
UCLA
UCLA Previously Published Works

Title
Orbital Stability Analysis for Perturbed Nonlinear Systems and Natural Entrainment via 
Adaptive AndronovHopf Oscillator

Permalink
https://escholarship.org/uc/item/6255z84s

Journal
IEEE Transactions on Automatic Control, 65(1)

ISSN
0018-9286

Authors
Zhao, Jinxin
Iwasaki, Tetsuya

Publication Date
2020

DOI
10.1109/tac.2019.2906429
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6255z84s
https://escholarship.org
http://www.cdlib.org/


Orbital Stability Analysis for Perturbed Nonlinear Systems and
Natural Entrainment via Adaptive Andronov-Hopf Oscillator

Jinxin Zhao and Tetsuya Iwasaki

Abstract—Periodic orbits often describe desired state trajecto-
ries of dynamical systems in various engineering applications.
Stability analysis of periodic solutions lays a foundation for
control design to achieve convergence to a prescribed orbit. Here
we consider a class of perturbed nonlinear systems with fast
and slow dynamics and develop a novel averaging method for
analyzing the local exponential orbital stability of a periodic
solution. A framework is then proposed for feedback control
design to stabilize a natural oscillation of an uncertain nonlinear
system using a synchronous adaptive oscillator. The idea is
applied to linear mechanical systems and a design theory is
established. In particular, we propose a controller based on the
Andronov-Hopf oscillator with additional adaptation mechanisms
for estimating the unknown natural frequency and damping
parameters. We prove that, with sufficiently slow adaptation,
the estimated parameters locally converge to their true values
and entrainment to the natural oscillation is achieved as part of
an orbitally stable limit cycle. Numerical examples demonstrate
that adaptation and convergence can in fact be fast.

I. INTRODUCTION

Feedback control design to achieve oscillations is important
in many engineering applications. Such designs are useful
for repetitive motion control for industrial manipulators, and
have also been implemented in other tasks such as legged
locomotion [1], [2] and human assistive exoskeleton [3], [4].
In these applications, dedicated trajectory planning and high
gain servo tracking have been extensively used, as exemplified
by the output regulation theory [5]. The traditional method
allows for fast and precise motion, but the target trajectory
is fixed a priori. As a result, robotic devices driven by such
control algorithms are not adaptive nor compliant to varying
environment and may have high energy consumption [6].
Approaches based on shaping the zero dynamics [7], [8] allow
for adjustment of phase timing in response to disturbances, but
the target motion is still fixed as a manifold in the state space
specified by holonomic constraints.

During the past decades, compliant actuators have drawn
increasing attention of engineers in robotic fields since the
seminal work on series elastic actuators [9], which have dy-
namics analogous to muscles. This kind of robotic mechanism
is able to increase the efficiency by storing kinetic energy
as potential energy to be used for the next cycle, like their
counterpart, muscle, does in animal movements. Numerous
robots with compliant actuators have been developed. For
example, bipedal and quadrupedal robots driven by compliant
actuators achieve natural and energy-efficient walking motion
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[10]–[13]. Similarly, a tensegrity structure [14] has been used
[15], [16] for compliant actuation of a robotic fish to exploit
resonance for efficient swimming. Other applications include
lower-limb exoskeletons with built-in compliance [17], [18] to
perform safe and smooth movements. Thus, there is a trend in
the control of robots from highly stiff and precise trajectory
tracking towards soft and compliant motion exploiting the
intrinsic dynamics of the system to achieve high energy-
efficiency and natural movements.

Exploitation of natural dynamics is common in biological
control systems for rhythmic body movements. Resonance
is exploited to achieve high efficiency for instance in fish
swimming [19], walking and running [20], [21], and periodic
forearm motion [22]. Such movements are controlled by the
central pattern generator (CPG), which is a nonlinear oscillator
formed by neuronal circuits. CPGs have been shown to have
the ability to detect and tune into the mechanical resonance
[23]–[27]. The CPG mechanisms have been used for designing
bio-inspired controllers to achieve adaptive entrainment to a
natural mode of oscillations for mechanical systems [28], [29]
or provide assistive force to help human make oscillatory
movement [30]. Furthermore, learning methods have been
combined with the CPG to include explicit mechanisms for
frequency adaptation [31], [32], one of which is implemented
in a quadruped robot to exploit a resonance [33]. While the
CPG-based methods were found effective for certain cases,
no theoretical guarantee for convergence was provided. The
method of feedback resonance [34], [35] has convergence
proofs, but the control law is discontinuous and the system
is restricted to those with Rayleigh damping. Despite these
numerous attempts, it remains open to establish systematic
and effective control design methods for exploiting unknown
natural dynamics of general mechanical systems.

In this paper, we will first develop a general framework
for stability analysis and control synthesis for periodic orbits
of a class of perturbed nonlinear systems. Our approach is
based on linearization of the system around a periodic orbit
and Floquet analysis of the resulting linear periodic system.
A simple condition for orbital stability is developed, using
an averaging technique and perturbation analysis. A feedback
control architecture is then proposed to achieve a natural
oscillation for uncertain nonlinear systems. The controller is
based on a nonlinear oscillator that synchronizes with the plant
through weak coupling and slow adaptation mechanisms. The
control architecture yields the closed-loop system that fits the
analysis framework of perturbed nonlinear systems.

The framework is applied to a general class of uncertain
linear mechanical systems with multiple degrees of freedom



(DOF), and a method is proposed for designing a controller
to achieve exact entrainment to a selected mode of natural
oscillations with a theoretical guarantee for convergence. To
this end, we first develop an oscillator that synchronizes
with the external sinusoidal input, using the Andronov-Hopf
oscillator (AHO) as the basic structure with additional adap-
tation mechanisms to tune the frequency parameter. We then
modify the adaptive AHO to include a damping estimation
mechanism, place it in the feedback loop with a single-DOF
mechanical system, and show that the closed-loop system has
an exponentially stable limit cycle on which the natural oscil-
lation is achieved. Finally, we will extend the result for multi-
DOF mechanical systems. Although convergence is guaranteed
only when adaptation is sufficiently slow, numerical examples
demonstrate that the target orbit remains stable when the
perturbation parameters are large, and thus fast convergence
can be achieved.

Preliminary results of this article were presented at a con-
ference [36] without proofs. Here, the adaptation mechanisms
and stability conditions are much simplified and improved for
faster convergence. All the results are rigorously proven and
numerical examples are fully renewed for better illustration.

II. GENERAL FRAMEWORK

In this section, we consider a class of perturbed nonlinear
systems and develop a general framework for stability analysis
of periodic solutions as well as for their synthesis by feedback
control. We employ a classical approach (e.g. [37]) to separate
and average the slow dynamics in the neighborhood of the
periodic orbit, and provide a new condition for exponential
stability of the orbit in the limiting case. The technical tool
developed here will be used in later analyses.

A. Preliminaries

Let us first introduce two notions of stability.
Definition 1: Consider a dynamical system ẋ = f(t, x) and

a solution x = ξ, where both f(·, x) and ξ(·) are T -periodic.
The solution ξ is said to be exponentially stable if there exist
positive constants c1, c2, and c3, independent of to, such that

‖x(t)− ξ(t)‖ ≤ c1‖x(to)− ξ(to)‖e−c2(t−to)
holds for all t ≥ to ≥ 0, whenever ‖x(to) − ξ(to)‖ < c3.
Suppose the system is autonomous, and define the orbit O
and the distance to O by

O := { ξ(t) ∈ Rn : t ∈ R }, d(x,O) := min
y∈O
‖x− y‖.

The solution ξ is said to be orbitally exponentially stable if
there exist positive constants c1, c2, and c3 such that

d(x(t),O) ≤ d(x(0),O)c1e
−c2t

holds for all t ≥ 0, whenever d(x(0),O) < c3.
Here, the stability of a solution x = ξ is defined in accor-

dance with the stability of an equilibrium v = 0 of the new
system obtained by coordinate transformation v := x−ξ. This
type of definition has been used for example in [38], p.314, and
[39], p.133. The above definition of orbital stability is standard
[39], [40]. The orbital exponential stability actually implies
existence of an asymptotic phase c such that ‖x(t)− ξ(t+ c)‖
converges exponentially to zero ( [41], p.254, Theorem 11.1).

It is well known that the origin is an exponentially stable
equilibrium point of ẋ = f(t, x) (where f is not necessarily
periodic, but continuously differentiable and Lipschitz) if and
only if the origin is an exponentially stable equilibrium point
of the linearization around the origin ( [39], p.152, Theorem
3.13). As a corollary, a solution ξ is exponentially stable if and
only if v̇ = ∂f

∂x (t, ξ)v is exponentially stable. When f and ξ are
T -periodic, the solution ξ is exponentially stable if and only
if all the Floquet multipliers of A(t) := ∂f

∂x (t, ξ) are strictly
inside the unit circle [42]. The orbital stability of ξ can be
examined similarly. The periodic solution ξ of ẋ = f(x) is
orbitally exponentially stable if and only if all but one of the
Floquet multipliers of the linearized system v̇ = ∂f

∂x (ξ)v have
magnitudes strictly less than one ( [40], Theorem 1.1).

B. Stability Analysis of Perturbed Nonlinear Oscillator

Consider a nonlinear system

χ̇ = f(χ, y, t) + εh(χ, y, t)

ẏ = εg(χ, y, t)
(1)

where (χ, y) are the states, ε ∈ R is a perturbation parameter,
and functions f,g,h are periodic in t with period T > 0 (or
the system may be time invariant). We consider the case where
ε > 0 is small, and y slowly changes its value over time. The
variable χ with fast dynamics and y with slow dynamics are
mutually coupled. Suppose the system has a T -periodic (or
constant) solution (χo, yo). The linearization of the system
(1) around the solution yields a linear periodic system[

˙̃χ
˙̃y

]
=

[
A1(t) + εB1(t) A2(t) + εB2(t)

εC1(t) εC2(t)

] [
χ̃
ỹ

]
, (2)

where

χ̃ := χ− χo, ỹ := y − yo,

A1(t) =
∂f

∂χ
, B1(t) =

∂h

∂χ
, C1(t) =

∂g

∂χ
,

A2(t) =
∂f

∂y
, B2(t) =

∂h

∂y
, C2(t) =

∂g

∂y
,

with the partial derivatives evaluated at (χo, yo, t). Note that
all the coefficient matrices are T -periodic.

The solution (χo, yo) is exponentially stable if and only
if the linear periodic system (2) is exponentially stable .
However, exponential stability of the linear system is not
required for orbital exponential stability of (χo, yo). In fact,
(2) can never be exponentially stable if the original nonlinear
system (1) is time-invariant and the solution is not constant
since (χ̃, ỹ) = (χ̇o, ẏo) is a solution of the linear system
not converging to the origin. In this case, the non-convergent
mode can be isolated by a coordinate transformation and
then orbital exponential stability of (χo, yo) is implied by
exponential stability of the remaining part of the system. This
idea was used in [43] for a coupled oscillator problem, and
will also be used later in this paper for the natural entrainment
problem. The reduced system turns out to have the same form
as (2). Thus, for both stability and orbital stability of periodic



solutions (or equilibria), a fundamental problem is the stability
analysis of the linear periodic (or time-invariant) system of the
form (2).

A general method for analyzing stability of linear periodic
systems is to use the Floquet multiplier. While computing the
Floquet multipliers is straightforward, the analysis is numerical
and the method is not suitable for analytical development of
design conditions for guaranteed stability. Here we propose an
alternative method for stability analysis exploiting the structure
of the linear periodic system.

A simple stability condition is obtained if the two variables
(χ̃, ỹ) in (2) are decoupled. Consider a linear transformation[

w
ỹ

]
=

[
I −Lε(t)
0 I

] [
χ̃
ỹ

]
(3)

where Lε(t) is a matrix-valued differentiable function of time,
depending on the perturbation parameter ε. Let us choose
Lε(t) such that

L̇ε(t) = A1(t)Lε(t) +A2(t) + εG(t,Lε(t)), (4)

where

G(t,X) := B2(t) +B1(t)X −XC2(t)−XC1(t)X. (5)

Then the system can be described as[
ẇ
˙̃y

]
=

[
A1(t) 0
εC1(t) ε(C2(t) + C1(t)Lε(t))

] [
w
ỹ

]
(6)

where the (1,2) block of the coefficient matrix is made equal
to zero by the choice of Lε(t), and

A1(t) := A1(t) + ε(B1(t)− Lε(t)C1(t)).

Now the original linear periodic system (2) is transformed into
system (6), where the fast dynamics w is decoupled from the
slow dynamics ỹ. With the help of the separation, we can
examine stability of the original system (2) by analyzing the
two subsystems associated with w and ỹ. Furthermore, when
|ε| is sufficiently small, we may approximate A1 by A1, and
Lε by Lo satisfying

L̇o(t) = A1(t)Lo(t) +A2(t). (7)

This idea leads to the following result.
Lemma 1: Consider the linear T -periodic (or time-

invariant) system (2), where all the coefficient matrices are
continuous and bounded functions of time. Suppose there
exists a solution Lo(t) to (7) that is T -periodic or constant,
and define

B :=

∫ T

0

(
C2(t) + C1(t)Lo(t)

)
dt. (8)

If the system ẋ = A1(t)x is exponentially stable and B is Hur-
witz, then there exists ε̄ such that system (2) is exponentially
stable for all ε ∈ (0, ε̄).

Proof: For each ε > 0, let Lε(t) be the solution to (4)
with initial condition Lε(0) = Lo(0), and define ∆ε(t) by

Lε(t) = Lo(t) + ε∆ε(t). (9)

By Lemma 3 in the appendix, there exists ε̄1 > 0 such that
Lε and ∆ε with ε ∈ (0, ε̄1) are bounded and continuously

differentiable when ẋ = A1(t)x is exponentially stable. Then,
through the Lyapunov transformation introduced in (3), two
systems (2) and (6) are equivalent when ε ∈ (0, ε̄1). The
stability of system (6) depends on two separate systems

ẇ =
(
A1(t) + ε(B1(t)− Lε(t)C1(t))

)
w, (10)

˙̃y = ε
(
C2(t) + C1(t)Lε(t)

)
ỹ. (11)

Based on Lemma 4 in the appendix, there exists ε̄2 such
that system (10) is exponentially stable for all ε ∈ (0, ε̄2)
due to exponential stability of A1(t) and boundedness of the
perturbation term multiplied by ε. The system (11) can be
rewritten as

˙̃y = ε
(
C2(t) + C1(t)Lo(t) + εC1(t)∆ε(t)

)
ỹ. (12)

By Lemma 5, there exists ε̄3 > 0 such that system (12) is
exponentially stable for all ε ∈ (0, ε̄3) since B in (8) is Hurwitz
and C1 and ∆ε are bounded.

C. Control Design for Stable Oscillation

We propose a feedback control design framework based
on the above analysis to achieve a desired oscillation as an
orbitally stable limit cycle of the closed-loop system. Consider
the nonlinear plant described by

ζ̇ = p(ζ, u), z = q(ζ),

where ζ is the state, u is the control input, and z is the output.
Suppose a state feedback control u = r(ζ, θ) makes a given
periodic trajectory ζ = ζo a (not necessarily stable) solution
of the closed-loop system, where θ is a vector of the plant
parameters on which the control law depends. The objective is
to design an output feedback controller so that the closed-loop
system has a stable limit cycle on which ζ = ζo is achieved.
A complication is that the value of θ is unknown.

An approach is to use the control architecture based on a
synchronous adaptive oscillator:

ẋ = o(x, y) + εc(x, z), ẏ = εg(x, z), u = r(s(x), y).

The function o is chosen so that ẋ = o(x, θ) is a nonlinear
oscillator with an orbitally stable limit cycle x = xo to
generate the target oscillation by ζo = s(xo). The function c
couples the plant and the oscillator to achieve synchronization,
x(t)→ xo(t+a) with a = 0, when z = q(ζo) and y = θ. The
function g vanishes on the target orbit g(xo, q(ζo)) = 0 and
defines an adaptation mechanism that makes y converge to θ
by detecting the error y 6= θ through (x, z) 6= (xo, q(ζo)).

The closed-loop system takes the form (1) with χ :=
col(ζ, x) and orbital stability of the target limit cycle
(ζ, x, y) = (ζo, xo, θ) can be analyzed using Lemma 1, where
the small parameter ε yields slow adaptation and facilitates
the convergence analysis. In the following sections, the general
framework for orbital stability analysis and synthesis described
here will provide a helpful guidance for designing an adaptive
oscillator and natural entrainment controller for linear mechan-
ical systems.



III. ADAPTIVE OSCILLATOR

A. Problem Formulation

We first consider, as a basis for later developments, the
problem of designing an oscillator that synchronizes to an
external periodic signal in an adaptive manner. In particular,
the system to be designed comprises a nonlinear oscillator and
an adaptation mechanism that dynamically modifies oscillator
parameters based on the periodic input. The trajectory of the
adaptive oscillator will converge locally to a periodic orbit on
which one of the oscillator variables is synchronized with the
periodic input, and the adaptation variables are constant with
values at the frequency and amplitude of the input. A formal
statement of the problem is the following.

Problem 1: Let z(t) be a T -periodic sinusoidal signal

z(t) = α sin(ωt) (13)

where α, ω ∈ R are unknown amplitude and frequency, and
T := 2π/ω. Design an adaptive nonlinear oscillator

ẋ = f(x, y, z), ẏ = g(x, y, z), v = h(x), (14)

where (x, y) ∈ Rn ×Rm is the state vector, and v ∈ R is the
output signal, to satisfy the following specifications:
(i) There exists an exponentially stable solution (x, y) to (14)

such that

x(t) = x(t+ T ), y(t) ≡ col(ω, α), v(t) = z(t).

(ii) The oscillator dynamics f , g, and h are independent of
the signal parameters (ω, α).

B. Approach

Our approach to solve Problem 1 is to exploit the structure
of the Andronov-Hopf oscillator with additional adaptation
mechanisms. The AHO is a simple planar nonlinear oscillator,
in which every nontrivial trajectory converges to a single limit
cycle. The orbit in the state space is circular, and the time
courses of the state variables are sinusoidal. The amplitude and
frequency of the oscillation are directly specified by certain
model parameters. More specifically, AHO is described as[

ẋ1
ẋ2

]
=

[
σ(x1, x2) ω
−ω σ(x1, x2)

] [
x1
x2

]
, (15)

σ(x1, x2) := µ(%− x21 − x22)

where xi(t) ∈ R for i = 1, 2 are the states, % and ω are
the amplitude and frequency parameters, respectively, and
µ > 0 specifies the convergence rate. When σ is zero, the
AHO is a linear (undamped) oscillator. The nonlinear function
σ provides positive/negative damping when the oscillation
amplitude x21 + x22 is larger/smaller than %. In particular, the
origin is globally exponentially stable when % < 0, and as
% transitions to a positive value, a Hopf bifurcation occurs
at % = 0 and a stable limit cycle of amplitude ‖x‖ =

√
%

emerges. Precise analysis is rather simple. Introducing the
polar coordinates[

x1
x2

]
=

[
r sin θ
r cos θ

]
, (16)

system (15) is expressed as

ṙ = µ(%− r2)r, θ̇ = ω.

It is then easy to see that the amplitude r(t) will converge
to zero if % ≤ 0, or otherwise to ±α unless r(0) = 0 where
α :=

√
%, and the phase θ(t) is given by θ(t) = ωt + θ(0).

Thus, when % > 0, the sinusoidal trajectory[
x1
x2

]
=

[
α sinωt
α cosωt

]
is an orbitally exponentially stable solution of the system (15).

We design an adaptive oscillator using the AHO as the
starting point. Since ω and α are unknown in Problem 1,
we replace (ω, α) in (15) with (y1, y2) as the variables to be
adjusted so that they converge to the frequency and amplitude
of z. A natural choice for the output is q := x1, and we
drive the AHO by the error z−x1 to achieve synchronization
q = z. Overall, we add the following adaptation mechanism
to the dynamics of Andronov-Hopf oscillator:[

ẋ1
ẋ2

]
=

[
σ y1
−y1 σ

] [
x1
x2

]
+ γ

[
z − x1

0

]
(17a)

ẏ1 = ηx2(z − x1), (17b)

ẏ2 = κ(z2 + x22 − y22) (17c)

σ := µ(y22 − x21 − x22), (17d)

where γ, η, κ, µ ∈ R are positive constants, and (x1, x2, y1, y2)
are the states of the oscillator. It is designed such that x1(t)
synchronizes with the signal z(t), while (y1, y2) converges to
(ω, α). The parameters µ and γ specify the convergence rates
of the oscillation amplitude and synchronization, and η and κ
specify the rates of adaptation of frequency and amplitude.

The idea behind the adaptation mechanism is as follows. It
is easy to verify that, if y1(t) ≡ ω and µ = 0 in (17a), then
the linear system driven by the error signal converges to a
sinusoidal trajectory on which x1 = z. It turns out that the con-
vergence property is maintained when the nonlinearity in the
AHO becomes active (i.e., µ > 0), provided y2(t) ≡ α. The
mechanism in (17c) increases/decreases the estimated ampli-
tude y2 when the actual amplitude

√
z2 + x22 is larger/smaller

than the current estimate y2. Finally, the mechanism in (17b)
increases/decreases the estimated frequency y1 when the phase
of x1 is behind/advance with respect to z. In particular, with
x in (16), we have

x2(z − x1) ∼= −(α cosωt)2ϕ+O(ϕ2), ϕ := θ − ωt,

provided the amplitude is correct; r = α. Thus, assuming the
phase difference |ϕ| is small, ẏ1 is positive/negative when z
is ahead/behind of x1, which causes an increase/decrease of
y1 and acceleration/deceleration of x1. Eventually, z and x1
will have no phase difference and synchronize. These intuitive
ideas are rigorously verified to work in the next subsection.

C. Result

The following theorem provides a formal statement of a suf-
ficient condition for synchronization of the adaptive oscillator.



Theorem 1: Consider the adaptive oscillator (17) is con-
nected with a sinusoidal signal (13). Suppose γ, η, κ ∈ R are
positive and µ ∈ R is nonnegative. Then there exists ε̄ such
that the state trajectory

(x1, x2, y1, y2) = (α sin(ωt), α cos(ωt), ω, α) (18)

is exponentially stable whenever η, κ, µ are smaller than ε̄.
Proof: It is straightforward to verify that the signal in

(18) is a solution of the system. Let the small parameters be
expressed as[

η κ µ
]

= ε
[
η̃ κ̃/4 µ̃/4

]
with small ε > 0. Introducing the perturbation variables

x̃1 := x1 − αs, ỹ1 := y1 − ω, s := sin(ωt),
x̃2 := x2 − αc, ỹ2 := y2 − α, c := cos(ωt),

the linearized system is given by

˙̃x =

[
A1 + εB1 A2 + εB2

εC1 εC2

]
x̃,

where

[
A1 A2

C1 C2

]
:=


−γ ω αc 0
−ω 0 −αs 0
−η̃αc 0 0 0

0 κ̃αc 0 −κ̃α

 ,
[
B1 B2

]
:= −µ̃α2

[
s2 sc 0 −s
sc c2 0 −c

]
.

It is easy to verify that A1 is Hurwitz, and the periodic solution
Lo to

L̇o = A1Lo +A2

exists and is given by

Lo = <[L̂oejωt], Â2 :=

[
α 0
αj 0

]
,

L̂o := (jωI −A1)−1Â2 =
α

ωγ

[
2ω 0

γ + 2jω 0

]
Noting that

B =
1

T

∫ T

0

(
C1Lo + C2

)
dt =

1

2
<
(
Ĉ1L̂o

)
+ C2

=

[
−α2η̃/γ 0
α2κ̃/(2ω) −ακ̃

]
, Ĉ1 := α

[
−η̃ 0
0 κ̃

]
,

and B is Hurwitz, we conclude the result.
Theorem 1 provides an approach to design the oscillator

dynamics to adaptively synchronize with an external sinusoidal
signal. Synchronization is asymptotically achieved as long as
the adaptation of the frequency and amplitude variables is
sufficiently slow. Moreover, the system is designed to sustain,
after the convergence, the oscillation in a stable and au-
tonomous manner without the input (i.e., γ = 0), and therefore
the process can be seen as learning of a training periodic
signal by a nonlinear oscillator. For practical purposes, the
convergence rate can be made fast by adjusting the adaptation
parameters η, κ and µ. A numerical example in Section VI

illustrates this point in comparison with an existing method.
Noting that µ = 0 is a valid choice for the design, the
nonlinearity σ is not essential for the convergence property
of the adaptive oscillator. However, it will play a crucial role
when we extend the result to consider a feedback control
problem in the next section.

IV. ADAPTIVE NATURAL ENTRAINMENT

A. Problem Formulation

We consider a single degree-of-freedom mechanical system
with unknown parameters and develop a method for designing
a feedback controller to achieve the natural oscillation of
the system. The control architecture is based on the adaptive
oscillator described in the previous section. The single-DOF
result provides a comprehensive explanation of the idea for
closing the loop and embedding an exponentially stable limit
cycle in the state space, and sets a stage for multi-DOF
extension in the next section.

Let a mechanical system be given by

mz̈ + dż + kz = u, (19)

where m, d, k ∈ R are positive parameters representing the
mass, damping and stiffness, u(t) ∈ R is the force input from
an actuator, and z(t) ∈ R is the resulting displacement. The
natural oscillation of the system is defined as

zn(t) = α sin($t), $ :=
√
k/m, (20)

where $ is the undamped natural frequency of the system,
and α ∈ R is the amplitude of zn. Let T := 2π/$ be the
natural period.

We aim to design a feedback controller that achieves local
convergence of z(t) to zn(t + c) in the steady state, where
the oscillation amplitude α is assigned by the controller while
the constant c depends on the initial state of the closed-loop
system. In addition, we would like the controller to be adaptive
in the sense that the controller meets the objective with no
information of the system parameters m, d and k. A formal
statement of the design problem is as follows.

Problem 2: Let a mechanical system in (19) and a positive
scalar α ∈ R be given, and consider the natural oscillation zn
defined in (20). Design a feedback controller of the form

ẋ = f(x, y, z), ẏ = g(x, z), u = h(x, y),

where (x, y) ∈ Rn × Rm is the state vector, to achieve the
natural oscillation with amplitude α in the steady state. In
particular, the design specifications are the following:
(i) There exists an orbitally exponentially stable solution

(x, y, z, ż) of the closed-loop system such that

x(t) = x(t+ T ), y(t) ≡ col($, d), z = zn.

(ii) Functions f , g and h specifying the controller are inde-
pendent of the system parameters m, d, and k.

This is an adaptive natural entrainment problem where a
controller is sought to adaptively achieve entrainment to the
natural oscillation. The adaptation variable y should estimate



all the unknown system parameters necessary for the natural
entrainment, and it turns out that estimation of the natural
frequency $ and the damping coefficient d is sufficient for
the purpose as explained in the next section.

B. Approach

The basic idea for solving Problem 2 is the following. When
the control objective is met, the natural oscillation z = zn is
achieved for (19). This necessitates u = dżn in the steady
state. To make this happen, the first step is to drive the AHO
by mechanical variable z and add an adaptation mechanism
so that the parameter ω is adjusted in real time and converge
to the natural frequency $ of the mechanical system when
z = zn. The second step is to add another mechanism to
estimate the mechanical damping d, and close the loop by
setting the control input u to compensate for the damping.

These two steps are accomplished by placing the adaptive
oscillator (17) in the feedback loop, with modifications to
estimate d and generate u. In particular, we consider the
following AHO based feedback controller[

ẋ1
ẋ2

]
=

[
σ y1
−y1 σ

] [
x1
x2

]
+ γ

[
z − x1

0

]
(21a)

ẏ1 = ηx2(z − x1), (21b)

ẏ2 = κ(α2 − z2 − x22) (21c)

u = x2y1y2, σ := µ(α2 − x21 − x22), (21d)

where γ, η, κ, µ ∈ R are positive constants, and x1(t) through
y2(t) are the states of the controller. The controller (21) turns
out to solve Problem 2, achieving entrainment to the natural
oscillation of (19). The controller is designed so that x1 and
x2 synchronize with the plant states z and ż/$, respectively,
while y1 and y2 estimate the natural frequency $ and damping
coefficient d, respectively. The parameters γ and µ specify the
rates of convergence for the amplitude and synchronization,
and η and κ specify the rates of adaptation for frequency
and damping, respectively. The underlying mechanism can be
roughly explained as follows.

First, (21a) and (21b) form an adaptive oscillator with a
frequency estimator similarly to the previous development.
If z(t) oscillates sinusoidally with frequency $ and ampli-
tude α, (21a) stably generates sinusoidal signals (x1, x2) =
(α sin($t), α cos($t)) so that x1 = z, while (21b) makes
y1 converge to the natural frequency $. In this case, the
control input in (21d) is u = y2ż. Based on (21c), the
variable y2 estimates the damping coefficient and converges to
d by the following mechanism. If y2 is larger/smaller than d,
then system (19) under the control input has negative/positive
damping, leading to larger/smaller amplitude of oscillation. If
the amplitude becomes larger/smaller than α, the dynamics of
(21c) decrease/increase the estimated damping y2. Hence y2
is regulated around the value d. In this case, the control input
is u = dż. From (19), we see that z satisfies mz̈ + kz = 0
and therefore oscillates with natural frequency $.

C. Result

The following theorem presents a formal statement of the
result and gives a sufficient condition for entrainment to the
natural oscillation.

Theorem 2: Consider mechanical system (19) and the feed-
back controller given by (21). Suppose the plant parameters
m, d, k and controller parameters α, µ, γ, η, κ ∈ R are positive
constants. Then

col(z, ż, x1, x2, y1, y2)

= col(zn, żn, α sin$t, α cos$t,$, d)
(22)

is a solution of the closed-loop system. Moreover, there exists
ε̄ > 0 such that the solution is orbitally exponentially stable
whenever γ, η, and κ are smaller than ε̄.

Proof: It is easily verified that (22) is a solution of the
closed-loop system. Let normalized controller parameters be
defined by

ε
[
γ̃ η̃ κ̃

]
:=
[
γ ηα2 2κα2$

]
, µ̃ := 2µα2.

Orbital exponential stability will be proven for the case where
γ̃, η̃, κ̃, and µ̃ are arbitrary positive constants and ε > 0
is sufficiently small. Using the polar coordinates and error
variables

x1 = r sin θ, e1 = zn − x1,
x2 = r cos θ, e2 = żn −$x2,

define a new state vector (θ, ξ) with

ξ := col(r, e1, e2, αy1, α$y2).

The trajectory (22) can then be given by

θ = $t, ξ = col(α, 0, 0, α$, α$d). (23)

Linearizing the closed-loop system around the solution (23),
the resulting system is[

˙̃
θ
˙̃
ξ

]
=

[
0 b
0 Σ

] [
θ̃

ξ̃

]
, ξ̃ = col(r̃, e1, e2, αỹ1, α$ỹ2)

where the variables with tilde are the perturbations from (23),
e.g., r̃ := r − α, and

b =
[
0 γc 0 1 0

]
/α

Σ =

[
A1 + εB1 A2

εC1 0

]
,

s := sin$t,
c := cos$t,

(24)

[
A1

C1

]
:=


−µ̃ 0 0
µ̃s 0 1
µ̃$c −$2 −d

0 η̃c 0
−κ̃ −κ̃s 0

 ,
[
B1 A2

]
:=

 0 γ̃s 0 0 0
0 −γ̃ 0 −c 0
0 0 0 $s+ dc c

 ,
Thus, solution (22) is orbitally exponentially stable if and only
if the system ˙̃

ξ = Σξ̃ is exponentially stable . We use Lemma 1
to prove the stability. Noting that A1 is block triangular, it is



easy to see that it is Hurwitz. To show that B is Hurwitz
as well, note that (7) is an exponentially stable linear time-
invariant system driven by a sinusoidal input, and the steady
state solution is easily obtained as

Lo =
1

d$

 0 0
−2$c s
∗ ∗

 ,
where ∗ denotes irrelevant entries. We can then calculate B as

B =

∫ T

0

C1Lodt = −T
2

[
η̃/d 0
0 κ̃/($d)

]
,

which is clearly Hurwitz.
Theorem 2 guarantees orbital exponential stability of the

natural oscillation when the control gains are sufficiently
small, which yields slow adaptation of the estimated parame-
ters. However, the gains can in fact be large for fast adaptation,
and may be tuned as follows for practical purposes. First, fix
a positive constant γo, let γ = εγo for a positive parameter
ε, and set η and κ similarly. Starting with a small ε, run the
closed-loop experiments for gradually increasing values of ε
and search for the maximum rate of convergence.

If a more systematic approach is preferred, one can perform
model-based analysis using estimates of damping d̂ and natural
frequency $̂, obtained for instance from an experiment with a
small ε. First, calculate the maximum Floquet multiplier, λM,
for the linear periodic system ˙̃

ξ = Σξ̃ with (d̂, $̂) in (24). That
is, λM is the eigenvalue of Φ(T ) with the largest magnitude,
where Φ̇ = ΣΦ, Φ(0) = I , and T := 2π/$̂. This should
yield |λM| < 1 for orbital exponential stability when ε is small.
Increase ε and repeat the calculation until |λM| < 1 is violated
(denote the largest value by ε̄). Then an upper bound for ε̄ is
given as the smallest of ε̄γo, ε̄ηo, and ε̄κo. For the control
design, one may choose ε ∈ (0, ε̄) that gives the smallest |λM|
for the fastest convergence. However, the domain of attraction
for the natural oscillation may shrink with increasing ε, which
would be another consideration for the design. This issue is
illustrated by an example in Section VI-B.

V. EXTENSION TO MULTI-DOF SYSTEMS

A. Problem Formulation

In this section, we consider an extension of the result in the
previous section to multi-DOF mechanical systems. Let the
mechanical system be given by

Mq̈ +Dq̇ +Kq = w (25)

where q(t), w(t) ∈ Rn are generalized coordinates and force
inputs, and M,D,K ∈ Rn×n are system parameters repre-
senting the mass, damping and stiffness. We assume that M ,
D, and K are positive definite.

Consider a natural mode of oscillation

qd(t) = αe sin$t (26)

defined by the amplitude parameter α ∈ R and a pair of
generalized eigenvalue/eigenvector (λ, e) ∈ Rn×R satisfying

(λM −K)e = 0, eTMe = 1,

where $ :=
√
λ is a natural frequency, and e is the associ-

ated mode shape, with the second equation normalizing the
magnitude of e. Since M and K are real symmetric positive
definite, both e and λ are real, and λ > 0.

The objective is to achieve entrainment to the arbitrarily
chosen mode of natural oscillation in (26) by a nonlinear
feedback controller without full knowledge of the mechanical
parameters. In particular, we assume that the system param-
eters are unknown except for e and M . While M can be
estimated fairly accurately in practice, the knowledge of e may
not be fully justified but is required in the result that follows.

We will formulate a control design problem in the modal
coordinates. Define a square matrix E ∈ Rn×n so that

E :=
[
e ∗

]
, ETME = I,

where ∗ represents unspecified entries. Then the original
system can be transformed into the form

z̈ +∇ż + Λz = u, (27)

where z(t) ∈ Rn are the modal coordinates and

q = Ez, w = MEu

∇ := ETDE Λ := ETKE = diag($2,Ω),

The natural oscillation of z corresponding to (26) is

zd(t) = col(α sin$t, 0). (28)

Now, the problem is reduced to the design of a controller that
generates control input u using the sensory information of z.

Our goal is to design a controller that can achieve orbital
exponential stability of z = zd. We seek an adaptive controller
that meets the objective with no information of the system
parameters ∆ and Λ. Note that the natural oscillation z = zd is
a solution of (27) if and only if the control input compensates
for the damping as

u = ∇żd(t) =

[
d
δ

]
α$ cos$t,

where the partitioned blocks of ∇ are defined by

∇ =

[
d δT

δ ∆

]
,

d ∈ R, δ ∈ Rn−1,
∆ ∈ R(n−1)×(n−1).

Since ∇ and Λ are unknown, the controller should be capable
of estimating d, δ and $.

The formal problem statement is given as follows.
Problem 3: Let a mechanical system in (27) with positive

definite (∇,Λ), and a positive scalar α ∈ R be given, and
consider the natural oscillation zd defined in (28). Design a
feedback controller of the form

ẋ = f(x, y, z), ẏ = g(x, z), u = h(x, y),

where (x, y) ∈ Rn × Rm is the state vector, to achieve the
natural oscillation with amplitude α in the steady state. In
particular, the design specifications are the following:
(i) There exists an orbitally exponentially stable solution

(x, y, z, ż) of the closed-loop system such that

x(t) = x(t+ T ), y(t) ≡ col($, d, δ), z = zd.



(ii) Functions f , g and h specifying the controller are inde-
pendent of the system parameters ∇ and Λ.

B. Approach

The idea for the control design is a direct extension of
the single-DOF case in the previous section. We propose the
following controller as an extension of (21):[

ẋ1
ẋ2

]
=

[
σ y1
−y1 σ

] [
x1
x2

]
+ γ

[
z1 − x1

0

]
(29a)

ẏ1 = ηx2(z1 − x1) (29b)

ẏ2 = κ(α2 − z21 − x22) (29c)

ẏ3 = −Kz2x1, (29d)

u =

[
y2
y3

]
y1x2, σ = µ(α2 − x21 − x22), (29e)

where γ, η, κ, µ ∈ R are positive constants, K ∈
R(n−1)×(n−1) is a symmetric positive definite matrix, z1(t) ∈
R and z2(t) ∈ Rn−1 are defined by z = col(z1, z2), and
xi(t), yi(t) ∈ R are scalar variables for i = 1, 2 and
y3(t) ∈ Rn−1. Equations (29a)–(29c) and the first entry of
u in (29e) are identical to (21a)–(21c) when z1 is replaced
by z. Hence, variables (y1, y2) estimate ($, d), and (x1, x2)
locally converges to the orbit (α sin$t, α cos$t), provided
z2 = 0. The rationale for the remaining part of the controller
is explained below.

The additional variable y3(t) in (29d) is introduced as an
estimate for δ. To see how it works, consider the situation
where the trajectory is on the target orbit, i.e. y1 = $, x1 =
z1 = α sin$t, and x2 = α cos$t, except for nonzero errors
in y3 − δ and z2. The z2 dynamics can be described as

z̈2 + ∆ż2 + Ωz2 = (y3 − δ)ẋ1. (30)

If ‖K‖ is sufficiently small, y3 can be regarded as constant
and z2 is a sinusoid. Then the dynamics of ẏ3 in (29d) is
approximated as

ẏ3 ≈ −
1

T

∫ T

0

Kz2x1dt = − 1

$2T

∫ T

0

Kż2ẋ1dt, (31)

where the latter equality holds since z2 and x1 are sinusoids
of frequency $. Multiplying (30) by żT

2 from left, taking the
average over the cycle, and using (31), we have

0 <

∫ T

0

żT
2∆ż2dt = (y3 − δ)T

∫ T

0

ż2ẋ1dt

≈ −$2T (y3 − δ)TK−1(ẏ3 − δ̇)

= −$
2T

2

d

dt

(
‖K−1/2(y3 − δ)‖2

)
.

Thus the derivative of ‖K−1/2(y3 − δ)‖ is negative, making
y3 converge to δ. When y3 = δ, the second entry of u in (29e)
decouples z2 from z1, achieving convergence of z2 to zero due
to the inherent stability of the mechanical system.

C. Result

The following theorem gives a sufficient condition for
entrainment to the desired natural oscillation.

Theorem 3: Consider mechanical system (27) and the
controller given by (29). Suppose ∇ and Λ are symmetric
positive definite, and α, µ, γ, η, κ ∈ R are positive constants
and K ∈ R(n−1)×(n−1) is a positive definite matrix. Then

col(z, ż, x1, x2, y1, y2, y3)

= col(zd, żd, α sin$t, α cos$t,$, d, δ)
(32)

is a solution of the closed-loop system. Moreover, there exists
ε̄ > 0 such that the solution is orbitally exponentially stable
whenever γ, η, κ and ‖K‖ are smaller than ε̄.

Proof: The framework for the proof is roughly the same
as the single-DOF case, with some additional complication due
to the extra degrees of freedom. With the normalized controller
parameters

ε
[
γ̃ η̃ κ̃

]
:=
[
γ ηα2 2κα2$

]
, εK̃ := α2$K,

µ̃ := 2µα2,

we prove orbital exponential stability for the case where γ̃,
η̃, κ̃, and µ̃ are arbitrary positive constants, K̃ is an arbitrary
positive definite matrix, and ε > 0 is sufficiently small. Let us
introduce a coordinate transformation and a new state vector
(θ, ξ) where

ξ := col(r, e1, z2, e2, ż2, αy1, α$y2, α$y3).

x1 = r sin θ, e1 = z1 − x1,
x2 = r cos θ, e2 = ż1 −$x2,

The trajectory (32) in the new coordinates is given by

θ = $t
ξ = col(α, 0, 0, 0, 0, α$, α$d, α$δ).

(33)

Linearization around the solution (33) yields[
˙̃
θ
˙̃
ξ

]
=

[
0 b
0 Σ

] [
θ̃

ξ̃

]
,

ξ̃ = col(r̃, e1, z2, e2, ż2, αỹ1, α$ỹ2, α$ỹ3)

where the variables with tilde are the perturbations from (33),
e.g., ỹ1 := y1 −$, and

b =
[
0 γc 0 0 0 1 0 0

]
/α

Σ =

[
A1 + εB1 A2

εC1 0

]
,

s := sin$t,
c := cos$t,

[
A1

C1

]
:=



−µ̃ 0 0 0 0
µ̃s 0 0 1 0
0 0 0 0 I

µ̃$c −$2 0 −d −δT

0 0 −Ω −δ −∆
0 η̃c 0 0 0
−κ̃ −κ̃s 0 0 0

0 0 −K̃s 0 0


,

[
B1 A2

]
:=


0 γ̃s 0 0 0 0 0 0
0 −γ̃ 0 0 0 −c 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 $s+ dc c 0
0 0 0 0 0 δc 0 cI

 .



Thus, solution (32) is orbitally exponentially stable if and only
if the system ˙̃

ξ = Σξ̃ is exponentially stable .
From Lemma 1, orbital exponential stability is shown if the

dynamics of A1 and B are both exponentially stable . First
note that A1(t) has a block-triangular structure with a negative
number on the first diagonal entry and the second diagonal
block is constant and Hurwitz due to stability of plant (27).
Thus the linear periodic system with A1(t) is exponentially
stable. Next note that the periodic solution to (7) has the form

Lo =

 0
M1

M2

 s+

 0
N1

N2

 c. (34)

Let A2 and C1 be expressed as

A2 =

 0
Q1c

Q2c+Q3s

 , C1 =
[
R1 R2s+R3c 0

]
,

with appropriate coefficients Qi and Ri. Substituting (34) into
(7), setting the coefficients of s and c to zero, and eliminating
M2 and N2, we obtain[

M1

N1

]
= V −1W,

where

V :=

[
$∇ Λ−$2I

$2I − Λ $∇

]
, W :=

[
∇Q1 +Q2

$Q1 −Q3

]
.

Here, we noted that V is invertible because V + V T > 0 due
to ∇ > 0. Then we can calculate B as

B =

∫ T

0

C1Lodt =
T

2
· UV −1W, U :=

[
R2 R3

]
.

We first show that B is nonsingular. Suppose, for contradic-
tion, that there exists a nonzero vector v in the null space of
B. Then, defining w := V −1Wv, we have

UV −1Wv = 0 ⇒ Uw = 0, V w = Wv.

Since the left (n+1)×(n+1) block of U is square nonsingular
and the remaining columns are zero, w has the form w =
col(0, w2) with w2 ∈ Rn−1. The lower n− 1 rows of V w =
Wv then gives ∇w2 = 0, implying w = 0 and Wv = 0. Since
W has full column rank, we conclude v = 0. By contradiction,
B must be nonsingular.

An arbitrary eigenvalue λ of (2/T )B is nonzero and satisfies
the characteristic equation

detV det(λI − UV −1W ) = det(λV −WU) = 0,

where we used determinant formulas. Noting that

WU = diag(κ̃, K̃, 2$η̃, 0) ≥ 0,

it follows from Lemma 6 that the real part of λ ∈ C is negative.
Thus B is Hurwitz and we conclude the result.

In Theorem 3, the controller is independent of the plant
parameters except for the mode shape e and the mass matrix
M . The proof reveals that stability of the plant (27) ensures the
convergence of the synchronization error e2 and the unselected

natural modes z2, which can therefore be made faster by an
additional minor feedback that modifies Λ and Ω. Convergence
of the adaptation variables may be made faster through the
Floquet analysis as in the single-DOF case.

VI. NUMERICAL EXAMPLES

A. Adaptive Oscillator

This section illustrates how our adaptive oscillator works,
in comparison with the one presented in [32]. The former is
given by (17) and its convergence property is guaranteed as in
Theorem 1. The latter is given by an Andronov-Hopf oscillator
with a Hebbian learning mechanism:[

ẋ1
ẋ2

]
=

[
1− r2 ωest

−ωest 1− r2
] [
x1
x2

]
+ ε

[
0
z

]
(35a)

ω̇est = −εzx1/
√
r, r := x21 + x22, (35b)

and it was explained using perturbation argument [32] that
ωest globally (and approximately) converges to a frequency
component of periodic input z when parameter ε > 0 is small.
The dynamic Hebbian learning is a general heuristic method
that applies to other oscillators and non-sinusoidal signals.

For the numerical study, we use the input z(t) = cos(30t)
for both oscillators. The system parameters and initial states
are set as

µ = 1, γ = 10, η = 50, κ = 2,

x(0) = col(0, 1), y(0) = col(40, 2),

for our adaptive oscillator (17) and

ε = 0.4, 0.6, 0.8, 1, or 100,

x(0) = col(0, 1), ωest(0) = 40,

for the Hebbian learning oscillator (35). The input z and initial
states are taken from [32] and are used for both here, except
that the initial estimate of the amplitude y2(0) is needed for
(17) and is set twice as large as the true value.

Figure 1 shows the input z and response x1, as well as
the estimated frequency y1 and amplitude y2, for the adaptive
oscillator in (17). We see that x1 synchronizes with z within
several cycles, while the estimated frequency and amplitude
converge to their true values. For comparison, Fig. 2 shows the
estimated frequency using the Hebbian learning approach in
[32]. For small values of ε, the learning process takes a long
time as seen in Fig. 2 (top), which is reproduced from the ε
values in [32]. With a larger value of ε, their method could
achieve faster convergence as seen in Fig. 2 (bottom), but there
is a trade-off between convergence rate and steady-state error.
The larger the parameter ε, the faster the convergence, but the
larger the error in the steady state. In contrast, such trade-off
does not exist in our method since the adaptation mechanism
is designed so that the error is zero at convergence.
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Fig. 1. Adaptive Andronov-Hopf Oscillator
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Fig. 2. Andronov-Hopf Oscillator with Hebbian Learning

B. Single-DOF Natural Entrainment

We now present an example of feedback control for natural
entrainment. Consider the single-DOF mechanical system in
(19) with parameter values switching from one set to another:

(m, d, k) = (1, 2, 16) when t < 20,
= (1, 5, 4) when t ≥ 20.

(36)

Note that the frequency of natural oscillation zn(t) in (20) is
switched from $ = 4 to 2. We design a feedback controller
in (21) so that the frequency of mechanical oscillation is
automatically tuned into the current natural frequency. The
desired oscillation amplitude is fixed as α = 1 at all time.
The controller parameters are set as

µ = 2, η = 3ε, κ = ε, γ = 2ε.

Figure 4 shows the magnitude of the maximum Floquet
multiplier |λM| as a function of ε, for the linear periodic
system in (24) with ($, d) = (4, 2). The curve takes the value
|λM| = 1 at ε = 0 with a negative slope so that |λM| is
less than 1 for sufficiently small ε > 0, as guaranteed by
Theorem 2. As shown, |λM| remains less than 1 for larger
values of ε, which can be optimized to achieve the smallest
|λM| (indicated by the star) for the fastest convergence.
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Fig. 3. AHO Controller with single-DOF system. Top row: z (blue), x1 (red).
Bottom row: 2y1 (black), y2 (red).

The closed-loop system is simulated for the case ε = 1 with
the following initial conditions. For the controller state,

x(0) =
αxo
‖xo‖

, xo :=

[
z(0)

ż(0)/ωo

]
, y(0) =

[
ωo
do

]
, (37)

where (ωo, do) are the initial estimates for the natural fre-
quency and damping. The choice of x(0) is made so that the
initial state would be exactly on the target orbit if the plant
state (z(0), ż(0)) were on the natural oscillation orbit and the
frequency/damping estimates (ωo, do) were correct.

Figure 3 shows the simulation result, where the initial
plant state is ten-fold away from the target natural oscillation
in magnitude (z(0) = 0.1 and ż(0) = 0), and the initial
estimates for ($, d) are five times smaller/larger than the
correct values, (ωo, do) = (4/5, 2 × 5). The mechanical
variable z(t) eventually synchronizes with x1 in the steady
state, and both of them converge to a sinusoidal signal with
the natural frequency $ and the prescribed amplitude α = 1.
Furthermore, estimated natural frequency y1 and damping y2
converge to the true values $ and d, respectively.

To examine the domain of attraction, the closed-loop system
is simulated for the plant (m, d, k) = (1, 2, 16) and the AHO
controller designed above with ε = 1. The initial state is
set by choosing a point in the plant state space (z, ż) and
specifying the controller state accordingly as in (37) with
(ωo, do) = (4/5, 2 × 5). If z and x1 converge to the natural
oscillation, then the initial state is deemed within the domain
of attraction. Repeating the simulations for various values
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of the initial plant state, the cross section of the domain of
attraction can be visualized as a region in the (z, ż) plane. The
result is shown as the yellow region in Fig. 5. We see that the
region is fairly large in comparison with the target orbit of
the natural oscillation indicated by the tiny blue ellipse near
the origin. Hence, the trajectory would converge back to the
target orbit after a practically possible perturbation due to a
disturbance, by resetting x(0) as in (37). If desired, the domain
of attraction can be further enlarged at the expense of slower
adaptation by choosing a smaller value of ε. For example, the
red region is generated for ε = 0.1.

For comparison, we consider the passivity based adaptive
controller (PBAC) in Section 11.3.4 of [44], which gives

u = m̂a+ d̂v + k̂z − c1r, r := ż − v,
˙̂m = −c3ar, v := żref − c2e,
˙̂
d = −c4vr, e := z − zref ,
˙̂
k = −c5zr, a := z̈ref − c2ė,

where zref is a given reference command. The controller
estimates the unknown plant parameters by (m̂, d̂, k̂) and tune
the control gains to track zref by z asymptotically. To achieve
the natural oscillation, the natural frequency $ has to be
somehow estimated in advance. Assuming this is done, the
reference is set as zref(t) := sin($t). For an example design,
we consider the same simulation condition as in the previous
AHO case with the switching plant in (36). With $ = 4 for
the reference zref , we aim for the natural oscillation before the
plant switching at t = 20. The controller parameters are tuned
through closed-loop simulations under the initial condition
d̂(0) = do, k̂(0) = m̂(0)ω2

o , and m̂(0) = 1. The result is
shown in Fig. 6 for the case

c1 = c2 = 1, c3 = 50, c4 = 5, c5 = 10.

The controller makes z converge to zref although the estimates
(m̂, k̂) do not converge to the true values. The tracking
z → zref is enforced even after the plant dynamics are changed
at t = 20 as intended by the design, making z deviate away
from the natural oscillation of the new dynamics. Such robust
tracking may be desired in some applications, but adaptive
tracking of the natural oscillation as in Fig. 3 may be preferred
in other applications, where the z oscillation of the same
amplitude is achieved with a smaller amplitude of input u.

For entrainment to the natural oscillation, the reference com-
mand may be adaptively changed as zref(t) = sin($̂t) with
$̂ := (k̂/m̂)1/2. This heuristic approach may work to some
extent, but there are difficulties. First of all, convergence to the
natural oscillation is not theoretically guaranteed. Moreover,
the controller requires state measurements, the dynamics have
a singularity at m̂ = 0, and the estimate $̂ may become
undefined on the trajectory when k̂/m̂ becomes negative
(observe that m̂(t) in Fig. 6 does go across the origin). Hence,
it would require a substantial development beyond the existing
PBAC technique if adaptive natural entrainment is desired with
output feedback. The AHO control avoids all these difficulties.
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Fig. 6. Passivity based adaptive controller with single-DOF system.
Top row: z (blue), zref (red). Bottom row: m̂ (blue), d̂/10 (red), k̂ (black).

C. Multi-DOF Natural Entrainment

Consider a triple (three-link) pendulum in a gravity field
with the first link fixed to the inertial frame through a rotational
joint. The ith link has mass mi and length `i, and the ith

joint has friction with damping coefficient di and an actuator
to create torque input ui. The equation of motion is given by

Jq q̈ +Gq q̇
2 +Dq̇ +K sin(q) = Bu, (38)

where qi is the angular displacement of the ith link, q̇2 is the
vector whose ith entry is q̇2i , and

Jq := Jo + SqQSq + CqQCq, Gq := SqQCq − CqQSq,

Q := LTML, K := diag(LTM1)g, D := BDoB
T,

M := diag(m1,m2,m3), Jo := diag
(
m1`

2
1,m2`

2
2,m3`

2
3

)
/12,

Sq := diag(sin q1, sin q2, sin q3), Do = diag(d1, d2, d3),

Cq := diag(cos q1, cos q2, cos q3), 1 := col(1, 1, 1),

B :=

 1 −1 0
0 1 −1
0 0 1

 , L :=

 `1/2 0 0
`1 `2/2 0
`1 `2 `3/2

 .
We use the following parameter values:

`i = 1, mi = 1, di = 5, g = 9.81,

for i = 1, 2, 3. The linearization around the origin gives a
linear system of the form (25), which can be transformed into
the modal form (27) with

E =

 0.273 −0.655 −1.06
0.361 0 2.06
0.454 1.96 −1.76

 , Λ =

 $2
1 0 0

0 $2
2 0

0 0 $2
3

 ,
∇ =

 0.454 0.311 −1.83
0.311 23.6 −23.9
−1.83 −23.9 127

 ,
 $1

$2

$3

 =

 2.18
5.42
10.2

 ,
where E is the normalized modal matrix. The ith natural mode
of oscillation is given by q(t) = αiei sin($it) where ei ∈ R3

is the ith column of E and αi ∈ R is an amplitude parameter.
To achieve entrainment to the natural oscillations, we used

Theorem 3 and designed two controllers (29) with K =
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Fig. 7. Closed-loop simulation with multi-DOF AHO Controller.

diag(k1, k2) and

(α, µ, γ, η, κ, k1, k2) =

{
(20, 1, 1, 5, 2, 200, 100)/10,
(5, 5, 5, 100, 500, 2000, 10)/10

for the first and second modes, respectively. The parameter
α is set so that the maximum amplitude of the link angle is
around 50o, and the other parameters are tuned so that (x, y)
converges within several cycles of oscillations (the larger the
parameter, the faster the convergence).

The closed-loop system of the original nonlinear plant (38)
and controller (29) is simulated under the following condition.
The controller for the first mode is used for 0 ≤ t ≤ 30, then
switched to the one for the second mode for 30 ≤ t ≤ 50.
The initial state for the plant is set to q(0) = col(1, 1, 1) and
q̇(0) = 0, and that for the controller is set by (37) with α = 2,
(ωo, do) = ($1/5, 5E

TDe1), ż(0) = 0, and z(0) being the
first entry of E−1q(0). When the controller is switched at
t = 30, its state x was reset in accordance with (37) while y
was kept unchanged.

Figure 7 shows the simulation result. The top two rows
indicate that the plant state converges to oscillations with mode
shapes similar to the first and second modes of natural oscil-
lations. The third row shows convergence of the AHO state x
with the prescribed amplitude α, and its synchronization with
the plant state z1 (red). The fourth row plots the estimated
plant parameters ($̂, d̂, δ̂) := y in the controller, where the
(black,red,blue,green) curves correspond to ($̂, 5d̂, δ̂1, 5δ̂2)
before t = 30 and ($̂, d̂/10, δ̂1/10, 5δ̂2) after t = 30 (the scal-
ing factors are introduced to fit the curves within a common
frame). While the damping parameters are (approximately)
converging to the correct values in ∇, the frequency estimate

converges to smaller values than $i, especially for the second
mode ($̂1 = 2.12 and $̂2 = 4.38). This may correspond to the
fact that the natural frequencies $i from the linearized model
are larger than those for large-amplitude natural oscillations
of the original nonlinear system. To verify this, the last row
of the figure plots the kinetic energy T := q̇TJq q̇/2 (blue),
the potential energy V := 1TK(I − Cq)1 (green), and their
sum T +V (red), where the quantities are magnified by factor
3 after t = 30 for better visibility. The total energy T + V
converges approximately to constants toward t = 30 and 50,
and thus is preserved in the steady state as it should be under
a natural oscillation.

VII. CONCLUSION

We have considered a class of perturbed nonlinear systems
with slow and fast dynamics, and proposed an approach to ana-
lyze orbital exponential stability of a periodic solution through
a Floquet analysis with averaging. Based on this framework,
we have formulated and solved problems of designing adaptive
oscillators using the structure of the Andronov-Hopf oscillator
(AHO) for multiple goals. We started with developing an
adaptive oscillator that synchronizes with an external periodic
signal and explicitly estimates the amplitude and frequency
of the signal. We then proposed a method for designing a
feedback controller to embed an orbitally exponentially stable
limit cycle in the closed-loop system, on which a natural
mode of oscillations is achieved for multi-DOF systems.
These design results have illustrated benefits of the general
framework for the case of uncertain linear mechanical systems.
Moreover, numerical examples demonstrated that the proposed
design methods were effective also for nonlinear mechanical
systems with fast and smooth convergence.

We have focused on stabilization of an unknown natural
oscillation of mechanical systems by estimating the relevant
system parameters (damping and natural frequency) through an
adaptation mechanism. An interesting extension of the current
method would be stabilization of an unknown equilibrium
point that may vary with system parameters. Such problems
arise for instance in deployment of tensegrity structures [45].
The framework in Section II may be useful also for such
problems. In fact, the stability analysis result in Lemma 1
directly applies to the system obtained through linearization
around an equilibrium, where all the coefficient matrices are
constant. The proposed control architecture may remain valid,
with modified interpretations of the dynamic components as
an adaptive observer. The details are left for further research.

APPENDIX

Here we provide several lemmas that are used for the
developments in this paper. The notation ‖ · ‖ is used to mean
the spectral norm for a matrix and the Euclidean norm for a
vector, when the argument is constant. If the argument is a
function of time, it denotes the supremum norm, i.e.,

‖A‖ = sup
t≥0
‖A(t)‖.

for a time-varying matrix A(t).



Lemma 2: Let matrices A ∈ Rn×m and X1, X2 ∈ Rm×n
be given. Suppose ‖A‖ ≤ α and ‖Xi‖ ≤ β with i = 1, 2 for
positive scalars α, β ∈ R. Then

‖X1AX1 −X2AX2‖ ≤ 4αβ‖X1 −X2‖.
Proof:

‖X1AX1 −X2AX2‖
= ‖(X1 −X2)AX2 +X2A(X1 −X2) + (X1 −X2)A(X1 −X2)‖
≤ ‖X1 −X2‖αβ + αβ‖X1 −X2‖+ ‖X1 −X2‖α‖X1 −X2‖
≤ 2αβ‖X1 −X2‖+ (‖X1‖+ ‖X2‖)α‖X1 −X2‖
= 4αβ‖X1 −X2‖.

Lemma 3 (Boundedness): Let Ai(t), Bi(t), and Ci(t)
with i = 1, 2 be matrix-valued functions of t ∈ R that are
continuous and bounded on t ≥ 0. Suppose the system

ẋ = A1(t)x (39)
is exponentially stable . Let Lo(t) be a solution of (7). For each
ε > 0, let Lε(t) be the solution to (4) with initial condition
Lε(0) = Lo(0). Then, Lo(t) is bounded and there exists a
positive scalar ε̄ ∈ R such that, for each ε ∈ (0, ε̄), the
function Lε(t) is continuously differentiable and bounded on
t ≥ 0.

Proof: Let Ψ(t, t0) be the state transition matrix of (39).
Then there exist positive scalars K, a ∈ R such that

‖Ψ(t, τ)‖ ≤ Ke−a(t−τ) (40)

due to exponential stability of (39), and Lo can be written as

Lo(t) = Ψ(t, 0)Lo(0) +

∫ t

0

Ψ(t, τ)A2(τ)dτ. (41)

Note that Lo is bounded on t ≥ 0 because

‖Lo(t)‖ ≤ ‖Ψ(t, 0)‖ · ‖Lo(0)‖+

∫ t

0

‖Ψ(t, τ)‖ · ‖A2(τ)‖dτ

≤ Ke−at‖Lo(0)‖+

∫ t

0

Ke−a(t−τ)‖A2(τ)‖dτ

≤ Ke−at‖Lo(0)‖+
K

a
(1− e−at)‖A2‖

≤ K‖Lo(0)‖+
K

a
‖A2‖. (42)

Continuous differentiability of Lε(t) follows from its def-
inition and continuity of the system matrices. To show the
boundedness of Lε(t), let us define ∆ε(t) by (9). Note that
∆ε(t) is the solution of

∆̇ε(t) = A1(t)∆ε(t) +G(t,Lo(t) + ε∆ε(t)) (43)

with initial condition ∆ε(0) = 0, which can be verified by
subtracting (7) from (4) and dividing by ε. This ∆ε can be
seen as a fixed point of mapping M defined by

M(Y )(t) =

∫ t

0

Ψ(t, τ)G(τ,Lo(τ) + εY (τ))dτ.

We will show that there exists a constant c > 0 such that,
when ε > 0 is sufficiently small, M is a contraction mapping
on

Bo := { Y ∈ B : ‖Y ‖ ≤ c }, (44)

where B is the Banach space of continuous and bounded
matrix-valued functions, defined on t ∈ [0,∞), and equipped
with the supremum norm. Then ∆ε is the unique fixed point
satisfying

∆ε = M(∆ε), ∆ε ∈ Bo
and the boundedness of ∆ε implies that of Lε from (9).

To this end, use (40), go through calculations like (42), and
bound G in (5) by the triangle inequality to obtain

‖M(Y )‖ ≤ ρ(‖Lo + εY ‖) (45)

where ρ is defined by

ρ(x) :=
K

a

(
‖B2‖+

(
‖B1‖+ ‖C2‖

)
x+ ‖C1‖x2

)
.

Let c be chosen such that c > ρ(‖Lo‖). Then for sufficiently
small ε > 0 and arbitrary Y ∈ Bo, we have

ρ(‖Lo + εY ‖) ≤ ρ(‖Lo‖+ εc) ≤ c

where the first inequality holds since ρ(x) is increasing on
x > 0. Thus, for such small ε, we have M(Y ) ∈ Bo whenever
Y ∈ Bo. Finally, for Y1, Y2 ∈ Bo, another inequality can be
derived with the help of Lemma 2 as

‖M(Y1)−M(Y2)‖ ≤ ε(a+ bε) · ‖Y1 − Y2‖,

where a, b ∈ R are positive constants that depend on the norms
of the system matrices and Lo. Hence, for sufficiently small
ε > 0, M is a contraction operator on Bo.

Lemma 4: Consider the system
ẋ =

(
A(t) +M(t)

)
x.

Suppose the system is exponentially stable when M(t) ≡ 0.
Then there exists ε > 0 such that the system is exponentially
stable for all M(t) such that ‖M‖ < ε.

Proof: See Theorem 1 on p.205 of [42].
Lemma 5: Consider the system
ẋ = Aε(t)x, Aε(t) := ε

(
A(t) + εMε(t)

)
(46)

with ε ∈ R, where A(t) is continuous and T -periodic, and
Mε(t) is bounded for all t ≥ 0 and ε ∈ (0, ε̄1) with a given
positive scalar ε̄1. Suppose the matrix

B :=

∫ T

0

A(t)dt (47)

is Hurwitz. Then there exists ε̄2 > 0 such that system (46) is
exponentially stable for all ε ∈ (0, ε̄2).

Proof: Based on the Peano-Baker series, the state transi-
tion matrix of system (46) can be written as

Ψ(t, τ) = I +

∫ t

τ

Aε(σ)dσ +

∞∑
k=1

Ψk(t, τ),

Ψk(t, τ) :=

∫ t

τ

Aε(σ1) · · ·
∫ σk

τ

Aε(σk+1)dσk+1 · · · dσ1.

Setting t = τ + T , we have

Ψ(τ + T, τ) = I + εB + ε2Cε(τ),

Cε(τ) :=
1

ε2

∞∑
k=1

Ψk(τ + T, τ) +

∫ τ+T

τ

Mε(σ1)dσ1,



Let H and P be matrices such that

H = P 1/2, P = P T > 0, PB + BTP < 0

and define

Ψ̂(τ) := HΨ(τ + T, τ)H−1, B̂ := HBH−1.

Then we have

Ψ̂(τ)TΨ̂(τ) = I + ε(B̂ + B̂T) + ε2Dε(τ) (48)

where Dε(τ) is a quadratic function of B and Cε(τ). Now,
let a,m ∈ R be positive scalars such that

‖Aε‖ ≤ aε, ‖Mε‖ ≤ m, ∀ ε ∈ (0, ε̄1),

and define ε̄3 := min(1/(aT ), ε̄1). Then, for ε ∈ (0, ε̄3),

‖Cε‖ ≤
1

ε2

∞∑
k=1

(aTε)k+1 +mT =
(aT )2

1− aTε
+mT

which implies ‖Dε‖ < d for some constant d ∈ R independent
of ε. Note that the eigenvalues of B̂+B̂T are all real negative
by construction, and denote the maximum and minimum by
−λM and −λm, respectively. Then, from (48),

‖Ψ̂‖2 ≤ 1− ελM + ε2d

for all ε ∈ (0, ε̄4) where ε̄4 is the smaller of ε̄3 and 1/λm.
We now see that there exists ε̄2 > 0 such that ‖Ψ̂‖ < 1 for
ε ∈ (0, ε̄2). Finally, for arbitrary to ≥ 0 and positive integer
n, we have

Ψ(tn, to) = H−1

(
n∏
k=1

Ψ̂(τk)

)
H,

tn := to + nT, τk := to + (k − 1)T,

and hence ‖Ψ(tn, to)‖ converges to zero as n→∞, provided
ε ∈ (0, ε̄2), proving exponential stability of (46).

Lemma 6: Let n × n real matrices M and K be given.
Suppose M + M T > 0 and K = KT ≥ 0. Let λ ∈ C be a
nonzero generalized eigenvalue satisfying

det(λM +K) = 0.
Then the real part of λ is negative.

Proof: Let M be expressed as M = P+S with symmetric
P and skew symmetric S. By definition, there exists a nonzero
vector v ∈ Cn such that(

λ(P + S) +K
)
v = 0.

Let

p := v∗Pv > 0, q := v∗Kv ≥ 0, jω := v∗Sv,

where we noted that the first two are real positive and
nonnegative since M + M T and K are symmetric positive
(semi)definite, and the last term is purely imaginary since S
is skew symmetric. Then

v∗
(
λ(P + S) +K

)
v = λ(p+ jω) + q = 0

⇒ λ = − q

p+ jω
⇒ <[λ] = − pq

p2 + ω2
< 0,

where q is positive since λ is nonzero.
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[12] A. Spröwitz, A. Tuleu, M. Vespignani, M. Ajallooeian, E. Badri, and
A. J. Ijspeert, “Towards dynamic trot gait locomotion: Design, control,
and experiments with cheetah-cub, a compliant quadruped robot,” The
International Journal of Robotics Research, vol. 32, no. 8, pp. 932–950,
2013.

[13] J. Buchli, M. Kalakrishnan, M. Mistry, P. Pastor, and S. Schaal, “Com-
pliant quadruped locomotion over rough terrain,” in Intelligent Robots
and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on,
pp. 814–820, IEEE, 2009.

[14] R. Skelton and M. de Oliveira, Tensegrity Systems. Springer, 2009.
[15] T. Bliss, J. Werly, T. Iwasaki, and H. Bart-Smith, “Experimental val-

idation of robust resonance entrainment for CPG-controlled tensegrity
structures,” IEEE Trans. Contr. Sys. Tech., vol. 21, no. 3, pp. 666–678,
2012.

[16] T. Bliss, T. Iwasaki, and H. Bart-Smith, “Central pattern generator
control of a tensegrity swimmer,” IEEE/ASME Trans. Mechatronics,
vol. 18, no. 2, pp. 586–597, 2013.

[17] P. Beyl, K. Knaepen, S. Duerinck, M. Van Damme, B. Vanderborght,
R. Meeusen, and D. Lefeber, “Safe and compliant guidance by a powered
knee exoskeleton for robot-assisted rehabilitation of gait,” Advanced
Robotics, vol. 25, no. 5, pp. 513–535, 2011.

[18] H. Vallery, J. Veneman, E. Van Asseldonk, R. Ekkelenkamp, M. Buss,
and H. Van Der Kooij, “Compliant actuation of rehabilitation robots,”
IEEE Robotics & Automation Magazine, vol. 15, no. 3, 2008.

[19] S. Kohannim and T. Iwasaki, “Analytical insights into optimality and
resonance in fish swimming,” J. Royal Society Interface, vol. 11,
p. 20131073, 2014.

[20] B. Ahlborn and R. Blake, “Walking and running at resonance,” Zoology,
vol. 105, pp. 165–174, 2002.

[21] B. Ahlborn, R. Blake, and W. Megill, “Frequency tuning in animal
locomotion,” Zoology, vol. 109, pp. 43–53, 2006.

[22] E. P. Zehr and J. Duysens, “Regulation of arm and leg movement during
human locomotion,” The Neuroscientist, vol. 10, no. 4, pp. 347–361,
2004.



[23] N. Hatsopoulos and W. W. Jr., “Resonance tuning in rhythmic arm
movements,” J. Motor Behavior, vol. 28, no. 1, pp. 3–14, 1996.

[24] M. Williamson, “Neural control of rhythmic arm movements,” Neural
Networks, vol. 11, pp. 1379–1394, 1998.

[25] T. Iwasaki and M. Zheng, “Sensory feedback mechanism underlying
entrainment of central pattern generator to mechanical resonance,”
Biological Cybernetics, vol. 94, no. 4, pp. 245–261, 2006.

[26] B. Verdaasdonk, H. Koopman, and F. V. der Helm, “Resonance tuning in
a neuro-musculo-skeletal model of the forearm,” Biological Cybernetics,
vol. 96, no. 2, pp. 165–180, 2007.

[27] C. Williams and S. DeWeerth, “A comparison of resonance tuning with
positive versus negative sensory feedback,” Biol. Cyb., vol. 96, pp. 603–
614, 2007.

[28] Y. Futakata and T. Iwasaki, “Formal analysis of resonance entrainment
by central pattern generator,” Journal of mathematical biology, vol. 57,
no. 2, pp. 183–207, 2008.

[29] Y. Futakata and T. Iwasaki, “Entrainment to natural oscillations via
uncoupled central pattern generators,” IEEE Trans. Auto. Contr., vol. 56,
no. 5, pp. 1075–1089, 2011.

[30] J. Zhao and T. Iwasaki, “CPG control for assisting human with peri-
odic motion tasks,” in Decision and Control (CDC), 2016 IEEE 55th
Conference on, pp. 5035–5040, IEEE, 2016.

[31] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and
M. Kawato, “Learning from demonstration and adaptation of biped
locomotion,” Robotics and Autonomous Systems, vol. 47, pp. 79–91,
2004.

[32] L. Righetti, J. Buchli, and A. J. Ijspeert, “Dynamic hebbian learning
in adaptive frequency oscillators,” Physica D: Nonlinear Phenomena,
vol. 216, no. 2, pp. 269–281, 2006.

[33] J. Buchli, F. Iida, and A. J. Ijspeert, “Finding resonance: Adaptive
frequency oscillators for dynamic legged locomotion,” in Intelligent
Robots and Systems, 2006 IEEE/RSJ International Conference on,
pp. 3903–3909, IEEE, 2006.

[34] A. Fradkov, “Exploiting nonlinearity by feedback,” Physica D, vol. 128,
pp. 159–168, 1999.

[35] D. Efimov, A. Fradkov, and T. Iwasaki, “Exciting multi-DOF systems by
feedback resonance,” Automatica, vol. 49, no. 6, pp. 1782–1789, 2013.

[36] J. Zhao and T. Iwasaki, “Adaptive natural entrainment via Andronov-
Hopf oscillator,” in American Control Conference, pp. 1257–1262, 2017.

[37] B. Anderson, R. R. Bitmead, C. R. Johnson Jr, P. V. Kokotovic, R. L.
Kosut, I. M. Mareels, L. Praly, and B. D. Riedle, Stability of adaptive
systems: Passivity and averaging analysis. MIT press, 1986.

[38] H. Amann, Ordinary Differential Equations: An Introduction to Nonlin-
ear Analysis. Walter de Gruyter, 1990.

[39] H. Khalil, Nonlinear Systems. Prentice Hall, 1996.
[40] J. Hauser and C. Chung, “Converse Lyapunov functions for exponen-

tially stable periodic orbits,” Sys. Contr. Lett., vol. 23, pp. 27–34, 1994.
[41] P. Hartman, Ordinary Differential Equations. John Wiley & Sons, Inc.,

1964.
[42] R. Brockett, Finite Dimensional Linear Systems. John Wiley & Sons,

Inc., 1970.
[43] X. Liu and T. Iwasaki, “Design of coupled harmonic oscillators for

synchronization and coordination,” IEEE Transactions on Automatic
Control, 2017. (To appear).

[44] M. Spong and M. Vidyasagar, Robot Dynamics and Control. John Wiley
& Sons, 1989.

[45] C. Sultan and R. Skelton, “Deployment of tensegrity structures,” Interna-
tional Journal of Solids and Structures, vol. 40, no. 18, pp. 4637–4657,
2003.

Jinxin Zhao received his Ph.D. degree in Aerospace
Engineering from University of California, Los An-
geles in 2017. He received his M.S. degree in
Aerospace Engineering from University of Michi-
gan, Ann Arbor in 2013 and B.S. degree in Mechan-
ical Engineering from Zhejiang University, China in
2011. His current research interests include adaptive
nonlinear oscillators, CPG control of human assistive
robots and distributed control.

Tetsuya Iwasaki (M’90-SM’01-F’09) received his
B.S. and M.S. degrees in Electrical and Electronic
Engineering from the Tokyo Institute of Technology
(Tokyo Tech) in 1987 and 1990, respectively, and his
Ph.D. degree in Aeronautics and Astronautics from
Purdue University in 1993. He held a Post-Doctoral
Research Associate position at Purdue University
(1994-1995), and faculty positions at Tokyo Tech
(1995-2000) and at the University of Virginia (2000-
2009), before joining the UCLA faculty as Profes-
sor of Mechanical and Aerospace Engineering. Dr.

Iwasaki’s current research interests include dynamics and control of animal
locomotion, coupled nonlinear oscillators, global pattern formation via local
interactions, and robust/optimal control theories and their applications to
engineering systems. He has received CAREER Award from NSF, Pioneer
Prize from SICE, George S. Axelby Outstanding Paper Award from IEEE,
Rudolf Kalman Best Paper Award from ASME, and Steve Hsia Biomedical
Paper Award at the 8th World Congress on Intelligent Control and Automation.
He has served as Associate Editor of IEEE Transactions on Automatic Control,
Systems & Control Letters, IFAC Automatica, International Journal of Robust
and Nonlinear Control, and SIAM Journal on Control and Optimization.




