UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Toward a Theory of Programming Schemes

Permalink
https://escholarship.org/uc/item/6228c1c5
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 6(0)

Author
Nutter, Jane Terry

Publication Date
1984

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/6228c1c5
https://escholarship.org
http://www.cdlib.org/

269

TOWARD A THEORY OF PROGRAMMING SCHEMES

Jane Terry Nutter
Tulane University

Introduction

People have been writing programs and program documentation for about forty
years now. For just as long, people have had to read these program texts.
Because programming languages were initially designed for machines, not people,
understanding programs presents special problems which persist despite the move
toward high level languages and structured programming. With program doc umen-
tation, the problem is perhaps worse: while programming languages become pro-
gressively more "English like", documentation has been moving in the opposite
direction. Pseudo code and graphical representations are replacing natural
language explanations, suggesting that understanding programs may not be par—
ticularly 1ike understanding familiar natural language texts at all.

The fundamentally dynamic nature of programs supports this suggestion. Ordi-
nary natural language texts certainly include dynamic aspects (verbs, for in-
stance!), but nouns provide a stable element which helps anchor meaning. Pro—
grams conspicuously lack nouns. A difference of this magnitude must affect how
we understand them. Yet understanding program texts must also resemble under-
standing natural language texts, since learning to deal with programs draws on
previously developed skills, some of them reading skills. 1T believe that un-
derstanding in general is guided by abstract concepts, and that program under-
standing shares this trait. But in the case of program understanding, the con-
cepts in question are abstract patterns for dynamic activities, which I call
programming schemes.

Schemes and Representations

A programming scheme is an abstract structure which captures the essential fea-
tures of a dynamic process to solve some problem. These schemes contain the
conceptual information of what a particular chunk of code does. But because
they are abstract, they are never directly present in any particular program-
ming text. A particular instantiation in some concrete form is a scheme repre-
sentation. The underlying patterns (schemes) provide templates by which people
understand programs containing embodiments of them (scheme representations).

Researchers in natural language understanding have long believed that abstract
cognitive patterns guide text understanding. Schank and Abelson (1977) hold
that scripts govern story understanding. Schank (1982) proposes that memory
organization packets (MOPS) and thematic organization points (TOPS) underlie
memory and cognition. Similarly Chase and Simon (1973), Shneiderman (1976) and
Adelson (1981) argue that experts use meaningful abstract formations in their
domain of expertise to recall things they were given to memorize.

Researchers have also begun to 1{nvestigate the role of schemes or something
like them in programmer behavior. Soloway has undertaken extensive work 1in
this direction (see e.g. Soloway and Woolf, 1981; Soloway, Ehrlich, Bonar and



270

Greenspan, 1982; Ehrlich and Soloway, 1982; and Soloway, Ehrlich, and Gold,
1983). Further evidence that abstract constructs govern programming behavior
can be found in work by Weiser (1982), Curtis and Sheppard“s group (see e.g.
Curtis, Sheppard, Milliman, Borst, and Love, 1979 and Sheppard, Milliman, and
Love, 1979), and Magel (1982). Yet even Soloway’ s extensive work leaves
schemes themselves largely unanalyzed. We cannot use programming schemes to
explain how people understand program texts unless we understand programming
schemes. To date, no clear account of what programming schemes are, how they
are related to one another, how they are related to their representations, or
how they are identified has been given. Hence we have neither a theory to
unify these results nor a model for predicting human interactions with parti-
cular schemes or their representations.

Why a Theory?

An analysis of programming schemes offers several benefits. First, it should
produce a clearer characterization of schemes. To say that a programming
scheme 1s an abstract process template 1s suggestive, but little more. What
properties of programming schemes distinguish them from other abstract concepts
and objects?

Second, it should clarify the kinds of possible relationships among schemes.
For instance, schemes can contain other schemes: the "merge and sort”™ scheme
containg the "file merge”™ scheme and the "file sort” scheme. But the "merge
and sort” scheme 18 not an 1instance of the "file merge” scheme, nor is the
"file merge”™ an instance of "merge and sort”. However, the schemes "multipli-
cation by repeated addition”, "division by repeated subtraction”, and "exponen-
tiation by repeated multiplication” do seem to be instances of a more abstract
scheme, namely "perform one operation by repeating another”. Hence schemes can
be related to one another in at least two ways: containment and instantiation.
What other relationships or interactions among schemes need investigating?

Third, the theory should provide 1insight on bhow schemes are "tied” to scheme
representations. The classes of features which are important can to some ex-
tent be identified from an abstract point of view. What follows in the rest of
this paper represents a first step in this direction. A theoretical analysis
should look further into these and other issues.

Preliminary Issues of Scheme/Representation Relationships

At least four issues arise when considering how schemes are related to their
representations. PFirst, what properties of a representation identify it as
representing a particular scheme? I call these the identifying features of a
scheme representation. Second, what features do people use to identify schemes
from representations? These triggers may mnot be the same as, or even among,
the {dentifying features. Third, what features are readers conscious of when
considering code? These objects of attention may be neither identifying fea-
tures nor triggers. Finally, how effectively does a particular representation
reflect ite associated scheme? 1 call this issue representational fidelity.

Understanding texts involves trying to figure out what the author meant. For
program texts, this means determining what schemes the author had in mind.
Documentation cannot eliminate this need to “look 1into the author”s head”,



271

since it too contains representations, not schemes. Identifying schemes in
program texts requires matching features of the representations to possible
schemes. And since programmers make mistakes, the representation may not
"reflect” the programmer”s intent. When 1t fails to, two questions arise.
Firet, what does the representation represent? Second, and more basically,
what does "understanding the text” now mean? 1f debuggers use schemes to un-
derstand "bad” program texts, there must be some independent criteria which
link representations with schemes. These criteria are the identifying features
of scheme representations.

But we only need independent criteria when something goes wrong. When reading
"normal” or "good"” texts, there is reason to believe that people use more dir-
ect "cues” to recognize schemes. What 1is required here is an account of how
human readers interact with the various features of a representation, identi-
fying or otherwise. (For more on triggers, see Hassell and Nutter, 1984.)

However, triggers need not always be objects of attention. In a directed pre-
study experiment (Hassell and Lind, 1983; Hassell, Lind and Rice, 1983), 407 of
sub jects asked to identify the lines of pseudo code that constituted a "running
sum” loop left out the loop construct itself! Thus it appears that readers may
not be aware of essential parts of a scheme, i1.e., that they take certain parts
so much for granted that they do not spontaneously recall them when asked to do
0. But in associated one-on-one studies in which subjects observed debugging
code were asked to describe out lowd what they were doing, the loop construct
played a key triggering role. Thus triggers and objects of awareness need not
correspond.

While some issues of wunderstandability 1lie 1in the psychological realm, some
relate to how "good” particular representations are. Informal evidence abounds
that some representations reflect their function relatively clearly, while
others obscure it with remarkable success. A few studies have compared the
effectiveness of particular modes of representation (see e.g. Sheppard, Kruesi,
and Curtis, 1981), but we still know almost nothing about which aspects of rep-
resentations contribute to representational fidelity.

Conclusion

This paper constitutes a proposal for 1investigations into the nature and role
of programming schemes and their representations. Interest in schemes or some
similar construct has emerged from a number of different groups and has already
motivated substantial empirical work. But without a clearer notion of what
schemes are and of how they are related to their representations, these studies
must rest on shaky ground. An improved foundational analysis offers enhanced
understanding of the role abstract knowledge plays in program understanding,
which can then be exploited both to suggest the role of related abstract know-
ledge in other kinds of understanding and to provide rich new directions for
future research.

References

Adelson, B. Problem solving and the development of abstract categories in pro-
gramming languages, Memory and Cognition v 9, 1981.




272

Chase, W.C. and H. Simon. Perception in chess, Cognitive Psychology v 4, 1973,

Curtis, B., S.B. Sheppard, P. Milliman, M.A. Borst, and T. Love. Measuring the
psychological complexity of software maintenance tasks with the Halstead and
McCabe metrics, IEEE Transactions on Software Engineering v 5, 1979.

Ehrlich, K. and E. Soloway. An empirical investigation of the tacit plan know-
ledge in programing, Human Factors in Computer Systems, Ablex Inc., 1982.

Hassell, J. and J. Lind. Programming plans as advance organizers and their use
io {mproving programmer debugging performance, AEDS Twenty-First Annual Con-
vention Proceedings, Portland, OR, 1983.

Hassell, J., J. Lind, and J. Rice. Using plan knowledge in debugging: an emp-
irical investigation, Tulane University Technical Report 83-102, 1983.

Hassell, J. and J.T. Nutter. Programming schemes: their role in program under-
standing and maintenance, AEDS Twenty-Second Annual Convention Proceedings,
Washington, DC, 1984.

Magel, K. A theory of small program complexity, ACM SIGPLAN Notices v 17, 1982,

Schank, R.C. and R. Abelson. Scripts, Plans, Goals and Understanding, Lawrence
Erlbaur Associates (Hillsdale, NJ) 1977.

Schank, R.C. Remembering and memory organization: an introduction to MOPS. 1In
Strategies for Natural Language Processing, W.G. Lehnert and M.H. Ringle,
eds., Lawrence Erlbaum Associates (Hillsdale, NJ) 1982.

Sheppard, S.B., P. Milliman, and T. Love. Human factors experiments on modern
coding practices, Computer v 12, 1979.

Sheppard, S.B., E. Kruesi, and B. Curtis. The effects of symbology and spatial
arrangement of software specifications in a coding task, Proceedings of the
Fifth International Conference on Software Engineering, 1981.

Shneiderman, B. Exploratory experiments in programmer behavior, International
Journal of Computer and Information Sciences, 1976.

Soloway, E. and B. Woolf. Problems, plans, and programs, ACM SIGCSE Bulletin
v 12, 1981.

Solowvay, E., K. Ehrlich, J. Bonar, and J. Greenspan. What do novices know
about programming? In B. Shneiderman and A. Badre, eds., Directions in
Ruman-Computer Interaction, Ablex Puwlishing Co., 1982.

Soloway, E., K. Ehrlich, and E. Gold. Reading a program ie like reading a
story (well, almost), Proceedings of the Fifth Annual Conference of the Cog-
nitive Science Society, 1983.

Weiser, M. Programmers use slices when debugging, Communications of the ACM
v 25, 1982.




	cogsci_1984_269-272



