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MATHEMATICS /UXTA COMMUNEM
MODUM LOQUENDI:
FORMATION AND USE OF DEFINITIONS IN
HEYTESBURY’S DE MOTU LOCALI

Steven J. Livesey

One of the most significant aspects of late medieval science was the
quantification of physics. The quantification theories of the late thirteenth
and fourteenth centuries evolved out of primarily theological discussions
such as the weight of sin or how the virtue of grace increased in the soul,'
as well as statements in Aristotle’s Categories and the Commentary on the
Categories of Simplicius. However, the theory of the intension and
remission of qualities soon concentrated on matters of natural science such
as motion, thermodynamics, light, and medical applications in
pharmacology.’

By the late thirteenth and early fourteenth centuries, at least four
explanations for the differences in quantitative intensities were in
circulation. The Thomist position maintained that increases in quality are
the result of a subject’s varying participation in an unchanged quality. Thus,
intension and remission originate not in the quality, but in the subject and
its disposition for the quality. Furthermore, increases in intensity of
qualities do not occur by addition of one part of the quality to another.’ By
contrast, Henry of Ghent argued that intension of qualities takes place not
by participation in the subject, but because the form itself is composed of
parts. Intension results when each new part passes from potentiality to act.
However, Henry agrees that there can be no part-by-part addition of
qualities. The third theory was that of Godefroid de Fontaines and Walter
Burley, who argued that intension is accomplished by a succession of forms,

! Pierre Duhem, Etudes sur Leonard de Vinci (Paris: De Nobele, 1955), 3:446: A
G. Molland, “The Geometric Background to the Merton School,™ British Journal for
the History of Science 4 (1968):113-14. See also Thomas Aquinas, Summa Theologiae.,
11-11. g. 24 a. 4 on the quantification of charity

2 Marshall Clagett, “Richard Swineshead and Late Medieval Physics,” Osiris 9
(1950):131-40; Edith Sylla, “Medieval Quantifications of Qualities: The ‘Merton
School’.™ Archive for the History of Exact Sciences 8 (1971):9-39.

3 See Thomas’ discussion of the intension of charity cited in note 1. This theory is
very close to those of Aristotle and Simplicius
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10 STEVEN J. LIVESEY

each more perfect than its predecessor but not containing the predecessor
as a numerical part of it. This theory also rejects the part-by-part addition of
qualities. This part-by-part addition of qualities—the fourth theory—was
supported by Duns Scotus and the Oxford Calculators. According to this
theory, a quality is “intended” by the addition of a form while a
“remission” takes place when one of the parts is subtracted. The process is
analogous to the increase or decrease of mass: just as a quantity of water is
increased by the addition of a new part of water, so a quality is made more
intense by the addition of a new part of form.*

In the fourteenth century, these ontological questions were supplanted by
a phenomenological one. Largely under the influence of Ockham,
fourteenth-century natural philosophers attempted to describe what happens
when a quality becomes more intense; the emphasis shifted from why to
how the phenomenon occurs. The most successful and well-developed
subject of this program was the theory of local motion. Beginning with
Thomas Bradwardine and continuing with the Oxford School of John
Dumbleton, Richard Swineshead, and William Heytesbury, kinematic
theories of the early fourteenth century culminated in the Mean Speed Rule
of Merton College.’

Together with these developments in physics, there was also a
development in the theory of logic. In contrast to ancient and modern
logic, medieval logic was closely associated with grammar and functioned as
a scientia sermocinalis for the interpretation of theological texts. The creative
period of medieval logic began with Peter Abelard (1079-1142) and reached
its completion in the middle of the fourteenth century; it can be divided
into two distinct phases. The first extends from Abelard to the middle of
the thirteenth century and is characterized by the development of logic
along purely formal lines, in isolation from scientific and epistemological
problems. Although its development began with the logic of the Ancients
(logica vetus), it contributed new elements (logica moderna) such as
theories of properties of terms, syncategoremata, and sophismata. In the
second phase, which extended from about 1250 to 1350, the theories of the
earlier period were applied to scientific problems. Within the culture of the
universities, the formal linguistic emphasis was replaced by the notion that
logic was the means of scientific analy: in part, this shift was the result of
the Western assimilation of the scientific works of Averroes and Avicenna.
This development achieved its culmination in the mathematical-logical
treatises written in Oxford and Paris in the first half of the fourteenth

4 Clagett, pp. 131-39. Edith Sylla, “Medieval Concepts of the Latitude of Forms:
the Oxford Calculators,” Archives d'histoire doctrinale et littéraire du Moyen Age 40
(1974):226-33: E. Sylla, “Medieval Quantifications.™ pp. 9-15. 24-39.

S E. J. Dijksterhuis, The Mechanization of the World Picture (Oxford: Avendon
Press, 1961). pp. 187-93.
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century.® At Oxford, the foundation of education in the early fourteenth
century was the study of the trivium arts represented by the /libri logicales
and the quadrivium studies of physics and mathematics, with the latter
functioning as the handmaiden of the /ibri naturales. Although logic and
physics were thus formally distinct within the faculty of arts, they became
fused in the sophismata literature of the period. Conversely, texts such as
the Calculationes de motu were especially suitable for logical discussions.”

The English mathematician-logician William Heytesbury typifies the
movement at Merton College in the early fourteenth century. William was
probably born before 1313, perhaps in Wiltshire. He first appears in Merton
records as a Fellow in 1330, then was named a Fellow of Queen’s College
in 1340. He became a Master of Theology before 1348 and served as
Chancellor of the University on two occasions before he died in December
1372 or January 1373.® If Heytesbury composed any theological works,
none have survived; his primary work is a logical treatise, the Regule
solvendi sophismata.’ Written in 1335, it belongs to the early arts period of
Heytesbury’s career. According to the prohemium, the work was designed as
a medium-length summa for the juvenes studio logicalium agentes primum
annum.'® However, the treatise presupposes considerable knowledge of
physics and logic, and therefore probably was designed to aid participants in
disputations.

The text is divided into six chapters: (1) De insolubilibus, (2) De scire et
dubitare, (3) De relativis, (4) De incipit et desinit, (5) De maximo et minimo,
and (6) De iribus predicamentis. Each deals with a particular type of

6 Ernest A. Moody, “The Medieval Contribution to Logic,™ Suiudies in Medieval
Philosophy. Science, and Logic (Berkeley and Los Angeles: University of California
Press, 1975), pp. 371-92; Ernest Moody, Truth and Consequence in Medieval Logic
(Amsterdam: North-Holland Publishing Co., 1953), pp. 1-10; Norman Kretzman,
“History of Semantics,” Encvclopedia of Philosophy (New York: Macmillan, 1967),
7:370. William Kneale, The Development of Logic (Oxford: Clarendon Press, 1962).
pp. 198-245.

7 James A. Weisheipl, O.P., “Developments in the Arts Curriculum at Oxford in
the Early Fourteenth Century,” Medieval Studies 28 (1966):151-75: A. Maier, An der
Grenze von Skolastik und Naturwissenschaft (Rome: Edizioni di Storia e letteratura,
1952), p. 264fT.

8 Duhem, Enudes, 3:405-08; James Weisheipl., “*Ockham and Some Mertonians,”
Medieval Studies 30 (1968):195-96

9 For a list of manuscripts of the Regule see Curtis Wilson, William Heviesbury:
Medieval Logic and the Rise of Mathematical Physics (Madison, Wisc.: University of
Wisconsin Press, 1960), pp. 206-07 and Marshall Clagett, The Science of Mechanics in
the Middle Ages (Madison, Wisc.: University of Wisconsin Press, 1959), p. 220 n. §
See also A. Maier, An der Grenze. p. 261, n. 26.

10 Regule solvendi sophismata . . . (Venice: Bonetas Locatellus, 1494) fol. 4¥. All
references to the text refer to this incunable edition: as Maier (loc. cit.) has shown,
the text of this edition is practically identical with that of Erfurt, Stadtbibliothek,
Amplonian, Fol. MS. 135, ff. 1-17
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sophism: the first three are of a purgl) logical nature, while the last three
discuss sophisms arising out of physical science. The topics discussed in the
first five chapters were fairly standard in fourteenth-century Oxford; all
arose naturally out of the doctrine of supposition.'" As will be shown later
in this paper, the sixth chapter builds upon the logical demonstrations and
concepts of the preceeding chapters.

The sixth chapter is a treatise on kinematics rather than dynamics. It is
divided into three sections, (i) De motu locali, (ii) De augmentatione, and
(iii) De alteratione, each dealing with the three Aristotelian categories in
which motion occurs: place, quantity, and quality. This paper proposes to
examine the interrelationship of language analysis and particularly the
concept of definition and the theory of motion in Heytesbury’s De motu
locali. Second, 1 hope to demonstrate some deficiencies in his method and
how these deficiencies arose.

Heytesbury approaches physics problems by examining them through a
logical analysis of terms, which in the early fourteenth century included a
study of mathematical propositions. According to Duhem, this process was
a form of “logical acrobatics™: treatises such as the Regule were designed to
argue sophisms under the guise of physical problems.'” This seems to
misrepresent Heytesbury’s program, for the reciprocity of the method
prevents such degeneration. On the one hand, physical phenomena are
described and analyzed through the logic of terms as prescribed by the
logica moderna. On the other, mathematical and physical properties are used
to analyze logical and semantic problems, particularly the problem of
denomination."

Heytesbury establishes two criteria in developing the Regule. First,
definitions in the text must proceed from the common mode of speech.
Thus, although he argues that there is nothing in nature which is an instant
per se, he concedes that, iuxta communem modum loquendi, everything
which exists is in an instant, in the sense that everything is measured by an
instant.'* Against the position that the change in augmentation is measured

11 Weisheipl compares the works of several fourteenth-century logicians at Oxford,
including Richard Billingham (fl. 1344-61), William Sutton (fl. 1330-40) and
Heytesbury. See “Developments in the Arts Curriculum,” pp. 157-61. For a
discussion of theories of supposition, see Moody, Truth and Consequence, pp. 18-26
and Philotheus Boehner, Medieval Logic (Manchester University Press, 1952), pp. 27-
51
12 Duhem, Enides, 3:441-48
13 Wilson, Heytesbury, pp. 21-24

4 “Et ideo ad ultimum quod ibidem propositum fuerat, scilicet quod multa incipiunt
et etiam incipient et desinent esse, quorum nullum erit in instanti, dicitur
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only by the absolute change in quantity in a given time, Heytesbury argues
that according to this theory a great oak and a small shrub would be
augmented equally if they both acquired the same amount of size in a given
time, a conclusion which he terms “false and against common speech.”'®
Second, the definition should be free from mathematical contradictions.'®
The question of the compatibility of common speech and mathematical
rigor is a natural one, one which will concern us as we examine the De
motu locali.

Heytesbury’s De mouu locali has been previously studied for its statement
of the “Merton Mean Speed Rule.” In its modern form, the theorem is
stated as

b b B

where § is the distance traversed in time 1, and ¥, and V, are the initial and
final velocities, respectively. Its pre-Mertonian development is uncertain,
but the form given in the De mom locali (1335) is the earliest statement of
the theorem. It is stated without proof, but a contemporary treatise, the
Probationes conclusum, is generally considered the first proof of the Rule.'”
Despite the advances made in this text, there are four problems in it.
First, the definition of uniform motion is imprecise. Heytesbury defines
uniform motion as one in which equal spaces are continually traversed in

negando illam propositionem iuxta communem modum loguendi quia omne quod
est, est in instanti, co quod illud instantanece mensurat instans sive sit tempus vel
motus aut etiam instans.” De incipit et desinit, fol. 26".

15 % ita velociter cresceret una antiqua quercus quasi per totum arida sicut ista
herba demonstrata que inequali tempore a minina quantitate quasi insensibili crevit ad
bicubitalem seu tricubitalem. Quod est falsum et contra communem modum
loquendi.™ De tribus predicamentis, fol. 45",

16 Thus, for example. in De mon locali, fol. 38", Heytesbury argues that although
every magnitude moved by local motion moves as fast as some part of it (in a
categorematic sense), it does not follow that it moves as slowly as part of it, for in
the case of a rotating cylinder, the center does not move at all. .

17 For detailed studies of the Mean Speed Theorem and its effect on the
development of late medieval and early modern kinematics, see Wilson, Heytesbury,
pp. 122-26: Marshall Clagett, Giovani Marliani and Late Medieval Physics (New York:
Columbia University Press, 1941), pp. 101-24: William A. Wallace, **Mechanics from
Bradwardine to Galileo,” Journal of the History of Ideas 32 (1971):15-28; and
Marshall Clagett, Science of Mechanics, pp. 199-329. See also Edith Syl
Quantification,™ p. 31 for Richard Swineshead’s commentary on the application of the
theorem of the mean to heat. The authorship of the Probationes conclusum (in
William Hevtesbury, Hentisberi de sensu composito et diviso . . . [Venice: Bonetus
Locatellus, 1494]. fols. 188"-203") has been in dispute since Duhem questioned
whether Heytesbury himself was responsible for the text: see Enudes, 3:468-71.
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equal parts of time." He fails to say that these distances are traversed in
any equal parts of time. This deficiency was criticized by contemporaries,
including Swineshead, as well as later commentators, notably Galileo,
Angelo da Fosambruno, and Gaetano di Thienne. Modern commentators
have pointed out that Heytesbury probably realized the need for this
condition, because it appears in his definition of uniform acceleration."
This seems to avoid the issue; inconsistency in definition is tantamount to
redefining a concept when the need for greater precision is perceived. Such a
redefinition may produce not only ambiguity but also logical or
mathematical contradiction.

A portion of the text which has received a great amount of attention
from modern scholars is Heytesbury’s definition of instantaneous velocity:
“In difform motion, the velocity in any instant is measured according to the
line which the point moving most rapidly would describe, if it were moved
uniformly through time at that amount of velocity with which it is moved
at that same instant, whatever is given.”?® The modern, mathematically
productive definition of instantaneous velocity depends on the derivative
dS/dt. Fourteenth-century theorists, constrained by the prescriptions of
Euclidean geometry, could not express proportions between dissimilar
magnitudes. Because there was no definite idea of velocity as S/t, it is
hardly surprising that fourteenth-century authors, including Heytesbury,
never defined instantaneous velocity as the limit of such ratios, or in
modern terms, dS/dt. This ambiguity in definition, therefore, is
fundamentally different from the ambiguity arising from the definition of
uniform motion. The former arises from a deficiency in mathematical
theory: the latter from a deficiency in the language used to express the
theory.?!

18 *Motuum ergo localium dicitur uniformis quo equali velocitate continue in equali
parte temporis spacium pertransitur equale.™ De momu locali, fol. 37%. The text of the
De mouu locali is taken from the modern critical edition found in Clagett, Science of
Mechanics. pp. 239-42, 277-83

19 “Uniformiter enim intenditur motus quicunque. cum in quacunque equali parte
temporis, equalem acquirit latitudinem velocitatis.”™ De momnt locali. fol. 39. See
Clagett, Science of Mechanics, p. 237, Wilson, Hevtesburv, p. 195, n. 12.

20 My italics. “In motu autem difformi. in quocunque instanti attendetur velocitas
penes lincam quam describeret punctus velocissime motus. si per tempus moveretur
uniformiter illo gradu velocitatis quo movetur in codem instanti, quocunque dato.™
De monu locali, fol. 38". See Clagett. Science of Mechanics. pp. 214-15: Wilson,
Hevtesbury, pp. 120-22

21 Heytesbury's  definition of instantancous velocity is not altogether sterile,
however. It corresponds to the modern heuristic technique used by teachers of the
calculus, whereby the derivative of a function is graphically represented as the
tangent to the graph of the function at any point. See Clagett, Science of Mechanics,
pp. 214-15. n. 36 for another modern interpretation. For other examples of this type
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The third problem lies within the vocabulary of fourteenth-century
kinematics. In the analysis of local motion, fourteenth-century authors
developed a distinct vocabulary to express physical concepts; although this
terminology had a definite effect on the work of later authors, it was not
without defect. The primary difficulty was grounded in the absence of
standardization of terms. Thus, Bradwardine uses “qualitas motus™? and
Oresme “intensio momus™ when referring to the same physical concept.
Moreover, even within a single text, vocabulary was not used in a one-to-
one correspondence with concepts. On the one hand. the same scholastic
term could be used for two different phy I concepts: Heytesbury, for
example, uses motus in two different senses. It is used primarily when
speaking of motion in general, as in the opening sentence of the De mom
locali: “There are three categories or generic ways in which motion, in the
strict sense, can occur.”?* On the other hand, morus is often used more
specifically for speed or velocity: “it is moved more quickly than before and
increases its velocity (morus),” or “any point 01 it will continually reduce its
velocity (motus) throughout the same hour.”” On occasion, he uses both
senses of the word together: “it will be the case that continually throughout
the hour, any point A4 of its motion (morms) decrea its velocity
(motus).”* On the other hand, Heytesbury often uses two scholastic terms
for the same physical concept: /latitudo morus and latitudo velocitatis are both
used interchangeably for an increment of velocity.?’

Finally, Heytesbury’s use of the terms inclusive and exclusive produces
problems in the text. He introduces the terms in his treatise De incipit et
desinit, for they represent in the continuum the same relationship that
incipit and desinit do in time.”® The definitions closely follow Aristotle’s

of intuitive reasoning process, sce George Polya. Mathemartics and  Plausible

Reasoning. 2 vols. (Princeton, N.J.: Princeton University Press. 1954).

2 Tractatus de proportionibus. cd. H. Lamar Crosby, Jr. (Madison. Wisc.. University
of Wisconsin Press, 1955), p. 118: *. . sicut non differunt in qualitate resistendi sed
in quantitate, sic nec motus per media differunt in qualitate motus (quae est velocitas
et tarditas) sed in quantitate motus (quac est longitudo vel brevitas temporis).™

23 “Omnis motus successivus subiccti divisibilis habet partes tertio modo saltem
ymaginative secundum gradum ¢t intensionem velocitatis.™  De  configuratione
qualitatum er monum, ed. Marshall Clagett (Madison, Wisc.: University of Wisconsin
Press, 1968). 2:i

24 *Tria sunt predicamenta vel genera in quorom quolibet contingit propric motum
esse,” fol: 37" the translation is that of Clagett. Science of Mechanics. p. 235

25 velocius movetur quam prius, ¢t intendit motum suum™. . . . quilibet
punctus illius continue per candem horam tardabit motum suum.™ fol. 38" my
translations.

26 - continue erit ita per candem horam, quod quilibet punctus motus ipsius «
remittit motum suum,” fol. 38": my translation
27 Fol. 39*.

28 Fol. 23"
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theory of time:?’ the instant, as the dividing point of time, can be thought
of as both the endpoint of one period of time and as the initial point of
another. Yet when one considers the duration of a particular process, the
instant must be assigned to one period or the other by a well-defined rule.
Similarly, in the continuum, the point ¢ determines a Dedikind cut by
defining the sets A and B as. follows:

A={xeR:x< ¢} B={xeR:ix> ¢}
or alternatively:
A={xeRix < g} B={xeRix>¢g}

Topologically, this corresponds to half-open intervals ( - oo £].
(E,+%) or (=%,£). [£,+=).

Heytesbury also states that in any instant, point a will traverse one point
of line b: therefore, in a finite number of instants, a will traverse the same
finite number of. points of b, yet in no finite number of instants will a
traverse any part of . However, in all the intrinsic instants of the time of
its motion, @ will traverse all of b, since there will be an infinite number of
instants in this period.** Thus, in this system of measurement, uniform or
individual degrees are dispensed with, and there is no difference between
one line terminated extrinsically at a given point and another terminated
intrinsically at the same point.’!

29 Physics, V1:236a7-236b18.
30+, potest probabiliter dici: quod @ pertransivit » in omnibus instantibus
s istius hore. Et tamen in nullis instantibus finitis pertransivit aliquod illtus.
Unde dici potest probabiliter quod in quolibet instanti pertransivit ¢ unum punctum
de b. Et ideo libet in nullis instantibus finitis pertransivit ¢ aliquod de b, tamen in
istis instantibus finitis pertransivit @ tot puncta de b quot sunt illa instantia. Et sic per
accidens in omnibus instantibus illius hore intrinsecis pertransivit @ totum b. Quod in
illis pertransivit ¢ omnia puncta illius. Et per consequens pertransivit ¢ totam illam
lineam.™ Sophisma 29, fol. 152Y-153°

301t is interesting to note that this idea is fundamental to nincteenth-century
integration theory. It corresponds to the concept of zero content of a subset. In
modern terms, a subset Z of R” has zero content if for every € > 0. there is a finite
set Uy 3y J50 .o 1) of closed intervals such that

intrinsec

and
AUy +dUy) +dUy) + .+ dd) < e

where d(J;) is the content of J. According to Riemann integration theory, the
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With these definitions in mind, let us examine how Heytesbury uses
them in the De mot locali. First, Heytesbury states that the velocity of a
body is to be measured by the path traversed by the point which is in most
rapid motion. If such a point does not exist, as in the case of a spiral which
has no ultimate point or in the case of a body whose ultimate point begins
to be corrupted continually, the velocity is to be given by the point which
would be moved indivisibly more rapidly than any point of the magnitude.*?
This is equivalent to defining the velocity extrinsically by the supremum of
the sequence of velocities of the body. Such a statement is consistent with
Heytesbury’s definitions cited above.

In the development of the Mean Speed Theorem, however, Heytesbury
does not fare as well. He begins by stating the general theorem: “Whether
it commences from zero degree or some degree, every latitude will
correspond to its mean degree, as long as it is terminated by some finite
degree acquired or lost uniformly.”* In the case of a body beginning from
rest and terminating at a finite velocity, the mean is one-half the final
velocity. With these preliminary remarks let us examine the three passages
in which Heytesbury uses the terms inclusive and exclusive:

I.  From this it follows that the mean degree of any
latitude bounded by two degrees (taken either
inclusively or exclusively) is more than half the more
intense degree bounding that latitude.™*

1. It also follows in the same way that when any moving
body is uniformly accelerated from some degree [of
velocity] (taken exclusively) to another degree inclu-
sively or exclusively, it will traverse more than one-half
the distance which it would traverse with a uniform
motion, in an equal time, at the degree [of velocity] at

integral over a set of zero content is zero. In fact, an integral over a finite set would
also be zero in the sense of Lebesgue. See Robert G. Bartle, Elements of Real
Analysis (New York: John Wiley and Sons. 1964), pp. 316-23 and H. L. Royden.

Real Analysis, 2nd ed. (London: Macmillan, 1968). pp. 52-93.

2 “Posito nempe casu quo mote magnitudinis nullus punctus velocissime motus,
penes lineam quam describeret punctus quidam qui indivisibiliter velocius moveretur,
quam aliquis in magnitudine illa data tota, totius velocitas attendetur: Sicut posito
quod continue incipiant corrumpi puncta extrema, aut quod nulla sint ultima puncta
illius accidit in linea girativa que ponitur infinita.™ De mot locali, fol. 37%-38"

33 “Omnis enim latitudo sive a non gradu incipiat, sive a gradu ‘lliquo' dum tamen
ad gradum aliquem terminetur finitum, et umlormnu acquiratur seu deperdatur,
correspondebit equaliter gradui medio sui ipsius. ™ De mouu locali. fol. 40",

34 “Ex quo sequitur quod cuiuslibet latitudinis Icrmmalc ad duos gradus, inclusive
vel exclusive, est gradus medius maior quam subduplus ad gradum intensiorem
eandem latitudinem terminantem.” De motii locali, fol. 40°. The translation is that of
Clagett, Science of Mechanics, pp. 270-71.
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which it arrives in the accelerated motion. For that
whole motion will correspond to its mean degree [of
velocity], which is greater than one-half of the degree
[of velocity] terminating the latitude to be acquired.®

II.  With respect, however, to the distance traversed in a
uniformly accelerated motion commencing from zero
degree [of velocity] and terminating at some finite
degree [of velocity], it has already been said that the
motion as a whole, or its whole acquisition, will corre-
spond to its mean degree [of velocity]. The same thing
holds true if the latitude of motion is uniformly
acquired from some degree [of velocity] in an exclusive
sense, and is terminated at some finite degree [of
velocity]

In passage I, Heytesbury is quite certain that he is referring to two non-
zero degrees, say a and b. Thus, he feels quite comfortable in stating that
for velocities in the sense of closed or open intervals [a,b] or (a,b) or half-
open intervals [a.b) and (a,b] (inclusive vel exclusive) the mean degree is
greater than 1/2b6. Nevertheless, he has not precisely stated that a # 0 if
a should equal zero his statement would be false. In 11, he is somewhat less
comfortable about this condition and thus removes the statement that the
lower bound may be included in the interval; he now requires that the
interval be open on the left while either open or closed on the right (i.e.,
(a.b) or (a,b]). Nevertheless, even this condition will not solve his
problem, for as we have seen above,” if @ = 0, m(0,6] = m[0,5], where
m(a,b) is the measure of (a.b). In 111, Heytesbury restates the Mean Speed
Theorem, but this time adds the condition that the interval be open to the
left for non-zero velocities.

It may be argued that the problem in these passages results from the

35 “Sequitur ctiam consimiliter quod cum aliquod mobile ab aliquo gradu exclusive
ad alium gradum inclusive vel exclusive intendet uniformiter motum suum, quod
ipsum plus pertransibit quam subduplum ad illud quod ipsum uniformiter pertransiret
in cquali tempore secundum istum gradum ad quem stabit intensio sui motus: quia
totus ille motus correspondebit gradui suo medio, qui maior est quam subduplus ad
gradum terminantem illam latitudinem acquirendam.”™ Clagett, Science of Mechanics,
p. 271

36 “Quantum autem ad magnitudinem pertranscundam, uniformiter acquirendo
talem latitudinem motus incipientem a non gradu et terminatam in aliquem gradum
finitum, dictum est prius quod totus ille motus seu tota illa acquisitio correspondebit
gradui suo medio. Et consimiliter etiam. si ab aliquo gradu exclusive uniformiter
acquiratur latitudo motus ad aliquem gradum terminata finitum.” De moni locali, fol.
40°, Clagett,. Science of Mechanics, p. 272.

37 See notes 30 and 31 together with the text.
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imprecision of the scholastic term for zero. Heytesbury speaks of motions
which begin “a non gradu™ and “a quiete™; his use of non gradu might give
aliquo gradu a non-zero definition by contrast. Yet even if this is granted, it
does not solve the internal contradiction between passage 1 and passages 11
and 1. If aliquo gradu is a non-zero value in I, Heytesbury has no reason
to limit himself to an exclusive (or half-open) interval of values. Similarly,
if aliquo gradu in 111 is a non-zero value, Heytesbury has restated the Mean
Speed Theorem in a significantly weaker form, with no justifiable reason for
doing so. Thus, the terms inclusive and exclusive, although defined with
valuable mathematical insight, have produced serious difficulties in the text
when combined with the concept of initial velocity.

* * *

The common element in the four problems discussed in this paper is
imprecision in definitions and the use of definitions. We have seen that the
imprecision may arise either from a deficiency in mathematical
development, as in the case of instantaneous velocity, or from a deficiency
in the language used to express the physical and mathematical theory. Both
are inextricably bound to the foundations of mathematical theory, and for
this reason the problem of ambiguous definition concerned mathematicians
of the nineteenth and early twentieth centuries. Gottlob Frege characterized
the problem as one of “piecemeal definition™:

5 the mathematicians’ favorite procedure, piecemeal
definition, is inadmissible. The procedure is this: First they
give the definition for a particular case—e.g., for positive
integers—and make use of it; then, many theorems later,
there follows a second definition for another case—e.g., for
negative integers and zero—; here they often commit the
further mistake of making specifications all over again for the
case they have already dealt with. Even if in fact they avoid
contradictions, in principle their method does not rule them
out.*®

Moreover, in the process of definition, one must avoid statements which
are initial approximations of the final definition, even if intended as
heuristic devices:

It is all the more necessary to emphasize that logic cannot
recognize as concepts quasi-conceptual constructions that are
still fluid and have not yet been given definite and sharp
boundaries, and that therefore logic must reject all piecemeal

38 Gottlob Frege, Translations from the Writings of Gottlob Frege, trans. Peter Geach
and Max Black (Oxford: Blackwell, 1970). pp. 159-60. The passage cited is from
Grundgesetze der Arithmerik, 2:57.
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definition. For if the first definition is already complete and
has drawn sharp boundaries, then either the second definition
draws the same boundaries—and then it must be rejected,
because its content ought to be proved as a theorem—or it
draws different ones—and then it contradicts the first one.*’

The problem of redefinition or restatement was particularly apparent in
Heytesbury’s treatment of uniform motion and the terms inclusive and
exclusive.

Such considerations cast serious doubts upon Wilson’s assertion that
Heytesbury has succeeded in correcting and elaborating everyday speech
through mathematical precision. Wilson states that the problem in the
Regule is the tension between Heytesbury’s emphasis upon mathematical
precision in language and his denial of that mathematical “substructure™ in
the world of physical phenomena which Galileo and his successors later
assumed.*’ But there is a more fundamental problem: because he has
chosen the common mode of speech as his basis for analysis, Heytesbury
has weakened the precision of his descriptions of phenomena. The real
problem, then, is not Heytesbury’s denial of precise mathematical
formulations to the world of sense experience, but rather that the common
mode of speech is insufficient for generating mathematical theories.

39 Ibid.. p. 162. The passage is from Grundgesetze, 2:58.
40 Wilson, Heviesbury, pp. 148-50.
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