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Highlights

•

A stalagmite δ18O record from Central Asia records Holocene hydrological 

changes.

•

Moisture source changes dominates precipitation δ18O in Central Asia between 

10.0 and 3.0 ka BP.

•

Climate changed towards drier conditions between 3.0 and 2.0 ka BP.

•

Temperature changes contributed to speleothem δ18O variations since 2.0 ka BP.

Abstract

Central Asia lies at the convergence between the Mediterranean and 

Asian monsoon climates, and there is a complex interaction between the westerlies with

the monsoon to form the climate of that region and its variability. The region is highly 

vulnerable to changes in rainfall, highlighting the need to understand the underlying 

controls. We present a stalagmite-based δ18O record from Kesang Cave in western 

China, using MC-ICP-MS U-series dating and stable 

isotope analysis. Stalagmite calcite δ18O largely documents changes in the δ18O of 

precipitation. δ18O in stalagmites was low during the early and middle Holocene (10.0–

3.0 ka BP), and shifted to higher values between 3.0 and 2.0 ka BP. After 2.0 ka BP, 

δ18O fluctuates with distinct centennial-scale variations. Drawing from results of state-of-

the-art atmospheric general circulation modelsimulations for the preindustrial period and

9 ka BP, we propose that changes in moisture source regions and the wetter climate 

both contributed to the isotopic depletion of precipitation during the early and middle 

Holocene. Multiple records from surrounding regions indicate a generally wetter climate 

during the early and mid- Holocene, supporting our interpretation on 
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the speleothem δ18O. Changes in precipitation seasonality do not appear to be a viable 

explanation for the observed changes, nor increased penetration of monsoonal moisture

to the study site. We speculate that the climatic regime shifted around 3.0–2.0 ka BP 

towards a drier climate, resulting in temperature having dominant control on 

precipitation δ18O. The demise of three settlements around 500AD at the margin of Tarim

Basin coincided with a period of decreased precipitation and increased temperature that

likely affected local water resources, underscoring the potential impact of climate on 

human habitation in this region.
 Previous     article
 Next     article
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1. Introduction

The modern-day continental climate of Central Asia is dominated by the westerlies 

(Chen et     al., 2008, Cheng et     al., 2012). The Central Asian atmospheric 

circulation patterns play an important role in linking North Atlantic and 

Asian monsoon climates, and its desert regions contribute significantly to dust loadings 

over East Asia (Chiang et     al., 2015, Porter and An, 1995, Sun et     al., 2012, Zhang et     al., 

1997). The generally dry climate, dwindling water resources and fragile ecosystems 

make Central Asian communities highly vulnerable to changes in precipitation (Narisma 

et     al., 2007, Qin et     al., 2005, Sorg et     al., 2012). Thus, understanding the causes of 

variability in the westerlies and interaction with the Asian summer monsoon is vital for 

the assessment of current and future water resource dynamics in Central Asia. The 

westerlies also play a fundamental role in aerosol distribution and dust deposition over 

East Asia. Well-dated and highly resolved palaeoclimate reconstructions from this 
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region serve to put today's climate dynamics within a long-term perspective, and 

improve our capability to predict future climatic and hydrological changes.

Various palaeoclimate proxy studies inform our understanding of Holoceneclimate and 

environmental change in Central Asia (Han and Qu, 1992, Liu et     al., 2008, Mischke and 

Wünnemann, 2006, Rudaya et     al., 2009, Sun et     al., 1994, Wang et     al., 2013, Zhao 

et     al., 2015, Zhong et     al., 2010). Several syntheses (Chen et     al., 2008, Herzschuh, 

2006, Ran and Feng, 2013, Ricketts et     al., 2001) have been published over the last 

decade, providing valuable insights into Holocene moisture dynamics of this region. 

However, there are divergent viewpoints on Holocene moisture variability, of which three

stand out. First, Chen et     al. (2008) propose that westerlies-dominated arid Central Asia 

experienced regionally synchronous and coherent moisture changes during the 

Holocene. They argue that the moisture history of this region is out-of-phase with that of

monsoonal China, implying that moisture from southern monsoon sources did not reach

Central Asia. The second view proposes that the moisture conveyed by the westerlies is

not critical to environmental changes observed in Central Asia, but rather, the Asian 

monsoon contributed substantial moisture during the early and mid-Holocene (Mischke 

and Wünnemann, 2006, Rudaya et     al., 2009, Zhong et     al., 2010). A study on a lake 

record from Ili Valley, Xinjiang, China, suggests that climatic changes near Kesang Cave

are generally similar to changes observed in Asian summer monsoon-governed regions 

since the last deglaciation (Li et     al., 2011). Third, Ran and Feng (2013) suggest that the 

early Holocene was generally dry and that a trend towards wetter conditions started 

only around 8.2 ka BP, with the last ∼4 ka marking the Holocene Optimum in terms of 

moisture conditions in the Xinjiang region.

The speleothem δ18O record from Kesang cave (Cheng et     al., 2012) reflects δ18O of 

precipitation (δ18Oprecip) and follows prominent precessional rhythms, with low δ18O values 

during high northern Hemisphere (NH) insolation periods. Low δ18Oprecip is at odds with 

modern-day observations that show a strong influence of temperature on δ18Oprecip in this 

region (Aizen et     al., 2006). This apparent contradiction may be resolved by intrusion of 

monsoon-related moisture from South Asia (Cheng et     al., 2012) or, alternatively, by 

changes to the seasonal distribution of precipitation (Kutzbach et     al., 2014).

These contradictory interpretations beg the question of what controls the hydrological 

cycle and moisture distribution across Central Asia. More precisely, what is the correct 

interpretation to changes in speleothem δ18O observed in Kesang Cave? To this end, we

present radiometrically dated speleothem δ18O data from Kesang Cave. Our record 

confirms previously reported Holocene speleothem δ18O data (Cheng et     al., 2012), and 

documents changes in δ18Oprecip over the last thousand years in greater detail. We 
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propose a comprehensive interpretation of speleothem δ18O in the context of climatic 

changes occurring in this region, with the aid of climate model simulations. Finally, we 

compare our record to regional archaeological records to show that the demise of 

ancient cities around the Tarim Basin coincided with a period of significant 

regional climate change around 400–600AD, suggesting that the precipitation change 

had influence on the societal changes in this area.

2. Cave site and local climate

Kesang Cave (N42°52′, E81°45′, ∼2070 m a.s.l.) is located in Tekesi County, Xinjiang 

Autonomous Region of China (Fig.     1a). The host rock is Silurian  limestone of 

Keketiekedaban group. The current cave air temperature is ∼4.9 °C, slightly higher than

the mean annual temperature of 3.1 °C at the Zhaosu Meteorological Station (N43°10′, 

E81°08′, ∼1900 m a.s.l., ∼60 km northwest of the Kesang Cave) from 1957 to 2000. 

The mean annual meteoric precipitation at Zhaosu station is 500 mm, with >80% falling 

between April and September. In-cave relative humidity was 88.4% in October 2010 

when the cave was surveyed. The CO2 concentration in the cave was measured using a

hand-held Vaisala carbon dioxide meter (M170-GMP70). CO2 increased from 380 ppmv 

to 1120 ppmv from the entrance to the inner chamber, indicating relatively weak 

ventilation in the cave. The vegetation in the wider region around the cave site is 

dominated by alpine meadow and forest, while the hill in which the cave formed is at 

present covered by Picea obovata forest. Orographic uplift leads to adiabatic cooling of 

intruding air masses and elevated precipitation with altitude in the study area (Fig.     1b).
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1. Download high-res image     (3MB)

2. Download full-size image

Fig. 1. a) Location of different records in topographic map. GTOPO30 data distributed 
by U.S. Geological Survey's EROS (Earth Resources Observation and 
Science; http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30_info) 
Data Center were used to plot topographic map. Averaged wind field at 850 hPa 
isobaric in summer (white arrow) and winter (red arrow) from 1981 to 2010 (NCEP 
Reanalysis Derived data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, 
USA, from their Web site at http://www.esrl.noaa.gov/psd/, Kistler et     al., 2001). b) Mean 
annual precipitation (mm) in the study region from 1951 to 2007. c) The mean ratio of 
the winter half year (January to April, November and December) precipitation to annual 
precipitation in the study region from 1951 to 2007. Precipitation seasonality shifts from 
west (dominated by winter precipitation) to east (dominated by summer precipitation). 
The location of Kesang Cave (as well as the Yili Basin) is denoted by red star (N42°52′, 
E81°45′, ∼2070m a.b.s.l.), all other records are denoted by pink circles: G, Guliya Ice 
core, N35°17′, E81°29′, ∼6200 m a.b.s.l.; I, Issyk-Kul Lake, N42°30′, E77°06′, ∼1605 m
a.b.s.l.; S, Sayram Lake, N44°36′, E81°12′, ∼2075m a.b.s.l.; M, Manas Lake, N45°48′, 
E86°00′, ∼255 m a.b.s.l.; B, Boston Lake, N42°00′, E87°01′, ∼1050 m a.b.s.l.. The 

location of ancient cities are denoted by white squares, 1, Loulan, N40°31′, E89°55′, 
∼780 m a.b.s.l.; 2, Milan, 39°14′N, 88°58′E, ∼925 m a.b.s.l.; 3, Niya 38°2′N, 83°32′E, 
∼1238 m a.b.s.l.; 4, Keria 37°22′N, 79°51′E, ∼1301 m a.b.s.l. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of 
this article.)

At present, the climate of semiarid-arid Central Asia is dominated by the westerlies 

(Aizen et     al., 2006, Chen et     al., 2008, Cheng et     al., 2012). However, strong climatic 

diversity characterizes this region, in particular the seasonality of precipitation. The 

region at the western end of the transect from Kabul to Bishkek receives most of its 

annual precipitation during boreal winter (between October to April), while the eastern 

sector receives most annual precipitation during summer (from May to 

September, Fig.     1c) (Sorg et     al., 2012). The stark difference in seasonal precipitation 

patterns between these two regions of Central Asia is largely determined by the 

geography, that is, the surrounding mountain chains. This, together with the interplay 

between the south-western branch of the Siberian anticyclone and westerly cyclonic 

activity determines the evolution of synoptic processes (Aizen et     al., 1997, Wolff et     al., 

2016).

The plains of Central Asia are open year-round to cold and dry northerly and north-

westerly air masses, as well as moisture-bearing westerly inflow of air masses. The 
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Himalaya, Pamir, Hindu Kush and Tian Shan mountain ranges almost completely isolate

Central Asia from southerly and easterly low-level moisture-bearing air masses 

originating over the Indian Ocean (Schiemann et     al., 2008). During summer, the 

northerly and north-westerly airflow causes cooling and strong winds, with dust 

storms and minimal precipitation over the vast plains. Further east, over the high rugged

mountain ranges, westerly-derived air masses bearing recycled moisture are uplifted to 

produce orographic rainfall. In winter, the Siberian High forces a more southern track to 

the westerly cyclonic intrusions; they propagate across southern Central Asia from Iran 

and Afghanistan (South Caspian, Murgabic and Higher-Amudarya cyclones). As a 

result, increased precipitation (largely as snowfall) occurs over the Central Asia plains 

(Schiemann et     al., 2008, and references therein). In addition, the west-to-east oriented 

Tian Shan Mountains mark an important climatic boundary in Central Asia: arid-desert 

climate characterizes its south (BWk climate according to the Koeppen 

classification, Peel, 2007), and arid-steppe climate prevails in the north (BSk, Peel, 

2007). The Tian Shan Mountains act as important physical barrier that blocks cold 

airflow from the north in winter. Because of high sensitivity to hydroclimatic 

perturbations, our study area is ideal for studying the dynamics of the westerlies. On the

other hand, this site is relatively unaffected by changes in winter cold flow from northern 

Siberia and Mongolia.

3. Stalagmites and analytical methods

Stalagmite samples CNKS-2, CNKS-3, CNKS-7 and CNKS-9 from Kesang Cave are 

used to establish the Kesang δ18O record, with two covering the entire Holocene and two

covering the last 1200 years. All stalagmites were cut in halves along their growth axes 

and their surfaces polished. Fig.     2 illustrates the stalagmites used to establish the 

Kesang δ18O record, each with the positions of 230Th dates. Subsamples were drilled 

along growth axes and dated at the Minnesota Isotope Laboratory on the inductively 

coupled plasma mass spectrometer (Thermo Fisher NEPTUNE, Cheng et     al., 2013). 

The chemical procedures used to separate the uranium and thorium for 230Th dating are 

similar to those described in Edwards et     al. (1987).
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1. Download high-res image     (926KB)

2. Download full-size image

Fig. 2. The cross sections of stalagmites CNKS-2, CNKS-3, CNKS-7 and CNKS-9 cut 
along the growth axis showing bands of growth layers. 230Th dates are also indicated 
beside the drilling position.

Subsamples for stable isotope analysis were collected in two ways: 1) for CNKS-2, 

CNKS-3 and CNKS-9, samples were milled from the polished half of the stalagmite at 

intervals of 100 μm (CNKS-2, CNKS-9), 75 μm (CNKS-3, 13.5–19.6 mm) and 50 μm 

(CNKS-3, 0–13.5 mm) along the growth axis using a NewWave computer-controlled 

micromill; 2) for CNKS-7, a stalagmite slab with the cross section dimensions of 

0.8 × 0.5 cm was cut using a diamond saw and then sampling material was scraped off 

perpendicularly to the growth axis at a mean resolution of ∼20 subsamples per mm. We

analysed all subsamples collected through the first method and every third sample from 
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the second method. A total of 1008 oxygen isotope samples were measured on an 

IsoPrime 100 mass spectrometer equipped with MultiPrep at the Institute of Earth 

Environment, Chinese Academy of Sciences. The international standard NBS19 and the

inter-laboratory standard TTB1 were run for every 10 to 15 samples and arbitrarily 

selected duplicate measurements were conducted every 10 to 20 samples, respectively,

to check for homogeneity and reproducibility. All isotope values are reported in δ 

notation, the per mil deviation relative to the Vienna Pee Dee Belemnite (VPDB) 

standard (δ18O = [((18O/16O)sample/(18O/16O)standard −1) × 1000]). The standard results show that 

the external precision of both δ18O and δ13C analysis are better than 0.15‰ (2σ).

4. Results

4.1. The U/Th chronology

A total of 37 230Th dates were obtained from the four stalagmites. The measured isotope 

ratios of uranium and thorium, the decay constants and the calculated ages are listed 

in Table     1. Here, we use the bulk earth value with 50% error, i.e., 4.4 ± 2.2 × 10−6, a 

value applied by Cheng et     al. (2012), for the initial thorium correction. By using the 

COPRA framework (Breitenbach et     al., 2012), we establish the chronology (depth-age 

models) for each stalagmite. For the stalagmite CNKS-3 we allocate 2010 AD (when we

collected these samples) as the year of last deposition atop the stalagmite, within the 

error margins, and recalculate the chronology, which is shown as the grey line in Fig.     3. 

We tune the chronology of CNKS-2 to that of stalagmite CNKS-3 over the period from 

1500–2010 AD, due to the large dating error at the top of CNKS-2. The resultant 

chronology is also shown as grey line. As shown in Fig.     3, all our tuning on the 

chronology lies well within the range constrained by the COPRA routine with the original

dates.

Table 1. 230Th dating results. The error is 2σ error.

Sampl
e

numbe
r

Distanc
e from

top/mm

238U (ppb) 232Th (ppt) 230Th/232Th
(atomic
x10−6)

δ234Ua(measured
)

230Th/238U
(activity)

230Th Age (yr)
(uncorrected)

230Th Age (yr
BP)c(correcte

d)

CNKS-
2-19

1.9 674.4 ± 1.9 11,702 ± 33 9.5 ±0.5 1024.0 ± 5.3 0.0100 ± 0.000
5

542 ± 29 235 ± 128

CNKS-
2-53

5.3 727.2 ± 1.1 1733 ± 35 88.8 ± 2.5 1000.7 ± 3.1 0.0128 ± 0.000
3

702 ± 14 605 ± 28

CNKS-
2-81

8.1 703.3 ± 2.1 2377 ± 7 80.1 ± 1.5 998.5 ± 5.6 0.0164 ± 0.000
3

899 ± 17 792 ± 30

CNKS-
2-119

11.9 741.7 ± 1.0 10,641 ± 213 25.0 ± 0.6 990.9 ± 2.5 0.0217 ± 0.000
2

1196 ± 13 924 ± 149
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Sampl
e

numbe
r

Distanc
e from

top/mm

238U (ppb) 232Th (ppt) 230Th/232Th
(atomic
x10−6)

δ234Ua(measured
)

230Th/238U
(activity)

230Th Age (yr)
(uncorrected)

230Th Age (yr
BP)c(correcte

d)

CNKS-
2-149

14.9 651.7 ± 2.3 13,615 ± 58 21.4 ± 1.0 1045.9 ± 6.8 0.0271 ± 0.001
3

1454 ± 71 1098 ± 165

CNKS-
3-5

0.5 663.9 ± 0.9 10,281 ± 206 8.3 ± 0.3 1069.1 ± 2.8 0.0078 ± 0.000
2

410 ± 13 130 ± 155

CNKS-
3-30

3 701.9 ± 1.8 4402 ± 11 20.7 ± 0.7 1009.1 ± 4.7 0.0079 ± 0.000
3

428 ± 16 279 ± 48

CNKS-
3-56

5.6 749.5 ± 1.0 4043 ± 81 31.1 ± 1.0 968.0 ± 2.7 0.0102 ± 0.000
2

566 ± 14 424 ± 58

CNKS-
3-90

9 636.0 ± 0.8 1864 ± 38 84.0 ± 2.4 1043.7 ± 2.9 0.0149 ± 0.000
3

799 ± 17 695 ± 34

CNKS-
3-113

11.3 694.5 ± 1.6 2015 ± 6 91.3 ± 1.4 994.5 ± 4.3 0.0161 ± 0.000
2

881 ± 14 781 ± 25

CNKS-
3-140

14 803.1 ± 0.9 2668 ± 54 88.9 ± 2.0 963.7 ± 2.0 0.0179 ± 0.000
2

998 ± 11 887 ± 37

CNKS-
3-168

16.8 656.3 ± 1.0 4911 ± 99 50.1 ± 1.2 1033.4 ± 3.2 0.0228 ± 0.000
3

1226 ± 17 1057 ± 77

CNKS-
3-192

19.2 628.7 ± 1.1 2064 ± 7 118.8 ± 1.9 1052.7 ± 3.2 0.0237 ± 0.000
4

1263 ± 20 1158 ± 30

CNKS-
7-36

3.6 149.7 ± 0.4 32,760 ± 251 5.3 ± 0.5 839.0 ± 4.8 0.0702 ± 0.006
6

4238 ± 403 2523 ± 1079

CNKS-
7-79

7.9 131.3 ± 0.1 61,230 ± 122
6

3.9 ± 0.1 774.5 ± 2.5 0.1106 ± 0.001
9

6984 ± 124 3772 ± 3580

CNKS-
7-122

12.2 155.1 ± 0.3 1040 ± 4 188.3 ± 2.9 784.6 ± 4.9 0.0766 ± 0.001
1

4770 ± 74 4603 ± 91

CNKS-
7-151

15.1 171.4 ± 0.2 7132 ± 143 34.4 ± 0.9 779.3 ± 2.3 0.0869 ± 0.001
3

5441 ± 84 4700 ± 487

CNKS-
7-186

18.6 250.3 ± 0.3 2702 ± 54 140.8 ± 3.0 834.3 ± 2.2 0.0922 ± 0.000
8

5603 ± 47 5371 ± 129

CNKS-
7-240

24 152.9 ± 0.3 2084 ± 9 124.4 ± 3.0 832.0 ± 5.7 0.1029 ± 0.002
5

6275 ± 155 6002 ± 188

CNKS-
7-295

29.5 2701.4 ± 12.
0

24,063 ± 127 267.5 ± 2.4 708.2 ± 3.9 0.1443 ± 0.001
2

9583 ± 88 9371 ± 115

CNKS-
7-340

34 1052.8 ± 1.8 23,682 ± 475 379.5 ± 7.6 423.7 ± 2.2 0.5177 ± 0.001
2

48,101 ± 163 47,598 ± 352

CNKS-
7-418

41.8 167.0 ± 0.3 636 ± 4 3372.1 ± 26.
4

559.2 ± 4.7 0.7783 ± 0.003
5

71,834 ± 532 71,710 ± 533

CNKS-
9-4

0.4 102.4 ± 0.1 2703 ± 54 4.3 ± 0.6 849.4 ± 2.8 0.0069 ± 0.001
0

406 ± 57 −71 ± 300



Sampl
e

numbe
r

Distanc
e from

top/mm

238U (ppb) 232Th (ppt) 230Th/232Th
(atomic
x10−6)

δ234Ua(measured
)

230Th/238U
(activity)

230Th Age (yr)
(uncorrected)

230Th Age (yr
BP)c(correcte

d)

CNKS-
9-26

2.6 147.5 ± 0.3 12,299 ± 39 4.1 ± 0.4 707.5 ± 4.9 0.0206 ± 0.002
2

1325 ± 145 −163 ± 734

CNKS-
9-73

7.3 218.0 ± 0.7 14,600 ± 62 11.1 ± 0.6 797.3 ± 5.8 0.0448 ± 0.002
5

2753 ± 156 1206 ± 618

CNKS-
9-116

11.6 171.7 ± 0.2 7476 ± 150 14.1 ± 0.7 835.0 ± 3.2 0.0371 ± 0.001
6

2226 ± 98 1473 ± 499

CNKS-
9-179

17.9 154.2 ± 0.5 20,215 ± 116 8.3 ± 0.5 820.8 ± 5.6 0.0660 ± 0.004
0

4021 ± 249 1852 ± 1093

CNKS-
9-232

23.2 239.4 ± 0.6 16,235 ± 68 16.9 ± 0.8 741.4 ± 5.6 0.0697 ± 0.003
3

4441 ± 212 3250 ± 608

CNKS-
9-264

26.4 195.1 ± 0.2 12,681 ± 254 20.5 ± 0.5 771.4 ± 2.6 0.0807 ± 0.000
8

5066 ± 51 3937 ± 757

CNKS-
9-388

38.8 225.3 ± 0.7 15,664 ± 73 19.0 ± 0.5 796.6 ± 5.6 0.0798 ± 0.002
2

4945 ± 141 3757 ± 583

CNKS-
9-444

44.4 271.4 ± 0.8 85,000 ± 915 8.6 ± 0.5 773.3 ± 5.1 0.1633 ± 0.008
6

10,480 ± 580 5205 ± 2737

CNKS-
9-584

58.4 2754.8 ± 11.
2

4281 ± 15 5850.6 ± 28.
9

414.3 ± 3.2 0.5507 ± 0.002
9

52,442 ± 384 52,349 ± 384

CNKS-
9-664

66.4 104.1 ± 0.2 3718 ± 10 355.3 ± 2.6 507.8 ± 5.1 0.7696 ± 0.005
7

74,250 ± 834 73,551 ± 888

a

δ234U = ([234U/238U]activity – 1)×1000.

b

δ234Uinitial was calculated based on 230Th age (T), i.e., δ234Uinitial=δ234Umeasured×eλ234×T. 

Corrected 230Th ages assume the initial 230Th/232Th atomic ratio of 4.4 ± 2.2 × 10−6 (the value used 

by Cheng et     al., 2012). Those are the values for a material at secular equilibrium, with the bulk 

earth 232Th/238U value of 3.8. The errors are arbitrarily assumed to be 50%.

c

B.P. stands for “Before Present” where the “Present” is defined as the year 1950 A.D.
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1. Download high-res image     (474KB)
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Fig. 3. Plots of the age versus depth for stalagmite CNKS-2, CNKS-3, CNKS-7 and 
CNKS-9. All ages of the stalagmites are reported as thousand years before the present 
(1950), ka BP. The age errors indicated in the plots are 2σ error. The modeling program 
COPRA (Breitenbach et     al., 2012) is used to calculate the chronologies of all these 
stalagmites. The red dashed line indicates the confidence level of 95%. In panels of 
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CNKS-2 and CNKS-3, the gray lines show the tuned chronology we used in the 
following plots (see the text for details), while the black lines show the COPRA output 
calculated with U-series dates. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)

The age models show that stalagmites CNKS-2 and CNKS-3 were deposited during the 

last ∼1200 years. The calculated chronologies of CNKS-7 and CNKS-9 indicate that 

these two stalagmites were deposited during most of the Holocene, i.e., CNKS-9 from 

7.0 ka BP to present and CNKS-7 from 10.0 ka BP to 1.0 ka BP. The calculated growth 

rates of these stalagmites vary from 1.8 mm/ka to 37.8 mm/ka, with mean growth rates 

of 18.3 mm/ka, 18.9 mm/ka, 6.9 mm/ka and 10.6 mm/ka for stalagmites CNKS-2, 

CNKS-3, CNKS-7 and CNKS-9 respectively. The observed variability in mean growth 

rates implies that the growth-controlling mechanisms (e.g. drip water supply, degree of 

drip water supersaturation, CO2 degassing) differed for these stalagmite samples.

4.2. Test of equilibrium deposition

Variations in stalagmite calcite δ18O (δ18Oc) could be ascribed to changes in drip water 

δ18O (amount weighted isotopic composition of meteoric precipitation), cave temperature

(which is usually dominated by surface temperature), and physical processes of kinetic 

loss of CO2 and possibly evaporation of waterduring calcite deposition. Only if calcite 

has been deposited under (near-)isotopic equilibrium conditions can the variations in 

δ18Oc be used to infer past changes in cave temperature and the isotopic composition of 

infiltrating water. Replication is an effective test for the fidelity of speleothem isotope 

time series as palaeoclimate reconstructions (Dorale et     al., 1998, Dorale and Liu, 

2009, Wang et     al., 2001a). While it cannot strictly be ruled out that 

kinetic fractionation affects multiple replicating records equally (which would thus pass 

the replication test), the likelihood of kinetic fractionation is lower in well-replicating 

systems. If we consider differences in temporal resolution and dating uncertainties, the 

δ18O time series of CNKS-7 and CNKS-9 show significant similarities during the 

contemporaneous growth interval of 7.0–1.0 ka BP (as shown in Fig.     5), and the δ18O 

records from CNKS-2 and CNKS-3 show remarkable similarities during the overlapped 

growth period of 1.2–0.0 ka BP (as shown in Fig.     8). Our records are also similar to the 

δ18O record reported by Cheng et     al. (2012) (as shown in Fig.     5). The replication of all 

these records suggests that the stalagmites were likely deposited under conditions 

limiting isotopic disequilibrium. Moreover, the δ13C profiles of our four stalagmites show 

consistent variations during the overlapping period (Fig.     4) and can be used as another 

replication test for the isotopic equilibrium deposition. Therefore, the δ18O signal 
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recorded in these four stalagmites is considered primarily of climatic origin and dictated 

by changes in the δ18O in precipitation and cave temperature without significant kinetic 

fractionation (Hendy, 1971).

1. Download high-res image     (440KB)

2. Download full-size image

Fig. 4. The time series of speleothem δ13C obtained from Kesang Cave. The red dashed 
lines and blue solid lines denote different stalagmites in each panel. Replications in δ13C 
during the overlapped periods further confirm these stalagmites are most likely 
deposited under the isotopic equilibrium conditions and that the variations of δ18Oc are 
dominated by climate variations, i.e., changes in the oxygen isotopic composition of 
meteoric precipitation and cave temperature at the time of calcite precipitation. (For 
interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.)
4.3. The δ18O and δ13C records

Micromilling resulted in a mean temporal resolution of 7.0 years, 3.3 years and 14.9 

years for stalagmites CNKS-2, CNKS-3 and CNKS-9 respectively, whereas ∼50 years 
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resolution has been attained for stalagmite CNKS-7 by using the manual scraping 

method. As shown in Fig.     5, the speleothem calcite δ18Ocvaried 5.5‰ between −12‰ 

and −6.5‰ over the last 10,000 years, with generally low values during the early and 

middle Holocene and high values thereafter. We divided the Holocene record into three 

intervals: 10.0–3.0 ka BP, 3.0–2.0 ka BP, and 2.0 ka BP – present, respectively, 

according to the observed variations in speleothem δ18Oc, including the record obtained 

by Cheng et     al. (2012):

i)

10.0–3.0 ka BP. δ18Oc values oscillate around −10.4‰ with an amplitude of 2.5‰, 

and most being smaller than −9.7‰. Three intervals within this phase (centred 

around 9.15 ± 0.8, 5.75 ± 1.9 and 3.4 ± 0.4 ka BP) are characterized by relatively

depleted δ18O values, while two others show higher δ18O values (8.3–7.2 and 4.3–

3.8 ka BP).

ii)

3.0–2.0 ka BP. This interval represents a transition phase from (i) to (iii). 

δ18Oc shows a clear increasing trend, accompanied by three centennial-scale 

oscillations.

iii)

2.0 ka BP-present. The δ18Oc values fluctuate around −8.3‰ with an amplitude of 

3.2‰ and do not show a clear long-term trend. Compared with interval (i), i.e. 

10.0–3.0 ka BP, the amplitude of δ18Oc fluctuations in this period is much larger, 

that is, 3.2‰ versus 2.5‰, with most values being > -9.7‰.
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2. Download full-size image

Fig. 5. (A) Comparison of oxygen isotopic records from stalagmites CNKS-7 (red), 
CNKS-9 (blue) and those reported in Cheng et     al. (2012) from Kesang Cave (dark 
gray), western China with the δ18O records from Dongge Cave (dark green, Wang et     al., 
2005), southern China, Peqiin Cave, northern Israel (violet, Bar-Matthews et     al., 2003) 
and Jeita Cave, Lebanon (light green, Cheng et     al., 2015). The horizontal pink lines 
above the Kesang time series indicate the mean δ18O values of −10.4‰ and −8.3‰ 
during the periods of 10.7–3.0 ka BP (light green shaded) and after 2.0 ka BP (light 
yellow shaded), respectively. The dashed line indicates the value of −9.7‰, which 
demarcates the shift from mainly lower than most δ18O values in the early period (10.7–
3.0 ka BP) to higher values the later period (after 2.0 ka BP) (B) Reconstructed moisture
changes at different sites in central Asia based on lake sediments, i.e., Lake Issyk-
Kul, Ricketts et     al., 2001; Yili Basin, Li et     al., 2011; Sayram Lake, Jiang et     al., 2013; 
Manas Lake, Sun et     al., 1994; Boston Lake, Wünnemann et     al., 2006. The different 
gray-shaded bars indicate reconstructed climatic conditions, i.e., from black to light gray
illustrating wetter to relatively drier conditions. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)

Speleothem calcite δ13C varied 6.8‰ between −8.6‰ and −1.8‰ over the last 10,000 

years, with generally high values during the early Holocene and low values in the late 

Holocene, showing a long-term decreasing trend in general (Fig.     4a). It's worth noting 

that multiple short-term oscillations are found, with amplitudes of ∼2.0‰ in the early 

Holocene and up to ∼3.0‰ in the late Holocene.

5. Discussion

5.1. Interpretation of speleothem calcite δ18O

Under isotopic equilibrium conditions, the δ18O of speleothem calcite is a function of the 

cave temperature and the δ18O signature of the parent drip water (Hendy, 1971). The 

temperature-dependent fractionation between the calcite and water (−0.23‰/°C, Kim 

and O'Neil, 1997) is relatively small and that Holocene temperature is estimated to have

been higher by only about 2.5–3.0 °C between 10 and 8.0 ka BP relative to modern 

values, and then decreased gradually 1.5–2.0 °C since 8.0 ka BP (Fang and Hou, 

2011, Wang et     al., 2001b). Given these, the largest portion of the observed 

δ18Oc variation (∼5.5‰) over the Holocene is most likely dominated by changes in drip 

water δ18O, which is constrained by the amount weighted annual precipitation δ18O 

(δ18Op). It is important to note that we cannot strictly exclude any influence of 

temperature on δ18Oc, because higher temperature during the early-mid Holocene might 

have lowered δ18Oc, while lower late Holocene temperature might have increased δ18Oc, 
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thus increasing the total amplitude of the Holocene δ18Oc change. We argue however 

that changes in δ18Oprecip related to changes in source and amount of precipitation 

outweighed potential changes associated with temperature dynamics.

Modern observations reveal a strong positive correlation between precipitation δ18O and 

air temperature on seasonal to decadal timescales in Central Asia (Aizen et     al., 

2006, Cheng et     al., 2012) and the northern Tibetan Plateau (Thompson et     al., 

1989, Thompson et     al., 1997), suggesting temperature as the principle governing factor 

controlling present-day variations in δ18Op. This implies that speleothem δ18Oc, which is 

dictated by δ18Op, largely reflects local temperature changes, with elevated δ18O values 

indicating increased air temperature under current climate conditions. This notion 

however is incompatible with changes observed in speleothem δ18Oc from Kesang Cave,

which indicate low δ18Op in the early and middle Holocene (Fig.     5), relative to increased 

δ18Op in the late Holocene. A temperature control on δ18Op would imply that summertime 

temperatures were lower than today (recall that Kesang Cave has a summer rainy 

season). This interpretation would directly contradict our understanding of current 

conditions, where summertime temperatures should increase with northern hemisphere 

summer insolation. This disparity suggests that fundamental changes must have 

occurred in the relationship between δ18Op and local climate (Cheng et     al., 2012) in the 

early and mid-Holocene. Below, we explore some potential causes.

5.1.1. Penetration of Asian summer monsoon moisture into Central Asia

Han and Qu (1992) proposed that during the mid-Holocene the Asian 

summer monsoon front might have reached north of the eastern Tian Shan, as mirrored 

by high lake levels in Barkol Lake. Winkler and Wang (1993) proposed that a strong 

early Holocene summer monsoon reached the Altai Mountains, a region far northwest of

the studied cave site. Jiang et     al. (2007) also suggested that monsoonal rainfall may 

have been a significant moisture source for the Wulungu lake around 6 ka BP. 

Lacustrine sequences from lake Issyk-Kul (Ricketts et     al., 2001), Boston Lake 

(e.g., Mischke and Wünnemann, 2006) and Hoton Nuur (Rudaya et     al., 2009) indicate 

humid conditions during the early and middle Holocene, and also linked them to the 

penetration of the Asian monsoon deep into Eurasia. The 500 ka speleothem δ18O 

record from Kesang Cave (Cheng et     al., 2012) shows that δ18Op was much depleted at 

times of high northern hemisphere summer insolation (NHSI) compared to intervals of 

low NHSI, a behaviour closely resembling speleothem records in Asian summer 

monsoon regions (Cai et     al., 2015; Wang et     al., 2008).
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Analysis of modern climate in Xinjiang suggests that summertime rainfall in Xinjiang 

varies in response to the west Asian subtropical westerly jet (WASJ). A southward shift 

of the WASJ favours warm and wet air penetrating from low south-westerly latitudes into

Central Asia and Xinjiang, leading to increased indirect moisture transport from the 

Indian Ocean and higher rainfall (Zhao et     al., 2014a, Zhao et     al., 2014b). Zhao et     al. 

(2014b) further argue that increased summer precipitation in Xinjiang is potentially 

linked with a weakened Indian summer monsoon (ISM). A weakened ISM may lead to 

middle and upper tropospheric cooling over Central Asia, which in turn induces a 

southward shift of the WASJ over western and Central Asia. Moreover, with less 

moisture feeding the ISM, more moisture can be diverted to Central Asia (Zhao et     al., 

2014b). However, this specific mechanism – a southward WASJ shift from a weakened 

ISM, leading to increased monsoonal moisture into Central Asia – appears to contradict 

our current understanding that the ISM was stronger during the early and mid-Holocene 

relative to today (Cai et     al., 2012, Fleitmann et     al., 2007). The mechanism proposed 

by Zhao et     al. (2014b) is based on analysis of modern-day inter-annual variability, which

may not be an appropriate analogue for early to mid-Holocene climate conditions. 

Moreover, early and middle Holocene circulation patterns might have significantly 

differed from that of today. Thus, it appears unlikely that the penetration of South Asian 

moisture explains the depletion of δ18Oprecip and wetter climate during the early and middle

Holocene in Central Asia.

5.1.2. Changes to precipitation seasonality

Winter precipitation, which in Xinjiang occurs largely as snow, is characterized by very 

low δ18Op (e.g. Wolff et     al., 2016). Thus, an increase in the fraction of winter precipitation 

would lower the precipitation-weighed annual δ18Oprecip. Kesang Cave is potentially very 

sensitive to seasonal changes as it is located close to the boundary between summer 

precipitation dominance and winter precipitation dominance as one moves from east to 

west (Fig.     1c). A relatively small eastward shift in this seasonality boundary would 

change precipitation seasonality from a summer rainfall-regime to a winter snowfall-

dominated one at Kesang Cave, resulting in depleted precipitation and drip water δ18O 

values. Climate model simulations by Kutzbach et     al. (2014) suggest that winter 

precipitation increases in Central Asia during periods of maximum Northern Hemisphere

seasonality (summer perihelion, winter aphelion); this lends some model support to the 

interpretation of oxygen isotope changes in the Kesang record. A strengthening of 

winter precipitation has also been evoked to explain low δ18O values at other locations, 

such as the Eastern Mediterranean during precession minima and summer insolation 
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maxima (Bar-Matthews et     al., 1997, Bar-Matthews et     al., 2003, Tzedakis, 2007). 

However, simulations with the Community Climate System Model version 3 (CCSM3) 

carried out by Kutzbach et     al. (2014) did not reveal any significant regime shift, thus not 

lending model support to the above hypothesis. It is possible that the topography has a 

stronger control over the pattern of seasonal precipitation distribution in this region, 

limiting the response of the regime boundary to precession-induced climatic and 

environmental changes. Alternatively, the relatively coarse resolution (3.75° in 

latitude/longitude grid) in their simulations may be insufficient to resolve small spatial 

shifts, and higher-resolution model simulations will be needed to test this hypothesis.

5.1.3. Changes in the isotope composition of moisture sources

δ18Oprecip integrates various processes in the hydrological cycle, such as water vapour 

source dynamics influenced by evaporation and transpiration, horizontal and vertical 

mixing, as well as phase transitions among ice, liquid, and vapour (Breitenbach et     al., 

2010, Dansgaard, 1964, Risi et     al., 2008). Central Asia receives its moisture largely 

from re-evaporation (that is, recycling) from surrounding areas, and thus depends on 

locality and season of the westerlies and the ISM. Comparing the 

synoptic climatology and meteorological data with δ18O and deuterium excess 

in firn cores from the Tian Shan, Aizen et     al. (2006)found that precipitation in Central 

Asia/western China is mainly derived from recycled moisture from the Aral–Caspian 

basin (∼54%), and the Mediterranean and Black Seas (∼33%), with only a small 

fraction (∼13%) originating from the North Atlantic realm. This finding suggests that 

changes in the isotopic composition of these western basins may influence δ18Oprecip in 

Central Asia.

Speleothem δ18O from the eastern Mediterranean, the δ18O record derived 

from G. ruber from the Eastern Mediterranean Sea, and the δ18O record of 

lake aragonite from Dead Sea Basin all indicate that δ18O in precipitation decreased 

during high northern hemisphere summer insolation periods, whereas wintertime 

precipitation amount increased (Almogi-Labin et     al., 2009, Bar-Matthews et     al., 

1997, Bar-Matthews et     al., 2003, Cheng et     al., 2015, Kolodny et     al., 2005, Torfstein 

et     al., 2009) reflecting intensified winter storm tracks (Kutzbach et     al., 2014). Stronger 

westerlies would have carried moisture from more westerly sources, resulting in lower 

surface water δ18O in the re-evaporation regions feeding Kesang Cave during these 

intervals. Such change should be reflected in a shift to a wintertime precipitation regime.

Simultaneously, an intensified Indian summer monsoon would lead to depleted 

δ18Oprecip in the southern Tibetan Plateau (Cai et     al., 2010, Cai et     al., 2012), potentially 
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complicating the interpretation of speleothem-based δ18O by adding 18O-depleted 

moisture during summer.

It is thus likely that the depletion of δ18Oprecip at our study site during high NHSI reflects 

changes in water vapour δ18O from its source regions. Furthermore, generally wetter 

climate conditions may lead to higher relative humidity around the cave site, reducing 

re-evaporation of raindrops and isotopic enrichment of δ18Oprecip during rain events, as 

demonstrated in northern China (Lee and Fung, 2008, Lee et     al., 2012).

To explore this further, we analyse two simulations for the preindustrial period (0 ka) and

9 ka BP, using the Community Atmosphere Model 5 (CAM5, Hurrell et     al., 2013) at the 

standard 0.9° × 1.25° resolution, and coupled to a slab ocean. We used 

standard CMIP5 preindustrial boundary conditions, and the 9 ka BP simulation differs 

from the 0 ka simulation only in that the calendar date was set to −7000 AD, 

and methane level set to 650 ppb; ice sheet boundary conditions were kept to 

preindustrial. Both simulations were performed as part of a study of the Holocene East 

Asian summer monsoon by Kong et     al. (2017), and we refer the reader to that reference

for details of the model simulations.

The preindustrial CAM5 simulated climatology resembles today's summer-dominated 

precipitation seasonality at the grid point closest to Kesang Cave (81.75°E, 

42.9°N, Fig.     6b), and it also simulates the observed boundary in precipitation 

seasonality over Central Asia between the winter-dominated west and the summer-

dominated east (Fig.     6a). The transition is located at ca. 73°E, in agreement with 

observation. The simulated early spring rainfall near Kesang Cave is dominated by 

large-scale precipitation presumably from orographic uplift, whereas later in the spring 

and summer precipitation becomes convective in nature (not shown). The 9 ka 

simulation indicates that precipitation seasonality remains intact across the region, with 

the western segment remaining winter-, and the eastern segment summer-dominated. 

However, rainfall seasonality in the summer-dominated eastern region shows a shift of 

the rainfall season to a slightly later date. Over the Kesang grid point, rainfall is reduced 

in April (mostly due to reduced large-scale precipitation) and increased during the peak 

summer months (due to increased convective precipitation) in the Holocene thermal 

maximum simulation (Fig.     6b). Thus, these simulations appear to eliminate changes in 

precipitation seasonality (point 2 above) as a viable explanation for the observed early 

Holocene Kesang δ18O pattern; rather, topography exerts dominant control on 

precipitation seasonality in this region.
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1. Download high-res image     (442KB)

2. Download full-size image

Fig. 6. (a) Hovmoller diagram of precipitation seasonality over central Asian as 
simulated in the CAM5 preindustrial simulation. It shows rainfall (contour interval 
0.5mm/d) of climatological rainfall at 42.9°N, which is the latitude of Kesang Cave. The 
wintertime-dominated precipitation seasonality is clearly seen to the west of ∼73°E, and
the summertime-dominated seasonality to the east of ∼73°E. The dashed line is the 

approximate longitude of Kesang Cave. (b) Monthly mean rainfall climatology at the 
gridpoint closest to Kesang Cave (81.75°E, 42.9°N) for the preindustrial simulation 
(solid line) and the 9ka simulation (dashed line). 9ka rainfall (mm/d) is slightly weaker 
during the spring, and slightly increased in the summer, compared to the preindustrial.

Decreased April rains in the 9 ka simulation can be explained by a colder and drier 

atmosphere upwind of Kesang over western Central Asia, forced by prevailing northerly 

low-level winds (note that winter NH insolation is lower at 9 ka BP). On the other hand, 

peak summer months were wetter because higher NH summer insolation led to 

widespread warming of the entire Central Asian/Tibetan Plateau region (Fig.     7a). 

Atmospheric moistening over Kesang Cave is also reflected over the entire region; the 

prevailing zonal moisture transport to Kesang increased by ca. 20% and meridional 

transport by ca. 40%, broadly consistent with the modelled moister atmosphere (not 

shown). They suggest increased penetration of monsoonal moisture deep into the Tarim

basin region, relating to point 1 above as a potentially viable explanation for the 

dynamics in the speleothem record. However, if we take the simulations simply at face 

value - that neither amount nor seasonality of precipitation over Kesang changed 
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fundamentally - it is implausible that increased penetration of monsoonal moisture can 

fully explain the speleothem δ18O record with its large change of 5.5‰.

1. Download high-res image     (941KB)

2. Download full-size image

Fig. 7. (a) Difference in the June–August specific humidity over the Tibetan Plateau and 
Tarim basin, 9ka minus preindustrial. The data is averaged over 80°E−83°E, 
encompassing the longitude of Kesang Cave. Contour interval 0.2 g/kg. (b) Zonal 
moisture transport (UQ) for the 9ka simulation averaged over 41°N to 44°N, 
encompassing the Kesang latitude. (c) Meridional moisture transport (VQ) for the 9ka 
simulation averaged over 40°N to 42°N, just south of Kesang Cave. For (b) and (c), the 
contour interval is 5(m/s)(g/kg) and positive values imply eastward or northward 
transport. In all panels, the black dashed line indicates the approximate location of 
Kesang Cave.
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Fig. 8. Comparisons of the Kesang stalagmite δ18O records (b: red, CNKS-3; blue, 
CNKS-2; grey, CNKS-9) with the δ18O (c: brown) and accumulation (d: purple) records of
Guliya Ice core (Yao et     al., 1996), and the tree ring record (a: light blue) from the 
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central-eastern Tibetan Plateau (Liu et     al., 2009). The ice core reconstructed 
temperature changes (c: green) at the Tien Shan southern Inylchek Glacier, Kyrgyzstan 
(Aizen, 2008), were also present along with the Guliya ice core δ18O record. The two 
dark blue lines in (a) and (c) are also the Kesang δ18O records of CNKS-2 and CNKS-3. 
(For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)

Given that the simulations appear to eliminate both scenarios (1) and (2) above as the 

primary cause, we are left with changes in the isotopic composition of the source 

moisture as the potential remaining explanation. Indeed, a recent study by Battisti et     al. 

(2014) appears to support this mechanism: their isotope-enabled simulations indicate 

significant shifts to lower June–August precipitation-weighed δ18O over north-eastern 

Africa and the Arabian Peninsula (by ∼4–5‰), Persia (by ∼2–3‰), and the Tibetan 

Plateau (by ∼4–7‰) from a low NH insolation forcing (207 ka BP) to a high NH 

insolation forcing (218 ka BP) [see Fig.     8b of Battisti et     al., 2014]. The authors argue 

that the main reason for this change is a corresponding depletion in the imported water 

vapour into these regions. Whether such depletion of the source moisture is due to 

changes in source water composition, temperature, humidity, or changes in Rayleigh 

processes along the transport pathway remains to be studied in greater detail.

What does this imply for the Kesang Cave record? We note that the isotopic changes of 

precipitation in the simulations in Battisti et     al. (2014) did not match the orbital signal at 

Kesang Cave, possibly due to the relatively coarse model resolution. The authors also 

point to other potential model shortcomings, including incorrect storm track position and 

model errors in fractionation at low temperatures. That being said, summertime moisture

over Kesang Cave remained primarily derived from re-evaporation upstream: according 

to the 9 ka simulation, the majority of the moisture came directly from westerly sources, 

including the Aral–Caspian basin, the Mediterranean and the Black Sea (Fig.     7b), where

surface water was depleted in the early and middle Holocene (e.g., Almogi-Labin et     al., 

2009, Bar-Matthews et     al., 1997, Bar-Matthews et     al., 2003, Cheng et     al., 

2015, Kolodny et     al., 2005, Torfstein et     al., 2009). An appreciable fraction of 

precipitation over Kesang Cave is also derived from re-evaporation over the Tibetan 

Plateau to the south, where lighter δ18O has been found in both speleothems (Cai et     al., 

2012) and models (Battisti et     al., 2014) (Fig.     7c). Moisture that was strongly depleted at 

the original source and subsequently recycled and transported to Kesang Cave during 

summer has the potential to retain the observed depleted early-mid Holocene δ18O 

values, as long as the depletion in 18O at the first moisture source exceeds the 

enrichment during recycling. Reconstructions from Peqiin Cave, Northern Israel (Bar-
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Matthews et     al., 2003) and Jeita Cave, Lebanon (Cheng et     al., 2015) show that the 

precipitation in the Eastern Mediterranean was depleted in 18O during the period from 

∼10.0 ka BP to ∼7.5 ka BP and subsequently enriched gradually to ∼4.5 ka BP, while 

δ18O in the Asian monsoon realm (Dongge Cave, Southern China, Wang et     al., 2005) 

increased gradually since ∼7.0 ka BP to ∼2.0 ka BP (Fig.     5). The long-term increasing 

trend likely indicate the regional responses of Mediterranean and Asian summer 

monsoon climates to insolation changes during the Holocene. The difference in timing of

these changes suggests the divergence of regional climate system responding to 

the global climate change. In general, the Kesang δ18O record shows much similarity to 

these two records from west and east during the early period of ∼10.0 - ∼4.3 ka BP, but

differs significantly after 4.0 ka BP for about 1000 years, when the Kesang δ18O values 

decreased. We hypothesize that this depletion might be partly caused by increased 

contribution/fraction of recycled moisture supply from surrounding glaciers, lakes and 

rivers supplied by glacier meltwater which was much depleted in 18O, while moisture 

source region got dried and moisture supply decreased remarkably. Alternatively, a 

combined effect of cooler temperatures and reduced summer precipitation due 

to aridification of surrounding moisture source regions could also result in more negative

δ18O (see also Wolff et     al., 2016). A definitive resolution of this issue will require high-

resolution simulations with isotope-enabled climate models.

Temperature is likely the major factor influencing δ18O in precipitation at our cave site 

over the last 2000 years, in accordance with modern observations (Aizen et     al., 2006). 

However, temperature dependent fractionation of 0.55‰ per degree at mid latitudes 

(Dansgaard, 1964) cannot account for the large amplitude of speleothem δ18O changes 

(ca. 3.5‰), because temperature dependent fractionation between calcite and dripwater

is negatively correlated with temperature (ca. −0.23‰/°C, Kim and O'Neil, 1997), and 

cancels ca. half of the temperature impact on the precipitation δ18O. Below-cloud 

evaporation during precipitation may amplify the temperature effect as high temperature

may accelerate evaporation substantially (Lee et     al., 2012), leading to increased 

temperature dependent fractionation (e.g. 0.75‰/°C at Hetian, Johnson and Ingram, 

2004). Evaporation before infiltration into the epikarst system could further elevate δ18O 

of soil- and drip water. All these factors act in the same direction and would amplify the 

temperature effects on drip water δ18O and thus speleothem δ18O. In this complex 

pattern speleothem δ18O likely reflects temperature during the last ∼2000 years, with 

high δ18O signifying elevated temperature and vice versa. This explanation invokes a 

shift from a strong moisture composition influence, to a temperature forcing on δ18Oc, 

which likely occurred during the period from ∼3.0 ka to ∼2.0 ka BP.
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5.2. Holocene climate change recorded in Kesang Cave and comparison with other 
proxy records

We have argued that low speleothem δ18O values observed in the Kesang record 

indicate moister climate conditions during the early and middle Holocene (10–3 ka BP), 

whereas since ca. 2 ka BP the generally high δ18O values reflect regional temperature 

variability. This inference is corroborated by the fact that over the last 500 ka 

most interglacial speleothem growth intervals in Kesang Cave began with low δ18O 

values (Cheng et     al., 2012). Lake sediments from the nearby sites largely indicate a 

relatively wet early and middle Holocene with the exception of Sayram Lake (Jiang 

et     al., 2013, Fig.     5). For example, multi-proxy records from lake Issyk-Kul suggest a wet 

early Holocene, followed by more arid conditions (Rasmussen et     al., 2001, Ricketts 

et     al., 2001). Pollen deposition rates and the Artemisia to Chenopodiaceae ratio from 

Manas Lake indicate desert steppe vegetation between 10.5 ka BP to 9.0 ka BP, and 

after 4.2 ka BP, whereas steppe vegetation developed in the intervening period, 

implying relatively humid conditions in the early and middle Holocene (Sun et     al., 1994).

Boston lake, located east of the cave site, documented rising lake levels starting ∼8.2 

ka BP and reaching a maximum ∼7.0 ka BP, with subsequent gradually decline (Huang 

et     al., 2009, Wünnemann et     al., 2006). In particular, the sedimentary profile from Yili 

Valley, close to Kesang Cave, shows lacustrine sediments for the early and middle 

Holocene, but loess deposits since ∼3 ka BP, again indicating a shift to drier conditions 

at ∼3 ka BP (Li et     al., 2011). The pollen record extracted from this profile also revealed 

two fluctuations between humid and relatively dry conditions during the early and middle

Holocene, following a pattern similar to our δ18O record, considering the chronological 

uncertainties.

Our inference differs to some degree from the regional synthesis by Chen et     al. 

(2008) and is largely opposite to the synthesis by Ran and Feng (2013). Inconsistencies

between speleothem and lake sediments can be attributed to the fact that different 

proxies record different aspects of the hydrological cycle. Changes in lake levels and 

pollen assemblages used in these studies are mainly indicative of variations of effective 

moisture, which includes evaporative loss in addition to precipitation. Additionally, local 

geomorphological configurations may impact meltwater supply to these lakes, 

potentially resulting in differences in apparent water supply, since meltwater plays a 

major role in influencing lake levels in this region (Kaser et     al., 2010).

Furthermore, the two syntheses cover different regions. Chen et     al. 

(2008) used sediment cores from a vast region extending from 43.20°E to 117.38°E in 

arid Central Asia, while Ran and Feng (2013) used only sediment cores from north-
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western China (from 81.20°E to 94.2°E). Although an average moisture index is good at 

producing a regionally representative picture, it smoothens details characteristic to 

individual sites. To obtain a meaningful regional average, all proxy indices should record

the same aspect of climate, and reconstructions for a particular region demonstrate a 

geographically coherent trend. Fig.     1c shows that precipitation seasonality changes 

from west to east, implying that atmospheric circulation and precipitation dynamics differ

in these two regions (Sorg et     al., 2012). It suggests that one cannot directly compare 

and average the different records from western and eastern Central Asia. It is therefore 

unwise to interpret the entirety of records between the eastern Mediterranean region 

and western China using a single mechanism.

Generally wetter conditions in western Central Asia (with dominant winter precipitation) 

and eastern Central Asia (with dominant summer precipitation) (Bar-Matthews et     al., 

2003, Chen et     al., 2008, Cheng et     al., 2012, Herzschuh, 2006, Li et     al., 2011) is 

established for the early and mid-Holocene. Wetter conditions in both regions may be 

caused by precession-related forcing of seasonal NH insolation changes, as suggested 

by Kutzbach et     al. (2014). Increased precipitation in western Central Asia was likely 

caused by enhanced wintertime westerly storm tracks (Kutzbach et     al., 2014), whereas 

increased humidity, higher rainfall and reduced evaporation in summer in eastern 

Central Asia might be linked to intensified moisture transport from the Aral–Caspian 

basin, Mediterranean Sea and North Atlantic (Chen et     al., 2008), and possibly from 

regions affected by the Asian summer monsoon (Cheng et     al., 2012).

From ∼3.0 to – 2.0 ka BP, stalagmite δ18O increases to a mean δ18O value about 2.0 

permil higher than in the early and mid-Holocene. This prominent shift suggests that the 

region's climate changed from a relatively humid regime to noticeably drier conditions. 

Late Holocene conditions facilitated enhanced evaporation from the surrounding basins,

progressively reducing moisture availability (Cheng et     al., 2012), and eventually 

engendering domination of temperature effects on δ18O in precipitation.

Over the last 2000 years, the Kesang δ18O record possess distinct centennial-scale 

variations (Fig.     5, Fig.     8), whereas multi-decadal and even shorter timescales are 

insignificant (Fig.     8). This suggests that centennial-scale variations may play a leading 

role in temperature fluctuations in western China and Central Asia, although water 

storage in the aquifer and thermal insulation of the host rock probably buffer 

temperature changes to a certain degree. Following the interpretation outlined above 

three cold periods can be identified: 800–900 AD, 1200–1300 AD, and 1570–1680 AD 

(grey bars in Fig.     8), with the last being synchronous with the Little Ice Age. Several 

warm phases interrupt these cold periods, with a prominent warming trend at the end of 
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the record likely reflecting the warming since the 1970s. As shown in Fig.     8, the Kesang 

reconstruction is in general agreement with ice-core and tree-ring based temperature 

reconstructions from the central-eastern Tibetan Plateau (Liu et     al., 2009, Yao et     al., 

1996), and correlated with temperature changes in western China (Liu et     al., 2013). 

During the cold period from 800–900 AD, the Kesang record differs from the 

temperature reconstructions in the central-eastern Tibetan Plateau. Lower coverage by 

tree-ring data and larger uncertainties (Liu et     al., 2009) may cause this lack of 

correspondence during this period.

For the last 1200 years, the Kesang speleothem δ18O time series shows similarity to the 

Guliya ice core δ18O record (Yao et     al., 1996) and is consistent with the temperature 

record from the southern Inylchek Glacier from Kyrgyzstan (Aizen, 2008, Fig.     8). This 

indicates that the larger region of western China, which includes Guliya and our cave 

sites, might have experienced similar climatic changes; if so, snow accumulation at 

Guliya can be used to infer the moisture history in western China. The last 1700 years 

of snow accumulation recorded in the Guliya ice core reveal a significant decrease in 

precipitation from 400–600 AD. At the same time, δ18O in the ice core was enriched for 

ca. 100 years, indicating a warm and/or dry period around 600 AD (Yao et     al., 1996). 

Increased precipitation (indicated by higher snow accumulation rates) and relatively low 

temperature intervals reflected in speleothem δ18Oc and in the δ18O of Guliya ice core 

during the Little Ice Age strongly suggest a wetter climate. This wetter climate has also 

been documented recently in the sediments from Lop Nur (Liu et     al., 2013) and in geo-

biological records from the Tarim Basin (Putnam et     al., 2016).

The replicating δ13C profiles suggest that δ13C is a valid and robust proxy and the δ13C 

variation might be dominated by the climatic change. As shown in Fig.     4, the long-term 

trend of δ13C during the Holocene is decreasing along with many short-term oscillations. 

The long-term decreasing trend of δ13C is opposite to the generally increasing trend of 

δ18O during the Holocene. This is consistent with relationship previously identified in the 

500 ka long speleothem record from Kesang Cave (Cheng et     al., 2012), in which the 

δ13C values were negatively correlated with the δ18O values in general. We also noted 

much heavier δ13C values during some intervals in the Holocene, e.g. 4.2 ka BP, 5.3 ka 

BP and also the distinct trend to much heavier value since ∼1200 AD (∼800 yrs BP). 

The variation of speleothem calcite δ13C could be ascribed to a range of factors that 

could either be single forcings or act together, namely i) C3/C4 vegetation composition, 

ii) vegetation density (biomass), iii) microbial activity in the soil, iv) the contribution of 

host carbonate rock, v) CO2 degassing processes in the epikarst and/or cave 

environment from infiltrating water (Breitenbach et     al., 2015, Genty et     al., 2006, Ridley 
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et     al., 2015). As the climate was relatively humid during the early and middle Holocene, 

the long-term decreasing trend may be caused by vegetation-zone shift and/or 

vegetation composition change above the cave. It is likely that heavier δ13C values found

in restricted intervals (e.g. around 4 ka BP) may be caused by biomass changes and/or 

prior calcite precipitation processes in response to short-term drying climate. It seems 

that the long-term trends can be overruled by such short-term excursions, because 

different forcings are at play, with changing relative importance. However, these 

interpretations are very preliminary and other independent evidences (e.g. trace 

element data) are needed to corroborate them.

5.3. Possible influence of climatic change ca. 500 AD on the abandonment of ancient 
Loulan city

The role of climatic and environmental changes in determining the success and failure 

of societies is still intensely debated (deMenocal, 2001, Donges et     al., 2015, Yancheva 

et     al., 2007, Zhang et     al., 2005, Zhang et     al., 2010). Ascribing all episodes of societal 

change to climatic events would be too simplistic in Asia, where advanced and complex 

dynastic societies existed in various climatic and eco-zones (Cunliffe, 2015, Zhang 

et     al., 2010). In arid western China and Central Asia, water availability rather than 

temperature is the prime climatic determinant for complex human societies. Shifts in 

moisture distribution across this region possibly had significant impacts on ancient 

civilizations (Cunliffe, 2015). They in turn likely adapted to the climatic changes by 

gradually reorganizing systems of supply and production, or abandoning of urban 

centres (under unfavourable conditions). Placing the archaeological record of cultural 

change within the context of detailed and well-dated palaeoclimate records presents 

opportunities to examine how societies responded to climatic change (deMenocal, 

2001, Donges et     al., 2015).

The famous ancient city of Loulan, located on the western bank of Lake Lop Nor in 

northeastern Tarim Basin, was the political, economic and cultural centre of western 

China from c. 77 BC to AD 550 (Xia et     al., 2007). Historical documents, and preserved 

grains of common millet, naked barley and wheat found at the location suggest active 

agriculture at the time (Wang, 1983). Large-scale reclamation of wasteland around 

Loulan occurred in the eastern Han dynasty (Zhang, 2005). An active agricultural 

practice and a flourishing economy were also documented at two relic sites of Niya and 

Keria Oasis in southern Tarim Basin as early as ∼400 AD (Wang, 1998). 

Palaeobotanical evidence reveals that the landscape of ancient Loulan and Milan was a

typical oasis prior to desertification and abandonment (Zhang et     al., 2013). These lines 
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of evidence suggest a relatively wet climate and sufficient water resources to support 

societal development at the rim of Tarim Basin.

However, 14C ages of reed remains and wood material found in the ruins, as well as the 

official literature and archaeological relics suggest that these settlements were 

populated until ∼400 AD, and then gradually fell victim to abandonment until ∼600 AD 

(Lin, 1991, Wang, 1998). This once prosperous city succumbed to desertification and 

the region was depopulated by the time the Buddhist monk Xuanzang passed through 

the area (Niya Oasis) during the Tang dynasty around 644AD (Wang, 1998).

The synchronicity between abandonment around 500 AD and a climate shift to drier 

conditions (Fig.     8) suggests a significant influence of climate on human habitation, likely

due to shortage of sustainable water resources as the root cause (Wang, 1998). Higher 

temperature and decreased precipitation may have aggravated regional aridity which 

eventually lead to the abandonment of these settlements at the margin of Tarim Basin. 

Unfortunately, currently available archaeological data is still too sparse and climate 

reconstructions need further improvements to draw more specific conclusions about 

possible links between climatic perturbations and changes in societies in western China.

6. Conclusions

A U-series dated high-resolution reconstruction based on multiple stalagmitesfrom 

Kesang Cave is used to establish a Holocene precipitation δ18O time series for Central 

Asia. Our record indicates low precipitation δ18O during the early and middle Holocene, 

i.e., from 10.0 to 3.0 ka BP, increased precipitation δ18O from 3.0 to 2.0 ka BP, and high 

values with distinct centennial-scale variations after 2.0 ka BP.

We explored three potential mechanisms causing the depletion of precipitation δ18O 

during the early and middle Holocene: (i) the penetration of monsoon-related moisture 

put forward by Cheng et     al. (2012); (ii) changes in precipitation seasonality suggested 

by Kutzbach et     al. (2014); and (iii) changes in the isotopic composition of moisture 

sources proposed in this study. CAM5 model simulations for the preindustrial period and

9 ka BP appear to rule out changes in precipitation seasonality as a viable explanation. 

The model results further challenge the hypothesis of increased penetration of 

monsoonal moisture, as the simulated moisture transport was essentially unchanged in 

the 9 ka BP simulation.

We propose that changes in the isotopic composition of moisture coming from 

surrounding source regions, along with a moistened climate may have contributed to the

depletion of δ18O in precipitation during the early and middle Holocene. Available records
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from surrounding regions and also the Ili Basin (the cave site) suggest a generally 

wetter climate during the early and middle Holocene and corroborate our interpretation.

Our data reveals that the regional climatic regime changed ca. 3.0–2.0 ka BP, with 

temperature dominating precipitation δ18O and a dry climate since then. The inferred 

temperature changes at the cave site generally agree with the Guliya ice core record 

and a tree ring-based temperature reconstruction from the Middle Eastern Tibetan 

Plateau, confirming the large spatial scale temperature change in western China over 

the last 2000 years.

During the last 2000 years, temperature changes reveal strong centennial-scale 

oscillations. The combined effects of decreased precipitation and increased temperature

ca. 500 AD reduced local water availability and likely contributed to the demise of three 

settlements at the margin of Tarim Basin, substantiating that the climate 

changes profoundly affected human society in this area. Detailed comparisons 

of palaeoclimate and archaeological data are needed to unravel the complexities of 

human adaptation and response to environmental dynamics.
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