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ABSTRACT OF THE DISSERTATION

Accelerating Irregular Applications Using Latency Masking
Multithreaded Techniques

by

Prerna Budhkar

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2018

Dr. Walid Najjar, Chairperson

The last two decade has witnessed two opposing hardware trends where the DRAM ca-

pacity and the access bandwidth has rapidly increased by 128x and 20x respectively. In

stark contrast with capacity and bandwidth, DRAM latency has almost remained constant,

reducing by only 1.3x in the same time frame. Therefore, long memory latency continues

to be a critical performance bottleneck in modern systems. Another emerging trend is the

stagnating processor clock speeds due to the end of Dennard scaling. Parallel architectures,

like CPUs and GPUs, resolved this problem by increasing parallelism, but developed ar-

chitectures that rely extensively on data locality in the form of large cache hierarchies for

multicores, and vectorized execution for SIMD-enabled CPUs and GPUs.

At the same time, many data-intensive applications are moving away from data

locality towards irregular memory access behavior. This behavior is observed either be-

cause of dataflow (caused by indirection in data access) or control flow (caused by branch

instructions) irregularity. Such applications are often memory bound and their performance

is primarily determined by the memory latency (also known as the memory wall).
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An alternative approach to mask long memory latencies is by using multithreaded

execution where a running thread relinquishes execution to a ready thread as soon as it

performs a long-latency memory access. This dissertation explores how custom hardware

accelerators using memory masking multithreaded techniques can be used to improve per-

formance of irregular applications. In hardware multithreaded designs thread states are

maintained on-chip, and with enough application parallelism they can fully mask memory

latency without storing data in caches.

This thesis explores latency masking hardware multithreading on three different

applications to achieve better performance on irregular applications. The first two appli-

cations, namely selection and group-by aggregation are relational database operators. The

selection operator examines different conditions on various row attributes. Depending on

the evaluation, a row is either qualified or disqualified. This operator, therefore, exhibits a

control flow irregularity. The proposed selection design shows an improvement of 1.8x over

CPU Similarly, it is 3.2x more bandwidth efficient than GPUs. Overall, this dissertation

provides the first direct comparison study of selection operator on all three architectures.

The group-by aggregation, on the other hand, is a hash-based implementation that exhibits

dataflow irregularity. Results show that the FPGA-accelerated approach significantly out-

performs CPU-based implementations and yields speedup up to 10x. The third application

considered for evaluation is a popular sparse linear algebra operation namely Sparse Matrix

and Vector multiplication (SpMV). Our results show that the multithreaded SpMV imple-

mentation achieves up to 95% of the theoretical upper bound performance whereas GPUs,

like Titan GV100, can achieve upto 69% of its peak performance.
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Chapter 1

Introduction

The main factors influencing in-memory processing performance are the high

DRAM latency and the growing gap between the memory bandwidth and the speed of

the processing unit aka, the memory wall. The performance bottleneck due to high DRAM

latency becomes more evident by observing the historical trends of DRAM-chip. The work

presented in [24] illustrates the historical trends of DRAM-chip. As shown in Figure 1.1,

DRAM-based main memory has made rapid progress on capacity and bandwidth, improving

128x and 20x respectively over the past two decades. These improvements mainly follow

Moore’s Law and Dennard Scaling, which enable more and faster transistors along with

more pin. On the contrary, DRAM latency has improved (i.e., reduced) by only 1.3x, a

negligible change compared to changes in DRAM capacity and bandwidth during the same

time period. As a result, long DRAM latency remains as a significant system performance

bottleneck for many modern applications such as in-memory databases [71, 14, 66, 84],

graph traversals [28, 82, 89] and Google’s datacenter workloads [51].
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Figure 1.1: Trends illustrating DRAM improvements (referenced from [24])

Figure 1.2: Trends illustrating peak clock rate for memory access and the CPU performance
(referenced from [15])
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The second major performance issue, as mentioned before, is the growing gap

between the memory bandwidth and the speed of the processing unit, the so-called ‘memory

wall’. The term “memory wall” was coined in [88] by Wulf and McKee in 1995. They

predicted that the growing disparity between processor and the memory speed would, in

the future, lead to a situation where memory access time will outweigh any performance

improvements in the processor. The aforementioned behavior was more accurately modeled

using Equation 1.1 that calculates the average memory access time. In this equation tc and

tm are the cache and DRAM access times and p is the probability of cache hit.

tavg = p ∗ tc + (l − p) ∗ tm (1.1)

Wulf and McKee showed that greater the divergence between tc and tm, longer is the memory

access time. Memory references eventually dominate the overall system performance and

further improvements to CPU performance will have no impact.

A decade after the original paper was published, McKee reflected upon their pre-

dictions in [59]. They reported that some commercial applications such as transaction

processing workloads were seeing 65% processor idle times and scientific computing appli-

cations were suffering from memory bottlenecks with up to 95% node idle times. Much

of this behavior was observed because of the memory bottlenecks where the processor was

stalled waiting for data to be returned from memory. It was obvious that handling off-chip

memory accesses would become critical in achieving better system performance. This grow-

ing gap between the processor and the memory is also depicted in Figure 1.2(taken from

[15]). It can be seen that even though the CPU growth halted at around 2003, the memory

speed has a lot to catch up. Modern processors can now generate 3 orders of magnitude
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more requests than the memory architectures can fulfill. This high request rate coupled

with long access latencies means that processors spend the majority of their time idle.

The problem of high DRAM latency and the memory wall is more important for

multicore CPUs given their higher clock speeds. Multicore CPUs addressed this problem by

introducing large cache hierarchies that rely on data locality. Caches leverage the spatial

and temporal locality within an application to reduce the number of requests back to main

memory. Temporal locality exists when a data that is currently accessed by an application

is very likely to be accessed again. Similarly, spatial locality exists if a piece of data that

has been accessed recently, it is likely that the adjacent pieces of data will be accessed in

the near future. Caches exploit these properties to keep values closer to the processing core

where the latency is much lower. Hardware accelerators, such as FPGAs and GPUs, deal

differently with long memory latencies. FPGA based accelerators rely, mostly, on streamed

data; hence the latency cost is paid once for the first element. GPUs on the other hand, offer

a different solution leveraging on massive SIMD parallelism and high bandwidth specialized

memory (i.e. GDDR). However these architectural solutions still inherently rely on data

locality.

The aforementioned locality based solutions work well for many applications, but

there exists an important category of applications that do not work well on caches. We

call them irregular applications and by definition they have poor locality. There are two

measures of irregularity: (1) Dataflow irregularity is caused by the indirection in the data

access, leading to cache misses. Example applications include sparse linear algebra, hashing

based applications etc; (2) Control flow irregularity is caused by the dynamic control flow
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and leads to branch mis-prediction; this contributes to a large fraction of stall time on

CPUs [68, 79] or thread divergence on GPUs [74]. Some of the applications that exhibit

control flow irregularity are SQL selection operation, building histograms, breadth first

search etc. As a consequence of these irregularities, an application tends to pull data from

many different memory locations jumping around memory in seemingly random ways. This

behavior introduces a long latency to fetch data from memory.

Over the past few years, many real world applications are drifting towards ir-

regularity, making it difficult for the cache-centric architectures to achieve the maximum

performance. However, with the advent of new heterogeneous architectures like Convey

HC-2ex, Intel HARP, Stratix 10 with HBM2, it has become easy for the hardware archi-

tects to prototype designs without relying on any cache support. Moreover, the applications

can enjoy best of both worlds. Caches can be used for regular applications while irregular

application can be offloaded to the accelerators.

Without relying on caches, an alternative approach to mask long latencies is by

using hardware multithreading [70, 50, 80]. Several multithreading models (simultaneous,

fine-grained, coarse grained) have been proposed. They can be categorized by how tem-

porally close, instructions from different threads may be executed. On general purpose

processors, executing multiple threads concurrently requires saving the full context of each

thread. This limits the amount of parallelism that can be achieved on these systems.

In a custom architecture (e.g., FPGA) where the datapath is designed for a small

number of predefined operations, the required context for each thread is much smaller
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than in a general-purpose CPU and hence more threads can be supported. In this model,

parallelism is limited only by the number of active threads (ready, executing or waiting).

In this thesis, we explore custom hardware multithreading that masks long memory

latencies incurred by both data flow irregularity and control flow irregularity. The applica-

tions used for data flow irregularity are group-by aggregation and Sparse Matrix and Vector

Multiplication (SpMV) and the relational select operator is used for control flow irregularity.

We prototype our proof-of-concept on the Convey HC-2ex FPGA machine.

There are two possible implementations of group-by aggregation, hash-based and

sort-based. The former is generally preferred because it avoids the high penalty of sorting

the input relation. Hence, in this thesis we focus on an in-memory hash-based implementa-

tion for group-by aggregation. Hash tables rely on good hashing functions that randomly

distribute keys across a range of values, thereby exhibiting a dataflow irregularity.

On the other hand, selection operator is generally used to select rows from a table

(relation) that satisfies some given conditions. While selection has a seemingly regular

execution pattern (i.e., exhibits spatial locality), it often leads to control flow irregularity

while evaluating the selection predicates. In most cases, selection appears early on within a

query plan - right above the data scan operator - its performance directly affects the total

runtime of the whole query.

Similarly, Sparse Matrix-Vector Multiplication (SpMV) has also received signifi-

cant attention due to its increasingly important applications in scientific and commercial

applications. Although SpMV is a highly parallelizable, the real world sparse matrices of-

ten restrict realizable parallelism. The reasons are two fold. On one hand, low compute to
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memory ratio makes SpMV a memory bound problem and on the other hand, it exhibits a

data flow irregularity while fetching an input or output vector from a memory space which

is far too big for cache. Hence, it becomes difficult to utilize the main memory bandwidth

which is already scarce.

The rest of the dissertation is organized as follows. Chapter 2 discuss literature

survey relevant to this thesis. It includes historical memory trends, multithreading tech-

niques, query processing and SpMV implementations on accelerators. In Chapter 3, we

present multithreaded in-memory group by aggregation. Our results demonstrate a speed

up of up to 10x over the best multicore software algorithms. In Chapter 4, we present a

detailed comparison study of the selection operator on multi-core CPUs, GPU and mul-

tithreaded FPGA implementation. In an important parameter space, the multithreaded

design achieves a speed of 1.4x-4.6x over CPU SIMD and 1.4x-6.7x over GPU implementa-

tions. Unlike other architectures, this design is independent of the data layout. In Chapter

5, we explore the multithreaded implementation of the SpMV kernel. Using a classical

roofline model, we theoretically derive the upper bound performance of the SpMV imple-

mentation and compare it to our experiments. Our results show that the model is accurate

up to 95%. We also demonstrate that the multithreaded SpMV implementation achieves

much higher fraction, up to 95%, of the upper bound performance when compared to GPU

that achieves up to 69% of their respective upper bound.
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Chapter 2

Related Work

Custom architectures like FPGAs are becoming increasingly attractive platforms

for many applications. FPGAs provide cheaper solution and faster time to market as

compared to ASICs which normally require a lot of resources in terms of time and money to

obtain first device. FPGAs are generally used for streaming applications and are therefore

known to perform well on regular applications. However, this streaming paradigm again

implicitly assumes the existence of some form of locality within the stream since the on-chip

memory on most FPGA devices is very limited.

This thesis suggests an alternative approach that expands the application domain

of FPGAs by considering applications that cannot be streamed. Techniques like latency

masking and multithreadding accompanied by a custom pipelined datapath, allow FPGAs

to decide the memory locations it needs at runtime. We apply our designs to SpMV and

database applications.
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2.1 Reconfigurable and Heterogeneous Architectures

When the performance of algorithms is insufficient on general purpose processors,

the architecture community turn towards hardware implementations specifically designed

to implement the desired algorithm. Application Specific Integrated Circuits (ASICs) are

hardware chips designed to implement one specific algorithm and are able to provide fast

and efficient execution. However, the ASIC fabrication process is time consuming and a

small change in the design will require fabrication of a whole new ASIC. This process also

involves high implementation and deployment costs. Reconfigurable computing, on the

other hand, allows relatively easy development cycle of hardware circuits. The hardware

can be incrementally improved whilst maintaining a greater degree of flexibility than ASICs.

Field Programmable Gate Array (FPGA) is the most common reconfigurable plat-

form. The way FPGAs typically implement combinatorial logic is with LUTs (LookUp Ta-

bles). In general terms LUT is basically a table that determines what the output is for any

given input(s). In the context of combinational logic, it is the truth table. This truth table

effectively defines how your combinatorial logic behaves. They are also often coupled with

coarser-grained functional units such as dedicated multipliers or Digital Signal Processing

(DSP) blocks as well as small internal memories, called as BRAMs. As their name suggests,

they can be reconfigured with new logic designs even ‘in the field’ after deployment without

the costly tooling overheads of ASICs.

The conventional wisdom dictates that pointer intensive, or sparse applications

are not well suited for FPGA-based code acceleration as these algorithms are often memory

bound rather than compute bound and therefore will see limited benefit from the massive
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parallelism offered by reconfigurable hardware. However, heterogeneous architectures pro-

vide some unique opportunities for improving memory performance thanks to low latency

links between a general purpose CPU and customizable hardware, both sharing high speed

links to external memory. This thesis seeks to examine how the alternative data paths

and processing options provided by these platforms can be used to improve memory access

performance of irregular algorithms over other platforms.

2.2 Multithreaded Architectures

A multithreaded processor concurrently executes instructions from different threads

of control within a single pipeline. Figure 2.1 presents different multithreaded architectures.

Each row represents the issue slots for a single execution cycle: a filled box indicates that

the processor found an instruction to execute in that issue slot on that cycle; an empty box

denotes an unused slot. Figure 2.1(a) shows a sequence from a conventional superscalar,

executing a single program, or thread, from which it attempts to find multiple instructions

to issue each cycle There are two basic types of multithreaded processors: those that issue

instructions only from a single thread in a cycle, and those that issue instructions from

multiple threads in the same cycle. Many advanced out-of-order superscalar processors

such as the IBM Power7 and Power8 [73] or the latest Intel architectures, like Nehalem [54],

support the simultaneous multithreading (SMT) technique. SMT keeps multiple threads

active in each core. The processor identifies independent instructions and simultaneously

issues them to the cores various execution units, thereby maintaining high utilization of the

processor resources.
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Figure 2.1: Different types of multithreading techniques.

Figure 2.1(d) shows how each cycle an SMT processor selects instructions for

execution from all threads. It exploits instruction-level parallelism by selecting instructions

from any thread that can (potentially) issue. The processor then dynamically schedules

machine resources among the instructions, providing the greatest chance for the highest

hardware utilization. If one thread has high instruction-level parallelism, that parallelism

can be satisfied; if multiple threads each have low instruction-level parallelism, they can

be executed together to compensate. In this way, SMT can recover issue slots lost to both

horizontal and vertical waste.

On the other hand, processors that issue instructions from a single thread ev-

ery clock cycle are known as temporal multithreaded processors. The execution alternate

between different threads to keep the (usually in-order) pipeline filled and avoid stalls.

This technique was used in the SUN UltraSparc T5 [37] and Tera MTA [8, 7] (now Cray

XMT [48]). Temporal multithreaded architectures are generally better suited for irregular
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applications because they can tolerate long latency memory accesses by switching to other

ready threads while the memory subsystem loads or writes the data, thereby not necessarily

requiring caches to reduce access latencies [80].

2.2.1 Latency Masking Multithreaded Architectures

Memory masking multithreaded architectures have existed since the beginning of

the computer architecture field. It is a simple idea. Research scientists measured the number

of clock cycles it took to fulfill a memory request. In the Horizons case [77] most requests

averaged between 50 to 80 cycles, but almost all requests could be handled within 128 cycles.

The architects then built custom processors to supported that many outstanding requests;

128 threads in the case of the Horizon. The processors had very fast context switching (one

clock cycle) so that once a request was issued by a thread it could immediately switch to

another thread. In this way the processor was fully utilized. In the worst case all 128 threads

would issue a memory request. However, by the time the 128th request was issued the 1st

request would be fulfilled, and the processor could continue running without interruption.

This technique is called memory masking, and is integral to a multihreaded architectures

performance.

Similarly, the Tera Computer Company released its Tera MTA [8, 7] machine. Each

of its processors could run at 300 MHz, and they could support 128 hardware threads.The

only physical machine, that we are aware of, was installed at the San Diego Supercomputer

Center [1] and it contained 4 processors. Therefore, It could support 512 threads. To lower

the network traffic the MTAs instructions were fetched through a shared cache. However,

it had no data cache and relied purely on multithreading to mask the memory latency.
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Starting in 2005 Sun produced a line of multithreaded multicore processors based

on its UltraSPARC architecture. The first processor (UltraSPARCT1) had 8 cores that

could support 4 threads concurrently. Each core would context switch between active

threads each cycle. This increased the overall latency of a single thread, but allowed the

cores to be better utilized. Threads did not need to be from the same application, but cache

performance improved if the threads were accessing the same data locations. Sun steadily

improved the architecture by adding more floating-point units, memory bandwidth, and

increased the number of cores. However, when the UltraSPARC T4 was released they

decreased the number of cores, but dramatically increased the clock frequency. This was a

move to broaden their target audience by improving the single thread performance.

Nevertheless, these architectures support a relatively small and predetermined

number of threads (up to 128 on the MTA and up to eight threads per core on the UltraSparc

T5). This is because the CPU has to save a huge hardware context (in the form of registers,

program counters, stack pointers, etc) for each ready/waiting thread. This context is saved

every time the execution switches between threads and is read later when a thread resumes.

As a result, the number of threads that can be run in parallel is limited by the total number

of physical cores (or hardware contexts for CPUs with hyper-treading).

2.2.2 Custom Multithreaded Architecture

The customized multithreaded architecture exploited in this thesis can be consid-

ered as a blend of SMT and the temporal multithreading (discussed in Chapter 2). The

structure of the data-path and the number of thread states are designed for the specific

target application. Like SMT, in this architecture too, a running thread relinquishes exe-
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Figure 2.2: Custom Multithreaded Architecture

cution to a ready thread as soon as it performs a long-latency operation. Additionally, the

deeply pipelined datapath on FPGA allow different threads to enter the pipeline on each

cycle. Moreover, the datapath in a custom architecture (e.g. FPGA) is designed for a small

number of predefined operations. As a result, the required context for each thread is much

smaller than in a general-purpose CPU and hence more threads can be supported.

In any multithreaded setup there are typically three states of execution: (1) build-

up state (2) steady state and (3) drain state. In a build-up state, threads are generated

in a such a way that number of memory accesses in flight is sufficient enough to cover

the bandwidth delay product. In an ideal setup, As soon as the last request is sent, the
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responses are received that fills the pipeline of a custom datapath. In a steady state, a

kernel/core can maintain sufficient in-flight requests that can hide the memory latency.

However, towards the end of execution, threads start terminating either because the job is

done or all the input data is processed. When this happens, the number of in-flight requests

also start decreasing and can no longer mask the latency. If the steady state execution is

longer than other two states, the build-up and the drain costs are amortized.

Figure 2.2 describes different components of this model. The execution starts

by generating multiple threads (requests) by ‘request process’ module. Assuming a fully

pipelined datapath and a buffered memory interface, the expected parallelism in such a

system equals to memory bandwidth × memory latency (Little’s Law). The number of

threads that are generated should commensurate with the memory latency. For instance, the

average memory latency on Convey HC-2ex, our target machine, is 500 cycles. Therefore,

we generate 500 threads. The idea is simple. As soon as the last memory request is sent,

the memory response for the first request is received and is fed to the pipelined datapath.

This imply that the parallelism is limited only by the number of outstanding requests that

can successfully mask the memory latency.

2.2.3 Convey HC-2ex: Target Platform

The Convey HC-2ex is a heterogeneous platform that offers a shared global memory

space between the CPU and FPGA regions, allowing us to directly compare the FPGA

and CPU in-memory implementations on the same memory architecture. The coprocessor

supports multiple instruction sets (referred to as “personalities”), which are optimized for
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different workloads and dynamically reloaded when an application is run. Each personality

includes a base set of instructions that are common to all personalities, as well as extended

instructions that are designed for a particular workload. As shown in Figure 2.3a, the

memory is divided into regions connected through PCIe with portions closer to the CPU,
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and portions closer to the FPGAs. Each processor (CPU or FPGA) can access data from

both regions, but data accesses across PCIe are significantly longer. The software region

has 2 Intel Xeon E5-2643 processors running at 3.3 GHz with a 10 MB L3 cache.

The hardware region has 4 Xilinx Virtex6-760 FPGAs, called application engines

(AE), connected to the global memory through a full crossbar. The crossbar not only inter-

faces the AEs to the memory modules but also supports the in-order return of all memory

requests. Our multi-threaded designs utilizes this re-ordering to serve all the concurrent

threads in the order of their arrival. Each AE also has 8 64-bit memory controllers (MC)

running at 300MHz (Figure 2.3b). The MCs translate virtual to physical addresses on be-

half of the AEs, and include snoop filters to minimize snoop traffic to the host processor.

The Memory Controllers support standard DIMMs as well as Convey designed Scatter-

Gather DIMMs, which are optimized for transfers of 8-byte bursts and provide near peak

bandwidth for non-sequential 8-byte accesses. The coprocessor therefore provides a much

higher peak bandwidth, and often can deliver a much higher percentage of that bandwidth,

than what is available to commodity processors.

The hardware logic on each AE run in a separate 150 MHz clock domain to ease

timing and is connected to the memory controllers through 16 memory channels. On the

HC-2ex, all the reads and writes to the memory are done through these channels. Each

channel supports independent and concurrent read-write accesses to memory. The memory

latency varies, according to the target memory bank and traffic congestion, between 400

and 800 cycles. Assuming all the channels are used for reads and an average latency of

500 cycle this means there are 8000 (8*400) outstanding memory requests per accelerator
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FPGA or 32,000 for the whole system. Obviously, stalls in the pipeline and other hazards

reduce the throughput. However, these numbers provide a good estimate of the possible

parallelism and the massive number of threads.

2.3 Query Processing on FPGAs

Many research works in the early 1980s were dedicated to the design and archi-

tecture of database machines - specialized hardware, designed solely for the purpose of

storing and processing large amounts of data. These architectures were utilizing parallel

data processing by tightly coupling processing units with disk-based storage. The stag-

nated growth of disk bandwidth coupled with the continuous increase of storage density

implied that data management systems were mostly IO bound. At the same time the rapid

performance advances of off-the-shelf processors (due to Moore’s law) made the database

machine very cost-ineffective [19]. This allowed a handful of processors to operate on a

large number of parallel disk I/O operations thus avoiding the rigid pairing of storage and

compute units. The interest gradually shifted from intra-node database machine-style par-

allelism to shared-nothing systems, providing effective easy to scale inter-node parallelism

[33, 32]. The depletion of the processing frequency growth finally discontinued the “free

ride” on performance scaling. Abundance of cheap main memory diminished the role of

I/O-related overhead as a main bottleneck. Nevertheless, the growing gap between mem-

ory access latency and the processor’s computational capabilities (“memory wall”) brings

up the data access overhead, but on a different level (“memory is the new I/O”). At the

same time, the limited bandwidth of current network technology has restricted the scaling
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potential of the shared-nothing systems. The aforementioned hardware trends as well as

The availability of new generation of data processing hardware (GPUs, FPGAs, ASICs)

revived the interest in specialized hardware-accelerated database systems. Recently several

research projects proposed building hybrid CPU-GPU systems [92, 21, 42, 83, 40]. These

systems are deployed on a traditional CPU architecture, but use the GPUs as a co-processor

to accelerate easy-to-parallelize parts of the query processing.

Several academic projects have worked towards simplifying the use of custom hard-

ware for query processing. For instance, the Glacier library [62] implements a component

library that generates query-specific FPGA circuits for various streaming queries. This ap-

proach is suitable for scenarios with few queries that are known in advance. Queries that

fall under typical stream processing applications run longer which justifies invoking a time-

consuming synthesis process for every new query. The synthesis time to build an engine is

high, and needs to be amortized over many runs to be practical. The technique has been

shown useful for event processing systems like high frequency trading [69]. The Q100 [87]

architecture is a fixed platform with many ASIC database processing units. A query stream

is scheduled through the necessary units. Resources may go unused for a given query, but

the platform avoids long build times.

Netezza [3] is a complete DBMS that uses FPGAs as a filter between the hard

disk and main memory. Customizable queries are sent to the FPGAs which utilize their

close proximity to the hard disk to quickly filter relations before sending them to memory.

The platform tries to reduce the costly data transfers from disk to main memory [75]. The

trade off for this approach is that all requests must start on disk. In-memory databases
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cannot leverage the addition hardware FPGAs. Another full DBMS, Kickfire [2], uses

FPGA hardware accelerators connected through either PCIe or hyper transport. It defines

various database operations as HARP logic that consists of a hardware circuit and a large

memory systems. All queries are analyzed by Teradatas C2 software, which decides if it

should handle the job itself,send it back the the DBMS, or offload it to HARP logic. The

customized hardware supports many common relational database operations [20, 47, 60].

2.3.1 Group-by Aggregation

The performance characteristics of the aggregation operator differs very much de-

pending on the number of groups (distinct keys). If there are few groups, aggregation is very

fast because all groups fit into cache. If, however, there are many groups, many cache misses

happen. Contention from parallel accesses can be a problem in both cases (if the key distri-

bution is skewed). To achieve good performance and scalability in all these cases, without

relying on query optimizer estimates, multi-core CPU architectures provide two main alter-

natives. The hardware-conscious algorithms are tightly tailored to the underlying hardware

and perform preliminary data partitioning to reduce cache misses. Instead, the hardware-

oblivious solutions try to mask latency by relying on hardware-provided multithreading.

These contrasting approaches were extensively studied in the context of in-memory hash

joins [17, 11] as well as sort-merge joins [12, 53]. Hardware-oblivious implementations of the

group-by aggregation were explored by Cieslewicz et al. [25], who showed that performance

largely depends on input characteristics (key cardinality). This work examined aggregation

in a multi-core environment on the Sun UltraSPARC T1, a chip multiprocessor.
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We now discuss the state-of-the-art multithreaded CPU aggregation algorithms.

A typical aggregation operator has three phases. The first phase is the startup phase that

initializes all data structures. The second phase is the computation phase in which the

input data is consumed and used to update the data structures. In the third phase data

structure elements are merged to generate a single final result. For example, if each thread

has its own private hash table, then those tables must be merged during this stage.

(i) Sort-Based Aggregation: Sort-based aggregation [25] has higher complex-

ity (O(nlogn)) than hash-based aggregation. The complexity of the hash-based method is

linear in the number of records n. Additionally, materializing sorted input records is an

I/O intensive operation. It should be noted that sorting is a blocking operator. On the

contrary, hash-based approach can be easily pipelined from other database operators. The

only time that sort-based aggregation is likely to be competitive is when the input stream

is already in sorted order.

(ii) Independent Hash Tables: In this approach [25] each thread is given its

own hash table that prevents memory collisions. As a result, the aggregation operator can

avoid expensive synchronization primitives. The obvious disadvantage of this approach is

memory consumption.

(iii) Shared Table with Locking or atomic synchronization: [25] splits

the tuples evenly between threads, but all threads aggregate their results into a single hash

table, hence no extra merge step is required. The algorithm could use different synchro-

nization primitives: either pthread mutex implementation or Intel specific hardware atomic

instructions. Preliminary experiments showed that atomic primitives are significantly bet-
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ter on low key cardinalities, and dont have any difference from mutexes on medium and

large cardinalities, so we choose atomics as a default synchronization primitive in all fur-

ther experiments. To simplify processing, locks are provide for each bucket, rather than for

each cell. Locks are not required during the search phase in which the input records key

is compared against keys in the bucket. Once a match is found, the bucket is locked to

guarantee the atomicity of the update to the aggregate value. Locking is also needed when

inserting a new element into a hash bucket.

(iv) Hybrid Aggregation [25] is a combination of two previous approaches. This

algorithm allocates a small hash table for each thread. The size of the table is calculated

based on the processors L2 size to avoid cache misses. If the local table has enough space

for a new value, or the value already exists in the table, that tuple is locally aggregated.

Once the local table is filled and the next tuple requires a new slot, the oldest entry in

the cached table will be spilled into larger shared table, residing in main memory, thus

maintaining only “hot” data in L2 cache. Once aggregation is complete all small cached

tables are merged into the large shared table. Merge step is synchronized as in Independent

Tables case.

(v) Partition & Aggregate [90] (also known as count then-move [26]) uses

individual tables per thread, but before aggregation is performed the tuples are partitioned,

in contrast to all aforementioned approaches. Separate partitioning step makes sure that

all threads will work on non-overlapping values, hence aggregation could be done without

any synchronization and the final tables are simply concatenated, rather than merged. As

22



with the partitioned join implementations radix clustering algorithm is a backbone of this

preliminary step.

(vi) PLAT (Partitioning with Local Aggregation Table) [90] is a combi-

nation of two previous techniques. The algorithm takes advantage of the fact that we are

performing an additional data scan, while doing a preprocessing step. While partitioning

tuples into groups with mutually exclusive keys, each thread tries to aggregate values into

its own small L2-resident table, as in Hybrid Aggregation approach. Values that do not

fit into the small table are partitioned using radix clustering algorithm. Once preprocess-

ing is done standard lock-free aggregation is applied. In the end all tables, which were

produced during aggregation, are concatenated together, while local aggregation tables are

synchronously merged in.

Follow up work [26] explored the partitioning step of hash aggregation and con-

cluded that the thread coordination is a key component influencing the performance of this

step. Finally, Ye et al. [90] proposed hybrid algorithms and showed that they outperform

pure hardware-conscious and -oblivious implementations.

An FPGA-accelerated implementation of group-by aggregation was first considered

by Mueller et al. [61]. This work utilized CAMs in the implementation of the aggregation

operator, but in a very narrow scope, i.e. using CAMs to match an incoming tuple with the

appropriate group. Hence the work continued long tradition of using CAMs to answering

set-membership queries (previously explored in applications like click-fraud, online intrusion

detection [13]).
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Our design also uses CAMs, but is different from previous approaches in two ways:

(i) in addition to the key we store and update the aggregate value locally in the CAM, and

(ii) we use CAMs as a synchronization primitive to resolve conflicts during updates. It was

shown that implementing fully-associative matching logic for CAMs on both Altera and

Xilinx FPGAs introduces a 60x overhead compared to regular BRAMs [91]. This drawback

makes implementing large CAMs on reconfigurable fabrics notoriously hard. Dhawan et al.

[34] explored various designs of CAMs and introduced a trade-off between CAM size and

update time.

2.3.2 Selection Scan Operator

There are three commonly used selection evaluation algorithms. In this discus-

sion, we assume that selection operates directly on the input array of records and writes

qualified tuples into a new output array. Listing 2.1 presents the most straightforward way

of implementing selection. It shows the branching scan method for a conjunctive query

using ‘<’ comparison. This technique is often called a ‘short-circuit evaluation’ because

the computation of further predicates can be skipped when the first predicate is already

evaluated to false. The logical-AND (&&) operator is typically compiled into k conditional

branch instructions.

f o r ( i =0; i < number o f tup le s ; i++)

i f ( ( ti[0] < v1 ) && (ti[1] < v2 ) && . . . (ti[k] < vk ) )

{ out [ j ++] = i ; }

Listing 2.1: Algorithm - Branching Scan
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Assuming that the predicates have increasing selectivity, this method is optimal in terms of

processing cycles. However, it was shown that on CPUs it leads to heavy branch mispredic-

tions, causing considerable performance penalties [68, 22]. An alternative implementation,

presented in Listing 2.2, uses bitwise-AND (&) instead of logical-AND (&&). This approach

reduces k conditionals to a single branch.

f o r ( i =0; i < number o f tup le s ; i++)

i f (ti[0] < v1 & ti[1] < v2 & . . . ti[k] < vk )

{ out [ j ++] = i ; }

Listing 2.2: Algorithm - Predicate Scan with Bitwise-AND (&)

Here all predicates for a given tuple, ti, are evaluated and then, depending upon the result of

the evaluation, a branch is executed. This method reduces branch misprediction penalties at

the cost of higher computational work. Finally, a no-branch implementation [68] is shown in

Listing 2.3. This approach completely eliminates penalties caused by branch mispredictions

by increasing computation costs.

f o r ( i =0; i < number o f tup le s ; i++)

out [ j ] = i ;

j += (ti[0] < v1 & ti[1] < v2 & . . . ti[k] < vk )

Listing 2.3: Algorithm - No-Branch

The techniques presented in Listing 2.2 and 2.3 either reduce or completely eliminate the

branches. Yet, both approaches process all predicates and miss the opportunity to skip

irrelevant evaluation as in the branching scan.
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Selection on Parallel Architectures

An efficient implementation of Listings 2.1-2.3 must be designed for a specific

data layout to effectively leverage the extensive cache hierarchy. Many efficient algorithms

have been proposed for both row [68] and column [66, 96, 36] storage layouts. Moreover,

columnar format allows effective compression and increases the throughput by more than

an order of magnitude over traditional CPU row-store database systems [36]. However, all

these approaches require an overhead of converting data in row-major format to a columnar

layout either in the background or keeping two separate representations of the same record.

In addition to thread-parallelism, modern architectures support data-level paral-

lelism and provide new opportunities for vectorized implementations. All modern CPUs

are equipped with SIMD registers that can be used to accelerate many database opera-

tions [94, 84], including selection. All three algorithms described above can be vectorized.

However, algorithm in Listing 2.1 requires additional bookkeeping to track which row should

be dropped from future evaluation. This can be achieved by using non-contiguous loads/s-

tore (scatter/gather) operations[67] available only in the latest processors supporting AVX2

vectorization which make the design less portable. However, branching scan still can be im-

plemented using older SIMD intrinsics but it will be sensitive to small predicate selectivity.

Likewise, GPUs implement no-branch algorithm because conditional execution

(Listings 2.1 and 2.2) results in thread divergence and reduces the overall system perfor-

mance. Selection is executed in two steps: (1) evaluating the predicate conditions and (2)

gathering the indices of the qualifying rows [46]. During processing, all threads within a

warp execute in lock-step irrespective of the predicate selectivity. However, being oblivious
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to predicate selectivity can lead to wasted memory bandwidth since it does not provide any

opportunities to stop fetching new predicates based on the last evaluation (Listing 2.1).

For low selectivity, GPUs may overcome this limitation by relying on indexes [46],

thus reducing the overall tuple evaluation latency at the expense of processing throughput.

Overall, maintaining an index can be costly when frequent updates are expected thus in

this work, we focus on throughput optimization thus avoiding the use of indexes.

Selection on FPGA

The work presented in [75] focused on row decompression and predicate evaluation.

In this technique, pre-generated bit files are produced (for different types of queries and for

various hardware configurations) and the one that is best-matched to the given workload

is loaded. Stream processing applications typically processes long-running queries which

justifies invoking a time-consuming synthesis process for every new query.

In contrast to stream processing, in a data warehouse scenario, the query workload

is unpredictable and queries are not always long-running. Thus, it is important to avoid

time consuming synthesis process in such cases. This problem was addressed in [31] by

applying a special FPGA technique called partial reconfiguration, which allows them to

build query plans from pre-compiled components at runtime. It is a useful technique to

time-multiplex circuits that do not fit on the same chip. Another work in [86], employs an

FPGA between a DB system (MySQL) and SSDs to offload filter and aggregation queries.

A complex WHERE clause is broken into individual base predicates and compared to the

fixed size constant. The result is stored in a truth table which is transmitted to a BRAM.

However, the memory consumption grows exponentially with the number of predicates. Our
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MTP selection engine also maintains the query in a BRAM; however, the on-chip memory

consumption is linear to the number of predicates in the query. Finally, [23] explores FPGAs

as accelerators for join operations in columnar main-memory databases. Recently, a custom

hardware multithreading design was applied to hash-joins [43].

2.4 Sparse Matrix-Vector Multiplication

Sparse Matrix-Vector Multiplication (SpMV) is a highly exercised scientific kernel

that solves y = Ax, where x and y are dense vectors, while A is a sparse matrix. (SpMV)

has received significant attention due to its increasingly important applications in scientific

and commercial applications. Although SpMV is a highly parallelizable, the real world

sparse matrices often restrict realizable parallelism. It is mostly treated as a memory

bound application [28]. Therefore, its performance on platforms like CPUs and GPUs

depends on the memory bandwidth or the amount of cache on the respective platform. Our

target architecture (the Convey HC2-ex) provides a peak bandwidth of 19GB/s memory

bandwidth per FPGA, whereas current CPUs have 100 GB/s and current GPUs have 870

GB/s of memory bandwidth. However, it’s a bit of a simplified justification of the problem.

There is a small niche where FPGAs can excel. When the matrix and vector sizes

become large, around 10 million values [78], CPU performance drastically decreases. When

this happens the CPU experiences a lot of x vector cache misses. To address this issue many

turn to GPUs. GPUs are well known to be sensitive to sparsity and therefore to achieve

better performance on SpMV, they expand the storage size of the matrix. This means that

matrices that surpasses the GPU RAM size perform badly due to the transfer overheads.
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It has been shown time and again that an improper sparse matrix format can degrade

performance by an order of magnitude or more [16]. Therefore, to avoid excessive waste

in bandwidth and storage, the sparse matrix is typically encoded using a sparse format,

which stores only the non-zero values of the matrix along with meta-data that identifies a

non-zeros location in the matrix.

2.4.1 Sparse Matrix Formats

Using the right sparse matrix format is essential because at runtime, the metadata

must be decoded for each non-zero, which is used to identify the corresponding x vector value

for calculating the dot product. Many different approaches have been proposed throughout

the years, and we highlight the most general ones here. As an example, consider the

nonsymmetric matrix defined by 
a 0 0 0 b 0
x y 0 0 0 z
0 l m 0 0 0
p 0 q 0 0 0


Figure 2.4: Example matrix

Coordinate Format

The simplest sparse format is the Coordinate format (COO). This format stores

the row index, column index along with the non-zero values. It is simple and for any

pattern of sparsity the storage required is dependent on the number of non-zero values.

It is implemented with three 1-dimensional arrays, one to store the non-zero values and

the other two to hold the row and column index of the corresponding nonzero values.
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Even though it is not quite as efficient from the memory requirement point of view, it is

attractive because of its simplicity. In particular, the sparse matrix-vector product routine

in the CMSSL library adopts a slight variant of the COO format.

row index 0 0 1 1 1 2 2 3 3

col index 0 4 0 1 5 1 2 0 2

matrix value a b x y z l m p q

Figure 2.5: Coordinate Sparse Matrix Format

Compressed Storage Format

Compressed Storage Format (CSR) is the most popular and general format that

provides excellent compression for both structured and unstructured sparse matrices in high

performance architecture. SpMV with CSR format shows good performance improvement

when implemented on CPUs and all algorithms like BLAS, LAPACK and CUSparse sup-

ports this format only. It uses three 1-dimensional arrays, one to hold the non-zero values,

the second one holds the number of non-zero values per row and the third one holds the

column index of the non-zero values. The CSR format of the example matrix is as follows:

The compressed sparse column format (CSC) is almost identical to CSR, but instead of

row pointer 0 2 5 7 9

col index 0 4 0 1 5 1 2 0 2

matrix value a b x y z l m p q

Figure 2.6: Compressed Sparse Row (CSR) Matrix Format

compressing the row array it compresses the column array. The CSC format is less widely

used because its workloads are harder to distribute evenly. SpMV has one output per row

(not per column), and with CSR each output can be computed within a single process-
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a b 0

x y z

l m 0

p 1 0

(a) Value Vector

0 4 *

0 1 5

1 2 *

0 2 *

(b) Column Vector

Figure 2.7: ELLPACK sparse matrix format

ing element (PE). CSC would require synchronization across multiple PEs to prevent race

conditions.

ELLPACK Format

The ELLPACK (ELL) format rose in popularity with GPUs. Peak performance

required each processor to run the same workload. The traditional ELL format compresses

the matrix data into a rectangular dense matrix, and adds zeros to force each column in the

matrix to have the same number of elements. The matrix data is then stored column by

column, followed by their column indices in the original sparse matrix. Since each column

is aligned to a 32-element boundary, the format is able to fully utilize the mechanism of the

memory coalescing on a GPU. This leads to a significant increase in the loading throughput

and improved performance of the SpMV for some matrices. The format handles matrices

with similar short row lengths well because of the local column storage. However, if the

row length for a matrix varies significantly and many zeros are needed, the ELL format

becomes inefficient. A major challenge in computing y = Ax is the irregularity of accesses

to the x vector (for row-wise traversal) or y vector (for column-wise traversal) as a result

of the non-zero access patterns in the matrix. Hardware accelerators, such as FPGAs and

GPUs, deal differently with this situation.
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2.4.2 GPU Approaches

GPGPUs are known to be throughput-oriented processors. Therefore harnessing

the best performance out of them requires exposing substantial fine-grained parallelism as

well as sufficient regularity on execution paths and memory access patterns.

It is important to note that GPGPUs are very sensitive to the sparse matrix format.

The format and resulting metadata can impact the load balance, resource utilization, and

memory efficiency. One of the pioneering work on GPU-based SpMV, Bell and Garland [16]

focused on different data storage formats, including CSR, diagonal (DIA), coordinate and

ELL, and the design of parallel kernels operating efficiently on the corresponding formats.

Bell and Garland implemented two parallel kernels: CSR-Scalar and CSR-Vector. In CSR-

Scalar based approach, matrix rows are statically distributed over CUDA threads with each

thread processing one row. This kernel takes advantage of the thread-level fine-grained

parallelism. However, it still suffers from uncoalesced memory access within a warp. Fur-

thermore, if consecutive rows assigned to a warp have different row lengths (the row length

is defined as the number of non-zeros in a row), all of the other threads within a warp

have to keep idle until the threads with the longest rows have completed. CSR-Vector,

on the other hand, statically distributes matrix rows over a fixed number of warps in a

round-robin fashion. However, this kernel can cause underutilization of hardware resources

for short rows of lengths less than the warp size, resulting in low GPU occupancy. Load

imbalance is a major cause of poor performance on GPUs. The CUSP [27] library handles

this issue by applying a method that first computes the average row length in the whole

matrix and then determines the vector size per row based on this average value. Similarly,
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recent work presented in [58] target the same problem of load imbalance by introducing

various heuristics.

2.4.3 FPGA Approaches

A number of FPGA SpMV accelerators have been proposed and demonstrate the

potential of FPGAs as an SpMV acceleration substrate. However, many of these works

focus either on developing efficient floating-point accumulators or removing all irregularity,

by caching input or output vectors on on-chip memory or a compiler support for generating

the corresponding hardware.

A substantial amount of work has focused on the efficient floating-point Multiply

Accumulate (MAc) unit. Floating-point multiplication takes around 12 cycles, and addition

can take up to 27 cycles. Producing partial sums every cycle is a non-trivial job because

this requires managing multiple states during the accumulation for varying row lengths.

Adder tree structures with feedback loop are proposed in [76, 95]. However, the number of

non-zeros must be greater than number of channels, otherwise, the design is underutilized.

Work presented in [30, 72] statically assign the partial products to multiple processing

engines. This design is limited to accumulating just two rows concurrently. To support

more row, multiple MACC units are placed across FPGA. An accumulation reduction circuit

supporting an arbitrary number of rows is proposed in [38]. This circuit can read a new

value every cycle. However, all data from one row must enter the circuit before any data

from another row enters. A control unit arbitrates the dataflow between the floating-point

addition unit and temporary buffers. We use a variant of a reduction circuit presented

in [38] in our implementation.
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In this thesis, we restrict our review to existing work which directly interfaces

DRAM. Obviously data compression techniques like [24] can further improve the perfor-

mance of SpMV. However, in this work we focus on multithreading paradigm and its ben-

efits on well known matrix representations. Most of the work on SpMV using FPGAs use

a row-major traversal [52, 93, 49]. The work in [81] does column-major traversal primarily

to avoid caching the x vector. The downside of this approach is that it requires a y vector

cache. To prevent cache misses, a large cache is proposed to store partial sum. However, this

necessarily means that larger matrices will see worse performance. So, this cache will not

be particularly efficient for matrices with heights of 100,000 or more. A detailed qualitative

study of various approaches is provided in Chapter 5.
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Chapter 3

Multithreaded Group-by

Aggregation

Aggregation is widely used in relational databases to group information, or to

count the occurrence of various values. As shown in Listing 3.1, there is a single relation,

‘R’, whose tuples, ‘t’, must first be read; then the hash table is probed to find a match

using each tuple’s key (i.e. if a group already exists for this key), introducing a data flow

irregularity. After that, either the key is new and thus a new entry (group) in the hash table

needs to be inserted, or a match for this tuple’s key was found and an update to an existing

entry in the hash table is performed to increase the entry’s count (assume for simplicity

the aggregation is a SUM). The mixed read-write nature of aggregation requires us to use

explicit synchronization to ensure correctness. Using atomic operations is one option, but

this approach severely impacts the performance.
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for ( t in R)

f i n d l i n k e d l i s t ( )

for ( node in l i n k e d l i s t )

i f ( t . key == node . key )

update ( )

i f ( t not in l i n k e d l i s t )

c r ea te node ( )

i n s e r t n o d e ( )

Listing 3.1: Pseudo Code for Group-by Aggregation

Moreover, aggregated tuples exhibit temporal locality. We propose a novel multithreaded

aggregation implementation based on CAMs in [6]. The design leverages explicit synchro-

nization combined with the cache-like properties of the CAM, more details in Section 3.1.

3.1 Using CAMs on FPGA

A CAM (also known as an associative memory), is an array that can perform

efficient entry-matching (i.e. answer membership queries). Its operation is the inverse of a

Random Access Memory (RAM): when presented with a search word the CAM returns all

the locations whose content matches that word. Each CAM bit consists of a flip-flop with a

comparator matching it to the corresponding bit in the search word. The outputs of all the

bit positions in a word are ANDed to generate the (mis)match for that word. The CAMs

ability to perform a search in unit time comes at a high cost of area, energy and long clock
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cycle time (due to the long wires for the bit-wise AND and propagating the search word to

all the entries)

As the number of entries in the CAM increases, the achievable clock frequency

of the circuit drops. This limitation either restricts the size of the CAM or increases the

number of cycles it takes to perform an update operation. Nonetheless, CAMs have proven

to be very useful in domains such as networking (e.g. implementing an IP table in a network

router).

In a streaming environment CAMs can maintain a cache of recently seen unique

items and allow quick access to them without stalling the pipeline. This fast cache look-

up mechanism can also be used as a fine-grained address-based synchronization primitive,

which avoids long latency trips to main memory and does not require special hardware.

Consider the case when a CAM is assigned to guard a particular memory partition.

It can be configured to hold the addresses of the values that need synchronized access. If

all memory requests within a partition are first submitted to the CAM, before being routed

to the memory, the accesses to identical addresses are serialized locally in the CAM. In this

case a CAM entry serves as an exclusive lock, which gets released (flushed from the CAM)

after the request(s) completion. In the next section, we discuss how to use this approach

for synchronization in the multithreading group-by aggregation algorithm.
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Figure 3.1: Engine Internal Blocks.

3.2 Aggregation Engine Workflow on FPGA

Figure 3.11 shows the layout, and memory channels of the aggregation engine.

Each tuple from the relation is treated as a unique job, and is assigned its own thread on

the FPGA. Jobs are first streamed from global memory by the Tuple Request component.

Upon arrival they are sent to the first data CAM filter keys which combines duplicate keys

into a single job on the FPGA.

The state diagram of a single thread inside the aggregation engine is shown in

Figure 3.2. The Filter CAM is used to merge jobs with identical keys, hence reduces the

memory request contention and minimizes the synchronization overhead. However due to

hash collisions the synchronization cannot be avoided completely; thus the Lock CAM is

used to acquire locks on hash table bucket

1Hardware design done with the help of Robert Halstead [45]
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Figure 3.2: A state diagram for jobs in the aggregation engine.

Table 3.1 shows an example of events and contents of Filter CAM, Lock CAM

and main memory HashTable, while the input stream consists of 5 tuples with the following

keys: A, C, A, B, A. The design assumes the COUNT aggregation function, thus the Filter

CAM maintains an occurrence count of duplicate keys. However, other functions could be

potentially applied. Note that operations updating the CAMs are performed immediately,

whereas main memory HashTable accesses (e.g., search, entry update, entry insert) take

several cycles to finish. For example, Job 1 sends a request to search value A in a hash

table and gets response only at Cycle4. Lock CAM maintains the locks for all buckets which

are currently being searched or modified. In particular, after the job obtains a lock, it starts

the bucket list search process and subsequently either updates an aggregate value or inserts

a new entry into the bucket list for a certain key. Once a job completes, it invalidates the

record in both CAMs, therefore frees up resources for other jobs. Jobs, waiting for a place
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Cycle Key Filter CAM Lock CAM HashTable Comments

1 A Miss, Insert (A,1) Miss, Insert hash(A) {} Buckethash(A) is locked

{(A,1)} {hash(A)} Request to search key A
in HT is sent

2 C Miss, Insert (C,1) Hit, since hash(A) {} Job 2 waits for the lock
{(A,1), (C,1)} =hash(C) {hash(A)}

3 A Hit, Update (A,2) {hash(A)} {} Job 3 is discarded
{(A,2), (C,1)}

4 Job 1 removes Job 1 releases {(A,2)} Key A was not found
entry for key lock on hash(A) {} in HT. Create new entry
A {(C,1)} (A,2) in HT

5 {(C,1)} Job 2 obtains lock {(A,2)} Buckethash(C) is locked

on hash(C){hash(C)} Request to search key C
in HT is sent

6 B Miss, Insert (B,1) Miss, Insert hash(B) {(A,2)} Buckethash(B) is locked

{(B,1), (C,1)} {hash(C), hash(B)} Request to search key B
in HT is sent

7 Job 2 removes Job 2 releases lock {(C,1), Key A was not found
entry for key on hash(C) {hash(B)} in HT. Create new entry
C {(B,1)} (A,2)} (C,1) in HT

8 A Miss, Insert (A,1) Miss, Insert hash(A) {(C,1), Buckethash(A) is locked

{(B,1), (A,1)} {hash(A), hash(B)} Request to search key A
(A,2)} in HT is sent

9 Job 6 removes Job 6 releases lock {(B,1), Key B was not found
entry for key on hash(B) {hash(B)} (C,1), in HT. Create new entry

B {(A,1)} (A,2)} (B,1) in HT

10 Job 8 removes Job 8 releases lock {(A,3), Key A was found in HT
entry for key A{} on hash(A) {} (B,1), Update entry for the key

(C,1)} A in HT to (A,3)

Table 3.1: Contents of the Filter CAM, Lock CAM and HashTable (HT) and modifications
altering all of them, while relation with the following keys is processed: A, C, A, B, A.
Assume hash(A)=hash(C). Initially both CAMs are empty. Filter CAM maintains the
occurrence of duplicate keys, while Lock CAM locks the hash bucket, holding the bucket
list’s head pointer

in a CAM, will continually cycle through a FIFO until the resource is available. Whenever

there is a hit in the Lock CAM the job waits until the lock is released, e.g. Job 2 resumes

its work only at Cycle5. Job 3 provides an example of early termination, because its value

was locally aggregated in Filter CAM.
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3.3 FPGA design and Optimizations
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Figure 3.3: Stall percentage for Tuple Request, HT Lookup and Filter CAM modules for
different datasets

The main bottleneck of our design is memory bandwidth. In this paper we use

a Convey-HC-2ex machine, but our designs are platform independent. In the Convey the

communication between the FPGA and main memory relies on the abstraction called chan-

nel. Each channel supports independent and concurrent read/write accesses to memory.

The initial design of our aggregation engine requires 4 memory channels: one for streaming

the input tuples, one for accessing the in-memory hash table, and finally two channels for

the bucket lists read/write operations. Since the Convey-HC-2ex has 16 memory chan-

nels, we replicate 4 engines (164 ) on a single FPGA thus leveraging inter-engine parallelism.

Figure 3.4(a) demonstrates the design and channel assignment of the replicated engine ap-

proach. Each replicated engine uses its own CAM for synchronization. As a result, values

are aggregated in separate hash tables. However, this requires an extra merging phase at
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the end of the computation, an overhead which grows as we increase the number of engines

per FPGA. In addition to inter-engine parallelism we also improve intra-engine channel

usage.

We profiled our baseline implementation by adding counters to the main modules:

Tuple Request, HT Lookup and Filter CAM. Figure 3.3 presents the distribution of stall

cycles across different modules for varying datasets. Some observations are: (1) the Filter

CAM module is the bottleneck across different datasets. This imply that as Filter CAM

gets full, it stops fetching data from Tuple Request. This action causes FIFOs to become

full and eventually stalls all outgoing memory requests. This behavior imply that the size of

the Filter CAM is the bottleneck (2) As a consequence, memory channel connected to the

Tuple request is overly underutilized, almost by 70%. Since the channels within an engine

are statically assigned to perform different functions of the pipeline, back pressure from

some components (e.g. job recycling through CAM synchronization) introduces stalls and

decreases the effective throughput. This clearly shows that memory channels can indeed

fetch more data, however, the size of CAMs limit us to do so.

In order to increase memory utilization we have multiplexed2 a pair of engines on

a same set of memory channels, thus allowing the same channel to be used by two different

engines. This means that the following engine operations (e.g. send and receive tuple request

and response, read and write respective values to the hash table, read and write entries

into respective bucket list) can run concurrently on two different engines. The multiplexed

design increases the number of CAMs that could be placed on the FPGA, leading to further

improvement in throughput. Unlike the previous design, the new multiplexed engine uses 5

2Main contribution of this thesis
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Figure 3.4: Alternative engine placement strategies on a single FPGA with 16 memory
channels.

memory channels (adding an extra channel for accessing the in-memory hash table). This

allows us to place 6 engines (2 ∗ b165 c) on a single FPGA. Figure 3.4(b) shows how engines

are multiplexed on a single FPGA and depicts channel allocation in this design.

3.4 Evaluating Group-by Aggregation

The FPGA aggregation implementation is compared in terms of overall throughput

against the best multi-core approaches [25, 90] running on a single processor with 4 parallel

threads. We have already described our target architecture in Section 2.2.3. The subsequent

section summarize various software aggregation algorithms as well a description of the

datasets used in the experiments.

3.4.1 Software Implementations

In order to evaluate our FPGA-based solution we have implemented the following

state-of-the-art multithreaded software aggregation algorithms3: (i) Independent Tables[25],

3Software aggregation algorithms are implemented by Ildar Absalyamov added here for the sake of com-
parisons.
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(ii) Shared Table [25], (iii) Hybrid Aggregation [25], (iv) Partition with Local Aggregation

Table [90] and (v) Partition & Aggregate [90]. Here, (i) and (ii) are considered as non-

partitioned approaches, while (iii) and (iv) are hybrid, and (v) is a partitioned approach.

Dataset Description

We use five datasets with various s key distributions, namely: Uniform, Heavy

Hitter, Moving Cluster [25], Self Similar and Zipf 0.5.

• In the Uniform dataset all key values are picked from uint64 key range with uniform

probability. After that generated key/value pairs are randomly shuffled.

• A half of the tuples in the Heavy Hitter dataset [25] share the same a key value.

The remaining key values are picked uniformly and evenly distributed throughout the

the entire relation.

• In the Moving Cluster dataset [25] tuples are grouped into clusters depending on

their key values. Lower key values are more likely to appear at the beginning of the

relation, whereas tuples with higher key values are tend to appear at the end of the

relation.

• Self Similar uses Pareto rule to model key distribution in a dataset: a single key

value is shared by 20% of the tuples. Of the remaining 80% of tuples 20% of those

share another key value. This process is repeated recursively to generate the relation.

Tuples are randomly shuffled. The generation algorithm is described by Gray et al.

[41].
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• In the Zipf dataset key values follow the Zipf distribution with a skew coefficient of

0.5. The generation algorithm appears in aforementioned work[41].

Each dataset consists of several benchmarks with cardinalities ranging from 210 to

222 unique keys. The relation size in all of the experiments was 256 million tuples (in line

with previous research [90]). Each dataset used the same 8-byte wide tuple format, which

is commonly used for performance evaluation of in-memory query processing algorithms

[12, 18, 17] and represents a popular column-wise storage format. The first 4 bytes of the

tuple hold the unique primary key, while the rest is reserved for the grouping key.

3.4.2 Throughput Evaluation

Figure 3.7 displays the throughput of the group-by aggregation as the key car-

dinality is increased, obtained for various datasets. Throughput was measured across two

FPGA engine designs (regular and multiplexed), and five software (two non-partitioned,

two hybrid and one partitioned) implementations. Throughput for skewed Heavy Hitter

dataset Figure 3.6a resembles the results for Self Similar dataset Figure 3.5b, while the

throughput for moderately skewed data Zipf 0.5 Figure 3.7a is similar to the results ob-

tained for Uniform dataset Figure 3.5a. Software implementations demonstrate the best

performance on Moving cluster dataset Figure 3.6b due to the property of the data dis-

tribution: similar grouping keys appear in the input stream clustered together, increasing

CPU-cache hit rates.
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Figure 3.5: Aggregation throughput of hardware and software approaches for datasets with
256M tuples.

Despite all the differences in data distribution CPU aggregation performance

mainly depends on the dataset’s key cardinality. While the number of unique keys is low,

hash tables can fit into the CPU cache entirely. However, as the cardinality increases, cache

misses start to hamper the throughput due to high latency memory round-trips. Software
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performance severely deteriorates at cardinalities higher than 218 on all datasets for all

algorithms.
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Figure 3.7: Aggregation throughput of hardware and software approaches for datasets with
256M tuples.

The FPGA performance also drops as the key cardinality increases, however this

effect is much less profound. Unlike the software throughput, this result is explained by the

overhead, introduced by the post-processing merge step.

3.4.3 Merge Overhead on FPGA

The Figure 3.8 shows aggregation throughput while the size of the datasets having

Uniform key distribution is increased. The parallel FPGA aggregation step has almost

constant throughput of about 450 MTuples/sec, even on very high cardinalities. The merge

step introduces an overhead, however it comes at a fixed price.

This cost depends solely on the key cardinality because aggregation reduces the

initial input into a constant number of streams which should be merged. Hence as the size

of the relation grows the merge step overhead gets amortized, so that the full throughput

is almost constant for relations greater than 128 million tuples.
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3.4.4 Performance Analysis

It should be noted that the performance benefits of the FPGA-based approaches

come not from architecture-specific features, but from multithreading, which allows to uti-

lize the available memory much better than any of the software implementations. Figure 3.9

depicts the ratio of effective average memory bandwidth to peak theoretical memory band-

width for the best software (Independent Tables) and FPGA (multiplexed) implementations

while varying dataset sizes and key cardinalities. Hardware mutithreading approach allows

our FPGA implementation to keep the ratio almost constant, irrespectively of dataset size

or key cardinality.

On the contrary, the ratio for the software approach varies greatly. The effective

memory bandwidth of the CPU implementation tends to grow as the size of the relation

increases (from 8M to 128M), whereas the FPGA-based approach is less susceptible to data

size variations. For low cardinality the aggregated relation and hash table are cached and

there are almost no memory accesses, hence the ratio approaches 0. The software ratio

peaks at around 0.3 for cardinality 218, but drops significantly for higher key cardinalities.

For very large cardinalities the FPGA implementation ratio is almost 5 times higher.

3.5 FPGA Area Utilization

Table 3.2 shows the resource utilization (registers, LUTs, and BRAMs used) for

both FPGA aggregation designs (replicated and multiplexed) as the number of engines is

scaled up. As we can see increasing the number of engines by one only adds an additional
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Table 3.2: FPGA resource utilization for aggregation engines.

# of Engines Registers LUTs BRAMs

1 99597 (11%) 87194 (18%) 126 (17%)

2 116635 (13%) 100497 (21%) 147 (19%)

3 135517 (15%) 115560 (24%) 184 (24%)

4 152132 (17%) 129775 (27%) 206 (28%)

1-Multiplexed 113695 (11%) 114280 (24%) 142 (19%)

2-Multiplexed 145690 (15%) 140684 (29%) 196 (27%)

3-Multiplexed 179641 (18%) 200175 (42%) 250 (34%)

2% for registers, 3% for LUTs, and 4% for BRAMs for replicated engine design. This

happens because a lot of the components are shared across the engines. However as we

start multiplexing the engines we stop sharing the resources due to timing constraints. This

results in growth of FPGA resource utilization as we increase the number of engines.

The aggregation design utilizes a lot of LUTs, which are extensively used in our

CAM implementation. The hardened BRAM blocks only have two channels. This property

is too restrictive for the CAMs, which must access all locations in parallel. The aggregation

design uses only 42% of the available resources

3.6 Conclusion

In this chapter we presented a multithreaded FPGA implementation of the group-

by hash aggregation operation. All data structures are stored in main memory, which

allows the DBMS to seamlessly transition between software and hardware execution. We

introduce a portable approach which uses CAMs to provide fast caching and enforce syn-

chronization. We explore various FPGA designs and apply optimizations to further improve

the performance. Experimental results show that the aggregation throughput is consistent
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and predictable regardless of a relations size and cardinality. Despite the fact that the

final merge step does affect performance, we show that this overhead is amortized when

the relation size increases. Experiments show that the multithreaded FPGA approach can

significantly outperform all existing software approaches and demonstrate especially good

performance for high cardinality benchmarks. Throughput ranges between 700 to 150 MTu-

ples/sec depending on the dataset distribution and key cardinality, with a speedup up to

10x.
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Chapter 4

Multithreaded Selection Operator

In this chapter, we focus on one commonly-used database operation, namely ap-

plying a conjunction of selection conditions to a set of database records. One wishes to

obtain those records satisfying the conditions in as efficient a way as possible. A selection

condition is usually formed by the number of predicates with the following structure < COL

comp op CONST > that appear in the WHERE clause of an SQL query. In a typical query

plan selection operators appear early on, right above data scan (or an indexed-based access

method) thus their performance directly affects the total runtime of the whole query. We

also describe the design of a programmable hardware accelerated selection engine (hereafter

referred to as MTP) for DBMS which deals with long memory latencies using hardware

multithreading. MTP allows us to fetch only the needed parts of the record, thus maximiz-

ing the utilization of the available memory bandwidth. It is important that our approach

works irrespective from physical database storage layout allowing to run efficient analyt-

ics on transactional row-oriented data without replicating it in columnar representation.
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This technique restricts the number of memory accesses to the in-memory relation to be

proportional to the size of the query (number of predicates in query),

4.1 MTP Selection Engine

For our MTP implementation we take advantage of the early termination provided

by the branching-scan algorithm. We spawn thousands of lightweight threads (one for each

tuple) which allows us to do fine-grained data access (fetching only the values needed for

the query evaluation on each tuple) without incurring branch misprediction penalties and

independently of the data layout.

4.1.1 Engine Design

labelsec:design In the rest of our paper, we assume that the input relation is too

large to be stored in local FPGA BRAMs. Therefore, our design trades off small and fast

on-chip memory for larger and slower off-chip memory. The selection engine is a custom

datapath that copes with the long memory latencies by issuing thousands of threads and

maintaining their states locally on the FGPA. Because of the inherent FPGA parallelism,

multiple threads can be activated during the same cycle while other threads are issuing

memory requests and going idle. The selection engine is capable of processing different

selection queries without needing to re-configure the logic on the FPGA.

To program the selection engine at run-time for different queries, we arrange our

queries in a standard disjunctive normal form or DNF. We build the DNF by parsing the

query and creating a data structure, called the Predicate Control Block (PCB). The PCB
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SELECT (*)

FROM OrderDetails

WHERE

(UnitPrice > 5 AND

Quantity > 10) OR (TotalPrice > 100)

(a) Example SQL Query

Column Opr Const Col True Col False

UnitPrice > 5 Quantity TotalPrice

Quantity > 10 TRUE TotalPrice

TotalPrice > 100 TRUE FALSE

(b) Corresponding Predicate Control Block.

Figure 4.1: Figure (a) represents the sample SQL query which is used as an example query
in this section. Figure (b) present the corresponding predicate control block (PCB) for the
sample query

size is linear to the number of predicates in a query as it maintains a single record for each

predicate. Each record of the PCB stores the comparison operator (e.g. less than, equal,

etc.), the constant, and two column offsets(True or False) that are needed to direct further

evaluation.

Figure 4.1a shows a sample SQL query and its corresponding PCB. It has three

rows that correspond to the three predicates in the query. We parameterize all three parts

of our predicate: (1) the column ID, (2) the comparison operator, for which one out of six

possibilities is selected (=, <>, <, >, <=, >=), and (3) a constant value. Given a tuple

from OrderDetails, after evaluating the first predicate (UnitPrice > 5) in the query, the

next column offset requested is Quantity if the condition evaluates to true. Otherwise, we

request TotalPrice. Notice that if (UnitPrice > 5) is false, we continue immediately with

TotalPrice instead of finishing the next comparison. This provides early termination within

clauses as well as queries.
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Figure 4.2: Selection Accelerator Engine: showing different building blocks and memory
channels that read/write from memory

4.1.2 Engine Workflow

Figure 4.2 shows the design of our selection engine. Local registers are programmed

at run-time and hold pointers to the database table and PCB. They also hold information

about the number of tuples, row size (in terms of number of columns), and the starting

column offset (column ID in the first predicate). Lastly, the registers hold the base address

of the memory space where qualifying row offsets will be written back.

The execution starts with loading the PCB (query) from the memory. The Predi-

cate Request module loads the PCB and stores it locally on the FPGA in BRAM. The query
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evaluation starts when all the PCB entries have been received and stored. In the meantime,

the Tuple Request module will create a thread for each tuple and starts issuing requests that

corresponds to the data located at (Rowi,Colj). Requests are issued continuously until all

tuples have been processed. When a thread issues a request, the tuple’s pointer and the

next predicate to be evaluated for this tuple are added to the thread state and the thread

goes idle. Threads are issued in-order but qualifying rows can be written back to memory

out-of-order.

As data requests are completed, the thread is activated again and a corresponding

predicate yet-to-be evaluated is evicted from the stored thread state. Then the Predicate

Evaluator either qualifies a row, disqualifies a row, or requests a new data for column

(Rowi,Colj′) to further evaluate a query. In the latter case the thread pointer for this row

along with column j′ find its place in recycled requests.

The Arbiter decides which active thread will issue the next request to memory.

This request either brings in a new row or uses a recycled row. Priority is given to the

recycled threads to reduce the number of concurrent jobs and ensure that the design will

not deadlock by filling up the request queue with new row requests.

4.1.3 MTP Performance Analysis

Since the MTP selection engine implements the branching-scan algorithm, there

is a strong correlation between the measured throughput and selectivity (S), predicate prob-

ability (p), and the number of predicates (k) of the selection query. S is defined as the

fraction of records in the input relation that satisfy the given query conditions, while p is

the probability of an individual predicate to be true. To simplify our analysis we assume
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that there is no correlation between columns (attributes). We also group all the predicates

on a single column into one; hence in the rest of the paper we assume that every predicate

is applied on a different column. With this assumption, the proposed model can calculate

the expected number of predicates evaluated for a given value of S and k and describe the

variability in throughput based upon these predicate evaluations. Table 4.1 depicts the

parameters used in this analysis.

Table 4.1: Query and input relation parameters used in the analytical model

S query selectivity

p predicate probability

k number of predicates

N total number of rows

We work done to evaluate predicates

Wwr work done to writeback the qualifying rows

Query evaluation involves reading column values from the memory and writing

back the IDs of the rows that qualify. Therefore, the total work done to process a query can

easily be partitioned into the amount of work done to evaluate the query, We, and the work

done to write back the ID of the qualifying rows, Wwr. Note that We includes sending a

request and receiving a response from the memory, evaluating the value of a column against

a constant, and sending further requests for other predicates until a decision on a row can

be made.

Clearly, We is proportional to the total number of predicates evaluated and Wwr

is proportional to the total number of qualifying rows. Hence, the overall throughput of the
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C0 C1 C2 CkN N*p N*p2 N*pk-1…....
.

Figure 4.3: Number of qualified rows after each predicate for a conjunctive query. N is
the total number of rows, p is a predicate probability, C0,C1,C2,...,Ck designate k different
predicates.

system can be defined as follows:

We ∝ Total number of evaluated predicates (4.1)

Wwr ∝ Total number of qualified rows (4.2)

Throughput ∝ 1/(We +Wwr) (4.3)

The rest of the section further elaborates upon We and Wwr on two types of queries,

namely, a query that contains only conjunction of predicates and a query that consists only

of disjunction of predicates. Finally we discuss the case of a mixed query (that contains

combination of ANDs and ORs).

Conjunctive Queries. Figure 4.3 shows the expected number of qualifying rows

after each predicate in a conjunctive query. Equation 4.4 calculates the expected number

of evaluated predicates by summing up the number of rows reaching each predicate. Equa-

tion 4.7 defines the expected rows satisfying the last predicate condition based upon query

selectivity. As a result, we obtain We and Wwr for conjunctive query in Equations 4.5 and

4.8 respectively.
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Exp. number of evaluated predicates = N ∗
k−1∑
i=0

pi (4.4)

From Equation 4.1, We ∝ N ∗
k−1∑
i=0

pi (4.5)

Selectivity of a conjunctive query, Sand = pk (4.6)

Expected number of qualified rows = N ∗ Sand (4.7)

From Equation 4.2, Wwr ∝ N ∗ Sand (4.8)

Equation 4.6 shows that the selectivity, S, is a function of p and k. This relation is plotted

in Figure 4.5a. An important observation is that as S and k increase, p increases logarith-

mically. Higher values of p imply that more predicates per row are evaluated, i.e. increasing

We.

Disjunctive Queries. We perform the same analysis for a disjunctive query, shown in

Figure 4.4 and obtain the following equations:

We ∝ N ∗
k−1∑
i=0

(1− p)i (4.9)

Sor = 1− (1− p)k (4.10)

Wwr ∝ N ∗ Sor (4.11)

Once again we plot p with varying values of S and k in Figure 4.5b. Key observa-

tions from this graph are: (1) For a given k, p increases with S. Higher probabilities cause
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C0 C1 C2 CkN N*(1-p) N*(1-p)2 N*(1-p)k-1…....
.

Figure 4.4: Number of qualified rows after each predicate for a disjunctive query. N is
the total number of rows, p is a predicate probability, C0,C1,C2,...,Ck designate k different
predicates.

disjunctive queries to terminate early, hence We decreases. (2) Keeping S constant, if we

increase k, probability p decreases, increasing We.

Also, note the opposing nature of probabilities for conjunctive and disjunctive

queries in Figure 4.5. This visually illustrates Equations 4.4 and 4.9 showing that for

any given selectivity, S, the number of predicates evaluated for both types of queries are

complement to each other. We observe the same trend in our experiments. Table 4.2

summarizes the different trends in We and Wwr for both conjunctive and disjunctive queries.

Table 4.2: Summary of relationships between S, k, We and Wwr.

Conjunctive Disjunctive

S Const, k ↑ k Const, S ↑ S Const, k ↑ k Const, S ↑
We linearly ↑ f(p,k) ↑ linearly ↑ f(p,k) ↓
Wwr ∝ S linearly ↑ ∝ S linearly↑

Mixed Queries. We can extend the same analysis to loosely bound the through-

put of a query with different combinations of AND-OR. We again assume the mixed query

arranged in the standard DNF form.

For any query with k predicates, the minimum possible number of evaluated pred-

icates per row is 1 while the maximum is k. The maximum performance (minimum number

of evaluated predicates) is achieved by a conjunctive query at p = 0 and a disjunctive

query at p = 1. Similarly, the minimum performance of a conjunctive query is achieved at

61



0

0.2

0.4

0.6

0.8

1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Pr
ed

ica
te

 p
ro

ba
bi

lit
y

Selectivity

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

(a) Predicate probability vs selectivity for a conjunctive query.
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(b) Predicate probability vs selectivity for a disjunctive query.

Figure 4.5: Variance in predicate probability with respect to selectivity for conjunctive (a)
and disjunctive(b) query.

p = 1 and at p = 0 for the disjunctive query. Therefore, for any given value of S and k,

the performance of a mixed query will always be bounded by a maximum and minimum

performance of a pure conjunctive and disjunctive query. For any query with k predicates,

the minimum possible number of evaluated predicates per row is 1 while the maximum is

k. The maximum performance (minimum number of evaluated predicates) is achieved by
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a conjunctive query at p = 0 and a disjunctive query at p = 1. Similarly, the minimum

performance of a conjunctive query is achieved at p = 1 and at p = 0 for the disjunctive

query. Therefore, for any given value of S and k, the performance of a mixed query will

always be bounded by a maximum and minimum performance of a pure conjunctive and

disjunctive query.

4.2 Evaluating Selection Operator

We again choose Convey HC-2ex as our target platform. The details of this plat-

form are described in Section 2.2.3. Table 4.3 summarizes the characteristics of all the

platforms used. Figure 4.6 compares the absolute query runtime on the CPU, GPU, and

MTP implementations.

Device Make & Clock, Cores Memory Memory Band-
Model MHz Size, GB width, GB/s

CPU Intel Xeon 3300 8 128 51.2
E5-2643

GPU NVIDIA 1500 3584 12 480
Titan X

FPGA Virtex6-760 150 N/A 64 76.8

Table 4.3: System Configuration of different architectures used for evaluation.

4.2.1 Throughput Evaluation

The GPU delivers the best raw performance across different predicate values and

selectivities, followed by MTP that performs better on low selectivity values and smaller
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Figure 4.7: Throughput achieved by MTP, CPU and GPU implementation normalized to
their respective bandwidth. Note that the legend description is same as that of Figure 4.6.

values of predicates. The CPU SIMD implementation comes next and finally the CPU

Scalar implementation achieves the highest runtime among all other architectures.

Adhering to the branching-scan characteristics, the performance of MTP is sen-

sitive to predicate probability. The predicate probability of a conjunctive query increases

with the selectivity (S) as well as with the number of predicates (k) as it can be seen in

Figure 4.3. As a consequence, the query evaluation can terminate early on the lower value of

selectivities but builds up for higher values. Additionally, for high values of S, the writeback

work(Wwr) increases too, resulting in a quick drop in throughput.
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Furthermore, in our experiments we define S using p and k assuming that all

predicates have the same probability. On the other hand, real-world queries might have

a different combination of predicate probabilities for the same total selectivity. If a query

optimizer performs a good job of arranging predicates in the order of their likelihood of

being false (true) for conjunctive (disjunctive) queries, MTP will work independently of

the number of predicates in a query and is only limited by the number of memory accesses

required for query evaluation. This can be seen in Figure 4.6, where the MTP runtime does

not change with the number of predicates for 0% selectivity.

Unlike the MTP implementation which is based on early termination, all other

platforms implement a variant of the No-Branch algorithm. The CPU Scalar graphs clearly

show that its execution time is independent both from the number of predicates and from

the query selectivity. This independence is an expected behavior because in a row-major

storage format selection is a memory-bounded computation. Each access to a particular

tuple will bring from memory the values for all its columns, whether they will be evaluated

later or not.

On the other hand, the runtime of the CPU SIMD implementation grows linearly

as we increase the number of predicates in a query from 1 to 8. Again this behavior is

explained by the fact that in a columnar storage format we are fetching only the values

that will be later used for evaluating the predicate. For the queries with 8 predicates, the

runtimes of Scalar and SIMD converge because they perform the same amount of memory

accesses. However we can also see another trend for the vectorized implementation: its

runtime grows as we move from 0% selectivity to 100%. This is explained by the increasing
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amount of qualifying recordIDs which need to be written to the output buffer. The SIMD

implementation is susceptible to growing Wwr because it requires additional permutations

in order to retrieve IDs of the rows that were qualified from a SIMD lane.

We should also note that for the CPU implementations, the runtime is a function

of the main memory bandwidth utilization, not the penalty of fetching data into CPU

cache. In both experiments, the data access patterns (contiguous load for Scalar or load

with constant strides for SIMD) are easily recognized by the CPU prefetcher, which was

verified by preliminary experiments where we had disabled the prefetcher.

Similarly, the GPU implementation evaluates all predicates despite their different

selectivities, resulting in more evaluation work for the respective query. This translates

to a higher number of memory fetches that quickly dominate the total execution time, as

their cost is several magnitudes higher than that of evaluating the predicate conditions.

Therefore, an increase in the number of predicates corresponds to increasing runtime as

indicated by our experimental results.

4.2.2 Throughput Efficiency

To better capture the memory-bounded nature of the selection and provide a

direct comparison between widely different architectures we normalize the MTP, CPU, and

GPU throughput to the memory bandwidth available on each architecture. As discussed in

Section 4.2 the Convey HC-2ex has 4 FPGAs with cumulative bandwidth of 76.8 GB/s, the

CPU system has a memory bandwidth of 51.2 GB/s, and the GPU system has a memory

bandwidth of 480 GB/s. The normalized results are shown in Figure 4.7.
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The CPU SIMD implementation is remarkably efficient for k = 1 and S = 0%.

Since only one predicate is evaluated, the columnar data layout makes the cache access

extremely effective in this case.

Moreover, with 0% selectivity there is no result materialization overhead. However,

the CPU SIMD throughput drops quickly as S and, especially k are increased.

In contrast, since the MTP design is only susceptible to the predicate probability,

it takes better advantage of early termination on lower selectivity values and processes more

tuples/sec per bandwidth. It can be seen from Figure 4.7 that for k > 1 and S = 0%, MTP

is 1.2x - 5x more bandwidth efficient. However, as selectivity increases, we start seeing the

effect of the writeback pressure on the MTP design too. For instance, for 50% selectivity,

an effective speedup of only 1.2x - 1.7x is achieved over the CPU SIMD implementation.

Overall the MTP design remains 1.6x - 4.7x more efficient in comparison to the CPU Scalar

implementation within the wide range of selectivities (0% ≤ S ≤ 50%).

A similar trend is also observed while comparing to GPU. For lower selectivity

values, say, S = 0% the MTP design is 1.8x - 5x more efficient than GPU. However, as

we increase the selectivity, the GPU throughput remains unaffected while the MTP sees a

performance drop to 1.5x - 1.8x for S = 50%.

Finally, for S = 100%, the MTP throughput is similar to the GPU, CPU SIMD

and has a 2x edge over the CPU Scalar. At this selectivity, the probability of each predicate

is also 100%. For a conjunctive query, this leads to more predicate evaluations, resulting

in the highest value of We. Additionally, with the maximum value of selectivity, writeback
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Figure 4.8: Absolute attributes evaluated as the selectivity and number of predicates are
varied for (a) conjunctive

work is at its peak. Therefore, at this stage, the MTP design sees diminishing returns from

the advantage of early termination as writeback becomes the bottleneck.

4.2.3 Multithreaded Execution of Selection

As discussed in Chapter 2.2.2 there are three states of multithreaded execution:

(1) build-up state (2) steady state and the (3) drain state. In the context of selection

operator, the build up state consists of requesting the attribute required for evaluating the

first predicate each row. In a steady state, Predicate Evaluator module (Figure 4.2) always

have an attribute to evaluate. This attribute can belong to a new row or the recycled

row. Finally, as more and more rows qualify/disqualify, number of threads start decreasing,

leading to insufficient in-flight requests that can no longer mask the memory latency. Note

that the unit of work is predicate evaluation per row and therefore we measure the absolute
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number of predicates evaluated per second to discuss multithreaded nature of selection

operator

Figure 4.8 describes the aforementioned behavior exhibited by conjunctive queries.

At k = 1 only one predicate is requested from memory which is a part of the build-up

state. The steady state is non-existent in this case. As requests are fulfilled, predicates

are evaluated and the qualifying row ids are written back to memory, launching the drain

state, a long tail . At this point, the computational efficiency of the selection engine is low.

Additionally, because of the write channel bottleneck, the predicates/sec drops further.

However, as k increases, We increases, and now we can observe a steady state in the form

of a plateau region. This region signifies that the PU is busy. Also notice that with higher

value of k, the length of the plateau increases and the tail reduces.

4.2.4 TPC-H Query Evaluation

To evaluate the performance of our implementations on a standard workload we

considered the well-known TPC-H benchmark [5]. We have profiled all 22 TPC-H queries

to understand the various characteristics (selectivity, number of predicates, predicate types)

of the selection operator in this benchmark. Most queries in the TPC-H workload involve

complex joins and group-by aggregations, so not all predicates in the WHERE clause might

be used as filtering conditions in selection operators. Instead, we have considered optimized

plans where selections are pushed down and executed before the joins and right after table

scan operators. Figure 4.9 presents the selectivity(%) of different TPC-H queries. In this

experiment, the average number of predicates in the selection was 2, with an exception of

queries Q6 and Q19 which have 5 and 8/12 (Part/Lineitem tables) predicates respectively.
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SELECT count(*)

FROM lineitem

WHERE l_shipdate >= date ‘1995-01-01’

and l_shipdate < date ‘1996-01-01’

and l_discount between 0.04 and 0.06

and l_quantity < 24;
Figure 4.10: TPC-H Query6

All of the selections in the benchmark were conjunctions, again excluding Q19 which has a

mix of conjunctions and disjunctions.

In order to capture the real effect of the MTP design in the selection operation,

we would like to isolate the effect of all relational operators in the query. This makes Q6,

shown on Figure 4.10, an ideal candidate for our evaluation. We run the query Q6 on the

TPC-H Lineitem table with the scale factor of 10. The measured selectivity of this query

is 1.91%. Figure 4.11a presents the raw performance of query Q6 executed by the various
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Figure 4.11: TPC-H query Q6 performance evaluation.

CPU Scalar CPU SIMD GPU MTP

Memory 100 18.75 18.75 11.4
Fetches(%)

Evaluations 3 3 3 1.83
(per Row)

Effective Band- 0.47 3.44 2.01 6.13
width speedup

Peak Bandwidth 47.6 61.2 36.6 70.3
Utilization (%)

Table 4.4: Performance Evaluation of TPC-H query Q6 on CPU, GPU and MTP imple-
mentations.

architectures. We observe the same throughput trend as discussed before. Due to the

high memory bandwidth GPU achieves the highest raw performance followed by the MTP

design, the CPU SIMD, and the CPU Scalar implementation. However, when we compare

the throughput efficiency in Figure 4.11b, the MTP implementation is 13x, 3x and 1.8x

more bandwidth efficient than the CPU Scalar, GPU and CPU SIMD, respectively.

Furthermore, to confirm the advantage of our MTP design, we also measured the

total number of predicate evaluations and memory fetches. The CPU and GPU implemen-

tations access the common columns (lshipdate, ldiscount) only once. However, MTP treats

them as two independent attributes and fetches the same column again only if required for
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further evaluation. The CPU Scalar implementation accesses all 16 columns per row of the

table, therefore it is considered as a 100% memory access. The CPU SIMD and the GPU

implementations need only 3 out of 16 columns to evaluate the query, contributing to 18.75%

of memory accesses. We used counters to keep track of the number of memory fetches and

the number of evaluated predicates for the MTP implementation. Memory fetches with

MTP amount to 11.4% of total memory accesses. As suggested in [75], we compute the

effective bandwidth speed-up by taking the ratio of the total size of the Lineitem relation

processed per unit time and the peak bandwidth. Finally, we also report the actual peak

bandwidth utilization in Table 4.4.

4.2.5 Datalayout Independence

We proceed with an experiment that tests the behavior of each approach for the

row and column storage formats. The MTP design, utilizing the Convey HC-2ex memory

subsystem, achieves performance that does not rely on any form of data alignment in

memory. Its performance only depends upon accessing individual columns of a tuple for

query evaluation.

On the other hand, both CPUs and GPUs are optimized for cache line accesses.

As a result, we expect their performance to depend heavily on the different storage formats

(row and column major). This is well known for GPUs as they depend on grouping the

execution of threads into warps. This grouping is not only relevant to computation, but also

to global memory accesses, making column access more advantageous. Related literature

has unanimously promoted the use of column major [10, 39, 35, 74] data format for GPUs
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Figure 4.12: Performance comparison of the CPU and the MTP implementations with
row-major and columnar data layouts.

given its superior performance against the row data format. Hence we do not consider

GPUs in the next experiment.

Figure 4.12a compares the performance achieved by the CPU implementations,

namely, Scalar on row and SIMD on column store for varying selectivities and number

of predicates. The columnar data layout leads to efficient cache access when only few
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Figure 4.13: Comparison of Power Efficiency on MTP, CPU and GPU systems.

predicates are required for evaluation. This directly translates into high throughput which

is 8x over the performance achieved by a row-store data layout. However, as the number

of predicates increases, the amount of data accessed by both the row-store and the column

store implementations converge and so does their performance. Figure 4.12b shows the

MTP performance on row and column store data layouts. For a given number of predicates

and selectivity, the number of memory accesses does not depend upon the type of data

layout and therefore the MTP performance remains unaffected.

4.2.6 Power Utilization

To further justify our FPGA-based MTP design, Figure 4.13 presents the power

efficiency results measured in Million Tuples/s per Watt. We compared the power efficiency

of CPU SIMD, GPU, and MTP.

The measured on-chip power consumption on each FPGA of HC-2ex machine is 21

Watt and total power supply is 25 W, that gives us the total FPGA power consumptions as

109W (25 + 21*4). On CPU, we use the manufacturer TDP (thermal design power) rating

of 105 W as prescribed in [65]. On GPU, the average power consumption was measured to be
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Table 4.5: FPGA area utilization for the selection engine

# Engines Registers LUTs BRAMs

1
304,966 248,149 307
12.48% 20.31% 25.56%

4
325,217 263,639 343

13% 21.58% 28.5%

6
347,217 279,639 380

14.2% 22.89% 31%

155W for the design with a power supply of 600W [4]. We compare the power efficiency of all

the devices in Figure 4.13. The power efficiency is coherent with our throughput evaluation.

Since the MTP throughput drops with the selectivity and number of predicates, it directly

affects the power efficiency too. It is 1.4x - 5.6x better than CPU-SIMD on 0% selectivity.

However for S = 100% the power efficiency drops to 0.9x-1.7x. Similarly, in comparison to

GPU we get 4.3x - 1.4x power savings at S = 0 but for S = 100% , the efficiency is on par

with GPU.

We use the same power statistics to evaluate the power efficiency of different

architectures on query Q6 of TPC-H benchmark. MTP design is 3.4x and 2.6x more power

efficient than GPU and CPU-SIMD implementations on this query.

4.3 FPGA Area Utilization

Table 4.5 shows the area utilization (registers, LUTs, and BRAMs used). Many

resources are shared between the engines as their number increases. For example, one

selection engine uses 12.48% of the available registers, whereas 6 engines use only 14.2%.

Also note that with increasing number of engines there is very minimal increase in the

number of logic resources (LUTs). Overall, the space utilization on the FPGA is low, leaving
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sufficient space to extend our design with various optimizations or operators (projections,

aggregation, join). This also gives us insight into how well the design could scale on another

platform with more, or less memory channels. These results include Conveys memory

interface wrapper, which does not occupy a significant portion of the area. We see that

even with 6 engines the Virtex-6 still has plenty of room for more engines; only 14% of the

logic is utilized. The current design is therefore limited by the memory channels.

4.4 Conclusion

In this chapter, we presented a lightweight hardware multithreaded implementa-

tion of the selection operation for in-memory relational databases, the MTP. This design

facilitates fine grained data access, thus is completely oblivious to a particular data layout

(row or column) and avoids fetching irrelevant data.

We thoroughly evaluate it against the best implementations on CPU and GPU.

Experimental results show that the MTP throughput varies only with the predicate proba-

bility and is bounded by the memory channels. The GPU achieves the best raw performance

over the entire parameter space.

Due to the memory bounded nature of the selection operation, we attribute this

performance to the high GPU memory bandwidth. Instead, this work achieves a speedup

between 1.4x - 4.6x over CPU SIMD and 1.4x - 6.7x over GPU implementations for the

query selectivity that ranges from 0% to 50% (77% of TPC-H queries). On higher selectivity

values performance is bounded by the number of write channels.
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We also evaluate MTP on the TPC-H query Q6. On this benchmark query, we

achieve 13x, 3.2x and 1.8x normalized speedup over CPU Scalar, GPU and CPU SIMD

respectively, while saving 89% of total evaluations.
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Chapter 5

Sparse Matrix and Vector

Multiplication

Sparse Matrix and Vector Multiplication (SpMV) is one of the most important

kernels for numerous scientific applications. On one hand, low compute to memory ratio

makes SpMV a memory bound problem and on the other hand, commercial off-the-shelf

(COTS) architectures provide insufficient main memory bandwidth for available computa-

tion resources. Furthermore, SpMV requires random access into a memory space which is

far too big for cache. Hence, it becomes difficult to utilize the main memory bandwidth

which is already scarce. In this chapter, we exploit multithreaded architecture to mask

the memory latency incurred while performing a non-sequential access on the input vector.

Through our evaluation, we show that the proposed architecture can achieve as high as 95%

of the expected upper bound performance. We compare our evaluation results to the latest

GPU architectures namely K20, K40 and Titan GV100.
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Figure 5.1: SpMV design on FPGA.

5.1 SpMV Architecture Overview

Figure 5.1 presents the system level accelerator model: an FPGA co-processor is

used in conjunction with a multi-CPU host system. Therefore data are initially stored and

preprocessed in the CPU DRAM. Data are transferred from CPU DRAM to accelerator

DRAM via an interconnect such as PCIe. Once the data is transferred closer to the FPGA,

the execution starts by fetching the partition pointer. Each partition is completely processed

by a pipeline, Pi, hereafter referred as pipes or PEs. To ensure load balancing between pipes,

dynamic scheduling is applied. Each pipe raises a ready flag as soon as it is done processing

the previous partition. This type of scheduling ensures approximately equal division of work

between pipes.

The multithreaded SpMV kernel focuses on double precision floating point opera-

tions. We assume the input is a 1D partitioned COO encoded sparse matrix, with double
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Figure 5.2: Memory controller state machine

precision floating point values and 32 bit index (col and row ). Initially, we chose traditional

2D blocking technique, where a matrix is divided into sections called blocks or submatrices.

However, preliminary experiments showed that for a smaller block sizes, blocking introduces

‘empty’ blocks, leading to unnecessary memory fetches of a block pointer.

We also view registering intermediate Y values superior to caching X vector values.

Caching X vector can give some performance benefits, however, the gains are limited. This

observation is also confirmed in [24] where the average amount of X vector reuse per X

vector fetch from external memory is reported to be 8.8 for the block size of 128.

The preprocessing step involves splitting the input matrix into work items which

can be parallelised and operated on independently. Since the COO format is used, parti-

tioning can be achieved by row slicing: splitting the matrix into disjoint sets of adjacent

rows. The complexity of preprocessing is O(nnz).
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The multithreading paradigm allows us to completely separate the memory and

the compute units. Each row is a thread. Thread states must maintain the running sum,

and the start/end positions for the memory requests and the partition ID. As requests are

fulfilled the data is sent to a summation unit which produces the final sum-of-products.

Each PE manages the requesting, multiplying, and summing for multiple threads (rows)

concurrently.

A PE has its own Memory Controller and the Compute Unit. These two compo-

nents work independent of each other. The Memory Controller has a state machine that

balances the request type between different data structures (partition pointer, row column,

value and X vector array). A high level description of this state machine is described in

Figure 5.2. Note that the states marked with W are identified as wait states. During the

execution, the state machine may halt at these states due to various reasons like lack of

data response, FIFO empty etc. In these situations, instead of keeping the channel idle, it

is used to write back the final sum to the memory. The main objective of this module is to

keep the Compute Unit as busy as possible by fetching the required data as fast as it can.

The Convey HC-2ex machine supports in-order memory requests. The physical accesses to

memory are fulfilled out-of-order, but the HC-2ex uses a custom crossbar to reorder the

data before returning it to the PE. Thread states can therefore be stored in FIFO buffers.

The Compute Unit comprises of: (1) a small control logic that streams row ID,

matrix value and the X vector value from the Memory Controller and identifies the end

of partition (2) floating multiplier, (3) the reduction circuit. This work uses a reduction

circuit similar to [38]. The work presented in [38] suggests the use of two on-chip memories
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to store the partial sums. However, as an interesting side-effect of partitioning the matrix

row-wise, we require only one on-chip memory to store partial sums. And this memory

is addressed using row IDs local to the partition. This reduction circuit handles multiple

rows concurrently, and can read a new element every cycle. The circuit assumes all data

for one row enters the datapath before any data from another row enters. This assumption

holds for our kernel because of the HC-2ex’s in-order requests. This reduction circuit is

only needed if the kernel is compiled for floating point operations because addition requires

multiple cycles.

5.2 Performance Bound

The performance of sparse matrix and vector computation depend on parameters

like memory bandwidth and the on-chip resource availability. We use a classical roofline

model [85] to describe the upper bound on performance of the SpMV. This model suggests

that the maximum floating point operations is given by the following formula:

Attainable Ops/sec = Min { Peak Floating Point Performance,

Memory Bandwidth x Operational Intensity } (5.1)

A similar model is also proposed in [56]. In this work the sparse matrix is partitioned into

vertical and horizontal blocks. However, the purpose of the vertical partitioning technique

is not well understood since the input vector is not cached and is fetched from the memory

as and when required. Similarly, the design of a processing engine along with the issue of

load imbalance between engines is not addressed in this work.
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This analysis assumes that the data is stored on off-chip memory. An aggregated

bandwidth of b is available between off-chip memories and the FPGA. The on-chip FPGA

memory can hold upto m words of the partial results. Compared to DRAM bandwidth,

on-chip memory bandwidth is assumed to be infinite.

The compute unit, MACC, performs one multiply and accumulate per cycle. It

operates at a frequency of f Hz. We assume that there are R resources available on FPGA

and each MACC uses r of them, giving us k =

⌊
R

r

⌋
MACC units. Without loss of generality,

matrices are assumed to be nxn in size. We denote the density of non-zero elements in a

sparse matrix α, i.e. if the number of non-zero elements is NNZ and the total number of

elements is N, then α =
NNZ

N
. Finally, we assume large matrices such that n,m� k > 1.

It is intuitive that the computational intensity of FPGA is bounded by the avail-

ability of hardware resources. The roofline equation 5.1 suggests that the number of oper-

ations performed by FPGA are given by Equation 5.2. Each MACC generates one result

each cycle by performing 1 add and 1 multiply operation.

Pcomp = 2kf (5.2)

Recall that the matrix elements are read from DRAM and therefore the overall performance

is still bounded by the memory bandwidth. The limited on-chip memory also restricts the

amount of data that can be fetched from the DRAM. This behavior can be analytically

represented by Equation 5.3 and is also called a memory bound. The right hand side of this

equation is also known as the operational intensity of an application.

Pmem = b.{ Oop/Omem} (5.3)
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Since, the FPGA performance is bounded by both memory and the compute, Equation 5.1,

5.2, 5.3 presents the maximum performance Pmax that can be achieved on FPGA

Pmax = min{ Pcomp, Pmem} (5.4)

= min{ 2kf,
b.Oop

Omem
}

The SpMV always perform number of operations equal to:

Oop = 2αn2 (5.5)

This number is independent of any memory constraint (on/off chip). On the contrary, the

number of memory accesses, Omem, depend upon different ways of scheduling requests and

also the on-chip memory m. In our technique, we use a simple COO matrix format and

partition the matrix row-wise. Each partition is of size pr ∗ n. This partition size is chosen

in such a way that partial sums can be stored on-chip. Correspondingly, the output vector y

is of size pr ∗1. Number of non-zero elements in each partition is given by α∗pr ∗n. For each

non-zero element, the corresponding x vector is also fetched from the off-chip memory. The

probability that there is at least one non-zero element in a column of a partition is given

by Pnon zero per column = 1 − (1 − α)pr . The expected number of x vector elements

required for one partition are n ∗ Pnon zero per column.

Additionally, output vector y is written back at the end of computation. It is

possible to schedule this stage at the end of each partition. The probability that there is

at least one non-zero element in y is given by Pnon zero per n = 1 − (1 − α)n. The

expected number of write operations is Pnon zero per y ∗ n. The total Omem for all
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partitions is given by the Equation 5.6.

Omem = [2αprn+ n ∗ Pnon zero per column]
n2

prn
+ n ∗ Pnon zero per y (5.6)

Note that on Convey HC-2ex, each request is 8 bytes. It takes 2 requests (1: < row, col >

2: < value >) to fetch a non zero value. The maximum size of a partition is bounded the

on-chip memory m. From Equations 5.7 5.5 5.6, we get

Pmax = min{ 2kf,
2.b

c
} (5.7)

where c = 2 +
1

α
[
Pnon zero per column

m
+
Pnon zero per y

n
]

Since SpMV is known to be a memory bound operation, the limiting factor is on-chip

memory and the memory bandwidth. Based on Equation 5.7 , theoretical peak performance

of FPGA-based SpMV operation is given as follows:

Pmax =
2.b

c
(5.8)

5.3 Experimental Results

5.3.1 Experimental Setup

The Convey HC-2ex has 4 Virtex 6 LX760 FPGAs, called application engines(AEs).

This machine supports 16 channels per FPGA, allowing us to put 16 independent and deep

pipelines that can run in parallel. In this work, we put 4 PEs per AE and replicate them

across four AEs at runtime, allowing us to run total 16 PEs in parallel. Control registers

in the AE specify the number of threads (i.e. rows) needed by the SpMV kernel. They are
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also used to specify the base addresses for each memory array used by the kernel. When

using multiple AEs the values are partitioned to balance the workload.

Integrating a kernel into the HC-2ex requires all memory requests to communicate

with Convey’s memory interface. Designs are placed and routed varying the number of pipes

from 1 to 4 and the size of a from 128 to 1024. Area utilization (including the wrapper)

for a single AE is shown in Table 5.1. The design consumes marginally more registers and

LUTs as the block size is increased. For instance, the pipe with 128 block size uses 10%

of registers and 19% of the LUTs . The amount of same resources increases to 11% and

22% respectively for a block size of 1024. On the other hand, memory consumption grows

considerably from 8 to 18% when we change the block size from 128 to 1024. Regardless,

the only purpose of blocking a matrix is to store partial sums on-chip and it does not affect

the overall performance (see Section 5.3.3). Also, note that increasing the number of pipes,

minimally (1 -2%) increases the area per block size.

The GPU results are obtained on Nvidia K40 and Titan GV100. K40 has 2496

cores and operates at a frequency of 704 MHz. The peak bandwidth achieved on this ma-

chine is 288 GB/s. Nvidia Titan GV100 is the latest GPU enhanced with Volta architecture.

It has 5120 cores, operating at a frequency of 1132 MHz. It provides a peak bandwidth of

870 GB/s. The implementation uses NVIDIA cuSPARSE[64] library. The cuSPARSE [64]

was developed at Nvidia for sparse linear algebra and graph computations. It supports

multiple sparse matrix formats including all those highlighted in this thesis. The library’s

performance benefits over multi-core CPU architectures were shown in [16]. Out of vari-

ous formats supported by the cuSPARSE library, we use CSR representation as suggested
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Table 5.1: FPGA resource utilization for SpMV engines.

Block Size # of Pipe Registers LUTs BRAMs

128
1 81,200 (8%) 68,636 (14%) 40 (5%)
2 89,120 (9%) 79,062 (16%) 47 (6%)
4 99,843 (10%) 94,526 (19%) 61 (8%)

512
1 86,352 (9%) 72,932 (15%) 18,089 (13%)
2 98,443 (10%) 82,092 (17%) 19,348 (15%)
4 106,443 (11%) 102,650 (21%) 23,229 (17%)

1024
1 86,879 (9%) 75,092 (15%) 18,779 (14%)
2 95,662 (10%) 85,595 (18%) 21,348 (16%)
4 108,043 (11%) 105,650 (22%) 25,109 (18%)

by [58]. The ELL format is only applicable to small row lengths, and is also more likely to

encounter memory allocation failure compared to CSR [58]. Results on the Tesla K40 use

CUDA version 6.0, and GCC version 4.6.3. Titan GV100 use CUDA version 9.1 and GCC

version 4.9.1.

To measure performance, we have used the billion FLOPs per second (GFLOPS)

metric, which is computed as
2 ∗NNZ
t ∗ 109

for the equation y = Ax, It should be stressed

that the runtime does not include the host-side data preparation time for both the sparse

matrix and the two vectors.

5.3.2 NNZ Vs Sustained Bandwidth

As described in Chapter 2.2.2 , multithreaded paradigm achieves performance by

masking memory latency. The custom SpMV kernel masks latency by generating multiple

outstanding requests. The build up phase is dominated by memory requests until enough

threads (rows) are buffered by the kernel. The performance is therefore dependent upon the

matrix, and the architectures memory latency. The build up cost negatively affect smaller
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matrices. We run a series of test on the Convey HC-2ex to determine what size of datasets

are “large enough” to mask the initial startup costs.
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Figure 5.3: Minimum number of non zeros as number of engines (channels) are increased

In this experiment we use dense matrices stored in a partitioned COO format. By

doing so we remove all irregularity, and therefore get a better estimate of the startup cost.

With no irregularity any optimizations or caching implemented Convey’s memory crossbar

will yield their best performance, and in turn give us the minimum dataset size needed

to mask the startup costs. We performed this experiment with 4, 8 and 16 PEs. Each of

these configurations are connected to 4, 8 and 16 memory channels, providing a sustained

bandwidth of 4.8 GB/s, 9.6 GB/s and 16.2 GB/s respectively.

The results are shown in Figure 5.3. The number of non zero values in a sparse

matrix should commensurate with available bandwidth. For instance, to saturate a band-

width of 4.8 GB/s on four PEs, 250,000 NZEs are required. Similarly, on 8 and 16 PEs,

matrices with minimum 1 and 4 Million non zero elements obtain maximum performance.

Based upon this experiment, we divide our benchmarks into two distinct groups.
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Table 5.2: Benchmarks used for performance evaluation of multithreaded SpMV design

Benchmark Rows NNZ NNZ Density
per Row

Group 1

d8192 8192 41,746 5 0.00062

t2 d9 9,801 87,025 9 0.00090

raefsky1 3,242 294,276 91 0.028

psmigr 2 3,140 540,022 172 0.054

scircuit 170,998 958,936 6 3.2E-05

Group 2

torso2 115,967 1,033,473 9 7.68E-05

Economics 206,500 1,273,389 6 2.99E-05

pdb1HYS 36,417 4344765 119 0.0032

FEM/Cantilever 62,451 4,007,383 64 0.00102

pwtk 217,918 11,524,432 53 0.000242

consph 83,334 6,010,480 72 0.00086

cage15 5,154,859 99,199,551 19 3.73E-06

nlpkkt120 3,542,400 96,845,792 27 7.72E-06

Serena 1,391,349 64,531,701 46 3.33E-05

kron g500-logn2 2,097,152 182,082,942 87 4.14E-05

nlpkkt200 16,240,000 448,225,632 28 1.70E-06

Queen 4147 4,147,110 329,499,284 80 1.91E-05

HV15R 2,017,169 283,073,458 140 6.95E-05

Bump 2911 2,911,419 127,729,899 44 1.5E-05

Flan 1,564,794 117,406,044 75 4.7E-05

• Group1: where NNZ < 1 Million. These were used in [44] [81], [52] [63].

• Group2: NNZ > 1 Million, listed in [44] [81]. Top five benchmarks with the largest

value of NNZ are also included to evaluate the performance of the accelerators. These

benchmarks are more indicative of some of real scientific, economic and engineering

workloads.

The benchmarks evaluated in this paper shown in Table 5.2 and Figure 5.4, are obtained

from the SuiteSparse Matrix Collection [29].
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dw4096, nr = 8192 
∝= 0.0006

t2d_q9, nr = 9801 
∝= 0.0009

epb1, nr = 14734 
∝= 0.0004

(a)

cant, nr = 62451
∝ = 0.0010 

pdb1HYS, nr = 36417
∝ = 0.0032

webbase, nr = 1000005
∝ = 0.000003 

pwtk, nr = 217918
∝ = 0.0002

mac_econ_fwd500, nr = 206500
∝ = 0.000029

Consph, nr = 83334
∝ = 0.00086

(b)

91



Serena, nr = 1,391,349
∝= 0.000033

kron_g500, nr = 2,097,152
∝= 0.000041

nlpkkt120, nr = 3,542,400 
∝= 0.0000071

cage15, nr = 5,154,859 
∝= 0.0000037

(c)

Figure 5.4: Sparse matrix structure for (a) Group 1 and (b,c) Group2

5.3.3 Performance Evaluation of Multithreaded SpMV

In this experiment we validate the analytical model described in Section 5.2.

FPGA-based SpMV experimental results are obtained by setting a block size to 128 and

running 16 PEs in parallel. Figure 5.5 compares the GFlops obtained by the proposed

model and our experiments. Analytical GFLops reported in Figure 5.5 are calculated us-

ing Equation 5.7. Inputs to this model are matrix density, number of rows and columns,

and the block size. Using these inputs we calculate the value of a constant c as shown in

Equation 5.7. Finally, theoretical peak performance is calculated as Pmax =
2b

c
, where b

is the available peak bandwidth and c is the total words read and written to DRAM. This

equation is very similar to the one used in [55, 57]. However, the constant value c provides

a more fine grained details about the DRAM data access.

We compare the overall performance of Group 1 and Group 2 separately. Group

1 was used in [81], [44] and [63] and consists of smaller matrices. The largest matrix in

this group is less than 1 million NZEs. Group 2 is used in [44] [81] and consists of matrices

that have NZEs greater than 1 Million. The size ranges from 1 to 448 million NZEs. It
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Figure 5.5: Analytical and Experimental Performance Comparison for Group 1 and Group
2 sparse matrices

should be noted before these comparisons that GPUs have both a higher clock frequency

than the FPGA, and a larger memory bandwidth. It is also important to note that the peak

performance numbers between the FPGA and GPU should not be compared at face value

given that GPUs have much higher bandwidth (16.2 GB/s, 288 GB/s (K40), 870 GB/s

(Titan GV100) ).
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As shown in Figure 5.5a, Group 1 achieves 44% - 73% of the theoretical GFlops/s.

This behavior is expected as the minimum start up cost required to attain maximum perfor-

mance is not met by these matrices. Additionally, the model is not biased towards any such

matrix or design dependent properties and predicts much higher performance than what

could be achieved by the design. This can also be verified by the bandwidth utilization

across these matrices that varies from 40% - 63%. This observation is in accordance to

Figure 5.3c that clearly shows that the bandwidth utilization of matrices containing close

to 1M NZE ranges from 40% - 75%.

Figure 5.5b compares the theoretical and the experimental GFlops/s for Group2.

It can be seen that Group 2 achieves far better accuracy than Group 1. This behavior is

a direct consequence of running bigger matrices (NNZ > 1M). Because the matrix data is

capable of completely saturating the available bandwidth, the design achieves much better

performance. It achieves as high as 82% - 99% of accuracy when compared to the model.

We also experiment with different block sizes to identify its effect on the overall

design performance. In this experiment, we restrict the number of PEs to 8 to reduce

the timing pressure on hardware circuits caused due to high on-chip memory usage. We

use 128, 256, 512 and 1024 as our block sizes. The results are shown in Figure 5.6. It

can be observed that the performance approximately remains the same across different

block sizes. This behavior is obvious as changing the block size only alter the number

of partitions which in turn can lead to a different distribution of NZEs across PEs. This

change, however, does not affect the total number of reads (total NZE) and writes (output

vector) for a given matrix. A bigger block size will reduce the number of partitions which
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may lead to insufficient workload across PEs. Nevertheless, as long as number of partition

� number of PEs, the aforementioned situation will not affect the overall performance. For

instance, consider the matrix cage15 that has 5,154,859 rows. For a block size of 128, 256,

512, and 1024, we get 40,274, 20,137, 10,069, 5,039 partitions for this particular matrix. The

number of partitions for all block sizes is� 8 (number of PEs). Therefore, the performance

of our SpMV design, as shown in Figure 5.6, fairly remains constant across different block

sizes.
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Figure 5.6: Effect of block size on the achieved SpMV performance when ran with 8 PEs.
As long as number of partitions� than number of PEs, the block size does not affect the
performance.

5.3.4 Performance Comparison to GPUs

Both FPGA and GPU platforms run at different frequency and memory band-

width. For a fair comparison, we compare the achieved performance of each of these archi-
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tectures to their respective peak upper bound performance. As discussed in Section 5.2, the

upper performance bound for the multithreaded SpMV is governed by Equation 5.8 and is

equal to 1.35 GFlops/s. Similarly, on GPU, the upper bound on the performance is calcu-

lated by finding the a lower bound of data transfers in bytes. In a standard CSR format,

a square matrix of size N*N requires 4N + 12NNZ bytes of storage for a double precision

(DP) SpMV product. The input and output vector take up 16N bytes, leading to a total

of 12*NNZ + 20*N bytes. The number of floating point operations (Flops) for an SpMV is

at most 2*NNZ. With this information, we can calculate Flops/byte and, moreover, derive

an upper performance bound, Pmax GPU for the SpMV in Equation 5.9.

Pmax GPU =
2 ∗NNZ ∗ Peak Bandwidth

12 ∗NNZ + 20 ∗N
(5.9)

Using Equation 5.9, we calculate the upper bound performance on K40 and Titan GV100

for each matrix presented in Table 5.2. Prior work [63, 55, 57, 9] uses a similar analysis to

calculate the upper bound on the SpMV performance.

Figure 5.7 compares the achieved performance of mutithreaded SpMV, K40 and

Titan to their respective peak performance. The FPGA-based SpMV achieves 35%-67% of

peak flop efficiency on Group 1 while K40 achieves 17.23%-35.12% whereas Titan achieves

10%-25%. In Group 2, multithreaded SpMV achieves much higher efficiency compared to

Group 1 as well as GPU-based SpMV. It is 80%-91% flop efficient whereas K40 achieves is

37.7% -47.4% and Titan achieves 40%- 66% of the peak achievable flops. Note that both

GPU machines achieve much better raw performance than FPGA-based implementation.

However, this behavior is obvious considering the high GPU bandwidth.
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It is also important to note that the performance of multithreaded SpMV design

is more predictable than GPU-based implementation. Knowing the NNZs and the available

bandwidth, the performance of an FPGA-based SpMV can be easily deduced from the
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Figure 5.7: Comparison between the achieved and the theoretical upper bound performance
for (a) multithreaded SpMV (b) Tesla K40 (c) Titan GV100 .

observations made in Section 5.3.2. However, the same is not true for GPU implementation,

where the cuSPARSE library implementation is unknown to the user.

We also compare the DRAM bandwidth utilization of each of these architectures

in Figure 5.8. This experiment is particularly interesting because it conveys different in-

formation about each of these architectures. Higher DRAM bandwidth utilization for the

FPGA-based SpMV imply that memory channels are utilized efficiently. Overall, multi-

threaded SpMV implementation achieves higher bandwidth utilization across all matrices.

It is particularly more efficient on very large matrices (Serena, kron g500 logn21, HV15R

and Bump 2911 ). On an average, FPGA-based SpMV achieves 51% of bandwidth utiliza-

tion on Group 1 and 85.7% on Group 2.

On the other hand, lower bandwidth utilization on GPU imply that caches are

more effective and there is less traffic to DRAM. This behavior also indicate that the GPU
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performance is also limited by the architectural constraints like non-coalesced memory access

while fetching the input X vector and the thread divergence encountered while handling

variable size rows. As shown in Figure 5.8, as the size of a matrix increases, we observe

higher DRAM bandwidth utilization on GPUs. On an average K40 uses only 25.5% of the

DRAM bandwidth on Group 1 and 38.67% on Group 2 and Titan utilizes 18.8% of the

available DRAM bandwidth on Group 1 and 47.65% on Group 2.
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Figure 5.8: Comparison of bandwidth Utilization of multithreaded and GPU-based SpMV
implementation

5.3.5 Scalability

An important issue that needs attention while parallelizing sparse applications is

a good load balancing. A sparse matrix consists of variable length rows, leading to uneven

distribution of non-zeros between partitions. As a consequence, many PEs may remain idle

and the overall design may not scale, leading to a lot of unused hardware resources. In our

99



design, we apply dynamic scheduler that distributes partitions among PEs almost equally.

This directly translates into a linearly scalable design.

Figure 5.9 presents the performance of our SpMV design on 2,4,8 and 16 PEs. It

scales linearly with the number of PEs. This also imply that the scheduler is able to achieve

fairly good load balancing between PEs. However, in smaller matrices where there are not

enough partitions to distribute between PEs, the design will not scale.

0

0.3

0.6

0.9

1.2

1.5

torso
2

Eco
nomics

pdb1HYS

FE
M/C

antile
ve

r
pwtk

co
nsp

h

ca
ge

15

nlpkk
t120

Se
rena

kro
n g5

00-lo
gn2

nlpkk
t200

Queen_4147
HV15R

Bump_2911
Fla

n

GF
LO

Ps
/s

PE = 2 PE = 4  PE=8 PE= 16

Figure 5.9: SpMV performance scaling with number of PEs

5.3.6 Existing FPGA-based SpMV Accelerators

Table 5.3 compares prior work on FPGA-based SpMV implementation to the pro-

posed multithreaded SpMV. Because SpMV is a memory-bound operation, we consider

memory bandwidth utilization as a more important metric than than peak performance

alone. This metric also captures the overall efficiency of the architecture. Several of these
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Table 5.3: Prior FPGA-based SpMV designs and implementation. ‘*’ and ‘**’ presents
Group 1 and Group 2 data respectively.

DRAM B/W Util

Work Average Min-Max Traversal Storage Comments

[81] 91% 91-96% Column Interleaved Output Vector stored on-chip

[93] 76 % 64-98% Blocked Semi-Interleaved Input Vector stored on-chip
and replicated, restricts minimum
non-zeros per row to be 8

[44] *27.5% *21.7%-32.7% Row CSR
**35% **37%-43.5%

[52] 14% 4-19% Row Custom CVBV

[42] 71% 13-74% Column Custom SPAR On-chip cache for x and y.
Cache miss is handled
by a hardware interrupt, leading
to dead cycles.

MT *51% *39-58 % Row Partitioned Suited for large matrices.
SpMV **85.3% **80-91% COO

works use alternative representations to compress matrix data. Kestur et al. [52] utilize the

bit-level manipulation capabilities of the FPGA to compress the matrix nonzero pattern

using delta encoding. Our scheme does not include any compression or blocking and can

be further enhanced with these techniques to offer higher throughput. Gregg et al. [42]

use column major traversal and one DRAM chip per parallel processing. Zhang et al. [93]

interleaves row-major values and column indices.

5.4 Conclusion

In this chapter, we used a Sparse Matrix Vector multiplication as a proof of con-

cept to show that the multithreaded design can outperform cache based FPGA kernels

and the GPU-based cuSPARSE implementation in terms of overall bandwidth utilization.

Especially on larger matrices, multithreaded SpMV achieves as high as 91.17% and GPU

achieves up to 69.96% of bandwidth utilization. Multithreaded design, unlike other FPGA-
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based SpMV, does not make any assumptions on the size of an input or output vector

and is therefore suited for more real world applications. Compared to other FPGA-based

approaches, multithreaded design achives 82% bandwidth efficiency on the entire test suite.

We also show that the multithreaded design scales linearly as long as the matrices are large

enough (NNZ > 1M for 16.2 GB/s) to saturate the memory bandwidth. Provided the scal-

able nature of our design, it can scale with the new technology and upcoming FPGA-based

architecture with higher bandwidth.
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Chapter 6

Conclusions

In this thesis, we show that multithreading as a FPGA paradigm is valid for ir-

regular applications. Many real world applications like graph processing, query processing,

sparse linear algebra etc are moving towards more random memory access. It will be diffi-

cult for the cache-centric hardware architectures to achieve maximum system performance.

However, there is a push by the hardware industry towards heterogeneous architectures like

Convey HC-2ex, Intel HARP and the latest Stratix10 MX integrated with HBM2. Many

companies are actively focusing on FPGA accelerators that easily connect through PCIe,

and provide APIs to easily integrate them with existing software. These developments allow

researchers to prototype hardware designs without relying on caches to cope with long mem-

ory latencies. Because of the memory wall, the processor performance has outpaced memory

performance, causing memory bandwidth to be the bottleneck for many applications

Instead of relying on the caches, multithreaded architectures, introduced in early

90’s, focused on masking the memory latency. They perform well on applications with suf-
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ficient parallelism, but identifying parallelism is a non-trivial task. Some chip manufactures

like Oracle, with its UltraSPARC T series, have partially adopted this platform into their

CPU designs. However, the emerging heterogeneous platforms can offer the best of both

worlds. Caches work well for regular applications, but the irregular applications can be

offloaded to accelerators with custom multithreaded kernels.

In this thesis, we introduce a custom hardware multithreaded execution that is

an amalgamation of exiting multithreaded techniques (SMT and temporal). A custom

hardware implementation requires a very small context that can be maintained on-chip on

FPGA. Additionally, since the hardware design pipelined, it allows each thread to enter

the pipeline every cycle. As a proof of concept we apply this technique to both type

of irregularities: dataflow (group-by aggregation and SpMV) and control flow (selection

operator).

In Chapter 3 we present a portable FPGA based in-memory aggregation algorithm

for relational databases. The design uses custom CAM logic to enforce memory locking,

and ensure synchronization while creating the hash table. Multithreading, along with mul-

tiplexing on memory channels can achieve upto 700 - 500 MTuples/sec depending on the

dataset distribution and key cardinality, with a speedup up to 10x.

In Chapter 4 we present a detailed comparison study of the selection operator on

multi-core CPU, GPU and multithreaded FPGA implementations. Multithreaded selection

operation achieves a speedup between 1.4x - 4.6x over CPU SIMD and 1.4x - 6.7x over

GPU implementations for the query selectivity that ranges from 0% to 50% (77% of TPC-
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H queries). Unlike other architectures, multithreaded selection is independent of the data

layout (row or column) and is very well suited for transactional workloads.

In Chapter 5, we explored multithreading on a well known sparse application,

Sparse Matrix Vector Multiplication (SpMV). We theoretically derive the peak performance

of our SpMV kernel and compare it to our experimental results. We achieve 65% - 95% ac-

curacy depending on the NNZ in a matrix. We also discuss a heuristic to find the least NNZs

to saturate the available bandwidth, above which our multithreaded kernel achieves max-

imum performance. This kernel is highly scalable and achieves as high as 93% bandwidth

utilization. The results are compared against a widely used cuSPARSE library on K40 and

the Titan GV100 GPU. The absolute GPU performance is higher than FPGA-based SpMV

across all matrices. This behavior is a direct consequence of high bandwidth available to

GPUs (Titan: 870 GB/s, K40: 288 GB/s Vs FPGA: 16.2 GB/s). Regardless, multithreaded

SpMV achieves up to 95% of its upper bound performance where GPU achieves up to 69%

of its peak.
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