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Abstract Sequence-based surveys of microorganisms in
varied environments have found extremely diverse assem-
blages. A standard practice in current high-throughput se-
quence (HTS) approaches in microbial ecology is to se-
quence the composition of many environmental samples at
once by pooling amplicon libraries at a common concentra-
tion before processing on one run of a sequencing platform.
Biomass of the target taxa, however, is not typically deter-
mined prior to HTS, and here, we show that when abun-
dances of the samples differ to a large degree, this standard
practice can lead to a perceived bias in community richness
and composition. Fungal signal in settled dust of five uni-
versity teaching laboratory classrooms, one of which was
used for a mycology course, was surveyed. The fungal
richness and composition in the dust of the nonmycology
classrooms were remarkably similar to each other, while the
mycology classroom was dominated by abundantly sporu-
lating specimen fungi, particularly puffballs, and appeared to
have a lower overall richness based on rarefaction curves and
richness estimators. The fungal biomass was three to five
times higher in the mycology classroom than the other class-
rooms, indicating that fungi added to the mycology class-
room swamped the background fungi present in indoor air.
Thus, the high abundance of a few taxa can skew the per-
ception of richness and composition when samples are

sequenced to an even depth. Next, we used in silico manip-
ulations of the observed data to confirm that a unique signa-
ture can be identified with HTS approaches when the source
is abundant, whether or not the taxon identity is distinct.
Lastly, aerobiology of indoor fungi is discussed.

Introduction

Use of high-throughput sequencing (HTS) has transformed
the field of microbial ecology. Traditionally, sampling depth,
defined both in terms of the number of samples and intensity
of analysis within those samples, has been limited due to
resources required to assess microbial composition. Howev-
er, with modern HTS technologies, a comparable effort can
result in hundreds of thousands and even millions of se-
quence reads in a single run [1–3]. These tools have been
directed toward understanding the presence and role of mi-
crobes in terrestrial [4] and marine [5] environments, includ-
ing where the microbes associate with “macrobes” such as
plants [6], insects [7], and humans [8].

One of the advantages of HTS is that a high number of
different environmental samples can be processed simulta-
neously through “multiplexing,” where individual samples
are PCR-amplified with barcoded primers that are later used
to computationally separate them. The accepted strategy is to
pool these amplicon libraries at equimolar concentrations
before sequencing together. Despite common concentra-
tions, sequence counts are uneven across the samples, so in
the analysis stage, the sequence reads are rarefied to a com-
mon number across all samples. The resulting assumption is
that an even sampling depth, determined by both the con-
centration of amplified DNA and subsequent rarefaction,
will give a representative glimpse of the true biological
community within.
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One environment that is increasingly a target for microbial
surveys is that of the built environment [9]. Not only a unique
ecological habitat, the indoor environment is one that can have
important implications for human health [10], and identifying
exposure often involves detecting a unique contaminant or an
elevated level of a common source. Recent studies using
culture-independent techniques show that the outdoors is the
dominant origin for fungi detected indoors, and this pattern
occurs at both global and local scales and independent of
building function or human activity [11–13]. In a recent study
of residences, no statistical differences in fungal assemblages
could be found between rooms such as kitchens, bathrooms,
bedrooms, and living rooms, even though they have obvious
differences in uses, water sources, and potential substrates for
fungi; instead, each room appeared to be a random subset of the
outdoor fungal community [12]. This latter result may simply
show again that outdoor sources dominate the process of fungal
community assembly. Alternatively, it may show a limitation of
sampling dust with a HTS approach, in which the accumulated
contribution of extremely diverse outdoor sources (composed
of hundreds to thousands of taxa) masks the few active resi-
dents of individual rooms, a particular concern if trying to use
HTS methods to identify “sick buildings.”

In preparation for the global study of settled dust [11] and
as part of a class study, we sampled vacuumed dust in the
mycology teaching lab at University of California, Berkeley,
analyzed it via pyrosequencing, and found an unexpectedly
high representation of puffball taxa that were clearly derived
from material previously used in teaching. This observation
provided us with a room with a unique fungal signature in
airborne dust. In the current study, we followed up on this
observation by passively sampling circulating dust over the
course of one semester in this lab and in four adjacent labs
housed on the same floor of a single building. We then used
multiple in silico manipulates of the observed data to test the
sensitivity of the method to identify community differences
between rooms. Specifically, we reassigned puffball reads to
taxa that were already dominant in the background communi-
ty, and we lowered the read abundance of the abundant puff-
ball sequence to match that of common indoor fungi. Togeth-
er, this study allowed us to explore two questions as follows:
(1) How sensitive are estimates of richness to differences in
abundance? (2) What is required for an assemblage to appear
statistically different from other assemblages when the differ-
ences are layered on top of a diverse background community?

Materials and Methods

Sample Collection

Samples were taken from five laboratory-type classrooms
located on the second story of a two-story building with no

reported mold problems (Supplementary Fig. 1). The passive
collection of settled dust on a sterile sampling surface fol-
lows that of the “dustfall collector” developed byWürtz et al.
[14]. Here, we used a base of an empty 9-cm petri dish, a
method previously used to sample bioaerosols in residences
[12], to collect dust for the duration of the fall teaching
semester, from late August 2011 through mid-December
2011. Samplers were placed on top of shelves at a height of
2.1 m and at a minimum of 1 m from a supply air outlet. The
volume of the classrooms ranged from 340 to 377 m3. Four
pairs of samplers were distributed in each lab (Supplemen-
tary Fig. 1). Among the classes held in classroom E was a
mycology course in which both instructors and students
brought local specimens into the room for study. Other
rooms held laboratory courses on various topics related to
microbiology and plant biology but not mycology. All of the
labs have identical custodial regimes and ventilation treat-
ments, in that fume hood air vents directly outside of the
building and return vent air is circulated through the venti-
lation system (Supplementary Fig. 1).

DNA Extraction, Amplification, and Sequencing

Sample processing of dust followed the methods of Adams
et al. [12]. Briefly, dust was first collected from the dish on a
sterile, cotton-tipped, wooden-handled swab by moistening
the swab in nucleic acid-free water, rubbing across the dish
for 5 s, twisting the dish 90°, and rubbing for another 5 s.
Genomic DNA was extracted from the swab tip using a
chloroform–phenol procedure in conjunction with a soil
extraction kit. The extraction efficiency of this method was
not quantified. We targeted the internal transcribed spacer
(ITS) region 1 of the nuclear ribosomal coding cistron [15],
using the ITS1F and ITS2 primers [16, 17], as these primers
are predicted to amplify a diverse set of fungal lineages [18],
the ITS1 region is taxonomically informative [19–21], and
shorter amplicon regions tend to increase the number of
reads per sequencing effort (compared to, for example, se-
quencing the entire ITS region, including ITS2). Genomic
DNAs from the 40 environmental samples were PCR-
amplified in triplicate at a 1:10 dilution, purified, quantified,
and pooled at equimolar concentrations for pyrosequencing
at the W.M. Keck Center for Comparative and Functional
Genomics of the University of Illinois at Urbana-Champaign
on 1/8th of a 454 FLX+ picotiter plate. Raw pyrosequences
were submitted to the Sequence Read Archive of the Nation-
al Center for Biotechnology Information under accession
number SRP018151. To assess the total fungal biomass in
each of the samples, we employed quantitative PCR using
the FF2/FR1 primers developed by Zhou et al. [22], which
target a locus of nearly invariant length of the fungal 18S
ribosomal genes. Standard curves were generated using di-
luted concentrations of Penicillium purpurogenum spores
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(see [12] for more details). Results are reported as P.
purpurogenum spore equivalents and compared across class-
rooms as relative differences in total fungal biomass.

Pyrosequencing Analysis

Pyrosequence data were processed using the Quantitative
Insights Into Microbial Ecology (QIIME) pipeline [23].
Amplicons had to meet a mean quality score of 25 and were
limited to those with a minimum length of 200 nucleotide base
pairs (bp) and maximum length of 412 bp. Efforts to reduce
sequencing errors that are an artifact of pyrosequencing relied
on the “denoising” algorithm [24]. The ITS1 spacer region
was extracted from the sequences [25], and the subsequent
reads checked for chimeras using UCHIME [26] and clustered
into operational taxonomic units (OTUs) at 97 % similarity
using the USEARCH method [27]. OTUs present in negative
controls (nine of the >1,100 taxa identified—Supplementary
Table 1) were removed from the samples.

Community Analyses and Taxonomy Assignment

For observed richness rarefaction curves in EstimateS [28],
samples were pooled within rooms. Within the R statistical
language [29], communities were rarefied to an even sam-
pling depth of 407 sequence reads per sample, as that was the
lowest read abundance of a sample after eliminating samples
with <100 sequence reads per sample. The presence of
indicator taxa (OTUs associated with a category of sample)
was tested in QIIME [23] and was included if significant
after Bonferroni corrections. For taxonomy assignment, a
representative sequence of each OTU was aligned by the
BLAST algorithm against the UNITE fungal database [30],
version April 13, 2012.

In Silico Manipulations

One of the advantages of the laboratory classroom setting is
that it can inform the process of detecting fungal contamina-
tion in more typical indoor environments. However, the
mycology classroom provides an example of taxonomically
unique sources (i.e., puffballs) that are also highly abundant,
whereas the more likely situation in buildings is an increase
in the abundance of a common fungal taxon. Thus, we
manipulated results in silico to disentangle the effects of
taxonomic identity and read abundance in order to investi-
gate the process of identifying a unique source. First, we
reassigned the nine puffball taxa (Table 1) to fungi that are
commonly found growing in buildings and that were already
present in the sample. For example, the amplicon reads of the
most abundant puffball, Battarrea, were added to those of
the most abundant nonpuffball taxon, Epicoccum, and so on
through the nine puffball taxa (Supplementary Table 2). This

first manipulation created a situation in which differences
between classroom E and other rooms were solely the abun-
dances of the dominant taxa. Second, one puffball taxon had
a read abundance of nearly 5,748 reads and the remainder
ranged from 15 to 1,498 (mean 127.6, median 19.5), while
the next most abundant nonpuffball taxon (an Epicoccum)
was 1,906. Thus, we reduced the read abundance per sample
of Battarrea taxon to be on par with the read abundance per
sample of that of Epicoccum (Supplementary Table 2) by
generating random values around the mean and standard
deviation read abundance of Epicoccum. This, in effect,
equalized the read abundance of the taxa, and thus, differ-
ences between rooms were solely qualitative (i.e., the iden-
tities of the dominant taxa across room were different, not
their abundances or frequency). Thus, with the two manipu-
lations, we explore the quantitative and qualitative differ-
ences under which environments appear distinct in HTS
data. Statistical analysis for community analysis relied on
ADONIS (a permutational multivariate ANOVA [31]) using
the Morisita–Horn (abundance based), Sorensen (presence–
absence based), and Canberra (abundance based and empha-
sizes rare taxa) indices. We visualized the effect of these
manipulations using nonmetric multidimensional scaling
based on the Morisita–Horn index, although results are con-
sistent across the three indices.

Results and Discussion

The Link Between Diversity, Richness, and Evenness

Results are based on 34 samples: five samples in each of rooms
A and C and eight samples in each of rooms B, D, and E
because PCR amplification failed in four samples and produced
too few high-quality reads (<407) in two other samples. Ob-
served richness, which was based on pooled samples of be-
tween 2,889 (classroom C) and 8,944 (classroom E) sequences
per room, did not approach saturation (Fig. 1(I)). Observed
richness (and Chao's estimated richness—Supplementary
Fig. 2) was lower in classroom E than in all the other rooms
(ANOVA: p<0.001, Fig. 1(I)), despite it having the highest
number of sequences. In contrast to richness, the total fungal
biomass seen in classroom Ewas three to five times higher than
the other classrooms, a similar number seen in all the other
rooms (ANOVA: p<0.001, Fig. 1(II)).

In comparing fungal assemblages across environments (in
this case, classrooms), we utilized the common strategy of
sequencing equimolar concentrations of each sample. With-
out prior understanding of the setting, one would conclude
that the dust community in classroom E is less rich than that
in the other classrooms. In actuality, that environment is
likely more rich than the others, in that it contains the
“background” fungal assemblage that characterizes the other
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classrooms plus the intentional fungal introductions. Thus,
the real fungal community is less diverse in that it is less even
but not less rich [32], a distinction lost when sampling
biological communities of different abundances to the same
depth and analyzed with common richness estimators (e.g.,
Supplementary Fig. 2). Similarly, the concept of “species
density,” most often used for plant communities, has been
used to describe the number of species in a unit area [33]. In
the case of HTS, area is equivalent to concentration of ampli-
fied DNA, so in the sample dominated by puffball spores, the
species density is low but it would be inaccurate to conclude
that total richness is also low. We predict that an increased
sampling and sequencing of classroom E, to a concentration
three to five times higher than the other classrooms (as

informed by biomass estimates), would result in the detection
of that background assemblage in addition to the fungal intro-
ductions. Indeed, the Chao estimator (Supplementary Fig. 2)
hints that classroom E might be just as rich as classrooms A
and C but would take much more sequencing effort to detect.

This same bias, of a high abundance of a particular taxon
shrinking the read abundance of other taxa and skewing the
detected community structure, has been observed in other
studies. In one, individual dust samples inoculated with a
high number of spores prior to DNA extraction lost the
environmental signal entirely [19]; in another, a community
sample that contained an individual taxon with low DNA
concentration but high PCR affinity resulted in distorted read
abundances for the entire community [34]. In a recent

Table 1 Identities of the 20 most
abundant OTUs along with ad-
ditional taxa that are significant
indicator taxa of a particular
environment

Taxa appear in the same abun-
dance order (1–20) that they ap-
pear in Fig. 1(III). All significant
indicator taxa were either posi-
tively associated with classroom
E (the puffballs) or negatively
with classroom E (common fungi
in low abundance)

Abundance Taxa Class Description Commonly
indoor

Indicator
taxa—classroom

1 Battarrea sp. Agaricomycetes Puffball + E

2 Pisolithus sp. Agaricomycetes Puffball + E

3 Epicoccum nigrum Dothideomycetes Mold Yes − E

4 Cladosporium sp. Dothideomycetes Mold Yes − E

5 Alternaria sp. Dothideomycetes Saprobe Yes − E

6 Penicillium sp. Eurotiomycetes Mold Yes

7 Cladosporium sp. Dothideomycetes Mold Yes − E

8 Nigrospora sp. Sordariomycetes Mold Yes

9 Phoma glomerata Dothideomycetes Plant
pathogen

Yes

10 Aureobasidium
pullulans

Dothideomycetes Mold Yes

11 Cryptococcus
carnescens

Tremellomycetes Yeast

12 Cryptococcus
victoriae

Tremellomycetes Yeast

13 Cryptococcus sp. Tremellomycetes Yeast

14 Pithomyces
chartarum

Dothideomycetes Saprobe Yes

15 Stemphylium sp. Dothideomycetes Saprobe Yes

16 Cladosporium sp. Dothideomycetes Mold Yes

17 Battarrea sp. Agaricomycetes Puffball + E

18 Cryptococcus
magnus

Tremellomycetes Yeast

19 Battarrea sp. Agaricomycetes Puffball + E

20 Rhodotorula
fujisanensis

Microbotryomycetes Mold Yes

n/a Calvatia sp. Agaricomycetes Puffball + E

n/a Lycoperdon
perlatum

Agaricomycetes Puffball + E

n/a Pisolithus sp. Agaricomycetes Puffball + E

n/a Handkea
subcretacea

Agaricomycetes Puffball + E

n/a Pisolithus sp. Agaricomycetes Puffball + E

n/a Pisolithus sp. Agaricomycetes Puffball + E

n/a Teratosphaeria
microspora

Dothideomycetes Plant
pathogen

− E
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sampling campaign of residences [12], more singleton species
were detected indoors than outdoors. We hypothesized that
this pattern emerged not because these rare taxa were not
present outdoors but because the outdoor samples, with higher
biomass, were, in effect, sequenced to a lower depth when the
amplicon libraries were adjusted to equal concentrations prior
to sequencing. Consequently, rarer taxa were detected less
frequently in the outdoor (higher biomass) samples. Potential
biases of observed community structure can thus emerge in
several steps of molecular processing, and there are many
aspects of the sequencing pipeline that can disrupt the links
between true abundance and estimates of richness, evenness,
and diversity. If research questions are centered on community
membership, it may be more appropriate to pool amplicon
libraries based on the concentration of genomic material in the
original sample rather than to a common value.

Differences in Community Composition

The community composition in classroom E was different
from the other classrooms (ADONIS: p<0.001 for all indices,
Supplementary Table 4). The read abundances of the 20 most
abundant taxa in all samples show that the compositions of the

nonmycology classrooms are similar in their richness and
composition to each other (Fig. 1(III)) and to other indoor
samples from the area [12] and are more diverse than class-
room E (Fig. 1(III)). Taxonomic identity of these 20 OTUs
shows that the abundant taxa in the nonmycology classes are
largely Dothideomycetes molds, cryptococcal yeasts, and oth-
er taxa commonly found indoors (Table 1, Supplementary
Table 3). Classroom E, on the other hand, is dominated by a
handful of taxa, particularly puffballs that are characterized by
spores with a spheroid shape that are released in large quantity
when the fruiting body is disturbed. Indicator taxa analysis
highlights puffballs as positively associated with classroom E
and identifies some common indoor molds as negatively
associated with classroom E due to the overrepresentation of
puffballs in the sequence reads (Table 1).

Our results showed the typical “long tail” of a taxon
appearance with a handful of abundant taxa and the majority
of taxa appear only once (Supplementary Fig. 3). The legit-
imacy of the “rare biosphere” has received a great deal of
attention, whether it is a biological reality or an exaggerated
artifact of current sequencing techniques (e.g., [35]). Many
common beta-diversity metrics were designed for plant com-
munity data, in which case, observed abundance matches true

Fig. 1 Observed richness of fungal OTUs in each of the five class-
rooms sampled. (I) Observed fungal OTUs are lower in classroom E
where mycology class was conducted than in the other classrooms.
Shading around the lines represents the standard deviation. (II) Fungal
biomass in each of the sampled rooms. Fungal biomass is significantly
higher in classroom E than in the other classrooms. Box and whisker
plot showing the median (thick black line), the quartiles (boxed), and the
extreme values (as whiskers). Outliers are shown as circles. Biomass is

represented as P. purpurogenum spore equivalents as measured by
qPCR of SSU rRNA gene. (III) Proportion of sequence reads for each
of the 20 most abundant taxa in each of the classrooms, where each
shade represents a different OTU. Note that classrooms A–D have a
similar composition, while classroom E is distinct. Puffball taxa are
indicated with an asterisk. The taxa are the same as those listed in
Table 1
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abundance [36]. With HTS approaches, observed and true
abundance can be unrelated due to amplification noise (e.g.,
[34]), so the use of these metrics for sequence data introduces
a potential for high-abundance bias. One approach to lessen
the impact of these overabundant taxa is by using indices that
emphasize rare taxa. In our case, we found that classroom E
was distinct from all other classrooms regardless of beta-
diversity metric (p<0.001) and, consequently, that the choice
of metric did not affect whether samples were different. Rather,
we found that the scale of difference, or how distinct samples
appear, depended on the choice of beta-diversity metric used to
compare them. The percent variation that classroom explained
varied greatly by the model used, such that with the abundance-
based Morisita–Horn, classroom explained 60 % of the varia-
tion; with the binary Sorensen, classroom explained 24 %; and
with Canberra, it was down to 12 % (Supplementary Table 4).
Thus, our data support the idea that “judicious” use of multiple
metrics can be an important approach for uncovering diversity
patterns [37].

When we used in silico manipulations to reassign puffball
sequence reads in classroom E to other common fungal taxa or
to lower the abundance of an overabundant puffball sequence
to the same levels as other common fungi, we found that the
fungal assemblage in room E remained distinct from those of
other classrooms (ADONIS: p<0.001; all dissimilarity met-
rics, Supplementary Table 4 and Supplementary Fig. 4).While
still distinct, the overall community distances between class-
room E and the other classrooms decreased under the manip-
ulated scenarios (Supplementary Table 4 and Supplementary
Fig. 4). These manipulations suggest that a unique source can
be identified in HTS surveys if it is abundant or taxonomically
distinct and that it need not be both.

Indoor Air and Fungal Biology

The fact that only puffball sequences were increased in abun-
dance in classroom E is interesting because many other fungi
were equally common as class material. While many different
types of fungi, including charismatic mushrooms, were brought
into classroom E by the students, the puffballs specifically
dominate the assemblage. For example, a teaching assistant
for the class noted the popularity of several mushroom genera:
Suillus, Lactarius, Russula, Ganoderma, Armillaria, and Am-
anita (Nhu Nguyen, personal communication). However, these
taxa were not abundant, in either raw read abundance or fre-
quency of samples, and, for the most part, were no more likely
to be detected in classroom E than the other classrooms. It is
likely that deeper sequencing of the classroom E samples
would find a signature of these additions to the room as well
as puffballs. Nevertheless, the preferential detection of puffballs
over other mushrooms speaks to the effective strategy for spore
dispersal of puffballs, in terms of the raw numbers and/or the
ease of airborne transmission of their spores.

Interestingly, a few puffballs appear in trace amounts in the
other nonmycology classrooms (Fig. 1(III)), indicating that
dispersal between rooms of a building can occur. Because
Battarrea puffballs are not known to be present on the campus
(Tom Bruns, personal observation), the specimens in class-
room E are the likely source. Thus, we see three routes for the
movement of fungal propagules between rooms, which are
separated by two doors and a hallway. One pathway is through
tracking: movements made directly by people themselves or
their activities. Particles of 7–9 μm in diameter, the approxi-
mate spore size of Pisolithus, are a size conducive for depo-
sition onto surfaces, including human surfaces [38]. Dispersal
of bioaerosols within and between buildings can occur
through clothing [39] or custodial equipment. Under these
tracking scenarios, the fungal spores transported to the other
rooms would have to be resuspended and, subsequently, settle
on the high-situated passive sampling locations (2.1 m). The
second pathway is a direct transfer through airflow between
the rooms, which could occur during the transition between
classes when both doors are opened and there is a rush of
students moving around the air on the floor. The last pathway
is through the building's ventilation system (Supplementary
Fig. 1). Further work is required to elucidate the validity of
these pathways, but this shows that a fungal source localized
to one room can move between rooms throughout the build-
ing, even when closed doors separate those rooms.

Conclusions

A localized source can shift the perceived community com-
positions in HTS approaches as long as it is either taxonom-
ically unique and/or abundant across samples. The unique
assemblage will be detected, in part, because as the abun-
dance of a particular taxon rises, the apparent richness of the
sample will drop. New sequence platforms may lessen this
latter effect, but will eliminate it only if enough sequence
depth is employed to plateau the taxon accumulation curves
for all samples. Investigation on the benefits of pooling
samples for HTS surveys based on sample biomass, rather
than at equimolar concentrations of the amplicons as is the
common practice, is a worthwhile research avenue to pursue.
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