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Orbital Stability Analysis for Perturbed Nonlinear Systems and
Natural Entrainment via Adaptive Andronov-Hopf Oscillator

Jinxin Zhao and Tetsuya Iwasaki

Abstract—Periodic orbits often describe desired state trajecto-
ries of dynamical systems in various engineering applications.
Stability analysis of periodic solutions lays a foundation for
control design to achieve convergence to a prescribed orbit. Here
we consider a class of perturbed nonlinear systems with fast
and slow dynamics and develop a novel averaging method for
analyzing the local exponential orbital stability of a periodic
solution. A framework is then proposed for feedback control
design to stabilize a natural oscillation of an uncertain nonlinear
system using a synchronous adaptive oscillator. The idea is
applied to linear mechanical systems and a design theory is
established. In particular, we propose a controller based on the
Andronov-Hopf oscillator with additional adaptation mechanisms
for estimating the unknown natural frequency and damping
parameters. We prove that, with sufficiently slow adaptation,
the estimated parameters locally converge to their true values
and entrainment to the natural oscillation is achieved as part of
an orbitally stable limit cycle. Numerical examples demonstrate
that adaptation and convergence can in fact be fast.

I. INTRODUCTION

Feedback control design to achieve oscillations is important
in many engineering applications. Such designs are useful
for repetitive motion control for industrial manipulators, and
have also been implemented in other tasks such as legged
locomotion [1], [2] and human assistive exoskeleton [3], [4].
In these applications, dedicated trajectory planning and high
gain servo tracking have been extensively used, as exemplified
by the output regulation theory [5]. The traditional method
allows for fast and precise motion, but the target trajectory
is fixed a priori. As a result, robotic devices driven by such
control algorithms are not adaptive nor compliant to varying
environment and may have high energy consumption [6].
Approaches based on shaping the zero dynamics [7], [8] allow
for adjustment of phase timing in response to disturbances, but
the target motion is still fixed as a manifold in the state space
specified by holonomic constraints.

During the past decades, compliant actuators have drawn
increasing attention of engineers in robotic fields since the
seminal work on series elastic actuators [9], which have dy-
namics analogous to muscles. This kind of robotic mechanism
is able to increase the efficiency by storing kinetic energy
as potential energy to be used for the next cycle, like their
counterpart, muscle, does in animal movements. Numerous
robots with compliant actuators have been developed. For
example, bipedal and quadrupedal robots driven by compliant
actuators achieve natural and energy-efficient walking motion
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[10]-[13]. Similarly, a tensegrity structure [14] has been used
[15], [16] for compliant actuation of a robotic fish to exploit
resonance for efficient swimming. Other applications include
lower-limb exoskeletons with built-in compliance [17], [18] to
perform safe and smooth movements. Thus, there is a trend in
the control of robots from highly stiff and precise trajectory
tracking towards soft and compliant motion exploiting the
intrinsic dynamics of the system to achieve high energy-
efficiency and natural movements.

Exploitation of natural dynamics is common in biological
control systems for rhythmic body movements. Resonance
is exploited to achieve high efficiency for instance in fish
swimming [19], walking and running [20], [21], and periodic
forearm motion [22]. Such movements are controlled by the
central pattern generator (CPG), which is a nonlinear oscillator
formed by neuronal circuits. CPGs have been shown to have
the ability to detect and tune into the mechanical resonance
[23]-[27]. The CPG mechanisms have been used for designing
bio-inspired controllers to achieve adaptive entrainment to a
natural mode of oscillations for mechanical systems [28], [29]
or provide assistive force to help human make oscillatory
movement [30]. Furthermore, learning methods have been
combined with the CPG to include explicit mechanisms for
frequency adaptation [31], [32], one of which is implemented
in a quadruped robot to exploit a resonance [33]. While the
CPG-based methods were found effective for certain cases,
no theoretical guarantee for convergence was provided. The
method of feedback resonance [34], [35] has convergence
proofs, but the control law is discontinuous and the system
is restricted to those with Rayleigh damping. Despite these
numerous attempts, it remains open to establish systematic
and effective control design methods for exploiting unknown
natural dynamics of general mechanical systems.

In this paper, we will first develop a general framework
for stability analysis and control synthesis for periodic orbits
of a class of perturbed nonlinear systems. Our approach is
based on linearization of the system around a periodic orbit
and Floquet analysis of the resulting linear periodic system.
A simple condition for orbital stability is developed, using
an averaging technique and perturbation analysis. A feedback
control architecture is then proposed to achieve a natural
oscillation for uncertain nonlinear systems. The controller is
based on a nonlinear oscillator that synchronizes with the plant
through weak coupling and slow adaptation mechanisms. The
control architecture yields the closed-loop system that fits the
analysis framework of perturbed nonlinear systems.

The framework is applied to a general class of uncertain
linear mechanical systems with multiple degrees of freedom



(DOF), and a method is proposed for designing a controller
to achieve exact entrainment to a selected mode of natural
oscillations with a theoretical guarantee for convergence. To
this end, we first develop an oscillator that synchronizes
with the external sinusoidal input, using the Andronov-Hopf
oscillator (AHO) as the basic structure with additional adap-
tation mechanisms to tune the frequency parameter. We then
modify the adaptive AHO to include a damping estimation
mechanism, place it in the feedback loop with a single-DOF
mechanical system, and show that the closed-loop system has
an exponentially stable limit cycle on which the natural oscil-
lation is achieved. Finally, we will extend the result for multi-
DOF mechanical systems. Although convergence is guaranteed
only when adaptation is sufficiently slow, numerical examples
demonstrate that the target orbit remains stable when the
perturbation parameters are large, and thus fast convergence
can be achieved.

Preliminary results of this article were presented at a con-
ference [36] without proofs. Here, the adaptation mechanisms
and stability conditions are much simplified and improved for
faster convergence. All the results are rigorously proven and
numerical examples are fully renewed for better illustration.

II. GENERAL FRAMEWORK

In this section, we consider a class of perturbed nonlinear
systems and develop a general framework for stability analysis
of periodic solutions as well as for their synthesis by feedback
control. We employ a classical approach (e.g. [37]) to separate
and average the slow dynamics in the neighborhood of the
periodic orbit, and provide a new condition for exponential
stability of the orbit in the limiting case. The technical tool
developed here will be used in later analyses.

A. Preliminaries

Let us first introduce two notions of stability.

Definition 1: Consider a dynamical system x = f(¢,x) and
a solution x = &, where both f(-,x) and £(-) are T-periodic.
The solution £ is said to be exponentially stable if there exist
positive constants c1, c2, and c¢3, independent of t,, such that

Ix(t) — £(@)]| < exllx(to) — E(to)lle= 20

holds for all ¢ > ¢, > 0, whenever ||x(t,) — &(to)]| < cs.
Suppose the system is autonomous, and define the orbit O
and the distance to O by

O:={&t)eR": teR}, d(x,0):=min|x—y].
ye0

The solution ¢ is said to be orbitally exponentially stable if

there exist positive constants ci, cs, and c3 such that
d(z(t),0) < d(z(0),0)c e 2

holds for all ¢ > 0, whenever d(z(0),0) < c.

Here, the stability of a solution x = ¢ is defined in accor-
dance with the stability of an equilibrium v = 0 of the new
system obtained by coordinate transformation v := x —¢. This
type of definition has been used for example in [38], p.314, and
[39], p.133. The above definition of orbital stability is standard
[39], [40]. The orbital exponential stability actually implies
existence of an asymptotic phase ¢ such that ||x(t) — &(t +¢)]
converges exponentially to zero ( [41], p.254, Theorem 11.1).

It is well known that the origin is an exponentially stable
equilibrium point of x = f(¢,x) (where f is not necessarily
periodic, but continuously differentiable and Lipschitz) if and
only if the origin is an exponentially stable equilibrium point
of the linearization around the origin ( [39], p.152, Theorem
3.13). As a corollary, a solution £ is exponentially stable if and
only if v = %(t, €)v is exponentially stable. When § and £ are
T-periodic, the solution ¢ is exponentially stable if and only
if all the Floquet multipliers of A(¢) := g)%(t,f) are strictly
inside the unit circle [42]. The orbital stability of £ can be
examined similarly. The periodic solution £ of x = f(x) is
orbitally exponentially stable if and only if all but one of the
Floquet multipliers of the linearized system v = %(5)\) have
magnitudes strictly less than one ( [40], Theorem 1.1).

B. Stability Analysis of Perturbed Nonlinear Oscillator

Consider a nonlinear system

x = f(x,y,t) + eh(x, y, t)

1
v =e9(x,¥,1) M

where (x,y) are the states, ¢ € R is a perturbation parameter,
and functions f, g, h are periodic in ¢ with period 7" > 0 (or
the system may be time invariant). We consider the case where
€ > 0 is small, and y slowly changes its value over time. The
variable x with fast dynamics and y with slow dynamics are
mutually coupled. Suppose the system has a T-periodic (or
constant) solution (X,,%,). The linearization of the system
(1) around the solution yields a linear periodic system

ﬂ _ [Al(t) +eBi(t) As(t) —l—aBg(t)} N R

y eCi(t) eCa(t) ]
where
X =X—Xo» Y:=Y— Yo,
_ of _ oh _ @
Al(t) - &7 Bl(t) 8X’ 1(t) - 8X7
_of ~ 0Oh ~0dg
AQ(t) - 87y7 Q(t) aya Q(t) oy’

with the partial derivatives evaluated at (x,, Yo,t). Note that
all the coefficient matrices are T-periodic.

The solution (X,,¥,) is exponentially stable if and only
if the linear periodic system (2) is exponentially stable .
However, exponential stability of the linear system is not
required for orbital exponential stability of (xo,¥,). In fact,
(2) can never be exponentially stable if the original nonlinear
system (1) is time-invariant and the solution is not constant
since (X,9) = (Xo,Yo) is a solution of the linear system
not converging to the origin. In this case, the non-convergent
mode can be isolated by a coordinate transformation and
then orbital exponential stability of (x,,¥,) is implied by
exponential stability of the remaining part of the system. This
idea was used in [43] for a coupled oscillator problem, and
will also be used later in this paper for the natural entrainment
problem. The reduced system turns out to have the same form
as (2). Thus, for both stability and orbital stability of periodic



solutions (or equilibria), a fundamental problem is the stability
analysis of the linear periodic (or time-invariant) system of the
form (2).

A general method for analyzing stability of linear periodic
systems is to use the Floquet multiplier. While computing the
Floquet multipliers is straightforward, the analysis is numerical
and the method is not suitable for analytical development of
design conditions for guaranteed stability. Here we propose an
alternative method for stability analysis exploiting the structure
of the linear periodic system.

A simple stability condition is obtained if the two variables
(X, 9) in (2) are decoupled. Consider a linear transformation

G- <

where L. (t) is a matrix-valued differentiable function of time,
depending on the perturbation parameter . Let us choose
L.(t) such that

Lo(t) = A1(t)Lo(t) + Ax(t) + eG(t, L(1)), @)
where

G(t,X) = Ba(t) + B1(H) X — XCs(t) — XC1(t) X. (5)
Then the system can be described as

wl A1) 0 w ©)
y]  [eCi(t) e(Ca(t) + Cr(DL(D))] |9
where the (1,2) block of the coefficient matrix is made equal
to zero by the choice of £.(t), and

Ai(t) i= Ay (t) + e(B(t) — Lo (£)C1(2)).

Now the original linear periodic system (2) is transformed into
system (6), where the fast dynamics w is decoupled from the
slow dynamics gy. With the help of the separation, we can
examine stability of the original system (2) by analyzing the
two subsystems associated with w and y. Furthermore, when
le] is sufficiently small, we may approximate .4; by A;, and
L. by L, satistfying

Lo(t) = A1(t)Lo(t) + Az(2). (N
This idea leads to the following result.

Lemma 1: Consider the linear 7T-periodic (or time-
invariant) system (2), where all the coefficient matrices are
continuous and bounded functions of time. Suppose there
exists a solution £,(t) to (7) that is T-periodic or constant,
and define

B:= (Ca(t) + C1L(t)Lo(t))dt. ®)
If the systentl) & = A;(t)x is exponentially stable and B is Hur-
witz, then there exists € such that system (2) is exponentially
stable for all € € (0, &).

Proof: For each ¢ > 0, let L.(t) be the solution to (4)
with initial condition £.(0) = £,(0), and define A_(t) by

Lo(t) = Lo(t) + eAc(t). ©

By Lemma 3 in the appendix, there exists £, > 0 such that
L. and A. with ¢ € (0,&1) are bounded and continuously

differentiable when & = A; (t)x is exponentially stable. Then,
through the Lyapunov transformation introduced in (3), two
systems (2) and (6) are equivalent when ¢ € (0,&1). The
stability of system (6) depends on two separate systems

W = (Al(t) +e(Bi(t) — Es(t)C’l(t))>w,

5= 6(02(15) n Ol(t)ﬁe(t)>g. (11)

Based on Lemma 4 in the appendix, there exists £2 such
that system (10) is exponentially stable for all € € (0,&5)
due to exponential stability of A;(¢) and boundedness of the
perturbation term multiplied by €. The system (11) can be
rewritten as

= 5(6’2(1&) L OV () Lo(t) + 20 (t)AE(t))g.

By Lemma 5, there exists &5 > 0 such that system (12) is
exponentially stable for all € € (0, &3) since B in (8) is Hurwitz
and C7 and A, are bounded. [ |

(10)

(12)

C. Control Design for Stable Oscillation

We propose a feedback control design framework based
on the above analysis to achieve a desired oscillation as an
orbitally stable limit cycle of the closed-loop system. Consider
the nonlinear plant described by

(=p(Cw), z=q(Q),

where ( is the state, u is the control input, and z is the output.
Suppose a state feedback control u = 7((, 6) makes a given
periodic trajectory ( = (, a (not necessarily stable) solution
of the closed-loop system, where 6 is a vector of the plant
parameters on which the control law depends. The objective is
to design an output feedback controller so that the closed-loop
system has a stable limit cycle on which { = (, is achieved.
A complication is that the value of 6 is unknown.

An approach is to use the control architecture based on a
synchronous adaptive oscillator:

u=r(s(z),y).

The function o is chosen so that © = o(x,0) is a nonlinear
oscillator with an orbitally stable limit cycle x = =z, to
generate the target oscillation by (, = s(z,). The function ¢
couples the plant and the oscillator to achieve synchronization,
x(t) = zo(t+a) with a = 0, when z = ¢((,) and y = 6. The
function ¢ vanishes on the target orbit g(z,,¢({,)) = 0 and
defines an adaptation mechanism that makes y converge to 6
by detecting the error y # 6 through (z, z) # (z,, ¢(())-

The closed-loop system takes the form (1) with x :=
col(¢,z) and orbital stability of the target limit cycle
(¢, x,y) = (o, To, ) can be analyzed using Lemma 1, where
the small parameter ¢ yields slow adaptation and facilitates
the convergence analysis. In the following sections, the general
framework for orbital stability analysis and synthesis described
here will provide a helpful guidance for designing an adaptive
oscillator and natural entrainment controller for linear mechan-
ical systems.

z =o(z,y) +ec(x,2), v=cg(x,z2),



III. ADAPTIVE OSCILLATOR
A. Problem Formulation

We first consider, as a basis for later developments, the
problem of designing an oscillator that synchronizes to an
external periodic signal in an adaptive manner. In particular,
the system to be designed comprises a nonlinear oscillator and
an adaptation mechanism that dynamically modifies oscillator
parameters based on the periodic input. The trajectory of the
adaptive oscillator will converge locally to a periodic orbit on
which one of the oscillator variables is synchronized with the
periodic input, and the adaptation variables are constant with
values at the frequency and amplitude of the input. A formal
statement of the problem is the following.

Problem 1: Let z(¢) be a T-periodic sinusoidal signal

z(t) = asin(wt) (13)

where a,w € R are unknown amplitude and frequency, and
T := 27 /w. Design an adaptive nonlinear oscillator

t=f(x,y,2), y=g(y2), v=h(z), (14)

where (z,y) € R™ x R™ is the state vector, and v € R is the
output signal, to satisfy the following specifications:
(i) There exists an exponentially stable solution (x, ) to (14)
such that

z(t)y=2(t+T), y(t)=col(w,a),

v(t) = z(t).

(i) The oscillator dynamics f, g, and h are independent of
the signal parameters (w, cv).

B. Approach

Our approach to solve Problem 1 is to exploit the structure
of the Andronov-Hopf oscillator with additional adaptation
mechanisms. The AHO is a simple planar nonlinear oscillator,
in which every nontrivial trajectory converges to a single limit
cycle. The orbit in the state space is circular, and the time
courses of the state variables are sinusoidal. The amplitude and
frequency of the oscillation are directly specified by certain
model parameters. More specifically, AHO is described as

a1 e [ ]
i—a3)

—w o(x1,22)
o(x1,22) = plo — 21 — a3

where x;(t) € R for i = 1,2 are the states, ¢ and w are
the amplitude and frequency parameters, respectively, and
> 0 specifies the convergence rate. When o is zero, the
AHO is a linear (undamped) oscillator. The nonlinear function
o provides positive/negative damping when the oscillation
amplitude 22 + z3 is larger/smaller than p. In particular, the
origin is globally exponentially stable when o < 0, and as
o transitions to a positive value, a Hopf bifurcation occurs
at 0 = 0 and a stable limit cycle of amplitude |z| = /o0
emerges. Precise analysis is rather simple. Introducing the
polar coordinates

xp | |rsinf
zo | |rcos@|’

5)

(16)

system (15) is expressed as

7= (o —r?)r, 6 = w.

It is then easy to see that the amplitude r(¢) will converge
to zero if o < 0, or otherwise to +« unless 7(0) = 0 where
« := /o, and the phase 0(t) is given by 0(t) = wt + 6(0).
Thus, when p > 0, the sinusoidal trajectory
r1 | _ |osinwt
[ T } o [acoswt]
is an orbitally exponentially stable solution of the system (15).
We design an adaptive oscillator using the AHO as the
starting point. Since w and « are unknown in Problem 1,
we replace (w, «) in (15) with (y1,y2) as the variables to be
adjusted so that they converge to the frequency and amplitude
of z. A natural choice for the output is ¢ := z1, and we
drive the AHO by the error z — x; to achieve synchronization

q = z. Overall, we add the following adaptation mechanism
to the dynamics of Andronov-Hopf oscillator:

R I o R e
1 = nra(z — 1), (17b)
go = K(2% + a3 — y3) (17¢)
o= ply; — 2 —z3), (17d)

where 7,7, k, 1 € R are positive constants, and (z1, Z2, Y1, Y2)
are the states of the oscillator. It is designed such that x4 (¢)
synchronizes with the signal z(t), while (y1, y2) converges to
(w, @). The parameters p and ~y specify the convergence rates
of the oscillation amplitude and synchronization, and 7 and &
specify the rates of adaptation of frequency and amplitude.

The idea behind the adaptation mechanism is as follows. It
is easy to verify that, if y1(¢) = w and p = 0 in (17a), then
the linear system driven by the error signal converges to a
sinusoidal trajectory on which x; = z. It turns out that the con-
vergence property is maintained when the nonlinearity in the
AHO becomes active (i.e., & > 0), provided y»(t) = a. The
mechanism in (17¢) increases/decreases the estimated ampli-
tude y> when the actual amplitude /22 + z3 is larger/smaller
than the current estimate y,. Finally, the mechanism in (17b)
increases/decreases the estimated frequency y; when the phase
of x; is behind/advance with respect to z. In particular, with
z in (16), we have

To(z — 21) = —(acoswt)?p + O(p?), ¢ :=0—uwt,

provided the amplitude is correct; r = «. Thus, assuming the
phase difference |¢| is small, y; is positive/negative when z
is ahead/behind of x1, which causes an increase/decrease of
y1 and acceleration/deceleration of z;. Eventually, z and x;
will have no phase difference and synchronize. These intuitive
ideas are rigorously verified to work in the next subsection.

C. Result

The following theorem provides a formal statement of a suf-
ficient condition for synchronization of the adaptive oscillator.



Theorem 1: Consider the adaptive oscillator (17) is con-
nected with a sinusoidal signal (13). Suppose v,7n,x € R are
positive and ;1 € R is nonnegative. Then there exists £ such
that the state trajectory

(21, 22,91, y2) = (asin(wt), @ cos(wt), w, a) (18)

is exponentially stable whenever 7, x, 1 are smaller than &.

Proof: Tt is straightforward to verify that the signal in
(18) is a solution of the system. Let the small parameters be
expressed as

[0k wl=c[n R/4 A/4]

with small € > 0. Introducing the perturbation variables

T1=x1—as, J1:=y —w, §:=sin(wt),
To:=x9 —ac, Yo:=ys —a, c:=cos(wt),
the linearized system is given by
LLC . Al + €Bl A2 + EBQ 7
- 601 802 ’
where
—y w ac 0
A1 AQ L —Ww 0 —QS 0
Cl 02 o —’170&0 0 0 0 ’
0 kac| 0 —Ra
2
.~ o] 8 sc|0 =s
[B1 B ]:= ’ua[sc CQO—C:|.

It is easy to verify that A; is Hurwitz, and the periodic solution
L, to

L,= AL, + Ay

exists and is given by
L, = R[Loe™"],
,éo = (]WI - Al)_lAQ = —

Noting that

and B is Hurwitz, we conclude the result. [ |

Theorem 1 provides an approach to design the oscillator
dynamics to adaptively synchronize with an external sinusoidal
signal. Synchronization is asymptotically achieved as long as
the adaptation of the frequency and amplitude variables is
sufficiently slow. Moreover, the system is designed to sustain,
after the convergence, the oscillation in a stable and au-
tonomous manner without the input (i.e., ¥ = 0), and therefore
the process can be seen as learning of a training periodic
signal by a nonlinear oscillator. For practical purposes, the
convergence rate can be made fast by adjusting the adaptation
parameters 7, £ and p. A numerical example in Section VI

illustrates this point in comparison with an existing method.
Noting that ¢ = 0 is a valid choice for the design, the
nonlinearity o is not essential for the convergence property
of the adaptive oscillator. However, it will play a crucial role
when we extend the result to consider a feedback control
problem in the next section.

IV. ADAPTIVE NATURAL ENTRAINMENT
A. Problem Formulation

We consider a single degree-of-freedom mechanical system
with unknown parameters and develop a method for designing
a feedback controller to achieve the natural oscillation of
the system. The control architecture is based on the adaptive
oscillator described in the previous section. The single-DOF
result provides a comprehensive explanation of the idea for
closing the loop and embedding an exponentially stable limit
cycle in the state space, and sets a stage for multi-DOF
extension in the next section.

Let a mechanical system be given by

mi+di+kz=u, (19)

where m,d,k € R are positive parameters representing the
mass, damping and stiffness, u(t) € R is the force input from
an actuator, and z(t) € R is the resulting displacement. The
natural oscillation of the system is defined as

w:=+k/m,

where w is the undamped natural frequency of the system,
and « € R is the amplitude of z,. Let T := 27w /w be the
natural period.

We aim to design a feedback controller that achieves local
convergence of z(t) to z,(t + ¢) in the steady state, where
the oscillation amplitude « is assigned by the controller while
the constant ¢ depends on the initial state of the closed-loop
system. In addition, we would like the controller to be adaptive
in the sense that the controller meets the objective with no
information of the system parameters m, d and k. A formal
statement of the design problem is as follows.

Problem 2: Let a mechanical system in (19) and a positive
scalar a € R be given, and consider the natural oscillation z,
defined in (20). Design a feedback controller of the form

zn(t) = asin(wt), (20)

i:f(xayaz)a yzg($,2), u:h(xay)v

where (z,y) € R™ x R™ is the state vector, to achieve the
natural oscillation with amplitude « in the steady state. In
particular, the design specifications are the following:

(i) There exists an orbitally exponentially stable solution
(z,v, 2, 2) of the closed-loop system such that

x(t)=z(t+T), y(t)=col(w,d),

Z = Zy.

(ii) Functions f, g and h specifying the controller are inde-
pendent of the system parameters m, d, and k.
This is an adaptive natural entrainment problem where a
controller is sought to adaptively achieve entrainment to the
natural oscillation. The adaptation variable y should estimate



all the unknown system parameters necessary for the natural
entrainment, and it turns out that estimation of the natural
frequency w and the damping coefficient d is sufficient for
the purpose as explained in the next section.

B. Approach

The basic idea for solving Problem 2 is the following. When
the control objective is met, the natural oscillation z = z,, is
achieved for (19). This necessitates ©u = dz,, in the steady
state. To make this happen, the first step is to drive the AHO
by mechanical variable z and add an adaptation mechanism
so that the parameter w is adjusted in real time and converge
to the natural frequency w of the mechanical system when
z = z,. The second step is to add another mechanism to
estimate the mechanical damping d, and close the loop by
setting the control input u to compensate for the damping.

These two steps are accomplished by placing the adaptive
oscillator (17) in the feedback loop, with modifications to
estimate d and generate u. In particular, we consider the
following AHO based feedback controller

b A R e
U1 = nz2(z — 11), (21b)
y2 = k(a® — 2% — z3) (21c)
U= Toy1y, 0= p(a® -z —23), (214d)

where 7,7, k, u € R are positive constants, and x1(t) through
y2(t) are the states of the controller. The controller (21) turns
out to solve Problem 2, achieving entrainment to the natural
oscillation of (19). The controller is designed so that x; and
2o synchronize with the plant states z and Z/w, respectively,
while y; and y» estimate the natural frequency w and damping
coefficient d, respectively. The parameters y and p specify the
rates of convergence for the amplitude and synchronization,
and n and k specify the rates of adaptation for frequency
and damping, respectively. The underlying mechanism can be
roughly explained as follows.

First, (21a) and (21b) form an adaptive oscillator with a
frequency estimator similarly to the previous development.
If z(t) oscillates sinusoidally with frequency w and ampli-
tude «, (21a) stably generates sinusoidal signals (z1,z2) =
(asin(wt), acos(wt)) so that x; = z, while (21b) makes
y1 converge to the natural frequency w. In this case, the
control input in (21d) is u = y22. Based on (21c), the
variable yo estimates the damping coefficient and converges to
d by the following mechanism. If ys is larger/smaller than d,
then system (19) under the control input has negative/positive
damping, leading to larger/smaller amplitude of oscillation. If
the amplitude becomes larger/smaller than «, the dynamics of
(21c) decrease/increase the estimated damping y». Hence ys
is regulated around the value d. In this case, the control input
is u = dz. From (19), we see that z satisfies mZ + kz = 0
and therefore oscillates with natural frequency w.

C. Result

The following theorem presents a formal statement of the
result and gives a sufficient condition for entrainment to the
natural oscillation.

Theorem 2: Consider mechanical system (19) and the feed-
back controller given by (21). Suppose the plant parameters
m, d, k and controller parameters «, (i, 7y, 7, & € R are positive
constants. Then

COl(Z, 271'1,1'2, y17y2)

. . (22)
= col(zn, 2, asinwt, a cos wt, w, d)

is a solution of the closed-loop system. Moreover, there exists
€ > 0 such that the solution is orbitally exponentially stable
whenever v, 7, and « are smaller than &.

Proof: Tt is easily verified that (22) is a solution of the
closed-loop system. Let normalized controller parameters be
defined by

€ [’y i Fc] = [’y na? 2na2w], i = 2pa’.

Orbital exponential stability will be proven for the case where
v, M, K, and [ are arbitrary positive constants and € > 0
is sufficiently small. Using the polar coordinates and error
variables
x1 =rsinf,
T9 =1 cosb,

€1 = zn — 1,
€ = Z, — W3,
define a new state vector (6,¢) with
& = col(r, eq, ea, ay1, awys).
The trajectory (22) can then be given by
0 = wt,

& = col(a, 0,0, aw, awd). (23)

Linearizing the closed-loop system around the solution (23),
the resulting system is

[g = [8 g] [g , §~: col(7, e1, e2, a1, Awio)

where the variables with tilde are the perturbations from (23),
eg.,T:=r—q,and

b=1[0 7 0 1 0]/«

s := sin wt,

o A1 + EBl Ag
X = { eCq 0 } ’ ¢ := cos wt, (24)
— [ 0 0
[L 0 1
Ay L ~,U“9 —=? —d
C = | jwc w ,
! 0 e 0
-k —ks 0
0 4s 0 0 0
[ Bl A2 ] = 0 7’7/ 0 —C 0 y
0 0 O|ws+de c

Thus, solution (22) is orbitally exponentially stable if and only

if the system £=¢is exponentially stable . We use Lemma 1
to prove the stability. Noting that A; is block triangular, it is



easy to see that it is Hurwitz. To show that B is Hurwitz
as well, note that (7) is an exponentially stable linear time-
invariant system driven by a sinusoidal input, and the steady
state solution is easily obtained as

1 0 0
L, = - —2we s |,
X *

where * denotes irrelevant entries. We can then calculate BB as

B=/0T01ﬁodt:_€ [ ﬁ(/)d f%/(?ﬂd) }

which is clearly Hurwitz. ]

Theorem 2 guarantees orbital exponential stability of the
natural oscillation when the control gains are sufficiently
small, which yields slow adaptation of the estimated parame-
ters. However, the gains can in fact be large for fast adaptation,
and may be tuned as follows for practical purposes. First, fix
a positive constant 7,, let v = €7, for a positive parameter
€, and set n and x similarly. Starting with a small €, run the
closed-loop experiments for gradually increasing values of ¢
and search for the maximum rate of convergence.

If a more systematic approach is preferred, one can perform
model-based analysis using estimates of damping d and natural
frequency <, obtained for instance from an experiment with a
small e. First, calculate the maximum Floquet multiplier, Ay,
for the linear periodic system £ = ¢ with (d, &) in (24). That
is, Ay is the eigenvalue of ®(7') with the largest magnitude,
where ® = ¥®, ®(0) = I, and T := 27/<. This should
yield |[Ay| < 1 for orbital exponential stability when € is small.
Increase e and repeat the calculation until |y < 1 is violated
(denote the largest value by €). Then an upper bound for ¢ is
given as the smallest of €v,, €n,, and €x,. For the control
design, one may choose ¢ € (0, €) that gives the smallest | Ay
for the fastest convergence. However, the domain of attraction
for the natural oscillation may shrink with increasing e, which
would be another consideration for the design. This issue is
illustrated by an example in Section VI-B.

V. EXTENSION TO MULTI-DOF SYSTEMS
A. Problem Formulation

In this section, we consider an extension of the result in the
previous section to multi-DOF mechanical systems. Let the
mechanical system be given by

MGi+Di+Kq=w (25)

where ¢(t), w(t) € R™ are generalized coordinates and force
inputs, and M, D, K € R™*"™ are system parameters repre-
senting the mass, damping and stiffness. We assume that M,
D, and K are positive definite.

Consider a natural mode of oscillation
qa(t) = cesinwt (26)

defined by the amplitude parameter & € R and a pair of
generalized eigenvalue/eigenvector (A, e) € R™ x R satisfying

(AM —K)e=0, e'Me=1,

where @ := /) is a natural frequency, and e is the associ-
ated mode shape, with the second equation normalizing the
magnitude of e. Since M and K are real symmetric positive
definite, both e and \ are real, and A > 0.

The objective is to achieve entrainment to the arbitrarily
chosen mode of natural oscillation in (26) by a nonlinear
feedback controller without full knowledge of the mechanical
parameters. In particular, we assume that the system param-
eters are unknown except for e and M. While M can be
estimated fairly accurately in practice, the knowledge of e may
not be fully justified but is required in the result that follows.

We will formulate a control design problem in the modal
coordinates. Define a square matrix £ € R"*" so that

E=[e x|, EME=I,

where * represents unspecified entries. Then the original
system can be transformed into the form

24+ Vi+Az=u, 27)
where z(t) € R™ are the modal coordinates and

q=Fz, w=MEFEu

V:=FE'DE A:=E'KE = diag(w?,Q),
The natural oscillation of z corresponding to (26) is

z4(t) = col(asin wt, 0). (28)

Now, the problem is reduced to the design of a controller that
generates control input u using the sensory information of z.

Our goal is to design a controller that can achieve orbital
exponential stability of z = z;. We seek an adaptive controller
that meets the objective with no information of the system
parameters A and A. Note that the natural oscillation z = zg4 is
a solution of (27) if and only if the control input compensates
for the damping as

u=Vzt) = [zﬂ aw cos wt,

where the partitioned blocks of V are defined by

v_ d o7 deR, 6eR* I
s Al AER("_DX("_D.

Since V and A are unknown, the controller should be capable
of estimating d, § and .
The formal problem statement is given as follows.
Problem 3: Let a mechanical system in (27) with positive
definite (V,A), and a positive scalar « € R be given, and
consider the natural oscillation z4 defined in (28). Design a
feedback controller of the form

l.':f(l',y,z), y:g(xaz)7 uzh(x,y),

where (z,y) € R™ x R™ is the state vector, to achieve the

natural oscillation with amplitude « in the steady state. In

particular, the design specifications are the following:

(1) There exists an orbitally exponentially stable solution
(x,y, 2, 2) of the closed-loop system such that

z(t)=z(t+T), y()=col(w,d,d), z=z4



(i) Functions f, g and h specifying the controller are inde-
pendent of the system parameters V and A.

B. Approach

The idea for the control design is a direct extension of
the single-DOF case in the previous section. We propose the
following controller as an extension of (21):

S 1 Rl R
I = nre(z1 — x1) (29b)
go = K(a? = 2{ — x3) (29)
Y3 = =Kz, (29d)
u= [zi] nxe, o =p(a® — a2 —ad), (29¢)
where ~,7n,k, 0 € R are positive constants, K €

R(=1x(n=1) js a symmetric positive definite matrix, z;(t) €
R and z3(t) € R"! are defined by z = col(z1,22), and
z;(t),y;(t) € R are scalar variables for + = 1,2 and
ys(t) € R™!. Equations (29a)-(29¢) and the first entry of
u in (29e) are identical to (21a)—(21c) when z; is replaced
by z. Hence, variables (yi,y2) estimate (w,d), and (x1,x2)
locally converges to the orbit («sinwt, a cos wt), provided
zo = 0. The rationale for the remaining part of the controller
is explained below.

The additional variable y3(¢) in (29d) is introduced as an
estimate for §. To see how it works, consider the situation
where the trajectory is on the target orbit, i.e. y; = w, 1 =
z1 = asinwt, and x5 = « cos wt, except for nonzero errors
in y3 — & and z5. The z5 dynamics can be described as

Zo + Ay + Qzg = (y3 — 5).131 30)

If ||X|| is sufficiently small, y3 can be regarded as constant
and zo is a sinusoid. Then the dynamics of g3 in (29d) is
approximated as

17 e
Ys ~ _T/O KZQ.rldt = —ﬁ/o' fKZQiCldt, (31)

where the latter equality holds since z5 and x; are sinusoids
of frequency wo. Multiplying (30) by 2] from left, taking the
average over the cycle, and using (31), we have

T
(y3 — 5)T/ Zg.i‘ldt
0
~ —w?T(ys — 6)" K (ys — 9)
2T d 1
- — /2 o 2
== (1572 (g = )]2).

Thus the derivative of || KX~1/2(ys — 8)|| is negative, making
y3 converge to 6. When y3 = 9, the second entry of u in (29¢)
decouples 25 from z1, achieving convergence of z5 to zero due
to the inherent stability of the mechanical system.

C. Result

The following theorem gives a sufficient condition for
entrainment to the desired natural oscillation.

T
0</ Z;Aszt =
0

Theorem 3: Consider mechanical system (27) and the
controller given by (29). Suppose V and A are symmetric
positive definite, and «, i, y,n, k< € R are positive constants
and K € RO=Dx(n=1) j5 a positive definite matrix. Then

col(z, 2,1, T2, Y1, Y2, Y3)

32
= col(zq4, 24, asin wt, o cos wt, w, d, J) (32)

is a solution of the closed-loop system. Moreover, there exists
€ > 0 such that the solution is orbitally exponentially stable
whenever 7,7, £ and ||X|| are smaller than &.

Proof: The framework for the proof is roughly the same
as the single-DOF case, with some additional complication due
to the extra degrees of freedom. With the normalized controller
parameters

€ [’7 n R] = h na’ QKQZW] , eX = a’wiX,
fi = 2pa?,

we prove orbital exponential stability for the case where 7,

7, kK, and i are arbitrary positive constants, K is an arbitrary

positive definite matrix, and € > 0 is sufficiently small. Let us

introduce a coordinate transformation and a new state vector
(0,¢) where

6 = C01<T7 €1, 22, €2, 2327 ayy, dwy2, aw%)-

x1 =rsinf,
T9 =1 cosb,

€1 =21 — T,
€y = 21 — Wx2,

The trajectory (32) in the new coordinates is given by

0 = wt
¢ = col(,0,0,0,0, aw, awd, awwd).

Linearization around the solution (33) yields

-k 40,

5 = COI(F7 €1, %2, €2, 225 agla awg27 aw?j?))

(33)

where the variables with tilde are the perturbations from (33),
e.g., Y1 :=y1 — w, and

b=1[0 v 0 0 0 1 0 0]/«

5 {Al +¢eB; A2:| s := sin wt,
eCt 01’ ¢ := cos wt,
) 0 0 0 ]
s 0 0 1 0
0 0 0 0 1
Ay | fie  —w? 0 —d —=4J
[Cl]': 0 0 -0 -5 -A|°
0 @ 0 0 0
—k  —Fks 0 0 0
L 0 0 —-Xs 0 0
0 s 0 0 O 0 0 O
0 - 0 0 O —c 0 0
[31 Ag] =10 0 0 0O 0 0 0
0 0 0 0 O|ws+dec ¢ 0
0O 0 0 0 O dc 0 cf



Thus, solution (32) is orbitally exponentially stable if and only
if the system é = Zé is exponentially stable .

From Lemma 1, orbital exponential stability is shown if the
dynamics of A; and B are both exponentially stable . First
note that A; (¢) has a block-triangular structure with a negative
number on the first diagonal entry and the second diagonal
block is constant and Hurwitz due to stability of plant (27).
Thus the linear periodic system with A;(¢) is exponentially
stable. Next note that the periodic solution to (7) has the form

[0 0
Lo=|Mi|s+ |Ni|c (34)
| Mo Ny
Let As and C; be expressed as
[0
Ay = Qe , C1=[R1 Rys+Rsc 0],
| Q2c+ Q3s

with appropriate coefficients ); and R;. Substituting (34) into
(7), setting the coeffi