a = nFvo2/RTD [1] 

where 8 is the thickness of the Levich diffusion layer, and 0 is the 

diffusion coefficient of the reacting ion. n, F, R, and T have their 

usual meaning. 8 2/0 is the ROE characteristic time, defined once 8 is 

fixed by the rotation speed. It should be noted that eq. [1] becomes 

obvious once one realizes that it is the simplest way to reduce v. Also, 

it should be emphasized that a increases with increasing dimensional 

sweep rate, but decreases with increasing rotation speed. For example, 

at 100 rpm, a-10 when v = 100 mV/se~l in an electrolyte with ~ = 10-2 

cm2.sec-1 and 0 = 10-5 cm2.sec-1 (n = 1, T = 25°C). However at 1000 rpm, 
-1 

a drops to -1 under the same conditions, and a sweep rate of 1 vo1t.sec 

is required to sustain its value at that rotation speed. 
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Dimensionless distance, time and concentration are defined by the 

following equations: 

E; = X/a 
2 b 

1: = Dt/a ; C = l-c/c [2J 

where x is the distance away from the electrode surface, t is time, and 

cb is the bulk (also initial) concentration of the reacting ion. 

The dependence of the potential on dimensionless time is shown in 

Fig. lao The initial potential is the equilibrium, Eeq , computed from 

the Nernst equation on the basis of cb. Ec is the cathodic reversal 

potential reached after a time of 9 sec at a sweep rate of v volts.sec- l ; 

e' is then a dimensionless reversal time defined by 

[3J 

Since the initial potential is E ,the interval E -E is also one of eq c eq 
cathodic overpotential varying from 0 to nc; where n is the cathodic c , 

reversal overpotential. Figure 'lb shows the dependence of the surface 

concentration on dimensionless time. When the potential is linearly de­

pendent on time, the concentration is exponential through the Nernst 

equation. The list of dimensionless variables is extended by defining 

LC and La. These are dimensionless times into a cathodic or anodic 

sweep, respectively. From Fig. la, 

L = 29-9' + LC ; O::;;;L c::;;;e' ; t during a cathodi c sweep [4aJ 

L = (29-+1) 9' + ta ~T a::;;; 9 ' ; L duri ng an anodic sweep [4bJ 

Equations [4aJ and [4b] are important in separating t in two components: 

the number of already applied complete cycles, 9-, and time into a cathodic 

or anodic sweep, L or L , respectively. c a 

" 
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We now focus on the definition and methods of computation of the 

concentration, current density, and charge density functions. Let us 

assume for the moment that a step potential is applied to the ROE such 

that the surface concentration becomes 0 at t=O and remains at this 

value for all t>O. The solution of this problem, Cs(~'~)' is related 

to C(~,T) by means of Duhamel's (or superposition) theorem (4,8,9): 

T 

f aC 
C (I; ,t) = ~ (0,,,) . C (~, T -" ) d" 

aT S· 

o 

[5J 

where C(O,T) is the time dependence of the surface concentration (Fig. 1b). 

According to the Nernst-Siver approximation, 

00 

CS(I;,T) = 1-1; + 2j~1 (-l)j (jrr)-l sin [(1-~) jrr] exp(_j2w2~) [6] 

By combining eqs. [4] , [5] , and [6] , expressions for the concentrations 

during a sweep can be derived (see Appendix). Apart from ~, the concentrations 

will depend either on T or on T , depending on the direction of the potential c a 

sweep, and also on the parameters ° and e'. We can then write CC!(I;'TC;O, 

ell for the dimensionless concentration during the (!+l)th cathodic sweep 

as a function of dimensionless time into the sweep, TC' distance, 1;, away 

from the electrode surface, dimensionless sweep rate, 0, and reversal 

time, e'. The corresponding symbol for the concentration during the 

(!+l)th anodic sweep is Ca~I;'Ta; o,er). 

Once concentrations are avai1able, currents can be computed from 

their ~-derivat;ve on the electrode surface. We define a current den-

sity function, J, as the dimensionless ratio of the current density to 

the diffusion limiting current density, i L. The current density function 

during the (!+l)th cathodic cycle will depend on T and on the parameters 
c 

° and e'. We can thus represent it by J (T ;o,e'); similarly, we can c c 
use Ja!(Ta;o,e') for the (!+l)th anodic cycle. J's can be computed 

either from 
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Jc
2

(Tc;a,SI) = - a~ (o,Tc;a,s') 

or directly by Duhamel IS theorem, 

r 
-0-

f~e . ae fTae 
J = - ~ (0,1.) . af,s (o,T-A)dA = a; (0,1.) . S3(0,7fi(T-A))dA 

o o 

where the function s3 originates from differentiation with respect to 

f, of eq. [6J. 

[8J 

Since detailed expressions are available for the dependence of current 

on time, the charge deposited during a time interval can be computed. We 

define a charge density function, R, as the dimensionless ratio of the 

charge density deposited during a sweep to a characteristic charge density. 

The latter quantity is i 202/0, i.e. the charge that would be deposited if 

the diffusion limiting current was applied for 0
2/0. 

By definition, R's do not represent charge accumulation during 

repeated cycling but are specific to a particular cycle. The symbol 

Rc2(a,s') will be used to denote the value of the charge density during 

the (2+1)th cathodic sweep as a function of dimensionless sweep rate and 

reversal time; similarly, for Ra
2(a,s'). Apart from R . and R , a third 

c a 

charge function is of particular significance: 

2 ( I) _ R Q. + R2 Rn a,S - c a 

Rn2represents the net cathodic (Rn>O) charge deposited during the 

complete (2+1)th sweep. 

Expressions for the charge functions have been derived by integrating 

JI S over time: 
Sl 

RcQ.(a,s') = f Jc
2(Tc;a,s') dTc 

o 

Sl 

Ra 2(a,e ' ) =f Ja
2(Tc.'1;a,e ' )dTa 

o 

[9J 

[lOJ 

-' 

J ... ' 

.. 
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Although e'~l is not a very important parameter in the computation of 

concentration and current density functions, its significance becomes 

decisive for R's. Since most electronic equipment available for electro­

chemical measurements control potential, it would be more useful to ex-

press R's as functions of reversal overpotentia1, nc' rather than e ' . 

Expressing n as multiples of RT/nF, we may introduce a dimen~ion1ess c 

overpotentia1, H, by 

H = n/(RT/nF) ; Hc = nc/(RT/nF) 

Expressions for Rco(a,Hc)' Rc(a,Hc)' Ra(a,Hc)' and Rn(a,Hc) have been 

derived and are given in the Appendix. 

Attainment of a Periodic State 

It is shown in the Appendix that for 

[11 ] 

e 1 ~ 1 [12] 

all functions C Q, C Q, . 
c' a ' 

J Q, . 
c ' 

J Q, . 
a ' 

R Q, 
c ' RaQ, become independent of Q, for 

all practical purposes. In other words, if the first cathodic wave (LSV) 

lasts for a time greater than 0
2/0, then all subsequent anodic'waves are 

identical. Furthermore, the second and all subsequent cathodic waves are 

also identical. This is true irrespective of the value of the dimension-

less sweep rate. The restriction on the value of e l is not very serious 

since 0
2/0 is usually a small quantity. However, one should be careful 

in realizing that the criterion for periodicity is time rather than rever­

sal overpotentia1. For example, at a rotation speed of 100 rpm, 0
2/0 

- 2.5 sec. At a sweep rate of 1 vo1t·sec-1, the reversal overpotentia1 

should be at least 2.5 volts for the periodicity criterion, eq. [12J, to 
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be met. Conceivably, if 8 1<1, letting Q.-+oowill give rise to a periodic 

state which will be in general different than the one established when 

eq. [12J is satisfied. In this paper, we analyze the periodic state 

arising from reversal times greater than the ROE characteristic time. 

Dimensionless periodic functions will be denoted by Q.-independent symbols, 

and by using ~ 1 instead of 8 1 for emphasis. For example, the periodic 

cathodic current density function will be J (. ; 0~1). It should be noted c c 

that periodic cathodic functions are independent of 8 1
, so that its exact 

value is not of significance as long as it is ~l. 

Results and Discussion 

We begin by discussing the periodic cathodic and anodic current 

density functions, Jc(.c; 0,>1) and Ja(.a;o,>l). Contrary to stationary 

electrode behavior behavior, ROE voltammetry gives results which are para-

metrized with respect to 0 alone, rather than combinations of 0. and 08 1
, 

a fact which renders direct correlations with overpotential impractical. 

° It has been shown(4) that J (. ;0), LSV current function, is a monotoni­c c 

cally increasing function of .c' when 0$3; also JCO(o;o) = 0 and JCO(oo;o) 

= 1. In other words, on the first sweep, the initial value of the current is 0, 

in agreement with intuition, since the initial potential is the equilibrium 

potential, and for large. c values, the diffusion limiting current, i L, is reach-

ed. For 0>3, a maximum in J ° is observed. The reason for existence of 
- c 

this maximum will be explained in the discussion of the concentration pro-

files. Although the position of the maximum on the dimensionless time 

axis changes to lower .c values as 0 increases, when 0~4, the maximum 

appears at the same location on the overpotential axis, equal to 0.854 

(RT/nF) (= 22/n at 25°C). This is true only for J ° for a reversible c 
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deposition; reactions with finite kinetics (6) show a markedly different 

behavior. For large values of 0 (0?4) achieved by fast dimensional sweep 

rates, v, or low rotation speeds (eq. 1), or both, the role of convection 

becomes insignificant and ROE behavior becomes indistinguishable from 

stationary electrode behavior. This is so because in this range of 0 

values, LSV peaks appear at very short times, in wh4ch the concentration 

disturbance is limited to a small distance into the diffusion layer. Lack 

of rotation speed dependence renders the value of the J 0 maximum a linear 
c 

function of 0
1/ 2 with a slope of 0.61. It should be noted that 0

1/ 2 is 

the only dependence which eliminates o(thus w} from the combination i Lol/2. 

Upon multiple sweeping, the behavior of the periodic currents is 

markedly different from those obtained by LSV (Fig. 2). This is expected 

since periodicity means relatively large times at which convective effects 

are fully operational. An important feature of the periodic cathodic 

current function is that a portion ·of it near its foot is anodic, i.e. sub­

strate dissolution rather than deposition occurs. The tail of the period-

ic current during the anodic sweep is also anodic. The periodic cathodic 

current does not exhibit a peak for 0~3. For higher 0 values, a maximum 

appears, which has the same physical origin as the LSV maximum; the origin 

of these maxima are discussed in the analysis of concentration profiles. 

As expected, the periodic anodic current function is always monotonic, 

since no conceivable limitation on the dissolution reaction exists. As 

will be seen later, the amount of deposit dissolved during a cycle in 

which the current is anodic never exceeds the amount deposited during the 

same cycle when the current is cathodic. By performing a multi-sweep 

experiment then, one does not run into the danger of dissolving the 
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initial electrode substrate. However, this should initially be of the 

same materials as the reaction product, to guarantee the definition of the 

equilibrium potential as well as to satisfy the assumption of constant 

deposit activity. 

The general shape of the periodic current density functions indicates 

that there are three criteria of diagnostic importance. These are: the 

dependence of the value of the foot of the cathodic sweep current (an anodic 

current) on 0; the dependence of the location and height of the cathodic cur-

rent maxima on 0. Two properties of the current density functions should be 

emphasized. The absence of an extremum in the periodic anodic current rend­

ers such considerations as maxima separation on the time (or potential) axis 

inapplicable, and the expressions for J are independent of 8 1 provided that c 
eq. [12] is satisfied. That is why the quantities of diagnostic importance 

are defined only by 0 and not by 0 and 8 1
• Since the periodic anodic function 

assumes virtually the same values as the cathodic function at its foot and 

tail, it follows that it also exhibits an insignificant dependence on 8 1 

at these points. 

The dependence of Jc on 0 at TC=O is described by the following 

relation: 

This equation shows that Jc(O) is always negative (anodic current) and 

that its value can become significantly higher than -1 depending on cr, 

[13] 

i.e. several multiples of iL can be measured in the anodic current region 

tApplicat;on of de i Hopita1 IS rule shows that this expression has a 
finite limit as 0-+0; i.e. lim J = 0, despite lim coth(cr1/ 2) = 00· 

cr-+o C cr-+O 
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(Fig. 2). Forcr~9, eq. [13J can be simplified 

1/2 J (O;~9,~l)=1-cr c 

The height of the maximum in the periodic current function (cr~3) is 

significantly lower than in LSV; whereas, 

J 0= O. 61 cr 1 / 2 . cr ~4 c ,max , 

a numerical correlation indicates that 

J = 0.881 cr O. 251 _ 0.881 cr 1/4 ; cr~9 C,max 

[14J 

[15J 

[16J 

Values of Jc,max in the range 3<cr<9 are reported in Table 1. It should be 

noted that as cr increases, the difference between J 0 and J also c,max c,max 
increases. Jc,max appears at generally higher cathodic overpotentials 

than Jc: max ; whereas 

[17] 

in the case of periodic current functions, 

H = 1.3 - 1.4 ;cr~9 max 
[18J 

It should be pOinted out that like eq. [16J, eq. [18J is a numerical 

result, the validity of which has been investigated in the range 9<cr<50. 

We conclude our discussion on current density functions during LSV 

and multi-sweep CV by an analysis of their behavior in terms of dimension­

al times and potentials. To this effect, a single electron reversible 

deposition reaction is chosen (n=l) occurring on a RDE with w = 100 rpm 
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at 25°C from an electrolyte with v = 10-2 cm2.sec-1; the diffusion 

coefficient of the depositing ion is assumed to be equal to 10-5 cm2.sec- l . 

With these data, the RDE characteristic time is -2.5 sec. Figure 3a shows 

the dependence of Jco (LSV current function) on dimensional time, for 

various values of the dimensional sweep rate. At v= 20 mV·sec-1, a-1.9 

and no maximum appears. When v = 100 mV.sec-1 (0-9.6), the maximum ap­

pears at -0.21 sec and its height is described by eq. [15J. At 300 mV· 

sec-1 (0-28.9), the maximum appears at a much shorter time of -0.07 sec. 

An interesting feature of Fig. 3a is that the time necessary for the 

attainment of the limiting current (Jco=l) decreases with increasing sweep 

rate (10). It would thus seem advantageous to use as high a sweep rate as 

possible if the aim of the experiment is the measurement of iL. 

In order to attain periodic behavior in subsequent sweeps, the LSV 

sweep should last for at least 2.5 sec, in accordance with eq. [12J. In 

terms of overpotentia1, one would have to apply at least 750 mV when v 

= 300 mV.sec-1, as opposed to 50 mV if v = 20 mV·sec-1. t Figure 3b shows 

the LSV and periodic cathodic current functions plotted vs. cathodic over­

potential. It is clearly seen that as v increases, the difference in 

height between Jc: max and Jc,max also increases. When v = 20 mV·sec-1, 

Jco and Jc differ only around nc = O. The overpotentia1 at the maximum 

for all LSV curves is 22 mV, whereas for the periodic curves it is -35 mV; 

also, J ax for 300 mV.sec- l is slightly displaced towards more cathodic c,m 
overpotentia1s as compared to the one at 100 mV·sec-1. With respect to 

t The exact value of D may be very significant with respect to these 
considerations. 
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limiting currents, higher overpotentials are required to attain i L. It 

becomes obvious that although smaller times are required for the measure­

ment of i L, the combined time-sweep rate effect gives rise to the oppo­

site behavior in terms of overpotential, i.e. for faster sweeps, a higher 

overpotential must be applied for the current to reach the iL value. 

Since in many situations undesirable reactions may occur concurrently 

with the deposition process, the choice of sweep rate in the potentio-

dynamic determination of iL should result from a balance between times 

and overpotentials. 

We now turn our attention to the concentration profiles which develop 

into the electrolyte during a multi-sweep CV experiment on a RDE. These 

are drawn in Figs. 4 and 5 from expressions for LSV and periodic CV con-

centrations developed in the Appendix. Two representative values of 0 

are used, 6 and 1, chosen by the presence or absence of a maximum in Jco 

and J. Figures 4a and 5a are the current functions for these values of c 

o. In all other figures, the function l-C(s, T;O,e l
) = c/cb instead of 

C(~, T;O,e') = 1- c/cb is plotted. Since the surface concentration (s=o) 

decreases from cb to cb exp(-oe ' ) during a cathodic sweep and increases 

from cb exp(-oe ' ) to ob during an anodic sweep, the function c/cb changes 

from 1 to exp(-oe ' ) and from exp(-oe ' ) back to 1. For a given value of 

T or T , the derivative of the concentration curve evaluated at the sur-c a 
face (~=o) yields the value of J at that time. 

Figure 4b refers to curve (a) in Fig. 4a. Concentration curves bend 

continuously and their s-derivative at ~=o is in the same direction, 

since the current is always cathodic. Curve (c) is nearest to the 

cathodic maximum. Comparison of curve (c) with (b) and (d) indicates 
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that the appearance of a maximum in Jco is related to the curvature of 

the concentration profile into the electrolyte. It appears that the rate 

by which concentration changes at ~>o cannot match the rate of variation 

at ~=o. This ~urvature gives rise to transient currents higher than i L, 

despite the non-zero value of the concentration. When sufficient time 

passes, the whole profile comes closer to being linear, the curvature at 

~=o decreases and consequently, the cathodic current also decreases. As 

shown by line (f), Fig. 4b, the concentration profile is almost linear 

at L =1. c 
When the first - also periodic - anodic cycle begins, Fig. 4a(c), the 

concentration profile is almost linear (i-iL)(curve (f) in Figs. 4b and 4c) 

and the current is cathodic. The current remains cathodic for the time inter-

val 0<La<0.85. When La = 0.85, Ja = 0 as witnessed by a 0 derivative at ~=O 

for curve (d) in Fig. 4c. For La>0.85, the current is anodic and an in­

evitable concentration extremum is formed into the electrolyte, which is 

most pronounced when La = 1. The existence of this extremum can be pre­

dicted without a formal solution of the diffusion problem, since it is 

the only possibility which can simultaneously satisfy three requirements; 

that the current be anodic (surface derivative pointing downwards); 

that the concentration at ~=o vary between cb and ca. 0 only; and that 

the concentration at ~=l be fixed at cb (according to the boundary condi­

tion imposed by the Nernst-Siver approximation). 

In the beginning of the second - also periodic - cathodic sweep, the 

concentration profile has a complicated shape (curve (a) in Figs. 4c, d, 

e). At the same time, the surface concentration changes rapidly. The 
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inability of the concentration into the electrolyte to match the rapidity 

of the surface concentration change results in a complex regime of mass 

fluxes shown in Figs. 4e and 4d (exploded version of the early stages of 

4e). Curvature readjustments can now explain both the existence of a maxi-

mum in the periodic cathodic current function and the fact that it is 

lower in height and delayed in time. 

Apart from Figs. 4a and Sa, the differences between Figs. 4 and S 

are mostly of quantitative than qualitative nature. Curve (d) in Fig. Sb 

cl early sho\</s that at the chosen lovl value of the dimensi onl ess sweep 

rate, the value of the current is far from iL when Lc=l, despite the fact 

that the periodicity criterion, eq. [12], is met. Finally, the concentra-

tion extremum is less intense during the periodic anodic sweep, resulting 

in faster readjustment during the following periodic cathodic sweep. 

We conclude our discussion with an analysis of results pertaining to 

the charge density functions. These are drawn in Figs. 6a-c and Figs. 

7a-b. Figure 6 illustrates the dependence of R1s on 0 and e l
, whereas 

Fig. 7 on 0 and H. The abscissa in Fig. 6 has been chosen with the pur-c 

pose of contracting the scale of possible 0 values. Apart from this, 

Rc o depends linearly on 0-
1 for large values of 0; the periodic charge 

functions are ultimately linear in 0-
1/ 2. Although both Figs. 6 and 7 

describe the same functions, they differ in their potential experimental 

determination. In Fig. 6, each cycle has a fixed time duration; in Fig. 

7, what is implicitly fixed is the reversal overpotential. In view of 

the paramount significance of e l in determining the value of the charge 

density functions, this difference is extremely important: it accounts 

for the fact that the charge increases with increasing dimensionless 
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sweep rate when e I is fixed, whereas it decreases with increasing sweep 

rate when Hc is fixed. It is widely known from single sweep CV theory 

on stationary electrodes that charge is inversely proportional to dimen- '" 

sional sweep rate (usually its square root). Since charge functions for 

stationary electrodes usually depend on (nFjRT)ve, it is implied in this 

statement that, during the experiment, the reversal overpotential, ve, is 

fixed and v is varied. It seems that emphasizing experimental conditions 

in RDE theory is necessary, mainly because of the dependence of relevent 

CV functions on both a and ae l . It is appropriate here to recall that 

a increases not only as' a result of increasing sweep rate but also of 

decreasing rotation speed. It is intuitively expected that when both 

reversal overpotential and dimensional sweep rate are fixed, less charge 

should be deposited as the rotation speed decreases. 

For a fixed e l , it is interesting to compare the values of the charge 

density functions with the charge that would be obtained, were the cur­

rent constant and equal to iL continuously during the performance of the 

experiment (interrupted lines, Figs. 6a-c). In the range of a values of 

electroanalytical significance (a?3), it is seen that the values of the 

charge functions are primarily determined by el . This is expected 

since the dimensionless time interval during which the current is differ­

ent than iL is increasingly shorter as a increases. It follows that the 

range of a in which Rls change significantly is below the value for which 

the cathodic current maximum appears. 

Since the current density during an anodic cycle is always below the 

corresponding value for the cathodic cycle when both are cathodic and the 

opposite when they are anodic, it is expected that the periodic anodic 
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charge density will always be lower than the periodic cathodic (Fig. 6b). 

It turns out that fore'~l, it is also positive irrespective of a, indi-

cating that during any periodic anodic cycle a net deposit is added to 

the electrode. Obviously, the net charge density function, R (Fig. 6c) 
n 

is also positive, indicating that a complete cycle always results in the 

formation of a net deposit. Similar conclusions can be drawn for the 

first sweep as well, since Rco > Rc always. Interestingly, for very 

large values of a, the interval over which the current is different from 

i Lis very narrow; in the 1 imit of a +00, both peri odi c Rand R tend to c a 
e' and R to 2e'. With respect to Fig. 6c, it is important to note that 

n 

R <2e' for all finite a. In other words, the amount of deposit obtained n 

by plating with a non dc potential as in Fig. 1, can never exceed the 

amount obtained by dc plating at the limiting current, i L.· This result 

is in agreement with conclusions drawn from the study of pulsed currents (1). 

The present results are rigorously valid only for deposition reactions 

with infinitely fast kinetics. Since the LSV currents do not have anodic 

portions, it is possible that Rco can exceed e' as seen in Fig. 6a. 

Interestingly, the excess R o=e' is always less than 1/3 for finite a and c 

is independent of e'. 

Figure 7a is a plot of R vs. Hc for two representative a values, 1 

and 7. The range of Hc ' ~Hc~40 for n=l correspogds to approximately 

100-1000 mV. For H ~4, the dependence of R on H is linear to a good c c 
approximation. Note that for a =7, the peri odi c charge dens i ty functi ons 

are drawn for H~7, to satisfy eq. [12J. No such restriction exists for 

Rco, for all a. For a=l, eq. [lJ is satisfied for all H~4. Figure 7b 

emphasizes an interesting mathematical observation, namely, that the 
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+ exp(-Hc} -1] [20] 

is a function of reversal overpotential alone. For Hc~4, it is also 

linear in H. Alternatively, for a fixed H , Rn is inversely proportion-c c 
al to 0, indicating linear dependence on the rotation speed w, and on the 

inverse of the dimensional sweep rate, v. When both wand v are varied 

so that 0 is the same for each combination, Rn becomes independent of w 

or valone. This result emphasizes the fact that CV on a ROE is descri­

bed by a combination of v and w as it appears in 0, eq. [1], rather than 

each alone. In connection to Fig. 7a one should note that for 0=1, Rc
o, 

Rc ' and Ra are close to each other; their separation increases with in­

creasing 0 but in each case there is a maximum for 0+00. 

Conclusions 

It has been demonstrated that multi-sweep CV on a ROE leads to the 

establishment of a periodic response in concentrations, currents, and 

charges provided that the duration of each cycle is of the order of the 

ROE characteristic time. The first cathodic (LSV) sweep is the only one 

which is not periodic. Since this result originates from the study of 
, 

reversible deposition reactions, its validity for other mechanisms can 

only be provisional. 

The existence of a quickly attainable periodic state is significant 

in two respects. From the mathematical viewpoint, it indicates that 

the computational effort involved in the treatment of complicated reac­

tion mechanisms need not be as great as one may originally think. From 
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the electroana1ytica1 viewpoint, the periodic currents and charges offer 

information of diagnostic importance, in addition to that obtained from 

LSV data. Experimentally, this is equivalent to the recording of two 

sweeps in each case, instead of only th~ first. However, one should be 

cautious in interpreting multi-sweep periodic data: the dependence of 

the current functions is not as strong as in LSV. In addition, the pro­

longed existence of the complicated mass flux regimes arising during CV 

experiments may lead to undesirable effects. Clearly more experimental 

and computational work must be done in order for the screening capacibi­

lities of the LSV-RDE and CV-RDE techniques to be ascertained on the 

quantitative level. 
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Table 1. Values of Jc,max in the Interval 3<0<9. 

0 Jc,max 
3 1.059 

4 1.176 

5 1.274 

6 1.354 

7 1 .421 

8 1.478 

9 1.528 
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Figure Captions 

Fig. 1 Dependence of electrode potential and surface concentration on 

dimensionless time during mUlti-sweep cyclic vo1tammetry. 

a. Electrode potential 

b. Surface concentration for a reversible deposition 

reaction (Nernst equation). 

Fig. 2 Periodic Current density functions in terms of dimensionless 

time; numbers on curves are values of the dimensionless sweep 

rate; in Fig. 2b anodic current functions have been omitted. 

Fig. 3a LSV current density function in terms of dimensional time for 

various values of the dimensional sweep rate. 

Fig. 3b LSV (solid lines) and Periodic (interrupted lines) cathodic 

current density functions in terms of cathodic overpotentia1 

for various values of the dimensional sweep rate. All solid 

lines begin at O. Interrupted lines begin at some anodic value 

of the current which can be computed by eq. [13]. 

Fig. 4a Current density functions for 0=6. 
o 

a. Jc (Tc;6) - LSV sweep (begins at zero) 

b. Ja(Ta;6,1) - periodic anodic 

c. J (T ;6,1) - periodic cathodic c c 
Fig. 4b Dimensionless concentration profiles within the Levich diffusion 

layer during the LSV sweep for 0=6. Corresponds to curve (a) 

of Fig. 4a. 

-Fig. 4c As in Fig. 4b, but during the first - also periodic - anodic 

sweep. Corresponds to curve (b) of Fig. 4a. 
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Fig. 4d As in Fig. 4b, but during the initial stages of the second 

- also periodic - cathodic sweep. Corresponds to curve (c) of 

Fig. 4a. 

Fig. 4e As in Fig. 4b, but during the second - also periodic - cathodic 

sweep. Corresponds to curve (c) of Fig. 4a. 

Fig. 5a As in Fig. 4a, but for 0=1. 
0 

a. J c ('c;1) 

b. J " ;1,1) a a 
c. J c"c;l,1) 

Fig. 5b As in Fig. 4b, but for 0=1. 

Fig. 5c As in Fig. 4c. Corresponds to curve (b) of Fig. 5a. 

Fig. 5d As in Fig. 4e. Corresponds to curve (c) of Fig. 5a. 

Fig. 6a Charge density functions during the LSV sweep in terms of 

dimensionless sweep rate for various values of dimensionless 

reversal time. 
000 

1: Rc (0,2); 2: Rc (0,6); 3: Rc (0,10) 

Fig. 6b Charge density functions during the periodic cathodic and 

anodic sweeps. 

1: Ra(o,l), 2: Rc(o,l); 3: Ra(0,6),4: Rc(a,6) 

5: Ra(o,lO); 6: Rc(a,lO) 

Fig. 6c Net charge density functions. 

1: Rn(a,l); 2: Rn(a,6); 3: Rn(a,lO). 

Fig. 7a Charge density functions in terms of dimensionless cathodic 

overpotential 

4: R (l,H ) 
n c 
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I 

Fig. 7b Dependence of the a-independent combination R =aR .in terms of n n 

dimensionless cathodic overpotential. 
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APPENDIX 

Mathematical Derivation of Concentration, 
Current and Charge Density Functions 

Letting 6 be the thickness of the Levich diffusion layer, 

dimensionless quantities are introduced by eq. [A1]: 

2 b s = X/6 ; T = Dt/o ; C(s,T) = 1- c/c 

where 0 is the diffusion coefficient of the ion being deposited and 

[Al] 

s,Y,C are dimensionless distance, time, and concentration, respectively. 

Figure 1a shows the dependence of applied potential on dimensionless 

time. The initial value of the potential is Eeq , the electrode equili­

brium potential computed from the Nernst equation on the basis of cb. 

At a constant rate of v volts.sec-1, the potential is changed in the 

cathodic direction for e sec until it reaches Ec ' the cathodic reversal 

potential. e' is a dimensionless revetsal time, 

e' = De/6 2 [A2] 

During the "anodic" cycle, the potential returns to its original value 

at the same rate. The first cathodic sweep refers to LSV, the first 

complete cycle is single sweep CV and several cycle to multi-sweep CV. 

A combination of the ROE characteristic time,02/D, characteristic 

voltage, RT/nF, and v yield a dimensionless sweep rate, a: 

nF 62 
a = RT . v ., 0 [A3] 

where n,F,R, and T have their usual meaning. As demonstrated in prior 

LSV-RDE theory (4-7), a is a parameter of special significance. 

Since the initial potential has been assumed to be Eeq , the potential 

axis is also one of overpotential, beginning at 0 and ending at the 

cathodic reversal overpotential, nco Figure lb shows the time 
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dependence of the surface concentration obtained from the Nernst equation: 

1- exp(2noe')exp(-oT) cathodic cycle 

1- exp[-(2n+2)oe']exp(oT) (2n+l)e'~T~(2n+2)e'; anodic cycle 

a. Concentration Functions 

In order to derive expressions for C(~,T) we introduce another 

function, CS(~'T)' which is the solution to the problem when an infinite 

overpotential is applied to the ROE. Then, 

i.e. the surface concentration drops to ° at the instant the infinite 

potential step is applied. The reason shy CS(~'T) is introduced is that 

C(~'T) can be obtained from CS(~'T) by an integral transform known as 

Duhamel's (or superposition) theorem (8,9). Since the initial conditions 

for the dimensionless functions are 0, it holds that 

C(~,p) = p. C(O,p) . Cs(~,p) 

where p is the Laplace parameter and C(O,p), Cs(~,p) are the Laplace 

transforms of C(O,T) and CS(~'T)' respectively; C(~,p) is the Laplace 

[A4] ~ 

[A5] 

[A6] 

transform of C(~,T), our unknown function. Equation [6] can be inverted • 

by convolution in several ways. The most convenient turns our to result 

from associating p with C(O,p), to yield 
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1" 

C(s,1") =/ ~~ (0,1.) . C
S

(S,1"-A) d" 
o 

where A is a dummy variable of integration. NQte that 

00 

Cs (s'1") = l-s + 2 j~l fj(s) . exp(_j2~21") 

[Al] 

[AB] 

[A9] 

While performing the integration indicated by eq. [A7], it is convenient 

to express time in terms of the number of cycles, and time into a cathodic 

or anodic sweep. We can thus write (fig. la): 

T = 2Q.e ' + 1"c 

1" = (2Q.+l}e ' + 1"a 

()o;;;;1" ~e 1 
c cathodic sweep [A10a] 

anodic s~/eep [A10b] 

where 1"c is dimensionless time into a cathodic sweep, 1"a is time into an 

anodic sweep, and Q. is the number of complete cycles which have already 

been applied. The outcome of the integration in eq. [A7] are two concen-

tration functions, one for the cathodic sweep and one for the anodic 

sweep. Apart from sand 1" (or 1" ), these will depend on Q. and on the c a 
two parameters, a and e ' . We thus extend the symbol C(s,1") to C~(s'1"c; 

a,e ' } to describe the dimensionless concentration during the (Q.+l}th 

cathodic sweep (i.e. after the passage of Q. complete cycles). The corres­

ponding symbol for the concentration during the (Q.+l}th anodic sweep is 

C!(s,1"a;a,e l
). For the special case of single sweep CV, Q.=O, the catho­

dic (also LSV) function is independent of e ' . The notation for this case 
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then is C O(~,T ;0) and C O(~,T;o,el). The follmving results are c c a a 
obtained: 

i) single sweep CV; cathodic (also LSV): 

00 

CcO(~,\:;o) = (l-~)[l-exp(-o'(c)] + 20exp(-oTC}J~1 fj(d(j21f2_0)-1 

00 

2 L: f () (.2 2 ) ( .2 2 }-1 - 0 j"l j ~ exp -J 1f TC J 1f -0 

ii) single sweep CV; anodic: 

00 

CaO(~''(a;o,e'} = (l-~}[l-exp(-oe') exp(oTa)] + 20 exp(-oe ' ) j~l 

f j ( ~) (j 21f 2 -0) -1 

00 

00 

} L: ()( 2 2 -1 exp(oT a j=l fj ~ j 1f +0) 

00 

+ 20 exp(-ae'} j~l fj(~) exp(-j21f2Ta)(j21f2+a}-1 

iii} multi-sweep CV; cathodic: 

00 

Ccl(~'Tc;o,e') = (l-~)[l-exp(-oTc)] + 20 eXP(-oTc)j!l ~ (~)(j21fg_o)-1 
00 

2 L: f (.) (.2 2 ) (.2 2 )-1 - 0j=l j ~ exp -J1f TC J 1f -0 

~ E () (.2 2 ) (2·2 2 1)(.2 2 )-1 -20n=1 j=l fj ~ exp -J 1f TC exp - nJ TI e J 1f -0 

[All] 

[A12] 

1 00 

exp(-j21f2T )exp[-(2n-1)j21f2e,] ( .2 2 f 1 +20 exp(-oe ' ) L: .I l fj(t;} J 1f -0 
n=l J= c 

1 00 

exp(-j21f2T ) exp[-(2n-l)j2n2e, ] ( j 21f 2 +0) - 1-+20 exp(-oe') L: .I fj(d n=l J=l c 
1 00 

-20n: l 
j:, fj(d exp(_j21f2Tc}exP[-(2n-2}(j2n2+0)-1 [A13] 
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iv) multi-sweep CV; anodic: 

~ ~ 

E f ( )(.2 2 )-1 2 (I) I f () (.2 2 )(.2 2 )-1 j=l j t;; J 1T +0 + 0 exp ""oe j=l j t;; exp -J 1T T a J 1T +0 

£ ~ 

- 20n~0 j~lfj (d exp(-j21T2Ta)exP[-(2n+l)j21T2e'] (j21T 2_oJ -l 

£ ~ 

( .2 2 ) + 20 exp(-oe ' ) E I f. (t;;) ( 2 .2 2 1)(.2 2 )-1 
n=O j=l exp -J 1T T exp - nJ 1T e J 1T -0 

J a 
£ ~ 

fj(t;;) exp(-j21T 2Ta ) exp(_2nj21T2e')(j21T2+0)-1 + 20 exp(-oe ' ) I I 
n=l j=l 

£ ~ 

2 I E f () (. 2 2) [( 2 1 ) . 2 2 I] (. . 2 2 ) ':1 - 0 n=l j=l j t;; exp -J 1T Ta exp - n- J 1T e J 1T +0 [A14] 

Several terms in eqs. [A12]-[A14] contain the expression exp(-kj21T2e') where 

k usually is a non-zero integer. Even when k=l, the largest value that 

this term can take is exp(-j21T 2e, ). For e'~l, terms multiplied byexp 

(_kj21T2e') are very small and can be eliminated, rendering eqs.[A12]-[A14] 

much simpler; furthermore, both Cc£ and Ca£ become independent of £. The 

physical interpretation of this is that the first anodic potential sweep 

and the second cathodic sweep yield concentrations which are periodic func­

tions of time, irrespective of the value of 0, provided that e'~l. The 

restriction on e l is not limiting since when e ' =l, the dimensional reversal 

time is of the order of 82/0, which is a small number. In the elimination 

of terms containing exp(-kj21T2e') care should be taken to retain terms for 

which k=O. The following results are obtained: 

v) mUlti-sweep CV; periodic cathodic: 

[A15] 
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vi) multi-sweep CV; periodic anodic 

! .2 2 -1 
j=l fj(~)(J TI +a) 

4 ( I ) ! f r ) .2 2 (.2 2 ) ( .4 4 2) - 1 + a exp -ae j=l j\~ J TI exp -J TI Ta J TI -a [A16] 

One should note that the periodic concentration is independent of e l
• The 

notation chosen for the periodic functions does not include a dependence on 

£; also, we use the symbol ~l in place of e l
, to emphasize the restriction 

on e l for quick attainment of the periodic state. 

b. Current Density Functions 

We define the current density functions, J, as ratios of the current 

density to the diffusion limiting current density, i L. J is dimensionless 

and, in general, will depend on T (or T ), the number of cycles, £, and c a 

the parameters a and e l
• The notation for the current density function 

during a cathodic sweep is thus J £(T ;a,e l
), and J £(T ;a,e l

) for the sub-c c a a 

sequent anodic sweep. Expressions for JI S can be derived either by appli-

cation of Duhamel IS transformation or by differentiation of the concentra­

tion functions at the surface. In essence, both methods are identical; 

however, if expressions for CiS are not available, a suitable form of 

Duhamel IS theorem yields JI S directly. Since 

[All] 

it follows from eq. [A7] that 

T 

i\~)c= c !:~ (o,A) ._:~s (o,T-A)dA [A18] 
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aC 
~ (O,r) 

00 

= - [1 + 2 j:l ~xp(_j2TI2T)] = - e3(O,TIiT) [A19] 

83 is one of the theta functions (11) whose relevance in ROE modeling under 

th~ Nernst-Siver approximation has been repeatedly demonstrated (4-6). Wecan 

then write 

T 

i~T)=!~ (0 >.) 
1 aT' 
L 

[A20] 

o 
and compute J ~ and J ~ using eq. [A10]. Alternatively, 

c a 

[A21a] 

aC t 
J R, ( T . (J e I) = a ( 0 . (J, 8 I ) [A21 b] a a" -~ ,Ta' 

where eqs. [A13] and [A14] can be used for the differentiations. Once 

expressions for J ~ and J ~ are available, the same elimination of terms c a 
conta i ni ng exp( -kj 2 TI 2e I), k ~ 1, can be done as previ ous ly, for e I~ 1. Phys-

ically, this means that after the first cathodic (LSV) sweep, the current 

during the first anodic, second cathodic and so on is in the periodic 

state, i.e. does not change with further cycling. It turns out that when 
\ 

the value of the dimensionless sweep rate (J exceeds ca. 3, J ~ exhibits a - c 
maximum both during the first and periodic sweeps; after the maximum, its 

t value decreases to i L' When (J~3, Jc increases to iL monotonically. In 

terms of dimensional time, attainment of i L experimentally during the LSV 

sweep would guarantee that subsequent currents are periodic. However, 

this is not necessary since the criterion for periodicity is e'~l, 
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2 irrespective of whether iL is reached within 0 /D or not. 

It should be noted here that when el<l, aperiodic behavior of Jc
1 

and J a 1 is expected to be reached as 1-+00; furthermore, the two peri odi c .-

states may in general be different; i.e. JC(L ; a,~l) * J ~(L ; a,<l) 
C C c 

and Ja(.a; a,~1)* Ja~(.a; a,.<1). The detailed behavior of Jc~ 

and J ~ has not·been investigated, since reversal times significantly a 

less than 02/D are not expected to be of experimental importance. Express-

ions for the current density functions are as follows: 

i) single-sweep CV; cathodic (LSV)(4): 

~ 

O() 1/2 (1/2) () L (2 2 ). Jc Lc;a = 1 - a cot a exp -aLc - 2a j=l exp -j ~ LC 

( .22 )-1 J ~ -a [A22] 

ii) single-sweep CV; anodic: 
~ o 1/2. 1/2 ) ( ) L (2 2 Ja (La; a,e') = l-a coth(a )exp(-ae l exp aLa -2a j =l exp -j ~ el) 

( .22 )(.22 )-1 4 ( I) r .22 (.22) exp -J ~ La J ~ -a + a exp -ae j=l J ~ exp -J ~ La 

( .44 2)-1 J ~ -a [A23] 

iii) multi-sweep CV; cathodic: 

2 ~ (.2 2 ) (.2 2 )-1 a j=l exp -J ~ LC J ~ -0 

1 ~ 

20 L L ( .2 2) (2.2 2 1)(.2 2 )-1 
n=l j=l exp -J n LC exp - n J ~ e J ~ -0 

1 
~ 

+ 2aexp(-ae l ) L L exp(-j2n2Lc ) exp[-(2n-l)j2~2el] ("2 2 )-1 
n=l j=l J ~ -0 

1 ~ 

+ 2aexp(-ae l ) L L exp(-j2n2L ) exp[-(2n-l)j2~2el] (j2~2+a)-1 
n=l j=l c 

r 
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JL 00 

- 20
n
:

l 
j:l exp{-j2TI 2Lc ) exp[_{2n_2)j2TI2el]{j2TI2+a)-1 [A24] 

e. iv) multi-sweep CV; anodic: 

{ .2 2 ){.2 2 )-1 exp -J TI La J TI +a 

JL 00 

2 L L (.2 2) [(2 1) .2 2 1]{.2 2 )-1 - a n=O j=l exp -J TI La exp - n+ J TI e J TI -a 

JL 00 

+2aexp{-oe l ) L L (.22) (2.22 1)(.22 )-1 n=l j=l exp -J TI La exp - nJ TI e J TI +a 

JL 00 

+ 20exp(-ael) L L (.2 2 ). {2·2 2e l )(.2 2 )-1 n=O j=l exp -J TI La exp - nJ TI J TI -a 

JL 00 

2 L L (.2 2) [(2 1)·2 2 1](.2 2 )-1 - 0 n=l j=l exp -J TI La exp - n- J TI e J TI +a [A25] 

v) multi-sweep CV; periodic cathodic: 

4 ~ .2 2 (.2 2 ) 
- 0 j=l J TI ~xp -J TI LC 

[A26] 

vi) multi-sweep CV; periodic anodic: 

{ 1/2 1/2 ( I ) ) () Ja La; a,~l) = 1- 0 coth(o )exp -ae exp(aLa + 40 exp -ael 

,', .I .2 2 (.2 2 )(.4 4 2)-1 J=l J TI exp -J TI La J TI -0 

t 00 .22 -1 . 1/2 1/2 00 22-1 
The identities j;l 2a(J TI -a) = 1-0 cot(a ) and j;l 20{j TI +0) 

= al/2coth{al/2)-1 have been used in the derivations (12). 
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c. Charge Density Functions 

We define charge density functions, R, as ratios of the charge 

density to a characteristic charge density. The latter quantity is the ~ 

product of a characteristic current density, i L, with a characteristic 

time, 02/0, and represents the charge per unit electrode area that would 

be deposited over a time 02/0 were the current constant and equal to i
L

. 

We choose R on a per cycle basis instead of a cumulative quantity which 

would describe deposit accumulation during a complete multi-sweep experi­

ment. There are three types of such functions: Rct is the charge 

function associated with the (t+l)th cathodic sweep; R t is associated a 
with the (t+l)th anodic sweep; and Rnt is the net charge deposited during 

the complete (t+l)th cycle; obviously, 

[A28] 

From their definition, 

[A29] 

note that R's are only functions of a and 6' since they are integrals of 

J's over T. By performing the integrations indicated in eq.[A29], the 

following expressions are obtained: 

i) multi-sweep CV; cathodic: 



.. 

,', 

llA 

- 2a n~l j!l eXp[_(2n_2}j2TI281][j2TI2(j2TI2+a}]-1 

~ 

+ n~l j!l exp[-(2n-l}j2TI 281 ][4a j2TI2exp(-a81} + 2 j2TI2_2a2] 

[ .2 2(.4 4 2}]-1 J TI J TI -a 

~ 

n~l j!l exp(-2nj2TI281}[4a j2TI 2exp (-a8'} + 2aj2TI2 + 2a 2] 

[ .2 2(.4 4 2]-1 J TI J TI -a 

~ 

2 L: 'f [ (2 +1}·2 2 1][.2 2(.2 2 }]-1 + an=l j=l exp - n J TI 8 J TI J TI -a 

ii) mUlti-sweep CV; anodic: 

Ra i (a,8 1} 1 -1/2 th( 1/2}[1 ( I)] 2 ( I) ~ =8 - a co a -exp -a8 + a exp -a8 j=l 

[1 ( .2 2 ,}][.2 2(.2 2 }]-1 -exp -J TI 8 J TI J TI +a 

2 ( I) ~ [1 (.2 2 ,}][.2 2(.22 }]-1 + a exp -a8 j=l -exp -J TI 8 J TI J TI -a 

00 

L: 
- 2a . 1 J= 

i 
. L: 

- 2a n=l 

( .2 2 I) [.2 2{ .2 2 } ]-1 exp -J TI 8 J TI J TI -a 

~ ~ ( 2 .2 2 I) [4 .2 2 ( I) 2 .2 2 2 2] + n=l j=l exp - nJ TI 8 a J TI exp -a8. + a J TI- a 

[ .22(.442}]-1 J TI J TI -0 

~ 

n~l j!l exp[-(2n+l}j2TI 281 ][4a j2TI2exp(-a81} + 2a j2TI2+2a2] 

[ .22(.442}]-1 J TI J TI -a 

+ 2a ~ ~ « 2 2)' 2 2 I] [ . 2 2 ( . 2 2 ] -1 n=O j=l exp - n+ J TI 8 J TI J TI -a 

[A30] 

[A31] 
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Simplifications of eqs. [A30] and [A31] yields expressions for Rc(o,~l) 

and R (0,~1). The following are equations for the charge density func­a 
tion during the LSV sweep, RcO{o,e l

), and the periodic cathodic, anodic, 

and net charge density functions, R (0,~1), R (o,~l), and R (0,~1), can 
respectively. 

R ( 1) I 2 -1 -1/2 (1/2) ( I) -1/2 h( 1/2) c o,~ = e - 0 + 0 cot 0 exp -oe. + 0 cot 0 

R (0,~1) = e l + 20-1exp{-oe l
) - 0-1/2cot{01/2)exp{-oe l

) 

a 
-1/2 th{ 1/2) 

- 0 co 0 

R (0,~1) = 2e l 
- 20-1 [l-exp{-oe l

)] 
n 

A 

Often repeated application of de £1 Hopita1 IS rule yields 

tim R = ° 
0-+0 

[A32] 

[A33] 

[A34] 

[A35] 

[A36] 

which is in agreement with intuitive expectation but is not obvious in eqs. 

[A32-A35]. For large values of 0, 

R ° - e l + 1/3 - 0-1 (linear dependence on 0-1) 0»1 [A37] c 

[A38] 
o-+co 

The periodic cathodic function exhibits a maximum at 0= 16; 

[A39] 

Rc - e l + 0-1/ 2 (linear dependence on 0-1/ 2) 0»1 [A40] 

r • 



-, 

13A 

,Q,im R C = 61 [A41] 

0-+00 

Also, 

,Q, im R = 26 1 
n [A42] 

0-+'00 

R > 0, o '* 0 
n [A43] 

Numerical investigation of charge densities indicates that they increase 

(except for Rc when 0~16) with increasing 0, for a fixed value of 61. 

However, this is the case when 61 is fixed. In usual experimental ar-

rangements, the fixed parameter is the reversal overpotential, nco Ex­

pressing nc as multiples of RT/nF, we introduce a dimensionless cathodic 

overpotential, H , 
c 

The charge density functions can then be expressed in terms of 0 and Hc 

as follows (61~1): 

[A44] 

[A45] 

RC(o,H
c

) = 0-1(H
c
-2) + 0-1/2cot (01/2)exP(-Hc) + 0-1/2coth (01/2) [A46] 

Ra(o,Hc) = o-l[Hc + 2exp(-Hc)] - 0-1/2cot (01/2)exP(-Hc) 

_0-1/2coth (01/2) [A47] 

R (o,H ) = 20-1[H + exp(-H )-1] n c c c [A48] 
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It should be noted that 

aRn(a,H ) = R'n(H ) = 2[H + exp(-H )-lJ c c c c [A49] 

i.e. R' is independent of a and depends only on Hc' Obviously, for a 

fixed Hc' all charge density functions decrease with increasing a. This 

point is better illustrated in the discussion of the equations thus far 

derived on their relevence to electroanalytical investigations. 

Applicability of ROE Models Other Than the Nernst-Siver Approximation 

Equation [A1BJ can be rewritten as follows: 

i ~ -r} = IT ~C (0,>') • > (o,T->.)d>. 
lL aT L 

o 
where is/i!.. is the current density measured when a potential step is 

applied to a ROE such that the surface concentration is 0 for all T~O. 

As already mentioned, 

when the Nernst-Siver approximation is used. Alternative expressions 

[A50J 

[A19J 

have been derived by Nisancloglu and Newman (8) and Viswanathan and Cheh (13). 

These are: 
(Nisancioglu and Newman) 

* The factor r(4/3) arises because Nisancioglu and Newman use different 
dimensionless parameters; e.g. s = r(4/3)~, where s is dimensionless 
distance according to these authors and ~ is defined in eq. [A1J. 

[A51J 

~' 
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(Viswanathan and Cheh) 

is (-r) = 1 + . I ( 2 ) . J =1 C. exp -A '1' 
'L 1 Jl . J 

[A52] 

Coefficients B., C. and eigenvalues A., A. have been computed numerically 
J Jl J. Jl 

and reported in tabular form. Equations [A51] and [A52] are very similar. 

Equation [A52] was independently proposed specifically to treat diffusion 

problems related to pulsed potentials. Equations [A51] and [A52] predict 

identical results (to 4 significant figures) over their range of applica-

bility. Combination of eq. [A50] with each of eq. [A51] and eq. [A52] 

yields expressions for the i-dependent current density functions. For 

the (i+l)th cathodic sweep, these are as follows: 

(Nisanc;oglu and Newman) 
~ ! (2 )-1 J (-rc;a,a ' ) = l-exp(-a,c) +ae:exp(-aTc) j=o Bj e: Aj-a 

c 

~ 

L ! 2 2 (2 )-1 
-ae: n=l' B. exp[ -(2n-2}e; A' a I] exp (-e: AJ' 'c) e: AJ'+cr J=o J J 

~ 

+ae: exp(-aa ' ) n:l j!O Bj eXP[-(2n-1}e;2Aja'JexP(-e:2AjTcHe:2Aj+a)-1 

~ 

~ ! 2 2 2 )-1 
-ae: n=l j=o Bj exp(-2ne: Aja l

) exp(-e: AjTcHe: Aj-a [A53] 
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(Viswanathan and Cheh) 

[A54] 

Equations [A53] and [A54] could in principle be used to yield values for 

£ 
Jc ' However, the number of published coefficients and eigenvalues is 

not sufficient to guarantee convergence of the series to the desired 

accuracy, even at large TC' due to the presence of terms such as E Bj 

(£2 AJ.-o)-1 and E C. (A. 2_o}-1. This constitutes an additional reason for 
Jl Jl 

applying the Nernst-Siver approximation. 

,. 
~ 
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