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Abstract

The current congestion control mechanism used in TCP has difficulty reaching full
utilization on high speed links, particularly on wide-area connections. For example, the
packet drop rate needed to fill a Gigabit pipe using the present TCP protocol is below
the currently achievable fiber optic error rates. HighSpeed TCP was recently proposed as
a modification of TCP’s congestion control mechanism to allow it to achieve reasonable
performance in high speed wide-area links. In this research, simulation results showing the
performance of HighSpeed TCP and the impact of its use on the present implementation of
TCP are presented. Network conditions including different degrees of congestion, different
levels of loss rate, different degrees of bursty traffic and two distinct router queue management
policies were simulated. The performance and fairness of HighSpeed TCP were compared to
the existing TCP and solutions for bulk-data transfer using parallel streams.

Keywords: HighSpeed TCP, TCP congestion control, wide area network, bulk data transfer
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partment of Computer Engineering and Industrial Automation, from School of Electrical
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Chapter 1

Introduction

One of the major issues in networking today is the increasing demand for more
and more bandwidth. Several technologies have emerged and increased the link bandwidth
capacity several times. Presently, many technologies are available to link two end points at
high speeds, for local area as well as long distance connections.

Today’s most import communication media is fiber optics. It was a crucial milestone
reached in the network evolution in the last 20 years. Recent development in optical networks
produced the DWDM (Dense Wavelength Division Multiplexing) technique. It involves
the process of multiplexing many different wavelengths onto a single fiber and opened an
extraordinary channel for data transmission. So, the bottleneck point is now shifting from
the network link to the end-hosts, when we expect very high-performance communication
[27].

With the widespread arrival of applications demanding high bandwidth such as bulk-
data transfer, multimedia web streaming, and computational grids for high-performance
computing, the networking performance over the wide-area network has become a critical
component in the infrastructure [14].

In the Internet, TCP (Transmission Control Protocol) has been widely used as a
transport protocol. Many applications such as HTTP (Hyper Text Transfer Protocol) for
the Word Wide Web and FTP (File Transfer Protocol) are designed on the basis of TCP. It
was developed in the early 1970s, and has been continuously modified since then to adapt
to the new applications and link characteristics; and also to improve its capacity.

Recent symptoms have indicated that the congestion control mechanism of TCP
has difficult reaching full utilization of optical links, particularly in wide area connections.
Network applications are rarely able to take full advantage of these new high-speed networks
and they are not utilizing the available bandwidth [28]. The packet drop rate needed to fill a
Gigabit pipe using the present TCP protocol is beyond the limit of currently achievable fiber
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optic error rates, and the congestion control becomes not dynamic [23]. Without expert
attention from network engineers, most users are unlikely to achieve even 5 Mbps on a
single stream TCP transfers, despite the fact that the underlying network infrastructure can
support rates of 100 Mbps or more [30].

These indications have motivated the research around the high speed networks aiming
to improve the performance of TCP in situations where there is a high bandwidth delay
product. Several proposals have emerged in the literature dealing with some of the issues of
this complex problem [17, 39, 55, 54, 35, 36].

On the other hand, keeping the fairness among multiple homogeneous and heteroge-
neous connections in the network is an essential feature widely accepted in the community
[27]. So the new proposed solutions must not interfere too much with the existing solutions,
or only interfere when the existing protocols are unable to use the link capacity well.

The proposal of this study is to analyze the deployment of one proposed modification
to the TCP congestion control mechanism for use on connections with large congestion
windows and low packet drop rate. The HSTCP (HighSpeed TCP) was proposed in 2002
and there exist few studies into the issues of its use.

In this research, the efficacy of HSTCP and the impact of its use on the present
implementation of TCP is analyzed in different network conditions. These conditions include
different degrees of congestion, different levels of loss rate, different degrees of bursty traffic
and two distinct router queue management policies. It is expected that these different
network conditions present a broad view of the strengths and weaknesses of HSTCP.

It is also important, for the overall acceptance of this modification, that its perfor-
mance and fairness be comparable to the existing solutions of bulk-data transfer. So the
HSTCP will be compared with parallel streams.

This research is organized as follows. Chapter 2 presents a brief history and the
foundations of TCP congestion control. It presents the current problems faced by TCP to
achieve high performance, and some of the solutions proposed to overcome these obstacles.
Chapter 3 shows the foundation of HSTCP. Chapter 4 shows the proposal for this work
and the approach followed. Chapter 5 discusses the methodology used in experiments and
metrics for the analyse. The results for the experiments of this study are described in Chapter
6. Chapter 7 presents a discussion about the results found and its meaning. Chapter 8 is
dedicated to the conclusion and indications for future work that could follow this research.



Chapter 2

Background

2.1 TCP Overview

2.1.1 Introduction and Congestion Collapse

TCP is a very traditional protocol which was first designed in the early 1970s. Many
efforts of research, development and standardization have been extensively devoted to the
TCP/IP technology. It is widely used in the current Internet. Many popular Internet
services, such as WWW (World Wide Web) and FTP (File Transfer Protocol), use TCP as
the de-facto standard transport-layer protocol.

TCP provides reliable segment delivery through a positive acknowledgment mecha-
nism. Each data segment transmitted contains a sequence number indicating the position
of the data in the transmission. It is a full duplex protocol, meaning that each TCP con-
nection supports a pair of byte streams, one flowing in each direction. TCP also supports
a de-multiplexing mechanism that allows multiple application programs, on any given host,
to simultaneously carry on conversations with their peers.

TCP is a sliding window protocol. A sliding window protocol allows the sender to
transmit a given number of segments before receiving an ACK (Acknowledgment). When
an ACK is received by the sender, the window slides to allow one more segment to be
transmitted. It also includes a flow control mechanism for each of the byte streams that
allows the receiver to limit how much data the sender can transmit at a given time. Each
TCP segment sent (data segments and ACKs) contains a window advertisement. The size
of the window advertised by the receiver is the upper bound for the sender’s sliding window.

In the first years of the deployment, TCP had only a very rudimentary congestion
control mechanism that was not sufficient to prevent congestion in intermediate routers.
When too many TCP connections are sending at an inappropriately high rate, the network
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suffered from ”Congestion Collapse” [15]. Congestion collapse is a state in which segments are
being injected into the network but very little useful work is being accomplished, most of the
data segments or their corresponding ACKs are discarded by one of the intermediate routers
in the network before reaching their destination. This causes the sender to retransmit the
data, further aggravating the problem. Nagle [45] has a detailed discussion about congestion
collapse. TCP’s congestion control algorithms attempt to prevent congestion collapse by
detecting congestion and reducing the transmission rate accordingly.

Van Jacobson [31] pointed out the importance of the congestion control in the In-
ternet, and proposed some of the TCP algorithms to avoid and control congestion in the
network. This work has brought many researchers to become aware of importance of TCP’s
congestion control. Lakshman [38] examined the performance of TCP/IP over Wide Area
Networks. Paxson [48] investigated end-to-end Internet dynamics including the behavior of
TCP’s congestion control mechanisms, and characterized it. As a result of these efforts,
many RFC (Request For Comments) documents regarding TCP were announced to enhance
its performance [5, 32].

It is remarkable that TCP is still in use today despite the fact that it was developed
20 years ago. TCP’s success is due mainly to its now robust congestion control mechanism.
This mechanism causes TCP to reduce its sending rate when congestion is encountered along
the network path, as evidenced by dropped packets. Congestion management is imperative
in order to allow the network to recover from congestion and operate in a state of low delay
and high throughput. It will be presented in the next section two of the most important
algorithms in TCP congestion control.

2.1.2 Slow-Start and Congestion Avoidance

Proposed by Van Jacobson [31], the slow-start and congestion avoidance algorithms
allow TCP to increase the data transmission rate without overwhelming the network. They
use a variable called CWND (Congestion Window). TCP’s congestion window is the size of
the sliding window used by the sender and cannot exceed the size of the receiver’s advertised
window. Therefore, TCP cannot inject more than CWND segments of unacknowledged data
into the network.

The Slow-Start algorithm is used to increase the amount of unacknowledged data
that TCP injects into the network, by gradually increasing the size of the sliding window.
Slow-Start is used at the beginning of a TCP connection and in certain instances after
detected congestion. The algorithm begins by initializing CWND to one segment. For each
ACK received, TCP increases the value of CWND by one segment. For example, after the
first ACK arrives, CWND is incremented to two segments and TCP is able to transmit
two new data segments. This algorithm provides an exponential increase in the size of the
sliding window. Slow-Start continues until either the size of CWND reaches the SSTHRESH
(Slow-Start Threshold) or when a segment loss is detected.
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The starting value of the CWND is set to that of the MSS (Maximum Segment
Size) value. This MSS value is based on the receiver’s MSS obtained during the initial
TCP handshake, the discovered MTU (Maximum Transfer Unit) path, and the MTU of the
sending interface; or, in the absence of other information, 536 bytes.

If the receiver is sending an ACK for every packet, the effect of this algorithm is
that the data rate of the sender doubles every RTT (Round-Trip Time) interval. Obviously,
this cannot be sustained indefinitely. Either the value of CWND will exceed the receiver’s
advertised window or the sender’s window, or the capacity of the network will be exceeded,
causing the loss of packets.

The other limit to the CWND increase during Slow-Start is maintained by the vari-
able SSTHRESH. If the value of CWND increases past the value of SSTHRESH, the TCP
flow-control mode is changed from Slow-Start to Congestion Avoidance. Initially the value
of SSTHRESH is set to the receiver’s maximum window size. However, when congestion is
noted, SSTHRESH is set to half the current window size, providing TCP with a memory of
the point where the onset of network congestion may be anticipated in the future.

The CWND increase during the Slow-Start phase stops when the congestion window
exceeds the receiver’s advertised window, when the rate exceeds the remembered value of the
onset of congestion as recorded in SSTHRESH, or when it is beyond the network capacity.

When the sending rate is greater than the level which can be sustained by the
network, data packets are dropped by the network. TCP can detect packet loss in two
ways. First, if a single packet is lost within a sequence of packets, the successful delivery
of packets following the lost packets will cause the receiver to generate a duplicate ACK for
each successive packet. The reception of these duplicate ACKs is a signal of such a packet
loss. Second, if a packet is lost at the end of a sequence of sent packets, there are no following
packets to generate duplicate ACKs. In this case, there are no corresponding ACKs for this
packet, and the sender’s RTO (Retransmit Timer) will expire and the sender will assume
packet loss.

In an ACK-based protocol, the sender is responsible for the detection of packet losses.
Lost packets are revealed by flaws in the order of acknowledged sequence numbers due to
missing ACKs. This ends the Slow-Start phase.

Congestion Avoidance is the phase which follows Slow-Start. In this phase the value
of CWND is greater than or equal to SSTHRESH. This algorithm increases CWND at a
slower rate than during Slow-Start. For each segment ACKed during Congestion Avoidance,
the congestion window is increased by 1/CWND (unless this would make the value of CWND
greater than the receiver’s advertised window). This adds roughly one segment to the value
of CWND every RTT. The Congestion Avoidance algorithm provides a linear increase in the
size of TCP’s sliding window. This mechanism is used to probe the network for additional
capacity in a conservative manner.
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The congestion window continues to open in this fashion until packet loss occurs.
When a packet loss happens, the resultant duplicate ACKs will trigger the sender to halve
the sending rate and continue a linear growth of the congestion window from this new point.

The overall characteristics of the TCP algorithm are an initial relatively fast scan
of the network capacity to establish the approximate bounds of maximal efficiency, followed
by a cyclic mode of adaptive behavior that reacts quickly to congestion, and then slowly
increases the sending rate across the area of maximal transfer efficiency. Packet loss, as
signaled by the triggering of the RTO, causes the sender to recommence Slow-Start phase,
following a timeout interval. This general behavior is observed in the Figure 2.1.

CWND = 1

event
upon congestion

2

4

1
upon timeout

RTTRTT

Congestion Avoidance

Time

C
on

ge
st

io
n 

W
in

do
w

CWND halves

Slow Start

Figure 2.1: TCP Congestion Control

These congestion control algorithms are also known as AIMD (Additive Increase
Multiplicative Decrease) and are the basis for the TCP Congestion Control. It increases the
congestion window by one packet per window of data acknowledged, and halves the window
for every window of data containing a packet drop. In a simple way, TCP congestion control
could be expressed in the following equations:

Congestion Avoidance

ACK : CWND ← CWND +
a

CWND
(2.1)

DROP : CWND ← CWND − b× CWND (2.2)

Slow-Start

ACK : CWND ← CWND + c (2.3)
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The terms CWND, a and c are all defined in units of MSS. The canonical values for
a, b and c are: a=1, b=0.5 and c=1.

Some important improvements were incorporated to TCP congestion control, since
the early work of Van Jacobson in 1988, that affects the behavior of TCP in high speed
connections. Delay Acknowledgment permits the receiver to send cumulative ACKs back to
the sender after it receives a predefined number of segments instead of acknowledging every
segment. Fast Retransmit defines that when three consecutive duplicate ACKs are received,
the sender assumes that the corresponding packet was lost and retransmits it without wait-
ing for the RTO to expire. Fast Recovery is used to avoid entering into Slow-Start after
each packet lost. The Window Scale Option addresses the issue of the maximum window
size in situations where paths exhibit a high bandwidth delay product. The Timestamp
Option allows the sender to calculate a more precise RTT for each received ACK. These
improvements are explained in more detail in [56].

One recent important improvement was the introduction of the SACK (Selective
Acknowledgment) option. This TCP option alters the acknowledgment behavior of TCP. The
SACK option is offered to the remote end during TCP setup as an option in the opening SYN
(Synchronization) packet. The SACK option permits selective acknowledgment of permitted
data. The default TCP acknowledgment behavior is to acknowledge the highest sequence
number of in-order bytes. This default behavior is prone to cause unnecessary retransmission
of data, which can exacerbate a congestion condition that may have been the cause of the
original packet loss. The SACK option allows the receiver to modify the acknowledgment
field to describe noncontinuous blocks of received data, so that the sender can retransmit
only what is missing at the receiver’s end [42].

The congestion control algorithms for SACK are a conservative extension of Reno’s
congestion control [13], in that they use the same algorithms to increasing and decreasing
the congestion window, and perform better than others when a large number of packets are
dropped from a window of data.

Simulations based on performance results of TCP SACK over low and high delay
paths were documented in [13]. The results suggested that TCP SACK can significantly
improve the network performance when compared with earlier TCP implementations.

2.2 TCP Performance Problems in High Speed Links

This section explains the main problems faced when using TCP to achieve high
performance for bulk data transfer in high speed links. The introduction of high-speed
network technologies has caused a dramatic change in the achievable performance of TCP
based applications. It is well understood that TCP performance depends on network band-
width, round trip time, and packet loss. As link speed increases, the possibility to achieve a
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fixed bandwidth-delay product decreases. This problem tends to appear more on high-speed
transcontinental links, even though it is now appearing on local area networks [7].

Before exposing these problems, it is necessary to introduce the concept of band-
width delay product. The capacity of a connection is commonly measured in terms of BDP
(Bandwidth Delay Product) [56]. This is mathematically expressed as:

Capacity(bits) = bandwidth(bits/sec) × delay(sec) (2.4)

Delay in a network is the two-way latency for information to propagate from the
sending node to the receiving one. Bandwidth is the number of bits that can be transmit in
a certain period of time. BDP is the product of the above two-performance metrics, i.e. the
number of bits (or bytes) the network can hold. You can imagine the network as a pipe, with
its length representing the two way network latency and its width representing the bandwidth
of the connection, then the BDP is the volume of the pipe. In transport/data link layers,
the BDP represents the maximum amount of allowed unacknowledged data outstanding at
any moment on the network, keeping the link or pipeline full.

TCP performance depends not upon the transfer rate itself, but rather upon the
product of the transfer rate and the round-trip delay. This BDP measures the amount of
data that would fill the pipe. The larger the BDP the longer it will take for TCP to use all
the capacity available.

Slow-Start

For TCP connections that are able to use large congestion windows of thousands
of packets, the current Slow-Start algorithm can result in increasing the congestion window
by thousands of segments in a single round-trip time. Such an increase can easily result in
thousands of packets being dropped in one round-trip time. This is counter-productive for
the TCP flow itself, and it is also hard on the rest of the traffic sharing the congested link.

This drop of a large number of packets can result in unnecessary retransmit timeouts
for the TCP connection. The TCP connection could end up in congestion avoidance phase
with a very small congestion window, and could take a large number of round-trip times to
recover its old congestion window [17].

Frame Size

Today the typical TCP MSS is 1448 bytes, due to the 1500 Byte Ethernet MTU.
This size is useful to run at multiple speeds and in a simple switches and hub environment,
but it creates problems for applications that need to send a lot of data, such as bulk transfer



2.2. TCP Performance Problems in High Speed Links 9

via FTP, because these applications work better with larger frames. A larger MSS would
improve TCP’s recovery speed and reduce the packet interrupt rate of the operating system.
Other media support a larger MTU: FDDI has a 4392-byte MTU, GigE jumbo-frames have
a 9000-byte MTU, IP-over-ATM uses a 9180-byte MTU, and HiPPI uses a 65535-byte MTU.
However, these are being phased out in favor of higher speed Ethernet [7, 11].

TCP Buffers

The sender and receiver nodes require buffer space to deal with sending and incoming
packets in a connection. This space should be at least the amount of unacknowledged data
that TCP must handle in order to keep the pipeline full. TCP performance problems arise
when the buffer space is not adequate to accommodate the bandwidth delay product. If the
buffers are too small, the TCP congestion window will never fully open up [39].

The receiver’s advertised window must also be large enough, since it limits how
much the sender can transmit, because the transmitter must not send more data than the
advertising window permits. So, the maximum congestion window is proportional to the
amount of buffer space that the kernel allocates for each socket. For example, if the RTT is
50 ms and the bandwidth of this connection is 100 Mbits/sec, the TCP buffers should be 625
KBytes. As network throughput capacity has increased in recent years, operating systems
have gradually changed the default buffer size from common values of 8 kilobytes to as much
as 64 KBytes. However, this is still far too small for today’s high speed networks [11], and
prevents TCP from using all the bandwidth available.

Congestion Avoidance Algorithm

Presently, TCP implementations can only achieve the large congestion windows nec-
essary to fill a pipe with a high bandwidth delay product, when there is a very low packet
loss rate. Random loss leads to a significant throughput deterioration when the product
of the loss probability and the square of the bandwidth delay is larger then one [38]. For
example, for a standard TCP connection with 1500-byte packets and a 100 ms round-trip
time, to achieve a steady-state throughput of 10 Gbps would require an average congestion
window of 83,333 segments, and a packet drop rate of at most one congestion event every
5,000,000,000 packets (or equivalently, at most one congestion event every 1h:40m) [18]. This
is far beyond what is possible today with the present optical fiber and router technology.

Network Buffer

TCP is bursty in nature. The burstiness of TCP can result in poor performance due
to the limited network buffering. Large bursts of data added to the network in a short interval



10 2. Background

tend to create long queues in the intermediate routers. To fill up a high capacity pipe, TCP
needs to use a large maximum window. In most practical cases, the maximum size of the
window, which reflects the largest possible size of a traffic burst, is much higher than the
queuing capacity of any intermediate router. Once TCP senders overload the router queues,
they will start to drop packets. TCP will see these packet drops due to a queuing bottleneck
as network congestion. This can result in poor TCP performance like low throughput and
unfair sharing. Also, large queues at the routers may introduce additional delays to the TCP
flows and increase their RTT [55].

Our research is primarily focused on problems related to the Congestion Avoidance
algorithm. However, these problems are closely connect, and may have some impact during
the development of this study.

2.3 Proposed Solutions for TCP Performance Prob-

lems in HighSpeed Links

After presenting the problems faced by TCP in high speed links, we will overview
the research that has been done to overcome them. The results of this research are presented
in the following items.

Slow-Start

Limited Slow-Start
Limited Slow-Start is a modification of TCP’s Slow-Start algorithm for use with TCP

connections with large congestion windows. Limited Slow-Start [17] introduces a parameter
called MAX SSTHRESH (Maximum Slow-Start Threshold). The Slow-Start algorithm is
only modified for values of the congestion window greater than MAX SSTHRESH. The
algorithm can be expressed in this way:

For each arriving ACK in Slow-Start:

if(CWND ≤ MAX SSTHRESH)
CWND = CWND + MSS;

else
K = int(CWND/(0.5 ∗MAX SSTHRESH));
CWND = CWND + int(MSS/K);

Thus during Limited Slow-Start the window is increased by 1/K MSS for each ar-
riving ACK, for K = int(CWND/(0.5 * MAX SSTHRESH)), instead of by 1 MSS as in the
standard Slow-Start [1]. When SSTHRESH < CWND, the Slow-Start is exited, and the
sender is in the Congestion Avoidance phase.
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Frame Size

Large MTU Size
The authors of [43] explain how TCP throughput has an upper bound based on the

following parameters:

Throughput ≈ 1.2×MSS

RTT ×
√

packet loss
(2.5)

So, the maximum TCP throughput is directly proportional to the MSS, which is
MTU minus TCP/IP headers. If all other things are equal, it is possible to double the
throughput by doubling the packet size. Packet loss may also increase with MSS size, but
does so at a sub-linear rate, and in any case has an inverse square effect on throughput, i.e.
MSS size still dominates throughput [12]. There are proposals to have a Jumbo Frame size,
specially for Gigabit Ethernet of 9000 bytes, instead of the present 1500 bytes that is the
standard for Ethernet frame size.

Parallel Streams
In order to improve end-to-end performance, parallel TCP streams can be used

[39]. This technique is implemented by dividing the data to be transferred into N portions
and by transferring each portion with a separate TCP connection. When competing with
connections over a congested link, each of the parallel streams will be less likely to be
selected for having their packets dropped, and therefore the aggregate amount of potential
bandwidth which must go through premature congestion avoidance or slow start is reduced.
An application opening N multiple TCP connections is in essence creating a large virtual
MSS on the aggregate connection that is N times the MSS of a single connection [25].

Experiments have shown that parallel streams can dramatically improve application
throughput [39, 58], but this approach is considered to be aggressive and does not provide
support for the fair sharing of network bandwidth available to applications [19].

Buffer Management

Automatic Buffer Tuning
The automatic TCP buffer tuning was initially proposed in [54]. It dynamically

adjusts the sender’s socket buffers to achieve maximum transfer rates on each TCP connec-
tion without manual configuration. It is based upon network conditions and system memory
availability. As the bandwidth delay product in the Internet can span 4 orders of magnitude,
it is not possible to have a single buffer size for all connections in a single machine. If the
buffers are tuned, it is possible to avoid waste of kernel memory when the buffer is too large.
On the other hand, it is also possible to avoid low throughput results, when the send buffer
is small. In this tuning scheme, the sender’s flow-control window is tuned.



12 2. Background

Dynamic Right Sizing
This proposal is another buffer management technique, proposed in [14]. It proposes

that the receiver estimate the bandwidth from the amount of data received in each round-trip
time. This estimation is used to dynamically change the receiver’s window advertisement,
and also to more fairly allocate buffers to connections based in their need for buffers. The
growth of the sender’s congestion window is limited by currently available bandwidth.

Linux Buffer Tunning
The Linux 2.4 kernel includes TCP buffer tuning algorithms. For applications that

have not explicitly set the TCP send and receive buffer sizes, the kernel will attempt to grow
the window sizes to match the available bandwidth (up to the receiver’s default window).
If there is high demand for kernel/network memory, the buffer size may be limited or even
shrink. This process is controlled by new kernel variables net.ipv4.tcp rmem/wmem and the
amount of kernel memory available [29].

Congestion Avoidance

XCP
The XCP (eXplicit Control Protocol) [35], generalizes the ECN (Explicit Congestion

Notification) proposal. Instead of the one bit congestion indication used by ECN, XCP-
enabled routers to inform the senders about the degree of congestion at the bottleneck.
Each XCP packet carries a congestion header, which is used to communicate a flow’s state
to routers and feedback from the routers to the receivers. One field informs the sender’s
current congestion window, another communicates the sender’s current RTT estimate. This
information is filled in by the sender and is not modified in transit. The third field is
initialized by the sender and receives feedback from routers along the path to directly control
the congestion windows of the sources. Like TCP, XCP is a window-based congestion control
protocol designed for best effort traffic.

It decouples utilization control from fairness control. To control utilization, this
protocol adjusts its aggressiveness according to the spare bandwidth in the network and the
feedback delay. To control fairness, the protocol reclaims bandwidth from flows whose rate
is above their fair share and reallocates it to other flows. The XCP proposal claims to be
stable and efficient regardless of the link capacity, the round-trip time, and the number of
sources.

FAST TCP
A congestion control consists of two components, a source algorithm, implemented

in TCP, that adapts sending rate to congestion information in its path, and a link algorithm,
implemented in routers, that updates and feeds back a measure of congestion to sources that
transverse the link. It has been shown that the current algorithms can become unstable
as delay increases, and also as network capacity increases. FAST TCP [33] proposes that,
to maintain stability, sources should scale down their responses by their individual round
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trip time and links should scale down their response by their individual capacity. This two
actions combined with a dual model for TCP Vegas [41] is claimed to maintain linear stability
without having to change de current link algorithm. The authors implemented a FAST TCP
kernel with these advances and with some features: it uses both queuing delay and packet
loss as signals of congestion; deals with massive losses; reduces burtiness and massive losses
using pacing at sender; and converges rapidly to a neighborhood of the equilibrium value
and then smoothly home in on the target.

Network Buffer

Paced TCP
Paced TCP is a modified version of TCP that tries to solve the problem of queuing

bottlenecks that happen when there is a mismatch between high capacity networks and
available storage at the queues of individual network routers [36]. A sender using paced
TCP releases packets in multiple, small bursts during a round-trip time, instead of releasing
a single large burst of packets, as is the case in ordinary TCP. This approach allows the
sender to increase its send rate to the maximum window size without encountering a queuing
bottleneck during the Slow-Start.





Chapter 3

HighSpeed TCP Fundamentals

3.1 Description

The HighSpeed TCP for Large Congestion Windows was introduced by Sally Floyd
et al. [18] as a modification of TCP’s congestion control mechanism for use with TCP con-
nections with large congestion windows. It overcomes Standard TCP’s difficulty of achieving
a large congestion window in environments with very low packet drop rates. HighSpeed TCP
proposes a small modification to TCP’s increase and decrease parameters.

In a steady-state environment, with a low packet loss rate p, Standard TCP’s average
congestion window is roughly 1.2/sqrt(p) segments [19]. This places a serious constraint
on the congestion windows that can be achieved by TCP in realistic environments. For
example, for a Standard TCP connection with 1500-byte packets and a 100 ms round-trip
time, achieving a steady-state throughput of 10 Gbps would require an average congestion
window of 83,333 segments, and a packet drop rate of at most one congestion event every
5,000,000,000 packets (or equivalently, at most one congestion event every 1h:40m). If the
round-trip time is higher, the time between one congestion event and the next would need
to be even greater.

HighSpeed TCP does not modify TCP behavior in environments with mild to heavy
congestion, and therefore does not introduce any new dangers of congestion collapse. It is
designed to have a different response in environments of very low congestion event rate, and
to have the Standard TCP response in environments with packet loss rates of at most 10−2.
In environments with low packet loss rates (topically lower than 10−3), it is possible to ignore
the more complex response functions that are required to model TCP performance in more
congested environments with retransmit timeouts.

The Standard TCP increases its congestion window by one packet per window of data
acknowledged, and halves it for every window of data containing a packet drop, following
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the classical AIMD algorithm. In Congestion Avoidance phase, its behavior is expressed
according to equations 2.1 and 2.2 on page 6.

The number of round-trip times between congestion events required for a Standard
TCP flow to achieve a high average throughput increases directly with the bandwidth avail-
able. For 1500-byte packets and a round-trip time of 0.1 seconds, the figures for congestion
window and packet loss rate are [18]:

Throughput (Mbps) RTTs Between Losses (secs) Congestion Window (pkts) Loss Rate
1 5.5 8.3 0.02
10 55.5 83.3 0.0002
100 555.5 833.3 0.000002
1000 5555.5 8333.3 0.00000002
10000 55555.5 83333.3 0.0000000002

Table 3.1: RTTs Between Congestion Events for Standard TCP

3.2 Modified Response Function

The Standard TCP response function, w = 1.2/sqrt(p), gives TCP’s average con-
gestion window w as a function of the steady-state packet drop rate p. This Standard TCP
response function is a direct consequence of the AIMD mechanisms.

HighSpeed TCP makes use of a different response function and provides a new re-
lation between the average congestion window w and the steady-state packet drop-rate p.
For simplicity, this new HighSpeed TCP response function maintains the property that the
response function gives a straight line on a log-log scale (as does the response function for
Standard TCP, for low to moderate congestion). Both response functions are present in the
Figure 3.1.

The HighSpeed TCP response function is specified using three parameters: Low Window,
High Window, and High P. Low Window is used to establish a point of transition and en-
sure compatibility. The HighSpeed TCP response function uses the same response function
as Standard TCP when the current congestion window is at most Low Window, and uses
the HighSpeed TCP response function when the current congestion window is greater than
Low Window. High Window and High P are used to specify the upper end of the HighSpeed
TCP response function. It is set as the specific packet drop rate High P, needed in the High-
Speed TCP response function to achieve an average congestion window of High Window.

The HighSpeed TCP response function can be translated into additive increase
and multiplicative decrease parameters. The HighSpeed TCP response function cannot be
achieved by TCP with an additive increase of one segment per round-trip time and a mul-
tiplicative decrease of halving the current congestion window. It will have to modify both
the increase and decrease parameters. That is, HighSpeed TCP has to let the congestion
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Figure 3.1: HighSpeed TCP Response Function

window increase by a(w) segments per round-trip time in the absence of congestion, and let
the congestion window decrease to w(1-b(w)) segments in response to a round-trip time with
one or more loss events. In Congestion Avoidance phase, its behavior can be expressed in
the following equations:

Congestion Avoidance

ACK : CWND ← CWND +
a(CWND)

CWND
(3.1)

DROP : CWND ← CWND − b(CWND)× CWND (3.2)

We should find the expression for a(w) and b(w) functions based on the three pa-
rameters defined for HighSpeed TCP. For w = High Window, we have specified a loss rate
of High P. For Standard TCP, a(w) = 1 and b(w) = 1/2, regardless of the value of w. High-
Speed TCP uses the same values of a(w) and b(w) for w <= Low Window. These parameters
can be expressed graphically in Figure 3.2.

The HighSpeed TCP maintains the property of having a straight line response func-
tion on a log-log scale (as does the response function for Standard TCP, for low to moderate
congestion). This results, according to [23], in the following response function, for values of
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Figure 3.2: HighSpeed TCP Parameters on Log-Log Plot

the average congestion window W greater than Low Window:

W =
( p

Low P

)S

× Low Window (3.3)

where Low P is the packet drop rate corresponding to Low Window, p is the packet loss rate
for this average congestion window W, and S is the following constant:

S =
log High Window − log Low Window

log High P − log Low P
(3.4)

From [23], this results in the following relationship between a(w) and b(w):

a(w) =
(High Window)2 ×High P × 2× b(w)

2− b(w)
(3.5)

Another parameter High Decrease is used to specify the decrease parameter b(w) for
w = High Window. The value specified is High Decrease = 0.1. Given the decrease parame-
ters of b(w) = 1/2 for w = Low Window, and b(w) = High Decrease for w = High Window,
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it is necessary to specify the values of b(w) for other values of w > Low Window. From [23],
let b(w) vary linearly as the log of w. So, we have :

b(w) =

(
High Decrease− 0.5

)
×

(
log w − log Low Window

)
log High Window − log Low Window

+ 0.5 (3.6)

a(w) =
w2 × p(w)× 2× b(w)

2− b(w)
(3.7)

where p(w) is:

p(w) =
( w

Low Window

) 1
S × Low P (3.8)

3.3 Parameter Selection

To select the Low Window it is important to choose conservative parameters that
provide a backward compatibility with Standard TCP. This requires a response function
that is quite close to that of Standard TCP for loss rates of 10−1, 10−2, or 10−3. We set
Low Window to 38 MSS-sized segments, corresponding to a packet drop rate of 10−3 for
Standard TCP. The decrease parameter b(w) for this point will be 1/2 as it is for Standard
TCP. To specify the upper end of the HighSpeed response function, it is necessary to con-
sider the sustained throughput and packet drop rate expected. For example, the average
congestion window of 83000 segments is roughly the window needed to sustain 10 Gbps
throughput, for a TCP connection with the default packet size of 1500 bytes and round-trip
time of 100 ms. For a High Window set to 83000, it may be specified a High P of 10−7; i.e.,
with HighSpeed TCP a packet drop rate of 10−7 allows the HighSpeed TCP connection to
achieve an average congestion window of 83000 segments. These values set an achievable
target for high speed environments, while still allowing acceptable fairness for the HighSpeed
TCP response function when competing with Standard TCP in environments with packet
drop rates of 10−4 or 10−5.

Using the parameters expressed previously, the HighSpeed TCP response function
we obtain the figures described in Table 3.2.
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Packet Drop Rate P Congestion Window W RTTs Between Losses
10−2 12 8
10−3 38 25
10−4 263 38
10−5 1795 57
10−6 12279 83
10−7 83981 123
10−8 574356 180
10−9 3928088 264
10−10 26864653 388

Table 3.2: TCP Response Function for HighSpeed TCP

3.4 Fairness

It is not difficult to preview the expected relative fairness between HighSpeed TCP
and Standard TCP flows. Using both response functions, and defining that Standard TCP
has an average congestion window of W Standard, and HighSpeed TCP a higher average
congestion window of W HighSpeed, the relative fairness will be W HighSpeed/W Standard.
This is illustrated below. For the parameters chosen for the HighSpeed response function,
the relative fairness is described in Table 3.3.

Packet Drop Rate P Relative Fairness
10−2 1.0
10−3 1.0
10−4 2.2
10−5 4.7
10−6 10.2
10−7 22.1
10−8 47.9
10−9 103.5
10−10 223.9

Table 3.3: Relative Fairness between the HighSpeed TCP and Standard TCP Response
Functions

The table above can be understood in this way: for a packet drop rate of 10−4, a
HighSpeed flow can expect to obtain 2.2 times more throughput than a Standard TCP flow,
given the same round-trip times and packet sizes.
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Research Problem Proposal

4.1 Proposal Statement

The general purpose of this work was to study the effectiveness of HighSpeed TCP
in high speed long distance links, as a mechanism for bulk data transfer, while maintaining
fairness with other types of TCP already in use.

To fulfill this general objective, this study had specific questions to answer as follows:

1. What is the behavior of HighSpeed TCP in situations where Regular TCP underper-
forms?

2. Is it possible to use HighSpeed TCP together with Regular TCP and maintain an
acceptable fairness?

3. What is the effect of the router queuing policy (RED and DT) on the performance of
HighSpeed TCP and on the fairness between HighSpeed TCP and Regular TCP?

4. Can HighSpeed TCP be a substitute to other types of bulk data transfer?

4.2 Approach Selection

There were several possible approaches to develop in this investigation. The first
approach would be to find an analytical solution for each question. Even though this method
provides a precise answer, most times it is very difficult to formulate a broad solution that
covers all aspects of an investigation.
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The second approach would be to implement a prototype system, deploy it on the
Internet in situations that the service was expected to handle, and collect data from its
utilization. It would be possible to verify the deployment on the real environment with this
method, and it is an excellent goal for wide-area Internet applications. However the costs
and difficulty of evaluating systems directly in this way would be prohibitive [24].

The third approach would be to use an emulation of the protocol in a controlled
testbed network. Emulation is an interesting tool that offers many of the advantages of direct
Internet evaluation, but does not eliminate the problem of obtaining remote computational
resources and network access [60]. Emulation allows machines running the actual service on
a local-area network to experience delays and bandwidth limitations normally imposed by a
wide-area network. This method also would require that the system would be implemented
at least in a prototype stage and forces experiments to run no faster than real time.

The next possible approach to this investigation would be to use simulation. This
method avoids several costs present in the previous methods and it is indicated as a first
analysis method for complex network conditions and behaviors [6]. Using this method it
is possible to evaluate network protocols under varying network conditions and investigate
unforeseen protocol interactions.

As the present work was one of the first studies of HSTCP, it was reasonable to
have simulation as the chosen approach. The other reason for this choice was the availabil-
ity of good general purpose simulators that were widely accepted in the network research
community and had the features required for the development of this study.

4.3 Scope Delimitation

Even though the use of simulation permits the investigation of a protocol in a rich
variety of situation, it was not in all network conditions that this would be interesting. We
limited the investigation scenarios to selected cases of interest. The main focus was on the
behavior of HighSpeed TCP and Regular TCP in situations where both were in steady-state
or near to steady-state. The TCP congestion avoidance phase was of particular interest,
because it is where the AIMD algorithm works, consequently it is when the HighSpeed TCP
algorithm runs. Transient states were also of interest when they made a difference to the
behavior or performance in steady-state.

Some consideration was also given to the Slow-Start phase, because of its influence
on the overall performance. The algorithm used in Slow-Start has a considerable impact
on the congestion avoidance phase. When operating with large congestion windows, it is
possible to have thousands of packets dropped from one window and for the recovery to be
very slow for the TCP connection.

Long-lived TCP flows are the major interest for high speed and long distance links,
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when a large amount of data has to be transmitted. So, as a general consideration, most
streams used in this work had long duration.

This investigation was developed using a simple topology scenario to avoid more
complex interactions and to reduce the number of variables to collect and study.

TCP SACK [13] was used in this work for comparison with HSTCP congestion
control, because it had the best existing performance in these situations compared to Tahoe,
Reno and Newreno. TCP Vegas was not included in this study due to its reduced performance
when competing with other versions of TCP [37], at the time of the development of this study.

The router queuing management was restricted to DT (DropTail) and RED (Random
Early Detection) because, the DT is the traditional technique for managing router queue
length, and RED is recommended as the best default active queue management mechanism
[4]. In the case of RED, ECN [52] was deployed.





Chapter 5

Methodology

In this chapter we present the methodology used in this research. We present the
simulation tool used, the network environment used for the tests, the TCP flow types de-
ployed, and how the data was collected. In the end, we describe the metrics and network
scenarios used in the evaluation.

5.1 Simulator Selection

The experiments used the NS-2 (Network Simulator - version 2) [50] for the following
reasons:

• it is heavily used in the network research community;

• it is a packet simulator that provides a rich network component and protocol library;

• it has good scalability that permits it to be used in different scenarios and different
numbers of flows and nodes;

• it is open source software, and can be changed, if necessary;

• the HighSpeed TCP is already implemented in NS-2.

NS-2 has additional features that facilitated this work: the end-nodes and links have
parameters that permit adjustment for different scenarios; the routers have implemented DT
and RED router queuing management; there are monitoring capabilities for tracking packets
at the queue and also within the TCP flows; the simulator includes mathematical support
including random number generator and distribution functions. Simulation experiments are
written for NS-2 in TCL [59], a rich script language.
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5.2 Simulation Environment

This section describes the environment used for the development of this work. All
the important conditions and parameters used in the network links, nodes and flows are
presented.

5.2.1 Network Topology

The simulation topology chosen was the well-know ”dumbbell” [62] with a single
bottleneck, as shown in Figure 5.1. This topology provided an excellent platform for studying
the effects of the interaction between flows. All traffic in the simulation passed through the
bottleneck link and all the end points were connected to it. We defined as ”forward” the
direction from node N1 to node N2 and as ”backward” the direction from node N2 to node
N1.

The bottleneck link was the main link. Unless specified, the link bandwidth was 1
Gbits/s, the link delay was 50 ms and the default router queue management type was RED.

1 Gbps
50 ms

Forward

Backward

node_(s2)

node_(s3)

node_(sn) node_(kn)

node_(k3)

node_(k2)

node_(k1)

N2

node_(s1)

N1

Figure 5.1: Network Topology

We used two types of router queue management, DT and RED. The queue size used
was BDP in packets. The default value was 8333 packets, because it matched the BDP for
a link of 1 Gbps, with RTT of 100ms and a packet size of 1500 bytes. The other RED
parameters are described in Table 5.1.

The Error Model, defined in the NS-2, was used for simulation of link loss. It
simulates link-level errors or losses by either marking the packet’s error flag or dumping the
packet to a drop target. In this work, the Error Model unit was set to ”packets”, and the
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RED Parameters Value
gentle true
adaptive 1
bottom 0.0001
thresh 0
maxthresh 0
q weight 0
drop tail 0
setbit 1
targetdelay 0.005

Table 5.1: RED Parameters

random variable was set to a ”uniform distribution”. The error rate is a parameter set based
on the level of link-level error desired. This Error Model was only used in the bottleneck
link. Unless another value is specified, the error rate in the simulation was set to zero.

End nodes are the end points for the TCP connections. They were linked to the end
points of the bottleneck links, N1 and N2. Half the end nodes were linked with N1 and the
other half with N2. Each of these links had the bandwidth set to 100,000 Mbps to make
sure they were not limiting the TCP flows. They used DT router queue management and
a link delay of a few milliseconds (much lower than the bottleneck link). Each node had a
slightly different delay to promote behavior diversity among the flows.

5.2.2 TCP Flows Setup

Most flows in the experiments used TCP. These flows shared a set of parameters.
They had the ECN bit set to react to ECN-marked packets coming from the router queue
management [51, 52]; the packet size was 1500 bytes, this is the size of over half of the byte
volume in long distance connections today [44]; the maximum window size was large enough
to not impose limits; random times between sends were set to avoid phase effects [21]; unless
otherwise specified, the flows used a modified version of the Slow-Start algorithm for large
congestion windows to avoid massive packet losses in this phase [17]; and the minimum TCP
header was set, with no optional header. The complete TCP parameters are detailed in
Table 5.2.

TCP Parameters Value
ecn 1
window 100000
packetSize 1500
overhead 0.000008
max ssthresh 100

Table 5.2: TCP Parameters

The TCP agent used for the sender and the receiver was SACK1. The TCP/SACK1
implements the BSD Reno TCP transport protocol with Selective Acknowledgment Exten-
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sions described in [13]. This TCP flavor implements most of the TCP improvements available
nowadays. The HSTCP is also based on this TCP flavor, but with modifications in the con-
gestion control algorithm. FTP was the application used to transmit data through the TCP
connections. It simulated bulk data transfer between two nodes.

The HSTCP was implemented in the NS-2 as an option for the congestion window
control. Multiple HSTCP flows did not start all at the same time. Rather they started
randomly in the first tenth of the total simulation time. The forward direction was used for
all HSTCP flows. The values for the HSTCP parameters used are described in Table 5.3.

HSTCP Parameters Value
Low Window 31
High Window 83000
High P 0.0000001
High Decrease 0.1

Table 5.3: HSTCP Parameters

For comparison, the HSTCP was run together with Standard TCP implementations,
referred to in this work as REGTCP (Regular TCP). These two types of flows used the
TCP/SACK1 implementation as explained before. The same basic parameters were used for
all the TCP flows, and also these flows start randomly in the first tenth of the total simulation
time to avoid phase effects. These flows used only the forward direction to transmit their
data.

Since the dominant traffic on the Internet is web-like traffic, this additional flow type
was added in the experiments to reduce the regularity of the traffic and obtain more realistic
results. The use of this type of flow had the impact of adding competing web-like traffic to
the simulations. The PagePool/WebTraf module in the NS-2 was used to provide realistic
behavior of web-like traffic. With this module, it is possible to set parameters defining the
characteristics of the web servers and web clients (e.g. total number of pages per session,
distribution of page size, distribution of inter-arrival pages, distribution of object size). In
this work, the average object size was 10, the pool of web servers and web clients was set to
10. Two sets of pools were configured, one in the forward direction (a web server on one side
of node N1, and clients on the other side of node N2) and the other pool in the backward
direction (web servers on the side of N2 and web clients on the N1 side). The web server and
client nodes were linked with the bottleneck nodes through a 100,000 Mbps link and with a
variable link delay.

A set of 20 small TCP flows were also used in the simulations, 10 in the forward
and 10 in the backward direction. They had a maximum window size of 8 packets. The
source and destination of these flows were distributed randomly among the nodes linked to
the bottleneck link (the same end nodes as were used for HSTCP and REGTCP flows), so
that they could interfere with the HSTCP and REGTCP flows. These flows started at a
random time in the first third of the simulation and end at a random time in the last third
of the simulation. They represent small short term connections in the Internet.
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The previous two types of flows described above, constitute the ”background noise”
for all the simulations. They were used to avoid having an extremely regular pattern in the
experiments and they used less than 1% of the total link capacity available.

The last TCP flow type was used to represent bursty traffic. They were short-lived
flows that lasted for about 1.6 seconds. They were in Slow-Start phase during their lifetime
and thus had an exponential behavior. The modified version of the Slow-Start algorithm
for large congestion windows was not used in this case, instead the standard algorithm was
executed. When several bursty flows were used during a simulation, their initial time was
randomly distributed over the entire simulation time.

5.2.3 Data Collection Configuration

The NS-2 provides a monitor module to collect data. Two monitors were used in
this work, one to monitor the queue in the bottleneck link, tracking the arrival, departure
and drop statistics. The other one was used to monitor per-flow statistics. It counted packet
and byte arrivals, departures and drops for each flow crossing the bottleneck link.

In addition to these network level statistics, the monitors also provide the ability
to collect transport level statistics about TCP as well. It was possible to check how TCP’s
internal variables were performing. At each simulation tick, information such as current win-
dow size, highest sequence number sent, number of ECN responses and slow start threshold
were available.

The aggregated data was collected twice, once after half of the simulation time had
passed, and other at the end of the simulation. With both sets of data, it was possible
to calculate the results for the second half of the simulation. Only the second half was of
interest because this research was focused on the steady-state behavior.

Several variables were collected every 0.1 seconds. This was necessary to understand
their behavior at intermediate times during the simulation.

The simulation used the NS-2’s random number generator. NS-2 implements the
minimal standard multiplicative linear congruential generator of Park. This number gener-
ator was seeded heuristically.

Each simulation was run ten times, for three hundred seconds. The final result was
the median of these simulations. In this work we used a Sun Enterprise Server E4500 with
eight CPUs and some Linux boxes. The NS-2 version was NS-2.1b9a or more recent updates
available from the NS-2 repository.
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5.3 Metrics for Performance Evaluation

The parameters collected in this research are listed and described in Table 5.4.

Type Description Unit
queue size instantaneous queue size packets
cong window size current window size packets
sequence number highest acknowledge packet seen by the receiver —
packet drops total nr of packets dropped packets
packet marks total nr of ECN marked packets packets
packets sent total nr of data packets sent by a flow packets
packet departures total nr of packets that have departed, not dropped, from the queue packets
packet arrivals running total of packets that have arrived in the queue packets

Table 5.4: Monitor Statistics Collected

A set of metrics was used in this work to evaluate the performance of HSTCP, to
measure its impact on other types of TCP traffic, and to verify its behavior in different
network conditions. Before we present a formal metric formulation, some definitions should
be introduced. They are presented as follows.

Bandwidth B
Description: The number of bits per second that a link is designed to transmit.
Unit: bits/sec

Packet Size pkt
Description: The size of the packets on the network. For the sake of simplicity, the

size is fixed.
Unit: bytes

Time Interval T
Description: A period of time.
Unit: seconds

Packets Sent PSf (T )
Description: The number of packets that the flow f transmits during the time in-

terval T .
Unit: packets

Aggregated Packets Sent APSp(T )
Description: The number of packets sent by all flows of the same protocol p during

the time interval T , where f is the number of flows belonging to protocol
p .

Unit: packets
Expression:

APSp(T ) =

f∑
k=1

PSk(T )
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General Packets Sent GPS(T )
Description: The number of packets sent by all protocols belonging to the same ex-

periment during the time interval T , where p is the number of protocols
present.

Unit: packets
Expression:

GPS(T ) =

p∑
k=1

APSk(T )

Link Capacity C(T )
Description: The number of packets that can be transmitted through a link during

the time interval T .
Unit: packets
Expression:

C(T ) =
B

pkt× 8
× T

Dropped Packets DPf (T )
Description: The number of packets lost by the flow f during the time interval T .
Unit: dimensionless

ECN-Marked Packets ECNPf (T )
Description: The number of ECN marked packets in flow f during the time interval

T .
Unit: dimensionless

Per Flow Congestion Events FCEf (T )
Description: The sum of the number of dropped plus ECN-marked packets for the

flow f during the time interval T .
Unit: dimensionless
Expression:

FCEf (T ) = DPf (T ) + ECNPf (T )

Congestion Events CEp(T )
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Decryption: The sum of the number of dropped plus ECN-marked packets for all
flows of the same protocol p during the time interval T , where f is the
number of flows of the same protocol.

Unit: dimensionless
Expression:

CEp(T ) =

f∑
k=1

FCEk(T )

General Congestion Events GCE(T )
Description: The sum of the aggregated congestion events of all protocols belonging

to the same experiment during the time interval T , where p is the
number of protocols present.

Unit: dimensionless
Expression:

GCE(T ) =

p∑
k=1

CEk(T )

5.3.1 General Metrics

Congestion Event Rate CERp(T )
Description: The ratio between the number of aggregated congestion events and the

aggregated packets sent for the same protocol type p during a time
interval T .

Unit: dimensionless
Expression:

CERp(T ) =
CEp(T )

APSp(T )

General Congestion Event Rate GCER(T )
Description: The ratio between the number of general congestion events and the

general packet sent for all protocols belonging to the same experiment
during the time interval T .

Unit: dimensionless
Expression:

GCER(T ) =
GCE(T )

GPS(T )
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5.3.2 Link Utilization Metrics

These metrics are used to verify how much of the bandwidth in the bottleneck link
is used for a specific flow or for a given protocol. Part of the metrics of this research came
from definitions used in [61] and [8].

Per Flow Link Utilization FLUf (T )
Description: It is the percentage of the bottleneck link utilized by a flow f , during

the time interval T in a link with Link Capacity C(T ).
Unit: percentage
Expression:

LUf (T ) =
PSf (T )

C(T )
× 100

Link Utilization LUp(T )
Description: It is the sum of the link utilization of all flows of the same protocol p

during a time interval T , where f is the number of flows of a protocol
p.

Unit: percentage
Expression:

LUp(T ) =

f∑
k=1

FLUf (T )

Bandwidth Stolen BSp1,p2(T )
Description: The link utilization lost by a set of flows belonging to a protocol p1

when they compete with N flows from the protocol p2, in comparison
to the amount of link utilization they obtain when competing with N
flows from the same protocol p1, during the time interval T .

Unit: percentage

5.3.3 Fairness Metrics

These metrics are used to verify the impact of the use of a different protocol on an
already existent protocol.

Per Flow Relative Fairness FRFf1,f2
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Description: Applied to assess how many times a flow f1 is receiving more average
throughput than a flow f2, during the time interval T .

Unit: dimensionless
Expression:

FRFf1,f2 =
FLUf1(T )

FLUf2(T )

Relative Fairness RFp1,p2

Description: Applied to assess how many times a set of flows belonging to a protocol
p1 is receiving more average throughput than a set of flows belonging
to a protocol p2, during the time interval T .

Unit: dimensionless
Expression:

RFp1,p2 =
LUp1(T )

LUp2(T )

5.4 Descriptions of Scenarios for the Experiments

We used three sets of flows in most of this study. The first set had only HSTCP
flows, the second was composed only of REGTCP flows, and the third set contained both
REGTCP and HSTCP flows. The first and second flow sets permitted the comparison be-
tween REGTCP and HSTCP flows. The third flow set allowed us to observe the interactions
between HSTCP and REGTCP flows. The number of flows for each set varied according to
each experiment.

These three sets of flows were exposed to different network conditions. The different
network conditions permitted us to see the variation of the metrics and produced a picture
of the general behavior of HSTCP and its interaction with REGTCP.

In the first network environment there were no other traffic sources and no extra
interference beyond that generated by the REGTCP and HSTCP flows. This network en-
vironment is referred to as ”Ideal Condition” This situation was interesting because it was
possible to study how the flow sets performed without external interference. It served as a
basis to compare their performance with other network environments.

The second network environment represented the situation where there were systemic
losses (or losses not directly related to congestion). It is called ”Lossy Link Condition”. Some
number of packets were randomly dropped from the flows, with a defined drop rate. This
allowed us to verify the effects of different link loss levels on the flow sets.

The third network environment explored the reaction of the three flow sets to bursty
traffic, so it was called ”Bursty Traffic Condition”. The bursty traffic was composed of
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short-lived standard TCP flows running for a few seconds only during the Slow-Start phase,
in such a controlled way that it was possible to verify how much they interfered with the
behavior of the three flow sets, and consequently with their metrics.





Chapter 6

Results from the Experiments

This section presents the results of several experiments done in order to achieve the
objectives proposed in this work. The results are presented here, and the evaluation of their
meaning is developed in the next chapter.

6.1 Isolated Flows

This experiment is intended to observe the basic behavior of isolated REGTCP and
HSTCP flows. We used just 1 flow of each type, for 300 seconds and both types of router
queue management queue. The experiment ran only one time, without external interference.

It is possible to observe on Figure 6.1 that the REGTCP flow has a slower growth
compared to HSTCP flow. The REGTCP flow reaches the bandwidth limit of 8333 packets
around 300 seconds. By its side the HSTCP flow reaches this point before 50 seconds. The
second important observation is related to the influence of router queue management type.
The congestion window size of both TCP types is higher when DT is used than when RED
is used.

6.2 Ideal Condition

This first set of experiments aimed to achieve a baseline in the behavior of REGTCP
and HSTCP flows, when there is no external interference, except the background traffic. We
used three sets of flows to develop this experiment. The first set contains 1, 2, 6, 10, 20, 30
and 40 HSTCP flows, the second set contains 1, 2, 6, 10, 20, 30 and 40 REGTCP flows and
the third one is formed by a mixed of HSTCP and REGTCP flows. It contains 2, 6, 10, 20, 30
and 40 flows, half of each type of flow. Each set of flows was run with RED and DT queuing
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Figure 6.1: Evolution of Congestion Window for a Single Flow

policy in the routers. Each simulation ran for 300 seconds, and each one was repeated 10
times. The line crossing the points represents the median of these 10 simulations. Each
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repetition differs from another only by the random number generated each time to begin the
simulation. The results show the performance of the selected metrics in this experiment.

Figure 6.2 presents the performance of the aggregated link utilization metric, for the
first and second set of flows when RED router queue management is used. DT had similar
results.
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Figure 6.2: Aggregated Link Utilization - Ideal Condition - Homogeneous Flows - RED

This graphic shows that the HSTCP flows can reach full link utilization with a
reduced number of flows. Even though the REGTCP flows are using all the bandwidth
available, it is clear that they need a higher number of flows to approach to 100% of link
utilization.

The following two graphics in Figure 6.3 present the aggregated congestion event
rate for the first and second set of flows, when RED and DT are deployed, respectively.

These graphics show that there is a clear difference between the congestion event
rate resulting from the utilization of each type of flow. The use of HSTCP produces a higher
congestion event rate. Another important aspect to observe is that the congestion event rate
for HSTCP is never lower that 10−6 (RED case for just one HSTCP flow). Finally, the use
of DT, as the router queue management policy, generates a higher rate of congestion events
than when RED is used.

The link utilization achieved by the third set of flows is presented in the graphs
of Figure 6.4. The performance is presented separately for each type of flow. One line is
the aggregated result of all HSTCP flows, and the other line is for the aggregated result
of REGTCP flows. A third line is the result of all the flows combined. One graph shows
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Figure 6.3: Congestion Event Rate - Ideal Condition - Homogeneous Flows

the performance when RED router queue management is used and the other when DT is
deployed.
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Figure 6.4: Aggregated Link Utilization - Ideal Condition - Heterogeneous Flows

These graphs show that, when HSTCP flows are directly competing with REGTCP
flows, the bandwidth share used by HSTCP is higher than the bandwidth used by the
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REGTCP flows. This fact is independent of the type of router queue management used. At
the other end, the bandwidth share used by HSTCP decreases as the total number of flows
increase.

The next Figure 6.5 is the congestion event rate observed for the third set of flows,
when both types of flows are deployed together. It shows the results of the RED and DT
router queue management.
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Figure 6.5: Congestion Event Rate - Ideal Condition - Heterogeneous Flows

This graph reveals the evolution of the congestion event rate for this situation, and
shows the increase in the congestion event rate as the number of flows increases.

The aggregated relative fairness for the third flow set is depicted in Figure 6.6. It
shows the ratio between the amount of bandwidth used by all HSTCP flows and the amount
of bandwidth used by all the remaining REGTCP flows.

This graph reveals that the disproportion between the link utilization of both types
of flows decreases as the number of flows increases. Another observations that should be
pointed out here is the existence of a broad range of fairness values when there is a small
number of flows competing for the link. The ratio found in this experiment reached values
higher than 35 times. It is also important to observe that when RED is deployed, the
aggregated relative fairness is lower than when DT is used.

The last result presented in Figure 6.7 is the amount of aggregated bandwidth stolen
from all the REGTCP flows when they are deployed together with HSTCP flows. This
result is calculated using the difference between the link utilization achieved by a number
of REGTCP flows when they are competing against M other REGTCP flows, and the link
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Figure 6.6: Aggregated Relative Fairness - Ideal Condition - Heterogeneous Flows

utilization achieved by the same number of REGTCP flows when they are competing against
M other HSTCP flows.
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Figure 6.7: Aggregated Bandwidth Stolen - Ideal Condition

This graph shows that the amount of bandwidth stolen decreases as the number
of flows increases. This fact highlights that the HSTCP aggressiveness adapts as the traffic
condition changes. Other information depicted by this graph is that, even though the amount
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of bandwidth stolen decreases as the number of flows increase, the distance between the
amounts stolen, when RED is used and when DT is used, increases slightly

6.3 Lossy Link Condition

The focus of this set of experiments is to observe the behavior of REGTCP and
HSTCP flows when subjected to a systemic losses (losses not due to congestion). We used
the simulator error model to simulate losses in the bottleneck link. This loss model was set
to drop a packet with a defined average drop rate. The loss rates used were 10−6, 10−5, 10−4,
10−3, 10−2. We used three sets of flows to develop this experiment. The first set contains 10
HSTCP flows, the second set contains 10 REGTCP flows and the third one is formed by a
mix of 5 HSTCP and 5 REGTCP flows. Each set of flow has run with RED and DT queuing
policy in the routers. Each simulation ran for 300 seconds, and each one was repeated
10 times. The line crossing the points represents the median of these 10 simulations. Each
repetition differs from another just by the random number generated to begin the simulation
each time. The results show the performance of the selected metrics in this experiment.

Figure 6.8 presents the performance of the aggregated link utilization metric, for the
first and second set of flows when RED router queue management is used. DT presents sim-
ilar results, because, as the link is almost never fully utilized, the router queue management
is almost never used.
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Figure 6.8: Aggregated Link Utilization - Lossy Link Condition - Homogeneous Flows - RED

The set of flows containing only REGTCP flows presents a strong performance loss
when the link loss rate increases. This fact indicates that the REGTCP flows are not making
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reasonable use of the bandwidth available. In contrast, the HSTCP flows presented better
performance, and consistently used more bandwidth than the REGTCP flows.

The following two graphics in Figure 6.9 present the aggregated congestion event
rate for the first and second set of flows, when RED and DT are deployed, respectively.

There are two points of interest in these graphics. The first one is that the congestion
event rate for the set of HSTCP flows is not lower than a limit, 10−5 when RED is used and
10−4 when DT is deployed. Around this value, there is a knee in congestion event rate. The
second point to highlight is that the number of congestion events may increase for the set of
HSTCP flows near to the bandwidth capacity, as is the case when DT is used.

The big increase in congestion event rates for loss rate higher than 10−3 is due to a
large number of retransmissions necessary due to the large number of packets lost.

The link utilization achieved by the third set of flows is presented in Figure 6.10.
Here the performance is presented separately for each type of flow. One line is the aggregated
result of all HSTCP flows, and other line for the aggregated result of REGTCP flows. A
third line is the result of all the flows combined.

We see that the difference, between the bandwidth that the HSTCP flows use and
the bandwidth that the REGTCP flows are able to use, decreases with the increase in the
number of losses. Another important aspect to point out is that, for a link loss rate around
10−5, the link is fully utilized, and below this rate, congestive losses will be dominant.

The aggregated relative fairness for the third flow set is depicted in Figure 6.11. It
shows the ratio between the amount of bandwidth used by all the HSTCP flows and the
amount of bandwidth used for by all the remaining REGTCP flows.

The information about the amount of aggregated bandwidth stolen from all the
REGTCP flows when they are deployed together with the HSTCP flows is presented in
Figure 6.12. The result is calculated using the difference between the link utilization achieved
by a number of REGTCP flows when they are competing against M other REGTCP flows,
and the link utilization achieved by the same number of REGTCP flows when they are
competing against M other HSTCP flows.

This graphic shows that the REGTCP flows do not lose bandwidth due to deployment
of HSTCP when the link loss rate is higher than 10−4. For rates lower than this level, the
amount of bandwidth stolen is noticeable.

6.4 Bursty Traffic Condition

The aim of this set of experiments is to understand the behavior and reaction of the
REGTCP and the HSTCP flows, when they are submitted to bursty traffic. The bursty
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Figure 6.9: Congestion Event Rate - Lossy Link Condition - Homogeneous Flows

traffic is composed of short-lived standard TCP flows running for a few seconds, in such a
way that they only run during the Slow-Start phase. As the Slow-Start phase has exponential
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Figure 6.10: Aggregated Link Utilization - Lossy Link Condition - Heterogeneous Flows

growth, the bursty flows have a considerable impact in the long-lived flows. We used 0, 5,
10, 15, 20, 25, 30, 35, 40, 45, 50, 60 and 70 bursty flows, randomly distributed during all the
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Figure 6.12: Aggregated Bandwidth Stolen - Lossy Link Condition

simulation time.

We used three sets of flows to develop this experiment. The first set contains 10
HSTCP flows, the second set contains 10 REGTCP flows and the third one is formed by
a mix of 5 HSTCP and 5 REGTCP flows. Each set of flows was run with RED and DT
queuing policy in the routers. Each simulation ran for 300 seconds, and each one was repeated
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10 times. The line crossing the points represents the median of these 10 simulations. Each
repetition differs from another just by the random number generated to begin the simulation
each time. The results show the performance of the selected metrics in this experiment.

The graphs in Figure 6.13 present the performance of the aggregated link utilization
metric, for the first and second set of flows when RED and DT router queue management
are used, respectively. It also presents the aggregated link utilization of the perturbing flows
present when the first set of flows was used and also when the set of REGTCP flows has
run.

We observe from Figure 6.13(a) that the set of HSTCP flows decreases their link
utilization smoothly and slowly as the number of perturbations increase. On the other hand,
the impact on the set of REGTCP flows is higher, and their performance goes down quickly
as the number of perturbations increases.

Other information provided by the first graphic is that the amount of bandwidth
utilized by a perturbation when competing against the HSTCP flow set is slightly inferior
to the bandwidth used when competing against a REGTCP flow set.

The impact of the use of distinct router queuing management is clear when the set
of HSTCP flows is submitted to bursty traffic. The link utilization decreases slightly with
RED, but it is almost immune to perturbation when the DT router queuing policy is used,
as can be seen in Figure 6.13(b).

The next two graphics in Figure 6.14 present the aggregated congestion event rate
for the first and second set of flows, when RED and DT are deployed.

We observe that the congestion event rate increases continuously as the number
of perturbations increases, when RED router queue management is used. This behavior
happens with the set of HSTCP flows as well as the set of REGTCP flows. When DT router
queue management is deployed, these behaviors change. The set of HSTCP flows presents
an almost constant congestion event rate, and the set of REGTCP flows has two levels of
congestion event rates, probably caused by the occurrence of global synchronization.

The Figure 6.15 presents the absolute number of congestion events (packets lost plus
ECN-marked packets) for the case when RED router queue management is used.

This graphic reveals that the number of congestion events happened, when the set
of REGTCP flows was used, was lower than the number from when the set of HSTCP flows
was deployed.

The link utilization achieved by the third set of flows is presented in Figure 6.16. It
presents the performance separately for each type of flow. One line is the aggregated result
of the set of HSTCP flows, and other line is the aggregated result for the set of REGTCP
flows. The third line is the result of the all flows combined. The remaining line represents
the aggregated link utilization of all the perturbations. One graph shows the performance
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Figure 6.13: Aggregated Link Utilization - Bursty Traffic Condition - Homogeneous Flows

when RED router queue management is used and the other when DT is deployed.

The important information provided by these graphics is the poor and almost con-
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Figure 6.14: Congestion Event Rate - Bursty Traffic Condition - Homogeneous Flows

stant performance of the set of REGTCP flows. They have a low link utilization, however,
they do not change this performance much when more perturbations are used.
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Figure 6.15: Congestion Events - Bursty Traffic Condition - Homogeneous Flows - RED

The aggregated relative fairness for the third flow set is depicted in Figure 6.17. It
shows the ratio between the amount of bandwidth used by all the HSTCP flows and the
amount of bandwidth used by all the remaining REGTCP flows.

The relative fairness is almost constant using RED, as well as when DT was used.
The HSTCP flows get between 10 and 15 times more bandwidth share than the REGTCP
flows, for DT, and they get around 5 times, when RED is used. The level of relative fairness
in RED grows slightly as the number of perturbations increases.

The aggregated bandwidth stolen from all the REGTCP flows when they are de-
ployed together with the HSTCP flows is presented in Figure 6.18.

The figure highlights that the amount of bandwidth stolen by the HSTCP flows from
the REGTCP flows decreases as the number of perturbations increases, independent of the
type of router queue management used. But, the amount of bandwidth stolen is higher for
DT router queue management.

6.5 Competition among Heterogeneous Flows

In this set of experiments, we wanted to verify the behavior of the HSTCP and the
REGTCP flows when an asymmetric number of flows is deployed. To fulfill this objective,
we ran 1 HSTCP flow against varying number of REGTCP flows. We used 1, 3, 5, 7, 11,
15 and 19 REGTCP flows. These flows were run with RED and DT queuing policy in the
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Figure 6.16: Aggregated Link Utilization - Bursty Traffic Condition - Heterogeneous Flows

routers. Each simulation runs for 300 seconds, and each one was repeated 10 times. The line
crossing the points represents the median of these 10 simulations. Each repetition differs



54 6. Results from the Experiments

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70

R
el

at
iv

e 
Fa

irn
es

s

Number of Perturbations

RED
DT
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Figure 6.18: Aggregated Bandwidth Stolen - Bursty Traffic Condition

from another just by the random number generated to begin each simulation each time. The
results show the performance of the selected metrics in this experiment.

The graphs in Figure 6.19 present the performance of the aggregated link utilization
metric when RED and DT router queue management are used, respectively. It also presents
the aggregated link utilization of all the flows together.
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Figure 6.19: Aggregated Link Utilization - Competition Among Heterogeneous Flows

Some important information is present in these graphics. The first one is that the
HSTCP flow adapts itself with the amount of REGTCP flows used, and it avoids the link
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to become idle. The second piece information is that there is a certain number of REGTCP
flows that has equivalent performance to 1 HSTCP flow, but this number is dependent on
the type of router queue management used. This equivalence happens at the crosspoint of
the HSTCP line and the REGTCP line.

The aggregate relative fairness is depicted in Figure 6.20. It shows the ratio between
the amount of bandwidth used by the HSTCP flow and the amount of bandwidth used by
all the other REGTCP flows.
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Figure 6.20: Aggregated Relative Fairness - Competition Among Heterogeneous Flows

6.6 Constant Link Loss of 10−5

This set of experiments repeats the experiment of Ideal Condition, except that it
introduces a constant link loss rate of 10−5. The purpose of this change is to investigate the
behavior of the HSTCP and the REGTCP flows with systemic loss, but not as done in the
experiment of Lossy Link Condition, where each set of flows had only 10 flows. Instead, it
used a variable number of flows for each set of flows.

We used three sets of flows to develop this experiment. The first set contains 1, 2, 6,
10, 20, 30 and 40 HSTCP flows, the second set contains 1, 2, 6, 10, 20, 30 and 40 REGTCP
flows and the third one is formed by a mix of HSTCP and REGTCP flows. It contains
2, 6, 10, 20, 30 and 40 flows, half of each type of flow. Each set of flows was run with
RED and DT queuing policy in the routers. Each simulation ran for 300 seconds, and each
one was repeated 10 times. The line crossing the points represents the median of these 10
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simulations. Each repetition differs from another just by the random number generated to
begin each simulation each time. The results show the performance of the selected metrics
in this experiment.

Figure 6.21 presents the performance of the aggregated link utilization metric for
the first and second set of flows when RED router queue management is used. DT presents
similar results.
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Figure 6.21: Aggregated Link Utilization - Constant Link Loss Rate of 10−5 - Homogeneous
Flows - RED

The information provides in this graph is that, when HSTCP flows are deployed in
this network condition, there is need of 6 flows to reach full link utilization. But, when
REGTCP flows are used, this number increases to 20 or more.

The two graphs in Figure 6.22 present the aggregated congestion event rate for the
first and second set of flows, when RED and DT are deployed, respectively.

The congestion event rate for both sets of flows presents a change in its behavior.
This aspect can be seen when there are more than 30 REGTCP flows, and when there is
more than 6 HSTCP flows. This so called knee represents the point when full link utilization
is reached.

The link utilization achieved by the third set of flows is presented in Figure 6.23. It
presents the performance separately for each type of flow. One line is the aggregated result
of all the HSTCP flows, and other line is for the aggregated result of the REGTCP flows.
A third line is the result of all the flows combined. One graph shows the performance when
RED router queue management is used and the other when DT is deployed.
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Figure 6.22: Congestion Event Rate - Constant Link Loss Rate of 10−5 - Homogeneous Flows

These graphics show the influence router queue management has on the behavior of
link utilization for each type of flow. While for RED, the link utilization for the HSTCP
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Figure 6.23: Aggregated Link Utilization - Constant Link Loss Rate of 10−5 - Heterogeneous
Flows

flows decreases as the total number of flows increases, for DT, the same link utilization stays
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constant or even slightly increases, as the number of flows increase.

The aggregated relative fairness for the third flow set is depicted in Figure 6.24. It
shows the ratio between the amount of bandwidth used by all HSTCP flows and the amount
of bandwidth used by all the remaining REGTCP flows.
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Figure 6.24: Aggregated Relative Fairness - Constant Link Loss Rate of 10−5 - Heterogeneous
Flows

The last result presented in this experiment is the amount of aggregated bandwidth
stolen from all the REGTCP flows when they are deployed together with the HSTCP flows,
Figure 6.25.

From Figure 6.24 and 6.25 we see that the HSTCP flows are getting more bandwidth
share as the number of flows increase, when DT is used. RED router queue management
presents the opposite result.

6.7 Long Term Simulation

This experiment illustrates the interaction of 1 HSTCP flow and 1 REGTCP flow
over a long period of time. We ran the experiment for a period of 3600 seconds or 1 hour,
using RED router queuing policy. The Figure 6.26 shows the behavior of the congestion
window of both flows during this period of time.
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Figure 6.25: Aggregated Bandwidth Stolen - Constant Link Loss Rate of 10−5
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Figure 6.26: Long Term Simulation - 1 Hour - RED

6.8 Parallel Streams Transfer

The focus of this set of experiments was to verify the theoretical performance of par-
allel TCP streams when they operate in several levels of packet loss. We used the simulator
error model to simulate losses in the bottleneck link. This loss model was set to drop a
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Figure 6.27: Response Function - Parallel Streams Transfer - RED

packet with a defined average drop rate. The loss rates used were 10−6, 10−5, 10−4, 10−3,
and 10−2. We used parallel TCP streams containing 1, 4, 7 and 10 flows. The first set of
flows have only REGTCP flows and the second set has only HSTCP flows. The results are
presented separately for each number of flows. These sets of flows were run with RED and
DT queuing policy in the routers. Each simulation ran for 300 seconds, and each one was
repeated 10 times. The line crossing the points represents the median of these 10 simula-
tions. Each repetition differs from another just by the random number generated to begin
the simulation each time.

Figure 6.27 presents the performance of each transfer in terms of its sending rate.
The unit used here was packets/RTT and RED router queue management was used. The
use of DT presents similar results.

Figure 6.28 and 6.29 were added here to present the theoretical performance expected
from the use of parallel TCP stream, and their comparison with the theoretical performance
of 1 HSTCP flow.

The theoretical performance of parallel TCP streams over a range of packet loss
rates follows the equation presented in [25], for the condition of this experiment (MSS =
1500 bytes, RTT= 100 ms, C = 1, and packet losses impacts parallel streams to the same
extent). For the response function of HSTCP was used the equation defined in [18]. Figure
6.29 presents the expected fairness for parallel TCP streams and 1 HSTCP flow relative to
1 standard TCP stream.
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6.9 Parallel Streams on Lossy Link Condition

The focus of this set of experiments was to observe the impact of Parallel Streams
over long-lived REGTCP flows and to compare it with the impact of HSTCP over the same
long-lived REGTCP flows; when both are submitted to systemic losses (losses not due to
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congestion). We used the simulator error model to simulate losses in the bottleneck link.
This loss model was set to drop a packet with a defined average drop rate. The loss rates
used were 10−6, 10−5, 10−4, 10−3, and 10−2. We used two sets of flows to develop this
experiment. The first set contains 10 REGTCP flows (representing the long-lived flows)
and also 1, 4, 7, 10, 20 or 30 parallel streams. The second one is formed by the same 10
REGTCP flows of the first set and one HSTCP flow. Each set of flows was run with the
RED and DT queuing policy in the routers. Each simulation ran for 300 seconds, and each
one was repeated 10 times. The line crossing the points represents the median of these 10
simulations. Each repetition differs from another just by the random number generated to
begin the simulation each time. The results show the performance of the selected metrics in
this experiment.

The two graphs in Figure 6.30 present the aggregated link utilization for the 10 long-
lived REGTCP flows, when RED and DT are deployed, respectively. There is also present
in these graphs the performance of 10 long-lived REGTCP flows when no parallel streams
are present.

These graphs show us that the performance of 10 long-lived regular TCP flows is not
impacted by the use of parallel streams until the total link bandwidth is reached. After this
point, their performance is compromised. The same happens when one HSTCP is used.

The information describing the impact of the use of parallel streams is complemented
by the graphs in Figure 6.31. They show the performance of the parallel streams and the
HSTCP flow in this context.

The important information available is that, after the bandwidth limit has been
reached, the link utilization stays constant, according to the number of parallel streams.
The same happens to the HSTCP flow. Another important aspect presented here is that,
for link loss rates greater than 10−3, the performance are really bad for all of the schemes.

The next two graphics in Figure 6.32 present the aggregated congestion event rate
for the first and second set of flows, when RED and DT are deployed.

Finally we present the per flow relative fairness. The intention here is to show the
competition that a parallel stream transmission represents for a single long-lived regular TCP
flow. The amount of link bandwidth used for the parallel stream transmission is divided by
the amount of link bandwidth used by one of the 10 long-lived streams. The same procedure
is used for the case of the transmission using one HSTCP flow. The results are presented in
Figure 6.33.

It is clear that, when parallel streams are deployed, the relative fairness is almost
constant over a wide range of link loss rates. This behavior only changes when there is a
heavy packet loss rate. In contrast, the relative fairness when HSTCP is used is not constant
and has a wide range of values.
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Figure 6.30: Aggregated Link Utilization of 10 Long-Lived Regular TCP Flows - Parallel
Streams on Lossy Link Condition
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Figure 6.31: Aggregated Link Utilization of Competing Parallel Streams - Parallel Streams
on Lossy Link Condition

6.10 Parallel Streams on Bursty Traffic Condition

The aim of this set of experiments is to observe the impact of Parallel Streams on
long-lived REGTCP flows and to compare it with the impact of HSTCP over the same
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Figure 6.32: Congestion Event Rate - Parallel Streams on Lossy Link Condition

long-lived REGTCP flows; when they are submitted to bursty traffic. This bursty traffic is
composed of short-lived standard TCP flows running for a few seconds, in such a way that
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Figure 6.33: Per Flow Relative Fairness - Parallel Streams on Lossy Link Condition

they only run during their Slow-Start phase. As the Slow-Start phase has an exponential
growth, the bursty flows have a considerable impact in the long-lived flows. We used 0, 5,
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10, 15, 20, 25, 30, 35, 40, 45, 50, 60 and 70 bursty flows, randomly distributed during all the
simulation time.

We used two sets of flows to develop this experiment. The first set contains 10
REGTCP flows (representing the long-lived flows) and also 1, 4, 7, 10 or 20 parallel streams.
The second one is formed by the same 10 REGTCP flows of the first set and one HSTCP
flow. Each set of flows was run with RED and DT queuing policy in the routers. Each
simulation ran for 300 seconds, and each one was repeated 10 times. The line crossing the
points represents the median of these 10 simulations. Each repetition differs from another
just by the random number generated to begin the simulation each time. The results show
the performance of the selected metrics in this experiment.

The first two graphics in Figure 6.34 present the aggregated link utilization for the
10 long-lived REGTCP flows, when RED and DT are deployed, respectively. Also presented
in these graphs is the performance of 10 long-lived REGTCP flows when no parallel streams
are present.

Information regarding the impact of the use of parallel streams is completed by
graphics in Figure 6.35. They show the performance of the parallel streams and the HSTCP
flow in this context.

Two facts are revealed through these graphs. The first one is that the performance
of parallel TCP streams tends to decrease as the number of perturbations increase. This is
more evident when RED is deployed than when DT is used. The second fact is that the
performance of HSTCP is much less sensitive to this environment, and even improves as the
number of perturbations increases.

In the following we present the results for per flow relative fairness. The intention is
to how what represents a parallel stream transmission in terms of competition, for a single
long-lived regular TCP flow, when both are submitted to bursty traffic. The amount of
link bandwidth used for the parallel stream transmission is divided by the amount of link
bandwidth used by one of the 10 long-lived streams. The same procedure is used for the
case of the transmission using one HSTCP flow. The results are presented in Figure 6.36.

We observe in these graphics that when RED is used the relative fairness increases
as the number of perturbations increase, but this behavior is not clear when DT is deployed.
In both cases the ratio between the bandwidth used by HSTCP and the bandwidth used by
one of the 10 long-lived flows could spread over a wide range of values.

The aggregated bandwidth stolen from the long-lived TCP flows when they are
deployed together with HSTCP flows and parallel streams is presented in Figure 6.37.

The important message in this graphic is that the amount of bandwidth stolen from
the 10 long-lived TCP flows decreases as the number of perturbations increases, independent
of the type of router queue management, and independent of the scheme of bulk data transfer
used.
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Figure 6.34: Aggregated Link Utilization of 10 Long-Lived Regular TCP Flows - Parallel
Streams on Bursty Traffic Condition
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Figure 6.35: Aggregated Link Utilization of Competing Parallel Streams - Parallel Streams
on Bursty Traffic Condition

6.11 Slow-Start

Even though this is not a central part of this work, we developed an experiment
with a focus on the slow-start phase, using 1 HSTCP flow. The reason for this was to try
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Figure 6.36: Per Flow Relative Fairness - Parallel Streams on Bursty Traffic Condition

to understand the effect that some parameters in the Slow-Start have over the steady-state
phase of a transmission. We used two algorithms to accomplish this objective. The first one
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Figure 6.37: Aggregated Bandwidth Stolen - Parallel Streams on Bursty Traffic Condition

was the standard slow-start algorithm and the second algorithm was the modified slow-start
algorithm, proposed in [17] for large congestion windows. The parameter MAX SSTHRESH
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for the modified slow-start was set to 10, 100 and 1000. Each algorithm was simulated one
time for 100 simulation seconds, using the default parameter for bandwidth and link delay.

Figure 6.38 presents the evolution of the congestion windows using the standard and
the modified Slow-Start algorithms. Figure 6.39 presents the evolution of sequence number
for the standard slow-start, when used by 1 HSTCP with different Slow-Start, as used on
the graph before. Finally, the table Table 6.1 present the amount of packets dropped for the
simulation in Figure 6.38, in the first half of the simulation.
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MAX-SSTHRESH PKTS LOST/MARKED TIME OF CHANGE CWND IN CHANGE
0 27274 1.30 33032.00

10 1 63.75 9919.98
100 1 20.75 9979.66

1000 58 3.55 12726.20

Table 6.1: Slow-Start Comparison
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Chapter 7

Discussion of the Results

This section contains a discussion concerning the results presented in the previous
chapter. The main reasons behind the results are analyzed and questions proposed in this
work are discussed here.

7.1 Organization of Results

The results are presented as follows. First we present a comparison of the perfor-
mance of HSTCP and REGTCP for the network conditions defined in these experiments.
Of special interest is the performance of HSTCP in situations where REGTCP shows poor
performance.

The second part is dedicated to understanding the interactions among flows of both
HSTCP and REGTCP. Fairness issues are presented and discussed in this part, as well as,
an analysis of the possibility of deploying HighSpeed TCP together with the Standard TCP
protocol.

The third part provides a discussion of the effect of router queue management. Buffer
management has an important influence on the performance metrics of both protocols and
also on their interactions.

The fourth part presents an examination of HighSpeed TCP as a candidate method
for bulk data transfer. We explore how many REGTCP flows a single HSTCP flow can
substitute for, and compare HSTCP performance with other method of bulk data transfer
in different network conditions.

The final part addresses some other issues involving Slow-Start and TCP implemen-
tation that arose during the development of this study, but are not directly related to the
subject of this study.
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7.2 Questions for the Deployment of HighSpeed TCP

7.2.1 What is the behavior of HighSpeed TCP in situations where
Regular TCP underperforms?

Ideal Condition

The environment used for the tests in the first network condition places no restrictions
to keep the set of REGTCP flows from reaching the maximum link utilization, except the
time available to run. The time for the experiment run is long enough to expect good
performance. Even though this is true, a small number of REGTCP flows are unable to
completely use the available bandwidth. With less than 10 flows, the set of REGTCP flows
does not use the full bandwidth, in this network condition. Only with a higher number
of REGTCP flows is the link capacity used. Figure 6.2 presents this situation. If there is
systemic loss in the path, the situation becomes worse, as seen in Figure 6.21.

The reason for this poor performance is related to the bandwidth delay product of
the bottleneck link, and the conservative increase of CWND in the REGTCP Congestion
Avoidance phase. Given that, for each segment ACKed during the Congestion Avoidance
phase, the CWND is increased by 1/CWND, and the interval between each increase is one
RTT, the evolution of the congestion window is slow. This slow growth leaves the link with
a low level of utilization during a significant period of time. This situation is presented on
Figure 6.1(a). Even though regular TCP will eventually reach the bandwidth limit, it is
clear that during a large amount of time, the link will be under-utilized.

It is important to point out that other restrictions to TCP reaching a high through-
put, such as limited TCP buffers, reduced network buffer capacity and large packet loss in
Slow-Start, are not present in this case.

At the gigabit speeds, used in this network scenario, the performance of REGTCP is
latency limited, rather than bandwidth limited. The latency is caused by the speed of light
and cannot be decreased. The other possible limit is determined by the TCP window size [56].
As shown here, the standard TCP protocol limits the performance by its slow increase rate
of the congestion window. This slow dynamic response incurs other performance problems
that will be explained later.

Unlike REGTCP, a few HSTCP flows are enough to fill the pipe, as can be seen
in Figure 6.2. This is a direct consequence of HSTCP having a faster increase rate of
CWND than the increase rate of REGTCP during the Congestion Avoidance phase. As
previously presented in the chapter about HighSpeed TCP Fundamentals, the parameter
used to increase the congestion window is a function of the present congestion window. The
larger the congestion window, the greater the factor.
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As seen in the results, HSTCP makes better use of a high bandwidth link with high
delay. It avoids a long period of exploratory growing in the Congestion Avoidance phase and
reaches a high-level steady-state in a short period of time.

The difference in behavior of both protocols is also visible in Figure 6.3(a). There
is a clear difference between the congestion event rate produced by each protocol in the
same situation. This difference can be understood as the difference in the aggressiveness.
As the HSTCP ramps up faster than REGTCP, the probability that one of HSTCP flows
reaches the bandwidth limit, and consequently produces a congestion event, is higher than
for REGTCP. Even with a large number of flows (30 or 40), this characteristic is present.
This fact also suggests that, as REGTCP is slow to adjust its congestion window in a high
delay environment, when a congestion event happens, the probability that some of its flows
reach the limit is lower than for HSTCP protocol.

It is important to observe that the congestion event rate for one HSTCP flow cannot
be lower than 10−6, as can be seen in Figure 6.3(a). This is due to the fact that this is the level
at which it reaches the maximum transmission rate, for the conditions in this experiment. It
is interesting to note that this is the crosspoint of the HSTCP theoretical response function
line, and the line of link bandwidth. This is seen in Figure 3.1.

Lossy Link Condition

In the second experiment, we studied the impact of packet loss not caused by a
router buffer overflow but by a faulty transmission, also called systemic loss. The dominant
understanding is that packet loss is caused exclusively by routers dropping packets when
queues overflow, and it is interpreted by TCP as an indication of network congestion between
a sender and a receiver. But packet losses may have other sources. In [57], the authors show
that between 1 packet in 1100 and 1 packet in 32000 fails the TCP checksum and the packet
is dropped, even when the data-link CRC checksum passes.

Packet loss may be due to random factors other than network congestion, such as
intermittent hardware faults [2]. An example source of packet loss not due to congestion is
described in [10], in which a large amount of packet loss in a cable modem was caused by
a hardware bug. The authors in [46] found that ATM cell drops due to hardware problems
limited TCP performance over OC-12 links. Losses not related to buffer overflow also happen
in satellite connections or other forms of wireless communication.

Given this evidence, the belief that packet losses are caused only by queue overflows
cannot be supported. There are many pieces of network equipment and carriers involved in
a wide-area network data transmission, a bug or error in any of these pieces of equipment
may corrupt or drop a packet.

With such a potentially high systemic losses, this experiment studied the effect of
several packet loss rate levels on the two types of TCP.
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The resulting link utilization of the set containing only REGTCP flows shows an
impressive performance loss when the link loss rate increases. This prevents REGTCP from
making reasonable use of the bandwidth available, as depicted in Figure 6.8. When the
packet loss rate is greater than 10−6, REGTCP is unable to use the link fully. This situation
happens for HSTCP only after 10−5. The performance of the flow set using HSTCP is a bit
better in the range from 10−6 to 10−3. The link loss rate of 10−3 is the point set for the
Low Window in the HSTCP parameters (a congestion window of 31 packets represents a
packet loss rate of approximately 0.001). Beyond this loss rate, the performance of HSTCP
flows is equivalent to REGTCP flows, by design.

It is interesting to notice that the congestion event rate for HSTCP flows cannot be
lower than 10−5, as can be seen in Figure 6.9(a). Around this value, there is a ”knee” in link
loss rate. The reason for this knee is that the influence from the link losses becomes lower
than the influence of the real congestion induced by the limit on the available bandwidth. In
the case where RED router queue management is used, below the link loss rate of 10−5, the
number of congestion events produced by ECN-marked packets is greater than the congestion
events produced by packet losses.

Figure 6.8 also shows that a link loss rate between 10−5 and 10−4 prevents REGTCP
from making a reasonable use of the link bandwidth available (less than 50% in this case). In
this range, the HSTCP flows are able to use almost the double of bandwidth that REGTCP
flows use, with the parameters used in HSTCP flows configuration.

Another way to understand the performance of HSTCP in relation to REGTCP is
to observe their link utilization when a fixed link loss rate is set. Figure 6.21 shows that
HSTCP protocol needs only 6 flows to achieve full link utilization, while REGTCP protocol
only reaches this performance with 20 or more flows. This particular situation is closer to
the reality, since it is hard to find a path without some systematic loss.

The same knee presented in Figure 6.9(a) is also present in Figure 6.22(a). The set
of REGTCP flows has its knee in the congestion event rate only after 30 flows, far beyond
the 2 flows for the set of HSTCP flows.

Bursty Traffic Condition

Network traffic can present burstiness, because of its inherent self-similar nature [40].
This condition is of particular importance in our analysis.

In a typical network, TCP optimizes its send rate during Slow-Start by releasing
increasingly large bursts (or windows) of packets, one burst per round-trip time, to the
receiver until it reaches its maximum window size. At this point it has reached the full
capacity of the network. In a network with a high bandwidth delay product, however,
TCP’s maximum window size may be larger than the queue capacity of some of the network’s
intermediate routers. Larger windows overload such router queues, and the routers begin to
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drop packets.

This TCP behavior has several effects on the network elements as well as on the
other traffic present in the same link:

• Increased queuing delay: The bursty nature of traffic leads to buffering of packets at the
intermediate routers. However, buffering delays could also depend on the congestion
level, queuing and scheduling policies. Larger queues at the routers may introduce
additional delays in the TCP flows and increase their RTT.

• Jitter (variable delay): In some networks, delay variation mainly occurs due to queuing
from bursty traffic.

• Make other traffic flows also bursty: The burstiness of one TCP flow can cause the
other TCP flows to become bursty when they share a common queue at an intermediate
router. The effect can be catastrophic if these bursts get synchronized. According to
global synchronization effects described in [63], packet losses due to buffer overflow can
be synchronized causing all the TCP flows to back off simultaneously and under utilize
the bandwidth.

• Low throughput levels: The burstiness of TCP results in packet drops arising from
queue overflows or an increase in RTT due to queuing delays. This leads to low
throughput levels for TCP flows. This along with other side effects, like synchronized
window evolution, could waste bandwidth and also produce bursty packet losses.

• Unfair sharing: The bursty nature of TCP may result in unfair competition traffic
between streams caused by the queuing bottleneck.

The effects of having bursty TCP traffic competing for the link were significant for
all sets of flows.

The set of REGTCP flows presented a continued decrease in the link utilization
as the number of bursty perturbations increased, this can be seen in Figure 6.13(a). The
explanation is that the congestion window of the REGTCP flows is cut in half each time a
congestion event happens, it does not recover the previous throughput because the increment
in the congestion window is only 1/CWND each RTT. When there is a high link bandwidth,
this leads to a low link utilization.

This poor link utilization is not because the perturbations are using a large share
of the link bandwidth. Rather, it is due to the bursty nature of these perturbations. It is
possible to see that the perturbation flows use less than 10% of the link capacity, when the
link utilization for the set of REGTCP flows dropped around 70%.

The number of congestion events for the set of REGTCP flows is low even though
the number of bursty perturbations is high. This happens because, as the REGTCP flows
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decrease their throughput, the probability that some REGTCP flow has a packet in the
queue is also low, and the majority of packets lost will belong to the perturbing flows.

The set of HSTCP flows decreases its link utilization also, but smoothly and slowly
as the number of perturbations increases, as can be seen in Figure 6.13(a). It is clear that
the HSTCP flows lose less bandwidth than the set of REGTCP flows does, so it is more
resilient to this kind of traffic and recovers faster from this interference.

The amount of bandwidth utilized by a perturbation when competing against the
HSTCP flow set is slightly inferior to the bandwidth used when competing against a REGTCP
flow set, as seen in Figure 6.13(a). This suggests two things. First, the amount of bandwidth
lost by the REGTCP flows is again not due to the perturbation flows using the bandwidth.
Second, the perturbation flows have to compete hard with the HSTCP flows to use the
bandwidth available, or the HSTCP flows resist them better.

7.2.2 Is it possible to use HighSpeed TCP together with Regular
TCP and maintain an acceptable fairness?

The HSTCP flows presented better performance than the REGTCP flows for high
bandwidth, long delay links, as seen in the previous question. It is clear that HSTCP is
more aggressive than REGTCP, which contributes to this performance. On this topic, an
interesting question arises: how much can the HSTCP flows hurt the performance of the
REGTCP flows when they are deployed together?

Fairness is a key point in the acceptance of a protocol or solution in best effort net-
work. This aspect has raised concerns in the network community in the past [15], and makes
it difficult for deployment and co-existence with other protocols [25]. If an implementation
of a congestion control protocol is much more aggressive in its use of bandwidth than other
implementations, it could induce other new protocols to be more aggressive as well.

A flow is TCP-compatible if it is responsive to congestion notification, and in the
steady-state uses no more bandwidth than a conformant TCP running under comparable
conditions of drop rate, RTT and MTU. As mentioned before, to a certain degree, HSTCP
is not ”TCP-compatible”, but its degree of compatibility changes according to the drop rate
perceived by a HSTCP flow.

We studied here the steady-state fairness, which is important to bulk data transfer.
Other situations, where fairness is also important, such as in Slow-Start and in some transient
conditions, are not discussed here.
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Ideal Condition

If there is no external interference, the bandwidth share used by HSTCP flows is
higher than that used by REGTCP flows, when both types of flows compete for the same
link. The difference in the link utilization can be seen clearly in Figure 6.4(a). The link
presents a high level of utilization when both types of flows are competing together. It
is noticeable that the amount of the link used by the HSTCP flows decreases as the total
number of flows increases. The opposite happens with the REGTCP flows. The reason for
this behavior is found in the fact that the HSTCP CWND update is tied to the level of
congestion event rate perceived by the flows. The higher number of flows competing for
the link bandwidth, the more congestion events happen and the less aggressive the HSTCP
flows are. With the decrease in the HSTCP aggressiveness, the REGTCP flows have more
opportunity to use the bandwidth available.

The same behavior is observed in the aggregated relative fairness, as seen in Fig-
ure 6.6. The disproportion between the link utilizations decreases as the number of flows
increases. A broad range of fairness values happen when there is a small number of flows
competing for the link. The reason for this could be associated with an early congestion
event that reduces significantly the congestion window size of the REGTCP flow. As there
are only a few REGTCP flows, this contributes to the overall lower link utilization. The
time when a congestion event happens will define the REGTCP flow link utilization, and
consequently the relative fairness. The difference can be large, but not enough to prevent
REGTCP using part of the link bandwidth.

Figure 6.5 presents the evolution of the congestion event rate for this situation, and
shows the increase in the congestion event rate as the number of flows increases.

The percentage of the total bandwidth capacity that the HSTCP flows take from
the REGTCP, when they are competing, is expressed in Figure 6.7. Again, the effect of the
variation in the congestion event rate is visible in these results.

The results presented before highlight two distinct characteristics of the HSTCP
protocol. It is more aggressive at using the bandwidth available, but it decreases its aggres-
siveness as the congestion event rate increases. This adaptability is very interesting in the
context of high speed links. It avoids having a link become idle due to the slow dynamic
of standard TCP, and yet does not prevent more standard TCP streams from obtaining a
reasonable share from the link. This adaptability is expressed in Figure 6.19(a). In this
experiment, it is possible to see how the bandwidth is shared when there is only 1 HSTCP
flow, and the number of REGTCP flows competing for the link increases. The HSTCP flow
backs off gracefully as the number of REGTCP flows increases. The total link utilization is
kept near to 100%, which means that the bandwidth resource is fully utilized.

In the same graph, the intersection point of the lines of link utilization of 1 HSTCP
flow and the line of link utilization of the REGTCP flows represents the moment where 1
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HSTCP flow is equivalent to (N - 1) REGTCP flows, or they utilize the same bandwidth.
For the network conditions of this experiment N = 7, which means that 1 HSTCP flow is
equivalent to 6 REGTCP flows.

So far, we have presented the interaction between HSTCP flows and REGTCP flows
for a period of time of 300 seconds. It is also important to see their interactions over a longer
period of time. Figure 6.26 presents the evolution of the congestion window of 1 HSTCP
and 1 REGTCP competing flows, for a period of one hour. It is clear that there is little
difference in the interaction. The congestion windows are kept around the same level during
the entire period. The large area occupied by the HSTCP line represents the oscillation in
the HSTCP congestion window.

Lossy Link Condition

In the lossy link condition, the difference in the link utilization from the HSTCP
flows and REGTCP flows decreases with the increase in the number of losses, as expected,
see Figure 6.10(a), and the relative fairness decreases with the increase in the link loss rate,
as seen in Figure 6.11.

An important question to be considered is how much link bandwidth do the HSTCP
flows steal from the REGTCP flows, and where does this happen. The answer is in Figure
6.12. The conclusion is that, with a link loss rate higher than 10−4, the REGTCP flows are
limited by systemic loss, instead of having some performance loss due to the use of HSTCP.
With link loss rates lower than 10−4, the HSTCP flows begin to steal bandwidth from the
REGTCP flows. This change occurs because the link utilization is close to the physical
bandwidth limit, as seen in Figure 6.10(a). Beyond this point, the HSTCP flows are directly
competing with the REGTCP flows for more bandwidth. This turning point may change
according to the link capacity and the number of flows competing for the link. This result
is similar to the one found in the literature [25].

Bursty Traffic Condition

As previously mentioned, the bursty traffic hurts the performance of both flow sets.
However, the major difference here is the performance of the REGTCP flows, as depicted
in Figure 6.16(a). The drop in the link utilization now is lower than when the REGTCP
flows are alone suffering the perturbations, as can be seen in Figure 6.13(a). A possible
explanation for this behavior is that the REGTCP flows already have a low throughput,
because they are competing with the HSTCP flows. The relative fairness for this particular
experiment is kept relatively constant, as seen in Figure 6.17.

It is also possible to know how much bandwidth the HSTCP flows steal from the
REGTCP flows. The answer is seen in Figure 6.18. When competing against HSTCP with
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bursty traffic, the performance of the REGTCP flows is relatively constant. This produces
the result that when the level of perturbation in the link increases, the difference for the
REGTCP flows competing with the other REGTCP flows and competing against the HSTCP
flows, become smaller. The conclusion is that the bursty traffic has little influence on the
amount of bandwidth that the HSTCP flows steal from the REGTCP flows, and it also has
little influence on the fairness.

7.2.3 What is the effect of the router queuing policy (RED or DT)
on the performance of HighSpeed TCP and on the fairness
between HighSpeed TCP and Regular TCP?

The performance and fairness of HSTCP cannot be completely understood without
identifying the influence that the router queue management scheme has over it. In this study,
we verify the difference in the use of the two queue management schemes: DT and RED
(ECN is active when RED was deployed). Even though there is no intention to perform
a deep study of the issues of router queue management, its influence is strong enough to
warrant some attention. These queuing policies were chosen because they are widely known,
researched and deployed.

Router buffers are an essential element for a packet-switched network. They absorb
burst arrivals of packets and reduce potential losses. The larger the buffer, the higher the
capacity it has to absorb large bursts. However, it builds up load and increases queuing
delays.

DT is the simplest way to perform queue management in the router. It manages
the length of the queue using a FIFO (First In First Out) scheme. In this scheme, each
new packet that arrives at the queue input port is discarded when the queue buffer space is
full. Van Jacobson proposed as early as 1988 that the queue buffer space should be no less
than the bandwidth delay product. It was also proposed that delay should be the average
end-to-end round trip time across all flows sharing the bottleneck link [47].

DT has a loss bias against bursty flows, because a bursty flow tends to have multiple
packets arriving at the queue roughly at the same time. Therefore, the router will drop a
bunch of packets from the same flow at the same time. DT also produces global synchro-
nization, because the packets from all flows are dropped when the queue is full, leading all
flows to back off at the same time. All the flows then follow the same algorithm of rate
increase, leading to the same situation again, at roughly the same time [4]. Lockouts are
another problem with DT. DT can allow a single connection to take over the bottleneck link
thereby increasing unfairness, but not necessarily translating into lower link utilization [49].

Using RED [4, 22], a router will probabilistically drop an arriving packet even though
the queue for the outbound interface is not full. The reason for this early drop comes
from the fact that packet loss is the primary indicator of congestion for a TCP connection.
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By dropping packets before a router’s queue fills, the TCP connections sharing the queue
will reduce their transmission rates and ensure that the queue does not overflow. Another
consequence of the early dropping of packets is that RED enforces fairness, because the
fraction of dropped packets for each connection is roughly proportional to the connection’s
share of the bandwidth.

The RED algorithm uses a weighted average of the total queue length to determine
when to drop packets. When a packet arrives at the queue, if the weighted average queue
length is less than a minimum threshold value (minth), then no drop action will be taken and
the packet will simply be enqueued. If the average is greater than the minimum threshold
but less than a maximum threshold (maxth), an early drop test is performed as described
below, up to the maximum drop rate (maxp), when the average queue size reaches maxth.
An average queue length in the range between the thresholds indicates some congestion has
begun and flows should be notified via packet drops. If the average is greater than the
maximum threshold value, a forced drop operation will occur. An average queue length in
this range indicates persistent congestion and packets must be dropped to avoid a persistently
full queue. The forced drop is also used when the queue is full but the average queue length
is still below the maximum threshold.

Using a weighted average, RED avoids overreacting to bursts and reacts to longer-
term trends. Furthermore, because the thresholds are compared to the weighted average, it
is possible that no forced drops will take place even when the instantaneous queue length is
quite large. A graphical representation of the RED parameters is given in Figure 7.1.

Minth Maxth Queue Size

Dropping/Marking

Probability

Maxp

1

Average Queue Length

Figure 7.1: RED Parameters

Adaptive RED [20] is a variation of RED which retains RED’s basic structure and
dynamically adjusts the parameter maxp to keep the average queue size between the minimum
and maximum thresholds. The objective of Adaptive RED is to reduce both packet loss rate
and the variance in queuing delay.



7.2. Questions for the Deployment of HighSpeed TCP 87

RED’s gentle mode [16] modifies RED’s dropping function for the case when the
average queue size exceeds maxth. The drop probability increases linearly between maxth

and the buffer size with a slope of (1 - maxp) / maxth. Obviously, RED has to drop an
arriving packet if the instantaneous queue size equals the total buffer size.

Another extension of RED is to mark the IP header instead of dropping packets,
when the average queue size is between minth and maxth, or between minth and the buffer
size (when adaptive RED and Gentle mode are used deployed together). Cooperating end
systems should then use this IP mark as a signal that the network is congested and slow
down the throughput. This is known as Explicit Congestion Notification (ECN) [53].

ECN aims to provide TCP with an alternative mechanism for detecting incipient
congestion in the network. That is, a TCP sender that supports ECN does not have to
solely depend on packet drops to detect congestion and limit its sending rate.

ECN requires support from the routers and the end hosts. Hosts negotiate ECN
capability during the TCP connection setup. If both hosts are ECN-capable, the TCP
sender indicates this by setting a bit in each outgoing packet. ECN-capable routers are
responsible for monitoring congestion levels and marking packets of ECN-capable sources
as congestion grows critical, instead of passively waiting until buffer space runs out and
resorting to drops. ECN relies on the ability of the router to detect incipient congestion,
unlike DT. Therefore, the router must use an Active Queue Management (AQM) mechanism,
such as the one employed in RED.

Adaptive RED, with Gentle mode and support for ECN was used for all the simula-
tions in this work that were conducted with RED router queuing management.

Impact of RED and DT in the Performance of HSTCP

The queue management scheme does not significantly affect the link utilization of
HSTCP flows in the Ideal Condition. They presented similar results, as indicated earlier.

There is a considerable difference in the level of congestion event rate from RED to
DT, as depicted in Figure 6.3(b). The use of RED causes a reduction in the number of the
congestion events necessary to control the TCP sending rate. ECN plays an important role
by notifying TCP senders of congestion build-up in a more effective manner than packet
drops [49].

On the lossy link condition defined for this experiment there is no difference between
the use of RED and DT, as mentioned before. The simple reason for this is that the router
queue is not used at all, because the HSTCP flow set is limited by systemic loss instead of
by congestion loss. So, the amount of traffic generated does not reach the link capacity. The
queue management is only active for link loss rates set to lower than 10−5, see Figure 6.8.
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The impact of router queuing management is clear when HSTCP is submitted to
bursty traffic. The link utilization for the set of HSTCP flows decreases slightly with RED,
but it is not affected by perturbations when DT router queue policy is used. This can be
seen in Figure 6.13(b). The constant congestion event rate for HSTCP presented in Figure
6.14(b) also illustrates this fact. RED decreases the bias against bursty traffic by increasing
the congestion events of the non-bursty traffic, as depicted in Figure 6.14(a). This result is
also found in the literature [3].

Also observing Figure 6.14(b) it is possible to realize that HSTCP flows seem to resist
global synchronization better than REGTCP ones. The split in the results of congestion
event rate for REGTCP flows seems to indicate that, at certain levels of perturbation,
global synchronization can be triggered. Once it is started, the long-lived flows go to Slow-
Start together, making it more likely that global synchronization is sustained by following
perturbations, and the REGTCP flows do not recover.

Impact of the RED and DT on the Fairness

The general pattern of the aggregated relative fairness found when RED is used is also
followed when DT router queue management is deployed. The difference is the higher amount
of bandwidth that the HSCTP flows take from the REGTCP flows. In Ideal Condition, the
ratio reaches values higher than 20 times for DT and has a high variability, as shown in
Figure 6.6.

The use of DT as router queue management also impacts the amount of bandwidth
stolen by the HSTCP flows from the REGTCP flows, as seen in Figure 6.7. Even though
the amount of bandwidth stolen decreases as the number of flows increases, the distance
between the amounts stolen when RED is used and when DT is used, increases slightly.
This suggests that RED is doing a better job of avoiding unfair sharing among the flows in
the router queue.

There are no relevant observations in Lossy Link Condition because the queue is not
used in most of this experiment.

In Bursty Traffic conditions, the aggregated relative fairness is almost constant using
DT, but seems to increase slightly when RED is used. This fact will be further explored
when the HSTCP bulk data transfer capability is analyzed. Using DT, the HSTCP flows
get between 10 and 15 times more bandwidth share than the REGTCP flows, as depicted in
Figure 6.17.

The amount of bandwidth stolen by HSTCP flows from REGTCP flows also de-
creases with the increment of the number of perturbations, mainly because the effect bursty
perturbations have on the REGTCP flows. But the amount of bandwidth stolen is still
higher than with RED router queue management, as seen in Figure 6.18.
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The experiment with Constant Link Loss Rate of 10−5 presents a new situation for
the analysis of fairness. Figure 6.23(b) shows that the percentage of bandwidth used by both
types of TCP is relatively invariant with the number of flows used, with DT router queue
management. This is different from the result found when there was no link loss, as seen
in Figure 6.4(b). The small variation that happens seems to indicate that the difference of
link utilization between HSTCP flows and REGTCP flows becomes higher. This is clearly
illustrated in Figure 6.24 and in Figure 6.25. Further investigation is necessary to explain
this behavior.

Router queue management also makes a difference in the number of equivalent
REGTCP flows for one HSTCP flow, when both are competing for the same link. Fig-
ure 6.19(b), the equivalence point for DT router queuing management (the point where 1
HSCTP flow is using the same bandwidth as N-1 REGTCP flows) is twice the value found
when RED was used. The value found for DT under the conditions of this experiment was 13
REGTCP flows for 1 HSTCP flow. This figure highlights again the substantial impact that
different types of queue management have on the behavior of TCP flows, and the consequent
impact on the fairness observed when HSTCP and REGTCP flows are deployed together.

7.2.4 Can HighSpeed TCP be a substitute to other types of bulk
data transfer?

Resource sharing is a strong driving force behind the development of computer com-
munication networks. It permits a scarce and expensive resource to be used by geographically
dispersed people. In certain types of communities, this resource could be required to carry
large amounts of data produced by experiments, data collections, visualization tools, and
so on. This scenario is particularly prevalent among scientific communities, such as high-
energy physics, climate, astronomy and life sciences [34]. Large data sets produced at one
site, sometimes must be analyzed at collaborating institutions around the world.

It is a massive problem to ensure that the data are distributed in an acceptable time
for the computation in today’s Internet. This problem has forced the design of techniques
to overcome this challenge. One of the current techniques in place, to perform massive bulk
data transfer, is the use of parallel TCP streams, as mentioned in the Background chapter.
This technique is implemented by dividing the data to be transferred into N portions, and
transferring each portion with a separate TCP connection. When running N connections,
each parallel stream will be less likely to be selected to have its packets dropped, and therefore
the aggregated amount of potential bandwidth which must go through premature congestion
avoidance or Slow-Start is reduced.

It has been shown in [31] that the link utilization is proportional to the probability
of loss and bandwidth delay product. The effect of N parallel streams is to reduce the
bandwidth delay product experienced by a single stream by a factor of N, because they all
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share the same bandwidth.

Hacker and Athey [25] addressed how the use of parallel TCP connections increases
aggregated throughput, and how to determine the number of TCP connections that are
necessary to maximize throughput while avoiding network congestion. After developing a
theoretical model and experiments, they concluded that the use of parallel TCP connections
is equivalent to using a large MSS on a single connection, with the added benefit of reducing
the negative effects of random packet loss. They also mentioned that the value for the number
of parallel TCP connections should not be arbitrarily selected, because, if the selected value
is too large, the aggregated flow may cause congestion and the throughput will not be
maximized.

Further work of Hacker, Noble and Athey [26] proposed a fractional congestion con-
trol. In this model, a single TCP stream is told to increase its congestion window by only
one packet for every N acknowledged packets, but decreases its window in the normal way.
Fractional congestion control can be used to reduce the aggressiveness of parallel streams in
the presence of congestion, but preserves much of their effectiveness in its absence. They
proposed this control because when parallel flows compete with single stream, the former
steal bandwidth from the latter.

The main advantages and disadvantages of using parallel streams are summarized
and listed as follows:

ADVANTAGES:

• the Slow-Start is faster, because the aggregated flow grows N times faster;

• parallel streams can overcome the limitation on maximum TCP buffer sizes, as dis-
cussed in the Background section;

• its recovery is faster compared to a single TCP stream with large window, because
the recovery of N individual streams is faster than one and, if only one stream in N
experienced loss, the decrease will not be large for the aggregated flow.

DISADVANTAGES:

• parallel streams require special support in application programs, and consequently
existent programs have to be changed;

• parallel streams may lose performance if the loss experienced by the aggregated flow
is due to congestion;

• the selection of the number of parallel streams is problematic, because the network
condition may change during a long data transmission, and a previously good condition
could become bad later;
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• parallel streams may be unfair to other TCP streams sharing the same network re-
sources.

The deployment of HighSpeed TCP presents advantages and disadvantages compared
to the use of parallel TCP streams technique:

ADVANTAGES:

• HighSpeed TCP does not require changes in application programs to use it, but instead
a change in the TCP stack;

• its adaptability to varying loss rates better accommodates changes in the network
conditions, even on a congested link (even though the use of fractional congestion
control improves this point, it is dependent on the initial number of parallel streams
set for the transmission);

• it is not necessary to know a priori the number of flows to transmit.

DISADVANTAGES:

• HighSpeed TCP has the same limitation as maximum TCP buffer size for a single TCP
stream;

• HighSpeed TCP has just one control loop, instead of N in the case of parallel streams.

Both solutions have in common the potential unfairness to competing TCP trans-
mission when they share a congested link, and both show a clear improvement in their
transmission rates.

This section presents the theoretical performance of HSTCP compared to the parallel
streams, as well as the expected fairness. After this, simulations comparing aspects of transfer
rate and fairness on different network conditions are presented.

Theoretical performance and fairness of HighSpeed TCP and Parallel TCP
Streams

If HSTCP is used on a network with unused bandwidth, and there are systemic
packet losses, the packet losses experienced by a HSTCP stream will effectively determine
the maximum throughput. The only possible modification to change this limit is to use dif-
ferent values for the HSTCP parameters (Low Window, High Window, and High P). These
parameters define the slope of the response function. After reaching the link capacity, the
congestion packet losses limit further throughput increases. Parallel streams also have their
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throughput (and consequently aggregated throughput) determined by the packet loss rate
experienced by each TCP stream. As the number of parallel streams increases, the packet
loss perceived by each individual flow should be similar as long as only a few packets are
queued in the routers. The performance of each scheme is presented in Figure 6.28. This
graph presents only the performance when there are systemic packet losses and does not
include losses due to congestion.

Observing their response functions, it is clear that a HSTCP flow may deliver a
higher throughput when compared to a single REGTCP stream, or several parallel streams
when very low systemic packet losses are present. Under low systemic loss rate, HSTCP is a
strong candidate for bulk data transfer. For environments with high systemic packet losses,
HSTCP’s throughput is close to or equal to a REGTCP flow, and there is no particular
advantage in terms of throughput.

If the link capacity is reached and the congestion loses dominates, no difference exist
between the schemes (see Figure 6.27), except the fairness to other TCP flows. This is
explored in the following discussion.

The relative fairness achieved by the use of parallel streams is directly related to
the number of flows used (N), and independent of packet loss rate experienced by the flows
[18, 25]. On the other hand, the relative fairness of HSTCP is a function of the congestion
window size, and consequently a function of the congestion event rate, as can be seen in
Figure 6.29. By this graph, it is possible to see the adaptability of just 1 HSTCP flow
for different congestion event rates. The lower the packet loss rate, the higher the relative
fairness.

One important aspect to observe is that both schemes are not hurting other TCP
flows while systemic losses are dominant since there is still bandwidth available.

When congestive packet losses begin to emerge, the link capacity is reached, and
a new dynamic for fairness appears. After this point, the fairness will be determined by
the router queue management policy, traffic volume, parameters of each scheme (N for the
number of parallel streams and ”Low Window, High Window, and High P” for HSTCP).
After this turning point, the parallel streams begin to steal bandwidth from the other TCP
flows competing for the bandwidth. The amount stolen is proportional to the number of
parallel flows deployed and to the volume of the concurrent traffic.

When a HSTCP flow is deployed, the amount of bandwidth stolen is function of its
parameters and also to the concurrent traffic. The amount of bandwidth stolen decreases
as the competing traffic increases. The influence of router queue management is expressed
in Figure 6.19(a) and in Figure 6.19(b). These graphs show that to use the same amount
of bandwidth, requires a greater number of REGTCP flows when DT is deployed than the
number of REGTCP flows necessary when RED is used.

It should be noticed that a HSTCP flow loses more of its bandwidth share than a set
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of parallel streams, when there is a variation in the competing traffic. This is expressed in
the slope of the lines on Figure 6.28. As the competing traffic changes, so does the general
congestion event rate.

This is an important point to consider when a bulk data transfer is performed in
a congested link. The greater variation presented by HSTCP compared to parallel streams
permits it to adapt quickly to variation in traffic and congestion event rate.

As discussed previously, there are no clear disadvantages to using HSTCP when
compared to parallel streams for bulk data transfer. Even the limitation of maximum TCP
buffer size may be a common problem if a small number of parallel TCP streams are use. The
possibility of changing only the TCP stack instead of changing programs already in use is
very attractive. Fairness is a common concern for both schemes, however our opinion is that
HSTCP presents a better adaptability to an environment of a variable congestion event rate.
Parallel streams may also present better adaptability (using fractional congestion control or
some other type of adaptive control), but at a cost of their simplicity.

We present, in the following paragraphs, the experiments developed to observe the
aspects of performance and fairness of both bulk data transfer schemes.

Simulation comparison of schemes for bulk data transfer

Two experiments were developed to compare the deployment of parallel streams and
HSTCP. The first one deals with reactions to a lossy link and the second shows the behavior
when bursty traffic is present. In both experiments 10 REGTCP flows are present to measure
the impact of both bulk data transfer schemes on other long lived flows.

PARALLEL STREAMS ON LOSSY LINK CONDITION

The performance of parallel streams in an environment with systemic packet losses is
defined by the congestion event rate and the number of parallel streams, as said before, and
confirmed on Figure 6.31(a). After the bandwidth limit is reached, the link utilization stays
constant. The same behavior is observed for 1 HSTCP flow on the same graph. For loss
rates higher than 10−3, both schemes perform badly. This poor performance is the result
of a large increase in the congestion event rate, mainly due to packet retransmissions, as
depicted in Figure 6.32(a).

The impact of the use of parallel streams and HSTCP on other long-lived flows is
presented on Figure 6.30(a). This graph shows the aggregate link utilization of 10 REGTCP
flows when both schemes for bulk data transfer are deployed and also when there is no
other interference. No difference exists in performance for these 10 flows with and without
competition before the total link bandwidth is reached, both set of traffic (10 REGTCP
long-lived flows and the competing traffic from bulk data transfer) have room to grow. After
the bandwidth is fully utilized, there is no variation in the amount of bandwidth used by



94 7. Discussion of the Results

the 10 REGTCP flows.

Figure 6.33(a) shows how many times more bandwidth a set of parallel streams is
using than a single REGTCP flow (one tenth of the aggregate link utilization of all 10
REGTCP flows). It is clear that this ratio is roughly constant over a wide range of link
loss rates. This behavior only changes when there is a heavy packet loss rate, higher than
10−4. In comparison, the ratio of relative fairness, when HSTCP is used, is not constant. It
changes with the level of link loss rate, because HSTCP was designed to perform in this way.
This changing behavior reflects its adaptability to a changing link loss environment. It can
represent one single REGTCP flow when link loss rate is about 10−3 and 5 REGTCP flows
when the link loss is around 10−5. This adaptability represents an advantage over the use
of parallel streams, because it is hard to know a priori which will be the minimum systemic
loss rate and maximum bandwidth available, in order to avoid hurting too much the other
TCP flows competing for the bandwidth.

When DT router queue management is used, the difference of performance compared
to RED only happens after the bandwidth limit is reached. Also, the link utilization is kept
similar for parallel streams after bandwidth limit is reached, Figure 6.30(b).

DT permits a higher aggressiveness from HSTCP. HSTCP takes more bandwidth
from the 10 REGTCP flows, as seen in Figure 6.30(b), and consequently presents a wide
range of relative fairness, as shown in Figure 6.33(b).

PARALLEL STREAMS ON BURSTY TRAFFIC CONDITION

The performance of bulk data transfer methods is stressed when they run in a en-
vironment with bursty traffic. The performance of parallel streams tends to decrease as
the number of perturbations increase, as seen on Figure 6.35(a). This behavior is the same
presented by other flows using REGTCP when submitted to similar situations, as shown in
Figure 6.13(a).

The performance of 1 HSTCP flow is much less sensitive to this environment. Indeed,
the performance of HSTCP, when competing against 10 REGTCP flows improves as the
number of perturbations increases. This is clear on Figure 6.35(a) and Figure 6.36(a). The
first thought could be that HSTCP is stealing bandwidth from REGTCP flows, but Figure
6.37(a) shows that the amount stolen decreases with an increase in the number of bursty
flows. The only possible explanation for this behavior is that HSTCP is using the bandwidth
share left by REGTCP flows, because they were hurt by the bursty traffic. This presents
an excellent feature of HSTCP in this environment (bursty traffic and RED router queue
policy) when compared with parallel streams: HSTCP is able to use the bandwidth share
left by REGTCP flows when submitted to bursty traffic, and parallel streams are unable to
do this.

For the parallel streams method, the relative fairness is kept almost constant over
the range of a number of perturbations and is proportional to the number of parallel TCP
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streams. As said above, for the case when HSTCP is present, the relative fairness increases
as the number of perturbations increase, and the HSTCP flow is able to use more bandwidth.
These facts are shown on Figure 6.36(a). As pointed out before, it is clear that HSTCP has a
better adaptability, and uses more bandwidth, without significantly harming the other flows.

The situation changes when DT is used as router queuing management. The reduced
performance of parallel streams for a large number of perturbations is not clear, at least for
the number of perturbations used on this experiment, Figure 6.35(b). So, the performance
of parallel streams is kept almost constant as the number of perturbations increases. The
performance of HSTCP follows the same behavior. The only difference from RED, is that
HSTCP uses much more bandwidth.

The relative fairness remains unchanged for parallel streams, as it was with the
use of RED. For HSTCP, the relative fairness could spread over a wide range of values, as
seen on Figure 6.36(a). Even though a certain degree of uncertainty is present in the relative
fairness, the link utilization of HSTCP is relatively constant, Figure 6.35(b), and the amount
of bandwidth stolen from the REGTCP flows competing against the HSTCP flow, decreases
when the number of perturbations is high, as seen in Figure 6.37(b).

7.3 Other issues

This section explores some issues observed during the development of this work.
Such issues are not directly related to the main investigation, but have some impact in the
results.

7.3.1 Slow-Start problem

The standard Slow-Start algorithm provides an exponential increase in the size of
the congestion window, by doubling its size each time an ACK packet is received. The reason
for the fast growth is to quickly probe the network capacity, and begin quickly to transmit
near to the link capacity. However, doubling the congestion window each RTT, on a high
capacity link, can easily result in thousands of packets being dropped in one round-trip time.
This drop of a large number of packets can result in unnecessary retransmit timeouts for
the TCP connection. The TCP connection could end up in a Congestion Avoidance phase
with a very small congestion window, and could take a large number of round-trip times to
recover its old congestion window [17]. Therefore, the traditional Slow-Start algorithm has
a poor performance for high congestion windows.

This problem could seriously compromise the performance results of this present
work. This behavior happens with HSTCP and REGTCP since both use the same Slow-
Start algorithm. Sometimes this affects the performance of the flows also in the steady-state,
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preventing flows to utilize more bandwidth.

This problem was identified during the experiments described in this work and the
Draft ”Limited Slow-Start for TCP with Large Congestion Windows” [17] was proposed as
a solution. Limited Slow-Start was used in this study.

The parameter MAX SSTHRESH was introduced, and the Slow-Start was modified
for large values of the congestion window, as mentioned in Section 2.3

It is necessary to tune the MAX SSTHRESH parameter to have reasonable perfor-
mance in Slow-Start and to avoid having flows stalled in the beginning of their transmission.
The proposed MAX SSTHRESH of 100 packets [17] was used in the present study.

The effect of massive packet loss can be seen in Figure 6.39. This graph shows the
effect of the losses on the sequence numbers of a HSTCP flow when using different parameters
and algorithms for Slow-Start.

Table 6.1 and Figure 6.38 give a comparison among various Slow-Start Conditions.
The MAX SSTHRESH = 0 represents the standard algorithm. It is clear that even though a
flow with standard algorithm reaches the congestion avoidance phase faster then the others,
it will have a large packet loss.

7.3.2 Neighborhood of bandwidth limit

Figure 3.1 shows the theoretical response function of HSTCP, when it is submit-
ted to different congestion event rates. It also shows the link capacity used in this work.
The intersection between these two lines defines the maximum theoretical performance of 1
HSTCP flow in this study.

In this work it was possible to see that 1 HSTCP flow may be close to this point.
From data collected in the experiment of Figure 6.1(a), it was possible to say that a flow had
1 congestion event for about every 638,000 packets sent, in approximately 7.73 seconds. It
resulted in a congestion event rate of 1.56*10−6 and a transmission rate of 8,244 Pkts/RTT,
close to the bandwidth limit of 8,333 Pkts/RTT, or 98.9% of the link bandwidth.

7.3.3 Problem in the implementation of TCP SACK for Large
Congestion Windows

HighSpeed TCP is designed to run in a very large window regime. This condition
is intended to be reached in future networks. For this reason, implementations of the TCP
algorithm have hardly been tested in this condition, and no experience has been developed.
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During the development of this work, a permanent performance loss was observed
during the deployment of HSTCP flows, particularly when a packet loss happened with a
large congestion window. The symptom was a double cut in the congestion window, as seen
in Figure 7.2.
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Figure 7.2: Evolution of Congestion Window - Buggy HSTCP - DT

After a long investigation, it was noticed that the implementation of TCP SACK
in the NS-2 simulator, before version ns2-1b9a (tcp.cc 1.52, tcp-sink.cc 1.46, scoreboard.cc
1.14), did not correctly report SACK blocks for windows greater than 1000 packets.

Even though this bug was fixed, a scalable solution has not been implemented. The
implementation works according to the respective RFC, but, for high speed TCP connections
where CWND is higher than 10,000 packets, the simulation slowed down dramatically.

This problem points out the increasing difficult of having a working TCP imple-
mentation for high speed networks. The algorithm used in a previous implementation may
not fit well in a high performance scenario. The second aspect highlighted is that certain
implementation problems are only noticeable in specific scenarios, and the complexity of
implementing multiple algorithms for a single TCP is a challenge of design and testing.





Chapter 8

Conclusion and Future Work

The pressure for more network bandwidth has produced technologies that have in-
creased the bandwidth capacity available several times. New technologies, such as optical
links have opened the opportunity to transfer several terabytes in a relatively small time.
However, standard TCP has a difficult time reaching full utilization of optical links, par-
ticularly in wide-area connections. So, many network applications are unable to take full
advantage of these new high-speed networks, and utilize the available bandwidth.

The purpose of this work was to study the deployment of the recent proposal of
HighSpeed TCP in high speed long distance links. We worked around four main points as
follows:

• the behavior of HighSpeed TCP in situations where Standard TCP has weak perfor-
mance

• the possibility of using HighSpeed TCP together with Standard TCP and maintaining
fairness

• the effect of the router queuing policy on the performance of HighSpeed TCP and on
the fairness between HighSpeed TCP and Standard TCP

• the possibility of using HighSpeed TCP as a substitute for the other existing solutions
for bulk data transfer

As result of this work, we found that HighSpeed TCP indeed performs better than
Standard TCP for high-speed long-distance links. HighSpeed TCP increases its throughput
faster and its recovery from a congestion event takes less time. This characteristic increases
its average link utilization.

We also showed that the bandwidth share used by the HighSpeed TCP flows was
higher than that used by Standard TCP flows, when both types of flows competed for the
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same link. However, it was noticeable that the proportion of the bandwidth used by the
HighSpeed TCP flows decreased as the total number of congestion events increased.

The change of the queue management scheme did not significantly affect the link
utilization of HighSpeed TCP flows in most cases. The general pattern of the relative
fairness found, when RED was used, was also followed when DT router queue management
was deployed. The difference was the higher amount of bandwidth that HighSpeed TCP
flows took from Standard TCP flows, when DT was used.

We saw that HighSpeed TCP only requires changes in the TCP stack in the sender
to be used. This represents an advantage over other types of bulk data transfer such as
parallel streams, when it is necessary to change the programs and know a priori the number
of parallel flows to use. Fairness is a concern for the deployment of HighSpeed TCP, however
our opinion is that HighSpeed TCP presents better adaptability to an environment of variable
congestion event rates.

Some steps should follow this work. The most important now is to observe the
behavior of HighSpeed TCP in a real network with high-speed and long-delay links. Some
tests had already begun [9].

We foresee that a study of the parameters of HighSpeed TCP would be necessary
to explore different combinations of parameters settings. A change in the parameters will
change the response function for different levels of congestion event rate. The aggressiveness
and relative fairness compared to Standard TCP will be affected. Other transfer functions,
beyond the linear one, could also be tested.

The behavior in transients is another area to be investigated. The reaction of High-
Speed TCP to a sudden change in the bandwidth available is important to see its recovery
and stabilization time. Part of this examination was done, but there is room for further
investigation.

One question to be explored is whether modifying TCP congestion algorithms, like
HighSpeed TCP, to increase the transmission throughput is better than simply modifying
the standard frame size for the Ethernet. Nowadays the Ethernet frame size is frozen at
1500 bytes. This size represents the majority of packet sizes present in today’s Internet. The
present Ethernet frame size restricts throughput in high-speed long-delay links.

The final point to think is about a review in the concept of fairness as used nowa-
days for ”TCP-friendliness”. How is possible to ask that new TCP implementation be
completely fair to classical TCP versions if it is know that these versions perform poorly in
high bandwidth delay product links? In this case, keep fairness also means to maintain a
poor performance. Clearly, this is not acceptable.

The real benefits of increasing availability of long distance gigabit links will not be
completely realized for high bandwidth demanding applications, such as bulk-data transfer,
multimedia web streaming and computational grids for high-performance computing, if the
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main transport protocol does not succeed in using the available link capacity.
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Appendix A

Simulation Scripts

A.1 behavior.tcl

1 #########################################

2 # General HSTCP Behavior - behavior.tcl #

3 # Evandro de Souza - Apr/2002 #

4 # LBNL/Unicamp/Embrapa #

5 #########################################

6

7 #

8 # Detailed tracing of HSTCP behavior under different conditions

9 #

10

11 #----- Input Parameters -----#

12 # Bottleneck link bandwidth (in MBits/s)

13 set bandwidth [lindex $argv 0]

14 # Bottleneck link delay (in miliseconds)

15 set delay [lindex $argv 1]

16 # Queue Type (0 = RED; 1 = DROPTAIL)

17 set queue [lindex $argv 2]

18 # Simulation time (in seconds)

19 set endtime [lindex $argv 3]

20 # Number of hstcp flows

21 set hstcpflows [lindex $argv 4]

22 # Number of regular tcp flows

23 set regtcpflows [lindex $argv 5]

24 # Number of web sessions

25 set web_sessions [lindex $argv 6]

26 # HSTCP low_window (in packets)

27 set low_window [lindex $argv 7]

28 # HSTCP high_window (in packets)

29 set high_window [lindex $argv 8]

30 # HSTCP high packet loss

31 set high_p [lindex $argv 9]

32 # HSTCP high decrease

33 set high_decrease [lindex $argv 10]

34 # Simulation with HSTCP ($hstcp == 1) or without HSTCP ($hstcp == 0)

35 set hstcp [lindex $argv 11]

36 # Queue Monitor (qflag == 1) --> present; (qflag == 0) --> absent

37 set qflag [lindex $argv 12]

38 # Error Model Loss Rate

39 set em_rate [lindex $argv 13]
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40 # Number of Perturbation Flows

41 set nrpertflows [lindex $argv 14]

42 # Number of UDP Pareto Flows - Traffic Generation

43 set nrudpflows [lindex $argv 15]

44 # Time of ON and time OFF for UDP Pareto flows in miliseconds

45 set onofftime [lindex $argv 16]

46 # Switch to disable noise traffic

47 set noisetraf [lindex $argv 17]

48

49

50 #

51 #----- Variables for final aggregate report -----#

52 #

53 # Total link utilization in the 1st half simulation time

54 set tlu_1 0

55 # Total link utilization in the whole simulation time

56 set tlu_t 0

57 # Aggregate hstcp link utilization in the 1st half of simulation time

58 set agghs_1 0

59 # Aggregate hstcp link utilization in the whole simulation time

60 set agghs_t 0

61 # Aggregate regtcp link utilization in the 1st half of simulation time

62 set aggreg_1 0

63 # Aggregate regtcp link utilization in the whole simulation time

64 set aggreg_t 0

65 # Aggregate perttcp link utilization in the 1st half of simulation time

66 set aggpert_1 0

67 # Aggregate perttcp link utilization in the whole simulation time

68 set aggpert_t 0

69

70 # Average hstcp link utilization in the 1st half of simulation time

71 set avghs_1 0

72 # Average hstcp link utilization in the whole simulation time

73 set avghs_t 0

74 # Average regtcp link utilization in the 1st half of simulation time

75 set avgreg_1 0

76 # Average regtcp link utilization in the whole simulation time

77 set avgreg_t 0

78 # Drops in the 1st half of simulation time

79 set drops_1 0

80 # Marks in the 1st half of simulation time

81 set marks_1 0

82 # Drops in the whole simulation time

83 set drops_t 0

84 # Marks in the whole simulation time

85 set marks_t 0

86 # Packets sent in the 1st half of simulation time

87 set packets_1 0

88 # Packets sent in the whole of simulation time

89 set packets_t 0

90

91 # Aggregated HSTCP dropped packets in the 1st half of simulation

92 set agghsdp_1 0

93 # Aggregated HSTCP dropped packets in the whole simulation

94 set agghsdp_t 0

95 # Aggregated HSTCP marked packets in the 1st half of simulation

96 set agghsmk_1 0

97 # Aggregated HSTCP marked packets in the whole simulation

98 set agghsmk_t 0

99 # Aggregated REGTCP dropped packets in the 1st half of simulation

100 set aggregdp_1 0

101 # Aggregated REGTCP dropped packets in the whole simulation

102 set aggregdp_t 0

103 # Aggregated REGTCP marked packets in the 1st half of simulation

104 set aggregmk_1 0
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105 # Aggregated REGTCP marked packets in the whole simulation

106 set aggregmk_t 0

107

108 #

109 #----- Constant Parameters -----#

110 #

111 # maximum number of nodes on each side of bottleneck link

112 set max_nrnodes 25

113 # number of small tcp flows

114 set smalltcpflows 10

115 # TCP packet size less header (1460, 8960, 536)

116 set pktsize 1460

117

118

119 #----- Set Packet Format -----#

120 remove-all-packet-headers ; # removes all except common

121 add-packet-header Flags IP TCP ; # hdrs reqd for TCP

122

123

124 #----- Load auxiliary files and procedures-----#

125 source utils.tcl

126 source web.tcl

127

128

129 #----- Print information at console about class of the traffic -----#

130 proc printlegend {} {

131 global bandwidth delay queue endtime hstcpflows regtcpflows web_sessions low_window

132 high_window high_p high_decrease hstcp qflag frep em_rate nrpertflows

133

134 # write to file

135 puts $frep "behavior.tcl $bandwidth $delay $queue $endtime $hstcpflows $regtcpflows

136 $web_sessions $low_window $high_window $high_p $high_decrease $hstcp $qflag $em_rate

137 $nrpertflows"

138 puts $frep " "

139 puts $frep "forward HSTCP traffic: flows 0 to [expr $hstcpflows - 1]"

140 puts $frep "forward Regular TCP traffic: flows 50 to [expr 50 + $regtcpflows - 1]"

141 puts $frep "forward WEB traffic: class 100"

142 puts $frep "backward WEB traffic: class 120"

143 puts $frep "forward small TCP traffic: class 140"

144 puts $frep "backward small TCP traffic: class 160"

145 puts $frep "forward perturbation TCP traffic: class 300"

146

147 # print to console

148 puts "behavior.tcl $bandwidth $delay $queue $endtime $hstcpflows $regtcpflows

149 $web_sessions $low_window $high_window $high_p $high_decrease $hstcp $qflag

150 $em_rate $nrpertflows"

151 puts " "

152 puts "forward HSTCP traffic: flows 0 to [expr $hstcpflows - 1]"

153 puts "forward Regular TCP traffic: flows 50 to [expr 50 + $regtcpflows - 1]"

154 puts "forward WEB traffic: class 100"

155 puts "backward WEB traffic: class 120"

156 puts "forward small TCP traffic: class 140"

157 puts "backward small TCP traffic: class 160"

158 puts "forward perturbation TCP traffic: class 300"

159

160 }

161

162

163 #----- Set simulation handle -----#

164 set ns [new Simulator]

165

166 # set tf [open simul.tr w]

167 # $ns trace-all $tf

168

169 # set namtf [open simul.nam w]
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170 # $ns namtrace-all $namtf

171

172

173 #----- Set bottleneck link nodes -----#

174 set n1 [$ns node]

175 set n2 [$ns node]

176

177

178 #----- Initialize special parameters for RED queue (manual item 7.3) -----#

179 #

180 # increase the pkt drop rate slowly from max_p to 1 as the avg queue size ranges from

181 # maxthresh to twice maxthresh (../tcl/test/test-suite-red.tcl)

182 Queue/RED set gentle_ true

183 # ? set on adaptative RED ?

184 Queue/RED set adaptive_ 1

185 # minimum for max_p (../queue/red.cc) (change Sally suggestion in Oct/16/2002)

186 #Queue/RED set bottom_ 0.001

187 Queue/RED set bottom_ 0.0001

188 # mininum threshold for the average queue size in packets

189 Queue/RED set thresh_ 0

190 # maximum threshold for the average queue size in packets

191 Queue/RED set maxthresh_ 0

192 # used in exponential-weigthed moving avg for calculating the avg queue size

193 Queue/RED set q_weight_ 0

194 # if true use DT rather than random drop when queue overflows the avg queue size

195 Queue/RED set drop_tail_ 0

196 # if true, mark pkts by setting the congestion indication bit in pkt header

197 Queue/RED set setbit_ 1

198 # percentage of packet time constant - max umber of (avg sized) pkets per seconod which

199 # can can be placed on the link

200 Queue/RED set targetdelay_ 0.005

201

202

203 #----- Set parameters for TCP conections (manual item 30.1.4)-----#

204 # TCP react to ecn bit 1=yes

205 Agent/TCP set ecn_ 1

206 # maximum bound on window size (large enough to not impose limits)

207 Agent/TCP set window_ 100000

208 # packet size used by sender

209 #Agent/TCP set packetSize_ 1460

210 Agent/TCP set packetSize_ $pktsize

211 # !=0 adds random time between sends

212 Agent/TCP set overhead_ 0.000008

213 # Change sshthresh in avoid loss packets in the slow-start

214 Agent/TCP set max_ssthresh_ 100

215

216

217 #----- Set bottleneck link -----#

218 if {$queue == 0} {

219 $ns duplex-link $n1 $n2 [expr $bandwidth]Mb [expr $delay]ms RED

220 } else {

221 $ns duplex-link $n1 $n2 [expr $bandwidth]Mb [expr $delay]ms DropTail

222 }

223 # queue-limit in packages

224 $ns queue-limit $n1 $n2 [expr floor((2 * $delay * 0.001 * $bandwidth * 1000000 )/

225 (8 * 1500)) ]

226 $ns queue-limit $n2 $n1 [expr floor((2 * $delay * 0.001 * $bandwidth * 1000000 )/

227 (8 * 1500)) ]

228

229 # puts "Queue Size: [expr floor((2 * $delay * 0.001 * $bandwidth * 1000000 )/(8 * 1500)) ]"

230

231

232 #----- Set Error Model (manual 13.4) -----#

233 # Only do the error model if error rate greater than zero

234 if {$em_rate > 0} {
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235 set em [new ErrorModel]

236 # set unit of drops

237 $em unit pkt

238 # set the error rate

239 $em set rate_ $em_rate

240 # set the random variable

241 $em ranvar [new RandomVariable/Uniform]

242 # set target for dropped packets

243 $em drop-target [new Agent/Null]

244 # set the link to apply this model

245 $ns lossmodel $em $n1 $n2

246 }

247

248

249 #----- Set Queue MONitor and attach to bottleneck link nodes -----#

250 #----- Set Flow MONitor and attach to the bottleneck link -----#

251 # qmon = queue monitor handler

252 # fmon = flow monitor handler

253 if {$qflag == 1} {

254 set qmon [$ns monitor-queue $n1 $n2 ""]

255 print-qstats 0.0 $endtime queue

256 }

257 set fmon [$ns makeflowmon Fid]

258 $ns attach-fmon [$ns link $n1 $n2] $fmon

259

260

261 #----- Set Randon Number Generator (manual item 21.1) -----#

262 # seeds the RNG heuristically

263 set rng [new RNG]

264 #$rng seed 0

265

266

267 #----- Create network topology (nodes and links) each link with different delay-----#

268 # node_(s$i) = source nodes

269 # node_(k$i) = sink nodes

270 for {set i 0} {$i < $max_nrnodes} {incr i} {

271 set node_(s$i) [$ns node]

272 set node_(k$i) [$ns node]

273

274 $ns duplex-link $node_(s$i) $n1 100000Mb [expr $i + 1.0]ms DropTail

275 $ns duplex-link $node_(k$i) $n2 100000Mb [expr 3*$i + 1.0]ms DropTail

276

277 }

278

279

280 #----- Create HSTCP on the forward path -----#

281 #----- flow class = 0 - 24

282 # hstcp = with (=1) or without (=0) hstcp

283 # hstcp$i = hstcp tcp connections

284 # windowOption_ 8 = select HSTCP congestion control

285 for {set i 0} {$i < $hstcpflows} {incr i} {

286 # select if it will high speed high-speed tcp connection ????

287 if {$hstcp==1} {

288 # set createType create-highspeed-connection

289 set createType create-connection

290 } else {

291 set createType create-connection

292 }

293 set hstcp$i [$ns $createType TCP/Sack1 $n1 TCPSink/Sack1 $n2 $i]

294

295 # set tcp congestion control option to be HSTCP

296 if {$hstcp==1} {

297 [set hstcp$i] set windowOption_ 8

298 }

299



114 A. Simulation Scripts

300 # set HSTCP parameters

301 if {$hstcp==1} {

302 [set hstcp$i] set low_window_ $low_window

303 [set hstcp$i] set high_window_ $high_window

304 [set hstcp$i] set high_p_ $high_p

305 [set hstcp$i] set high_decrease_ $high_decrease

306 }

307

308 # create ftp traffic in this tcp connection

309 set hsftp$i [[set hstcp$i] attach-app FTP]

310

311 # set a random start time for each tcp traffic

312 set sec [expr int([$rng uniform 0.1 [expr $endtime/20]])]

313 set frac [expr int([$rng uniform 0 25])]

314 set starttime $sec.$frac

315 $ns at $starttime "[set hsftp$i] start"

316 $ns at $endtime "[set hsftp$i] stop"

317

318 # initialize print statistics (util.tcl)

319 print-tcpstats [set hstcp$i] $starttime $endtime hstcp$i

320

321 # print this connection start time

322 puts "hstcp$i, type: $hstcp starttime: $starttime"

323

324 }

325

326

327 #----- Initiate a periodic report to see simulation evolution -----#

328 # parm 1 - flow tcp identification

329 # parm 2 - interval between two reports

330 # parm 3 - label to put in this report

331 if {$hstcpflows > 0} {

332 timeackReport $hstcp0 1 hstcp0

333 }

334

335

336 #----- Create regular TCP on forward path with random start time -----#

337 #----- flow class = 50 - 74

338 for {set i 0} {$i < $regtcpflows} {incr i} {

339 set regtcp$i [$ns create-connection TCP/Sack1 $n1 TCPSink/Sack1 $n2 [expr 50 + $i]]

340 set regftp$i [[set regtcp$i] attach-app FTP]

341 set sec [expr int([$rng uniform 0.1 [expr $endtime/20]])]

342 set frac [expr int([$rng uniform 0 25])]

343 set starttime $sec.$frac

344

345 $ns at $starttime "[set regftp$i] start"

346 $ns at $endtime "[set regftp$i] stop"

347

348 # complete simulation #

349 print-tcpstats [set regtcp$i] $starttime $endtime regtcp$i

350

351 puts "regtcp$i, starttime: $starttime"

352 }

353

354 #----- Select the presence of noise traffic -----#

355 if {$noisetraf == 1 } {

356

357

358 #----- Create forward WEB traffic on the bottleneck link (web.tcl) -----#

359 #----- flow class = 100

360 # param 1 = bootleneck link delay

361 # param 2 = total number of sessions in the web pool

362 # param 3 = average inter-arrival pages

363 # param 4 = page size

364 # param 5 = average object size
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365 # param 6 = flow identification

366 # param 7 = forward = 0; backward = 1

367 set count 1

368 add_web_traffic $delay $web_sessions 4 10 10 100 0

369

370

371 #----- Create backward WEB traffic on the bottleneck link (web.tcl) -----#

372 #----- flow class = 120

373 # param 1 = bootleneck link delay

374 # param 2 = total number of sessions in the web pool

375 # param 3 = average inter-arrival pages

376 # param 4 = page size

377 # param 5 = average object size

378 # param 6 = flow identification

379 # param 7 = forward = 0; backward = 1

380 set count 1

381 add_web_traffic $delay $web_sessions 4 10 10 120 1

382

383

384 #----- Create Small TCP flows on forward path -----#

385 # window_ = 8

386 #----- flow class = 140

387 for {set i 0} {$i < $smalltcpflows} {incr i} {

388 set srcnode [expr int([$rng uniform 0 [expr $max_nrnodes - 0.01] ])]

389 set dstnode [expr int([$rng uniform 0 [expr $max_nrnodes - 0.01] ])]

390 set tcp [$ns create-connection TCP/Sack1 $node_(s$srcnode) TCPSink/Sack1

391 $node_(k$dstnode) 140]

392 $tcp set window_ 8

393 set ftp [$tcp attach-app FTP]

394 set starttime [$rng uniform 0 [expr $endtime/3]]

395 set stoptime [$rng uniform [expr ($endtime*2)/3] $endtime]

396 $ns at $starttime "$ftp start"

397 $ns at $stoptime "$ftp stop"

398 # puts "small tcp in fwd direction from $starttime to $stoptime"

399 }

400

401

402 #----- Create Small TCP flows on reverse path -----#

403 # window_ = 8

404 #----- flow class = 160

405 for {set i 0} {$i < $smalltcpflows} {incr i} {

406 set srcnode [expr int([$rng uniform 0 [expr $max_nrnodes - 0.01] ])]

407 set dstnode [expr int([$rng uniform 0 [expr $max_nrnodes - 0.01] ])]

408 set tcp [$ns create-connection TCP/Sack1 $node_(k$srcnode) TCPSink/Sack1

409 $node_(s$dstnode) 160]

410 $tcp set window_ 8

411 set ftp [$tcp attach-app FTP]

412 set starttime [$rng uniform 0 [expr $endtime/3]]

413 set stoptime [$rng uniform [expr ($endtime*2)/3] $endtime]

414 $ns at $starttime "$ftp start"

415 $ns at $stoptime "$ftp stop"

416 # puts "small tcp in rev direction from $starttime to $stoptime"

417 }

418

419 }

420 #-- end of noise traffic --#

421

422

423 #----- Create Small Perturbations that transmit only in their slow-start -----#

424 #----- They are attached at the bottleneck nodes

425 #

426

427 # perturbation time window in seconds

428 set pertwin 1.6

429
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430 ## using a random distribution for initiate each perturbation

431 for {set i 0} {$i < $nrpertflows} {incr i} {

432 set psrc_($i) [$ns create-connection TCP/Sack1 $n1 TCPSink/Sack1 $n2 [expr 300 + $i] ]

433 $psrc_($i) set max_ssthresh_ 0

434 set pertftp_($i) [$psrc_($i) attach-app FTP]

435

436 set sec [expr int([$rng uniform 0.0 [expr $endtime]])]

437 set frac [expr int([$rng uniform 0 25])]

438 set starttime $sec.$frac

439

440 $ns at $starttime "$pertftp_($i) start"

441 $ns at [expr $starttime + $pertwin] "$pertftp_($i) stop"

442 $ns at [expr $starttime + $pertwin] "$psrc_($i) reset"

443 $ns at $starttime "puts perturbation"

444 #print-tcpstats "$psrc_($i)" $starttime [expr $starttime + $pertwin] perttcp$i

445 }

446

447

448 #----- Create Perturbations with UDP flows -----#

449 # Create small perturbations as UDP flows using a Pareto

450 # distribution to have a long range dependence

451 # see manual item 33.3 TrafficGenerator

452 #

453 # number of pareto flows

454

455 for {set i 0} {$i < $nrudpflows} {incr i} {

456

457 set psrc_($i) [new Agent/UDP]

458 $psrc_($i) set fid_ 220

459

460 $ns attach-agent $n1 $psrc_($i)

461

462 set prto_($i) [new Application/Traffic/Pareto]

463 $prto_($i) set packetSize_ 1460

464 $prto_($i) set burst_time_ [expr $onofftime]ms

465 $prto_($i) set idle_time_ [expr $onofftime]ms

466 $prto_($i) set rate_ 30000k

467 $prto_($i) set shape_ 1.5

468

469 $prto_($i) attach-agent $psrc_($i)

470

471 set psink_($i) [new Agent/Null]

472 $ns attach-agent $n2 $psink_($i)

473

474 $ns connect $psrc_($i) $psink_($i)

475

476 set sec [expr int([$rng uniform 0 [expr $endtime/40]])]

477 set frac [expr int([$rng uniform 0 25])]

478 set starttime $sec.$frac

479

480 $ns at $starttime "$prto_($i) start"

481

482 }

483

484

485 ##----- Intermediate Link Utilization -----#

486 # intermediate time interval

487 set aggint 10

488

489 if {$hstcpflows != 0} {

490 set TOTKBytesPrev_0 0

491 set TOTpdropsPrev_0 0

492 set TOTpmarksPrev_0 0

493 set TOTparrivalsPrev_0 0

494 set fintagg_0 [open aggstats-0.txt w]
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495 $ns at 0 "print-intaggrlinkutilz 0 $hstcpflows $fmon $aggint"

496 }

497

498 if {$regtcpflows != 0} {

499 set TOTKBytesPrev_50 0

500 set TOTpdropsPrev_50 0

501 set TOTpmarksPrev_50 0

502 set TOTparrivalsPrev_50 0

503 set fintagg_50 [open aggstats-50.txt w]

504 $ns at 0 "print-intaggrlinkutilz 50 $regtcpflows $fmon $aggint"

505 }

506

507 if {$nrudpflows != 0} {

508 set TOTKBytesPrev_220 0

509 set TOTpdropsPrev_220 0

510 set TOTpmarksPrev_220 0

511 set TOTparrivalsPrev_220 0

512 set fintagg_220 [open aggstats-220.txt w]

513 $ns at 0 "print-intaggrlinkutilz 220 $nrudpflows $fmon $aggint"

514 }

515

516

517 if {$nrpertflows != 0} {

518 set TOTKBytesPrev_300 0

519 set TOTpdropsPrev_300 0

520 set TOTpmarksPrev_300 0

521 set TOTparrivalsPrev_300 0

522 set fintagg_300 [open aggstats-300.txt w]

523 $ns at 0 "print-intaggrlinkutilz 300 $nrpertflows $fmon $aggint"

524 }

525

526 # total traffic

527 set TOTKBytesPrev_999 0

528 set TOTpdropsPrev_999 0

529 set TOTpmarksPrev_999 0

530 set TOTparrivalsPrev_999 0

531 set fintagg_999 [open aggstats-999.txt w]

532 $ns at 0 "print-intaggrlinkutilz 999 0 $fmon $aggint"

533

534

535 ##----- Print statistics -----#

536 set frep [open report.txt w]

537

538 #----- HALF simulation -----#

539 set halftime [expr $endtime / 2]

540

541

542 #----- capture individual flow statistics -----#

543 set ffs [open fldata.txt w]

544 $ns at $halftime "print-flowstat $fmon"

545 $ns at $endtime "print-flowstat $fmon"

546

547

548 # print legend

549 $ns at $halftime "printlegend"

550 # print aggregated flow statistics

551 $ns at $halftime "print-aggr $fmon $halftime"

552

553 # print packet drops and link utilization of hstcp

554 for {set i 0} {$i < $hstcpflows} {incr i} {

555 $ns at $halftime "print-drops $i $fmon"

556 $ns at $halftime "print-futilz $i $fmon $halftime"

557 }

558

559 # print packet drops and link utilization of tcpflows
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560 for {set i 50} {$i < [expr 50 + $regtcpflows]} {incr i} {

561 $ns at $halftime "print-drops $i $fmon"

562 $ns at $halftime "print-futilz $i $fmon $halftime"

563 }

564

565 # print packet drops and link utilization of web traffic on forward path

566 $ns at $halftime "print-drops 100 $fmon"

567 $ns at $halftime "print-futilz 100 $fmon $halftime"

568

569 # print packet drops and link utilization of web traffic on backward path

570 $ns at $halftime "print-drops 120 $fmon"

571 $ns at $halftime "print-futilz 120 $fmon $halftime"

572

573 # print packet drops and link utilization of small tcp on forward path

574 $ns at $halftime "print-drops 140 $fmon"

575 $ns at $halftime "print-futilz 140 $fmon $halftime"

576

577 # print packet drops and link utilization of small tcp on backward path

578 $ns at $halftime "print-drops 160 $fmon"

579 $ns at $halftime "print-futilz 160 $fmon $halftime"

580

581 # print packet drops and link utilization of perturbation

582 $ns at $halftime "print-drops 220 $fmon"

583 $ns at $halftime "print-futilz 220 $fmon $halftime"

584

585 # print packet drops and link utilization of tcpflows

586 for {set i 300} {$i < [expr 300 + $nrpertflows]} {incr i} {

587 $ns at $halftime "print-drops $i $fmon"

588 $ns at $halftime "print-futilz $i $fmon $halftime"

589 }

590

591

592 #----- Set the end of simulation -----#

593 $ns at $halftime "print-gloss"

594

595 # print aggregated link utilization and packet lossrate for hstcp

596 $ns at $halftime "print-aggrlinkutilz 0 $hstcpflows $fmon $halftime"

597

598 # print aggregated link utilization and packet lossrate for regtcp

599 $ns at $halftime "print-aggrlinkutilz 50 $regtcpflows $fmon $halftime"

600

601 # print aggregated link utilization and packet lossrate for perturbation

602 $ns at $halftime "print-aggrlinkutilz 220 $nrudpflows $fmon $halftime"

603

604 # print aggregated link utilization and packet lossrate for perturbation

605 $ns at $halftime "print-aggrlinkutilz 300 $nrpertflows $fmon $halftime"

606

607 # get aggregated hstcp drops and marks packets

608 $ns at $halftime "print-aggrdpmk 0 $hstcpflows $fmon $halftime"

609

610 # get aggregated regtcp drops and marks packets

611 $ns at $halftime "print-aggrdpmk 50 $regtcpflows $fmon $halftime"

612

613

614

615 #----- END simulation -----#

616 # print legend

617 #$ns at $endtime "printlegend"

618 # print aggregated flow statistics

619 $ns at $endtime "print-aggr $fmon $endtime"

620

621 # print packet drops and link utilization of hstcp

622 for {set i 0} {$i < $hstcpflows} {incr i} {

623 $ns at $endtime "print-drops $i $fmon"

624 $ns at $endtime "print-futilz $i $fmon $endtime"
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625 }

626

627 # print packet drops and link utilization of tcpflows

628 for {set i 50} {$i < [expr 50 + $regtcpflows]} {incr i} {

629 $ns at $endtime "print-drops $i $fmon"

630 $ns at $endtime "print-futilz $i $fmon $endtime"

631 }

632

633 # print packet drops and link utilization of web traffic on forward path

634 $ns at $endtime "print-drops 100 $fmon"

635 $ns at $endtime "print-futilz 100 $fmon $endtime"

636

637 # print packet drops and link utilization of web traffic on backward path

638 $ns at $endtime "print-drops 120 $fmon"

639 $ns at $endtime "print-futilz 120 $fmon $endtime"

640

641 # print packet drops and link utilization of small tcp on forward path

642 $ns at $endtime "print-drops 140 $fmon"

643 $ns at $endtime "print-futilz 140 $fmon $endtime"

644

645 # print packet drops and link utilization of small tcp on backward path

646 $ns at $endtime "print-drops 160 $fmon"

647 $ns at $endtime "print-futilz 160 $fmon $endtime"

648

649 # print packet drops and link utilization of perturbation

650 $ns at $endtime "print-drops 220 $fmon"

651 $ns at $endtime "print-futilz 220 $fmon $endtime"

652

653 # print packet drops and link utilization of tcpflows

654 for {set i 300} {$i < [expr 300 + $regtcpflows]} {incr i} {

655 $ns at $endtime "print-drops $i $fmon"

656 $ns at $endtime "print-futilz $i $fmon $endtime"

657 }

658

659

660 #----- Set the end of simulation -----#

661 $ns at [expr $endtime + 1.0] "print-gloss"

662 $ns at [expr $endtime + 1.0] "gnlreport gnlrpt.txt"

663 $ns at [expr $endtime + 2.0] "finish"

664

665 # print aggregated link utilization and packet lossrate for hstcp

666 $ns at $endtime "print-aggrlinkutilz 0 $hstcpflows $fmon $endtime"

667

668 # print aggregated link utilization and packet lossrate for regtcp

669 $ns at $endtime "print-aggrlinkutilz 50 $regtcpflows $fmon $endtime"

670

671 # print aggregated link utilization and packet lossrate for perturbation

672 $ns at $endtime "print-aggrlinkutilz 220 $nrudpflows $fmon $endtime"

673

674 # print aggregated link utilization and packet lossrate for perturbation

675 $ns at $endtime "print-aggrlinkutilz 300 $nrpertflows $fmon $endtime"

676

677 # get aggregated hstcp drops and marks packets

678 $ns at $endtime "print-aggrdpmk 0 $hstcpflows $fmon $endtime"

679

680 # get aggregated regtcp drops and marks packets

681 $ns at $endtime "print-aggrdpmk 50 $regtcpflows $fmon $endtime"

682

683 #----- Create trace files (manual 22, ~/tcl/lib/ns-lib.tcl)-----#

684 # set tf [open qtrace.out w]

685 # $ns at 0 "$ns trace-queue $n1 $n2 $tf"

686 # $ns at 0 "$ns trace-queue $n2 $n1 $tf"

687

688

689 #----- Start the simulation -----#
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690 puts "Starting Simulation..."

691 $ns run

692

A.2 web.tcl

1 ###################################

2 # WEB Traffic Generator - web.tcl #

3 # Evandro de Souza - Apr/2002 #

4 # LBNL/Unicamp/Embrapa #

5 ###################################

6

7

8 # Add web nodes (architecture and links)

9 # bdel = general delay

10 # randomize = choose if link day for web nodes will be fixed or random

11 # dir = 0 - server with N1; 1 - server with N2

12 # n1 - node 1 of the bottleneck link

13 # n2 - node 2 of the bottleneck link

14 # sf_ sb_ - server web nodes declared as global variable (forward / backward)

15 # rf_ rb_ - client web nodes declared as global variable (forward / backward)

16 # count - "static" variable to control how many web nodes were included

17 proc add_web_nodes {bdel randomize dir} {

18 global ns n1 n2

19 global sf_ rf_

20 global sb_ rb_

21 global count

22

23 # choose web link delay

24 if {$randomize == 0} {

25 set x [expr $bdel/2]ms

26 set y [expr $bdel/2]ms

27 } else {

28 set x [ns-random]

29 set y [ns-random]

30 set x [expr $bdel*($x/2147483647.0)]ms

31 set y [expr $bdel*($y/2147483647.0)]ms

32 }

33

34 # set web nodes

35 set i $count

36

37 # forward web traffic

38 if {$dir == 0} {

39 set sf_($i) [$ns node]

40 set rf_($i) [$ns node]

41 $ns duplex-link $sf_($i) $n1 10000Mb $x DropTail

42 $ns duplex-link $rf_($i) $n2 10000Mb $y DropTail

43 # backward web traffic

44 } else {

45 set sb_($i) [$ns node]

46 set rb_($i) [$ns node]

47 $ns duplex-link $sb_($i) $n2 10000Mb $x DropTail

48 $ns duplex-link $rb_($i) $n1 10000Mb $y DropTail

49 }

50 incr count

51 }

52

53

54 # Add web traffic and set it behavior (manual item 34.4.5)
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55 # bdel = general delay

56 # nums = total number of sessions in the web pool

57 # ip = average inter-arrival pages

58 # ps = page size

59 # os = average object size

60 # flowid = flow identification for all web flows in the monitor

61 # dir = servers position (0 = linked in n1) and (1 = linked in n2)

62 # n1 - node 1 of the bottleneck link

63 # n2 - node 2 of the bottleneck link

64 # count - "static" variable to control how many web nodes were included

65 # pool - handler to PagePool class

66 # numWeb - number of clients/servers web and web sessions

67 # i - session index

68 # numPage - total number of pages per session

69 # interPage - random variable that generates page inter-arrival time

70 # pageSize - random variable that generates number of objects per page

71 # interObj - random variable that generates object inter-arrival time

72 # objSize - random variable that generates object size

73 proc add_web_traffic {bdel nums ip ps os flowid dir} {

74 global ns n1 n2

75 global sf_ rf_

76 global sb_ rb_

77 global count

78 global pool

79

80 # create a pool of web client/server with the same flowid

81 set numWeb 10

82 PagePool/WebTraf set FID_ASSIGNING_MODE_ 2

83 # (manual item 34.4.5)

84 set pool [new PagePool/WebTraf]

85 # set total number of clients

86 $pool set-num-client $numWeb

87 # set total number of servers

88 $pool set-num-server $numWeb

89 $pool set sameFid_ $flowid

90

91 # set all client and servers web nodes and associate which node is server and which

92 # is client

93 for {set i 0} {$i < $numWeb} {incr i} {

94 add_web_nodes $bdel 1 $dir

95 # forward

96 if {$dir == 0} {

97 $pool set-server $i $sf_([expr $count - 1])

98 $pool set-client $i $rf_([expr $count - 1])

99 # backward

100 } else {

101 $pool set-server $i $sb_([expr $count - 1])

102 $pool set-client $i $rb_([expr $count - 1])

103 }

104

105 }

106

107 # set the total number of of sessions in the WebTraf pool

108 $pool set-num-session $nums

109 # set the total number of pages per session

110 set numPage 1000

111 # set each web session with random variables

112 for {set i 0} {$i < $nums} {incr i} {

113 # set interPage with a exponetial distribution and average ip (manual item 21.2)

114 set interPage [new RandomVariable/Exponential]

115 $interPage set avg_ $ip

116 # set pageSize with a constant distribution value ps (manual item 21.2)

117 set pageSize [new RandomVariable/Constant]

118 $pageSize set val_ $ps

119 # set interObj with exponetial distribution and average 0.01 (manual item 21.2)
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120 set interObj [new RandomVariable/Exponential]

121 $interObj set avg_ [expr 0.01]

122 # set objSize with paretto distribution and average os and shape 1.2 (manual item 21.2)

123 set objSize [new RandomVariable/ParetoII]

124 $objSize set avg_ $os

125 $objSize set shape_ 1.2

126

127 # Add RedHat 8.0

128 $pool set req_trace_ 0

129 $pool set resp_trace_ 0

130

131 # create a pool of web sessions with lanch time = 0

132 $pool create-session $i $numPage 0 $interPage $pageSize $interObj $objSize

133 }

134 }

135

A.3 utils.tcl

1 ####################################

2 # Statistics Utilities - utils.tcl #

3 # Evandro de Souza - Apr/2002 #

4 # LBNL/Unicamp/Embrapa #

5 ####################################

6

7

8 #----- Print general loss in the bottleneck link -----#

9 # pdrops = cumulative dropped packets

10 # parrivals = cumulative arrived packets

11 # lossrate = pdrops/parrivals

12 # bdpartures = cumulative departured bytes

13 # qmon - queue monitor handler

14 # frep - file report pointer

15 # qflag - queue monitor flag

16 proc print-gloss {} {

17 global qmon ns frep qflag

18

19 $ns flush-trace

20 if {$qflag == 1} {

21 set now [$ns now]

22 puts "at $now, bdeparture=[$qmon set bdepartures_]"

23 puts "at $now, lossrate=[expr ("[$qmon set pdrops_].0")/[$qmon set parrivals_]]"

24

25 puts $frep "at $now, bdeparture=[$qmon set bdepartures_]"

26 puts $frep "at $now, lossrate=[expr ("[$qmon set pdrops_].0")/[$qmon set parrivals_]]"

27 }

28

29 }

30

31 #----- Flush all trace data when finish and print general stitistics -----#

32 # tf - trace file pointer

33 proc finish {} {

34 global ns tf namtf

35

36 # close $tf

37 # close $namtf

38 exit 0

39 }

40

41



A.3. utils.tcl 123

42 #----- Save queue statistics (manual item 7.3) (~/tools/queue-monitor.h)-----#

43 # now = current simulation time

44 # size = instatenous queue size in bytes

45 # pkts = instatenous queue size in packets

46 # parrivals = running queue size in packets

47 # barrivals = running queue size in bytes

48 # pdepartures = running total of packets that have departed (not dropped)

49 # bdepartures = running total of bytes contained in packets that have departed

50 # (not dropped)

51 # pdrops = total number of packets dropped

52 # bdrops = total number of bytes dropped

53 # pmarks = total ecn marked packets

54 # fp - file pointer

55 # qmon - queue monitor handler

56 proc printqueue {fp} {

57 global qmon ns

58

59 set now [$ns now]

60 puts $fp "[format %.2f [$ns now]] [$qmon set size_] [$qmon set pkts_]

61 [$qmon set parrivals_] [$qmon set barrivals_] [$qmon set pdepartures_]

62 [$qmon set bdepartures_] [$qmon set pdrops_] [$qmon set bdrops_] [$qmon set pmarks_]"

63 }

64

65

66 #----- Collect queue statistics and schedule new collect time -----#

67 # starttime - start collecting time

68 # finishtime - simulation final time

69 # qfp - queue file pointer

70 proc print-qstats {starttime finishtime fname} {

71 global ns

72

73 set qfp [open $fname.out w]

74 for {set i 0} {[expr $starttime + ($i*0.1)] < $finishtime} {incr i} {

75 set printtime [expr $i*0.1]

76 $ns at [expr $starttime + $printtime] "printqueue $qfp"

77 }

78 $ns at $finishtime "printqueue $qfp"

79 }

80

81

82 #----- Collect TCP statistics (manual item 10.8) (~/tcp/tcp.h) -----#

83 # cwnd_ = current window size

84 # ndatapack_ = number of data packets sent

85 # ndatabytes_ = number of data bytes sent

86 # nackpack_ = number of acknowledge packets received

87 # nrexmit_ = number of retransmit timeout

88 # nrexmitpack_ = number of retransmited packets

89 # nrexmitbytes_ = number of retransmited bytes

90 # necnresponses_ = number of ecn responses

91 # ncwndcuts_ = number of times cwnd cuts

92 # maxseq_ = maximum sequence number sent

93 # ack_ = highest ack seen by the receiver

94 # dupacks_ = number of duplicate acks

95 # ssthresh_ = slow start threshold

96 # rtt = round-trip time estimate

97 # srtt = smoothed round-trip time estimate

98 # rttvar = round-trip time mean deviation estimate

99 # fp - file pointer

100 # tcp - TCP connection identification

101 proc printtcp {fp tcp} {

102 global ns

103

104 set now [format "%.1f" [$ns now]]

105 set now [$ns now]

106 puts $fp "[format %.2f [$ns now]] [$tcp set cwnd_] [$tcp set ndatapack_]



124 A. Simulation Scripts

107 [$tcp set ndatabytes_] [$tcp set nackpack_] [$tcp set nrexmit_] [$tcp set nrexmitpack_]

108 [$tcp set nrexmitbytes_] [$tcp set necnresponses_] [$tcp set ncwndcuts_]

109 [$tcp set maxseq_] [$tcp set ack_] [$tcp set dupacks_] [$tcp set ssthresh_]

110 [$tcp set rtt_] [$tcp set srtt_] [$tcp set rttvar_]"

111 }

112

113

114 #----- Collect TCP statistics and schedule a new collect time -----#

115 # flow - TCP flow identification

116 # starttime - time of the last print

117 # finishtime - simulation final time

118 proc print-tcpstats {flow starttime finishtime label} {

119 global ns

120

121 set fp [open "tcp-$label.out" w]

122 for {set i 0} {[expr $starttime + ($i*0.05)] < $finishtime} {incr i} {

123 set printtime [expr $i*0.05]

124 $ns at [expr $starttime + $printtime] "printtcp $fp $flow"

125 }

126 $ns at $finishtime "printtcp $fp $flow"

127 }

128

129

130 #----- Periodic report of a flow, to follow time and sequence number -----#

131 # ack_ = highest ack seen by the receiver

132 # tcpSrc - flow identification

133 # interval - time interval to report

134 # label - label to print in the report

135 proc timeackReport { tcpSrc interval label } {

136 global ns

137

138 $ns at [expr [$ns now]+$interval] "timeackReport $tcpSrc $interval $label"

139 puts $label/time=[$ns now]/ack=[$tcpSrc set ack_]

140 }

141

142

143 #----- Aggregate Flow Report -----#

144 # pdrops_ = total number of packets dropped (manual item 7.3)

145 # pmarks = total ecn marked packets

146 # bdepartures_ = running total of bytes contained in packets that have departed

147 # (not dropped)

148 # pdepartures_ = running total of bytes packets that have departed (not dropped)

149 # fmon - flow monitor

150 # time - time for this report

151 # bandwidth -> bottleneck link bandwidth

152 # frep -> report file pointer

153 # halftime -> half simulation time

154 # drops_1 -> drops in the simulation 1st half

155 # drops_t -> drops in the whole simulation

156 # marks_1 -> marks in the simulation 1st half

157 # marks_t -> marks in the whole simulation

158 # packets_1 -> packets sent in the simulation 1st half

159 # packets_t -> packets sent in the whole simulation

160 # tlu_1 -> total link utilization in the simulation 1st half

161 # tlu_t -> total link utilization in the whole simulation

162 proc print-aggr { fmon time } {

163 global bandwidth frep halftime drops_1 drops_t marks_1 marks_t packets_1 packets_t

164 tlu_1 tlu_t

165

166 set bytes [$fmon set bdepartures_]

167 set bytesDbl [ns-int64todbl $bytes]

168 set Kbytes [expr $bytesDbl / 1000 ]

169 set bandwidthToKBytes [expr 1000 * $time / 8 ]

170 set possibleKBytes [expr $bandwidth * $bandwidthToKBytes ]

171
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172 puts " "

173 puts "time: [format %.2f $time] aggregate per-link drops [$fmon set pdrops_]"

174 puts "time: [format %.2f $time] aggregate per-link marks [$fmon set pmarks_]"

175 puts "time: [format %.2f $time] aggregate per-link pkts [$fmon set pdepartures_]"

176 puts "time: [format %.2f $time] aggregate per-link Kbytes [format %.2f $Kbytes]"

177 puts "time: [format %.2f $time] aggregate per-link utilz [format %.2f

178 [expr $Kbytes * 100 / $possibleKBytes ]](%)"

179

180 puts $frep " "

181 puts $frep "time: [format %.2f $time] aggregate per-link drops [$fmon set pdrops_]"

182 puts $frep "time: [format %.2f $time] aggregate per-link marks [$fmon set pmarks_]"

183 puts $frep "time: [format %.2f $time] aggregate per-link pkts [$fmon set pdepartures_]"

184 puts $frep "time: [format %.2f $time] aggregate per-link Kbytes [format %.2f $Kbytes]"

185 puts $frep "time: [format %.2f $time] aggregate per-link utilz [format %.2f

186 [expr $Kbytes * 100 / $possibleKBytes ]](%)"

187

188 if {$time == $halftime} {

189 set drops_1 [$fmon set pdrops_]

190 set marks_1 [$fmon set pmarks_]

191 set packets_1 [$fmon set pdepartures_]

192 set tlu_1 [format %.2f [expr $Kbytes * 100 / $possibleKBytes ]]

193

194 } else {

195 set drops_t [$fmon set pdrops_]

196 set marks_t [$fmon set pmarks_]

197 set packets_t [$fmon set pdepartures_]

198 set tlu_t [format %.2f [expr $Kbytes * 100 / $possibleKBytes ]]

199 }

200

201 }

202

203

204 #----- Packet Drop Report per flow (manual item 7.3) -----#

205 # bdepartures_ = running total of bytes contained in packets that have departed

206 # (not dropped)

207 # pdepartures_ = running total of bytes packets that have departed (not dropped)

208 # pdrops_ = total number of packets dropped

209 # pmarks = total ecn marked packets

210 # fid - flow identification

211 # fmon - flow monitor

212 # frep - file report pointer

213 proc print-drops { fid fmon } {

214 global frep

215

216 set fcl [$fmon classifier]; # flow classifier

217 set flow [$fcl lookup auto 0 0 $fid]

218 if {$flow != "" } {

219 set bytes [$flow set bdepartures_]

220 set bytesDbl [ns-int64todbl $bytes]

221

222 puts "class: $fid per-link pkts [$flow set pdepartures_] Kbytes [format %.2f

223 [expr $bytesDbl / 1000]] drops [$flow set pdrops_] marks [$flow set pmarks_]"

224

225 puts $frep "class: $fid per-link pkts [$flow set pdepartures_] Kbytes [format %.2f

226 [expr $bytesDbl / 1000]] drops [$flow set pdrops_] marks [$flow set pmarks_]"

227

228 }

229 }

230

231

232 #----- Link Utilization per flow (manual item 7.3) -----#

233 # bdepartures_ = running total of bytes contained in packets that have departed

234 # (not dropped)

235 # pdrops_ = total number of packets dropped

236 # parrivals = Running total of packets that have arrived
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237 # endtime = simulation time

238 # bandwidth = bottleneck link bandwidth

239 # fid - flow identification

240 # fmon - flow monitor

241 # frep - file report pointer

242 proc print-futilz {fid fmon time} {

243 global bandwidth frep

244

245 set fcl [$fmon classifier]; # flow classifier

246 set flow [$fcl lookup auto 0 0 $fid]

247 if {$flow != "" } {

248 set bytes [$flow set bdepartures_]

249 set bytesDbl [ns-int64todbl $bytes]

250 set Kbytes [expr $bytesDbl / 1000 ]

251 set bandwidthToKBytes [expr 1000 * $time / 8 ]

252 set possibleKBytes [expr $bandwidth * $bandwidthToKBytes ]

253 set lossrate [expr ("[$flow set pdrops_].0")/[$flow set parrivals_]]

254

255 puts "class: $fid per-link utilization [format %.2f [expr $Kbytes * 100 /

256 $possibleKBytes]](%) lossrate = $lossrate"

257

258 puts $frep "class: $fid per-link utilization [format %.2f [expr $Kbytes * 100 /

259 $possibleKBytes]](%) lossrate = $lossrate"

260

261 }

262 }

263

264

265 #----- Agregated Link Utilization for HSTCP and REGTCP (manual item 7.3) -----#

266 # bdepartures_ = running total of bytes contained in packets that have departed

267 # (not dropped)

268 # pdrops_ = total number of packets dropped

269 # parrivals = Running total of packets that have arrived

270 # endtime = simulation time

271 # bandwidth = bottleneck link bandwidth

272 # ffid - first flow identification

273 # nrflows - number of flows in this class

274 # fmon - flow monitor

275 # agghs_1 -> aggregate hstcp flows link utilization in the 1st simulation half

276 # agghs_t -> aggregate hstcp flows link utilization in whole simulation

277 # aggreg_1 -> aggregate regtcp flows link utilization in the 1st simulation half

278 # aggreg_t -> aggregate regtcp flows link utilization in whole simulation

279 # avghs_1 -> average hstcp flows link utilization in the 1st simulation half

280 # avghs_t -> average hstcp flows link utilization in whole simulation

281 # avgreg_1 -> average regtcp flows link utilization in the 1st simulation half

282 # avgreg_t -> average regtcp flows link utilization in whole simulation

283

284 proc print-aggrlinkutilz {ffid nrflows fmon time} {

285 global bandwidth frep halftime agghs_1 agghs_t aggreg_1 aggreg_t aggpert_1 aggpert_t

286 avghs_1 avghs_t avgreg_1 avgreg_t

287

288 set linkutilz 0

289 set linkutilzavg 0

290 set TOTpdrops 0

291 set TOTparrivals 0

292

293 set bandwidthToKBytes [expr 1000 * $time / 8 ]

294 set possibleKBytes [expr $bandwidth * $bandwidthToKBytes ]

295

296 for {set i $ffid} {$i < [expr $ffid + $nrflows]} {incr i} {

297 set fcl [$fmon classifier]; # flow classifier

298 set flow [$fcl lookup auto 0 0 $i]

299 if {$flow != "" } {

300 set bytes [$flow set bdepartures_]

301 set bytesDbl [ns-int64todbl $bytes]
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302 set Kbytes [expr $bytesDbl / 1000 ]

303 set aux [expr $linkutilz + [expr $Kbytes * 100 / $possibleKBytes] ]

304 set linkutilz $aux

305

306 set aux [ns-int64todbl [expr $TOTpdrops + [$flow set pdrops_] ] ]

307 set TOTpdrops [ns-int64todbl $aux]

308

309 set aux [ns-int64todbl [expr $TOTparrivals + [$flow set parrivals_] ] ]

310 set TOTparrivals [ns-int64todbl $aux]

311 }

312

313 }

314

315 if { $nrflows != 0 } {

316 set linkutilzavg [expr $linkutilz / $nrflows]

317 }

318

319 if {$TOTparrivals != 0} {

320 set lossrate [expr $TOTpdrops/$TOTparrivals]

321 } else {

322 set lossrate 0.0

323 }

324

325 puts "Aggr Class $ffid :: link utilz = [format %.2f $linkutilz] (%) lossrate = $lossrate"

326

327 puts $frep "Aggr Class $ffid :: link utilz = [format %.2f $linkutilz] (%) lossrate =

328 $lossrate"

329

330

331 #----- aggregate -----#

332 if {$ffid == 0 && $time == $halftime } {

333 set agghs_1 [format %.2f $linkutilz]

334 }

335 if {$ffid == 50 && $time == $halftime } {

336 set aggreg_1 [format %.2f $linkutilz]

337 }

338 if {$ffid == 300 && $time == $halftime } {

339 set aggpert_1 [format %.2f $linkutilz]

340 }

341 if {$ffid == 0 && $time > $halftime } {

342 set agghs_t [format %.2f $linkutilz]

343 }

344 if {$ffid == 50 && $time > $halftime } {

345 set aggreg_t [format %.2f $linkutilz]

346 }

347 if {$ffid == 300 && $time > $halftime } {

348 set aggpert_t [format %.2f $linkutilz]

349 }

350

351 #----- average -----#

352 if {$ffid == 0 && $time == $halftime } {

353 set avghs_1 [format %.2f $linkutilzavg]

354 }

355 if {$ffid == 50 && $time == $halftime } {

356 set avgreg_1 [format %.2f $linkutilzavg]

357 }

358 if {$ffid == 0 && $time > $halftime } {

359 set avghs_t [format %.2f $linkutilzavg]

360 }

361 if {$ffid == 50 && $time > $halftime } {

362 set avgreg_t [format %.2f $linkutilzavg]

363 }

364

365 }

366
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367

368

369 #----- General Simulation Report -----#

370 # fname = file name to save this report

371 # fp = file pointer

372 # tlu_2 - Total link utilization in 2nd half simulation time

373 # agghs_2 - Aggregate hstcp link utilization in the 2nd half of simulation time

374 # aggreg_2 - Aggregate regtcp link utilization in the 2nd half of simulation time

375 # avghs_2 - Average hstcp link utilization in the 2nd half of simulation time

376 # avgreg_2 - Average regtcp link utilization in the 2nd half of simulation time

377 # drops_2 - Drops in the 2nd half of simulation time

378 # agghsregrt_2 - Ratio between aggregate hstcp and aggregate regtcp in the 2nd half of

379 # simulation time

380 # marks_2 - Marks in the 2nd half of simulation time

381 # dpmk_1 - Sum of drops + marks in the 1st half of simulation time

382 # dpmk_t - Sum of drops + marks in the whole simulation time

383 # dpmk_2 - Sum of drops + marks in the 2nd half of simulation time

384 # packets_2 - Packets sent in the 2nd half of simulation time

385 # lr_2 - Loss Rate in the 2nd half of simulation time

386 proc gnlreport { fname } {

387 global hstcpflows regtcpflows tlu_1 tlu_t agghs_1 agghs_t aggreg_1 aggreg_t aggpert_1

388 aggpert_t avghs_1 avghs_t avgreg_1 avgreg_t drops_1 marks_1 drops_t marks_t packets_1

389 packets_t agghsdp_1 agghsmk_1 agghsdp_t agghsmk_t aggregdp_1 aggregdp_t aggregmk_1

390 aggregmk_t

391

392 # variables declaration

393 set tlu_2 0

394 set agghs_2 0

395 set aggreg_2 0

396 set aggpert_2 0

397 set avghs_2 0

398 set avgreg_2 0

399 set drops_2 0

400 set marks_2 0

401 set dpmk_1 0

402 set dpmk_t 0

403 set dpmk_2 0

404 set packets_2 0

405 set lr_2 0

406 set agghsregrt_2 0

407 set avghsregrt_2 0

408 set agghsdp_2 0

409 set agghsmk_2 0

410 set aggregdp_2 0

411 set aggregmk_2 0

412

413 # variables calculus

414 set tlu_2 [format %.2f [expr 2 * $tlu_t - $tlu_1]]

415 set agghs_2 [format %.2f [expr 2 * $agghs_t - $agghs_1]]

416 set aggreg_2 [format %.2f [expr 2 * $aggreg_t - $aggreg_1]]

417 set aggpert_2 [format %.2f [expr 2 * $aggpert_t - $aggpert_1]]

418 set avghs_2 [format %.2f [expr 2 * $avghs_t - $avghs_1]]

419 set avgreg_2 [format %.2f [expr 2 * $avgreg_t - $avgreg_1]]

420

421 if { $aggreg_2 != 0 } {

422 set agghsregrt_2 [format %.10f [expr $agghs_2 / $aggreg_2]]

423 }

424

425 if { $avgreg_2 != 0 } {

426 set avghsregrt_2 [format %.10f [expr $avghs_2 / $avgreg_2]]

427 }

428

429

430 set drops_2 [expr $drops_t - $drops_1]

431 set marks_2 [expr $marks_t - $marks_1]
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432 set dpmk_1 [expr $drops_1 + $marks_1]

433 set dpmk_t [expr $drops_t + $marks_t]

434 set dpmk_2 [expr $dpmk_t - $dpmk_1]

435 set packets_2 [expr $packets_t - $packets_1]

436

437 set DBLdpmk_2 [ns-int64todbl $dpmk_2]

438 set DBLpackets_2 [ns-int64todbl $packets_2]

439 set lr_2 [format %.10f [expr $DBLdpmk_2 / $DBLpackets_2]]

440

441 set agghsdp_2 [expr $agghsdp_t - $agghsdp_1]

442 set agghsmk_2 [expr $agghsmk_t - $agghsmk_1]

443 set aggregdp_2 [expr $aggregdp_t - $aggregdp_1]

444 set aggregmk_2 [expr $aggregmk_t - $aggregmk_1]

445

446

447 # save values in the file

448 set fp [open $fname w]

449 puts $fp "$hstcpflows $regtcpflows $tlu_1 $tlu_t $tlu_2 $agghs_1 $agghs_t $agghs_2

450 $aggreg_1 $aggreg_t $aggreg_2 $agghsregrt_2 $avghs_1 $avghs_t $avghs_2 $avgreg_1

451 $avgreg_t $avgreg_2 $avghsregrt_2 $drops_1 $drops_t $drops_2 $marks_1 $marks_t

452 $marks_2 $dpmk_1 $dpmk_t $dpmk_2 $packets_1 $packets_t $packets_2 $lr_2 $agghsdp_1

453 $agghsdp_t $agghsdp_2 $agghsmk_1 $agghsmk_t $agghsmk_2 $aggregdp_1 $aggregdp_t

454 $aggregdp_2 $aggregmk_1 $aggregmk_t $aggregmk_2 $aggpert_1 $aggpert_t $aggpert_2"

455 close $fp

456

457 }

458

459

460 #----- Aggregate Drops and Marks for HSTCP and REGTCP -----#

461 # ffid - first flow identification

462 # nrflows - number of flows in this class

463 # fmon - flow monitor

464 # time - phase of simulation to collect data

465 # halftime = half time of the simulation

466 # agg* = global variables (see behavior.tcl)

467

468 proc print-aggrdpmk { ffid nrflows fmon time } {

469 global halftime agghsdp_1 agghsmk_1 agghsdp_t agghsmk_t aggregdp_1 aggregdp_t

470 aggregmk_1 aggregmk_t

471

472 #----- if there is flows in this class -----#

473 if { $nrflows > 0 } {

474

475 set TOTpdrops 0

476 set TOTpmarks 0

477

478 #----- get each flow in this class -----#

479 for {set i $ffid} {$i < [expr $ffid + $nrflows]} {incr i} {

480 set fcl [$fmon classifier]; # flow classifier

481 set flow [$fcl lookup auto 0 0 $i]

482 if {$flow != "" } {

483

484 set aux [ns-int64todbl [expr $TOTpdrops + [$flow set pdrops_] ] ]

485 set TOTpdrops [format %.0f [ns-int64todbl $aux]]

486

487 set aux [ns-int64todbl [expr $TOTpmarks + [$flow set pmarks_] ] ]

488 set TOTpmarks [format %.0f [ns-int64todbl $aux]]

489

490 }

491 }

492

493 #----- put the results in the global variable -----#

494 if {$ffid == 0 && $time == $halftime } {

495 set agghsdp_1 $TOTpdrops

496 set agghsmk_1 $TOTpmarks
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497 }

498 if {$ffid == 50 && $time == $halftime } {

499 set aggregdp_1 $TOTpdrops

500 set aggregmk_1 $TOTpmarks

501 }

502 if {$ffid == 0 && $time > $halftime } {

503 set agghsdp_t $TOTpdrops

504 set agghsmk_t $TOTpmarks

505 }

506 if {$ffid == 50 && $time > $halftime } {

507 set aggregdp_t $TOTpdrops

508 set aggregmk_t $TOTpmarks

509 }

510

511 }

512

513 }

514

515 #----- Intermidiate Aggregate link Utilization ----- (Sep/12/2002) #

516 # bdepartures_ = running total of bytes contained in packets that have departed

517 # (not dropped)

518 # pdrops_ = total number of packets dropped

519 # parrivals = Running total of packets that have arrived

520 # bandwidth = bottleneck link bandwidth

521 # endtime = total simulation time

522 # TOTKBytesPrev = previous total Kbytes transmitted

523 # TOTpdropsPrev = previous total packets dropped

524 # TOTparrivalsPrev = previous total packets arrivals

525 # fintagg = file pointer to intermidiate aggregate link utilization

526 # ffid - first flow identification

527 # nrflows - number of flows in this class

528 # fmon - flow monitor

529

530

531 proc print-intaggrlinkutilz {ffid nrflows fmon inttime} {

532 global ns bandwidth endtime qmon TOTKBytesPrev_0 TOTpdropsPrev_0 TOTpmarksPrev_0

533 TOTparrivalsPrev_0 fintagg_0 TOTKBytesPrev_50 TOTpdropsPrev_50 TOTparrivalsPrev_50

534 TOTpmarksPrev_50 fintagg_50 TOTKBytesPrev_220 TOTpdropsPrev_220 TOTparrivalsPrev_220

535 TOTpmarksPrev_220 fintagg_220 TOTKBytesPrev_300 TOTpdropsPrev_300 TOTparrivalsPrev_300

536 TOTpmarksPrev_300 fintagg_300 TOTKBytesPrev_999 TOTpdropsPrev_999 TOTparrivalsPrev_999

537 TOTpmarksPrev_999 fintagg_999

538

539 if {$ffid == 0} {

540 set TOTKBytesPrev $TOTKBytesPrev_0

541 set TOTpdropsPrev $TOTpdropsPrev_0

542 set TOTpmarksPrev $TOTpmarksPrev_0

543 set TOTparrivalsPrev $TOTparrivalsPrev_0

544 set fintagg $fintagg_0

545 }

546

547 if {$ffid == 50} {

548 set TOTKBytesPrev $TOTKBytesPrev_50

549 set TOTpdropsPrev $TOTpdropsPrev_50

550 set TOTpmarksPrev $TOTpmarksPrev_50

551 set TOTparrivalsPrev $TOTparrivalsPrev_50

552 set fintagg $fintagg_50

553 }

554

555 if {$ffid == 220} {

556 set TOTKBytesPrev $TOTKBytesPrev_220

557 set TOTpdropsPrev $TOTpdropsPrev_220

558 set TOTpmarksPrev $TOTpmarksPrev_220

559 set TOTparrivalsPrev $TOTparrivalsPrev_220

560 set fintagg $fintagg_220

561 }
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562

563 if {$ffid == 300} {

564 set TOTKBytesPrev $TOTKBytesPrev_300

565 set TOTpdropsPrev $TOTpdropsPrev_300

566 set TOTpmarksPrev $TOTpmarksPrev_300

567 set TOTparrivalsPrev $TOTparrivalsPrev_300

568 set fintagg $fintagg_300

569 }

570

571 if {$ffid == 999} {

572 set TOTKBytesPrev $TOTKBytesPrev_999

573 set TOTpdropsPrev $TOTpdropsPrev_999

574 set TOTpmarksPrev $TOTpmarksPrev_999

575 set TOTparrivalsPrev $TOTparrivalsPrev_999

576 set fintagg $fintagg_999

577 }

578

579

580 set linkutilz 0

581 set TOTparrivals 0

582 set TOTpdrops 0

583 set TOTpmarks 0

584 set TOTparrivals 0

585 set TOTKbytes 0

586

587 set bandwidthToKBytes [expr 1000 * $inttime / 8 ]

588 set possibleKBytes [expr $bandwidth * $bandwidthToKBytes ]

589

590 for {set i $ffid} {$i < [expr $ffid + $nrflows]} {incr i} {

591 set fcl [$fmon classifier]; # flow classifier

592 set flow [$fcl lookup auto 0 0 $i]

593 if {$flow != "" } {

594 set bytes [$flow set bdepartures_]

595 set bytesDbl [ns-int64todbl $bytes]

596 set Kbytes [expr $bytesDbl / 1000 ]

597 set TOTKbytes [expr $TOTKbytes + $Kbytes]

598

599 set aux [ns-int64todbl [expr $TOTpdrops + [$flow set pdrops_] ] ]

600 set TOTpdrops [ns-int64todbl $aux]

601

602 set aux [ns-int64todbl [expr $TOTpmarks + [$flow set pmarks_] ] ]

603 set TOTpmarks [ns-int64todbl $aux]

604

605 set aux [ns-int64todbl [expr $TOTparrivals + [$flow set parrivals_] ] ]

606 set TOTparrivals [ns-int64todbl $aux]

607

608 }

609

610 }

611

612 if {$ffid == 999} {

613 set TOTpdrops [ns-int64todbl "[$qmon set pdrops_].0" ]

614 set TOTpmarks [ns-int64todbl "[$qmon set pmarks_].0" ]

615 set TOTparrivals [ns-int64todbl "[$qmon set parrivals_].0" ]

616

617 set bytes [$qmon set bdepartures_]

618 set bytesDbl [ns-int64todbl $bytes]

619 set Kbytes [expr $bytesDbl / 1000 ]

620 set TOTKbytes [expr $TOTKbytes + $Kbytes]

621 }

622

623

624 set INTKbytes [expr $TOTKbytes - $TOTKBytesPrev]

625 set aux [expr $INTKbytes * 100 / $possibleKBytes]

626 set linkutilz $aux
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627

628 set INTpdrops [expr $TOTpdrops - $TOTpdropsPrev]

629 set INTpmarks [expr $TOTpmarks - $TOTpmarksPrev]

630

631 set INTparrivals [expr $TOTparrivals - $TOTparrivalsPrev]

632

633

634 puts $fintagg "[format %.2f [$ns now]] [format %.2f $linkutilz]

635 [format %.2f $INTKbytes] [format %0.f $INTpdrops] [format %0.f $INTpmarks]

636 [format %2.f $INTparrivals]"

637

638

639 if {$ffid == 0} {

640 set TOTKBytesPrev_0 $TOTKbytes

641 set TOTpdropsPrev_0 $TOTpdrops

642 set TOTpmarksPrev_0 $TOTpmarks

643 set TOTparrivalsPrev_0 $TOTparrivals

644 }

645

646 if {$ffid == 50} {

647 set TOTKBytesPrev_50 $TOTKbytes

648 set TOTpdropsPrev_50 $TOTpdrops

649 set TOTpmarksPrev_50 $TOTpmarks

650 set TOTparrivalsPrev_50 $TOTparrivals

651 }

652

653 if {$ffid == 220} {

654 set TOTKBytesPrev_220 $TOTKbytes

655 set TOTpdropsPrev_220 $TOTpdrops

656 set TOTpmarksPrev_220 $TOTpmarks

657 set TOTparrivalsPrev_220 $TOTparrivals

658 }

659

660

661 if {$ffid == 300} {

662 set TOTKBytesPrev_300 $TOTKbytes

663 set TOTpdropsPrev_300 $TOTpdrops

664 set TOTpmarksPrev_300 $TOTpmarks

665 set TOTparrivalsPrev_300 $TOTparrivals

666 }

667

668 if {$ffid == 999} {

669 set TOTKBytesPrev_999 $TOTKbytes

670 set TOTpdropsPrev_999 $TOTpdrops

671 set TOTpmarksPrev_999 $TOTpmarks

672 set TOTparrivalsPrev_999 $TOTparrivals

673 }

674

675

676 set nexttime [expr [$ns now] + $inttime]

677

678 if {$nexttime < $endtime} {

679 $ns at [expr [$ns now]+$inttime] "print-intaggrlinkutilz $ffid $nrflows $fmon $inttime"

680 }

681

682 }

683

684

685

686 #----- Print Flow Statistics -----#

687 # fmon - flow monitor

688 # bandwidth - bottleneck link bandwidth

689 # hstcpflows - nr hstcp flows

690 # regtcflows - nr regtcp flows

691 # ffs - file to save flowstat



A.3. utils.tcl 133

692 proc print-flowstat { fmon } {

693 global ns bandwidth hstcpflows regtcpflows nrpertflows ffs qmon

694

695 # calculus of possible bytes to sent

696 set bandwidthToKBytes [expr 1000 * [$ns now] / 8 ]

697 set possibleKBytes [expr $bandwidth * $bandwidthToKBytes ]

698

699 # array of results

700 set result [format %.2f [$ns now]]

701 set aux "$result $hstcpflows $regtcpflows"

702 set result $aux

703

704 # HSTCP Flows

705 for {set fid 0} {$fid < [expr 0 + $hstcpflows]} {incr fid} {

706 # extract data for this particular flow

707 set fcl [$fmon classifier]; # flow classifier

708 set flow [$fcl lookup auto 0 0 $fid]

709 if {$flow != "" } {

710 set bytes [$flow set bdepartures_]

711 set bytesDbl [ns-int64todbl $bytes]

712 set Kbytes [expr $bytesDbl / 1000 ]

713 set flowdata "f$fid [$flow set parrivals_] [$flow set pdrops_] [$flow set pmarks_]

714 [$flow set pdepartures_] [format %.2f [expr $Kbytes * 100 / $possibleKBytes]]"

715 }

716 set aux "$result $flowdata"

717 set result $aux

718 }

719

720 # REGTCP Flows

721 for {set fid 50} {$fid < [expr 50 + $regtcpflows]} {incr fid} {

722 # extract data for this particular flow

723 set fcl [$fmon classifier]; # flow classifier

724 set flow [$fcl lookup auto 0 0 $fid]

725 if {$flow != "" } {

726 set bytes [$flow set bdepartures_]

727 set bytesDbl [ns-int64todbl $bytes]

728 set Kbytes [expr $bytesDbl / 1000 ]

729 set flowdata "f$fid [$flow set parrivals_] [$flow set pdrops_] [$flow set pmarks_]

730 [$flow set pdepartures_] [format %.2f [expr $Kbytes * 100 / $possibleKBytes]]"

731 }

732 set aux "$result $flowdata"

733 set result $aux

734 }

735

736

737 set fid 100

738 # extract data for this particular flow

739 set fcl [$fmon classifier]; # flow classifier

740 set flow [$fcl lookup auto 0 0 $fid]

741 if {$flow != "" } {

742 set bytes [$flow set bdepartures_]

743 set bytesDbl [ns-int64todbl $bytes]

744 set Kbytes [expr $bytesDbl / 1000 ]

745 set flowdata "f$fid [$flow set parrivals_] [$flow set pdrops_] [$flow set pmarks_]

746 [$flow set pdepartures_] [format %.2f [expr $Kbytes * 100 / $possibleKBytes]]"

747 set aux "$result $flowdata"

748 set result $aux

749 }

750

751

752 set fid 120

753 # extract data for this particular flow

754 set fcl [$fmon classifier]; # flow classifier

755 set flow [$fcl lookup auto 0 0 $fid]

756 if {$flow != "" } {
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757 set bytes [$flow set bdepartures_]

758 set bytesDbl [ns-int64todbl $bytes]

759 set Kbytes [expr $bytesDbl / 1000 ]

760 set flowdata "f$fid [$flow set parrivals_] [$flow set pdrops_] [$flow set pmarks_]

761 [$flow set pdepartures_] [format %.2f [expr $Kbytes * 100 / $possibleKBytes]]"

762 set aux "$result $flowdata"

763 set result $aux

764 }

765

766

767 set fid 140

768 # extract data for this particular flow

769 set fcl [$fmon classifier]; # flow classifier

770 set flow [$fcl lookup auto 0 0 $fid]

771 if {$flow != "" } {

772 set bytes [$flow set bdepartures_]

773 set bytesDbl [ns-int64todbl $bytes]

774 set Kbytes [expr $bytesDbl / 1000 ]

775 set flowdata "f$fid [$flow set parrivals_] [$flow set pdrops_] [$flow set pmarks_]

776 [$flow set pdepartures_] [format %.2f [expr $Kbytes * 100 / $possibleKBytes]]"

777 }

778 set aux "$result $flowdata"

779 set result $aux

780

781 set fid 160

782 # extract data for this particular flow

783 set fcl [$fmon classifier]; # flow classifier

784 set flow [$fcl lookup auto 0 0 $fid]

785 if {$flow != "" } {

786 set bytes [$flow set bdepartures_]

787 set bytesDbl [ns-int64todbl $bytes]

788 set Kbytes [expr $bytesDbl / 1000 ]

789 set flowdata "f$fid [$flow set parrivals_] [$flow set pdrops_] [$flow set pmarks_]

790 [$flow set pdepartures_] [format %.2f [expr $Kbytes * 100 / $possibleKBytes]]"

791 set aux "$result $flowdata"

792 set result $aux

793 }

794

795

796

797 set fid 220

798 # extract data for this particular flow

799 set fcl [$fmon classifier]; # flow classifier

800 set flow [$fcl lookup auto 0 0 $fid]

801 if {$flow != "" } {

802 set bytes [$flow set bdepartures_]

803 set bytesDbl [ns-int64todbl $bytes]

804 set Kbytes [expr $bytesDbl / 1000 ]

805 set flowdata "f$fid [$flow set parrivals_] [$flow set pdrops_] [$flow set pmarks_]

806 [$flow set pdepartures_] [format %.2f [expr $Kbytes * 100 / $possibleKBytes]]"

807 set aux "$result $flowdata"

808 set result $aux

809 }

810

811

812 # PERT Flows fid = 300

813 set TOTparrivals 0

814 set TOTpdrops 0

815 set TOTpdepartures 0

816 set TOTpmarks 0

817 set linkutilz 0

818 for {set fid 300} {$fid < [expr 300 + $nrpertflows]} {incr fid} {

819 # extract data for this particular flow

820 set fcl [$fmon classifier]; # flow classifier

821 set flow [$fcl lookup auto 0 0 $fid]
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822 if {$flow != "" } {

823 set bytes [$flow set bdepartures_]

824 set bytesDbl [ns-int64todbl $bytes]

825 set Kbytes [expr $bytesDbl / 1000 ]

826

827 set aux [expr $linkutilz + [expr $Kbytes * 100 / $possibleKBytes] ]

828 set linkutilz $aux

829

830 set aux [ns-int64todbl [expr $TOTparrivals + [$flow set parrivals_] ] ]

831 set TOTparrivals [ns-int64todbl $aux]

832

833 set aux [ns-int64todbl [expr $TOTpdrops + [$flow set pdrops_] ] ]

834 set TOTpdrops [ns-int64todbl $aux]

835

836 set aux [ns-int64todbl [expr $TOTpdepartures + [$flow set pdepartures_] ] ]

837 set TOTpdepartures [ns-int64todbl $aux]

838

839 }

840 }

841 set flowdata "f300 $TOTparrivals $TOTpdrops $TOTpmarks $TOTpdepartures

842 [format %.2f $linkutilz]"

843 set aux "$result $flowdata"

844 set result $aux

845

846

847 # total packets in the simulation

848 set fid 999

849 set bytes [$qmon set bdepartures_]

850 set bytesDbl [ns-int64todbl $bytes]

851 set Kbytes [expr $bytesDbl / 1000 ]

852 set flowdata "f$fid [ns-int64todbl "[$qmon set parrivals_]"] [$qmon set pdrops_]

853 [$qmon set pmarks_] [ns-int64todbl "[$qmon set pdepartures_]"] [format %.2f

854 [expr $Kbytes * 100 / $possibleKBytes]]"

855 set aux "$result $flowdata"

856 set result $aux

857

858

859 puts $ffs "$result"

860 }

861
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