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ABSTRACT
We present Fortran 2018 teams (grouped processes) running a par-
allel ensemble of simulations built from a pre-existing Message
Passing Interface (MPI) application. A challenge arises around the
Fortran standard’s eschewing any direct reference to lower-level
communication substrates, such as MPI, leaving any interoperabil-
ity between Fortran’s parallel programmingmodel, Coarray Fortran
(CAF), and the supporting substrate to the quality of the compiler
implmentation. Our approach introduces CAF incrementally, a pro-
cess we term “caffeination.” By letting CAF initiate execution and
exposing the underlying MPI communicator to the original ap-
plication code, we create a one-to-one correspondence between
MPI group colors and Fortran teams. We apply our approach to
the National Center for Atmospheric Research (NCAR)’s Weather
Research and Forcecasting Hydrological Model (WRF-Hydro). The
newly caffeinated main program replaces batch job submission
scripts and forms teams that each execute one ensemble member.
To support this work, we developed the first compiler front-end
and parallel runtime library support for teams. This paper describes
the required modifications to a public GNU Compiler Collection
(GCC) fork, an OpenCoarrays [1] application binary interface (ABI)
branch, and a WRF-Hydro branch.

CCS CONCEPTS
• Software and its engineering→ Parallel programming lan-
guages; • Applied computing → Environmental sciences;
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1 INTRODUCTION
1.1 Motivation and Background
Since the publication of the Fortran 2008 standard in 2010 [4], For-
tran supports a Single-Program Multiple-Data (SPMD) program-
ming style that facilitates the creation of a fixed number of repli-
cas of a compiled program, wherein each replica executes asyn-
chronously after creation. Fortran refers to each replica as an image.
The primary mechanism for distributing and communicating data
between images involves defining coarrays, entities that may be
referenced or defined on one image by statements executing on
other images. As such, a coarray defines a partitioned global address
space (PGAS) in which one image referencing or defining a coarray
on another image causes inter-image communication.

The seminal role that coarrays played in the development of For-
tran’s intrinsic parallel programming model have made it common
to refer to all of modern Fortran’s parallel programming features
under the rubric of CAF. To date, most published CAF applications
involve scenarios wherein the parallelization itself poses one of
the chief challenges and necessitates the custom development of
parallel algorithms. These include ordinary and partial differen-
tial equation solvers in domains ranging from nuclear fusion [7]
and weather [5] to multidimensional fast Fourier transforms and
multigrid numerical methods [2]. Much of the effort involved in
expressing parallel algorithms for these domains centers on design-
ing and using various coarray data structures. In such settings, the
moniker CAF seems appropriate.

Less widely appreciated are the ways Fortran’s intrinsic parallel
programming model supports embarrassingly parallel applications,
wherein the division into independent sub-problems requires little
coordination between the sub-problems. To support such appli-
cations, a parallel programming model might provide for explicit
sub-problem disaggregation and independent sub-problem execu-
tion without any need for PGAS data structures such as coarrays.
The draft Fortran 2018 standard (previously named “Fortran 2015”1)
offers several features that enable a considerable amount of paral-
lel computation, coordination, and communication even without
coarrays. A working definition of “embarrassingly parallel” Fortran
might denote the class of use cases for which parallel algorithmic
needs are met by the non-coarray parallel features, including
• Forming teams of images that communicate only with each
other by default,
• Image synchronization: a mechanism for ordering the exe-
cution of program segments in differing images,

1A Committee Draft is at https://bit.ly/fortran-2015-draft.
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• Collective subroutines: highly optimized implementations
of common parallel programming patterns,
• Image enumeration: functions for identifying and counting
team members,
• Global error termination.

We anticipate that a common use case will encompass an ensemble
of simulations, each member of which executes as a parallel com-
putation in a separate team. This paper presents such a use case for
WRF-Hydro, a terrestrial hydrological model developed at NCAR.

1.2 Objectives
The objectives of the current work are threefold:

(1) To contribute the first-ever compiler front-end support for
Fortran 2018 teams.

(2) To contribute the parallel runtime library functionality re-
quired to support the new compiler capabilities.

(3) To study and address issues arising form integrating teams
into an existing MPI application, WRF-Hydro,

The compiler front-end described herein lives on the Sourcery In-
stitute GCC fork’s2 teams branch. The parallel runtime library lives
on the OpenCoarrays3 opencoarrays-teams ABI. We are unaware
of any compiler support for Fortran 2018 teams other than that
developed for the current project.

2 METHODOLOGY
Fortran 2018 will facilitate forming nonoverlapping image groups,
allowing more efficient and independent subproblem execution.
Multiphysics applications, e.g., climate and weather models, may
benefit from the consequent reduction in off-node communication,
particularly when an entire team fits in a single compute node.

2.1 Teams in Fortran 2018
A team is a set of images that can execute independently of other
images outside the team. At program launch, all images comprise a
team designated by a language-defined initial_team integer iden-
tifier. Except for the initial team, every team has a parent team in a
one-to-many parent/child hierarchy. A program executes a form
team statement to create a mapping for subsequent grouping of im-
ages into new child teams. Each new team has an integer identifier
that Fortran produces as the result of invoking the team_number()
intrinsic function. Information about the team to which the cur-
rent image belongs can be determined by the compiler from the
collective value of the team variables on the images of the team. All
images execute the form team statement as a collective operation.

An image changes teams by executing change team or end team.
The former moves the executing image form the current team to a
team specified by a derived-type team_type variable. Subsequent
execution of a corresponding end team statement restores the
current team back to that team to which it belonged immediately
prior to execution of the most recent change team.

The form team statement takes an team_number argument
uniquely identifying the team and a team_type argument encapsu-
lating other team information in private components. Successful

2https://github.com/sourceryinstitute/gcc
3https://github.com/sourceryinstitute/opencoarrays

1 module a s s e r t i o n s _modu l e !Terminate globally if test fails
2 implicit none ; contains
3 elemental subroutine a s s e r t ( a s s e r t i o n , d e s c r i p t i o n )
4 logical , intent ( in ) : : a s s e r t i o n
5 character ( len = ∗ ) , intent ( in ) , optional : : d e s c r i p t i o n
6 integer , parameter : : max_d i g i t s =12
7 character ( len=max_d i g i t s ) : : image_number
8 if ( . not . a s s e r t i o n ) then
9 write ( image_number , ∗ ) this_image ( )
10 error stop d e s c r i p t i o n / / " failed on " / / image_number
11 end if
12 end subroutine
13 end module
14
15 program main !! Test team_number intrinsic function
16 use iso_fortran_env , only : team_type
17 use a s s e r t i on s_modu l e , only : a s s e r t i o n s
18 implicit none
19 integer , parameter : : s t a n d a r d _ i n i t i a l _ v a l u e =−1
20 type ( team_type ) , target : : home
21 call a s s e r t ( team_number ( ) == s t a n d a r d _ i n i t i a l _ v a l u e )
22 associate ( my_team=>mod ( this_image ( ) , 2 ) +1 )
23 form team ( my_team , home ) !Map even|odd images ->teams 1|2
24 change team ( home )
25 call a s s e r t ( team_number ( ) ==my_team , "correct mapping" )
26 end team
27 call a s s e r t ( team_number ( ) == s t a n d a r d _ i n i t i a l _ v a l u e )
28 end associate
29 sync all ; if ( this_image ( ) ==1) print ∗ , "Test passed."
30 end program

Figure 1: A unit test for the team-number function.

execution of a form team statement assigns the team-variable (of
type team type) on each participating image a value that spec-
ifies the new team to which the image will belong. The change
team statement takes as argument a team type variable that rep-
resents the new team to be used as current team. The execution
of the end team statement restores the current team back to that
immediately prior to execution of the change team statement. Fig-
ures 1-2 demonstrate the use of teams in two unit tests from the
OpenCoarrays repository.

2.2 Teams in GCC and OpenCoarrays
A Fortran team is comparable to an MPI communicator. Open-
Coarrays uses MPI_Comm_split to support form team, passing the
team id as the color, and storing the resulting communicator in an
available-teams list. Every list element tracks the team/communi-
cator pairings. The function returns the available-teams list stored
in the team type variable.

We initialize the available- and used-teams lists to 1 (equivalent
to MPI_COMM_WORLD) at the beginning of the execution. At a change
team, the available-teams list element stored in the team_type vari-
able gets passed to the corresponding OpenCoarrays function. The
current_team variable used inside OpenCoarrays for representing
the current communicator gets reassigned with the value contained
into the element of the list passed as argument. Finally, a new
element is added to the list of used teams. The list elements are
pointers to the elements of the available-teams list. The insertion
operation is always performed at the beginning of the list in order
to keep track of the teams hierarchy. An execution of the end team
statements is implemented by removing the first element of the list
of used teams and reassigning the current team to the new first
element of the list of used teams.

https://github.com/sourceryinstitute/gcc
https://github.com/sourceryinstitute/gcc
https://github.com/sourceryinstitute/opencoarrays
https://github.com/sourceryinstitute/gcc
https://github.com/sourceryinstitute/opencoarrays
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1 program main !! Test get_communicator language extension
2 use opencoar rays , only : ge t_communicator
3 use a s s e r t i on s_modu l e , only : a s s e r t
4 use iso_fortran_env , only : team_type
5 type ( team_type ) : : l e a gue
6 integer , parameter : : num_teams=2 !! number of child teams to form
7 implicit none
8 call mpi_matches_ca f ( ge t_communicator ( ) ) !! verify rank & image numbering
9 associate ( i n i t i a l _ i m a g e =>this_image ( ) , i n i t i a l _ num_ image s =>num_images ( ) , new_team=>mod ( this_image ( ) +1 , num_teams ) +1 )
10 form team ( new_team , l e ague ) !! create mapping
11 change team ( l e ague ) !! join child team
12 call mpi_matches_ca f ( ge t_communicator ( ) ) !! verify new rank/image numbers
13 associate ( my_team=>team_number ( ) )
14 call a s s e r t ( my_team==new_team , "assigned team matches chosen team" )
15 associate ( new_num_images=> i n i t i a l _ num_ image s / num_teams+merge ( 1 , 0 , my_team<=mod ( i n i t i a l _num_ image s , num_teams ) ) )
16 call a s s e r t ( num_images ( ) ==new_num_images , "block distribution of images" )
17 end associate ; end associate
18 end team
19 call a s s e r t ( [ i n i t i a l _ i m a g e ==this_image ( ) , i n i t i a l _ num_ image s ==num_images ( ) ] , "correct rank/image remapping" )
20 end associate
21 sync all ; if ( this_image ( ) ==1) print ∗ , "Test passed."
22 contains
23 subroutine mpi_matches_ca f ( comm) !! verify num. ranks = num. images & image num. = rank num. + 1
24 use i s o _ c _b i nd i ng , only : c _ i n t
25 use mpi , only : MPI_COMM_SIZE , MPI_COMM_RANK
26 integer ( c _ i n t ) , intent ( in ) : : comm !! MPI communicator
27 integer ( c _ i n t ) : : i s i z e , i e r r o r , i r a nk
28 call MPI_COMM_SIZE ( comm , i s i z e , i e r r o r )
29 call a s s e r t ( [ i e r r o r ==0 , i s i z e ==num_images ( ) ] , "correct rank/image cardinality" )
30 call MPI_COMM_RANK(comm , i rank , i e r r o r )
31 call a s s e r t ( [ i e r r o r ==0 , i r ank ==this_image ( ) −1 ,"correct rank/image numbering correspondence" )
32 end subroutine
33 end program

Figure 2: A unit test for the get_communicator function.
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Figure 3: Schematic of program execution over time (left
axis) in 12 images (top) communicating globally and then
within subgroups. Horizontal lines show communication
mechanisms (default=solid, optional=dashed). Fortran con-
cepts (left). Underlying MPI concepts (right).

Figure 3 depicts schematically an initial team of images (black
arrows) executing over time (progressing downward) and able to
coordinate and communicate through a global mechanism (black
horizontal line). At the point of executing form team and change
team statements, the compiler inserts references to the OpenCoar-
rays ABI into the executable program. Those references cause invo-
cations of MPI_Split, which in turn creates the colored groupings
that correspond to teams in Fortran 2018.

The teams unit tests in Figures 1–2 use a block distribution of
images, dividing the initial team into three new teams, each with

Figure 4: WRF-Hydro caffeination via Fortran 2018 teams:
example components of the National Water Model. Differ-
ent MPI colors represent independent teams, each of which
is an ensemble member.

the same number of images except some teams with one extra.
The number of teams with an extra image equals the remainder of
integer division of the total number images by the number of teams.
In Figure 2, an assertion procedure terminates across all images
if assertion is false. The optional second argument in assert
describes the checks performed.

2.3 A language extension
Line 2 in Figure 2 imports a get_communicator() function via
Fortran’s use-association mechanism for accesing entities in For-
tran modules: an opencoarrays module that provides language
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Figure 5: Scaling of the channel-only initialization time to
support Amdhal’s law calculation of potential speedup of
ensemble computation with shared initialization.

extensions. Lines 8 and 12 invoke this function to provide the MPI
communicator to the test subroutine mpi_mpatches_caf. Asser-
tions in the latter subroutine verify the expected correspondences
between MPI image and rank numbering. The MPI/CAF correspon-
dence enables the newly caffeinated WRF-Hydro to interoperate
safely with the existing WRF-Hydro MPI code.

3 DISCUSSION OF RESULTS
WRF-Hydro is a community hydrologic model providing a parallel-
computing framework for coupling weather prediction (Figure 4a),
land surface (Figure 4b), and hydrologic routing to handle spatial
water redistribution via overland flow (Figure 4c), subsurface (soil
column) flow (Figure 4c), baseflow (deep groundwater, 4d), and
stream channel transport (Figure 4e) [3].

Developed to couple land hydrology to the atmosphere, WRF-
Hydro usually runs “offline” with forcing from upper-boundary
(weather) conditions (Fig. 4). The chief example is the National
Weather Model (NWM) of the National Oceanic and Atmospheric
Administration (NOAA) [6], a special configuration of WRF-Hydro
providing operational, real-time analysis and forecasts over the U.S.

Ensemble forecasting and ensemble data assimilation are grow-
ing research areas for WRF-Hydro. Running ensembles under one
executable program and job submission as shown in Fig. 4 can
reduce the labor in workflow design and can open up possibilities
for improving data flows and optimizing ensemble execution time.

An optimization that we expect teams to facilitate will involve
sharing initialization work over all ensemble members using the
full image set before changing teams. Amortizing common initial-
ization work across all available computational resources rather
than repeating common initialization work in each ensemble mem-
ber using only that member’s fraction of the resources might save
significant computational costs in runs for which initialization oc-
cupies a large fraction of the run time such as in production runs
of short-term NWM forecasts. We are exploring moving from de-
terministic (single ensemble member) runs to ensemble runs for

the stream channel submodel in isolation. Fig. 5 presents the scal-
ing behavior of channel-only runs. Running 50 ensemble members
concurrently in teams occupying 20 cores each, the initialization
speedup will be approximately 20x. Currently, for the short-range
forecasts, initialization requires approximately 50% of the run time
on NCAR’s yellowstone computer and greater than that on NOAA
WCOSS system [8]. These numbers are similar for the channel-only
model. In our proposed application for an ensemble size of 50, we
estimate that approximately half the runtime (f = .5) can be sped
up by a factor of about 20 (Sf = 20), based on Fig. 5. From these
estimates, Amdhalś law yields a total speedup of 1.9:

S = 1/f /Sf + (1 − f ) = 1/(.5/20 + (1 − .5)) = 1.9 (1)

We converted the WRF-Hydro main program to a subroutine called
in a loop over the ensemble members. We deleted MPI_Init and
MPI_FInalize calls in the converted subroutine and instead pass a
communicator to the subroutine. To loop over the ensemble also
required deleting the stop statement in the subroutine.

4 CONCLUSIONS AND FUTUREWORK
We applied Fortran 2018 teams to WRF-Hydro ensemble simulation
and forecasting. We developed the first-ever compiler front-end and
parallel runtime library support for teams and a language extension
that exposes CAF’s underlying MPI communicator for use in WRF-
Hydro. This approach facilitates incremental introduction of CAF,
i.e.,“caffeination,” of the pre-existing MPI program. We predict a
speedup of 1.9 in ensemble execution when spreading common
initializations across all images prior to changing teams. Such a
speedup would grealy impact WRF-Hydro operational use cases.
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