
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Ensuring Users' Privacy and Security on Mobile Devices

Permalink
https://escholarship.org/uc/item/622899qh

Author
Gasparis, Ioannis

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/622899qh
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Ensuring Users’ Privacy and Security on Mobile Devices

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Ioannis Gasparis

March 2017

Dissertation Committee:

Professor Srikanth V. Krishnamurthy, Chairperson
Professor Zhiyun Qian
Professor Chenqyu Song
Professor Michalis Faloutsos

Copyright by
Ioannis Gasparis

2017

The Dissertation of Ioannis Gasparis is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I am grateful to my advisor; without his help I would not have been here. Thank you for

your continued support and guidance throughut my life in grad school. You not only made me a

more knowledgable researcher, but you also helped me become a better person.

Without of my parents’ help and constant support, I would not have been here. Thank you

for making me who I am, thank you for pushing me to challenge myself, and thank you for giving

me everything that I have ever needed to succeed in my life.

Many thanks to the love of my life; you gave me happiness and a reason to fight for during

grad school. Thank you for showing me that there are still people worth fighting for.

Chapter two was published in CoNEXT 2013. Chapter three and four are under submis-

sion in MobiSys 2017 and USENIX 2017, respectively.

iv

To my juju, my parents and my brother. Thank you for your constant support and love

throughout my life.

MONO AEK

v

ABSTRACT OF THE DISSERTATION

Ensuring Users’ Privacy and Security on Mobile Devices

by

Ioannis Gasparis

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2017

Professor Srikanth V. Krishnamurthy, Chairperson

Mobile devices have become increasingly powerful and popular. The number of mobile users is

growing fast and people use their phone nowadays for a plethora of things (e.g., e-commerce, mobile

banking, e-mail, social, etc). While powerful mobile devices are more convenient for users, the

volume and sensitivity of information they contain are crucial to a user’s privacy as well as her

security. Sometimes the latter is taken for granted (wrongly).

In this dissertation, we propose three major frameworks to protect users’ privacy and

security on such mobile and highly capable platforms. The three frameworks are as follows.

• VideoDroid, an Android framework that allows users to conduct video calls on open Wi-Fi net-

works while preserving their privacy and minimizing the performance penalties.

• Droid M+, an Android framework that helps developers transform their legacy apps to apps

that support the newer revocable permission model that was introduced by Google to help users’

privacy.

• RootExplorer, a fully automated system that is able to detect malware carrying root exploits by

leveraging root exploits from commercial one-click root apps to learn the exploits’ behaviors and

their expected environment.

vi

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

2 VideoDroid: Resource Thrifty Secure Mobile Video Transfers on Open WiFi Networks 4
2.1 Introduction . 4
2.2 Background and Related Work . 7
2.3 Threat Model and Assumptions . 9
2.4 Our Analytical Framework . 11

2.4.1 Packet Success Rate . 11
2.4.2 Delay . 11
2.4.3 Distortion . 18

2.5 Implementation . 23
2.6 Evaluation . 25

2.6.1 Methodology . 25
2.6.2 Delay vs Distortion . 28
2.6.3 Power Consumption . 33
2.6.4 Experiments with HTTP/TCP . 36

2.7 Conclusions . 37

3 Droid M+: Developer Support for Imbibing Android’s New Permission Model 38
3.1 Introduction . 38
3.2 Background and Motivation . 41
3.3 Measurement Study . 44

3.3.1 Measurement Tool . 45
3.3.2 Android Applications Dataset . 48
3.3.3 Results and Inferences . 48

3.4 Droid M+ Tool Set . 53
3.4.1 Static Analyzer . 53
3.4.2 Permission Annotations . 56
3.4.3 Compiler Extension . 57

vii

3.5 Evaluations . 61
3.5.1 Implementation . 61
3.5.2 Applicability . 61
3.5.3 Quality of Request Placement . 64
3.5.4 Performance . 67

3.6 Discussion . 68
3.7 Conclusions . 70

4 RootExplorer: Detecting Android Root Exploits by Learning from Root Providers 71
4.1 Introduction . 71
4.2 Background & Related Work . 74

4.2.1 Root Exploits and One-Click Root Apps 74
4.2.2 Android Malware Analysis . 76
4.2.3 Attack Modeling and Detection . 77
4.2.4 Other Related Work . 77

4.3 Threat Model and Problem Scope . 78
4.4 RootExplorer Overview . 79
4.5 Behavior Graph Analysis . 81

4.5.1 Generating Training Behavior Graphs . 82
4.5.2 Examples . 84
4.5.3 Using Behavior Graphs in Detection . 86

4.6 Satisfying Exploit Preconditions . 87
4.7 Detecting Root Exploits . 89

4.7.1 Operational Model . 90
4.7.2 Static Analyzer . 90
4.7.3 Dynamic Analyzer . 92

4.8 Evaluation . 94
4.8.1 Environment Setup . 94
4.8.2 Effectiveness . 95

4.9 Conclusions . 99

Bibliography 100

viii

List of Figures

2.1 Applicability of our framework. 6
2.2 Average distortion with distance. 21
2.3 Block diagram for sender and receiver. 23
2.4 Distortion at an eavesdropper’s site for slow and fast motion video flows. 28
2.5 Mean Opinion Score at an eavesdropper’s site for slow and fast motion video flows. 28
2.6 Screenshots of video flow at an eavesdropper’s site (slow vs fast, GOP=30). 29
2.7 Comparison of transfer latency in various cases (analysis and experiments with

Samsung S-II). 29
2.8 Comparison of transfer latency in various cases (analysis and experiments with HTC

Amaze 4G). 31
2.9 Encrypting all I-frame and a fraction of the P-frame packets (GOP=30). 32
2.10 Power consumption with Samsung S-II. 33
2.11 Power consumption with HTC Amaze 4G. 34
2.12 Comparison of transfer latency for HTTP/TCP (Samsung S-II). 35
2.13 Comparison of transfer latency for HTTP/TCP (HTC Amaze 4G). 35
2.14 Distortion at an eavesdropper’s site for slow and fast motion video flows with HTTP. 36
2.15 Mean Opinion Score at an eavesdropper’s site for slow and fast motion video flows

with HTTP/TCP. 36

3.1 The permission workflow of Android M. 42
3.2 Any.do permissions during startup. 44
3.3 Adoption rate per number of permissions. 49
3.4 Critical permissions that can/should be asked upfront. 49
3.5 Over-asked permissions during launch. 50
3.6 Droid M+ architecture. 54
3.7 CDF of apps versus the number of functionalities that require permission(s). 63
3.8 Average Compilation Time. 68
3.9 Any.do current version vs with Droid M+. 69

4.1 System overview . 79
4.2 Behavior graph for the “camera-isp” exploit. 84
4.3 Pseudo code of proc/iomem read . 89
4.4 Operational model of the detection system . 89

ix

4.5 Static analyzer . 91
4.6 Dynamic Analyzer. 93

x

List of Tables

2.1 Experimental Setup . 25
2.2 Delay vs distortion. 32

3.1 Dangerous Permissions and permission groups 46
3.2 Dangerous permissions requested by Any.Do and their corresponding permission

groups. 65
3.3 Permissions per functionality . 69

4.1 One-Click apps with the discovered exploits. 95
4.2 Detection rate for debug compilation. 96
4.3 Detection rate for obfuscated compilation. 96
4.4 Emulated devices and corresponding exploits caught by RootExplorer in GODLESS

malware. 98

xi

Chapter 1

Introduction

Mobile devices have become the most powerful and convenient computer device. There

are more than 8 billion mobile devices that account for more than 3.7 exabytes of mobile network

traffic per month. Users use their phone not only for personal use but also for work. It is common for

a user to use her phone for e-commerce purposes, mobile banking, as well as for sharing and saving

private moments. A compromise of a mobile device can have devastating effects to a user’s privacy

and security. Consequently, a mobile user’s privacy and security is of paramount importance. Be-

cause of the way that mobile devices have been designed, to make them secure and privacy aware,

a solution has to exist that spans across different layers of a mobile device.

In this dissertation, we consider three layers of security and privacy in a mobile device:

(a) the user layer, where the user has the ability to choose her privacy and security level of her

mobile device, (b) the developer layer, where the developer should give to the user the option to

have privacy and security aware apps, and (c) the provider layer, where a mobile provider has to

offer secure and privacy aware apps to the users. The goal of this dissertation is two-fold: (a) to

discuss how current methodologies fail to address privacy and security issues for mobile devices,

and (b) present three systems that are designed and implemented specifically to solve such issues

on the mentioned layers.

The first system is VideoDroid, an Android framework that allows users to conduct video

calls on open Wi-Fi networks while preserving their privacy and minimizing the performance penal-

1

ties. Video transfers using smartphones are becoming increasingly popular. To prevent the inter-

ception of content from eavesdroppers, video flows must be encrypted. However, encryption results

in a cost in terms of processing delays and energy consumed on the user’s device. We argue that

encrypting only certain parts of the flow can create sufficiently high distortion at an eavesdropper

preserving content confidentiality as a result. By selective encryption, one can reduce delay and

the battery consumption on the mobile device. We develop a mathematical framework that captures

the impact of the encryption process on the delay experienced by a flow, and the distortion seen by

an eavesdropper. This provides a quick and efficient way of determining the right parts of a video

flow that must be encrypted to preserve confidentiality, while limiting performance penalties. In

practice, it can aid a user in choosing the right level of encryption. We validate our model via ex-

tensive experiments with different encryption policies using Android smartphones. We observe that

by selectively encrypting parts of a video flow one can preserve the confidentiality while reducing

delay by as much as 75% and the energy consumption by as much as 92%.

The second system is Droid M+, a system that helps developers easily retrofit their legacy

code to support the new permission model and adhere to Google’s guidelines. In Android 6.0

(Marshmallow), Google revamped its long criticized permission model with a new one that prompts

the user during runtime, and allows users to dynamically revoke granted permissions. Towards steer-

ing developers to this new model and improving user experience, Google also provides guidelines

on (a) how permission requests should be formulated (b) how to educate users on why a permission

is needed and (c) how to provide feedback when a permission is denied. In this system we perform,

to the best of our knowledge, the first measurement study on the adoption of this new revocable

permission model on recently updated apps from the official Google Play Store. We find that, un-

fortunately, (1) most apps have not been migrated to this new model and (2) for those that do support

the model, many do not adhere to Google’s guidelines. We attribute this unsatisfying status quo to

the lack of automated transformation tools that can help developers refactor their code. We believe

that Droid M+ offers a significant step in preserving user privacy and improving user experience.

The third and last system is RootExplorer, a fully automated system that is able to detect

malware carrying root exploits by leveraging root exploits from commercial one-click root apps to

2

learn the exploits’ behaviors and their expected environment. Malware that are capable of rooting

Android phones are arguably, the most dangerous ones. Unfortunately, detecting the presence of

root exploits in malware is a very challenging problem. This is because such malware typically tar-

get specific Android devices and/or OS versions and simply abort upon detecting that an expected

runtime environment (e.g., specific vulnerable device driver or preconditions) is not present; thus,

emulators such as Google Bouncer fail in triggering and revealing such root exploits. In this work,

we build a system, RootExplorer, to tackle this problem. The key observation that drives the design

of RootExplorer is that, in addition to malware, there are legitimate commercial grade Android apps

backed by large companies that facilitate the rooting of phones, referred to as root providers or one-

click root apps. By conducting extensive analysis on one-click root apps, RootExplorer learns the

precise preconditions and environmental requirements of root exploits. It then uses this informa-

tion to construct proper analysis environments either in an emulator or on a smartphone testbed to

effectively detect embedded root exploits in malware. Our extensive experimental evaluations with

RootExplorer show that it is able to detect all malware samples known to perform root exploits and

incurs no false positives. We have also found an app that is currently available on the markets, that

has an embedded root exploit.

3

Chapter 2

VideoDroid: Resource Thrifty Secure

Mobile Video Transfers on Open WiFi

Networks

2.1 Introduction

There has been a recent explosion in the number of video transfers from smartphones.

In [9], it is reported that there was a fourteen-fold increase in the number of mobile video transfers

between 2010 and 2011. Apps such as Facetime are becoming increasingly popular. Preserving the

privacy or confidentiality of video transfers from eavesdroppers requires some form of encryption.

Encryption however, comes at the cost of increased delays due to processing and battery consump-

tion. Our thesis is that, one does not have to encrypt the entire video stream to be transferred to

prevent an eavesdropper from accessing the content. If one were to encrypt only certain appropri-

ately chosen parts of a video stream, there would be a sufficiently high distortion at an eavesdropper,

that would protect the confidentiality of the content.

In this work we seek to answer the following questions: (a) What parts of a video stream

(or flow) should be encrypted in order to ensure the confidentiality of any eavesdropped content?

4

and (b) What are the performance benefits (in terms of delay and battery savings) that one can reap,

from only encrypting part of the video stream? Towards answering the above questions we develop

a mathematical framework that quantifies the effect of the encryption process on the experienced

video transfer delay and the expected distortion at an eavesdropper’s site. Our framework takes

into account both the network (wireless related effects) and video content (slow versus fast motion

video) characteristics. We validate the analytical framework via extensive experimentation using

Android smartphones. While our analytical framework does not at this time quantify the energy

savings from reducing the encryption costs, we quantify the energy savings via experiments.

In more detail, our approach hinges on the insight that different packets in a video flow,

carry varied significance with respect to the decoding process. For example, I-frames are critical

for decoding, and encrypting only these frames (and sending the P-frames in the open) could poten-

tially cause the video flow to be significantly distorted and thus, useless at an eavesdropper’s site.

Encrypting only parts of a video flow can drastically decrease the video transfer delay, as well as

provide significant energy savings as discussed above. We consider the possibility of encrypting

different types of packets towards determining the strategy that is most effective; each such strat-

egy, wherein we consider encrypting a specific sub-set of packets from a video flow, is referred to

as either “the encryption policy”, or “the mode of encryption”.

Applying our analytical framework in practice: We envision our framework to be used

as follows (see Fig. 2.1). The user captures video with her mobile device and initiates the streaming

or transfer process. The UI prompts her with the choices available with respect to privacy. The set

of choices could include the two extreme cases where all packets are either encrypted or transmitted

in the open. A third choice would allow the user to minimize performance penalties (in terms of

processing delay and energy consumption) while largely preserving confidentiality. If this option is

chosen, the analytical framework is used to determine the appropriate encryption policy. The model

is first calibrated with a few sample measurements to estimate scenario parameters; a tool such as

AForge [1] can be used to estimate the motion level in the video, while the device capabilities and

network conditions are estimated to determine the penalties with each partial encryption choice.

5

No privacy

User

Input

Do not encrypt

packets

Encrypt all packets

Encryption policy with

minimum penalties

Calibration of

model

Full privacy

Preserve privacy with

performance tradeoff

Video clip (slow/fast)

Minimal measurements

(arrival rates, packet lengths, PDR)

Policy!

to Use

Figure 2.1: Applicability of our framework.

The correct level of encryption is then applied while transferring the video.

In summary, our contributions in this work are:

• We develop an analytical framework that captures the impact of an encryption policy (which

packets are encrypted) on key performance metrics of a secure video transfer, viz., the delay

due to the encryption process and the distortion at an eavesdropper’s site. The framework pro-

vides a quick and effective way of quantifying these performance metrics for any given generic

encryption process, wireless channel parameters, and the type of video content.

• We implement various encryption policies and demonstrate the effectiveness of only encrypting

a part of the video flow via extensive experiments. The experiments also validate our analytical

framework. Specifically, by using the Android Native Development Kit (NDK) we implement

a mechanism that allows us to deploy different encryption policies on Android smartphones.

We evaluate the performance in several scenarios that span differently encoded video streams

(various GOP sizes) with different characteristics (slow-motion, fast-motion video streams) and

with different encryption policies.

Key results: The key observations from our evaluations are the following:

• By only encrypting parts of a video flow, confidentiality can be preserved while achieving both

battery savings and reduced transfer latency. In many cases, these performance benefits are sig-

nificant; the transfer latency reductions were in some cases 75% and the energy consumed was

reduced by 92% in the best case.

6

• The right strategy in terms of what parts of a video flow to encrypt, depends on the content itself.

We find that the encryption of I-frames distorts slow motion video more than fast motion video;

the encryption of just the P-frames distorts fast motion video more than the slow motion video.

This is because, rapid changes between scenes in fast-motion videos cause the P-frames to carry

significant information regarding the content, whereas with slow motion video, these frames do

not carry much information.

• Due to the same reasoning as above, with slow-motion video the encryption of the I-frames

sufficiently protects the content from an eavesdropper; significant savings in cost in terms of

the delay and power consumption are possible with this strategy. With fast-motion video, 20%

of the P-frames need to be encrypted in addition to the encryption of the I-frames, to ensure

confidentiality. As a consequence, the savings in cost are less significant.

2.2 Background and Related Work

Video Standards and Terminology: Standards such as MPEG-4 [103] and H.264/AVC [186]

specify the encoding and transmission of video flows over a network. Typically, the initial video

stream has a repetitive structure called Group of Pictures (GOP), which contains an initial I-frame

followed by P and B frames (B-frames are optional). The size of the I-frame varies from GOP

to GOP, while the sizes of the P and B frames differ within and across GOPs. Depending on the

Maximum Transmission Unit (MTU) of the network, each frame is segmented into a number of

packets that are transmitted over the network1. With predictive source encoding, the I-frame can be

decoded independently of any other information within the GOP and each of the P and B frames

use the I-frame as a reference [41]. In this work, we assume an IPP. . .P encoding structure for each

GOP. We refer to the distance between consecutive I-frames as the GOP size.

Encryption in Commercial Video Delivery: Various solutions have been proposed for

commercial video delivery (not mobile or wireless specific). The HTTP Dynamic Streaming (HDS),

developed by Adobe, allows different levels of encryption for the content (low, medium, high).

1Thus, one can assume that the number of packets in a GOP is a random variable.

7

While at a high level it appears that with lower settings only a subset of the frames are encrypted

to provide performance improvements during decryption at a receiving client, no details are readily

available. In our work, we consider the appropriate frames for encryption during user transfers, with

the primary purpose of protecting the content against an eavesdropper.

The HTTP Live Streaming (HLS), implemented by Apple as part of the QuickTime soft-

ware, also specifies an encryption mechanism that uses AES and a method of secure key distribu-

tion based on HTTPS. Finally, the Dynamic Adaptive Streaming over HTTP (DASH) is an MPEG

standard (ISO/IEC 23009-1) which enables media content delivery over HTTP. All these platforms

operate over HTTP; however each of these uses different segment formats and therefore, to receive

the content from each server, a device must support its corresponding proprietary client protocol.

Capturing the impact of wireless links on video: There has been some work on ana-

lyzing video communications over wireless links. In [104], the authors model the effect of wireless

channel fading on video distortion. Video streaming over a multi-hop IEEE 802.11 wireless net-

work is studied in [119, 144]. These efforts however, do not consider the impact of encryption on

video distortion.

In [126] the selective encryption paradigm is discussed and various consumer applications

are presented where compression and encryption occur together. However, no analysis is given

regarding the behavior of key performance attributes in any case. In [180], the authors focus on

wireless sensor networks and propose a scheme to selectively encrypt data based on the channel

condition in order to improve video quality. However, in their study they do not take into account

the characteristics of the video (slow vs fast motion) or the delay incurred due to the encryption

process.

Impact of Encryption on Battery: There are studies on the energy consumption due to

encryption on wireless devices. In [61], a comparison of the energy consumption due to common

encryption algorithms (AES, DES, 3DES, RC2, Blowfish and RC6) on wireless devices is presented.

In [147], an analysis of energy consumption of RC4 and AES algorithms in wireless LANs is

provided. However, these works do not consider selective encryption of video as we do here.

Other Related Work: Partial encryption of content in photos is considered in [150]. An

8

encoding algorithm that extracts and encrypts a small but significant component of a photo, is pro-

posed. In contrast, we consider the structure of a video stream towards preserving its confidentiality.

2.3 Threat Model and Assumptions

Threat model: In this work, we focus on a specific threat to privacy arising when trans-

ferring video flows or streams from a wireless device over a WiFi connection. Specifically, we

consider the capture of content by an eavesdropper who is on the same open WiFi network. This

situation arises typically in public places where WiFi is offered for free, e.g., cafes, malls, libraries,

airport terminals (e.g., see [5, 8]).

Our goal is to secure wireless video transfers from eavesdroppers in a resource efficient

way, with respect to the delay and the energy consumption on the wireless device. We expect the

user to select the level of protection based on the sensitivity of the content. We define a selection

policy P to be (i) the encryption algorithm that is used for protecting the transmitted packets, and

(ii) the set of packets to be encrypted. In the extreme case where the content is highly sensitive and

no information is to be leaked, all packets are to be encrypted. If the information is not sensitive, no

packets are encrypted and this eliminates the performance penalties due to the encryption process.

A user may simply seek to distort the video flow at an eavesdropper’s site, thus risking the leakage

of some information, but preserving the confidentiality to a large extent. Thus, we seek to provide

the user with a control mechanism over the protection level for his content by defining various

encryption policies. Each such policy results in the encryption of a specific sub-set of packets,

(I-frame packets, P-frame packets, mixture of both) based on the required protection level and the

associated performance cost. Depending on the level of distortion induced, an eavesdropper may

be able to glean some information from the flow, but not all information; for example, he may

determine that the flow is that of a football game, but may be unable to identify the players in the

stream2.

We focus on symmetric key encryption and assume that the mutual authentication and the

2We reiterate that a user may choose to encrypt all packets in an extreme case.

9

agreement on the symmetric encryption method has been completed a priori (before the video is to

be transferred). We also assume that the user has a valid key that has been established either using

Public Key Infrastructure (PKI) or the standard Diffie-Hellman (DH) key exchange algorithm. For

each encryption policy P , the sender selects the appropriate set of packets to be encrypted. For

each of these packets, the payload is encrypted using the symmetric key algorithm defined by P

and the ‘a priori established’ secret key and transmitted on the wireless uplink. We emphasize that

establishment of keys or authentication are not the focus of our work.

We assume that an unauthorized eavesdropper using the same WiFi network, is able to

overhear transmissions but cannot decrypt packets, encrypted by the sender under P . This af-

fects the video distortion at the eavesdropper, since the encrypted packets cannot be used towards

reconstructing the video during the video decoding phase.

We do not consider a traffic analysis attack by the eavesdropper. Specifically, we make no

attempt to encrypt the headers that contain information such as IP addresses; while this can be easily

accomplished this is not the goal of our work. The eavesdropper may be able to distinguish packets

as belonging to either I-frames or P-frames based on their size or other characteristics. While the

sender can obfuscate these features by using techniques such as padding the payload, we do not

consider these possibilities in this work.

Other assumptions: Our key idea and approach is agnostic of whether the video flow

is transferred using HTTP or RTP, and the transport layer in use. It can be applied with real-time

streaming (e.g., Facetime) or for transfers to a server. Facetime uses RTP (or Secure RTP) over either

UDP or TCP [11]. Other applications for video transfers (e.g., Google hangouts) also use UDP [6].

Commercial content delivery systems operate over HTTP and therefore, TCP. For tractability (so

that we do not have to model TCP behaviors) we assume the use of RTP and UDP in our analysis.

However, we experimentally demonstrate in Section 2.6 that our key ideas hold with HTTP/TCP.

We also defer the problem of jointly encoding and encrypting video. Furthermore, we

expect that the volume of audio content is going to be much lower than video and thus, all of it can

be encrypted. However, we do not consider this here and will explore these issues in future work.

10

2.4 Our Analytical Framework

In this section, we present our mathematical framework to characterize the effect of an

encryption policy P on (i) the increase in delay due to encryption and (ii) the distortion at an

eavesdropper due to a chosen encryption policy. An encryption policy P defines (i) the symmetric

key algorithm that is used for encrypting packets at the sender and (ii) the packets to be selected for

encryption.

2.4.1 Packet Success Rate

A key parameter to our delay and distortion analysis is the packet success rate of the

network. As discussed above, we consider a WiFi network based on the IEEE 802.11 standard.

There are various models (e.g., [34, 74]) that attempt to capture the operations of the IEEE 802.11

protocol. We use the model in [34] to represent the operations of the PHY and MAC layers. The

model consists of three sets of equations (representing scheduling, channel access and routing)

which are solved through a fixed point method. The solution is an approximation to the packet

success rate ps under the assumption that the traffic at the source nodes are persistent.

2.4.2 Delay

Video transfer delay is important especially for streaming applications. To compute the

delay for each packet at the sender, we characterize the process as packets traversing a 2-MMPP/G/1

queue. The arrivals to the queue correspond to reading video file segments from the disk and storing

them to a buffer in the memory. Based on the encryption policy P , the server decides whether to

encrypt the packet at the head of the queue or not, and then transmits the packet over the channel.

This implies that the service time consists of a possible delay due to the encryption process, a

backoff time due to possible collisions at the shared medium and the transmission time.

11

Arrival Process

The arrival process models the time instances where video files segments are read from

the local disk and enqueued in a buffer for transmission. A segment that corresponds to an I-frame

is typically larger than the MTU of the network and is thus fragmented into several packets with

lengths equal to the MTU. On the other hand, a P-frame typically corresponds to a single packet

that is much smaller than the MTU of the network. In the first case, the interarrival times of the

packets that belong to an I-frame are much smaller compared to those that are associated with the

arrival of P-frame packets. Therefore, there is a need to capture the two different phases of the

arrival process. A natural choice is the Markov modulated Poisson process (MMPP), which is a

doubly stochastic Poisson process where the rates are determined by the state of a continuous-time

Markov chain [101].

We use a two-state Markov chain where the rate of transition from state 1 to state 2 is ρ1

and from state 2 to state 1 is ρ2. When the chain is in state 1 the arrival rate is λ1 and the process

models the arrival of I-frame packets (small interarrival times). When the chain is in state 2 the

arrival rate is λ2 and the process models the arrival of P-frame packets (larger interarrival times).

The MMPP is then parameterized by the infinitesimal generator R associated with the Markov chain

and the rate matrix Λ:

R =

 −ρ1 ρ1

ρ2 −ρ2

 , Λ =

λ1 0

0 λ2

 . (2.1)

The equilibrium probability vector π (representing the probabilities of being in state j, j ∈ {1,2})

is given by:

π =
1

ρ1 +ρ2
(ρ2,ρ1). (2.2)

Service Times

The total service time T of a packet is the time from the moment the packet reaches the

server until it is successfully transmitted. This time includes the encryption time T (P)
e in case the

packet is scheduled for encryption based on the encryption policy P , the backoff time Tb that the

12

packet may need to wait at the transmitter due to collisions and the transmission time Tt ,

T = T (P)
e +Tb +Tt . (2.3)

The encryption time T (P)
e of a packet depends on the packet size and the encryption policy

P . In a typical GOP structure the initial I-frame is larger than the following P-frames (e.g., an I-

frame can be 100 times larger than a P-frame) [41]. Therefore, as discussed earlier, an I-frame is

typically fragmented into a sequence of packets that have lengths equal to the MTU of the network,

while a P-frame corresponds to a single packet of a much smaller length. Moreover, the use of

different encryption algorithms result in different delays and in general, affects the encryption time.

If q(P) is the probability that a packet is selected for encryption under an encryption

policy P and pI is the probability that a packet belongs to an I-frame, then the distribution F(P)
e (·)

of the encryption time T (P)
e is a mixture distribution derived from the distributions F(P)

e,I (·) and

F(P)
e,P (·) of the encryption time T (P)

e,I of a packet that belongs to an I-frame and the encryption time

T (P)
e,P of a packet that belongs to a P-frame, respectively:

F(P)
e (τ) = P{T (P)

e < τ}

= P{T (P)
e < τ , I-frame pkt, encrypted}

+P{T (P)
e < τ , P-frame pkt, encrypted}

= q(P) pI P{T (P)
e,I < τ}+q(P) (1− pI)P{T (P)

e,P < τ}

= q(P) pI F(P)
e,I (τ)+q(P) (1− pI)F(P)

e,P (τ). (2.4)

We compute the Laplace-Stieltjes transform H(P)
e (·) of T (P)

e by using (2.4) and the sta-

13

tistical independence of T (P)
e,I and T (P)

e,P :

H(P)
e (s) =

∫ +∞

0
e−sτ dF(P)

e (τ)

= q(P)pI

∫ +∞

0
e−sτdF(P)

e,I (τ)

+q(P)(1− pI)
∫ +∞

0
e−sτdF(P)

e,P (τ). (2.5)

The time Tb corresponds to the time the packet has to wait at the transmitter due to col-

lisions at the MAC layer. The packet is successfully transmitted without any collisions with prob-

ability ps and when this happens Tb = 0. Otherwise, the backoff time can be approximated by the

sum ∑
K
j=1 τ j of independent, exponentially distributed random variables {τ j, j = 1,2 . . . ,K} with

mean 1/λb, each corresponding to a waiting interval after a collision. The number K of collisions

experienced by a packet, and therefore, the number of the waiting times τ j, is distributed according

to

P{K = k}= (1− ps)
k ps, k = 0,1,2, (2.6)

The Laplace-Stieltjes transform Hb(·) of Tb can be computed to be:

Hb(s) = ps
λb + s

λb ps + s
, s < λb. (2.7)

The transmission time Tt of a packet depends on the packet size. The distribution Ft(·) of

the transmission time Tt is a mixture distribution derived from the distributions Ft,I(·) and Ft,P(·) of

the transmission time Tt,I of a packet that belongs to an I-frame and the transmission time Tt,P of a

packet that belongs to a P-frame, respectively. If pI is the probability that a packet belongs to an

14

I-frame, then

Ft(τ) = P{Tt < τ}

= P{Tt < τ , I-frame pck}+P{Tt < τ , P-frame pck}

= pI P{Tt,I < τ}+(1− pI)P{Tt,P < τ}

= pI Ft,I(τ)+(1− pI)Ft,P(τ). (2.8)

We compute the Laplace-Stieltjes transform Ht(·) of Tt by using (2.8) and the statistical

independence of Tt,I and Tt,P:

Ht(s) =
∫ +∞

0
e−sτ dFt(τ)

= pI

∫ +∞

0
e−sτdFt,I(τ)+(1− pI)

∫ +∞

0
e−sτdFt,P(τ). (2.9)

Assuming the random variables T (P)
e , Tb and Tt are mutually independent, the Laplace-

Stieltjes transform H(·) of the service time T can be computed from (2.5), (2.7) and (2.9) to be:

H(s) = H(P)
e (s)Hb(s)Ht(s), s < λb. (2.10)

Special Cases:

Constant encryption and transmission times: If the encryption times T (P)
e,I and T (P)

e,P for

the packets that belong to an I and a P-frame, respectively, are constant such that:

T (P)
e,I = µ

(P)
e,I , T (P)

e,P = µ
(P)
e,P , (2.11)

then (2.5) becomes:

H(P)
e (s) = q(P)pIe−s µ

(P)
e,I +q(P)(1− pI)e−s µ

(P)
e,P . (2.12)

Similarly, if the transmission times Tt,I and Tt,P of the packets that belongs to an I-frame and a

15

P-frame, respectively, are constant such that:

Tt,I = µt,I, Tt,P = µt,P, (2.13)

then (2.9) becomes:

Ht(s) = pIe−s µt,I +(1− pi)e−s µt,P . (2.14)

Accounting for minor variations: If we want to account for minor variations of the en-

cryption and transmission times (seen to occur due to minor variations in packet size in our practical

experiments described in Section 2.6) about some typical values, we can represent these variations

by independent Gaussian random variables, such that:

T (P)
e,I = µ

(P)
e,I + r(P)

e,I , T (P)
e,P = µ

(P)
e,P + r(P)

e,P , (2.15)

where µ
(P)
e,I is constant and equal to the time needed to encrypt a packet of size equal to the MTU

of the network under the encryption policy P and µ
(P)
e,P corresponds to a typical encryption time

for a packet that belongs to a P-frame. The quantity r(P)
e,I is a normal random variable with zero

mean and variance (σ
(P)
e,I)2 that represents small variations in the encryption time of a packet that

belongs to an I-frame and is selected for encryption. Similarly, r(P)
e,P is a normal random variable

with zero mean and variance (σ
(P)
e,P)2 that represents variations in the encryption time from packet

to packet for the P-frames. Clearly, T (P)
e,I ∼N (µ

(P)
e,I ,(σ

(P)
e,I)2) and T (P)

e,P ∼N (µ
(P)
e,P ,(σ

(P)
e,P)2).

Representing the transmission times of packets that belong to I and P-frames in a similar

way, we have:

Tt,I = µt,I + rt,I, Tt,P = µt,P + rt,P, (2.16)

where µt,I is constant and equal to the time needed to transmit a packet of length equal to the MTU

of the network and where µt,P corresponds to a typical transmission time for a P-frame packet.

The quantity rt,I represents minor random variations in the transmission time of an I-frame packet,

modeled as a normal random variable with zero mean and variance σ2
t,I and rt,P is a normal random

16

variable with zero mean and variance σ2
t,P that represents minor variations in the transmission time

of a P-frame packet. Clearly, Tt,I ∼N (µt,I,σ
2
t,I) and Tt,P ∼N (µt,P,σ

2
t,P).

Using the representations in (2.15) and (2.16), the Laplace-Stieltjes transforms H(P)
e (·)

and Ht(·) of the encryption and transmission times T (P)
e and Tt , respectively, become:

H(P)
e (s) = q(P) pI e−µ

(P)
e,I s+ 1

2 (σ
(P)
e,I)2s2

+q(P) (1− pI)e−µ
(P)
e,P s+ 1

2 (σ
(P)
e,P)2s2

, (2.17)

Ht(s) = pI e−µt,Is+ 1
2 σ2

t,Is
2
+(1− pI)e−µt,Ps+ 1

2 σ2
t,Ps2

, (2.18)

where we used the fact that the Laplace-Stieltjes transform of a normal distribution with mean µ

and variance σ2 is e−µs+ 1
2 σ2s2

. Note that we use this second model in our evaluations described in

Section 2.6.

2-MMPP/G/1 Queue Model

The delay experienced by each packet at the sender can be estimated by the 2-MMPP/G/1

queueing model described above. An algorithmic approach that solves the n-MMPP/G/1 queue

model is given in [95] and refined in [68] for the case n = 2. The algorithm describes a numerical

procedure that is shown to converge to the solution of the model. It is based on a general method

introduced in [135] and applied in [152] to provide a detailed statistical analysis of the N/G/1 queue.

The method takes as input the infinitesimal generator R and the rate matrix Λ of the MMPP

and the Laplace-Stieltjes transform of the service time given by (2.10). The algorithm computes the

distribution function and the moments of the delay seen by the video packets. In particular, the

expected value of the queueing delay W is given by

E[W] =
1

2(1−ρ)

[
2ρ +µ

(2)
πλ

− 2µ
(1)(y+µ

(1)
πΛ)(R+ eπ)−1

λ

]
, (2.19)

where ρ = πλ µ(1) is the traffic intensity, µ(1),µ(2) are the first and second moments about the origin

17

respectively, of the service time that can be computed directly from (2.10), λ is the vector with the

diagonal elements of Λ, e = (1,1)T and the vector y is computed by the algorithm.

2.4.3 Distortion

There are two parameters that control the video distortion: (i) the packet decryption rate

pd and (ii) the decoder sensitivity s. The packet decryption rate represents the probability that a

packet is received without errors at a node and that the node is able to correctly decrypt the packet.

A legitimate receiver has all the necessary information to correctly decrypt packets from the sender;

on the other hand an eavesdropper lacks this capability. Therefore, an eavesdropper can only use

packets that the sender has decided not to encrypt towards reconstructing the video, when the latter

follows a specific encryption policy P . If we denote by q(P) the percentage of packets encrypted by

the sender under an encryption policy, then the decryption rates pl
d and pe

d of a legitimate receiver

and an eavesdropper, respectively, are: pl
d = ps and pe

d = (1− q(P)) ps, where ps is the packet

success rate (recall Section 2.4.1).

The parameter s represents the sensitivity of the decoder to packets that are missing in the

receiving stream (either due to interference-induced losses, or in the case of the eavesdropper due

to the lack of decryption capabilities). It is the minimum number of packets that the decoder needs

to receive (and decrypt) without errors in order to decode the corresponding frame correctly. The

sensitivity is associated with the video content itself and specifically with the motion level. When a

video flow is characterized by high (or fast) motion, the sensitivity s has a higher value compared to

a low (or slow) motion video. This is because in a high motion video flow, the difference between

successive frames in the GOP structure is large and the loss of a frame has a higher impact on the

overall video quality.

Video Frame Success Rate

We map the packet decryption rate pd to the video frame (referred to as simply ‘frame’)

success rate Pf , which denotes the probability a frame is successfully received over the wireless

link. As was mentioned in Section 2.2, we assume that each GOP has an IPP. . .P-structure.

18

If n is the number of packets in each frame, then to successfully decode a frame, (a)

the first packet of that frame needs to be received without channel-induced errors and successfully

decrypted, and (b) the same should hold true for 0≤ s≤ n−1 of the remaining n−1 packets. The

success probability of a frame is given by:

Pf = pd

n−1

∑
i=s

(
n−1

i

)
pi

d (1− pd)
n−1−i . (2.20)

In general, the I-frame is much larger than a P-frame. As a result, the frame success probabilities

for an I and a P-frame also differ. We denote by PI , the success probability of an I-frame and by PP,

the success probability of a P-frame. We have validated the above model via extensive experiments

using the EvalVid tool [3].

Mean Square Error

Let the GOP structure contain G−1 P-frames that follow the I-frame. We consider pre-

dictive source coding where, if the ith frame is the first lost frame in a GOP, then the ith frame and

all its successors in the GOP are replaced by the (i−1)st frame at the decoder. If the I-frame of the

GOP cannot be decoded correctly, then the entire GOP is considered unrecoverable and is ignored.

In this case, these lost video frames are replaced by the most recent frame from a previous GOP that

is correctly received. In all cases, the similarity between the missing frames and the reference frame

(substitute frame) affects the distortion [181].

We compute the video distortion as the mean square error of the difference between the

missing frame and the substitute frame. We have the following cases:

Case 1 – Intra-GOP distortion: The I-frame of the current GOP is successfully re-

ceived. The distortion for the current GOP depends on which, if any, of the P-frames of the GOP

cannot be decoded without errors. If the first unrecoverable P-frame is the ith frame in the GOP, the

corresponding distortion is given by [104]:

di = (G− i)
i ·G ·dmin +(G− i−1) ·dmax

(G−1) ·G
, (2.21)

19

for i = 1,2, . . . ,(G−1), where dmax is the maximum distortion when the first frame is lost and dmin

is the minimum distortion when the last frame is lost. The values of dmax and dmin can be estimated

given the probability of a packet loss. The probability Pi that the ith frame is lost is

Pi = PIPi−1
P (1−PP), i = 1,2, . . . ,(G−1). (2.22)

Using (2.21) and (2.22), the expected value of the distortion can be computed to be: D(1) = ∑
G
i=1 di ·

Pi

Case 2 – Inter-GOP distortion: The I-frame of the current GOP is lost and a frame from

a previous GOP is used as the reference frame. Here, the difference between the reference frame

and the missing frames determine the distortion.

Similar to the work in [181], we expect to see the motion characteristics of the video

affecting distortion. To capture the dependence of the inter-GOP distortion on the motion level of

the video we perform a set of experiments and use the collected results to statistically describe this

association.

Specifically, we select a set of video streams from [13] and categorize them into three

groups according to their motion level: low, medium and high, using the tool in [1]. All video

streams have 300 frames each, with a frame rate of 30 frames per second. We use FFmpeg [4] to

convert the video streams from the initial, uncompressed YUV format to the MP4 format. Then, we

artificially create video frame losses in order to achieve reference frame substitutions from various

distances. Finally, we use the Evalvid toolset [3] to measure the corresponding video distortion.

In Fig. 2.2 the dependence of the average distortion on the distance between the missing

frame and the substitute is shown for the three categories. In order to use these empirical results

in other experiments, we approximate the observed curves with polynomials of degree 5 using a

multinomial regression (use of higher degree polynomials does not increase accuracy). In particular,

we define the approximate distortion D(2) as a function of the distance d: D(2)(d) = ∑
5
i=0 ai di, and

compute the coefficients a0, . . . ,a5, using the regression.

20

0 1 2 3 4 5 6
Distance

50

55

60

65

70

75

80

85

D
is
to
rt
io
n

Measurements

Model

(a) Low motion

0 1 2 3 4 5 6
Distance

60

80

100

120

140

160

180

200

220

D
is
to
rt
io
n

Measurements

Model

(b) Medium motion

0 1 2 3 4 5 6
Distance

200

300

400

500

600

700

800

D
is
to
rt
io
n

Measurements

Model

(c) High motion

Figure 2.2: Average distortion with distance.

Case 3 – Initial GOP: The I-frame of the current and all previous GOPs (including the

first GOP) are lost. In this case the distortion D is maximized. If {D(1)
max,D

(2)
max, . . . ,D

(‖G ‖)
max }, where

G is the set of all GOPs in the video flow, is the set of the maximum distortion values in all GOPs,

then D(3) = maxk∈G D(k)
max.

Computing Average Distortion

Suppose the video flow has N GOPs and each GOP consists of an I-frame followed by

G− 1 P-frames. For each GOP of the flow define the state Si, i = 1,2, . . . ,N, such that Si ∈S =

{0,1, . . . ,G}. The state Si for the ith GOP indicates which is the first unrecoverable frame in that

GOP. Specifically,

Si =

0, I-frame is lost,

k, kth P-frame is lost, 1≤ k ≤ (G−1),

G, none of the frames is lost,

(2.23)

21

for i = 1,2, . . . ,N. The initial state for each GOP is G. The transition probability pi(G,g) of state Si

from G to g ∈S is

pi(G,g) =

1−PI, g = 0,

PIPk−1
P (1−PP), g = k,1≤ k ≤ (G−1),

PIPG−1
P , g = G,

(2.24)

for i = 1,2, . . . ,N.

To compute the expected value of the distortion for the transmission of the video stream

over the wireless channel we need to consider the states of all the GOPs. We define the vector

S = (S1,S2, . . . ,SN)∈S ×S ×·· ·×S . The initial state of S is G = (G,G, . . . ,G) and its transition

probability p(G,g) to a new state g = (g1,g2, . . . ,gN) is

p(G,g) =
N

∏
i=1

pi(G,gi). (2.25)

The overall distortion for the video stream transmission depends on the final state g. As

was discussed earlier in Case 2, the distortion of a GOP may depend not only on missed frames in

that GOP but on frames that are missing in previous GOPs as well. Therefore, if Di is the distortion

of the ith GOP, it is a function of the vector g and not only of the ith component of g. We define

the random variable D(g) = (D1(g),D2(g), . . . ,DN(g)) consisting of the distortions of each of the

GOPs of the video flow. Using (2.25) we have:

E[D] = (E[D1], . . . ,E[DN]) = ∑
g

p(G,g)D(g) (2.26)

The average distortion that corresponds to the video file is

D̄ =
1
N

N

∑
i=1

E[Di]. (2.27)

22

!"#"$%"&'(")*"&'

GPAC

Encryption

Policy

RTP

UDP/IP

MAC

PHY

Encrypted
?

GPAC

Decryption

RTP

UDP/IP

MAC

PHY

YN

E
v
a

lV
id

Eavesdropper

Figure 2.3: Block diagram for sender and receiver.

Mapping Distortion to PSNR

In all the results we present in the sequel, we use the Peak Signal-to-Noise Ratio (PSNR)

which is an objective video quality measure [41]. The relationship between distortion and PSNR

(in dB) is given by [41]:

PSNR = 20 · log10
255√

Distortion
(2.28)

The goal then is to encrypt enough frames to drive the PSNR to be as low as possible at an eaves-

dropper’s site.

2.5 Implementation

We implement a software framework on the Android NDK and SDK that allows us to

test various encryption policies. To achieve this we use GPAC [7] and the EvalVid [3] toolset. The

former is a cross-platform open source multimedia framework which provides support for creating,

parsing and streaming multimedia packaging formats, such as MP4. The latter provides tools for

evaluating the quality of video which is transmitted over a network. Our application modifies the

EvalVid tool to read and then securely transmit a video stream according to the selected encryption

23

policy.

With our application, the user selects which video to transmit, the receiver and the encryp-

tion policy. The application uses the GPAC library to read the video from the disk into the internal

memory. There are two threads that access the memory; the producer thread reads the video seg-

ments from the disk and stores them in a queue, and the consumer thread reads the segment from

the head of the queue and forwards it to the block of code that implements the encryption policy

selected by the user. Our code checks whether the video segment satisfies the encryption selection

rule defined by the policy in effect or not. If it does, it uses the GPAC API to encrypt the segment

according to the encryption algorithm (AES128, AES256, 3DES) using the Output Feedback Mode

(OFB). The OFB encryption mode is applied to each segment separately, and therefore a possible

error at the receiver does not propagate to the following segments during the decryption process. By

default, we assume the use of RTP and UDP; we discuss experiments with HTTP/TCP transfers in

Section 2.6.4. Whether the video segment is encrypted or not, it is encapsulated in an RTP packet.

In the case that encryption has been performed, the Marker Bit in the RTP header is set denoting the

event to the receiver. The RTP packet is transmitted over UDP to the receiver.

Upon the reception of an RTP packet, the receiver checks the Marker Bit in the RTP

header to decide if the RTP payload is encrypted. If the Marker Bit is set, the receiver uses the

GPAC API to decrypt the packet according to the encryption policy. The received packets are then

combined in order to reconstruct the MP4 video file. Fig. 2.3 depicts the operations performed at

the sender and receiver.

The eavesdropper (see Fig. 2.3) overhears the transmission on the channel by using tcpdump

on his rooted phone or laptop. Only the unencrypted packets can be used towards reconstructing the

overheard video stream. Because of this, the eavesdropper experiences significantly higher video

transmission distortion than that at the legitimate receiver.

24

Table 2.1: Experimental Setup

Frame Size CIF (352x288)

GOP Size 30, 50

Video Motion slow-motion, fast-motion

Encryption Algorithm AES128, AES256, 3DES

Encryption Level none, I-frame, P-frame, all

Wireless Devices Samsung Galaxy S-II, HTC Amaze 4G

Android Version Ice Cream Sandwich (4.0)

2.6 Evaluation

This section demonstrates the viability of the approach, quantifies the trade-off between

the transfer delay, and the distortion at an eavesdropper’s site and discusses the impact of the video

type (slow vs fast motion) on the mode of encryption needed. Experimental results on the bat-

tery savings with different modes of encryption are also presented. Results with HTTP/TCP are

presented at the end of the section.

2.6.1 Methodology

We validate our analysis through extensive experiments using smartphones running our

Android application over WiFi connections (IEEE 802.11g). Table 2.1 lists the parameters consid-

ered.

Wireless devices: All the experiments are repeated on two different smartphones, viz.,

(i) the Samsung Galaxy S-II that has a 1.2 GHz dual-core ARM Cortex-A9 CPU, an ARM Mali-

400 MP4 GPU, and 1 GB RAM and (ii) the HTC Amaze 4G equipped with a 1.5 GHz dual core

Qualcomm Snapdragon S3 CPU, Adreno 220 GPU and a 1 GB RAM. Both devices run Android

4.0 (Ice Cream Sandwich).

Strategies tested: Twelve encryption policies are tested; they consist of all possible com-

binations of three different encryption algorithms and four modes of packet encryption. In particular,

25

the three symmetric key encryption algorithms that are considered are the AES128, AES256 [174]

and 3DES [22]. Due to space constraints we only show the results for AES256 and 3DES. The

results for the AES128 encryption algorithm are similar and follow the same trends. The complete

set of results is in our technical report [143]. For the packet encryption selection rules, we consider

the two extreme cases where either all or none of the packets are encrypted. We also consider the

case where only the packets that belong to an I-frame are encrypted and the case where only the

packets that belong to P-frames are encrypted. Finally, we consider encrypting the I-frames and

different fractions of the P-frames. We did limited experiments with other possibilities (only partial

encryption of I-frames) but did not pursue these beyond that since the behavioral results could be

extrapolated based on the results that we present here.

Types of video flows: The experiments are performed on two kinds of video flows: slow-

motion and fast-motion video flows. Slow-motion video flows are characterized by slow changes

from picture-frame to picture-frame and therefore the size of the P-frames in each GOP are typi-

cally small (tens to hundreds of bytes). On the other hand, fast-motion video flows contain rapid

changes between picture-frames having as a result larger P-frames. We use the AForge [1] tool to

dynamically categorize the motion level in different parts of the video clip. The motion level of a

video flow affects not only the GOP structure (i.e. percentage of I-frame and P-frame packets in the

GOP structure) but also the sensitivity of the video decoder to the packet loss ratio. A fast-motion

video flow is more susceptible to packet losses and therefore the distortion at the receiver (or eaves-

dropper) can be naturally higher compared to the case where a comparable in size, slow-motion

video flow is transmitted over the same wireless link. All video flows are of the same picture-frame

size (CIF-352x288 pixels) and are encoded using the publicly available x264 [12] software library

and application into different GOP sizes (30, 50 frames).

Experimental methodology: We use the Android application that we have developed to

measure the delay due to the encryption and the EvalVid toolset to compute the distortion at the

eavesdropper. We also run tcpdump on the wireless device to capture the time when each packet is

transmitted over the wireless link. EvalVid supports performance metrics such as the Peak Signal to

Noise Ratio (PSNR) [41], which we use to represent video quality. Note that the lower the PSNR,

26

the higher the distortion.

To compute the delay and distortion we follow a sequence of steps: we start with the

initial uncompressed video files which consist of a sequence of YUV [102] frames. Using the

EvalVid toolset, we transform the YUV format, first to the H.264 format and then to a MP4 video

file. Next, we use the Android application we have developed to transmit the video stream to the

legitimate receiver. During this phase, we select the set of packets to be encrypted based on the

encryption policy that is in effect. We keep track of the time instances at which each packet reaches

different parts of our application. These statistics include the time instances when the packet enters

and leaves the queue that is shown in Fig. 2.3, the time duration needed to encrypt the packet,

in case this packet is selected for encryption, and the time instance when the packet is forwarded

to the transport layer. Furthermore, we use tcpdump to capture the time instance the packet is

transmitted over the wireless link. At the legitimate receiver, all the successfully received packets

are used to reconstruct the initial video using the EvalVid toolset. At the eavesdropper, only the

successfully received unencrypted packets contribute in the reconstruction of the pilfered video

stream. Encrypted packets are treated as erasures. Each experiment is repeated 20 times and the

values of the queueing delay and distortion are used to compute the averages and the 95% confidence

intervals.

Applying the mathematical framework: We use an initial sequence of events to tune the

parameters of our mathematical model. The times of insertion of video segments into the internal

queue (see Fig. 2.3) and their type (I, B-frames) are used to estimate the 2-MMPP parameters, R and

Λ in (2.1). The sequence of times that are necessary for the encryption of an initial set of packets

and the fraction of packets that are encrypted, are used to estimated the mean and variance of the

encryption time Te. Similarly, the observation of the transmission of an initial set of packets can

provide estimates for the mean and variance of the transmission time Tt and the parameter λb for

the backoff time Tb, characterizing this way the service time T in (2.3). Note, the client has access

locally to all the necessary information to compute these estimates.

27

✥

�

✁✥

✁�

✂✥

✂�

✄✥

♥☎♥✆ P ■ ❛✝✝

✞
✟
✠
✡

☛☞
✌
✍

❊♥✎✏✑✒✓✔☎♥ ✕✆✖✆✝ ✗✘ ☎✙ ✆♥✎✏✑✒✓✆✚ ✒❛✎✛✆✓✜✢

❉✔✜✓☎✏✓✔☎♥ ✗✣✝☎✤✦✧☎✓✔☎♥★ ✩✪P✫✄✥✢

❆♥❛✝✑✜✔✜

❊✬✒✆✏✔✧✆♥✓

(a) Slow-motion, GOP=30.

✥

�

✁✥

✁�

✂✥

✂�

✄✥

♥☎♥✆ P ■ ❛✝✝

✞
✟
✠
✡

☛☞
✌
✍

❊♥✎✏✑✒✓✔☎♥ ✕✆✖✆✝ ✗✘ ☎✙ ✆♥✎✏✑✒✓✆✚ ✒❛✎✛✆✓✜✢

❉✔✜✓☎✏✓✔☎♥ ✗✣❛✜✓✤✦☎✓✔☎♥✧ ★✩P✪✄✥✢

❆♥❛✝✑✜✔✜

❊✫✒✆✏✔✦✆♥✓

(b) Fast-motion, GOP=30.

✥

�

✁✥

✁�

✂✥

✂�

✄✥

♥☎♥✆ P ■ ❛✝✝

✞
✟
✠
✡

☛☞
✌
✍

❊♥✎✏✑✒✓✔☎♥ ✕✆✖✆✝ ✗✘ ☎✙ ✆♥✎✏✑✒✓✆✚ ✒❛✎✛✆✓✜✢

❉✔✜✓☎✏✓✔☎♥ ✗✣✝☎✤✦✧☎✓✔☎♥★ ✩✪P✫�✥✢

❆♥❛✝✑✜✔✜

❊✬✒✆✏✔✧✆♥✓

(c) Slow-motion, GOP=50.

✥

�

✁✥

✁�

✂✥

✂�

✄✥

♥☎♥✆ P ■ ❛✝✝

✞
✟
✠
✡

☛☞
✌
✍

❊♥✎✏✑✒✓✔☎♥ ✕✆✖✆✝ ✗✘ ☎✙ ✆♥✎✏✑✒✓✆✚ ✒❛✎✛✆✓✜✢

❉✔✜✓☎✏✓✔☎♥ ✗✣❛✜✓✤✦☎✓✔☎♥✧ ★✩P✪�✥✢

❆♥❛✝✑✜✔✜

❊✫✒✆✏✔✦✆♥✓

(d) Fast-motion, GOP=50.

Figure 2.4: Distortion at an eavesdropper’s site for slow and fast motion video flows.

✥

�

✁

✂

✄

☎

♥✆♥✝ P ■ ❛✞✞

▼
✟
✠

❊♥✡☛☞✌✍✎✆♥ ✏✝✑✝✞ ✒✓ ✆✔ ✝♥✡☛☞✌✍✝✕ ✌❛✡✖✝✍✗✘

✙✝❛♥ ✚✌✎♥✎✆♥ ✛✡✆☛✝ ✒✜✚P✢✂✥✘

✛✞✆❙

❋❛✗✍

(a) GOP=30.

✥

�

✁

✂

✄

☎

♥✆♥✝ P ■ ❛✞✞

▼
✟
✠

❊♥✡☛☞✌✍✎✆♥ ✏✝✑✝✞ ✒✓ ✆✔ ✝♥✡☛☞✌✍✝✕ ✌❛✡✖✝✍✗✘

✙✝❛♥ ✚✌✎♥✎✆♥ ✛✡✆☛✝ ✒✜✚P✢☎✥✘

✛✞✆❙

❋❛✗✍

(b) GOP=50.

Figure 2.5: Mean Opinion Score at an eavesdropper’s site for slow and fast motion video flows.

2.6.2 Delay vs Distortion

Since the legitimate receiver is capable of decrypting the packets the distortion is only

affected by the packet loss ratio on the wireless link. The video distortion at the eavesdropper

also depends on the percentage of packets that are encrypted at the sender according to the specific

encryption policy that is in use. In order to compute the distortion at each end we use the EvalVid

tools to reconstruct the YUV file based on the successfully received and decrypted packets.

Distortion at an eavesdropper due to the encryption of I and P -frame packets: The

28

(a) Slow,none. (b) Slow, P. (c) Slow, I. (d) Slow, all.

(e) Fast, none. (f) Fast, P. (g) Fast, I. (h) Fast, all.

Figure 2.6: Screenshots of video flow at an eavesdropper’s site (slow vs fast, GOP=30).

✥

�✥

✁✥✥

✁�✥

✂✥✥

✂�✥

✄✥✥

♥☎♥✆ P ■ ❛✝✝

❉
✞
✟✠
✡
☛☞
✌
✞
✍
✎

❊♥✏✑✒✓✔✕☎♥ ✖✆✗✆✝ ✘✙ ☎✚ ✆♥✏✑✒✓✔✆✛ ✓❛✏✜✆✔✢✣

✤✆✝❛✒ ✘✦❊✧✂�★✩ ✪✫P✬✄✥✣

✦♥❛✝✒✢✕✢❆✧✝☎✭

❊✮✓✆✑✕✯✆♥✔❆✧✝☎✭

✦♥❛✝✒✢✕✢❆✰❛✢✔

❊✮✓✆✑✕✯✆♥✔❆✰❛✢✔

(a) AES256, GOP=30.

✥

�✥

✁✥✥

✁�✥

✂✥✥

✂�✥

✄✥✥

♥☎♥✆ P ■ ❛✝✝

❉
✞
✟✠
✡
☛☞
✌
✞
✍
✎

❊♥✏✑✒✓✔✕☎♥ ✖✆✗✆✝ ✘✙ ☎✚ ✆♥✏✑✒✓✔✆✛ ✓❛✏✜✆✔✢✣

✤✆✝❛✒ ✘✦❊✧✂�★✩ ✪✫P✬�✥✣

✦♥❛✝✒✢✕✢❆✧✝☎✭

❊✮✓✆✑✕✯✆♥✔❆✧✝☎✭

✦♥❛✝✒✢✕✢❆✰❛✢✔

❊✮✓✆✑✕✯✆♥✔❆✰❛✢✔

(b) AES256, GOP=50.

✥

�✥

✁✥✥

✁�✥

✂✥✥

✂�✥

✄✥✥

♥☎♥✆ P ■ ❛✝✝

❉
✞
✟✠
✡
☛☞
✌
✞
✍
✎

❊♥✏✑✒✓✔✕☎♥ ✖✆✗✆✝ ✘✙ ☎✚ ✆♥✏✑✒✓✔✆✛ ✓❛✏✜✆✔✢✣

✤✆✝❛✒ ✘✄✤❊✦✧ ★✩P✪✄✥✣

❆♥❛✝✒✢✕✢✫✦✝☎✬

❊✭✓✆✑✕✮✆♥✔✫✦✝☎✬

❆♥❛✝✒✢✕✢✫✯❛✢✔

❊✭✓✆✑✕✮✆♥✔✫✯❛✢✔

(c) 3DES, GOP=30.

✥

�✥

✁✥✥

✁�✥

✂✥✥

✂�✥

✄✥✥

♥☎♥✆ P ■ ❛✝✝

❉
✞
✟✠
✡
☛☞
✌
✞
✍
✎

❊♥✏✑✒✓✔✕☎♥ ✖✆✗✆✝ ✘✙ ☎✚ ✆♥✏✑✒✓✔✆✛ ✓❛✏✜✆✔✢✣

✤✆✝❛✒ ✘✄✤❊✦✧ ★✩P✪�✥✣

❆♥❛✝✒✢✕✢✫✦✝☎✬

❊✭✓✆✑✕✮✆♥✔✫✦✝☎✬

❆♥❛✝✒✢✕✢✫✯❛✢✔

❊✭✓✆✑✕✮✆♥✔✫✯❛✢✔

(d) 3DES, GOP=50.

Figure 2.7: Comparison of transfer latency in various cases (analysis and experiments with Samsung
S-II).

distortion results are shown in Fig. 2.4 for both slow and fast-motion video flows. The factor that

determines the video distortion is the percentage of packets that are correctly received and success-

fully decrypted. The legitimate receiver decrypts all the packets successfully delivered over the

channel and the distortion here corresponds to the first bar in each plot, labeled “none”. In con-

29

trast, the eavesdropper experiences higher distortion since it cannot correctly decrypt packets. As

a general observation, the analytical results closely match the experimental results. The encryption

of I-frame packets plays a more significant role in degrading the video quality (up to 80%) at the

eavesdropper compared to the case where only P-frame packets are encrypted (the largest decrease

observed here is 40%). This is to be expected since the I-frames carry a lot more information re-

garding the video content. Moreover, the encryption of I-frame packets degrades the video quality

at the eavesdropper to a greater extent for the case of slow-motion video (80%) compared to the

fast-motion video (30%). This is because the I-frames carry most of the information in the former

case. The loss of P-frames affects video with fast motion to a higher extent, since in this case, these

frames carry a lot more information (as compared to slow motion video flows). The Mean Opinion

Score (MOS), which is a subjective metric that represents the quality of the video at the eavesdrop-

per’s site is given in Fig. 2.5, while Fig. 2.6 contains video screenshots as seen at the eavesdropper’s

site, for both slow and fast motion video flows. The Mean Opinion Score (MOS) gives a numerical

indication of the perceived quality of the received video clip. It is expressed as a number from 1

to 5, where 1 indicates bad quality and 5 the best quality. Although MOS is subjective, there is

software that measures the MOS on network transfers. For our experiments we report MOS val-

ues as measured by the EvalVid toolset. Note that the MOS drops to the lowest levels (≈ 1) with

partially encrypted flows. This essentially implies that the video is practically unviewable by the

eavesdropper.

Latencies with I and P frame encryption: Figures 2.7 and 2.8 show the average delay

per packet for each device, GOP size, motion level and encryption policy. A general observation

is that the incurred delay when the P-frame packets are encrypted is larger than the delay for the

case where I-frame packets are encrypted. In the case of the HTC Amaze 4G, this delay is almost

equal to the extreme case where all the packets in the transmission are encrypted. The same is true

for Samsung S-II for the AES256 encryption algorithm, but not for the 3DES encryption scheme.

Furthermore, the delay in the case where the I-frame packets are selected for encryption is small

and close to the delay when none of the packets are encrypted.

30

✥

�✥

✁✥✥

✁�✥

✂✥✥

✂�✥

✄✥✥

♥☎♥✆ P ■ ❛✝✝

❉
✞
✟✠
✡
☛☞
✌
✞
✍
✎

❊♥✏✑✒✓✔✕☎♥ ✖✆✗✆✝ ✘✙ ☎✚ ✆♥✏✑✒✓✔✆✛ ✓❛✏✜✆✔✢✣

✤✆✝❛✒ ✘✦❊✧✂�★✩ ✪✫P✬✄✥✣

✦♥❛✝✒✢✕✢❆✧✝☎✭

❊✮✓✆✑✕✯✆♥✔❆✧✝☎✭

✦♥❛✝✒✢✕✢❆✰❛✢✔

❊✮✓✆✑✕✯✆♥✔❆✰❛✢✔

(a) AES256, GOP=30.

✥

�✥

✁✥✥

✁�✥

✂✥✥

✂�✥

✄✥✥

♥☎♥✆ P ■ ❛✝✝

❉
✞
✟✠
✡
☛☞
✌
✞
✍
✎

❊♥✏✑✒✓✔✕☎♥ ✖✆✗✆✝ ✘✙ ☎✚ ✆♥✏✑✒✓✔✆✛ ✓❛✏✜✆✔✢✣

✤✆✝❛✒ ✘✦❊✧✂�★✩ ✪✫P✬�✥✣

✦♥❛✝✒✢✕✢❆✧✝☎✭

❊✮✓✆✑✕✯✆♥✔❆✧✝☎✭

✦♥❛✝✒✢✕✢❆✰❛✢✔

❊✮✓✆✑✕✯✆♥✔❆✰❛✢✔

(b) AES256, GOP=50.

✥

�✥

✁✥✥

✁�✥

✂✥✥

✂�✥

✄✥✥

♥☎♥✆ P ■ ❛✝✝

❉
✞
✟✠
✡
☛☞
✌
✞
✍
✎

❊♥✏✑✒✓✔✕☎♥ ✖✆✗✆✝ ✘✙ ☎✚ ✆♥✏✑✒✓✔✆✛ ✓❛✏✜✆✔✢✣

✤✆✝❛✒ ✘✄✤❊✦✧ ★✩P✪✄✥✣

❆♥❛✝✒✢✕✢✫✦✝☎✬

❊✭✓✆✑✕✮✆♥✔✫✦✝☎✬

❆♥❛✝✒✢✕✢✫✯❛✢✔

❊✭✓✆✑✕✮✆♥✔✫✯❛✢✔

(c) 3DES, GOP=30.

✥

�✥

✁✥✥

✁�✥

✂✥✥

✂�✥

✄✥✥

♥☎♥✆ P ■ ❛✝✝

❉
✞
✟✠
✡
☛☞
✌
✞
✍
✎

❊♥✏✑✒✓✔✕☎♥ ✖✆✗✆✝ ✘✙ ☎✚ ✆♥✏✑✒✓✔✆✛ ✓❛✏✜✆✔✢✣

✤✆✝❛✒ ✘✄✤❊✦✧ ★✩P✪�✥✣

❆♥❛✝✒✢✕✢✫✦✝☎✬

❊✭✓✆✑✕✮✆♥✔✫✦✝☎✬

❆♥❛✝✒✢✕✢✫✯❛✢✔

❊✭✓✆✑✕✮✆♥✔✫✯❛✢✔

(d) 3DES, GOP=50.

Figure 2.8: Comparison of transfer latency in various cases (analysis and experiments with HTC
Amaze 4G).

Finer control of protection for fast-motion video: An encryption policy where we en-

crypt a mixture of I and P frame packets can provide a finer control over the protection levels of the

content. Going back to Figs. 2.4b and 2.4d, we observe that for fast motion video flows, the dis-

tortion at the eavesdropper is lower when we encrypt I-frame packets compared to the case where

P-frame packets are encrypted. This is in contrast to what happens in the case of slow motion video

flows. However, the delay for encrypting I-frame packets is lower than the delay that the P-frame

packet encryption incurs (given the much larger volume of P frames). To achieve a better trade-off

between delay and distortion, we examine the case where we encrypt all the I-frame packets and a

fraction α , of the P-frame packets in a GOP for fast motion video. We experiment with different

values of α and we show in Fig. 2.9a the corresponding transfer latency for each encryption algo-

rithm and wireless device. Table 2.2 shows the delay, distortion and the Mean Opinion Score for

Samsung S-II. We observe that the minimum value of α that provides an almost complete obfusca-

tion of the video flow due to distortion is 20%. For that value of α , the power consumption is 1.48

Watt, while the power consumption is 1.28 Watt when only I-frame packets are encrypted (power

31

Table 2.2: Delay vs distortion.

Delay PSNR MOS
I 48.41 msec 20.65 dB 1.71

I + 10% P 53.06 msec 17.8684 dB 1.26
I + 15% P 53.90 msec 17.6895 dB 1.24
I + 20% P 54.91 msec 17.3359 dB 1.20
I + 25% P 55.47 msec 17.1776 dB 1.17
I + 30% P 56.51 msec 16.4268 dB 1.15
I + 50% P 61.76 msec 16.0106 dB 1.14

✥

�✥

✁✥✥

✁�✥

✂✥✥

✁✥ ✁� ✂✥ ✂� ✸✥ �✥

❉
✄
☎✆
✝
✞✟
✠
✄
✡
☛

P☞✌✍☞✎✏✑✒☞ ✓✔ P✕✔✌✑✖☞ ✗✑✍✘☞✏✙ ☞✎✍✌✚✗✏☞✛

❊✎✍✌✚✗✏✜✓✎ ✓✔ ✑ ✔✌✑✍✏✜✓✎ ✓✔ P✕✔✌✑✖☞ ✗✑✍✘☞✏✙

❍✢✣✕✤❊✦✁✂✧

❍✢✣✕✤❊✦✂�★

❍✢✣✕✸✩❊✦

✦✑✖✙❙✎✒✕✤❊✦✁✂✧

✦✑✖✙❙✎✒✕✤❊✦✂�★

✦✑✖✙❙✎✒✕✸✩❊✦

(a) Upload latency. (b) Screenshots for I (left) and I+20%P (right) case.

Figure 2.9: Encrypting all I-frame and a fraction of the P-frame packets (GOP=30).

consumption is discussed in detail later in Section 2.6.3). The change in delay due to this additional

encryption is only about 6.5msec. Figure 2.9b depicts screenshots at the eavesdropper’s site in the

case where only the I-frames are encrypted (left) and the mixture of I and 20% of P-frame packets

encryption (right).

For slow motion video flows we observe from Figs. 2.4a and 2.4c that encrypting all I-

frame packets results in a high distortion, to almost make the content invisible, at an eavesdropper’s

site. In order to save on energy consumption and delay, we examined the case where half of the

I-frame packets are encrypted. We found that the distortion levels are similar to the case where all

the P-frame packets are encrypted and thus does not provide adequate obfuscation.

32

✥

✥�✁

✂

✂�✁

✄

✄�✁

☎

☎�✁

✆

☎✥ ✁✥

P
✝
✞
✟
✠
✡
✝
☛
☞
✌
✍
✎
✏✑
✝
☛
✒✓
✔
✏✏
✕

●✖✗ ✘✙✚✛

✗✜✢✛✣ ✤✜✦✧★✩✪✫✙✜✦ ✬✘✭✜✢✮✩✜✫✙✜✦✯ ✰✱✘✄✁✲✳

✦✜✦✛
■✮✴✣✵✩✛
✗✮✴✣✵✩✛

✵✭✭

(a) Slow-motion, AES256.

✥

✥�✁

✂

✂�✁

✄

✄�✁

☎

☎�✁

✆

☎✥ ✁✥

P
✝
✞
✟
✠
✡
✝
☛
☞
✌
✍
✎
✏✑
✝
☛
✒✓
✔
✏✏
✕

●✖✗ ✘✙✚✛

✗✜✢✛✣ ✤✜✦✧★✩✪✫✙✜✦ ✬✭✮✧✫✯✩✜✫✙✜✦✰ ✱✲✘✄✁✳✴

✦✜✦✛
■✯✵✣✮✩✛
✗✯✵✣✮✩✛

✮❛❛

(b) Fast-motion, AES256.

✥

✥�✁

✂

✂�✁

✄

✄�✁

☎

☎�✁

✆

☎✥ ✁✥

P
✝
✞
✟
✠
✡
✝
☛
☞
✌
✍
✎
✏✑
✝
☛
✒✓
✔
✏✏
✕

●✖✗ ✘✙✚✛

✗✜✢✛✣ ✤✜✦✧★✩✪✫✙✜✦ ✬✘✭✜✢✮✩✜✫✙✜✦✯ ☎✰✱✘✲

✦✜✦✛
■✮✳✣✴✩✛
✗✮✳✣✴✩✛

✴✭✭

(c) Slow-motion, 3DES.

✥

✥�✁

✂

✂�✁

✄

✄�✁

☎

☎�✁

✆

☎✥ ✁✥

P
✝
✞
✟
✠
✡
✝
☛
☞
✌
✍
✎
✏✑
✝
☛
✒✓
✔
✏✏
✕

●✖✗ ✘✙✚✛

✗✜✢✛✣ ✤✜✦✧★✩✪✫✙✜✦ ✬✭✮✧✫✯✩✜✫✙✜✦✰ ☎✱✲✘✳

✦✜✦✛
■✯✴✣✮✩✛
✗✯✴✣✮✩✛

✮❛❛

(d) Fast-motion, 3DES.

Figure 2.10: Power consumption with Samsung S-II.

2.6.3 Power Consumption

To compute the power consumption we use the power monitor tool by Monsoon Solutions,

Inc. and measure the amount of energy the mobile phone consumes during the video streaming. The

reading v from the power monitor is in µAh which we convert into Watts as follows:

v ·Voltage ·3600
stream duration

·10−6; (2.29)

the Voltage is set to 3.9 Volts.

Due to the different sizes of the slow and fast motion video flows, we do not compare the

power consumption between them; instead, we perform the comparison within the same type (slow

or fast motion) of flows but with different encryption policies. The power consumption measure-

ments for the Samsung Galaxy S-II phone are shown in Fig. 2.10, while those for the HTC Amaze

4G are in Fig. 2.11. The results are for slow and fast motion video and for the three encryption

algorithms, for each GOP size. As can be seen, when the video stream is unencrypted the energy

consumption is the lowest due to the fact that fewer CPU cycles are needed in order to process a

33

✥

✥�✁

✂

✂�✁

✄

✄�✁

☎

☎�✁

✆

☎✥ ✁✥

P
✝
✞
✟
✠
✡
✝
☛
☞
✌
✍
✎
✏✑
✝
☛
✒✓
✔
✏✏
✕

●✖✗ ✘✙✚✛

✗✜✢✛✣ ✤✜✦✧★✩✪✫✙✜✦ ✬✘✭✜✢✮✩✜✫✙✜✦✯ ✰✱✘✄✁✲✳

✦✜✦✛
■✮✴✣✵✩✛
✗✮✴✣✵✩✛

✵✭✭

(a) Slow-motion, AES256.

✥

✥�✁

✂

✂�✁

✄

✄�✁

☎

☎�✁

✆

☎✥ ✁✥

P
✝
✞
✟
✠
✡
✝
☛
☞
✌
✍
✎
✏✑
✝
☛
✒✓
✔
✏✏
✕

●✖✗ ✘✙✚✛

✗✜✢✛✣ ✤✜✦✧★✩✪✫✙✜✦ ✬✭✮✧✫✯✩✜✫✙✜✦✰ ✱✲✘✄✁✳✴

✦✜✦✛
■✯✵✣✮✩✛
✗✯✵✣✮✩✛

✮❛❛

(b) Fast-motion, AES256.

✥

✥�✁

✂

✂�✁

✄

✄�✁

☎

☎�✁

✆

☎✥ ✁✥

P
✝
✞
✟
✠
✡
✝
☛
☞
✌
✍
✎
✏✑
✝
☛
✒✓
✔
✏✏
✕

●✖✗ ✘✙✚✛

✗✜✢✛✣ ✤✜✦✧★✩✪✫✙✜✦ ✬✘✭✜✢✮✩✜✫✙✜✦✯ ☎✰✱✘✲

✦✜✦✛
■✮✳✣✴✩✛
✗✮✳✣✴✩✛

✴✭✭

(c) Slow-motion, 3DES.

✥

✥�✁

✂

✂�✁

✄

✄�✁

☎

☎�✁

✆

☎✥ ✁✥

P
✝
✞
✟
✠
✡
✝
☛
☞
✌
✍
✎
✏✑
✝
☛
✒✓
✔
✏✏
✕

●✖✗ ✘✙✚✛

✗✜✢✛✣ ✤✜✦✧★✩✪✫✙✜✦ ✬✭✮✧✫✯✩✜✫✙✜✦✰ ☎✱✲✘✳

✦✜✦✛
■✯✴✣✮✩✛
✗✯✴✣✮✩✛

✮❛❛

(d) Fast-motion, 3DES.

Figure 2.11: Power consumption with HTC Amaze 4G.

frame. On the other hand, a fully encrypted stream consumes the highest amount of energy. Fur-

thermore, more energy is necessary when only the P-frames are encrypted compared to the case

where only the I-frames are selected for encryption. This is so because the overall size of the P-

frame packets together is larger than the overall size of the I-frame packets together. Considering

the Samsung S-II, and for a slow motion video, an increase in the power consumption by 140%

can be seen comparing the two extreme cases where none of the packets are encrypted and all the

packets are encrypted. If only the I-frames are encrypted, the increase is only 11%. This trans-

lates to a savings of 92%. The power consumption increase for a fast motion video flow is lower,

where the largest increase (by 50%) in the power consumption is observed when all the packets

are encrypted. For the HTC Amaze 4G the increase in the power consumption is not as steep; the

largest increase is by 50% and 38%, for the slow motion and fast motion video, respectively. For

fast motion video, when all the I-frames and 20% of the P-frames are encrypted (to provide almost

complete confidentiality), we find the energy savings to be 26% (reduction from 2 Watts to 1.48

Watt).

34

✥

�✥✥

✁✥✥

✂✥✥

✄✥✥

☎✥✥

♥✆♥✝ P ■ ❛✞✞

❉
✟
✠✡
☛
☞✌
✍
✟
✎
✏

❊♥✑✒✓✔✕✖✆♥ ✗✝✘✝✞ ✙✚ ✆✛ ✝♥✑✒✓✔✕✝✜ ✔❛✑✢✝✕✣✤

✦✝✞❛✓ ✙✧❊★✁☎✩✪ ✫✬P✭✂✥✤

❊✮✔✝✒✖✯✝♥✕✰★✞✆✱

❊✮✔✝✒✖✯✝♥✕✰✲❛✣✕

(a) AES256, GOP=30.

✥

�✥✥

✁✥✥

✂✥✥

✄✥✥

☎✥✥

♥✆♥✝ P ■ ❛✞✞

❉
✟
✠✡
☛
☞✌
✍
✟
✎
✏

❊♥✑✒✓✔✕✖✆♥ ✗✝✘✝✞ ✙✚ ✆✛ ✝♥✑✒✓✔✕✝✜ ✔❛✑✢✝✕✣✤

✦✝✞❛✓ ✙✧❊★✁☎✩✪ ✫✬P✭☎✥✤

❊✮✔✝✒✖✯✝♥✕✰★✞✆✱

❊✮✔✝✒✖✯✝♥✕✰✲❛✣✕

(b) AES256, GOP=50.

✥

�✥✥

✁✥✥

✂✥✥

✄✥✥

☎✥✥

♥✆♥✝ P ■ ❛✞✞

❉
✟
✠✡
☛
☞✌
✍
✟
✎
✏

❊♥✑✒✓✔✕✖✆♥ ✗✝✘✝✞ ✙✚ ✆✛ ✝♥✑✒✓✔✕✝✜ ✔❛✑✢✝✕✣✤

✦✝✞❛✓ ✙✂✦❊✧★ ✩✪P✫✂✥✤

❊✬✔✝✒✖✭✝♥✕✮✧✞✆✯

❊✬✔✝✒✖✭✝♥✕✮✰❛✣✕

(c) 3DES, GOP=30.

✥

�✥✥

✁✥✥

✂✥✥

✄✥✥

☎✥✥

♥✆♥✝ P ■ ❛✞✞

❉
✟
✠✡
☛
☞✌
✍
✟
✎
✏

❊♥✑✒✓✔✕✖✆♥ ✗✝✘✝✞ ✙✚ ✆✛ ✝♥✑✒✓✔✕✝✜ ✔❛✑✢✝✕✣✤

✦✝✞❛✓ ✙✂✦❊✧★ ✩✪P✫☎✥✤

❊✬✔✝✒✖✭✝♥✕✮✧✞✆✯

❊✬✔✝✒✖✭✝♥✕✮✰❛✣✕

(d) 3DES, GOP=50.

Figure 2.12: Comparison of transfer latency for HTTP/TCP (Samsung S-II).

✥

�✥✥

✁✥✥

✂✥✥

✄✥✥

☎✥✥✥

♥✆♥✝ P ■ ❛✞✞

❉
✟
✠✡
☛
☞✌
✍
✟
✎
✏

❊♥✑✒✓✔✕✖✆♥ ✗✝✘✝✞ ✙✚ ✆✛ ✝♥✑✒✓✔✕✝✜ ✔❛✑✢✝✕✣✤

✦✝✞❛✓ ✙✧❊★�✩✂✪ ✫✬P✭✮✥✤

❊✯✔✝✒✖✰✝♥✕✱★✞✆✲

❊✯✔✝✒✖✰✝♥✕✱✳❛✣✕

(a) AES256, GOP=30.

✥

�✥✥

✁✥✥

✂✥✥

✄✥✥

☎✥✥✥

♥✆♥✝ P ■ ❛✞✞

❉
✟
✠✡
☛
☞✌
✍
✟
✎
✏

❊♥✑✒✓✔✕✖✆♥ ✗✝✘✝✞ ✙✚ ✆✛ ✝♥✑✒✓✔✕✝✜ ✔❛✑✢✝✕✣✤

✦✝✞❛✓ ✙✧❊★�✩✂✪ ✫✬P✭✩✥✤

❊✮✔✝✒✖✯✝♥✕✰★✞✆✱

❊✮✔✝✒✖✯✝♥✕✰✲❛✣✕

(b) AES256, GOP=50.

✥

�✥✥

✁✥✥

✂✥✥

✄✥✥

☎✥✥✥

♥✆♥✝ P ■ ❛✞✞

❉
✟
✠✡
☛
☞✌
✍
✟
✎
✏

❊♥✑✒✓✔✕✖✆♥ ✗✝✘✝✞ ✙✚ ✆✛ ✝♥✑✒✓✔✕✝✜ ✔❛✑✢✝✕✣✤

✦✝✞❛✓ ✙✧✦❊★✩ ✪✫P✬✧✥✤

❊✭✔✝✒✖✮✝♥✕✯★✞✆✰

❊✭✔✝✒✖✮✝♥✕✯✱❛✣✕

(c) 3DES, GOP=30.

✥

�✥✥

✁✥✥

✂✥✥

✄✥✥

☎✥✥✥

♥✆♥✝ P ■ ❛✞✞

❉
✟
✠✡
☛
☞✌
✍
✟
✎
✏

❊♥✑✒✓✔✕✖✆♥ ✗✝✘✝✞ ✙✚ ✆✛ ✝♥✑✒✓✔✕✝✜ ✔❛✑✢✝✕✣✤

✦✝✞❛✓ ✙✧✦❊★✩ ✪✫P✬✭✥✤

❊✮✔✝✒✖✯✝♥✕✰★✞✆✱

❊✮✔✝✒✖✯✝♥✕✰✲❛✣✕

(d) 3DES, GOP=50.

Figure 2.13: Comparison of transfer latency for HTTP/TCP (HTC Amaze 4G).

35

✥

�✥

✁✥

✂✥

✄✥

☎✥

♥✆♥✝ P ■ ❛✞✞

✟
✠
✡
☛

☞✌
✍
✎

❊♥✏✑✒✓✔✕✆♥ ✖✝✗✝✞ ✘✙ ✆✚ ✝♥✏✑✒✓✔✝✛ ✓❛✏✜✝✔✢✣

❉✕✢✔✆✑✔✕✆♥ ✘✤✦P✧✂✥✣

❙✞✆★

❋❛✢✔

(a) GOP=30.

✥

�✥

✁✥

✂✥

✄✥

☎✥

♥✆♥✝ P ■ ❛✞✞

✟
✠
✡
☛

☞✌
✍
✎

❊♥✏✑✒✓✔✕✆♥ ✖✝✗✝✞ ✘✙ ✆✚ ✝♥✏✑✒✓✔✝✛ ✓❛✏✜✝✔✢✣

❉✕✢✔✆✑✔✕✆♥ ✘✤✦P✧☎✥✣

❙✞✆★

❋❛✢✔

(b) GOP=50.

Figure 2.14: Distortion at an eavesdropper’s site for slow and fast motion video flows with HTTP.

✥

�

✁

✂

✄

☎

♥✆♥✝ P ■ ❛✞✞

▼
✟
✠

❊♥✡☛☞✌✍✎✆♥ ✏✝✑✝✞ ✒✓ ✆✔ ✝♥✡☛☞✌✍✝✕ ✌❛✡✖✝✍✗✘

✙✝❛♥ ✚✌✎♥✎✆♥ ✛✡✆☛✝ ✒✜✚P✢✂✥✘

✛✞✆❙

❋❛✗✍

(a) GOP=30.

✥

�

✁

✂

✄

☎

♥✆♥✝ P ■ ❛✞✞

▼
✟
✠

❊♥✡☛☞✌✍✎✆♥ ✏✝✑✝✞ ✒✓ ✆✔ ✝♥✡☛☞✌✍✝✕ ✌❛✡✖✝✍✗✘

✙✝❛♥ ✚✌✎♥✎✆♥ ✛✡✆☛✝ ✒✜✚P✢☎✥✘

✛✞✆❙

❋❛✗✍

(b) GOP=50.

Figure 2.15: Mean Opinion Score at an eavesdropper’s site for slow and fast motion video flows
with HTTP/TCP.

2.6.4 Experiments with HTTP/TCP

Next, we experimentally evaluate selective encryption for video traffic based on HTTP/TCP.

A Marker bit is used again (in the option header) to indicate whether or not a packet is encrypted.

The average delay per packet is shown in Fig. 2.12 and Fig. 2.13 for the Samsung S-II and the HTC

Amaze 4G phones, respectively. The distortion and the mean opinion score for both the slow and

fast motion video flows are shown in Fig. 2.14 and Fig. 2.15, respectively. The trend that is observed

when RTP/UDP are used is also seen for the case of HTTP/TCP. While the latency is slightly higher

(due to TCP retransmissions), it is reduced significantly, especially for fast motion video where the

volume of packets is more. Since the fraction of packets encrypted remain the same, the energy

benefits are identical to that with UDP/RTP; thus, we do not present these plots here.

36

2.7 Conclusions

Due to the widespread use of smartphones, video transfers over WiFi connections are be-

coming increasingly popular. We argue that only encrypting parts of a video flow can sufficiently

distort the stream at an eavesdropper’s site and thus render the content useless; at the same time

such approaches can reduce performance penalties in terms of delay and energy. We refer to en-

crypting different parts of the stream as different modes of encryption. We develop a mathematical

framework to characterize the effect of different modes of encryption on the delay at the client

and the distortion at an eavesdropper’s site. The framework provides an efficient way of determin-

ing the volume of video traffic that needs to be encrypted to preserve confidentiality at minimum

performance cost. We validate our model via extensive experiments using Android smartphones.

37

Chapter 3

Droid M+: Developer Support for

Imbibing Android’s New Permission

Model

3.1 Introduction

Application sandboxing and management of permissions to sensitive resources (permis-

sion model) are key components of modern mobile operating Droid M+ s for improving the security

of individual apps and protecting the users’ personal data and privacy. Prior to Android 6.0, Android

was using a permission model that asks developers to declare required permissions in the manifest

file and at installation time, asks users to either grant all requested permissions or to refuse the in-

stallation. Since its introduction, many published studies discuss various limitations of this model

(e.g. [106], [151]).

The first, frequently criticized aspect of this old Android permission model is the creation

of over-privileged apps [65]. Over the years, to enable access to increased functionalities of the

Android platform [183], the number of Droid M+ permissions sought, have been boosted from 75

(API level 1) to 138 (API level 25). Lacking sufficient understanding of this permission model,

38

developers tended to ask for more permissions than necessary. For example, one-third of the 940

apps analyzed by Felt et al. are over-privileged [65]. Requesting unnecessary permissions is a severe

security problem since attackers can leverage a multitude of combinations of these permissions to

compromise the privacy of the user (e.g., leaking personal photos over the Internet).

Another problem with the old Android permission model is the lack of flexibility; users

can neither grant a subset of all requested permissions, nor revoke granted permissions. A recent

user study by Wijesekara et al. [187] showed that 80% of the participants would have preferred

to decline at least one requested permission and one-third of the requested accesses to sensitive

resources; this is because of their belief that (a) the requested permission did not pertain to the apps’

functions; or, (b) it involved information that they were uncomfortable sharing. The lack of such

flexibility has led Android users to either ignore the permission warnings [66], or to not use the

app; for example, a recent survey [111] of over 400 adults found that over 60% of the participants

decided not to install an app because it required many permissions. Irrevocable permissions also

pose privacy concerns to users as apps can retain their access to sensitive sensors (e.g., microphone)

while running in the background [108].

Wijesekara et al. [187] proposed using Nissenbaum’s theory of context integrity [139]

as a guideline to determine whether accesses to protected resources would violate users’ privacy.

However, lacking enough contextual information, the install-time permission granting model makes

it very difficult for normal users to determine why a permission is needed and if the app would

violate their privacy [66]. Moreover, they also found that even if the permission is requested during

runtime, lacking proper mechanisms to explain why a particular resource was necessary could also

lead to incorrect perceptions, and less willingness to grant the permission.

In Android 6.0 (Android M(arshmallow)), Google revamped the Android permission

model to solve the aforementioned problems. In short, Android no longer promotes users to grant

permissions during install-time; instead, normal permissions (i.e., no great risk to users’ privacy

and security) are automatically granted and dangerous permissions are requested during runtime.

To further streamline the number of requests, dangerous permissions are put into permission groups

and granting one dangerous permission would automatically grant other permissions in the same

39

group. To help developers communicate to users why a permission is necessary, Google also added

an API to check whether additional explanation might be needed. Finally, users can revoke a granted

permission at anytime using the Droid M+ settings. More details on the new permission model are

provided in § 3.2; note that the permission model carries over to the next version of Android (Nougat

or Android N).

While the new permission model is a significant improvement over the old model in em-

powering users with more control over their privacy and in making apps more appealing for adop-

tion (recall that asking permissions at install-time may affect users’ decisions on installing an app),

we find that only a very few apps have effectively migrated to the new permission model. To verify

whether this is a general issue for the entire Google Play Store, we conduct, to the best of our knowl-

edge, the first Droid M+ atic measurement study towards answering the following questions:

• How many newly released apps have adopted the new permission model?

• For those that have not, what are the likely reasons?

• For those that have adopted, how well do they adhere to Google’s guidelines [87]?

Our analysis results show that, despite a 26.7% market share of Android M, only 23.4%

of the apps have adopted the new permission model. Further, our study shows that only 48% of

the adopted apps educate users on why a permission is necessary and 5% of them crash if the user

denies a request (due to lack of a corresponding callback function).

We attribute cause of this unsatisfying status quo to be the lack of proper development

tools. In particular, to migrate to the new permission model, developers have to make non-trivial

changes to their existing code. This is especially true if developers want their app(s) to follow

Google’s guidelines, i.e., properly checking if a permission has been revoked, educating a user

in-context on why a permission is necessary, and properly handling instances where a permission

request has been denied. In support of this, we found that apps that request fewer permissions better

conform to the new model than apps that request more permissions.

To solve this problem and thus improve the security of the Android ecoDroid M+ , we

develop a tool set, Droid M+ , to help developers to retrofit their legacy code to the new permission

40

model. In particular, given the source code of an Android app, our tool will (1) identify different

functionalities (i.e., context) of the app; (2) identify permissions that are required for each func-

tionality; (3) automatically populate the entry of each functionality with an annotation that allows

developers to review the requested permissions and provide corresponding justifications; (4) auto-

matically translate the annotation into real Java code; and (5) provide a default callback function

to handle denied requests. In summary, Droid M+ allows developers to easily morph their app(s)

to support revocable permissions and adhere to Google’s guidelines, with minimal changes to their

existing code.

Via extensive evaluations, we demonstrate that Droid M+ can facilitate easy permission

revocations as intended by Android M. Although not part of Droid M+ , we discuss how it facilitates

a new permission model wherein permissions can be granted only when specific functionalities are

invoked; a detailed study of this however, is deferred for future work.

In summary, this work makes the following contributions:

• We perform an in depth measurement study of 7000 top free applications (apps) from Google

Play Store and examine the adoption of the new Android permission model. Our study reveal that

only 23.4% of the apps support revocable permissions, at least 51% of these apps do not follow

the guidelines from Google, and 4.8% of them crash if user denies a permission request.

• We design, implement and evaluate Droid M+ , a tool set that aids developers in easily incorpo-

rating Android’s new permission model and adhere to Google’s guidelines.

3.2 Background and Motivation

In this section, we provide background on the new Android’s permission model and

Google’s guidelines on how permission requests and revocations should be handled.

The Android M Permission Model: Android is a privilege separated OS, in which each

app runs with a distinct Droid M+ identity. Fine-grained security protection is provided via a permis-

sion mechanism that restricts access to sensitive sensors, users personal data, other services/apps,

etc. To access those resources, an app must declare the required permissions in its “manifest file.”

41

Figure 3.1: The permission workflow of Android M.

What are considered normal permissions, are automatically granted to the app. What are considered

dangerous permissions need to be explicitly granted by users; with Android M, these are requested

at run-time. Users are prompted with a pop-up box when an app first seeks to use a protected

resource (seeks a dangerous permission). Three options are provided: (1) users can grant the per-

mission and the app will retain access to the resource; (2) users can deny this particular request; or

(3) for a permission that has been previously denied, a chat box is provided to automatically deny all

future requests. If the user denies a permission request, Android M allows the app to either continue

running with limited functionality or completely disables its functionalities. Dangerous permissions

are further put into permission groups; if one permission in a permission group is granted by the

user, the remaining permissions in the same group will be automatically granted. Currently there

are the following new permission groups: calender, camera, contacts, location, microphone, phone,

sensors, sms, and storage. Android M also allows the user to modify the permissions granted to

apps using Droid M+ settings. Note that a user can also revoke permissions for legacy apps (API

level < 23); in such cases, the platform will disable the APIs guarded by the permission by making

them no-ops, which may return an empty result or a default error.

To provide truly revocable permissions, developers should follow the following steps

(Fig. 3.1):

42

• At each instance when an app needs to invoke API(s) that require a permission(s), the devel-

oper should insert a call to explicitly check if the permission(s) is granted. This is key because

users may revoke granted permission(s) at anytime, even for legacy apps. Developers can use

the ContextCompat.checkSelfPermission method from the support library or directly invoke

platform APIs to do so.

• Optional but recommended by Google, developers might want to help the user understand why

the app needs a permission. Towards this, the developer should specifically write code to display

the proper reasoning to the user before requesting a permission.

• If the app does not have the permission(s) in order to complete a restricted action(s), the de-

veloper should insert a call to request the permission(s). Developers can do so by calling the

ActivityCompat.requestPermissions method from the support library or directly invoke plat-

form APIs. If the permission(s) has not been permanently denied, the platform will display a

dialog box to the user showing which permission group(s) are requested.

• Since permission requests are asynchronous, a callback method must be provided to handle the

results of such requests. Overriding the onRequestPermissionsResult method can help this

process. Upon being invoked, this method provides a list of the permissions granted and denied.

• The developer should handle both positive and negative responses from the user. In the case of

denied permissions, the app could either continue execution with limited functionality or disable

the corresponding functionality and explain to the user why the permission was critical.

Google’s guidelines: Google offers guidelines for permission management [87], which

suggest that permission requests be simple, transparent and understandable. These attributes pro-

mote user adoption as shown by the results in [169, 187], i.e., users were more willing to grant

permission(s) when requested in-context and with proper justifications. Specifically, Google rec-

ommends that permissions critical to the correction functionality of the app (e.g., location to a map

app) be requested up-front, while secondary permissions be requested in-context. If the context

itself is not self-explanatory (e.g., requesting the camera permission when taking a photo is un-

derstandable but the reason for requesting location at the same time lacks clarity), the app should

43

(a) (b)

(c)

Figure 3.2: Any.do permissions during startup.

provide education to the user about why the permission is requested. The education recommen-

dation also applies to critical permission(s) asked up-front. When a permission is denied, the app

should provide feedback to the user and if possible provide other available options. If critical per-

missions are denied, the app should further educate the user as to why the permission is critical for

the app to function and offer a button so that the user can grant it. For secondary permissions, the

app should disable the corresponding features and continue providing the basic functionalities.

3.3 Measurement Study

In this section, we present our in-depth measurements on Android apps from Google Play.

Our goal is to understand the extent to, and the way in which developers have adopted Android M’s

new permission models.

To aid discussion, we define what we call functionalities. We define a functionality to

be a specific (unique) capability of the app, that can only be performed if one or more revocable

permissions have been granted. For example, consider an application that is capable of taking and

saving photos to a user’s device; this capability is a functionality that needs the CAMERA and

44

STORAGE permissions. A more rigorous definition of functionalities is provided in §3.4.

Two functionalities are considered different, if they are invoked at different points inside

the app code (even if they need the same permissions). For example, when a user searches for

restaurants around her current location it is considered a functionality that is different from one

wherein, inside the app the user’s location is being shared with third parties libraries (e.g. Ad

networks); note that this is the case even though both functionalities need and request the same

permission (Location). The points within the code that we refer to can either depend on (a) user

input (e.g., click a button) or (b) components of the app (e.g. Services, Activities, etc).

As a motivating example, we consider an app Any.do [24], one of the most popular to-do

apps on Google Play, recently updated in November 2016. To implement its functionalities, this

app requires access to the microphone, location, contacts, calendar, the device identifier, and local

storage. It is not clear why a to-do app would need all such permissions. The app description page

on Google Play does not offer proper information either. Further, although this app does target

the new API level and thus should support the new permission model, the way the permissions are

requested does not adhere to Google’s guidelines. In particular, when the app is first launched, all

the permissions are requested up-front (Fig. 3.2). At this time, it is unclear why these permissions

are required by a to-do application, and no further explanations are offered (even though they are

legitimately used). Given this motivating case, next we perform an in depth measurement study

of the top applications on Google Play to understand their structure and how they adopt the new

permission framework in Android M.

3.3.1 Measurement Tool

We design and implement a novel tool, the Revocable Permission Analyzer, to experimen-

tally quantify via different metrics, the way existing apps are developed using the new permission

model of Android M. Its basic functionality involves analyzing Android APKs, generating the call

graph of the application under consideration, and marking the methods that contain dangerous per-

missions or requests for permissions. Note that in Android M and later, the revocable (dangerous)

45

Permission Group Permissions
CALENDAR READ CALENDAR, WRITE CALENDAR
CAMERA CAMERA
CONTACTS READ CONTACTS, WRITE CONTACTS, GET ACCOUNTS
LOCATION ACCESS FINE LOCATION, ACCESS COARSE LOCATION
MICROPHONE RECORD AUDIO

PHONE
READ PHONE STATE, CALL PHONE, READ CALL LOG

WRITE CALL LOG, ADD VOICEMAIL, USE SIP
PROCESS OUTGOING CALLS

SENSORS BODY SENSORS

SMS SEND SMS, RECEIVE SMS, READ SMS
RECEIVE WAP PUSH, RECEIVE MMS

STORAGE READ EXTERNAL STORAGE, WRITE EXTERNAL STORAGE

Table 3.1: Dangerous Permissions and permission groups

permissions are the ones that are classified as PROTECTION DANGEROUS (see Table 3.1). It does

not include permissions such as INTERNET, which are granted automatically at the time of the

installation of the application.

The Revocable Permission Analyzer first leverages apktool [26], a tool for reverse engi-

neering binary Android apps, to decompile and decode the APK’s resources including the manifest

file and the UI XMLs file. It uses androguard [23], a tool written in Python for statically analyzing

Android APKs, to generate the call graph of the APK. The call graph is a control flow graph, that

captures the “calling relationships” between methods in an application. These call graphs are then

analyzed using static analysis (using an approach similar to that used in Droid M+ as described

in § 3.4.1) to determine how the applications with revocable permissions have been developed and

determines if they follow Google’s guidelines. The static analysis looks for methods that contain

API calls to checkSelfPermission, requestPermissions, shouldShowRequestPermissionRationale and

onRequestPermissionsResult. By focusing on these API calls, it can examine (a) when the appli-

cation is requesting or even checking for dangerous permissions, (b) when the application shows a

rationale for requesting the permission and (c) what it does after the user responds to the permission

request.

As described in § 3.2, Google’s guidelines suggest that only permissions that are critical

and obvious should be asked up-front, during the launching of the app. It also suggests that de-

46

velopers should educate the users when they ask non-obvious permissions in-context. Revocable

Permission Analyzer checks to see how many requests for permissions are invoked when the main

“Activity” is launched for a given app. To do so, the algorithm simply conducts a reachability anal-

ysis on the call graph where the root node is the onCreate, onStart, or onResume method of the

main activity (which are invoked when the activity is launched or resumed). If the root node can

call any method requestPermissions(), the corresponding permission is said to be requested upfront.

For permissions not asked upfront, we conservatively consider them as being asked in-context.

Listing 3.1: Customized Messages

1 WrapperMethod(...) {

2 if (ActivityCompat. checkSelfPermission (this , permission) !=

3 PackageManager.PERMISSION GRANTED) {

4 if (ActivityCompat.

5 shouldShowRequestPermissionRationale(this , permission)) {

6 // display reason

7 ActivityCompat. requestPermissions (...) ;

8 } else {

9 // display feedback

10 }

11 } else {

12 RealMethod (...) ;

13 }

14 }

Revocable Permission Analyzer is also capable of checking if the developer includes cus-

tomized messages to educate the users about why permissions are requested. The code snippet

shown in Listing 3.1 is an example where customized messages are displayed, as recommended by

Google. Specifically, the shouldShowRequestPermissionRationale() API call is invoked to check

whether customized message needs to be shown; if so, it will display a message to the user and then

call the requestPermissions(). If shouldShowRequestPermissionRationale() is not encountered, then

47

it is a strong indication that no customized message and education is attempted. In the case when

customized messages are indeed shown, we look up the message from the strings.xml resource file

and manually evaluate them in terms of how meaningful and informative they are.

3.3.2 Android Applications Dataset

Our measurement study is based on 7000 applications that are obtained by downloading

the top free apps from each available category (e.g. Social, Games, etc.) as per Google’s Play

Store [86] charts from August 2016. We perform the study on a Lenovo Laptop with 4-core Intel i7

CPU and 16GB RAM, running Ubuntu 16.10 and Oracle’s 1.8 JDK.

3.3.3 Results and Inferences

Adoption of Android M permission model

A large number of Android M apps do not support revocable permissions. From the

7000 apps, only 1907 are developed for Android M or above (with a targetSdkVersion of 23 or

higher). Further only 1638 apps, or 23.4% of the total, actually used the Android M permission

management APIs such as requestPermissions(). Besides, there are 219 apps out of the 1907 that

do not require any so called dangerous permissions and thus, in a normal way do not invoke any

Android M APIs. We point out that, surprisingly, there are apps like Ringdroid, developed by

Google itself, that do not use revocable permissions even though they are developed with the latest

Android SDK (see § 2.6 for more details).

As reported in [83], in December 2016, the share of Android users that use Android M

and N, is 26.7%; one can expect this percentage to keep growing. Unfortunately, the above result

shows that most of the apps do not support revocable permissions. This implies that a user who has

a phone with a version of Android that supports the latest fine-grained permission mechanism, will

be forced to grant all the permissions to most of the applications; otherwise these applications will

likely not function correctly [64].

Permission revocation support is more common in apps that require fewer permis-

48

Figure 3.3: Adoption rate per number of permissions.

Figure 3.4: Critical permissions that can/should be asked upfront.

sions. The preliminary report also logs data on how many permissions are being asked by the

various apps. Fig. 3.3 shows the adoption rate of the Android M permission model with varying

total number of dangerous permissions requested. Note that when we say an app has adopted the

Android M permission model, we mean that it has invoked one or more Android M permission man-

agement APIs such as requestPermissions(). It is clear that the more dangerous permissions asked,

the less likely developers will make an effort to imbibe revocable permissions. At a higher level, it

49

Figure 3.5: Over-asked permissions during launch.

suggests that the lack of friendly developer support could be hindering the adoption of Android M.

User Education

A significant fraction of apps does not provide meaningful explanations for non-

obvious permissions. We find that from the apps that request permissions in-context, only 51.5%

(803 in total out of 1558 apps) educate the users. An app is educating the user if the message

that it provides during the request is meaningful and the user can understand why the requested

permission is needed for a given functionality. For example, when the app SONGily [164] requests

the storage permission, the following message is provided: ‘Permission to write files is required”.

Clearly this message does not educate the user. Similarly, AskMD [28] provides the following

message when a request for accessing the microphone is being made: ‘AskMD would like to access

your microphone. Please grant the permission in Settings.”. Contrary to those apps, theScore [172]

provides the following message when it requests access to the user’s calendar: ‘In order to add

events to your calendar, we require the Android Contacts permission. We will not be reading or

accessing your information in any way, other than to add the events.”. Clearly, this message follows

Google’s guidelines by properly educating the user why it needs that permission.

50

Permissions asked upfront are less likely to have meaningful explanations. From the

apps that ask permissions upfront, only 178 (39%) educate the user properly. This is a much lower

rate compared to permissions that are asked in-context. Permissions that are asked upfront lack the

context and it is generally even more important to educate the users about what the permissions are

used for. Unfortunately, the results indicate that a majority of the considered apps fail to adhere to

the Google’s guidelines.

Permissions Asked Upfront vs. In-Context

A significant fraction of apps ask permissions upfront (during the launch of the main

activity) instead of in-context. We find that 28% of the apps (458 out of 1638) request permissions

during startup, in hope that the users will grant the permissions and thus, they do not need to ask

again later on. As discussed later, most apps (1558 out of 1638) still attempt to request the same

permissions again in-context even if the permission requests are denied upfront. Often, these per-

missions are not really critical and the app can still function even without them. To understand if

such permissions are critical to an app’s functionality (and therefore have legitimate reasons to be

asked upfront), we manually check each application’s description page in Google Play, including

the categories that they belong to and the kinds of functionalities offered. For example, a camera

application is expected to request the Camera permission; similarly an app belonging to a category

such as travel/navigation can be expected to ask for the location permission. We admit that this

approach is subjective; however if we as technically savvy researchers are not able determine why

a permission is needed for an app by reading its description, then it is unlikely other users will.

Fig. 3.4 shows the distribution of the number of the critical permissions asked upfront by the 458

apps; 60% have only one critical permission while 26.2% require 2 permissions and 5.8% require

3 or more. This shows that in general very few permissions are considered critical and should

be asked upfront. Unfortunately, in most cases, apps often ask more permissions than necessary.

Fig. 3.5 shows the total number of over-asked permissions that those apps are requesting upfront.

Clearly, with respect to more than 52% of the apps, one or more permissions requested upfront are

in fact not critical.

51

Some of the apps expect all permissions to be granted upfront or will simply refuse

to run. Interestingly, even though they support the Android M permission model and are using

the corresponding APIs, some apps simply expect all the permissions asked upfront to be granted;

otherwise they simply refuse to run. We leverage the Revocable Permission Analyzer that checks

the statements invoked when a requested permission is refused; if the statements like Droid M+

.exit(0); or finish(); are encountered, it is evident that the app is simply voluntarily ending

its run due to permission revocation.

This style of such an app defeats the purpose of revocable permissions as it does not really

intend to support revocation of permissions (even when some of the permissions are not critical).

Overall, using this approach, we are able to identify 4.8% or 80 apps out of 1638 apps that ask

at least one non-critical permission, and yet refuse to run if such a permission is not granted. The

remaining 1558 apps still ask for these permissions (again) in-context, even though they were denied

when requested up front.

Summary. Our measurement study demonstrates that only a small percentage of ap-

plications that were built on the Android M platform, are using the new permission model. An

even smaller number of these applications, unfortunately, adhere to Google’s guidelines. One of

the possible reasons for developers not fully and properly adopting the new permission model, is

the complexity and the work associated with transitioning their apps from the previous Android

version for which the app was developed, to the newer version. As users become more privacy

conscious [111, 187], following Google’s guidelines can be a key factor influencing their choice of

apps. Below is a list of our key observations:

• 75% of the top apps supporting Android M API level or above are not in fact utilizing the Android

M permission revocation APIs.

• 49.5% and 39% of the permissions asked in-context vs. upfront do not have informative explana-

tions for why the permissions are sought as per the Google guidelines.

• 28% of the apps supporting permission revocations ask permissions upfront and 52% of them ask

one or more permissions that are non-critical.

52

• Some of these apps (≈ 5 %) simply refuse to run if any of the permissions asked upfront are not

granted.

3.4 Droid M+ Tool Set

In this section, we describe the design of Droid M+ and its component tools. Droid M+

consists of three major components(see Fig. 3.6). The first component is a static analysis tool that

helps developers identify different functionalities (i.e., context) of their apps, what permission(s)

each functionality requires, and the right place to request the permission(s). The second part is an

annotation Droid M+ that facilitates the easy integration of revocable permissions and conformance

to Google’s guidelines within existing Android app code. Finally, Droid M+ contains a compiler

extension that interprets the annotations and inserts the corresponding code.

3.4.1 Static Analyzer

The static analyzer has three tasks: (1) identify functionalities within an app, (2) identify

permission(s) required by each functionality, and (3) identify the right place to annotate. The pri-

mary function of the static analyzer is to help developers migrate apps that are developed against

an old API level to the new API level (≥ 23). However, apps that are already developed for the

new API level can also utilize this tool to help refactor the code, i.e., determine what permissions to

request, where to place the requests, and what education message to display with each request.

Identify Control Flow

Before we can do any useful analysis on an app, the tool needs to first parse the source

code and generate the corresponding call graph and control flow graph. These are standard tech-

niques which we will not describe in detail. As discussed in the literature (e.g., [160]), there are two

challenges worth mentioning. First, point-to analysis [160] needs to be employed in order to gen-

erate an accurate call graph. Second, Java reflection needs to be handled to generate the complete

call graph. Currently, we do not support the latter but there are ways to statically resolve the Java

53

Figure 3.6: Droid M+ architecture.

reflection calls [162], and we plan to incorporate these in the future.

Identify Functionalities

Given a call graph, we define a functionality as a collection of nodes in the control flow

graphs that are reachable from a single entry point. In Android, entry points include activities (i.e.,

the onCreate() method of the android.app.Activity class), callback methods for UI interactions

(e.g., click of a button), content providers (app data managers), services (background threads), and

broadcast receivers (Droid M+ -wide broadcast events). These entry points can be identified by

parsing the manifest files and analyzing the code. The reasoning is that these entry points represent

user-triggered events, or significant activities that should be made aware to users (e.g., background

services). Each functionality should contain a sequence of instructions involving some usage of

permissions. We believe it is a natural and reasonable place to request permissions; this practice is

aligned with the permission management guidelines by Google and is actually used in many real-

world apps that perform in-context permission requests (e.g., WhatsApp Messenger [185]). As most

existing static analysis tools for Android already support the identification of all the entry points of

an app and building a complete call graph ([23], [165]), we omit the details here.

Identify Permissions

The first step in identifying the required permissions, is to parse the manifest file and

find out the target API level of the app. Note that although our tool helps migrate the app to the

54

new permission model of Android M (API level 23), this step is still necessary for supporting the

newer version of the SDK (i.e., if the app’s current targetSdkVersion is lower than 23, we assume

23; otherwise we use the app’s targetSdkVersion). The API level is used to map SDK APIs to

their required permissions. Specifically, we use PScout [30] to generate the database that maps a

permission to a set of SDK APIs that require this permission.

With this mapping information, identifying permissions required by a functionality is

straightforward. In particular, given the complete static call graph, we use a standard reachability

analysis for Android apps to identify all the potential invocable SDK APIs from the entry point of

a functionality. Then we use the permission mapping to generate all the required permission(s) for

this functionality.

Third-party Libraries. Some third-party libraries such as advertisement libraries (e.g.,

AdMob) and analytic services could also access resources protected by permissions (e.g., location).

Because these libraries are usually delivered in binary (bytecode) format, we need additional steps

and different analysis tools to identify the permission(s) required by these libraries. Specifically, we

first collect all calls to the third-party libraries. Then we decompile the byte code of the libraries.

Finally, we perform the same reachability analysis starting from the invoked methods to identify all

the SDK APIs that may be invoked and map them to the required permissions, which is similar to

Stowaway [65]. Note here that Droid M+ currently does not support native libraries.

Populating Annotations

We use Java annotation language (see § 3.4.2) to make it easy for developers to pro-

vide an explanation for a permission request. Assuming that a functionality has a single pur-

pose, we ask developers to only provide the annotation once, as all accesses to the same protected

API will share the same purpose. Under this assumption, we place the annotation at the entry

point of each functionality, with two exceptions viz., background services and libraries. Back-

ground services are different since they are not a subclass of Activity and thus, cannot invoke the

requestPermission method to prompt users. Libraries are different for several reasons. First and

most importantly, a library may be used in many functionalities, including background thread. Be-

55

sides, the onRequestPermissionsResult method is bound to each Activity, so if a library is used

in different Activities, it also creates confusion. Second, it is unreasonable to ask first-party de-

velopers to provide explanations for why a third-party library would require a permission(s). And

instrumenting libraries distributed in binary format requires additional efforts. As a result, Droid

M+ places the annotation at the method where the background services are started (startService)

and where the library methods are invoked.

3.4.2 Permission Annotations

According to the Google guidelines [87] and previous studies [169], users are more likely

to grant a permission if the developer provides an explanation for why the permission is needed.

Developers should also provide feedback if a permission request is denied and accompany this feed-

back with a button leading to the Droid M+ settings for enabling the permission(s). Unfortunately,

while it is easy to automatically identify all the required permission(s) of a functionality, automat-

ically generating the corresponding explanations and feedback is much harder. Hence, our current

design seeks developers’ help for generating the explanations and the feedback. To ease this process,

we use the customizable Java annotation Droid M+ [141] to capture the explanations. List. 3.2 pro-

vides an example of the annotation we use for declaring dangerous permissions and providing their

justifications. Starting with @Permission, the annotation includes: (a) a name for the functionality;

(b) an array of permissions, where each array element is a tuple <perm, reason, feedback>. perm

denotes the requested permission, reason denotes the optional justification, and feedback denotes

the optional message to be shown if the permission is denied.

For example, the “Attach photo to task” functionality of Any.Do could be annotated as:

Listing 3.2: Permission Annotation.

1 @Permission(

2 functionality ={”Attach photo to task”},

3 request ={

4 {”READ EXTERNAL STORAGE”, ”Require storage to access your photos.”, ”You won’t be able to

attach photos .”}

56

5 })

6 public void fromGallery () {

7 // code

8 }

3.4.3 Compiler Extension

We use Droid M+ ’s compiler extension to interpret the permission annotations and gen-

erate the corresponding code. For each required permission, we use Google’s example code [84] as

the template towards generating the code:

Listing 3.3: Generated code.

1 SuitableMethod (...) {

2 // begin of template

3 if (ActivityCompat. checkSelfPermission (this , perm) !=

4 PackageManager.PERMISSION GRANTED) {

5 if (ActivityCompat.

6 shouldShowRequestPermissionRationale(this , perm)) {

7 // display reason

8 ActivityCompat. requestPermissions (...) ;

9 } else {

10 // display feedback

11 }

12 return ;

13 } else {

14 WrapperMethod();

15 return ;

16 }

17 // end of template

18 }

19

20 @Override

57

21 public void onRequestPermissionsResult (int requestCode, String [] permissions ,

22 int [] grantResults) {

23 // length will always be 1

24 if (permissions [0] == permission) {

25 if (grantResults [0] == PackageManager.PERMISSION GRANTED) {

26 WrapperMethod();

27 } else {

28 // display feedback

29 }

30 return ;

31 }

32 }

Here the perm, reason, and feedback are from the annotation. If the reason or the

feedback is empty, we use the string ‘‘${functionality} requires ${perm}.’’. Our compiler

extension ensures that the functionality cannot be empty.

While populating the template is straightforward, the challenge is determining where the

permission should be requested. In [125], Livshits et al. proposed four properties for a valid prompt

placement: (a) Safe: Every access to the protected resource is preceded by a prompt check; (b)

Visible: No prompt is located within a background task or a third-party library; (c) Frugal: A

prompt is never invoked unless it is followed by an access to the resource; and, (d) Not-repetitive:

A prompt for permission is never invoked if already granted.

In Android M, since a call to checkSelfPermission always guarantees the not-repetitive

property and we have already annotated background services and calls libraries differently, we will

focus on safety and frugality. To be frugal, we want to place the permission request as close to the

resource access as possible, which also makes the request more likely to be in-context. However,

the current design of the Android M’s permission model makes it hard to implement this placement

strategy. In particular, as already shown in the code template, requestPermissions is an asyn-

chronous method and thus, when it is invoked, the execution will not be blocked. Hence when the

58

execution reaches the next statement, the permission(s) may not be granted yet and invoking the

protected API can crash the app. The standard way is to immediately exit the current method after

requesting the permission. At the same time, after the user responds to the permission requests, the

execution is resumed in the onRequestPermissionsResult callback function instead of the state-

ment following requestPermissions. The problem is that if local variables are used in the access

to the protected APIs, then they will not be accessible in the callback function; similarly and more

fatally, if the method that accesses protected API returns a value (e.g., location), then we have no

way to return that value to the caller. Due to this problem, we choose to sacrifice some degree of

frugality to avoid the need to drastically refactor the code.

Placement Algorithm. For each functionality that has an annotation, we use a placement

algorithm to insert the “permission requesting” code. Our placement algorithm is similar to the

one proposed in [125], with two key differences. First, as mentioned above, because of framework

support, we do not need to consider the non-repetitive constraint. Second, our algorithm does not

try to avoid third-party libraries and background services because they are not annotated. Instead,

we walk up the dominator tree to avoid each method whose return value depends on the protected

API and will be used by its caller(s).

First, for each annotated functionality, we initialize a job queue and into which pairs

<sensitive call, current method> are inserted. Here a sensitive call denotes an invocation to

a SDK API, a library method, or a background service that may require permission(s). For each

pair in the job queue, we perform a backward search to check if the permission has already been

requested. Note that according to Android’s documentation [88] because the permission group may

change in the future, developers should always request for every permission even though another

permission in the same permission group may already be asked. Therefore, when checking for

existing permission requests, we do not consider (1) whether a permission within the same permis-

sion group has been requested and (2) whether a permission that implies current permission (e.g.,

WRITE EXTERNAL STORAGE implies READ EXTERNAL STORAGE) has been requested.

If a permission has not been requested, we check whether the current method is a suitable

method. A method is suitable if (1) it is a void method, (2) its return value has no dependencies on

59

the sensitive call, or (3) its return value will ever be used. If the current method is not suitable, for

each call site of the current method, we push a new job pair <current method, call site> into

the queue.

Once a suitable method is found, we place the permission request inside the method. We

first create a wrapper method that replicates the code from the sensitive call to the end (return)

of that branch. If the wrapper method depends on local variables, we use a map to store those

variables before requesting the permission and retrieve them inside the wrapper method. After

creating the wrapper method, we insert the permission request template right before the sensitive

call and populate it with correct annotations and the generated wrapper method, as suggested in

Lst. 3.3. Note that although some of the code after the template will become dead because the

execution will always return before reaching that code, our current design does not try to eliminate

it; instead, we rely on the existing dead code elimination pass of the compiler to eliminate this

unreachable code.

The above process is repeated until the queue is empty. Note that because the entry point

of a functionality is always a void method, this loop is guaranteed to terminate.

Background Services. Droid M+ ’s placement algorithm can handle almost all cases,

but it cannot handle exported background services. These are services that can be started through

a “broadcasting intent”. Since such services can be started by the Android framework, if they

require permissions, Droid M+ must request the permissions up-front. We identify such services

by parsing the manifest file. For any service with attributes enabled = true and exported = true

and requires permission(s), we add the permission requests in the onCreate method of the main

Activity.

Critical Permissions. Droid M+ currently does not support identifying permissions that

are critical and should be requested up-front. For such permissions, developers have to add the re-

quests manually as well as provide proper education on the welcome screen [87]. However, because

granted permissions can always be revoked by users at anytime (through Droid M+ settings), the

code snippets that Droid M+ inserts are still necessary for the correct functioning of the app.

60

3.5 Evaluations

In this section, we present the Droid M+ ’s evaluations. Our evaluation focus on answering

two questions:

• How applicable is Droid M+ i.e., how well can it handle today’s apps on the Play Store?

• How good is our permission request placement algorithm?

3.5.1 Implementation

We implement the static analyzer of Droid M+ based on the soot [165] static analysis

framework. We use apktool [26] and androguard [23] to analyze existing apps. Annotation inter-

pretation and code insertion is done based on Java JDK 1.8 and using Java parser [105].

3.5.2 Applicability

We design Droid M+ to be a source code level tool set. Unfortunately, as there are only

a limited number of open sourced Android apps, we evaluate the applicable of Droid M+ in two

ways. First, using RingDroid as a case study, we showcase how Droid M+ would work on real

world Android apps. Then we analyze 100 top apps from the Google Play store and quantify how

many apps can be handled by Droid M+ .

Case Study: Ringdroid

Ringdroid [154] is an open source app that records and edits sounds. In this case study,

we use the commit 955039d that was pushed on December 2, 2016; actual source code and line

numbers can be found in [154]. Although Ringdroid was developed by Google and was targeting

the latest Android SDK (API level 25), it surprisingly does not support revocable permissions (built

against API level 22). Instead, it just wraps access to protected APIs with a try block and catches

the thrown SecurityException. This makes it a good example to showcase the benefits of Droid

M+ .

61

Ringdroid requires four dangerous permissions: READ CONTACTS, WRITE CONTACTS, RECORD AUDIO,

and WRITE EXTERNAL STORAGE. The static analyzer in Droid M+ , finds 11 functionalities that require

permissions. Among them 8 of them are background functionalities and the remaining 3 are asso-

ciated with button click. 9 requests are finally inserted by Droid M+ (2 of them are redundant). In

all the 9 cases, the requests were inserted immediately before the associated sensitive call happens,

because the containing methods are all void methods.

• The first functionality is the onCreateLoader interface, implemented by RingdroidSelectActivity

when it returns a CursorLoader that requires the STORAGE permission. This method is invoked in

the background by the Android framework when LoadManager related methods are invoked (e.g.,

in the onCreate method at line 151 and 152). Droid M+ insert the requests before line 151 (152

is covered by this request), and the remainder of the code from line 151 to line 187 is replicated

in a wrapper method.

• The LoadManager is also invoked in the refreshListView method. Since this method can be

called from other UI events such as onCreateOptionsMenu, Droid M+ also placed a request for

the STORAGE permission at line 528, with lines 528 and 529 replicated in a wrapper.

• In the onDelete method invoked from a button click callback function, Droid M+ also inserted

a request for the STORAGE permission at line 473; the remainder of the function is replicated in a

wrapper.

• The ReadMetadata method also requires the STORAGE permission. However, since it is not part of

an Activity, Droid M+ has to move it up to the loadFromFile method of the RingdroidEditActivity.

Droid M+ inserted a request at line 598, with the remainder of the function replicated in a wrap-

per. Note that inside the loadFromFile method, there is a background thread that also requires

the STORAGE permission. However, as the permission has already been requested, no request is

inserted for this thread.

• The MICROPHONE permission is also required by the RecordAudio method of the SoundFile. How-

ever, as it is invoked from a background thread, the request is inserted before the creation of the

thread at line 755 inside the recordAudio method; the rest of the function replicated in a wrapper.

62

Figure 3.7: CDF of apps versus the number of functionalities that require permission(s).

• Three methods of the SoundFile class: ReadFile, WriteFile, and WriteWAVFile require the

STORAGE permission. But as they are invoked in background threads, namely, one created in the

loadFromFile method discussed above and another in the saveRingtone method, the request

is inserted inside the creation method. In particular, this is done at line 1225. The rest of the

function replicated in a wrapper.

• Similar to RingdroidSelectActivity, the ChooseContactActivity implements the onCreateLoader

interface which will return a CursorLoader that requires the CONTACTS permission. The loader is

initialized in the onCreate method. Thus, a request is inserted at line 129 with the code from line

129 to line 139 replicated.

• The afterTextChanged method handles UI events. A request to CONTACTS permission is inserted

to enable restartLoader, at line 181; this single line (line 181) is replicated in a wrapper.

• The assignRingtoneToContact method, invoked from a button click callback function, also re-

quires the CONTACTS permission. A request is inserted at line 154 with the remainder of the

function replicated in a wrapper.

The reasons for requesting these permissions are self-explanatory; thus, we omit the an-

notations that were created.

Extended Measurement

To understand the applicability of Droid M+ to general apps, we perform the following

measurements. First, because Droid M+ cannot handle native code that requires dangerous permis-

63

sions (e.g., write to the external storage), we analyze how many apps from our measurement study

(1) contain native code and (2) require external storage read/write permissions1. We found that 546

apps from among the 7000 apps match these criteria and thus, might not be handled by Droid M+ .

Next, we analyze 100 top Android M apps that do not have native code and require dan-

gerous permissions. We choose Android M apps to ensure that we can also compare the permission

requests placements. From among these apps, we found 698 functionalities that would request a

total of 158 permissions up-front. On average, each application has 7 different functionalities that

require permission(s); 90% of the apps have 13 “permission requiring” functionalities or fewer.

Fig. 3.7 presents the CDF of the number of permission requiring functionalities of the analyzed

apps. Among these functionalities that require permissions, 203 are Activities, 232 are UI event

handlers, 201 are third-party libraries, and 60 are background threads. Most of the functionalities

(579) require only one permission, 98 require two, 21 require three or more.

Regarding request placement, as was discussed in § 3.4, Droid M+ cannot place an an-

notation in a non-void method whose return value depends on the permission and would be used

by its caller(s). To understand how common this situation is, we performed a more conservative

measurement – how many non-void methods contain access to protected APIs. We found that 43%

of the methods would returns a value and thus, the placement of the permission request may have

to moved up to its callers. We also found that 11.3% of these requests might need to be placed on

the entry method because all the other methods inside the functionality return a value.

Finally, by applying Droid M+ to these apps, only 48 permissions will be requested up-

front (instead of 158), while the remaining will be asked instead, in-context; this corresponds to a

decrease of 69.62% in permissions asked up front.

3.5.3 Quality of Request Placement

In this subsection, we evaluate the effectiveness of our request placement strategy (i.e.,

examine whether the processed app would actually follow Google’s guidelines [87]). To demon-

strate that this is indeed the case, we first use an existing Android M app that supports revocable

1This is the only common permission that can be used within native code.

64

Group Permissions
LOCATION ACCESS COARSE LOCATION, ACCESS FINE LOCATION
CONTACTS READ CONTACTS, GET ACCOUNTS
CALENDAR READ CALENDAR
PHONE READ CALL LOG, READ PHONE STATE
MICROPHONE RECORD AUDIO
STORAGE WRITE EXTERNAL STORAGE

Table 3.2: Dangerous permissions requested by Any.Do and their corresponding permission groups.

permissions to show that Droid M+ ’s placement would match the placement of the developers, i.e.,

we are as good as manual placement. Then we reason about why the Droid M+ -processed app

would follow the guidelines.

Case Study: Any.do

In this case study, we analyzed the free version of Any.do [24], one of the most popular

“To do” and task list apps on Google’s Play Store with a total number of installations between 10

and 50 million. This application was updated last on November 21, 2016 and it supports the new

revocable permission model. We input the downloaded APK to Droid M+ ’s static analyzer and find

that the app requires 9 dangerous permissions (see Table 3.2).

Manual Request Placement: Upon launch, the app requests users for permissions for

LOCATION, CONTACTS, and PHONE. No explanation or education is provided with regards to any of

these. Upon further investigation, we find that none of the requested permissions are critical and

the app would continue to function even if no permissions are granted. In addition to these up-front

requests, all used permissions are also requested in-context; so they can be dynamically revoked.

• The LOCATION permission is used in four functionalities: one for attaching to a scheduled task for

location based reminders, two for sharing the location to custom analytics classes, and one in a

third-party location-based library.

• The CONTACTS permission is used in two functionalities: when the user needs to share a task with

her friends and to display the caller of a missed phone call. If the permission is not granted, no

feedback is provided and the corresponding functionality is not performed.

65

• The PHONE permission is used when the user seeks to be notified with regards to missed phone

calls. If the permission is not granted, feedback “Missed call feature requires phone permission”

is provided. It is also being used in the two analytics classes.

• The CALENDAR permission is requested in-context and used to cross-reference the tasks with the

user’s calendar for conflict detection, etc. If the permission is not granted, the feedback “Post

meeting feature requires calendar permission” is provided.

• The MICROPHONE permission is requested correctly in-context when the user wants to add a voice

message to a task that she schedules for later. If the permission is not granted, the feedback

“Recording permission is needed” is provided.

• The STORAGE permission is also requested correctly in-context when the user wants to add a photo

or a document to her scheduled task. If the permission is not granted, the feedback “This feature

requires access to external storage” is provided. But this permission is also used by three different

third party libraries.

In summary, to support revocable permissions, all permissions are checked before use;

however, only 3 (50%) of them are also requested in-context. Moreover, Google’s guidelines are

not adequately followed: (1) non-critical permissions are requested up-front, (2) no education is

provided at all; while admittedly in many cases the reasons for requesting the permissions can be

inferred from the functionality, some uses are less intuitive (such as displaying the callers for missed

calls); (3) when permissions are not granted, feedback is not always provided and the functionality

silently fails (e.g., share with contacts).

Droid M+ ’s Request Placement: Because Any.Do does not always request the per-

mission in-context, we cannot do a one-to-one matching with its request placement; instead, we

performed two measurements: (1) we checked whether their in-context requests matches Droid M+

’s and (2) we checked whether their in-context checks matches the requests made by Droid M+ .

For the three already in-context permission requests, because they are all inside click

handlers, our placement is roughly the same as existing placement. There is a difference due to the

fact that, to support ascynchronous permission requests, Any.do’s code has already been refactored

66

so that the protected APIs are all accessed inside void methods and the permissions are asked before

the invocation of the methods. This makes Droid M+ ’s placement one level deeper than existing

placement (permissions are asked inside the method). Unfortunately, since we do not have an older

version of this app, we cannot verify if without such factoring, our algorithm would have yielded

the same placement.

In the remaining places where permissions are checked but not requested, Droid M+ ’s

static analyzer identified all of those as places where permissions should be requested. From among

them, 16 of the accesses are inside third-party libraries and 4 of them are inside background threads.

We have also manually checked whether our request placements are in-context and the answer is

yes.

Discussion: Although Any.Do is a single case study, we argue that the evaluation result

is also applicable to other apps. More specifically, the quality of the request placement is assessed

based on whether the request would be in-context. In Droid M+ we achieve this goal in two steps:

(1) we segment the code into different functionalities based on unique entry points and (2) we try

to place the request as close to the permission use as possible. We believe this strategy is effective

for the following reasons. First, our functionality identification process essentially segments the

app into Activities, UI events handlers, and background threads. Since most UI events handlers

are single-purposed and very simple, permissions requests should also be in-context. Activities

typically, at most represent a single context; thus, any request within an Activity is highly likely to

be in-context. Furthermore, the quality of the placement inside a Activity is further improved in the

second step (see above). For background threads, due to the limitation of the Android framework,

the request would is less likely to be in-context; however, Droid M+ still improves the quality of the

request by supporting the insertion of justifications.

3.5.4 Performance

In the next set of experiments, we seek to quantify the overheads that accompany Droid

M+ on the developer side. Towards this, again consider Ringdroid, the open source app that was

previously described and modify it to support revocable permissions. We make two constructs; in

67

Figure 3.8: Average Compilation Time.

one the API of Android M is used, and in the other Droid M+ is used.

Compilation Overhead: Our case study was performed on Android Studio 1.4.1. The

latter was running on a laptop with a quad core Intel Core i7 2.00GHz CPU with 16GB of RAM

and a hard drive of 1TB at 5400 rpm. Because of the additional steps, the compilation with Droid

M+ can be expected to take longer than with Android M’s API. We seek to quantify this increase.

We perform a clean before each compilation in order to achieve the maximum overhead that can

be incurred. We perform 20 runs and both the average results and the 95% confidence intervals

are shown in Figure 3.8. On average, Ringdroid using only Android M compiles in 22.43 sec-

onds while using Droid M+ the times is 67.53. This corresponds to an increase of approximately

201%. Although this overhead is significant, it is experienced only when the app is compiled on the

developer’s computer (it does not affect the user).

3.6 Discussion

Automated Annotation Extraction. Currently, Droid M+ cannot automatically generate

the functionality, reason, and feedback within the annotations as it requires automated reasoning

about the context. However, researchers have demonstrated that it is possible to use natural language

processing (NLP) over apps’ descriptions to infer their functionalities [142]. Using NLP, we may

also be able to extract the context information directly from the target app. We plan to explore this

direction in the future.

Per-Functionality Permission. Although the new Android permission model is a big

68

At most one At least one 5 or less 5 or greater
49% 51% 60% 40%

Table 3.3: Permissions per functionality

(a) (b)

Figure 3.9: Any.do current version vs with Droid M+.

step forward from its old model, it is still not ideal. Specifically, once a user grants a permission,

the permission will be shared across all the functionalities that will require this permission. For

example, when a user grants the Location permission to a “map” app to find her current location,

this permission can also be used by third party libraries [192] and violate the user’s privacy. A

recent study [187] shows that for the “ask-on-first-use” strategy Android M and iOS employ, the

participants subsequent decisions on whether to grant a permission would match their first decision,

only about half of the time (51.3 %). This observation is also intuitive; for example, in the above

example, while the user is willing to grant the Location permission to the core functionality of the

map app, she may not want the advertisement library to know her current location.

To quantify the extent to which permissions are carried over across functionalities, we an-

alyzed the same 1638 apps that contain revocable permissions (recall Section 3.3). Table 3.3 shows

the results. In particular, 51% of the apps share at least one permission across multiple functionali-

ties. For these apps, in 60% of the cases, the permission is shared by up to 5 functionalities; in the

remaining cases, the permission is shared between 5 and 20 functionalities.

We discuss two further improvements that can address this problem. Under the constraint

of the current Android M permission model, one solution is to provide more education to the user

with aggregated explanation messages from multiple functionalities. This solution will offer the

69

best transparency about all possible uses of any permissions. With Droid M+ , we have in fact

implemented this solution and provided an example screenshot shown in Fig. 3.9. If a user chooses

to approve the permission use, he or she will be fully aware that the permission is enabled in all

functionalities. Of course, the downside of such an approach is that it burdens the user with too

much information and puts the onus on her to revoke a permission later to protect her privacy.

A better solution is to extend the “ask-on-first-use” strategy to work on a triplet

<app, functionality, permission> instead of the pair <app, permission>. This means that a

permission is approved per functionality. If the same permission is used in several functionalities,

a user can independently approve and deny a subset of the same. With the help of Droid M+ , an

existing app can be easily ported to this new per-functionality permission model as Droid M+ can

already help developers to identify and annotate the different functionalities of their apps, identify

the required permission(s) for each functionality, and automatically generate the permission request

code. To enforce this fine-grained permission model though, we can either insert additional code to

maintain the per-functionality permission status, or require proper support from the Android OS.

3.7 Conclusions

Given criticisms on Android’s permission models, Google revamped the model in Android

6.0. In this work, we find via an in depth measurement study that many apps from the Google Play

store have either not migrated to the new model, or do not follow Google’s guidelines for adopting

the model, effectively. We find some evidence that this unsatisfying status quo could be due to the

lack of tools that allow developers to easily adopt the new model. Towards addressing this shortfall,

we design and implement Droid M+ , a tool set that helps developers refactor their code to adopt

the model. We show that Droid M+ can help developers in evolving their legacy code to adhere to

Google’s guidelines, via case studies and general app evaluations. We also show that the overheads

with Droid M+ are very reasonable.

70

Chapter 4

RootExplorer: Detecting Android Root

Exploits by Learning from Root

Providers

4.1 Introduction

Android is currently the most popular mobile operating system in the world, with 1.4

billion users worldwide and 87.5% of the market share [163]. Google, contrary to Apple (wrt

iPhone), having no complete control over either the hardware or the software of Android phones.

On the positive side, this allows many hardware and other third-party vendors to build a competitive,

customized, and diverse ecosystem. But on the other hand, the diversity of Android devices also

introduces security issues. First, the OS update process varies from vendor to vendor (some are

faster than others). For example, at the time of writing, only 29.6% of Android devices on the

market have Marshmallow [91], which was introduced nearly 2 years ago. Second, the vendor

customization of Android often introduces vulnerabilities at different levels of the software stack

including application, OS kernel, and drivers [20, 189, 197, 198, 201]. Consequently, millions of

users are exposed to various critical security vulnerabilities that plague such customized, typically

71

older and unpatched devices [46, 56, 176].

Among all vulnerabilities, arguably the most pernicious are privilege escalation vulnera-

bilities that would allow attackers to obtain the root privilege – the highest privilege on Android.

Such attacks are usually referred to as root exploits. Once it has acquired the root privilege, an

attacker/malware can bypass the Android sandbox, perform many kinds of malicious activity, and

even erase evidence of compromise. For this reason, malware with embedded root exploits are on

the rise. Indeed, as apparent in recent news, it has become more and more common that malware

found in third party Android markets or even in the official Google Play store, contain root exploits.

For instance, in June 2016, Trend Micro reported GODLESS [132] , an Android malware family

that uses multiple root exploits to target a variety of devices, affecting over 850,000 devices that

were running Android 5.1 or earlier, worldwide. One month later (July), another Android malware

dubbed HummingBad was reported to have infected more than 85 million devices and was found

in 46 different applications, 20 of which were found on Google Play [100]. In September 2016,

a Pokemon Go Guide app spotted in Google’s Play Store, was found to contain root exploits as

well [157]; the app had accumulated over 500,000 downloads by the time it was spotted and taken

down. Considering that Google has already deployed a cloud-based app vetting service viz.,“Google

Bouncer” [82], these repeated instances demonstrate that it is both important and challenging to de-

tect malware that carry out root exploits.

An even more concerning fact is that the number of newly discovered privilege escalation

vulnerabilities (e.g., kernel vulnerabilities) is also on the rise [15]. Many of such vulnerabilities,

such as DirtyCow [56], can even be used to root the latest versions of Android. So it is simply

a matter of time before they are leveraged by malware to attack (potentially a large number of)

unpatched devices.

In this project, we aim to tackle the challenging problem of detecting malware that employ

a variety of root exploits. The key observation that drives our approach is that, in the Android world,

it is not just the malware that carry root exploits. There are legitimate and popular Android applica-

tions, often called root providers or one-click root apps, that root phones on behalf of users [197].

Many of these apps are commercial-grade and backed by large companies such as Tencent, Qihoo,

72

and Baidu. They are capable of rooting tens of thousands of different Android devices using a hun-

dred or more root exploits [197]. Note that rooting (as well as jailbreak) is considered legal [49], and

users do want to root their phones to remove bloatware or unlock new features that were otherwise

not available. These root exploits can serve as valuable resources towards aiding detection since

they are highly customized (towards specific devices), reliable, and more importantly are likely to

be used as is, by malware developers (discussed later). This means we can take advantage of these

exploits to build a system (RootExplorer) that automatically extracts signatures from root exploits,

and use those signatures for runtime malware detection.

Unfortunately, this seemingly simple strategy is not easy to realize in practice. The big

obstacle is that almost all exploits are tailored towards specific Android devices, models, and/or

OS versions. Screening apps in an emulator is unlikely to trigger and reveal the exploit, unless the

environment matches exactly what the exploit expects. This in turn means that one may need tens of

thousands of real Android devices to cover just all known root exploits. To overcome this obstacle,

RootExplorer also learns the environment requirements from the aforementioned commercial root

exploits and uses this knowledge to create the “expected” runtime environment so that it is capable

of interacting with the exploits to drive their execution (e.g.by pretending that a particular vulnerable

device exists).

We design, prototype and extensively evaluate RootExplorer to detect root exploits present

in malware. It consists of (a) an offline training phase where it extracts useful information about

root exploits from one-click root apps using behavior analysis, and (b) an online detection phase

where it dynamically analyzes apps in specially tailored environments to detect root exploits. We

test our prototype with a large set of benign apps, known malware, and apps from third-party app

marketplaces. Our evaluations show that RootExplorer yields an almost perfect true positive rate

with no false positives. RootExplorer also found an app that is currently available on the markets,

that contains root exploits.

In summary, the contributions are as follows:

• We identify and address the fundamental challenge of detecting Android root exploits that target a

73

diverse set of Android devices. In particular, we learn from commercial one-click root apps which

have done the “homework” for us with regards to (a) what environmental features are sought and

(b) what pre-conditions need to be met, for a root exploit to be triggered.

• We design and implement RootExplorer, a fully automated system that uses the learning from

commercial one-click root apps to detect malware carrying root exploits. Specifically, in an

offline phase, it conducts extensive static analysis to understand the precise environment require-

ments and the attack profile of the exploits. It then utilizes the learned information to construct

proper analysis environments and detects attempted exploits.

• We evaluate RootExplorer via extensive experiments and find that it can successfully detect all

known malware that contain root exploits, including very recently discovered exploits and the

ones that are used in other one-click root apps; RootExplorer results in no false positives with

our test set. Using RootExplorer, we also find an app which is currently available on an Android

market, that contains root exploits.

4.2 Background & Related Work

4.2.1 Root Exploits and One-Click Root Apps

As mentioned, one-click root apps are very popular among users and they are competing

against each other to be able to root more phones and offer more reliable results. One of the reasons

that companies develop these apps is that they also develop security apps or app management tools

that also require the root privilege to function correctly (e.g.antivirus software must have higher

privileges than any malware [33]);

Interestingly, the competition between these one-click root apps have driven them to in-

clude the most comprehensive and advanced root exploits. For example, in 2015, it was reported

that there are 39 families of directly usable root exploits that can be found publicly (with source

code or binaries); in contrast, there were 59 families of root exploits found in a popular commercial

one-click root apps, including exploits against publicly unknown or zero-day vulnerabilities [197],

74

and exploits that can bypass advanced defense mechanisms like SELinux [92], Verified Boot [93],

etc. On the contrary, although researchers have detected several malware families with root ex-

ploits, none of them contain previously unknown exploits [202]. We believe this is because most

malware authors, except the so-called state sponsored, do not have the capability to develop new

root exploits; hence, they typically only embed exploits that are developed by others (e.g.one-click

root apps).

While detecting malicious behaviors has been the focus of many prior efforts in the liter-

ature, detecting Android root exploits faces unique challenges. One such challenge is that specific

preconditions (e.g.environment constraints) need to be satisfied in order for such exploits to be trig-

gered; this is hard becuase of the highly fragmented Android hardware and software. Specifically,

not only do different phones have different device(s) and corresponding driver(s), even with respect

to a universal kernel vulnerability such as the futex bug [72], the root exploit has to be tailored for

different phones. This is because the actual kernels on different phones are different (e.g.each has a

different memory layout). As a matter of fact, one commercial one-click root app contains 89 differ-

ent exploit payloads for the same underlying futex bug [197]. Consequently, malware carrying root

exploits typically have specific environment checks to determine (1) what kinds of vulnerabilities

are available and (2) how the attack should be launched. Thus, in order to detect a root exploit, an

analysis environment must satisfy the necessary preconditions.

We categorize these preconditions into two corresponding types: (1) environment checks

and (2) preparation checks. Environment checks gather information with regards to the environment

such as the device type, model, and operating system versions. For instance, many times a particular

malware will check whether it has a matching exploit for the current environment. If so, the specific

exploit is selected from either a set of local exploits or a remote exploit database. This process is in

fact also used by one-click root apps [197]. Preparation checks verify that the interactions with the

underlying operating system are as expected, (e.g.a vulnerable device file exists on the system and

the driver returns expected results in response to specific commands). The number of preparation

checks can be large, depending on the nature and complexity of the root exploits. This makes it

difficult to manually prepare the right environment for each root exploit and detect them.

75

4.2.2 Android Malware Analysis

A relatively large chunk of Android related literature, is on malware analysis and mali-

cious behavior detection. However, most of this literature focuses on detecting malicious behaviors

like leaking/stealing private information and financial charging [202]. Unfortunately, no existing

work tackles root exploit detection. We roughly categorize such work into three types: static analy-

sis, dynamic analysis, and hybrid analysis.

Static Analysis: Static analysis is used to analyze an Android app’s byte code and/or native code

without running it inside an emulator or a real device. To detect information/privilege leaks, a set

of tools [27, 44, 94, 120, 127, 140, 182] has been developed to perform information-flow analysis.

Another popular direction is to model and detect malicious behaviors that are unique to Android.

Pegasus [47] uses “Permission Event Graphs” to detect sensitive operations performed without the

user’s consent. Apposcopy [67] uses “Inter-Component Call Graphs” to detect Android malware.

AppContext [195] uses contextual information (UI events and environmental triggers) to check

access to sensitive operations. The advantage of static analysis is coverage and efficiency; it may

however face problems when analyzing apps with heavy obfuscation. In fact, it has been shown

that simple obfuscation techniques or transformations applied to known malware samples can often

easily evade static detection by anti-virus software [153].

Dynamic Analysis: Dynamic analysis analyzes an Android app by running it inside an emulator

or a real device. Similar to static analysis, many dynamic malware analysis systems also focus on

information flow analysis and leak detection [62, 148, 199]. Others use system calls to model and

detect malicious behaviors [43, 54, 168, 194]. Because malware can detect that it is being run in

an instrumented environment such as an Android emulator [107, 145, 177], researchers have also

proposed building sandboxes on real devices [32, 37] for this purpose. Dynamic analysis can usu-

ally overcome obfuscation techniques employed by malware, but a malicious behavior can only

be detected if it is executed during the analysis. To overcome this, tools have been developed to

systematically exercise the functionality of an app in the hope of triggering its malicious behav-

iors [31, 188].

76

Hybrid Analysis: Hybrid analysis can be divided into two cagegories. The first category combines

static and dynamic characteristics to detect malicious behaviors [184,191,203]. The other category

utilizes static analysis to guide dynamic analysis [31, 188, 196, 200].

4.2.3 Attack Modeling and Detection

Previous papers on attack modeling and detection mainly focus on filtering remote ex-

ploits like those launched by worms [50–52, 114, 123, 136, 161, 179]. Similar to those systems,

RootExplorer also leverages program analysis techniques like symbolic execution to extract the at-

tack signature. However, there are a few differences. First, due to fragmentation of the Android

ecosystem, we do not always have the targeted device, i.e.we need to derive both the attack sig-

nature and the corresponding environment requirements without the corresponding target system.

Note that in aforementioned systems, in contrast, analysis is usually performed over the targeted

software. Second, for remote attacks, the malicious payload usually contains shellcode; however,

in local privilege escalation attacks, shellcode is rarely used – ret2usr, ret2dir, or direct ker-

nel object modification (DKOM) are more common. Finally, due to polymorphic or metamorphic

payloads, finding a good balance between false negatives and false positives is very challenging for

network filters. Android root exploits are more difficult to morph (as shellcode is not part of the

payload); more importantly, even though it is possible to generate polymorphic exploits, as previ-

ously discussed, most Android malware authors are not capable of doing so. For these reason, we

decide to pursue our current approach, i.e., derive system-call-based signatures purely from known

exploits.

4.2.4 Other Related Work

Android Emulator Evasion: Recent works have shown how easy it is for malware authors to evade

the Android emulator. Petsas et al. [145] apply three different detection heuristics and manage to

detect most Android dynamic analysis tools. Vidas et al. [177] derive four different techniques

based on differences in behavior, performance, hardware and software components and show how

77

they can easily detect existing malware scanner tools that are based in emulators. Morpheus [107]

is a system that can create up to 10,000 different detection heuristics for Android emulators. As a

countermeasure, researchers [133] have begun to use real phones instead of emulators to analyze

malware. We design our solution to be operable on both real Android devices and emulators, thereby

making this issue orthogonal to our work.

Syscall-based Behavior Modeling: RootExplorer uses system-call-based behaviors to model and

detect root exploit attempts. Syscall-based behavior modeling has been widely used to model and

detect malicious behaviors [35, 117]. Our model is derived from the behavior graph proposed

in [117], with adjustments to fit our scenario.

4.3 Threat Model and Problem Scope

The goal of RootExplorer is to detect Android apps that carry root exploits. Detecting

other malicious behaviors is out-of-scope of this work and has been covered by many previous

papers (§4.2). We also do not attempt to understand what the malware will do after acquiring the

root privilege; we defer such an analysis to future work.

We envision our system to operate in the cloud (similar to Google Bouncer [82]), and that

it will scan apps by dynamically executing the samples on real Android devices and/or emulators.

For this reason, we restrict the source of the analyzed apps to be either from the official Google Play

Store or from third-party marketplaces. We do not consider malware involved in targeted attacks

such as APTs.

We assume that malware carrying root exploits can be obfuscated to prevent static analy-

sis, and may be equipped with common anti-debugging/anti-virtualization techniques to detect the

analysis environment. They may also download root exploits dynamically from a C&C server only

when the desired Android device is detected. For triggering root exploits, we focus on understand-

ing and providing the environment expectations. However, we do not handle malware that depends

on specific user inputs (e.g.passing a game level) to trigger the root exploit. We believe generating

such inputs is orthogonal to this work and has been covered by other projects [31, 188].

78

Offline training
with one-click

root apps

Environment
preparation and
dynamic analysis

Expected behavior
signature

Detection
results

Preconditions /
environment constraints

Figure 4.1: System overview

Finally, we focus on detecting root exploits against known vulnerabilities; detecting un-

known or zero-day exploits is out of scope of this work. We believe this is a reasonable limitation

as no malware that has propagated through app marketplace has been found to contain zero-day

exploits.

4.4 RootExplorer Overview

Figure 4.1 depicts the operations of RootExplorer. There are two key phases: (1) an offline

training phase (static analysis) that extracts useful information about root exploits from one-click

root apps and, (2) a detection phase (dynamic analysis) that dynamically analyzes apps in specially

tailored environments to detect root exploits.

During training, we gather information about as many different root exploits as possible.

Since root exploits target specific devices, it is not possible to trigger all of their behaviors without

proper environments. We thus resort to static analysis. For each exploit, we collect (1) sequence and

dependencies of system calls that can lead to a compromise of the device, i.e.behavior signature [35,

117], and (2) preconditions for deterministically triggering the exploit.

The first step of our offline analysis is to identify a feasible execution path that leads to the

success of the analyzed root exploit. We use guided symbolic execution to solve this problem. In

particular, we symbolize all external “inputs” to each root exploit and aim to find a shortest feasible

path from the entry to the marked successful end point. We build our prototype symbolic execution

engine based on IDA pro, which is capable of handling all the instructions and libc functions that

79

were encountered in the training set of exploit binaries.

From the feasible execution path, we extract the sequence of system calls and the depen-

dencies across system calls from the output of symbolic execution as well. This information is then

used to construct the behavior signature. Since we already collect constraints over what informa-

tion needs to be returned from the system through system calls (i.e.preconditions) during symbolic

execution, we just consult an SMT solver to provide a concrete instance of satisfying preconditions.

Both pieces of information (behavior signature and preconditions) feed directly to the dynamic

analysis phase towards preparing the right environment and satisfying necessary preconditions, to

trigger and thereby detect various root exploits.

For this purpose, besides utilizing root exploits from one-click root apps, we could in

theory utilize the many exploits with PoC code available on the Internet, but they all come in differ-

ent “sizes and shapes”. Some contain source code but often hard code values in certain variables;

this renders the exploit suitable only for a specific tested Android device. Some have binaries only,

which are obfuscated to prevent direct reuse. Therefore, We choose to work with a popular one-click

root app for the purposes of training. The benefits are multi-fold: (1) the quality of exploits is likely

very good, as they are offered in commercial products (e.g.they don’t contain unnecessary steps,

and are unlikely to crash the system); (2) there is a rich variety of exploits available (60 families

of exploits in our evaluation); (3) the exploits packaged in the same one-click root app are likely to

be obfuscated in similar ways, making it possible to de-obfuscate all exploits at once and conduct

static analysis on them.

Learning the expected behavior signature: The behavior signature of an exploit is extracted by

analyzing the de-obfuscated exploit binaries. While there are many possible models to construct

malware signatures in general, we favor system call based behavior signatures; this is because root

exploits interact with the operating system through system calls in unique ways to exploit vulner-

abilities. To this end, we build our behavior signature largely based on prior work on extracting a

malware behavior signature from system calls [35, 117]. This allows our dynamic analysis to keep

track of the progress of an exploit and confirm it when all of its steps have been performed. More

details are provided in §4.5.

80

Learning preconditions: As discussed earlier in §4.2, there are two types of preconditions that

have to be satisfied with regards to a root exploit in general: environment related and exploit prepa-

ration related. Environment preconditions dictate whether the underlying Android device model

and kernel version match what are expected by the exploit. After training, our dynamic analysis

environment can provide the expected Android device information to trigger an exploit. Normally

it is difficult to determine which exploits work against which Android devices (because one needs

to ideally test an exploit against real devices). Fortunately, one-click root apps already provide this

information to a large degree. Specifically, the one-click root app we studied downloads a different

set of exploit binaries depending on the device information that is reported to its backend server. By

reverse engineering their protocol, we have effectively built a mapping from a list of more than 20K

Android device types (available from [2]) to their corresponding exploits. The assumption is that a

one-click root app has a reasonably good idea of which exploits can target which device.

For exploit preparation related preconditions, we give the symbolic constraints collected

along the feasible path and ask the SMT solver to construct a concrete satisfying instance such

that when replayed during dynamic analysis, can deterministically trigger the analyzed root exploit.

For instance, if an exploit expects to open a vulnerable device file successfully, the “input” to the

exploit program is the return value of the open() syscall, which needs to take a non-negative value

according to the symbolic execution. Once we learned such preconditions, our dynamic analysis

environment can provide the same expected “input”. We will present the detailed design of the

symbolic execution in §4.6.

4.5 Behavior Graph Analysis

Since Android malware (especially those that contain root exploits) typically obfuscate

their payloads heavily [202], dynamic analysis is the obvious choice over static analysis, for the

purposes of detection. However, as discussed earlier, dynamic analysis wrt root exploits is difficult

as such exploits target specific Android devices. Without the right environment, such exploits are

likely to terminate prematurely, thereby preempting detection.

81

To overcome this hurdle, we leverage de-obfuscated binaries from a one-click root app

to extract the behavior signatures of root exploits. A behavior signature is constructed by abstract-

ing the low-level operations in to a high-level behavioral representation [35, 117]. One can check

for malware samples that exhibit similar behaviors at runtime and thereby detect the presence of

the particular exploits. In the case of root exploits, since they interact with the kernel (or device

drivers) in unique ways to exploit an OS vulnerability, we choose to capture behaviors by modeling

system call events. Instead of reinventing the wheel, we borrow the system call modeling technique

from ANUBIS [117] with slight adjustments. Specifically, we follow the definition of “behavior

graphs” [117] that are used to describe OS objects, system calls that operate on these objects and,

relationships across system call events (e.g.the result of one system call is used as a parameter on

another system call).

The behavior graphs are directed acyclic graphs where the nodes represent objects and

system calls, and the edges encode (1) the dependencies between objects and system calls, and (2)

the dependencies across system calls. Compared to the traditional model of simply looking at a

sequence of system calls [98], a behavior graph constrains the order of only dependent operations

through an explicit edge (and never constrains independent operations).

While the high-level behavior graph is similar to that proposed in [117], we highlight the

main differences here: (1) We statically extract the behavior graph instead of extracting it from a

dynamic trace (as is done in ANUBIS). This leads to different requirements as elaborated later. (2)

Since we target Android, the system calls are mostly inherited from Linux and are different from

Windows.

4.5.1 Generating Training Behavior Graphs

We now describe how we automatically generate the behavior graph statically, by analyz-

ing de-obfuscated ARM root exploit binaries. The system call invocations, and their hard-coded

arguments are generally easy to identify. This allows us to know what OS objects are created (e.g.a

file name), and how they are operated on (e.g.Read-only or Read/Write). The main challenge that

we face is to extract the dependencies across system calls.

82

Extracting data dependencies: To extract dependencies across system calls, we look for

cases where the arguments for one system call is derived from a previous system call. Previous

work [117] utilized taint analysis to derive such dependencies. In our system, since we perform

static analysis over de-obfuscated binaries, we take a slight different approach. Specifically, when

we use symbolic execution to find a feasible success path, we symbolize all the outputs of system

calls. During the analysis, symbolic values are propagated along the execution path. To determine

whether a path is feasible, whenever we meet a conditional branch that depends on symbolic value,

we consult the solver to see if the corresponding path constraints are solvable. If we consider a

symbolic value as tainted, then symbolic execution itself, already constructs the data dependencies

between system calls, i.e., if the input argument(s) of a system call is a symbolic value, then it must

have a data dependency over one or more previous system calls. More importantly, the symbolic

formulas of such input arguments also specify how they are depend on each other. Based on this

observation, we extract the data dependencies between system calls by simply naming the symbolic

values returned by system calls according to the system call names and their sequence in the feasible

path (e.g.read2 buf).

Extracting control dependencies: Symbolic execution does not directly provide control

dependencies. To extract such information, we simply conduct a backward analysis. In particular,

when outputting the feasible path discovered via symbolic execution, we also mark each control

point that directly depends on the symbolic value with the system calls that introduced that value.

Using the path, we start from the end point and traverse the trace backwards to look for system

call invocations (e.g., BL mmap). Once we find a system call invocation, we can extract its control

dependencies over previous system calls by searching for the closest “tainted” branch that precedes

this syscall invocation. Alternatively, we could have used static binary taint analysis to extract both

data and control dependencies.

Modeling of libc functions: The exploit binaries in our training set do not generally call

the system calls directly (as typical with most native code). Instead, they call the libc functions (in

Android, it is called Bionic). Fortunately, most are simply wrappers of system calls and have the

same exact semantics. In cases they are not exactly the same, for example, fopen() vs. open(),

83

open/dev/camera-isp

open/proc/iomem

fd mmap

readfd

addr

setresuid

control

stat control

Figure 4.2: Behavior graph for the “camera-isp” exploit.

we model the Bionic version fopen() by mapping its arguments and return values to open().

Furthermore, we leverage function summaries to model most encountered libc functions that need

to be analyzed by symbolic execution.

4.5.2 Examples

Device Driver Exploit: To illustrate our behavior graph analysis, we consider a popular

device driver exploit that targets the vulnerable Qualcomm camera driver, “camera-isp”. This ex-

ample is taken directly from our training data set from a popular one click root app. In brief, the

vulnerable device driver allows any program to map any part of the physical address space into the

user space, which can subsequently allow the disabling of the permission check in setresuid()

system call. This allows an attacker to change the running process into a root process.

Figure 4.2 represents the behavior graph. The exploit needs to open two separate files, the

vulnerable device file /dev/camera-isp and the helper file /proc/iomem which has the informa-

tion about where the kernel code is located in the physical address space. Both files are checked with

the open() system call to ensure that they can be successfully opened. The device file is checked

in addition in the begining, via a stat() system call, for existence. The exploit then attempts to

mmap() the kernel code region into the user address space with read/write permissions; however, the

exact offset (argument in mmap()) is retrieved from the read result of the /proc/iomem. After the

mmap() is successful, the exploit searches for a particular sequence of bytes in the mapped memory

84

that corresponds to the code blocks for setresuid(). Upon locating the code block, it patches

the code block by writing to a specific offset, which effectively eliminates the security check in

setresuid() (the above two steps are invisible in the behavior graph). Then the exploit simply

calls setresuid(0,0,0) to change the uid of itself to root. Finally, as mentioned earlier, all ex-

ploit binaries in our training set, end the execution with a check through getuid() to verify that

the exploit process has obtained root.

Note that due to space constraints, we do not annotate the graph with the exact arguments

(e.g.file open with a read/write permission or read-only). We also do not label whether the system

call succeeded or not. In most exploits, all system calls need to be successful in order to compromise

the system and typically the failure of a system call will immediately result in an abort.

Kernel Exploit: As a second example, we consider Pingpong root [193], one of the most

recent generic root exploits that can tartget almost all Android devices released prior to mid-2015.

The case also reflects one where the exploit creates multiple processes. In particular, the key exploit

logic [78] is conducted in the main process, including mmap() at a specific address, and invoking

multiple connect() calls on the same ICMP socket (we omit the complete behavior graph for

brevity). In addition, One or more child processes are created as helpers to construct as many ICMP

sockets as possible for padding. Since the fork() occurs in a loop (up to 1024 iterations), it is

necessary for symbolic execution to identify and choose one feaisble path. Specifically, the analysis

output is that as long as the loop is executed once, a feasible exploit path can be constructed. This

means that we can simply unroll the loop once and have a new behavior graph constructed for

the child process (which is connected to the parent behavior graph via a fork() edge). Note that

unrolling the fork loop more times is also feasible which will cause identical behavior graphs to be

constructed. In this case, all behavior graphs will need to be matched so that we can claim an exploit

is detected. It is worthwhile mentioning that the precondition analysis (which will be described in

more detail in the next section) is conducted jointly, and will ensure that the first fork() will

succeed at runtime, thus causing the exploit to match the behavior graph with one child process

only.

85

4.5.3 Using Behavior Graphs in Detection

Once the behavior graphs for different root exploits are generated offline, we are able to

use them for detection in a scanner (similar to Google Bouncer). More precisely, by monitoring sys-

tem call invocations (and arguments), our dynamic analysis environment determines if the behavior

of the program under analysis matches any of the learned behavior graphs. The matching algorithm

is similar to that in [117]. We only briefly describe the procedure below and the design decisions

that were made.

To find a match in the behavior graph, it is necessary to ensure the following: (1) The

order of system calls conforms to the dependencies represented in the learned behavior graph. In

addition, the dependencies in the behavior graph need to be maintained at runtime as well. This can

be checked using dynamic taint analysis [35,117]. (2) The exact values of the arguments for system

calls match (e.g.a file opened with read/write permission). For those arguments whose values cannot

be determined statically during training, they will simply be considered as wildcard values that can

match any value at runtime. (3) A system call’s status (either success or failure) matches with the

one in the learned behavior graph.

We observe that the root exploits typically have unique inputs to the system via system

call arguments, which makes them easy to distinguish from legitimate programs. We therefore relax

requirement (1) by only verifying simple dependencies at runtime (e.g.a file read() depends on

the output of open()). Such cases can be checked through the OS objects monitored in the kernel,

without conducting an expensive taint analysis. For more complex dependencies such as the values

obtained through read() affecting a system call mmap() as shown in Figure 4.2, we only require

that the order is the same as constrained on the graph, i.e.read() happens before mmap(). We

plan to implement the dynamic taint analysis for stricter dependency enforcement in future work.

Alternatively to improve efficiency, we could also apply the optimization proposed by Kolbitsch et

al. [117].

86

4.6 Satisfying Exploit Preconditions

It is crucial to build an environment that can satisfy the preconditions expected by root

exploits. More importantly, because our behavior graph is constructed over one successful path, if

an analyzed app contains root exploits, our dynamic analysis environment must deterministically

coerce the app to follow that path, i.e., the app must be made to reveal the same set of malicious be-

haviors that match the learned signature. This means that whenever the exploit asks the environment

for certain results, we must return them as expected.

The problem naturally maps on to the common debugging and testing problem of gener-

ating the proper inputs to a program, so that it will reach a particular target statement [50, 55, 128].

Here the target statement is the end point of the root exploit, e.g., the getuid() call. And the “in-

puts” are the system call results, including (1) system call return values and (2) other return results

through arguments (e.g., a buffer filled in read()). Our solution to this problem is symbolic exe-

cution. That is, we symbolize all the “inputs” from system calls and leverage symbolic execution

to find the shortest feasible path that can reach the target instruction from the entry point. Once we

found such a path, we then ask the SMT solver to generate a concrete instance of the inputs which

will be “replayed” during dynamic analysis.

With respect to the system call return values, we consider two types of system calls:

(1) Those that return a reference to kernel object, e.g., open() and socket() returns a file de-

scriptor; and mmap() returns the address of the “memory-mapping object”. (2) The remaining one

(e.g.stat()) that return either 0 (indicating success) or error code. For type (1), since file descrip-

tors and mapped addresses are determined dynamically by the OS and the constraints are typically

simple (just != 0), we symbolize their return values as a boolean during analysis and do not force

a specific value during runtime. Instead, we simply choose to force a successful or failure based on

the boolean and let the OS to assign the concrete return value. And to allow expected interactions

with the corresponding kernel objects, We use “decoy objects” (explained later) instead of tracking

those references. For type (2), we just symbolize their returned value normally as bit-vectors and

ask the solver to generate a satisfying value.

87

For system calls that return results through arguments, they are always pointers passed

in user programs (e.g.read buffer). We use these input pointers to symbolize the corresponding

memory content. Going back to the first example exploit in §4.5.2, after reading from the file

/proc/iomem, the exploit attempts to read the starting physical address of the kernel code. This

procedure is illustrated in Figure 4.3. As we can see, the exploit reads the file line by line to look for

the constant string “Kernel code”. Once the line is located, it retrieves the kernel code base address

(through the getAddress() call) at the -20 offset relative to the returned buffer of strstr(). There

are effectively two loops in the program. The first is the while loop; the second is inside strstr().

In this particular case, the discovered feasible path says that the while loop can iterate just once,

indicating that we can return the string containing “Kernel code” when the first line is retrieved

using the read() system call. However, the feasible path also says that the loop in strstr() needs

to iterate at least 20 times1; in other words, “Kernel code” needs to start at line[20]. This is because

the getAddress() call reads the location at buf-20. If buf is at the beginning of line, then buf-20

would be reading something out of bound.

In this case, the address returned from getAddress() is not further constrained later,

which means that line[0] to line[19] are unconstrained and can take any value. Therefore, the

constraint solver will generate an output for line with something like “abcdefghijklmnopqrstKernel

code”. Further, since the read() system call only reads one line, we will place the single line

content into the expected file object. There is a similar case later on involving a search through the

memory for constants after mmap(), which can be resolved similarly.

Decoy Objects: During dynamic analysis, we can provide the preconditions we learned

by forcing/faking all syscall results. However, to improve the robustness of our environment (i.e.,

making it more real), we decided to use decoy objects to provide expected results for operations

over certain type of kernel objects. Doing so would allow us to “tolerate” certain operations (e.g.,

stats() that are not observed during our offline learning phase.

Currently we only support three types of decoy objects: files, socket, and device drivers.

1In our real implementation, we use function summary to handle all encountered external library calls.

88

fdIo = open("/proc/iomem");
// locate the kernel code offset in physical memory
while ((line = readline(fdIo)) > 0} {
 if((buf = strstr(line, "Kernel code")) != NULL) {
 addr = getAddress(buf);
 break;
 }
}

int getAddress(buf) {
 return atoi[buf-20];
}

Figure 4.3: Pseudo code of proc/iomem read

Android Market

Detection System

Static
analyzer

Dynamic
analyzer

Figure 4.4: Operational model of the detection system

And they are created in two ways. If the target objects such as a vulnerable device driver do not exist

in our analysis environment, we simply create a decoy one. If the objects such as /proc/iomem al-

ready exist in our environment, instead of opening the real file, we “redirect” the file open operation

to an alternative decoy object as well, so that we can return the expected content.

4.7 Detecting Root Exploits

Thus far, we have described the training phase, where we generate both the behavior

graph and the environment constraints. In this section, we provide details about the components

of our detection system (testing phase). We first present an overview of our system’s operational

model and then describe its components in detail.

89

4.7.1 Operational Model

As mentioned earlier, we envision RootExplorer to be used as an app vetting tool for

Android markets. When a developer submits an app to the market via a web service, we envision

the market pushing it to RootExplorer, as depicted in Figure 4.4. First, we employ a static analyzer

(different from the static analysis during the training phase), which performs several checks to filter

apps that are unlikely to contain root exploits (details later). Subsequently, it determines “with which

kind of mobile device(s) or emulator(s),” the dynamic analysis will be performed. Upon completion

of the dynamic analysis, the detector collects the results and determines if the app contains a root

exploit and if so what exploit it is. If the app does have root exploits, it informs the Android market

and saves the hash of the app to the central database; otherwise the app is moved either to a different

malware scanner (e.g.Bouncer) that is orthogonal to our system or for publication in the Android

market. The dynamic analyzer can be run on either real phones or Android emulators (or a mix of

both), and can be easily integrated into various malware analysis environments as needed.

4.7.2 Static Analyzer

The static analyzer consists of three components as shown in Figure 4.5. The first compo-

nent is the native code detector. Since almost all root exploits are written in native code (certainly the

case for the one-click root app we study), it is natural to check whether the apps contain native code.

Specifically, the native code detector does the following checks to filter apps that are extremely un-

likely to contain root exploits: (1) Whether the app matches signatures of known malware samples

that contain root exploits. If so, we abort any further analysis and flag the malware. (2) Whether it

has any native code or has the capability of dynamically loading native code (e.g.through the net-

work). If negative, we can safely skip the analysis of this app. (3) If it contains native code, similar

to prior work [14], we use a list of custom heuristics to decide if they can possibly contain root

exploits (e.g.whether any dangerous system calls are being called). If negative, we do not analyze

the app further.

If the native code detector did not abort the analysis, the app is moved to the device detec-

90

Native code
detector

Known malware DB
and heuristics for

dangerous native code

Device
detector

Device
initiator

Device/OS info

Figure 4.5: Static analyzer

tor. This is responsible for determining “under which environment the app should be dynamically

analyzed.” The observation is that since malware can embed different exploits targeting different

Android devices, they usually contain logic that detects the type of the Android environment. Thus,

we look for any such logic that performs checks against hard-coded device types.

The last component is the device initiator, which generates the Android environment based

on the output of the device detector. We describe the device detector and the device initiator in more

details below.

Device detector: This component parses the decompiled bytecode (using androguard [23])

and finds the methods (A) that contain code that check either the Android version that resides in the

static class android.os.Build.VERSION, or the type of the device that resides in the android.os.Build

class, or the version of the Linux Kernel (e.g.by Runtime.getRuntime().exec(‘‘uname’’) and

reading the /proc/version file). Furthermore, it finds the methods (B) that either run an executable

native file (e.g.Runtime.getRuntime().exec(‘‘/sdcard/foo’’)) or call a function in a native

binary (e.g.library files). If there is a program path from the methods that are members of (A) to

the ones in (B), it finds which conditions should be satisfied and creates the appropriate Android

environment. Similarly, the same procedure is performed in native code. In the case that the native

code is obfuscated or even downloaded via a C&C server, the device detector simply picks a few

popular candidate device types randomly, with the view that the malware will likely target one or

91

more popular devices.

Device initiator: Android stores the device information in system files such as

/system/build.prop and default.prop. /system/build.prop contains specific information

about the mobile device such as the Android OS version, the name and the manufacturer of the

device. In addition, there are also system files such as /proc/version and /proc/sys/kernel/*

inherited from Linux that store information about the Linux kernel. When the system boots, the

Android’s property system reads the information from these files and caches them for future use.

The device initiator monitors all such interfaces via which an app can learn about the device and

obtain OS information. Since we have collected a database of Android devices from the online

repository [2], we know what values to modify in the system files or what to return through the proc

interfaces.

4.7.3 Dynamic Analyzer

The dynamic analyzer consists of two parts as illurstrated in Figure 4.6 viz., a Loadable

Kernel Module (LKM) and a background service process. The LKM hooks every available system

call in the Android Linux Kernel. In addition, it creates a character device that can be opened by

only the background service (to prevent malware from tampering with the communication), and with

which a communication link is established between user-land and kernel-land. The LKM tracks

only a specific app (under analysis) and its child processes at any moment in time. The background

service stores the training models including behavior graphs and environment constraints, as well as

the state of the current running app (e.g.what part of a behavior graph has been matched and what

environment constraints are supposed to be returned next).

Once a hooked system call is called by the app under analysis, the execution is directed

to our LKM which then transmits a specially crafted message that contains the system call names

as well as their arguments to the background service through the character device. Based on the

behavior graph and environment constraints, the background service is responsible for deciding

what action is going to be taken, and it returns that action to the LKM. First, it checks the behavior

92

Figure 4.6: Dynamic Analyzer.

graph to see if the system call in question matches any new node. If not, it does nothing and simply

instructs the LKM to execute the system call as is. If a new node is matched, it further checks if

it is an object creation system call such as open() or socket(). If so, it deploys a decoy object

to satisfy the environment constraints as described in §4.6. Otherwise, if it is a system call that

operates on an existing object, the return results will be served from the data prepared ahead of time

for the decoy object (e.g.file content).

Note that deploying decoy objects has to be done carefully. As mentioned, Android root

exploits often need to be adapted to work on different devices, even when they target the same

underlying vulnerability. For instance, the device file /dev/camera-isp can be exploited slightly

differently on different Android phones that all have the vulnerable device driver; this will cause

slightly different behavior graphs and preconditions to be generated, e.g.the input to a vulnerable

device file will look different, and the expected return results from a system call may be different.

Therefore, once we have decided to disguise as a particular Android device (e.g.Samsung Galaxy

S3), we will need to choose the behavior graphs and preconditions accordingly (obtaining such a

Android device to exploit binary mapping is discussed in §4.4). Otherwise, the decoy objects we

deploy may be for the wrong Android device which will in fact fail to detect the exploit.

93

4.8 Evaluation

In this section we describe the evaluations of RootExplorer. We focus on its effectiveness

wrt the following aspects: (1) can it detect synthetic and real malware containing root exploits? (2)

does it cause false alarms on benign apps? (3) does it miss malware samples?

4.8.1 Environment Setup

Training parameters: Our training database contains 168 different root exploits that

were designed for different devices and were obtained from a commercial one click root app. The

number of devices that we can successfully emulate currently based on the root exploit database is

211. We trained with all 60 families of root exploits.

Testing dataset: We have the following categories of apps for evaluation:

1. Samples that are known to contain root exploits. This includes publicly distributed

exploit PoCs [76, 77, 79, 81] and GODLESS malware [75], and seven other one-click root apps

(different from the one we trained with) which also contain many different root exploits.

2. Samples that may contain root exploits. We obtained a list of 1497 malware samples

from an antivirus company, and have crawled 2000 recently uploaded apps between January and

February 2017, from four unofficial Android app markets: 7723 [16], ANDROID life [17], Mobo-

Market [19] and EOEMARKET [18]. We target third-party markets because they are known to have

more malware than the official Google Play [203].

3. Samples that almost certainly do not contain root exploits. This includes the top 1000

free apps from Google play. As they are extremely popular, it is very unlikely that they contain root

exploits. This set is used to evaluate the false positives (if any) with RootExplorer.

Analysis Testbed: The experiments are performed on a Lenovo Laptop with a quad core

Intel Core i7 2.00GHz CPU, 16GB of RAM, and a hard drive of 1TB at 5400 rpm. We use an

Android emulator for analyzing the malware2. To make the emulator appear as realistic as possible,

it is loaded with real files, such as music, pictures and videos. Furthermore, it contains a call

2Even though the system runs on real phones, we choose an emulator based approach since it is easier to run a large
set of experiments concurrently.

94

One-Click App Exploit
O1 /dev/camera-sysram
O2 /dev/graphics/fb5
O3 /dev/exynos-mem
O4 /dev/camera-isp
O5 /dev/camera-isp
O6 /dev/camera-isp
O7 towelroot

Table 4.1: One-Click apps with the discovered exploits.

log, SMS history and contacts, as well as various installed apps. We have modified the binary

image of the emulator, in order to show that it has a real phone number and a real International

Mobile Equipment Identity (IMEI) number. Finally, the build.prop file (containing the device

information) is updated appropriately prior to each experiment. Each app is analyzed starting with

a clean image of the emulator in order to avoid any side effects that a previously tested malware app

can have on the emulator. A simple micro-benchmark on the open() system calls shows that the

system call monitor increases the execution time of open() by 75%, on average.

Input generator: To achieve as much code coverage as possible when executing an app

(in hope that root exploits will be triggered), we leverage DroidBot [80], a lightweight test input

generator for Android that generates pseudo-random streams of user events such as clicks, as well

as a number of system-level events. DroidBot can generate random events on its own, or generate

events based on the manifest file of the app, or can take as input a file with predefined events. In

our experiments, we use randomly generated events (“black-box” technique) and events based on

the manifest file of the app (“gray-box” technique).

4.8.2 Effectiveness

We evaluate RootExplorer against all the test datasets mentioned earlier containing 4497

apps in total. Overall, we do not find any false positives, i.e.benign apps are never mistakenly

reported to contain root exploits. For the known malware samples, we obtain the ground truth

either from the fact that github explicitly states that it is a root exploit, or via cross-validation

95

Exploit VirusTotal RootScanner
diag 1/57 X

exynos 4/57 X
pingpong 1/57 X
towelroot 3/57 X

Table 4.2: Detection rate for debug compilation.

Exploit VirusTotal RootScanner
diag 0/57 X

exynos 1/57 X
pingpong 0/57 X
towelroot 1/57 X

Table 4.3: Detection rate for obfuscated compila-
tion.

with VirusTotal and the antivirus company that we work with. Out of 8 known malware families

containing root exploits, we do not find any false negative. We describe the details below.

Unit testing: To obtain assurance that the training phase works as expected, We execute

the 60 families of root exploits (from the training data) in our dynamic analysis environment and

see if they can be detected. Note that this means the training and testing data are exactly the same.

If any of these exploits cannot be detected, it indicates that the behavior graphs or preconditions that

were prepared are in fact incorrect. The testing results show that all of the exploits are successfully

detected.

Detecting other one-click root apps: Testing RootExplorer against other one-click root

apps allows us to further confirm that the system works well. Since the exploits from these apps

may or may not be implemented exactly in the same way as the ones in our training set, being

able to trigger and detect them is a promising sign. Table 4.1 lists the first exploit that was caught

upon running 7 other one-click root apps on an emulated Samsung Galaxy S3 device. Interestingly,

different one-click root apps in fact choose to launch different exploits against our device. For

instance, with O1, we caught an exploit related to the /dev/camera-sysram driver, while O2

and O3 triggered exploits against /dev/graphics/fb5 and /dev/exynos-mem respectively. The

results showcase the effectiveness of RootExplorer in detecting a wide variety of exploits.

Detecting Exploit PoCs from the Internet: We next take four proof-of-concept root ex-

ploits (with source code) that we can find on github [76, 77, 79, 81], and embed them in a testing

Android app we build, that simply roots a phone upon touching a button. We first check the effec-

tiveness of current anti-virus programs against the “malware” we built containing publicly available

PoCs. We scan the app using the virusTotal API [178] which contains 57 anti-virus programs

96

(e.g.Trend Micro) capable of scanning Android apps . Table 4.2 shows the detection rates for the

case where we compiled the source code with all the debug options on and without any obfuscation,

while Table 4.3 shows the results when the compiled binaries are obfuscated using the O-LLVM

obfuscator [109] and packed using UPX [175] (both are off-the-shelf tools).

In brief, without obfuscation, all four exploits can be detected by at least one antivirus.

However, with simple obfuscation, only exynos (CVE-2012-6422) [70] and towelroot (CVE-2014-

3153) [72] can be successfully detected and that too by only one antivirus. On the other hand,

RootExplorer, by preparing the right preconditions and observing the exploit behaviors at runtime,

can detect every exploit regardless of the obfuscation and packing methods.

Detecting GODLESS: GODLESS [132] is a family of malware that employs multiple

root exploits, and has caused havoc in the wild since mid-2016. RootExplorer is extremely effective

in detecting the exploits in the GODLESS malware family. Its source code is largely based on the

open source repository on github [75]. Specifically, GODLESS checks the device type against a

predefined, populated database of supported exploitable devices. Depending on which device it is

running on, it invokes a corresponding, appropriate exploit. The process is iterative. It begins with

acdb and checks if the device is in the database, and only if so, will continue with the actual exploit.

Upon failure, it moves on to next exploit which is hdcp, and so on until it has tested the last exploit

viz., diag. We run GODLESS against 5 different emulated devices to showcase that RootExplorer

is effective in properly stimulating the right exploit for a device. Table 4.4 shows the results (with

the emulated devices). The exploits with code name msm camera, put user and fb mem can be

caught using any emulated device; this is because these exploits affect a large number of devices

and seemingly, the author of GODLESS does not even know the complete list of devices they affect.

Instead, GODLESS simply always tries to execute them without checking the actual device type.

Of course, if a target device does not have the vulnerable device file such as /dev/msm camera, the

exploit will simply abort and the next exploit is attempted. Since RootExplorer is trained to prepare

the preconditions for all the exploits at all times including msm camera, it deploys the decoy file

/dev/msm camera on demand when GODLESS tries to open it, and can therefore always trigger

97

HTC J Fujitsu Z Fujitsu X Galaxy Note Samsung S3
acdb 3 7 7 7 7

hdcp 7 3 7 7 7

msm camera 3 3 3 3 3

put user 3 3 3 3 3

fb mem 3 3 3 3 3

perf swevent 7 7 3 7 7

diag 7 7 7 3 7

Table 4.4: Emulated devices and corresponding exploits caught by RootExplorer in GODLESS
malware.

and detect its complete malicious behavior with respect to this exploit.

Detecting Malware in the Antivirus malware dataset and 3rd-party Android Mar-

kets: For each app from the 1497 malware samples we received from an anti-virus company and

the 2000 apps downloaded from four third-party Android markets, we apply RootExplorer for 10

minutes using Droidbot with an emulated Samsung S3 device; the kernel version, build ID, and the

model of the device are set to 3.0.31-1083875, JZO54K, and GT-I9300 respectively. Upon booting

the emulated device, Droidbot launches the main activity of each app and generates random touch

events and system events such as BOOT COMPLETED every second. Meanwhile, our tool runs in the

background and analyzes all the system calls that the app uses. To measure the number of false pos-

itives and false negatives, we scan those apps with VirusTotal. Among all the apps, RootExplorer

detected two true positives (and has no false positive).

The first app is named Wifi Analyzer from the MoboMarket [19], which was discovered to

contain the pingpong root exploit [193] (md5 ea1118c2c0e81c2d9f4bd0f6bd707538). At the time

of writing, the app is still alive on the market. After consulting with VirusTotal and an antivirus

company, we confirmed that it is an instance of the rootnik malware family [134]. We have

reported to the market and are waiting for the app to be removed.

Another detected app is a Flashlight app from the Antivirus malware dataset, containing

the camera-isp root exploit. It has an md5 of 1365ECD2665D5035F3AB52A4E698052D. Upon

starting, the app tries to access the files /system/xbin/su and /system/bin/su. RootExplorer

returns the appropriate errors to make the app believe that it is running on an un-rooted device.

98

Interestingly, only when DroidBot delivers the BOOT COMPLETED event to the app, the root exploit

is triggered. In the beginning, it opens and reads the file /proc/kallsyms four times to retrieve

the address of certain kernel symbols. After that, it opens the vulnerable /dev/camera-isp device

file3. It subsequently invokes two different ioctl() system calls with request types 0xC0086B03

and 0xC0186201 that effectively compromise the driver. As expected, RootExplorer deploys the

decoy file /dev/camera-isp which returns a real file descriptor for open(), and success for

ioctl() (to trick the exploit into believing that it has succeeded). Finally, the exploit performs

a setresuid(0,0,0) to get root access. At that point, RootExplorer successfully finds the root

exploit and stops the execution of the app.

In addition to the above two malware samples, VirusTotal also reports three additional

malware samples that carry root exploits. We analyzed these cases manually and found that they in

fact attempt to download the exploits from a specific URL which is no longer valid. In other words,

the exploits are never executed even though the malware may have done it in the past.

4.9 Conclusions

In this project, we tackle the challenging problem of detecting the presence of embedded

root exploits in malware. We build a system RootExplorer, that learns from commercial-grade

root exploits used for benign reasons and backed by large companies such as Baidu and Tencent,

and detects such embedded root exploits. Specifically, it carefully analyzes these to determine

what environments root exploits expect, and what pre-conditions are to be satisfied in order to

trigger them. It uses this information to construct proper analysis environments for malware and

can effectively detect the presence of root exploits. Our extensive evaluations shows that it can

detect all known malware samples carrying root exploits, and has no false positives. We are also

able to detect a root exploit in a malware that seems to have bypassed current vetting procedures,

and is available on an Android market.

3Note that in this case, the exploit targets a different vulnerability in the same device driver from the example in
Section 4.5.

99

Bibliography

[1] AForge.NET. http://www.aforgenet.com/framework/features/motion_

detection/_2.0.html.

[2] Android device inventory. https://www.androiddevice.info/.

[3] EvalVid with GPAC. http://www2.tkn.tu-berlin.de/research/evalvid/EvalVid/
docevalvid.html.

[4] FFmpeg. http://ffmpeg.org/.

[5] Firesheep. http://codebutler.com/firesheep/.

[6] Google apps documentation and support. http://support.google.com/a/bin/answer.
py?hl=en&answer=1279090.

[7] GPAC. http://gpac.wp.mines-telecom.fr/.

[8] A guide to sniffing out passwords and cookies. http://lifehacker.com/5853483.

[9] Report: Mobile uploads up fourteen-fold. http://www.pcmag.com/article2/0,2817,

2392007,00.asp.

[10] Surveillance self-defense. http://bit.ly/deiEOO.

[11] What’s APPening wtih Apple FaceTime. http://researchcenter.paloaltonetworks.
com/2010/08/whats-appening-with-apple-facetime/.

[12] x264. http://www.videolan.org/developers/x264.html.

[13] YUV CIF reference videos (lossless H.264 encoded). http://www2.tkn.tu-berlin.de/
research/evalvid/cif.html.

[14] Going Native: Using a Large-Scale Analysis of Android Apps to Create a Practical Native-
Code Sandboxing Policy, 2016.

[15] Android security bulletin — january 2017, 2018. https://source.android.com/security/bulletin/2017-
01-01.html.

[16] 3rd-party Android Market. 7723 market, 2017. https://goo.gl/iMi4Bo.

100

[17] 3rd-party Android Market. Android life, 2017. https://goo.gl/hAov2G.

[18] 3rd-party Android Market. Eoemarket, 2017. https://goo.gl/FB0ykP.

[19] 3rd-party Android Market. Mobomarket, 2017. https://goo.gl/tzpjY7.

[20] Yousra Aafer, Xiao Zhang, and Wenliang Du. Harvesting Inconsistent Security Configura-
tions in Custom Android ROMs via Differential Analysis. In USENIX SECURITY, 2016.

[21] Vijay Kumar Adhikari et al. Unreeling Netflix: Understanding and improving multi-CDN
movie delivery. In Proceedings of the IEEE Conference on Computer Communications, (IN-
FOCOM 2012), Orlando, FL, March 2012.

[22] American National Standards Institute. ANSI X3.92-1981 American National Standard, Data
Encryption Algorithm, 1981.

[23] Androguard. Androguard, a full python tool to play with android files, 2016. https://goo.
gl/edcClw.

[24] Any.do. To-do list, task list, 2016. https://goo.gl/rPpZq8.

[25] AOP. Aspect oriented programming with spring, 2016. http://goo.gl/1UnkGS.

[26] Apktool. A tool for reverse engineering android apk files, 2016. https://goo.gl/JCh7U7.

[27] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques
Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. ACM SIG-
PLAN Notices, 49(6):259–269, 2014.

[28] Askmd, 2016. https://goo.gl/3D5Vvw.

[29] Soren Asmussen. Applied Probability and Queues. John Wiley & Sons, 1987.

[30] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. Pscout: analyzing the
android permission specification. In Proceedings of the 2012 ACM conference on Computer
and communications security, pages 217–228. ACM, 2012.

[31] Tanzirul Azim and Iulian Neamtiu. Targeted and depth-first exploration for systematic testing
of android apps. In ACM SIGPLAN Notices, volume 48, pages 641–660. ACM, 2013.

[32] Michael Backes, Sven Bugiel, Christian Hammer, Oliver Schranz, and Philipp von Styp-
Rekowsky. Boxify: Full-fledged app sandboxing for stock android. In USENIX Security,
pages 691–706, 2015.

[33] Baidu. Shoujiweishi, 2017. http://shoujiweishi.baidu.com/.

[34] John S. Baras, Vahid Tabatabaee, George Papageorgiou, and Nicolas Rentz. Performance
metric sensitivity computation for optimization and trade-off analysis in wireless networks.
In IEEE GLOBECOM, 2008.

101

[35] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Kruegel, and En-
gin Kirda. Scalable, behavior-based malware clustering. In NDSS, volume 9, pages 8–11.
Citeseer, 2009.

[36] Alastair R Beresford, Andrew Rice, Nicholas Skehin, and Ripduman Sohan. Mockdroid:
trading privacy for application functionality on smartphones. In Proceedings of the 12th
Workshop on Mobile Computing Systems and Applications, pages 49–54. ACM, 2011.

[37] Antonio Bianchi, Yanick Fratantonio, Christopher Kruegel, and Giovanni Vigna. Njas: Sand-
boxing unmodified applications in non-rooted devices running stock android. In Proceedings
of the 5th Annual ACM CCS Workshop on Security and Privacy in Smartphones and Mobile
Devices, pages 27–38. ACM, 2015.

[38] Aggressive advertisers pose privacy risks, 2013. http://goo.gl/cl8HuK.

[39] Mobile operating system wars - Android vs. iOS, 2013. http://goo.gl/V0wbT5.

[40] Thomas Bläsing, Leonid Batyuk, Aubrey-Derrick Schmidt, Seyit Ahmet Camtepe, and Sahin
Albayrak. An android application sandbox system for suspicious software detection. In
Malicious and unwanted software (MALWARE), 2010 5th international conference on, pages
55–62. IEEE, 2010.

[41] Alan C. Bovik. The Essential Guide to Video Processing. Academic Press, 2009.

[42] David Brumley, James Newsome, Dawn Song, Hao Wang, and Somesh Jha. Towards au-
tomatic generation of vulnerability-based signatures. In Security and Privacy, 2006 IEEE
Symposium on, pages 15–pp. IEEE, 2006.

[43] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid: behavior-based mal-
ware detection system for android. In Proceedings of the 1st ACM workshop on Security and
privacy in smartphones and mobile devices, pages 15–26. ACM, 2011.

[44] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher Kruegel, Gio-
vanni Vigna, and Yan Chen. Edgeminer: Automatically detecting implicit control flow tran-
sitions through the android framework. In NDSS, 2015.

[45] Supriyo Chakraborty, Chenguang Shen, Kasturi Rangan Raghavan, Yasser Shoukry, Matt
Millar, and Mani Srivastava. ipshield: a framework for enforcing context-aware privacy.
In 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14),
pages 143–156. USENIX Association, 2014.

[46] CheckPoint. Quadrooter: New android vulnerabilities in over 900 million devices, 2016.
https://goo.gl/GN6ZwW.

[47] Kevin Zhijie Chen, Noah M Johnson, Vijay D’Silva, Shuaifu Dai, Kyle MacNamara,
Thomas R Magrino, Edward XueJun Wu, Martin Rinard, and Dawn Xiaodong Song. Con-
textual policy enforcement in android applications with permission event graphs. In NDSS,
page 234, 2013.

102

[48] Cloc. https://goo.gl/PsfjQP.

[49] U.S. copyright office. Copyright protection and management systems, 2017.
https://goo.gl/zpeUtK.

[50] Manuel Costa, Miguel Castro, Lidong Zhou, Lintao Zhang, and Marcus Peinado. Bouncer:
Securing software by blocking bad input. In ACM SIGOPS Operating Systems Review, vol-
ume 41, pages 117–130. ACM, 2007.

[51] Jedidiah R Crandall, Zhendong Su, S Felix Wu, and Frederic T Chong. On deriving unknown
vulnerabilities from zero-day polymorphic and metamorphic worm exploits. In Proceedings
of the 12th ACM conference on Computer and communications security, pages 235–248.
ACM, 2005.

[52] Weidong Cui, Marcus Peinado, Helen J Wang, and Michael E Locasto. Shieldgen: Automatic
data patch generation for unknown vulnerabilities with informed probing. In Security and
Privacy, 2007. SP’07. IEEE Symposium on, pages 252–266. IEEE, 2007.

[53] Google Developers. Improving code inspection with annotations, 2016. http://goo.gl/

qSE9dh.

[54] Marko Dimjaševic, Simone Atzeni, Ivo Ugrina, and Zvonimir Rakamaric. Android malware
detection based on system calls. University of Utah, Tech. Rep, 2015.

[55] Peter Dinges and Gul Agha. Targeted test input generation using symbolic-concrete backward
execution. In Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering, ASE ’14, 2014.

[56] DirtyCow. Cve-2016-5195, 2017. https://goo.gl/K8cWEK.

[57] Florin Dobrian et al. Understanding the impact of video quality on user engagement. Com-
munications of the ACM, 56(3):91–99, March 2013.

[58] Eclipse. Aspectj, 2016. https://goo.gl/LHLhDv.

[59] Elf manual entry, 2016. https://goo.gl/96WkSL.

[60] Salma Elmalaki, Lucas Wanner, and Mani Srivastava. Caredroid: Adaptation framework
for android context-aware applications. In Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking, pages 386–399. ACM, 2015.

[61] Diaa Salama Abdul Elminaam et al. Performance evaluation of symmetric encryption algo-
rithms. IJCSNS International Journal of Computer Science and Network Security, 8(12):280–
286, December 2008.

[62] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P
Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones. ACM Transactions on
Computer Systems (TOCS), 32(2):5, 2014.

103

[63] Yliès Falcone and Sebastian Currea. Weave droid: aspect-oriented programming on android
devices: fully embedded or in the cloud. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pages 350–353. ACM, 2012.

[64] Zheran Fang, Weili Han, Dong Li, Zeqing Guo, Danhao Guo, Xiaoyang Sean Wang, Zhiyun
Qian, and Hao Chen. revdroid: Code analysis of the side effects after dynamic permission
revocation of android apps. In Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security, pages 747–758. ACM, 2016.

[65] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. Android
permissions demystified. In Proceedings of the 18th ACM conference on Computer and
communications security, pages 627–638. ACM, 2011.

[66] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and David
Wagner. Android permissions: User attention, comprehension, and behavior. In Proceedings
of the Eighth Symposium on Usable Privacy and Security, page 3. ACM, 2012.

[67] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Apposcopy: Semantics-based detection
of android malware through static analysis. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages 576–587. ACM,
2014.

[68] Wolfgang Fischer et al. The Markov-modulated Poisson process (MMPP) cookbook. Perfor-
mance Evaluation, 18(2):149–171, September 1993.

[69] Standard for Information Security Vulnerability Names. Cve-2012-4220, 2012.
https://goo.gl/JZJHyv.

[70] Standard for Information Security Vulnerability Names. Cve-2012-6422, 2012.
https://goo.gl/R7Icm7.

[71] Standard for Information Security Vulnerability Names. Cve-2013-2597, 2013.
https://goo.gl/MvLlsN.

[72] Standard for Information Security Vulnerability Names. Cve-2014-3153, 2014.
https://goo.gl/R7Icm7.

[73] Harald T. Friis. A note on a simple transmission formula. Proceedings of the IRE, 34(5):254–
256, May 1946.

[74] Michele Garetto, Theodoros Salonidis, and Edward W. Knightly. Modeling per-flow through-
put and capturing starvation in CSMA multi-hop wireless networks. In IEEE INFOCOM,
2006.

[75] Github. android run root shell (base for godless), 2017. https://goo.gl/VKSWb6.

[76] Github. Cve-2012-6422, 2017. https://github.com/dongmu/vulnerability-
poc/tree/master/CVE-2012-6422.

[77] Github. Cve-2014-3153 aka towelroot, 2017. https://github.com/timwr/CVE-2014-3153.

104

[78] Github. Cve-2015-3636: Poc code for 32 bit android os, 2017. https://github.com/fi01/CVE-
2015-3636.

[79] Github. Cve-2015-3636: Poc code for 32 bit android os, 2017. https://github.com/fi01/CVE-
2015-3636.

[80] Github. Droidbot, 2017. https://goo.gl/y8ldRA.

[81] Github. exploit for cve-2012-4220 working on zte-open, 2017.
https://github.com/poliva/root-zte-open.

[82] Google. Android and security, 2012. https://goo.gl/mo29A4.

[83] Google. Android dashboards, 2016. https://goo.gl/JXU1t3.

[84] Google. Android runtimepermissionsbasic sample, 2016. https://goo.gl/t59Dw9.

[85] Google. Battery historian, 2016. https://goo.gl/YvfzCz.

[86] Google. Google play store, 2016. https://goo.gl/kN0Nhz.

[87] Google. Material design patterns – permissions, 2016. https://goo.gl/QQcfEv.

[88] Google. Requesting permissions at run time, 2016. https://goo.gl/0enMi9.

[89] Google. What is api level ?, 2016. https://goo.gl/xYXo0T.

[90] Google. Android ndk, 2017. https://goo.gl/n3uxti.

[91] Google. Dashboards, 2017. https://goo.gl/6BTWw4.

[92] Google. Security-enhanced linux in android, 2017. https://goo.gl/btJ9xb.

[93] Google. Verified boot, 2017. https://goo.gl/LiQm9E.

[94] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen, and
Martin C Rinard. Information flow analysis of android applications in droidsafe. In NDSS.
Citeseer, 2015.

[95] Harry Heffes and David M. Lucantoni. A Markov modulated characterization of packetized
voice and data traffic and related statistical multiplexer performance. IEEE J. Sel. Areas
Commun., 4(6), September 1986.

[96] Hex-Rays. Ida pro, 2017. https://goo.gl/cqgKCM.

[97] Mukesh M. Hira et al. Throughput analysis of a path in an IEEE 802.11 multihop wireless
network. In IEEE WCNC, 2007.

[98] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion detection using se-
quences of system calls. J. Comput. Secur.

105

[99] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David Wetherall.
These aren’t the droids you’re looking for: retrofitting android to protect data from imperious
applications. In Proceedings of the 18th ACM conference on Computer and communications
security, pages 639–652. ACM, 2011.

[100] Hummingbad android malware found in 20 google play store apps, 2016.
https://www.bleepingcomputer.com/news/security/hummingbad-android-malware-found-in-
20-google-play-store-apps/.

[101] Oliver C. Ibe. Markov Processes for Stochastic Modeling. Academic Press, 2008.

[102] International Telecommunications Union. ITU-R BT.601: Studio encoding parameters of
digital television for standard 4:3 and wide-screen 16:9 aspect ratios.

[103] ISO/IEC JTC1/SC29/WG11. ISO/IEC 14496 – Coding of audio-visual objects. http://

mpeg.chiariglione.org/standards/mpeg-4/mpeg-4.htm.

[104] Michel T. Ivrlač, Ruly Lai-U Choi, Eckehard G. Steinbach, and Josef A. Nossek. Models and
analysis of streaming video transmission over wireless fading channels. Signal Proessing:
Image Communication, 24(8):651–665, September 2009.

[105] Java 1.8 parser and abstract syntax tree for java, 2016. https://goo.gl/qI1f34.

[106] Jinseong Jeon, Kristopher K Micinski, Jeffrey A Vaughan, Ari Fogel, Nikhilesh Reddy, Jef-
frey S Foster, and Todd Millstein. Dr. android and mr. hide: fine-grained permissions in
android applications. In Proceedings of the second ACM workshop on Security and privacy
in smartphones and mobile devices, pages 3–14. ACM, 2012.

[107] Yiming Jing, Ziming Zhao, Gail-Joon Ahn, and Hongxin Hu. Morpheus: automatically gen-
erating heuristics to detect android emulators. In Proceedings of the 30th Annual Computer
Security Applications Conference, pages 216–225. ACM, 2014.

[108] Jaeyeon Jung, Seungyeop Han, and David Wetherall. Short paper: enhancing mobile applica-
tion permissions with runtime feedback and constraints. In Proceedings of the second ACM
workshop on Security and privacy in smartphones and mobile devices, pages 45–50. ACM,
2012.

[109] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin. Obfuscator-LLVM – soft-
ware protection for the masses. In Brecht Wyseur, editor, Proceedings of the IEEE/ACM 1st
International Workshop on Software Protection, SPRO’15, Firenze, Italy, May 19th, 2015,
pages 3–9. IEEE, 2015.

[110] Sang H. Kang et al. Two-state MMPP modeling of ATM superposed traffic streams based on
the characterization of correlated interarrival times. In IEEE GLOBECOM, 1995.

[111] Michelle Atkinson Kenneth Olmstead. Apps permissions in the google play store, 2015.
http://goo.gl/ph7KGk.

[112] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. Springer, 1997.

106

[113] Yosuke Kikuchi, Hiroshi Mori, Hiroki Nakano, Katsunari Yoshioka, Tsutomu Matsumoto,
and Michel van Eeten. Evaluating malware mitigation by android market operators. In 9th
Workshop on Cyber Security Experimentation and Test (CSET 16). USENIX Association,
2016.

[114] Hyang-Ah Kim and Brad Karp. Autograph: Toward automated, distributed worm signature
detection. In USENIX security symposium, volume 286. San Diego, CA, 2004.

[115] Leonard Kleinrock. Queueing Systems, Volume I: Theory. John Wiley & Sons, 1975.

[116] Leonard Kleinrock. Queueing Systems, Volume II: Computer Applications. John Wiley &
Sons, 1976.

[117] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda, Xiao-yong
Zhou, and XiaoFeng Wang. Effective and efficient malware detection at the end host. In
USENIX security symposium, pages 351–366, 2009.

[118] Harold J. Kushner. Heavy Traffic Analysis of Controlled Queueing and Communication Net-
works. Springer, 2001.

[119] Deer Li and Jianping Pan. Performance evaluation of video streaming over multi-hop wireless
local area networks. IEEE Trans. Wireless Commun., 9(1):338–347, January 2010.

[120] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, Steven Arzt,
Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick McDaniel. Iccta: Detecting
inter-component privacy leaks in android apps. In Proceedings of the 37th International
Conference on Software Engineering-Volume 1, pages 280–291. IEEE Press, 2015.

[121] Li Li, Tegawendé F. Bissyandé, Damien Octeau, and Jacques Klein. Droidra: Taming re-
flection to support whole-program analysis of android apps. In Proceedings of the 25th
International Symposium on Software Testing and Analysis, ISSTA 2016, 2016.

[122] Shuying Liang, Andrew W Keep, Matthew Might, Steven Lyde, Thomas Gilray, Petey Al-
dous, and David Van Horn. Sound and precise malware analysis for android via pushdown
reachability and entry-point saturation. In Proceedings of the Third ACM workshop on Secu-
rity and privacy in smartphones & mobile devices, pages 21–32. ACM, 2013.

[123] Zhenkai Liang and R Sekar. Fast and automated generation of attack signatures: A basis for
building self-protecting servers. In Proceedings of the 12th ACM conference on Computer
and communications security, pages 213–222. ACM, 2005.

[124] Linux. objdump - linux man page, 2017. https://goo.gl/6Wf5oS.

[125] Benjamin Livshits and Jaeyeon Jung. Automatic mediation of privacy-sensitive resource
access in smartphone applications. In Presented as part of the 22nd USENIX Security Sym-
posium (USENIX Security 13), pages 113–130, 2013.

[126] Tom Lookabaugh and Douglas C. Sicker. Selective encryption for consumer applications.
IEEE Commun. Mag., 42(5):124–129, May 2004.

107

[127] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex: Statically vet-
ting android apps for component hijacking vulnerabilities. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security, CCS ’12, 2012.

[128] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S. Foster, and Michael Hicks. Directed symbolic
execution. In Proceedings of the 18th International Conference on Static Analysis, SAS’11,
2011.

[129] Weiqin Ma, Pu Duan, Sanmin Liu, Guofei Gu, and Jyh-Charn Liu. Shadow attacks: automat-
ically evading system-call-behavior based malware detection. Journal in Computer Virology,
8(1-2):1–13, 2012.

[130] Linux man page. strace, 2017. https://goo.gl/zG7YIO.

[131] Kamesh Medepalli et al. Towards performance modeling of IEEE 802.11 based wireless
networks: A unified framework and its applications. In IEEE INFOCOM, 2006.

[132] Trend Micro. Godless mobile malware uses multiple exploits to root devices, 2016.
https://goo.gl/qKSCXl.

[133] Simone Mutti, Yanick Fratantonio, Antonio Bianchi, Luca Invernizzi, Jacopo Corbetta,
Dhilung Kirat, Christopher Kruegel, and Giovanni Vigna. Baredroid: Large-scale analy-
sis of android apps on real devices. In Proceedings of the 31st Annual Computer Security
Applications Conference, ACSAC 2015, 2015.

[134] Palo Alto Networks. Rootnik android trojan abuses commercial rooting tool and steals private
information, 2015. https://goo.gl/epd1IB5.

[135] Marcel F. Neuts. A versatile Markovian point process. Journal of Applied Probability,
16(4):764–779, December 1979.

[136] James Newsome, Brad Karp, and Dawn Song. Polygraph: Automatically generating signa-
tures for polymorphic worms. In Security and Privacy, 2005 IEEE Symposium on, pages
226–241. IEEE, 2005.

[137] Mladen Nikolic. Measuring similarity of graphs and their nodes by neighbor matching. arXiv
preprint arXiv:1009.5290, 2010.

[138] Nima Nikzad, Octav Chipara, and William G Griswold. Ape: an annotation language and
middleware for energy-efficient mobile application development. In Proceedings of the 36th
International Conference on Software Engineering, pages 515–526. ACM, 2014.

[139] Helen Nissenbaum. Privacy as contextual integrity. Wash. L. Rev., 79:119, 2004.

[140] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques
Klein, and Yves Le Traon. Effective inter-component communication mapping in android
with epicc: An essential step towards holistic security analysis. In Proceedings of the 22nd
USENIX security symposium, pages 543–558, 2013.

[141] Oracle. Java se annotations, 2016. http://goo.gl/g9b0Dh.

108

[142] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. Whyper: Towards
automating risk assessment of mobile applications. In Presented as part of the 22nd USENIX
Security Symposium (USENIX Security 13), pages 527–542, 2013.

[143] George Papageorgiou, John Gasparis, Srikanth V. Krishnamurthy, Ramesh Govin-
dan, and Tom La Porta. Securing mobile video uploads from eavesdroppers with
minimum performance penalties: Tech report. http://www.cs.ucr.edu/~gpapag/

tech-report-encryption.pdf, June 2013.

[144] George Papageorgiou, Shailendra Singh, Srikanth V. Krishnamurthy, Ramesh Govindan, and
Tom La Porta. Distortion-resilient routing for video flows in wireless multi-hop networks. In
IEEE ICNP, 2012.

[145] Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis Polychronakis, and
Sotiris Ioannidis. Rage against the virtual machine: hindering dynamic analysis of android
malware. In Proceedings of the Seventh European Workshop on System Security, page 5.
ACM, 2014.

[146] Pomelo, LLC. Analysis of Netflix security framework for ’Watch Instantly’ service. Techni-
cal report, March 2009.

[147] P. Prasithsangaree and P. Krishnamurthy. Analysis of energy consumption of RC4 and AES
algorithms in wireless LANs. In IEEE GLOBECOM, 2003.

[148] Chenxiong Qian, Xiapu Luo, Yuru Shao, and Alvin TS Chan. On tracking information flows
through jni in android applications. In Dependable Systems and Networks (DSN), 2014 44th
Annual IEEE/IFIP International Conference on, pages 180–191. IEEE, 2014.

[149] Qualcomm. Lumicast, a guiding light for indoor venues., 2016. https://goo.gl/tIXHj7.

[150] Moo-Ryong Ra, Ramesh Govindan, and Antonio Ortega. P3: Toward privacy-preserving
photo sharing. In USENIX NSDI, 2013.

[151] Amir Rahmati and Harsha V Madhyastha. Context-specific access control: Conforming
permissions with user expectations. In Proceedings of the 5th Annual ACM CCS Workshop
on Security and Privacy in Smartphones and Mobile Devices, pages 75–80. ACM, 2015.

[152] V. Ramaswami. The N/G/1 queue and its detailed analysis. Advances in Applied Probability,
12(1):222–261, March 1980.

[153] V. Rastogi, Y. Chen, and X. Jiang. Catch me if you can: Evaluating android anti-malware
against transformation attacks. IEEE Transactions on Information Forensics and Security,
2014.

[154] Ringdroid. Ringdroid, 2016. https://goo.gl/MhLqGW.

[155] Sanae Rosen, Zhiyun Qian, and Z Morely Mao. Appprofiler: a flexible method of exposing
privacy-related behavior in android applications to end users. In Proceedings of the third
ACM conference on Data and application security and privacy, pages 221–232. ACM, 2013.

109

[156] Sandvine. Global internet phenomena report, Spring 2011. http://bit.ly/2SihDa, 2011.

[157] SecureList. Rooting pokémons in google play store, 2016. https://goo.gl/Ry7AUw.

[158] Patrick Seeling et al. Video transport evaluation with H.264 video traces. IEEE Trans.
Multimedia, 14(4):1142–1165, FOURTH QUARTER 2012.

[159] Beomjoo Seo et al. An experimental study of video uploading from mobile devices with http
streaming. In Proceedings of the 3rd Multimedia Systems Conference, MMSys ’12. ACM,
2012.

[160] Yuru Shao, Jason Ott, Qi Alfred Chen, Zhiyun Qian, and Z. Morley Maoo. Kratos: Discov-
ering inconsistent security policy enforcement in the android framework. In NDSS, 2016.

[161] Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. Automated worm fin-
gerprinting. In OSDI, volume 4, pages 4–4, 2004.

[162] Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Bravenboer. More
sound static handling of java reflection. In Asian Symposium on Programming Languages
and Systems, pages 485–503. Springer, 2015.

[163] Craig Smith. Android statistics, 2016. https://goo.gl/9Pp6I5.

[164] Songily, 2016. https://goo.gl/fFWI1m.

[165] Soot - a java optimization framework, 2016. https://goo.gl/UsmKcC.

[166] Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas Schreck, and Johannes Hoff-
mann. Mobile-sandbox: having a deeper look into android applications. In Proceedings of
the 28th Annual ACM Symposium on Applied Computing, pages 1808–1815. ACM, 2013.

[167] Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao Chen. Investigating
user privacy in android ad libraries. In Workshop on Mobile Security Technologies (MoST).
Citeseer, 2012.

[168] Kimberly Tam, Salahuddin J Khan, Aristide Fattori, and Lorenzo Cavallaro. Copperdroid:
Automatic reconstruction of android malware behaviors. In NDSS, 2015.

[169] Joshua Tan, Khanh Nguyen, Michael Theodorides, Heidi Negrón-Arroyo, Christopher
Thompson, Serge Egelman, and David Wagner. The effect of developer-specified expla-
nations for permission requests on smartphone user behavior. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 91–100. ACM, 2014.

[170] Target. Plan, shop & save, 2016. https://goo.gl/oupAB7.

[171] The right way to ask users for ios permissions, 2014. https://goo.gl/fnxF6i.

[172] thescore: Sports scores, 2016. https://goo.gl/iefw9C.

[173] Location Tracker. Location tracker, 2015. https://goo.gl/X2LuAd.

110

[174] United States National Institute of Standards and Technology (NIST). Announcing the Ad-
vanced Encryption Standard (AES), Federal Information Processing Standards Publication
197., November 2001.

[175] Upx, 2017. https://goo.gl/6BkD4i.

[176] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clémentine Mau-
rice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida. Drammer: Deter-
ministic rowhammer attacks on mobile platforms. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 1675–1689. ACM, 2016.

[177] Timothy Vidas and Nicolas Christin. Evading android runtime analysis via sandbox detec-
tion. In Proceedings of the 9th ACM symposium on Information, computer and communica-
tions security, pages 447–458. ACM, 2014.

[178] Virustotal, 2017. https://goo.gl/Fw7yPC.

[179] Helen J Wang, Chuanxiong Guo, Daniel R Simon, and Alf Zugenmaier. Shield:
Vulnerability-driven network filters for preventing known vulnerability exploits. In ACM
SIGCOMM Computer Communication Review, volume 34, pages 193–204. ACM, 2004.

[180] Wei Wang, Michael Hempel, Dongming Peng, Honggang Wang, Hamid Sharif, and Hsiao-
Hwa Chen. On energy efficient encryption for video streaming in wireless sensor networks.
IEEE Trans. Multimedia, 12(5):417–426, August 2010.

[181] Yubing Wang, Mark Claypool, and Robert Kinicki. Impact of reference distance for mo-
tion compensation prediction on video quality. In Proceedings of ACM/SPIE Multimedia
Computing and Networking (MMCN 2007), 2007.

[182] Fengguo Wei, Sankardas Roy, Xinming Ou, et al. Amandroid: A precise and general inter-
component data flow analysis framework for security vetting of android apps. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pages
1329–1341. ACM, 2014.

[183] Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. Permission evolution
in the android ecosystem. In Proceedings of the 28th Annual Computer Security Applications
Conference, pages 31–40. ACM, 2012.

[184] Lukas Weichselbaum, Matthias Neugschwandtner, Martina Lindorfer, Yanick Fratantonio,
Victor van der Veen, and Christian Platzer. Andrubis: Android malware under the magnifying
glass. Vienna University of Technology, Tech. Rep. TRISECLAB-0414, 1:5, 2014.

[185] Whatsapp messenger, 2016. https://goo.gl/W1QcPv.

[186] Thomas Wiegand, Gary J. Sullivan, Gisle Bjontegaard, and Ajay Luthra. Overview of the
H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol., 13(7):560–
576, July 2003.

111

[187] Primal Wijesekera, Arjun Baokar, Ashkan Hosseini, Serge Egelman, David Wagner, and
Konstantin Beznosov. Android permissions remystified: A field study on contextual integrity.
In 24th USENIX Security Symposium (USENIX Security 15), pages 499–514, 2015.

[188] Michelle Y Wong and David Lie. Intellidroid: A targeted input generator for the dynamic
analysis of android malware. In Proceedings of the Annual Symposium on Network and
Distributed System Security (NDSS), 2016.

[189] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. The Impact of Vendor
Customizations on Android Security. In CCS, 2013.

[190] Mingyuan Xia, Lu Gong, Yuanhao Lyu, Zhengwei Qi, and Xue Liu. Effective real-time
android application auditing. In 2015 IEEE Symposium on Security and Privacy, pages 899–
914. IEEE, 2015.

[191] Lifan Xu, Dongping Zhang, Nuwan Jayasena, and John Cavazos. Hadm: Hybrid analysis for
detection of malware. 2016.

[192] Wei Xu, Fangfang Zhang, and Sencun Zhu. Permlyzer: Analyzing permission usage in
android applications. In Software Reliability Engineering (ISSRE), 2013 IEEE 24th Interna-
tional Symposium on, pages 400–410. IEEE, 2013.

[193] Wen Xu and Yubin Fu. Own your android! yet another universal root. In 9th USENIX
Workshop on Offensive Technologies (WOOT 15), 2015.

[194] Lok Kwong Yan and Heng Yin. Droidscope: seamlessly reconstructing the os and dalvik
semantic views for dynamic android malware analysis. In Presented as part of the 21st
USENIX Security Symposium (USENIX Security 12), pages 569–584, 2012.

[195] Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie, and William Enck. Appcon-
text: Differentiating malicious and benign mobile app behaviors using context. In Software
Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference on, volume 1,
pages 303–313. IEEE, 2015.

[196] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X Sean Wang. Appintent:
Analyzing sensitive data transmission in android for privacy leakage detection. In Proceed-
ings of the 2013 ACM SIGSAC conference on Computer & communications security, pages
1043–1054. ACM, 2013.

[197] Hang Zhang, Dongdong She, and Zhiyun Qian. Android root and its providers: A double-
edged sword. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1093–1104. ACM, 2015.

[198] Hang Zhang, Dongdong She, and Zhiyun Qian. Android ion hazard: The curse of customiz-
able memory management system. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, 2016.

[199] Mu Zhang and Heng Yin. Efficient, context-aware privacy leakage confinement for android
applications without firmware modding. In Proceedings of the 9th ACM symposium on In-
formation, computer and communications security, pages 259–270. ACM, 2014.

112

[200] Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong, Xinhui Han, and Wei
Zou. Smartdroid: an automatic system for revealing ui-based trigger conditions in android
applications. In Proceedings of the second ACM workshop on Security and privacy in smart-
phones and mobile devices, pages 93–104. ACM, 2012.

[201] Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed, and XiaoFeng Wang. The
Peril of Fragmentation: Security Hazards in Android Device Driver Customizations. In Oak-
land, 2014.

[202] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization and evolution.
In Security and Privacy (SP), 2012 IEEE Symposium on, pages 95–109. IEEE, 2012.

[203] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get off of my market: Detect-
ing malicious apps in official and alternative android markets. In NDSS, volume 25, pages
50–52, 2012.

113

