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Accurate prediction of fundamental band gaps of crystalline
solid-state systems entirely within density functional theory is a
long-standing challenge. Here, we present a simple and inexpen-
sive method that achieves this by means of nonempirical optimal
tuning of the parameters of a screened range-separated hybrid
functional. The tuning involves the enforcement of an ansatz that
generalizes the ionization potential theorem to the removal of
an electron from an occupied state described by a localized Wan-
nier function in a modestly sized supercell calculation. The method
is benchmarked against experiment for a set of systems ranging
from narrow band-gap semiconductors to large band-gap insu-
lators, spanning a range of fundamental band gaps from 0.2 to
14.2 electronvolts (eV), and is found to yield quantitative accu-
racy across the board, with a mean absolute error of ~0.1 eV and
a maximal error of ~0.2 eV.

density functional theory | band gap | optimal tuning

he fundamental band gap of a semiconductor or insulator,

defined as the difference between the ionization potential
and the electron affinity of the material, is an essential mate-
rial property. However, predicting it from first principles using
density functional theory (DFT) has proved to be challenging (1,
2). The Kohn-Sham (KS) lowest unoccupied-highest occupied
eigenvalue gap cannot be equated with the fundamental gap even
if the exact (and generally unknown) exchange-correlation func-
tional is used (3, 4). This is because the KS potential features a
discontinuity (known as the derivative discontinuity) as the num-
ber of electrons crosses integer values (5), which results in a dif-
ferent reference potential for electron removal and addition and
therefore typically causes KS eigenvalue differences to underes-
timate the fundamental band gap by as much as 50% (6-8). In
some cases, the discrepancy can be larger and even lead to the
spurious prediction of a metallic state (9, 10). For finite systems,
despite this eigenvalue discrepancy one can still calculate accu-
rate fundamental gaps from total energy differences between the
cation, neutral, and anion systems (11). For solid-state systems,
the subject of this work, this total energy differences approach
would work for the exact exchange-correlation functional. How-
ever, it fails for functionals without a derivative discontinuity, for
which delocalization of the KS orbitals causes the total energy
difference to converge with increasing system size to the KS
eigenvalue difference rather than to the true fundamental gap
(12-18).

Many DFT-based strategies for obtaining the fundamental
band gaps of solids by going beyond the KS scheme have been
proposed over the years, e.g., refs. 17-46. However, two out-
standing issues remain. One is achieving a level of accuracy that
is on par with that of experiment (~0.1 electronvolts [eV]) for a
wide range of materials, from narrow band-gap semiconductors
to wide band-gap insulators. For example, the Heyd-Scuseria—
Ernzerhof (HSE) functional (47), a short-range hybrid, is one
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of the best functionals at predicting band gaps for semiconduc-
tors, but it underestimates the band gaps of insulators by as
much as several eV, e.g., predicting a band gap of 6.4 eV for
MgO and 11.4 eV for LiF (48). The other remaining issue is
to predict the band gap nonempirically within a formally exact
framework. Experience shows that if this is achieved, signifi-
cant improvement in the prediction of other material properties,
from defect energetics (49) to optical absorption (50, 51), is also
achieved. Here, we show that both these issues can be resolved
simultaneously, by overcoming the derivative discontinuity limi-
tation within the rigorous framework of generalized Kohn—Sham
(GKS) theory. This is achieved by nonempirical, system-specific,
optimal parameter tuning of a screened range-separated hybrid
(SRSH) functional, based on enforcement of an ansatz gen-
eralizing the ionization potential (IP) theorem to the removal
of an electron from an orbital corresponding to a Wannier
function.

Theory

Our starting point is the SRSH functional (52), which mixes a
fraction of exact exchange and semilocal exchange, as in a stan-
dard hybrid functional (53, 54), but with a generally different
fraction used in the short range and in the long range. This is
accomplished by partitioning the exchange part of the Coulomb
interaction using the identity
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where the first and third terms are treated with exact exchange
(xx) and the second and fourth terms are treated with (semi)local
KS exchange (KSx)." « is then the fraction of short-range
(SR) exact exchange, i the fraction of long-range (LR) exact
exchange, and v the range-separation parameter that determines
the transition from short to long range with increasing r, where r
is the interelectron coordinate. The SRSH exchange-correlation
functional is then given by

B (0,7, €00)=aEge " + (1 — a) BRay +
1 1
E—EXLXR”JF <1 - E—)E{;Q‘X’HEKSC,

oo

[2]

where KSc denotes (semi)local KS correlation.

The SRSH functional has several advantageous features. First,
being a (range-separated) hybrid functional, it is a special case
of the rigorous theoretical framework provided by GKS theory
(56-59). Therefore, self-consistent exchange-correlation poten-
tials and kernels can be obtained in a straightforward manner
by taking appropriate derivatives. Second, by setting e to the
orientationally averaged high-frequency (ion-clamped) dielectric
constant, the functional possesses the correct average long-range
dielectric screening (25, 52). This is known to be an important cri-
terion for producing accurate band gaps (25, 31, 32, 37, 38, 41, 46,
52, 60-63), optical absorption spectra (55, 61, 63-67), and defect
energy levels (60, 68). Third, the short-range exact exchange
fraction, «, can be chosen to balance exchange and correlation
effects and mitigate self-interaction errors in the short range (47,
69, 70). Here, we use semilocal exchange and correlation compo-
nents based on the Perdew—Burke-Ernzerhof (PBE) functional
and adopt the default value of o = 0.25, as in the hybrid (PBEO)
(54, 71) and short-range hybrid (HSE) (47) functionals.

With values for a and e defined uniquely, the only parame-
ter left undetermined is the range-separation parameter, ~. For
finite systems, v can be optimally tuned, i.e., determined from
first principles based on the satisfaction of physical criteria (58,
72). This has typically been achieved by selecting ~ to satisfy
the IP theorem, sometimes also known as the DFT version of
Koopmans’ theorem or as the generalized Koopmans’ theorem
(5, 73-75). It states that for the exact (G)KS functional

eh,o:E(N)fE(Nil)th [3]

where €5, is the highest occupied eigenvalue, E(N) is the
ground-state total energy of the system with N electrons,
E(N —1) is the ground-state total energy of the system with
one electron removed, and [ is the ionization potential. For
finite systems, deviation from the IP theorem is equivalent
to a missing derivative discontinuity, A,., in the approximate
exchange-correlation functional (compared to the exact func-
tional) (76), such that €5, + I ~ 22 (7). Within the GKS frame-
work, the presence of a Fock-like operator “absorbs” some of
the derivative discontinuity, such that each parameterization of
the Fock-like operator in a hybrid functional implies a differ-
ent derivative discontinuity in the exact remainder multiplicative

*This is equivalent to the more compact representation in previous papers (55), where
the xx and KSx terms are combined and oo + 8 =1/€co-

20f8 | PNAS
https://doi.org/10.1073/pnas.2104556118

functional (56, 77). Choosing + to satisfy the IP theorem is there-
fore tantamount to selecting a functional form with a negligible
missing derivative discontinuity; i.e., there is no derivative dis-
continuity in the exact functional that the approximate functional
needs to capture. This means that the exact GKS eigenvalue
gap will equal the fundamental gap for that system (18, 58, 72).
Furthermore, a generalized Kohn-Sham scheme that yields an
eigenvalue gap equal to the true fundamental gap will also yield
the correct fundamental gap from total energy differences (18).

While the above method, known as the optimally tuned range-
separated hybrid (OT-RSH) functional approach, has been very
successful for determining the fundamental gap in molecules (58,
72, 78-82), it is not generally helpful for determining the band
gap in solids. Due to the delocalized nature of the orbital corre-
sponding to €, in solid-state systems, the IP theorem is trivially
satisfied for all parameterizations of the Fock operator, regard-
less of whether the corresponding exact remainder functional
has a derivative discontinuity or not (14-17). Therefore, opti-
mal tuning cannot be applied without further modification and
predictive power is lost. §

The a priori selection of  in the solid state has remained an
open question and an active area of research (32, 38, 39, 41, 83).
Because it is the delocalization of orbitals that prevents the use
of optimal tuning in the solid state, the next logical step is to
remedy the situation by creating localized orbitals. Miceli et al.
(39) have achieved this by introducing a point defect in a super-
cell of a bulk solid and enforcing the IP theorem for the orbital
localized around the defect. While this approach is well justi-
fied physically and indeed significantly improves the predicted
band gaps, it still suffers from sensitivity to the type of defect
used for tuning (39, 40). Furthermore, ideally we want to pre-
dict the properties of the pristine crystalline material without
changing it.

An alternate route for solving the problem of optimal tun-
ing in the solid state is to rely on a different scheme to create
orbital localization. Indeed, several recent strategies for band-
gap estimation have relied on different kinds of localized orbitals
for obtaining correction terms that compensate for the miss-
ing derivative discontinuity (23, 33, 34, 36, 39-42, 84). Here,
we exploit Wannier functions, which are a localized orthonor-
mal basis set obtained via a unitary transformation of a set of
Bloch wavefunctions (85). While many different sets of Wannier
functions can be produced from a set of Bloch functions, maxi-
mally localized Wannier functions (85) often match intuition for
chemical bonds in solids and are “natural” localized orbitals of
the bulk system. However, Wannier functions are not eigenfunc-
tions of the (G)KS Hamiltonian (85); moreover, a system with
N —1 electrons, the density of which corresponds to the den-
sity of the N-electron ground state with the charge density of a
Wannier function removed, is not the ground state of the N —1-
electron system. Thus, the IP theorem does not strictly apply
to the removal of an electron from a state corresponding to a
Wannier function. Ma and Wang (33) proposed as an ansatz that
piecewise linearity of the total energy (which is equivalent to the
IP theorem) (76) be satisfied in this case too, and this ansatz has
been used to generate correction terms for semilocal functionals,
which improved the accuracy of the computed band gaps (33, 34,
42). Here, we adopt this ansatz, but instead of using it to gen-
erate a correction term, we use it to select the range-separation
parameter, -, in the SRSH functional of Eq. 1. To do so, we seek
a value of v that satisfies AI” =0, where

AL = EQu[¢](N = 1) = EY(N) + (¢| Hsp 10) - [4]

TExcept in the special case of a molecular solid, where it can be “inherited” from the
underlying molecule (52, 61).
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Here EJ [¢](N — 1) is the total energy of a system with N — 1
electrons, including an image charge correction, under the con-
straint that the state corresponding to a Wannier function, ¢,
is not occupied; and HJgq is the Hamiltonian of the SRSH

functional with N electrons. (¢| Hsrsw |¢) is the energy of the
Wannier function, which we calculate via

[e')

(0] Hsrsu |0y =D [(¢lehn) e, [5]

i=1

where v; and ¢; are the GKS eigenfunctions and eigenvalues of
the N-electron system, and the sum is over all orbitals.

To calculate the total energy of the N — l-electron system
prior to image charge corrections, Feonstt[¢](N —1), we use
constrained DFT, inspired by approaches used in DFT +U
(86-88). We add a Lagrange multiplier to minimize the ground-
state energy under the constraint that the “occupation” of the
Wannier function is equal to fs; that is,

B[ ¢)(N — 1) =min BI{sH(N ~ 1)

A (Zuwiw f¢>,

where {¢} and E[{¢}](N — 1) are the eigenfunctions and total
energy of the system with N—1 electrons, and X is a Lagrange
multiplier. Taking the functional derivative of Eq. 6 then yields
the constrained GKS equation

[6]

Hsgsw i) + X @) (@lvhi) =€ i) [7]

which we solve self-consistently for the N — 1-electron system. A
determines the occupation of the Wannier function, f,, and, in
this case we enforce f; < 4 x 10™* by setting A = 15 Ry. We find
that, in general, by setting A >~ 5 Ry the Wannier function is
nearly completely unoccupied and the desired N —1-electron sys-
tem is obtained. Due to the use of periodic boundary conditions,
we correct Feonsir[¢](N — 1) using the Makov-Payne monopole
image charge correction for a charged system (89-91),

amadq2
2€s0 L’

Eeonste[@](N — 1) = Eeonsue[¢](N — 1) + [8]

where ay,.q = 2.837 is the Madelung constant for a simple cubic
cell; ¢ is the charge of the system, e.g., ¢ =1; and L is the length
of the supercell.

Use of the above ingredients allows us to investigate a wide
range of crystalline solids, from narrow band-gap semiconduc-
tors to wide band-gap insulators, using a four-step procedure
that we first overview and then describe in detail. In step 1,
we calculate the orientationally averaged high-frequency (ion-
clamped) dielectric constant, €., using a primitive unit cell and
use this to set the fraction of long-range exact exchange in the
SRSH functional (32, 55, 64). In step 2, we calculate the Wannier
functions of a supercell of an N-electron system. In step 3, we
calculate A using the SRSH functional with a particular value
of ~. This entails calculating £(N) and FEconstr[¢](N — 1) using
the Wannier function and the supercell from step 2. We iterate
step 3 for different range-separation parameters until we find the
range-separation parameter that yields |[AI”7| <0.02 eV. Here
and throughout we refer to the functional obtained from this
choice of parameters as the Wannier-localized, optimally tuned
SRSH (WOT-SRSH) functional. In step 4, we calculate the fun-
damental band gap for the material with this functional, using a
primitive unit cell. Importantly, no empirical fitting is introduced
in any step.
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For step 1, we use HSE to calculate the dielectric constant for
semiconductors (92), including spin—orbit coupling effects where
necessary, and PBEO to calculate the dieletric constant for insu-
lators (i.e., GaN and materials with larger band gaps) (31). For
more details, see SI Appendix, section L.

For both steps 2 and 3, we use supercells evaluated with a I'-
point-only & grid, rather than a unit cell with a larger & grid.
Recall that in the absence of constraints, generally a unit cell cal-
culation with an nxnxn k grid is equivalent to the calculation of
a supercell containing n x n x n replicas of the unit cell. However,
the constrained removal of an electron from a Wannier function
is not the same in the two cases. In the supercell, it would involve
removing an electron from one well-localized Wannier function,
whereas in the k-point sampled unit cell, it would be equiva-
lent to removal of a fraction of an electron from each replicated
Wannier function within the supercell. The latter scenario is not
desirable as it would reduce charge localization. As for the size of
the supercells used in steps 2 and 3, materials with cubic symme-
try use a 2x2x2 conventional supercell and Wurtzite materials
use a 3x3x2 conventional supercell. This converges AI calcu-
lations to ~0.02 and ~0.07 eV, respectively (see SI Appendix,
section II for convergence details).

With regard to the Wannier function used in steps 2 and 3,
we find that AT is sensitive to the character of the Wannier func-
tion used and that it is important to choose the Wannier function
to be composed of the topmost valence bands, as opposed to,
e.g., deeper valence states or semicore states. To achieve that
in practice, we compute the energy of each Wannier function
according to Eq. 5 and select the one with the highest energy.
For each type of Wannier function, the Wannierization process
produces a set of translationally/rotationally symmetric Wan-
nier functions, one at every equivalent atomic site, all of which
produce virtually identical Al results. We also find that AT
is insensitive to the functional used to generate the Wannier

C D ;
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Fig. 1. lllustration of the Wannier-localized, optimal-tuning SRSH

approach, for the typical case of AIP. (A) Wavefunction of the valence band
maximum (VBM) obtained using the PBE functional. (B) Maximally localized
Wannier function used for the optimal tuning procedure. Gray, Al atoms;
purple, P atoms. Wavefunction isosurface is shown in blue (positive values)
and yellow (negative values) for values of +£5.5 x 10~ for the VBM and
+2.8 x 10~* for the Wannier function. (C) Deviation from the IP theorem,
Al, for the SRSH functional, as a function of the range separation parame-
ter, v, for AIP. (D) The fundamental band gap of AlIP, calculated by SRSH, as
a function of Al. Dashed lines correspond to A/ =0.
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Table 1. Parameters of WOT-SRSH calculations and the resulting predicted fundamental band gaps compared to reference band gaps
A A o ~, Bohr™! oo EYVOTSRSH, ey EFt, eV (ES®", ZPR), eV

InSb 6.48x 0.25 0.17 13.24 0.3f 0.2 (0.17%, 0.02%)
InAs 6.06 0.25 0.16 11.40 0.5% 0.4 (0.35%, 0.02%)
Ge 5.66° 0.25 0.19 14.79 0.7f 0.7 (0.66¢%, 0.05%)
Gasb 6.10% 0.25 0.19 13.04 0.7 0.8 (0.73%, 0.03%)
Si 5.438 0.25 0.24 11.25 1.1 1.2 (1.128, 0.067)
InP 5.87x 0.25 0.23 8.87 1.5% 14 (1.35%, 0.05%)
GaAs 5.65x% 0.25 0.15 10.52 1.41 1.5 (1.42+%, 0.05%)
AlSb 6.14x 0.25 0.14 9.82 1.71 1.7 (1.61x, 0.04%)
AlAs 5.66x 0.25 0.10 8.19 2.3f 2.2 (2.16%, 0.04%)
GaP 5.45x% 0.25 0.21 8.89 2.4F 2.4 (2.27%, 0.08%)
AIP 5.47x 0.25 0.16 7.29 2.6 2.5 (2.49+%, 0.02%)
GaN 3.19, 5.19§ 0.30 0.24 5.03 3.8 3.6 (3.44%, 0.17%)
C 3.57§ 0.30 0.23 5.55 5.7 5.8 (5.479, 0.38#)
AIN 3.11, 4.98§ 0.35 0.26 4.12 6.6 6.5 (6.14x, 0.384#)
MgO 4.228 0.25 1.50 2.90 8.2 8.4 (7.83]|, 0.53%x)
LiF 4.031f 0.25 1.08 1.93 15.4 15.3 (14.20%%, 1.15%%)
MAE, eV 0.08

MSE, eV 0.01

Shown are experimental room-temperature lattice parameters, a;,; (a, ¢ for Wurtzite structure); fraction of short-range exact exchange, «; range-
separation parameter, v; the calculated orientationally averaged high-frequency dielectric constant, e..; predicted band gap; and reference band gap
(sum of the experimental room temperature fundamental band gap$® and the zero-point renormalization energy). Also given are the MAE and the mean

signed error (MSE),
«Ref. 96.
fPredicted band gap including spin-orbit coupling effects.

WOT-SRSH ref.
Eq Eg".

*Ref. 97; deduced by comparing the experimental 4-K band gap to an extrapolated band gap.

fRef. 98.

TRef. 99.

#Ref. 100; density functional perturbation theory calculation.
IIRef. 101; measured at 80 K.

«xRefs. 38 and 102; GW calculation including both Migdal-Fan and Debye-Waller contributions.

tTRef. 103.
1 Ref. 95; measured at 200 to 250 K.

$5The experimental fundamental band gaps reported are produced by adding estimated or calculated exciton binding energies to the optical absorption
edge or by inferring the fundamental band-gap position based on the location and identification of excitonic absorption peaks.

function. We therefore use the PBE functional to generate the
Wannier function, except for narrow-gap semiconductors where
PBE produces a spurious metallic state, in which case we use
PBEQ instead.

For step 3, when calculating the image charge correction via
Eq. 8, we use the orientationally averaged e.. calculated in step
1. For Wurtzite materials, we use L= v/, where  is the vol-
ume of the supercell. For these weakly anisotropic systems, this
produces an image charge correction that is nearly equivalent to
more exact methods of incorporating anisotropy (93).

For step 3, we further note that in the original OT-RSH
scheme one often seeks to fulfill the IP theorem for both the
N-electron system and the N+1-electron system, which corre-
sponds to setting the highest-occupied molecular orbital and
lowest-unoccupied molecular orbital to the ionization potential
and electron affinity, respectively (58, 72). While this is useful
for atoms and small molecules, experience with larger molecules
already shows that (unless totally different moieties are involved)
either tuning produces similar values of ~. This can be explained
by the fact that the overall character of the system changes little
upon electron addition or removal for larger systems. For solids,
the difference between tuning for the ionization energy or the
electron affinity is expected to be even smaller. It is then much
more convenient to address the ionization potential alone, owing
to the technical challenge of tuning using electron affinities, in
that the added electron localized in the Wannier function (com-
posed of conduction band states) may hybridize with states in the
valence band.

For step 3, when « is close to é, varying v does not greatly
change the amount of exact exchange in the functional and the
search for an optimal « may fail. In this case, the value of «

40f8 | PNAS
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is slightly increased beyond the default value of 0.25 and the
process of looking for the optimal ~ is repeated (for detailed
information on the a priori selection of «, as well as the effect
of different a values on the predicted band gap, see SI Appendix,
section IIT). Our A7 calculations do not include spin—orbit cou-
pling effects. However, in step 4 we include spin—orbit coupling
effects where necessary. When calculating indirect band gaps in
step 4, we either use Wannier interpolation or sample the k point
of the conduction band minimum.

Finally, we emphasize strongly that enforcement of the
Wannier-localized IP ansatz is used only for selection of func-
tional parameters (step 3). Once this step is complete, a stan-
dard range-separated hybrid functional is obtained and the
predicted band gap is read directly off its eigenvalues (step
4), without any localization. This functional can then be used,
as is, for the calculation of any further material property of
interest.

Results and Discussion

To demonstrate how the above approach works in practice, we
use AlIP as a typical example (Fig. 1). In Fig. 14, we show the
KS wavefunction corresponding to the valence band maximum,
which is clearly delocalized over the entire supercell. In con-
trast, the maximally localized Wannier function (Fig. 1B), used
in the optimal tuning procedure, corresponds to a well-defined
spatial location (which specific one it is, out of all symmetry-
equivalent locations, is of no consequence). In Fig. 1C we plot
AI as a function of v for AIP. Clearly, Al varies monotoni-
cally with +, such that there exists a v for which AT =0. In Fig.
1D, we plot the band gap as a function of AJ and again find a
monotonic dependence. The same behavior has been observed
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for all materials investigated in this work (see Table 1 for the
lattice parameters and WOT-SRSH functional parameters used
in this study).

A summary of the fundamental band gaps predicted using
the WOT-SRSH approach, compared to experimental room-
temperature fundamental band gaps, is given in Table 1 and in
Fig. 2.¥ Our calculations do not include electron—phonon cou-
pling. Since zero-point renormalization (ZPR) typically closes
the band gap with respect to the fixed ion approximation (94),
we add the ZPR energy to the experimental band gaps to
form a “reference band gap” that electronic structure theory
should ideally match. Additionally, we partially account for finite
temperature effects by using room temperature experimental lat-
tice parameters. It is readily observed that excellent agreement
between predicted and reference band gaps is found through-
out. Importantly, the mean absolute error (MAE) is a satisfyingly
small ~0.1 eV, with the largest error being ~0.2 eV, for MgO.
Notably, for the well-studied semiconductors a literature survey
of the experimental band gaps reveals a mean SD of ~0.06 eV.
This is even larger for wide band-gap insulators; for example, the
experimental LiF band gap has an uncertainty of £0.2 eV (95).
Furthermore, we estimate that the overall numerical error when
calculating AT is ~0.05 to 0.1 eV, leading to an equivalent error
in the predicted band gaps (see the slope in Fig. 1B). Thus, an
MAE of ~0.1 eV indicates excellent agreement for all practical
purposes.

The results of Table 1 indicate that using a fixed range-
separation parameter value of y=0.2 Bohr ! is a reason-
able compromise for standard semiconductors. However, larger
gap insulators show that this value is by no means univer-
sal. For example, for LiF we would then obtain a band gap
of 13.6 eV, which is lower by a very significant 1.7 eV than
the reference value reported in Table 1. Similarly, for MgO,
we would obtain a gap of 7.6 eV, which is 0.8 eV lower
than the reference value. These results further emphasize the
importance of determining a system-specific range-separation
parameter through nonempirical means, as we have outlined
in this work. More details about the need for a material-
dependent range-separation parameter are given in SI Appendir,
section IV.

Because the WOT-SRSH method adopts the IP theorem
ansatz used in the Wannier—-Koopmans method (WKM) (33,
34, 42), a brief discussion of the differences between the two
methods is in order. In the WKM, the ansatz is used to derive
postprocessing correction terms to eigenvalues obtained using
the local-density approximation. This results in an MAE of ~0.15
eV (33), which is comparable to the one obtained here. How-
ever, the band gaps of some materials, such as MgO and LiF,
are underestimated by 0.4 eV (33) and 1.0 eV (34), respec-
tively. Beyond the additional accuracy in band-gap values, a
core strength of our approach is that because it is within the
framework of GKS theory, it can be applied to any material prop-
erty. For example, in the case of time-dependent DFT, because
WOT-SRSH includes screened long-range exact exchange, we
automatically obtain the correct long-wavelength behavior of the
linear-response kernel, which has been shown to lead to optical
absorption spectra on par with those obtained from the ab ini-
tio Bethe—Salpeter equation approach (64). Additionally, based
on other studies investigating the enforcement of the IP theorem
(39, 46, 60), we expect that WOT-SRSH functional parameters
will be transferable to chemically similar systems, such as systems
with point defects. Moreover, SRSH functionals empirically fit-

*The experimental fundamental band gaps reported are produced by adding estimated
or calculated exciton binding energies to the optical absorption edge or by inferring the
fundamental band-gap position based on the location and identification of excitonic
absorption peaks.
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ted to reproduce the band gap have already been shown to retain
the accuracy of other hybrid functionals, including lattice param-
eters and vibrational frequencies (104), and we expect this to
hold true for WOT-SRSH as well.

Finally, we compare the WOT-SRSH approach with many-
body perturbation theory in the GW approximation, where the
self-energy operator is approximated by G, the single-particle
Green’s function, and W, the dynamically screened Coulomb
interaction (2, 105-107). The GW approach, based on a rigor-
ous Green’s function framework with DFT input, is increasingly
popular and known to be accurate for fundamental band gaps for
a variety of systems, from molecules to solids. Importantly, one
could view the screened range-separated Fock operator in WOT-
SRSH as an approximate self-energy operator, which neglects
the temporal dependence of the self-energy (107-109) and uses a
model dielectric function (38, 108). However, one does not have
to view WOT-SRSH as an approximate GW scheme. Instead, as
explained above, the screened range-separated Fock operator is
rigorously justified from generalized Kohn—-Sham theory, which
shows that no time dependence is in fact needed to obtain accu-
rate band gaps. We also point out that we use only a fraction « of
exact exchange in the short range, rather than =1 as dictated
by a model dielectric function (38). To quantitatively compare
WOT-SRSH to many-body perturbation theory, we examine one
GW approach, the commonly used “single-shot” GoW, based
on a PBE starting point (GoWo@PBE) (106, 110). Even with
such a choice, there is a spread of results in the literature due
to various additional choices, e.g., plasmon pole models, pseu-
dopotentials, basis sets, and degree of convergence (111). With
this caveat in mind, ref. 64 reports that the MAE for band gaps
calculated by GoWo@PBE, for seven prototypical semiconduc-
tors, is 0.15 eV. The MAE of WOT-SRSH for the same set is
0.06 eV. Of note, GoWo@PBE underestimates the GaAs band
gap by 0.5 eV, an error that is significantly larger than the error
in the WOT-SRSH band gap for any material in this study.
Another study (112) reported band gaps for most of the mate-
rials in this study, with an MAE of 0.5 eV, which is significantly
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Fig. 2. Fundamental band gaps predicted by WOT-SRSH, compared to the

reference band gaps (fundamental experimental band gaps plus zero-point
renormalization energy). The straight line indicates perfect agreement.
(Inset) Zoom-in on the 0- to 3-eV region.
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larger than that of WOT-SRSH. Experience with SRSH func-
tionals that were empirically fitted to match the GoW@PBE
band gap (64) shows that the predicted positions of low-lying
valence bands sometimes differ from experimental values (113).
Thus, it may be advantageous to use WOT-SRSH as a natural
and well-motivated starting point for many-body perturbation
theory calculations within the GW approximation, which may
address this issue, as well as other properties beyond the band
gap itself.

In conclusion, we have developed a method for nonempiri-
cal selection of the parameters in a screened range-separated
hybrid functional, which allows for accurate prediction of
fundamental band gaps from narrow-gap semiconductors to
wide-gap insulators entirely within density functional theory.
The procedure involves optimal tuning by means of enforc-
ing a generalized IP theorem ansatz for localized orbitals, in
this case maximally localized Wannier functions. Practically,
it requires only modest supercell calculations with a hybrid
functional. It may therefore serve as a useful means not only
for the prediction of band gaps, but also for the nonempiri-
cal prediction of other properties for which hybrid function-
als are useful, such as optical absorption spectra and defect
energetics.
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Materials and Methods

For convenience we calculate €., in step 1 with the Vienna ab initio
simulation package (VASP) (114), a plane-wave code, using PBE-based
projector-augmented waves (PAWs) for treating core electrons (115). We
use an in-house modified version of the Quantum Espresso (116) plane-
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(NC) Vanderbilt pseudopotentials (117) obtained from the online repository,
PseudoDojo (118) (see SI Appendix for complete computational details).
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number of semicore states (119). We find that for Ge, Ga, In, As, and Sb
it is important to include one complete shell of semicore states as valence
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Wannier90 software package (120).
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