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Exercise repetition rate measured
with simple sensors at home can be
used to estimate Upper Extremity
Fugl-Meyer score after stroke
Veronica A. Swanson1*, Christopher A. Johnson2,
Daniel K. Zondervan3, Susan J. Shaw4

and David J. Reinkensmeyer1,5

1Biorobotics Laboratory, Department of Mechanical and Aerospace Engineering, University of California,
Irvine, Irvine, CA, United States, 2Biorobotics Laboratory, Department of Biomedical Engineering,
University of California, Irvine, Irvine, CA, United States, 3Flint Rehab, LLC, Irvine, CA, United States,
4Department of Neurology, Rancho Los Amigos National Rehabilitation Center, Downey, CA, United
States, 5Department of Anatomy and Neurobiology, UC Irvine School of Medicine, University of California,
Irvine, Irvine, CA, United States

Introduction: It would be valuable if home-based rehabilitation training
technologies could automatically assess arm impairment after stroke. Here, we
tested whether a simple measure—the repetition rate (or “rep rate”) when
performing specific exercises as measured with simple sensors—can be used to
estimate Upper Extremity Fugl-Meyer (UEFM) score.
Methods: 41 individuals with arm impairment after stroke performed 12 sensor-
guided exercises under therapist supervision using a commercial sensor system
comprised of two pucks that use force and motion sensing to measure the start
and end of each exercise repetition. 14 of these participants then used the
system at home for three weeks.
Results: Using linear regression, UEFM score was well estimated using the rep rate of
one forward-reaching exercise from the set of 12 exercises (r2 = 0.75); this exercise
required participants to alternately tap pucks spaced about 20 cm apart (one
proximal, one distal) on a table in front of them. UEFM score was even better
predicted using an exponential model and forward-reaching rep rate (Leave One
Out Cross Validation (LOOCV) r2 = 0.83). We also tested the ability of a nonlinear,
multivariate model (a regression tree) to predict UEFM, but such a model did not
improve prediction (LOOCV r2 = 0.72). However, the optimal decision tree also used
the forward-reaching task along with a pinch grip task to subdivide more and less
impaired patients in a way consistent with clinical intuition. At home, rep rate for the
forward-reaching exercise well predicted UEFM score using an exponential model
(LOOCV r2 = 0.69), but only after we re-estimated coefficients using the home data.
Discussion: These results show how a simple measure—exercise rep rate measured
with simple sensors—can be used to infer an arm impairment score and suggest
that prediction models should be tuned separately for the clinic and home
environments.

KEYWORDS

assessment, stroke, sensors, mRehab, Fugl-Meyer, rehabilitation, home, remote
Abbreviations

B, both Ischemic and hemorrhagic; BB, box and blocks; EEG, electroencephalogram; H, hemorrhagic;
I, Ischemic; IMS, image processing systems; IMU, inertial measurement units; LED, light emitting diode;
LOOCV, leave one out cross validation; MAS, modified ashworth scale; MMS, mechanical systems; OMS,
optoelectronic systems; RCT, randomized controlled trial; RMSE, root mean squared error; UEFM, upper
extremity fugl-meyer; USB, universal serial bus; VAP, visual analog pain.
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1. Introduction

Recovery from stroke is a long process requiring extended

periods of neurologic rehabilitation, which includes cycles of

assessment, prescribed interventions, evaluation, and adjustment of

interventions (1, 2). The assessment stage is crucial to determine a

patient’s treatment plan and to evaluate the effectiveness of that

plan after its execution. There are a variety of standardized

assessments for stroke rehabilitation in practice and research (3, 4)

that span the domains of impairments, functional limitations, and

barriers to participation a stroke survivor might face.

Any assessment used must have appropriate psychometric

properties (4–6), including validity, reliability, and responsiveness.

A particularly important goal is that the assessment works well

when evaluators change, i.e., assessments should have good inter-

rater reliability (7). Common motor impairment assessments with

good psychometric properties used in stroke rehabilitation for the

upper extremity include the Upper Extremity Fugl-Meyer (UEFM)

Test, the Box and Block (BB) test, the Action Research Arm Test,

the Nine Hole Peg Test, and the Wolf Motor Function Test (5).

A growing goal in rehabilitation research and development is to

automate clinical assessments to reduce the burden on clinicians’

time (8), eliminate the potential influence of evaluator subjectivity,

improve the quality and access to effective remote care (9, 10) and

support self-directed continuation of rehabilitation at home (1).

Homerehabilitationhasmultiple goals includingreducing inpatient

stays through early supported discharge, continuing rehabilitation at

home to replace institutional rehabilitation, and providing home

exercise programs to help patients maintain or augment the gains

made under supervision of a health care professional (11). Studies on

home rehabilitation have shown comparable outcomes for patients

pursuing rehabilitation at home and patients in institutional care. In

some cases, early supported discharge promoted community

reintegration and reduced costs of care more than institutionalized

patients (12). For people living at home continuing their care, a

systematic review found significant effects in favor of home-based

rehabilitation on functional independence measures, and some studies

found cost benefits and increased caregiver satisfaction for individuals

receiving home-based rehabilitation (13).

Exercise is important for improving functional capacity,

performance of activities of daily living, and quality of life for

post-stroke individuals (14) and may reduce the risk of stroke

recurrence (15). Achieving the American Heart Association’s

recommendations of performing aerobic exercises 3 to 7 days per

week and strengthening, flexibility, and neuromuscular exercise 2

to 3 days a week is difficult to achieve in institutionalized care

and could be better realized through home exercise programs.

However, maintaining motivation to adhere to home exercise

programs is difficult for many stroke survivors (11), with rates of

apathy in stroke survivors above 30% (16) and evidence that

apathy has a strong effect on limiting participation in meaningful

activity (17). Successfully administering assessments in the home

environment could support patient motivation by tracking

recovery progression and could be used by healthcare providers

to adjust aspects of treatment plans, such as the specific tasks

being used, without or in between in-person encounters.
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The assessments previously mentioned are performance measures,

in which a patient performs specific motions or activities, and the

assessment is designed to analyze the body function or evaluate the

execution of the activity (3, 7). These assessments are therefore prime

candidates for automation, as a patient could perform the assessment

activity independently, a sensorized system could record data during

performance of the activity, and an algorithm could generate a score

for the activity, approximating as closely as possible, the score that a

trained clinical evaluator would give the patient as part of the

assessment. This is preferable to creating new assessments designed

specifically for technical automation due to the aforementioned

psychometric requirements, which involves an extensive process of

design and clinical validation (7). This work focuses on the Upper

Extremity Fugl-Meyer (UEFM) (18) because it is a widely used

measure in stroke rehabilitation research showing both high reliability

and validity (19). The assessment was developed to consider classically

defined patterns of stroke recovery where motor function first returns

in proximal muscles before distal muscles, and flexor synergistic

movements return before extensor synergies in the arms (19–21).

Previous efforts to objectively measure and automate the UEFM

(see Table 1) have used Image Processing Systems such as the

Microsoft Kinect (28), Inertial Measurement Units (IMUs) (24), and

mechanical systems such as flex sensors, or a combination of these

technologies (29). However, image-based systems can suffer from

variability due to environmental lighting and visual clutter. IMUs

and mechanical systems are frequently used in wearable

configurations, often requiring precise placement of multiple sensing

units, which is difficult to do independently for patients with

impairments. Two strategies commonly employed are to instrument

the assessment, whereby patients perform the assessment or a subset

of the assessment’s items and data is recorded during the

performance, or estimate an assessment score from data taken

during representative motions or functional tasks (7). Calculating a

total, continuous value rather than estimating individual line items

of an assessment could provide an advantage over conventional

calculation methods which frequently rely on ordinal measures,

which are less sensitive to smaller changes and potentially less

precise than a continuous-valued output (30). Using these methods,

prediction strength has ranged from r2 of 0.21 to 0.97 (see Table 1).

Using the rate of task performance to estimate impairment is

not unique. For example, it is the strategy used by the Box and

Blocks assessment. However, it is a strategy not often explored in

attempts to sensorize and automate clinical assessments. This

strategy potentially allows for a simple sensor array to be used,

since it need only count reps, and a small number of test items

[i.e., the task(s) whose rep rate is assessed]. These are desirable

features for an assessment procedure intended for patients to

autonomously execute in the home.

The goal of this work was to determine how well we could

estimate the UEFM score for individuals who have experienced a

stroke based on their exercise rep rate as they interacted with a

sensorized home-rehabilitation system. We used the rep rates of

tasks completed with the system, rather than raw sensor data,

which is a method that could be easily implemented with other

systems. The data we used included data from a recently published

randomized controlled trial (RCT) of the sensor system (31).
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TABLE 1 Methods to predict fugl-Meyer assessment scores using sensors. Abbreviations following (7), IMU, inertial measurement units; EEG,
electroencephalogram; MMS, mechanical systems; IMS, image processing systems; OMS, optoelectronic systems. N in the table is the number of
participants in each study.

Reference Sensors N Task Evaluation Features Prediction/Estimation
Strength

(22) 4 IMUs and
EMG

34 Voluntary Upward Reaching Max Shoulder Joint Angle, Peak and Average Arm Speed, Torso
Balance Muscle Synergy

All Features were significant (p <
0.001, r2 > 0.34

(23) 4 IMUs 37 Finger-To-Nose Movement time
(MT), mean velocity (VM), peak velocity (VP), percentage of
time to peak velocity (TVP%), number of movement units
(NMU), and normalized integrated jerk (NIJ)

VP,VM,NMU (p < 0.05, r2 > 0.42)

(8) IMS 10 26 UEFM items Joint Angle, Segment Rotation, Landmark Position r2 = 0.985

(24) 6 IMUs 24 Selected tasks from WFMT 20 speed, smoothness and coordination features r2 > 0.44

(25) OMS 34 Reaching Task ROM, Movement Smoothness, Trunk displacement, Trunk
forward inclination

All Features were significant except
Shoulder ROM (p < 0.001, r2 > 0.21)

(26) 9 IMU 26 Isolated shoulder flexion,
pointing, reach-to-grasp a
glass, and key insertion

joint ranges of shoulder abduction/adduction, shoulder flexion/
extension, and elbow flexion/extension; trunk displacement;
shoulder–elbow correlation coefficient; median slope; and curve
efficiency

r2 > 0.24

(27) MMS 82 4 shoulder-elbow tasks, 3 wrist
and forearm tasks

24 kinematic metrics for the shoulder-elbow, 35 metrics for wrist
and forearm

r2 = 0.67 (p < 0.001) for the linear
model and r2 = 0.77 (p < 0.001) for the
nonlinear model
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2. Methods

2.1. FitMi overview

The FitMi system (Flint Rehab, LLC) consists of two wireless

pucks that each contain an accelerometer, gyroscope, magnetometer,

load cell, light emitting diode (LED), and a vibration motor

(Figure 1). Custom software, run on a personal computer or tablet,

presents a set of exercises for users to complete (Supplementary

Text S1). A total of 40 exercises are available in the system, with 10

each designed for the legs, core, arms, and hands. During the

exercises, a universal serial bus (USB) receiver collects sensor data

from the pucks and the software shows how to move the pucks or

move between each puck to start and finish a repetition of the

activity, reacting to the changing position or state of the pucks

indicated by the sensors. For each exercise, users are presented a
FIGURE 1

FitMi (produced by flint rehab, LLC) consists of two force and motion sensing p
example of the FitMi software interface during an exercise. Note, FitMi can be u
an individual’s existing computing hardware using a Bluetooth receiver.
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target number of repetitions and a limited amount of time to

complete them. A small amount of time is added for each repetition

completed, encouraging users to perform repetitions at a desired

rate. As users complete the target number of repetitions presented,

the challenge of the experience is increased by increasing the target

number of repetitions and making more difficult exercises available.
2.2. Experimental protocol

Data for this study came from two experiments. The first

experiment, the “In-Clinic Experiment”, had two goals: (1) Collect

data from a broad population of stroke patients to evaluate usability

of the system and to facilitate exploratory analysis; and (2) Screen

participants for the second experiment. The second experiment was a

randomized controlled trial (RCT) comparing home-based therapy

with FitMi to conventional therapy for individuals in the subacute
ucks and a companion software application. Left: FitMi hardware. Right: an
sed with a custom 10” touchscreen tablet in a kiosk mode (shown) or with
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phase of stroke was performed at Rancho Los Amigos National

Rehabilitation Center in Downey, CA from November of 2018 to

March of 2020 (ClinicalTrials.gov #NCT03503617) (31). The in-

clinic experiment included participants in the chronic phase and sub-

acute phase of stroke recovery, while the subsequent RCT contained

only sub-acute participants who met the following inclusion criteria:

aged 18 to 85 who experienced one or more strokes between 2 weeks

and 4 months prior with a baseline Upper Extremity Fugl-Meyer

(UEFM) Score >5 and ≤55 out of 66. For individuals who continued

on to participate in the RCT following the in-clinic experiment, the

in-clinic experiment served as their baseline assessment.

Individuals who participated in the in-clinic experiment were

first guided through a set of 12 exercises (A4: Reach to Target #2,

A6: Wrist Supination, A7: Bicep Curls, C4: Twists, C7: Oblique

Crunch, C8: Standard Crunch, H3: Gripping, H5: Key Pinch Grip,

H10: Object Flipping, L1: Stomps, L5 Marching, L9: Ankle

Rotation; See Supplementary Text S1) in the FitMi system by a

rehabilitation therapist. A single therapist conducted the in-clinic

assessment for each participant. For each exercise, the therapist

ensured a standard placement of the pucks across all participants

according to the instructions presented in the system. The

therapist also instructed participants how to perform the exercise

correctly. They then verified that the participant could perform the

exercise without undesired compensation patterns (i.e., any

movement patterns that could risk injury or maladaptive plasticity

if performed several times in succession). If a participant was

unable to complete an exercise or unable to perform the exercise

without compensation, the therapist recorded that the participant

performed zero repetitions of that exercise and moved on to the

next exercise. Otherwise, the therapist instructed them to complete

as many repetitions of the exercise as they could in 45 s and

recorded the number of repetitions performed. Participants were

given up to 2 min to rest between exercises.

Of the 41 participants of the in-clinic experiment, 27 participants,

who met the inclusion criteria and agreed to participate, received

therapy as part of the RCT. In the RCT, they were randomized into a

FitMi group or a Conventional Therapy group using adaptive

randomization to ensure matched levels of impairment between the

groups. To accomplish this, subjects were classified by their UEFM

Score into 3 levels (i.e., 5–22, 23–39, 40–55) and then randomized by

alternating block allocation (32). Participants in both groups were

instructed to perform self-guided therapy at home for at least three

hours/week for three consecutive weeks. The FitMi group performed

their therapy using the FitMi system, and the Conventional Therapy

group used a paper booklet of exercises. During the at-home phase of

the study, exercise instructions and recommended puck placements

were provided for each exercise in written instructions and in a video

that participants could view before the exercise. However, beyond

these instructions, standardization of the puck placement was left to

the participant. Participants’ activity in the FitMi system was

recorded, including the date and time an exercise was performed, the

type of exercise, the number of repetitions completed, the amount of

time spent performing the exercise, and the difficulty level at which

the exercise was performed. At the start of the trial, the three easiest

exercises from each body region were available at the lowest difficulty

level. After three weeks, each participant returned for an end-of-
Frontiers in Rehabilitation Sciences 04
therapy assessment, and then again after one month for a follow-up

assessment. The Conventional Therapy Group’s data (n = 13) from

the end-of-therapy and follow-up assessments are not used in the

present study as they did not use the FitMi system during the home-

therapy they performed during the RCT.

2.2.1. Clinical assessments
Therapists performed a battery of clinical assessments during the

in-clinic experiment including the Upper Extremity Fugl-Meyer

(UEFM) (18), Box and Blocks Test (33), the 10 Meter Walk Test

(34), the Modified Ashworth Spasticity (MAS) scale (35) for the

elbow, wrist, and fingers, the Visual Analog Pain (VAP) scale (36) for

the upper extremity, Trunk Impairment Scale (37), Shoulder

Subluxation using thumb widths (38), and Mini Mental Status (39).

Several measures were taken during the end-of-therapy and follow-

up assessments of the subsequent RCT. From the end-of-therapy and

follow-up assessments, only the UEFM scores of the FitMi group

taken during their end-of-therapy assessment are used in this study.
2.3. Statistical analysis

In the introductory session, all participants performed each

exercise for 45 s, if they were able to perform the exercise. We

converted the number of repetitions completed to the rate at which

repetitions were completed. For analysis, the MAS was split between

the different categories measured (elbow extension, elbow flexion,

wrist extension, wrist flexion, finger extension, and finger flexion),

and items scored with a “+” were transformed to a numerical

quantity by adding 0.5 to facilitate analysis. Unless otherwise

mentioned, all analyses were performed in Matlab 2020b (40).

2.3.1. Clinic data analysis
As an exploratory analysis, linear regression was used to model

the relationship between each exercise performed and each

assessment taken during the in-clinic experiment (n = 41).

A Belsley test was used to confirm there was no collinearity

between the exercises and assessments. Several nonlinear functions

were fit to the rate and outcome data for the pair which presented

the strongest relationship from the previous step. The goodness of

the fit for each candidate function was evaluated by comparing the

resulting root mean squared error (RMSE), r-squared, and

appropriateness of the function for the data as determined by the

study team. Finally, the best fitting model was validated using a

leave one out cross validation (LOOCV) procedure.

2.3.2. Home data analysis
The subset of participants who were randomized to the FitMi

treatment group of the RCT (n= 14) took the system home for 3

weeks to use without supervision. To test the suitability of the selected

model for estimating clinical scores using exercise data from

participants’ home-activity, exercise data from these participants were

used to estimate their clinical scores using the strongest model

identified by the curve fitting process described above. The model was

then refit to the home exercise data and participants’ UEFM scores

from the end-of-therapy assessment of the RCT to improve
frontiersin.org
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performance and validated following LOOCV. Due to one participant

not performing the “A4: Reach to Target 2” exercise at home, analyses

for home data were performed without this participant (n = 13).

2.3.3. Decision tree
To incorporate multiple exercises into a single explanatory,

nonlinear model, regression trees were fit to the data taken

during the in-clinic experiment (n = 41) using the Decision Tree

Regressor from Scikit Learn in Python. As the data set is smaller

than typical for machine learning applications, and the goal of

this model was explanatory rather than predictive, the entire data

set was used for training models, and models were evaluated

using metrics from the training data. Decision tree models can

be prone to overfitting, where the generated model might

describe noise of the training set more than any underlying

generalizable phenomena present. To prevent overfitting, multiple

models were fit with varying maximum allowable depths and

minimum samples per leaf (i.e., prediction node), where

increasing the depth and reducing the minimum samples per leaf
FIGURE 2

Participant flow diagram detailing screening, allocation, and assessments for
individuals allocated to the conventional therapy group of the RCT was not u
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results in models with increasing accuracy but also increasing

potential for overfitting. Models were compared by the research

team considering the complexity of the resulting model, the

depth and leaf design criteria, the RMSE, and the r2. The results

of this process are shown in Supplementary Figure S1. The final

selected model was validated following LOOCV.
3. Results

3.1. Participants

Participants were recruited from November 20, 2018 to March

12, 2020. 41 individuals participated in the in-clinic experiment,

and 27 of the participants from the in-clinic experiment moved

on to the clinical trial, during which 14 participants were

randomized to the FitMi group (Figure 2). Participants’ clinical

characteristics are shown in Table 2. All participants were right

hand dominant.
individuals in the in-clinic experiment and the RCT. Follow-up data for
sed in this study.
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TABLE 2 Demographics of participants. All participants are included in the
“Clinic Data” column, and the subset of participants who continued to the
FitMi group are included in the “Randomized Control Trial” column. For
each assessment, we list the minimum and maximum score possible in
the left column, if the assessment has such limits. In the right columns,
values are reported as Mean ± SD, [minimum, maximum] or Score
(Number of Participants) as appropriate.

In-Clinic
Experiment

Randomized
Controlled Trial

Number of Participants 41 14

Age (years) 52.3 ± 10.1 50.3 ± 10.9

Sex (M/F) 33/8 14/0

Stroke Type (I, H, B) 30 I, 10 H, 1 B 11 I, 3 H

Impaired Side (L/R) 27 L, 14 R 10 L, 4 R

Weeks Post Stroke 66 ± 114, [4.3, 456.7] 9.7 ± 4.5, [4.3, 17.9]

Mini Mental Status [min and
max possible: 0 30]

29.56 ± 0.71, [27, 30] 29.36 ± 0.63, [28, 30]

Upper Extremity Fugl-
Meyer [0 66]

33.4 ± 15.4, [9, 58] 36.7 ± 15.4, [12, 53]

Box and Blocks* [0 150] 19.1 ± 17.2, [0, 50] 25.4 ± 17.6, [0, 50]

Trunk Impairment [0 27] 17.61 ± 2.68, [13, 23] 18.36 ± 2.27, [15, 23]

10 Meter Walk (m/s) 0.87 ± 0.32, [0.21, 1.50] 0.98 ± 0.37, [0.23, 1.50]

Visual Analog Pain [0 10] 0 (24), 1 (3), 2 (4), 3 (4),
4 (5), 5 (1)

0 (8), 1 (1), 2 (1), 3 (1), 4
(3)

Modified Ashworth Scale –Extension [0 4]
Elbow 0 (25), 1 (8), 1.5 (5), 2

(3)
0 (9), 1 (2), 1.5 (2), 2 (1)

Wrist 0 (37), 1 (4) 0 (13), 1 (1)

Fingers 0 (40), 1 (1) 0 (14)

Modified Ashworth Scale –Flexion [0 4]
Elbow 0 (14), 1 (14), 1.5 (5), 2

(6), 3 (2)
0 (3), 1 (8), 1.5 (1), 2 (2)

Wrist 0 (13), 1 (11), 1.5 (8), 2
(8), 3 (1)

0 (5), 1 (2), 1.5 (5), 2 (2)

Fingers 0 (17), 1 (10), 1.5 (6), 2
(6), 3 (2)

0 (5), 1 (4), 1.5 (3), 2 (2)

Shoulder Subluxation
(expressed as thumb widths)

0 (34), 0.5 (1), 1 (5) 0 (12), 1 (2)

M, male; F, female; I, Ischemic; H, hemorrhagic; B, both Ischemic and

hemorrhagic; L, left; R, right.

*The average Box and Blocks Test score for unimpaired participants who are age-

matched to the mean age of our participants is 69 (41).
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3.2. Heatmap

Figure 3 shows the results of the regression analyses exploring

the relationship between each exercise performed and each

outcome measured. Only regressions with an F-statistic p

value≤ 0.05 are shown, and regressions with a p value below the

Bonferroni adjusted alpha value (0.00032) are indicated with an

asterisk. The UEFM and Box and Blocks Test scores were

strongly correlated with the rep rates from three of the exercises.
3.3. Curve fitting

The strongest correlation was present for the regression

analysis between “A4: Reach to Target 2” and the Upper

Extremity Fugl-Meyer (UEFM) assessment (adjusted r2 = 0.75,

p value < 0.001). To better model this relationship, we fit a

second order polynomial, a power function, a logarithmic

function, and an exponential function to the data (Figure 4).
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Though the polynomial function produced better fit statistics (r2 =

0.86, RMSE= 5.92), the exponential fit (r2 = 0.85, RMSE = 6.00) was

selected for its asymptotic structure, which is consistent with the fact

that the UEFM score has a maximum. The final LOOCV resulted in

an exponential model with r2 = 0.83, RMSE= 6.22.
3.4. Home data

To validate the model for use in the home setting, the exponential

model shown in Figure 4 was used to estimate participant’s UEFM

scores using the exercise rate data from participants’ first

performance of the “A4: Reach to Target #2” exercise at home.

Though participants’ rates in their first home performance were

correlated with their rates performed in the clinic (r = 0.62), the

resulting fit was lower quality than for the data collected in the

clinic (Clinic Model with Clinic Data: r2 = 0.85, RMSE = 6.00; Clinic

Model with First Home Data: r2 = 0.24, RMSE = 12.81). In their

first at-home performance, more severely impaired participants

tended to speed up and less severely impaired participants tended

to slow down relative to their in-clinic performance (Figures 5A,

D). This change in exercise rate was correlated with participants’

initial UEFM scores (r2 = 0.38). While data from participants’ last

performance of the “A4: Reach to Target #2” at home exercise did

not fit the clinic-based model well, they appeared to follow a more

consistent pattern than the data from participants’ first performance

(Figure 5B). The final home performance and end-of-therapy

UEFM data resulted in improved fit statistics compared to the first

home performance paired with in-clinic UEFM scores, but results

were still lower quality than for the data generated in the clinic

(Clinic Model with Clinic Data: r2 = 0.85, RMSE = 6.00; Clinic

Model with Final Home Data: r2 = 0.50, RMSE = 11.17). Fitting a

model of the same structure to the final performance of “A4: Reach

to Target #2” at home and the UEFM scores taken at end-of-

therapy resulted in a model with scores closer to the clinic-

generated model (Final Home Model with Final Home Data: r2 =

0.80, RMSE = 8.09). Performing LOOCV on this final model

produced a model with r2= 0.69, RSME = 8.70.
3.5. Decision tree

From the iterative model generating process (Supplementary

Figure S2), the decision tree with maximum allowable depth

equal to 2 and minimum samples per leaf equal to 6 was

chosen, Figure 6. This model presented improved training fit

statistics (r2 = 0.89, RMSE = 4.82) over the previous exponential

model made with a single activity performed in the clinic (r2

= 0.85, RMSE = 6.00). This data-driven process created a model

using two of the 12 exercises: “A4: Reach to Target #2” and

“H5: Key Pinch Grip”. Patients below a certain performance

threshold in the reaching task were sorted to the lower range

of the scale, and then again sorted to a high impairment (14

points) or medium impairment (30 points) category by a

lower threshold on the same task. Patients exceeding the

initial performance threshold for the reaching task, were then
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FIGURE 3

Heatmap showing the results of the regression analyses for each exercise and outcome pair. Regressions with an F-statistic p value > 0.05 are shown with
a white box. r2 values for regressions with an F-statistic p value ≤ 0.05 are shown in blue, with darker colors indicating stronger relationships. Regressions
with a p value below the Bonferroni adjusted alpha value (0.00032) are indicated with an asterisk.
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evaluated by their ability in a gripping task using their hand,

being further sorted to a mild (43 points) or very mild

impairment (53 points) category.
4. Discussion

In this work, rates of specific exercise activities, captured by a

sensorized home stroke rehabilitation system, were used to

estimate UEFM scores. The exercises that provided the most

utility (“A4: Reach to Target #2” and “H5: Key Pinch Grip”)

could theoretically be measured with simple push buttons. Thus,

this approach could be replicated with a simple low-cost system

that would not require participants to precisely don and doff

multiple sensors.

The data here were gathered using a commercially available

system that has a demonstrated record of usage across thousands

of users (42). This history of usage data suggests that users are

able to independently understand and operate the system, which

could facilitate automated execution of assessment activities using

these models.
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The validated models presented here (i.e., the exponential

model made with clinic data (r2 = 0.83 RMSE = 6.22), the

exponential model made with home data (Final Home Model

with Final Home Data: r2 = 0.69 RMSE = 8.70), and the decision

tree made with clinic data (r2 = 0.72, RMSE = 7.99)) provide

comparable performance to more complicated approaches

(Table 1). Additionally, this work presents a model using data

from individuals practicing unsupervised in the home whereas

most previous uses data taken in a clinical setting.
4.1. Insights from the decision tree
modeling approach

Out of the 12 exercises performed in the clinic, the exercise

with the more predictive power was “A4: Reach to Target #2”.

This feature appeared most strongly in the exploratory linear

regression heatmap and in the decision tree modeling

process. The presented decision tree model uses this reaching

task and “H5: Key Pinch Grip” to predict UEFM, which

mirrors clinical knowledge that recovery typically starts with
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FIGURE 4

Exercise rate and UEFM data taken from 41 participants performing the “A4: Reach to Target #2”. The exponential function provided the best fit while
providing an asymptotic structure which well describes the maximum score of the UEFM.
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proximal ability, such as a gross arm movement, and proceeds

to recovery of distal function, such as finer dexterity tasks for

the hand (19). As such, the decision tree model provides a

data-driven approach that presents explanatory features that

match clinical understanding of recovery patterns. Consistent

with this idea, prior analyses of the UEFM have confirmed

the individual items have a difficulty hierarchy, proceeding

from proximal to distal (43, 44). Further, the idea that

measurements of a smaller number of movements can be

used to predict total UEFM score is consistent with studies

that have created shortened versions of the UEFM assessment

(45).
4.2. Difference between clinic and home
performance

The models made with data taken in clinic had higher r2

and lower RMSE than the model made with home data likely

because there was less variance in the way participants

performed their exercises in the clinic than in how they

performed exercises at home. In the in-clinic phase of the

study, a single therapist standardized the placement of the

FitMi sensors, prevented patients from performing exercises

with compensation, and set a uniform time limit for each

exercise. At home, though the system provided instructions

for each exercise, participants were unsupervised, so they

may have performed the exercises with compensation and

may have changed the placement of the pucks. The system
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is structured to increase the challenge of the activity as

users complete target numbers of repetitions. So in contrast

to the clinic scenario where patients perform as many

repetitions as they can in a set time limit, the home system

sets increasingly difficult target numbers of repetitions over

varying durations. This feature may increase user

engagement, but it may also add elements of fatigue or

may encourage users to employ strategies to pace

themselves. Therefore, the rates of participants interacting

with the system at home may not be directly comparable to

the rates performed in the clinic. Even the presence of a

supervising therapist may have been an additional motivator

for patients to exert themselves, that would then be absent

in the home environment. Some of this variation can be

seen in Figure 5A. At home, participants with higher

UEFM scores decreased their exercise rate relative to their

in-clinic performance, and participants with lower UEFM

score increased their exercise rate relative to their in-

clinic performance.
4.3. Limitations

The sample size used in this study was relatively small (n = 41

in-clinic, n = 14 at home). Our ability to model data generated at

home was further limited by the sparsity and diversity of

exercises that participants performed at home. Participants

were not given explicit instructions on what exercises to

perform at home, which resulted in varying participation
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FIGURE 5

(A) Data from participants’ first performance at home of the “A4: Reach to Target #2” exercise plotted against their clinic exercise data and the model
generated from the clinic data. (B) Data from participants’ last performance at home of the “A4: Reach to Target #2” exercise and their UEFM score
taken at the end-of-therapy assessment plotted against their clinic exercise data and the model generated from the clinic data. In both figures (A)
and (B), triangles are used to indicate exercises performed at home, circles are used to indicate exercises performed in the clinic, and dashed lines
are used to connect each participant’s clinic data and their respective home data. Red lines indicate that the participant’s exercise rate slowed
compared to their clinic performance, and blue lines indicate that the participant’s exercise rate increased compared to their clinic performance. (C)
A model with the same functional form as the model developed with the clinic data was fit using only the data from participants’ last performance at
home of the “A4: Reach to Target #2” exercise and their UEFM scores taken at the end-of-therapy assessment. (D) Comparison of participants’ first
performance at home of the “A4: Reach to Target #2” exercise plotted against their clinic exercise data evaluated using a linear regression.
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across available exercises among participants. Further, in the

home setting, without supervision, participants may perform

exercises differently than expected. This phenomenon likely

contributed to the increased variance. Conversely, for the in-

clinic phase of the study, the attending therapist stopped

patients if they began performing the exercises with

compensation and recorded only the repetitions performed

correctly, which meant some participants recorded zero

repetitions for some exercises. This led to a y-intercept for the

in-clinic model at an UEFM score of 14, such that the model

has a floor effect for individuals with UEFM score < 14. During

the recruitment, more male patients than female patients were

admitted for stroke to the hospital where the trial took place,

and through the inclusion screening process, only a few female

participants were eligible to participate, able to be contacted,

and agreed to participate in the study (n = 4). Further, the

randomization process was based on UEFM score alone, which

resulted in all the female participants being allocated to the

control group of the RCT. The participants who used the

system at home were all in the subacute phase of stroke
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recovery. Individuals in the chronic phase of stroke recovery

may not fit this model.
4.4. Future work

As assessment is an important part of the rehabilitation

process, systems designed for home-rehabilitation should aim to

incorporate periodic assessments. The present study suggests that

incorporating a forward-reaching exercise and measuring rep rate

is a simple way to estimate UEFM score. Given sufficient fidelity,

such a measurement could potentially be used to inform a

healthcare provider of a patient’s progress, as justification for

institutional reimbursements, or serve as a motivator for

individuals pursuing their rehabilitation at home unsupervised.

To allow this model to be used as a clinical assessment, further

research needs to be conducted to verify the test-retest reliability

and the model’s sensitivity to changes in exercise rate and

UEFM. This will require more data taken in the desired setting

(home or clinic) paired with clinical outcome measures.
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FIGURE 6

Decision tree generated using participants’ rate of activities performed in the clinic as input features to estimate their fugl-Meyer scores. For each splitting
node, if a participant’s rate for the specified task (A4: “Reach to Target #2 or H5: “Key Pinch Grip”) was less than or equal to the threshold rate shown,
participants were sorted to the left branch, otherwise, they were sorted to the right branch.
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In the FitMi system studied here, such an assessment could be

introduced after individuals complete a set number of activities. To

match the scenario created for our clinic data, an assessment

should encourage participants to perform as many repetitions as

they can in a set period of time and should reinforce the

importance of performing the activity correctly without

compensation. To limit compensation in an unsupervised home

environment, IMUs could be placed on the chest and or arm

(46, 47), or a motion capture system could monitor trunk

motion (48–50).

Improving models such as the ones presented requires accruing

larger sets of ground truth data of clinical measurements and

sensorized activity. With enough resources, large trials can be

conducted to recruit the participants needed, but commercial

rehab system vendors and hospitals may represent an untapped

dataset for natural experiments. Commercial vendors could offer

video sessions with a therapist to collect clinical data, and

hospitals using sensorized systems could work with researchers

or developers to pair activity data with clinical measures from

electronic health records.

An interesting finding was that the multivariate decision tree

modeling approach did not improve model performance. This is

likely due to the small sample size. Further, we did not attempt

to fit a decision tree model to the home data due to the small

sample size and the heterogeneity in the exercises performed.

Though the decision tree algorithm could theoretically model a

data set where not all participants perform the same exercises,

again, a larger sample size would be required to produce reliable

results. Other nonlinear modeling techniques could be applied,
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such as a boosted tree method, but their desirability may be

limited because many such models would no longer be

explanatory or interpretable.
5. Conclusion

In this work, we proposed using the rate of activities completed

in a sensorized system to estimate the UEFM. The models

presented use a reaching task and a gripping task, and the

models captured approximately 70% of the variance in UEFM in

our data. This approach could be replicated with simple push

button systems that do not require participants to precisely don

and doff multiple sensors and could be performed unsupervised

in the home setting.
Data availability statement

The data analyzed in this study is subject to the following

licenses/restrictions: The data analyzed in this study was obtained

from Flint Rehab, LLC. Requests to access these datasets should

be directed to Daniel K. Zondervan, dzondervan@flintrehab.com.
Ethics statement

The studies involving human participants were reviewed and

approved by the Rancho Research Institute, Inc. Institutional
frontiersin.org

https://doi.org/10.3389/fresc.2023.1181766
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/


Swanson et al. 10.3389/fresc.2023.1181766
Review Board at Rancho Los Amigos National Rehabilitation

Center (IRB #263). The patients/participants provided their

written informed consent to participate in this study.
Author contributions

DJR, DKZ, VAS, and CAJ: contributed to the conception and

design of the study. SJS: conducted the original trial and data

collection. VAS and CAJ: organized and cleaned the data and

performed the statistical analysis. VAS: wrote the first draft of the

manuscript, and CAJ wrote sections of the manuscript. All

authors contributed to the article and approved the submitted

version.
Funding

Research reported in this publication was supported by the

National Institute on Aging of the National Institutes of Health

under Award Number R44AG059256 and the ICT Access for

Mobile Rehabilitation (mRehab) Rehabilitation Engineering

Research Center, National Institute of Independent Living,

Disability, and Rehabilitation Research, 90REGE0011. The content

is solely the responsibility of the authors and does not necessarily

represent the official views of the National Institutes of Health.
Acknowledgments

We would like to thank Dr. Nicolas Schweighofer from the
Division of Biokinesiology and Physical Therapy at USC for his
consultation on the modeling techniques used in this manuscript.
We would like to thank Nicole Bayus, the director of the Clinical
Trials Division at Rancho Research Institute where the initial
Frontiers in Rehabilitation Sciences 11
trial was conducted, for the guidance she provided on the data
and her contributions to the original trial.
Conflict of interest

DKZ has a financial interest in Hocoma AG and Flint Rehab

LLC, companies that develop and sell rehabilitation devices. Flint

Rehab produces the FitMi sensor used in this study. The terms

of these arrangements have been reviewed and approved by the

University of California, Irvine, in accordance with its conflict-

of-interest policies. DKZ has a financial interest in Flint Rehab,

LLC.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict of

interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fresc.2023.

1181766/full#supplementary-material
References
1. Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. (2011) 377
(9778):1693–702. doi: 10.1016/S0140-6736(11)60325-5

2. World Report on Disability 2011. WHO Guidelines Approved by the Guidelines
Review Committee. Geneva: World Health Organization (2011). Available at: http://
www.ncbi.nlm.nih.gov/books/NBK304079/

3. Salter K, Jutai J, Zettler L, Moses M, McClure A, Mays R, et al. Outcome measures
in stroke rehabilitation. In: Evidence-based review of stroke rehabilitation. (2022). p.
9–73. Available at: http://www.ebrsr.com/evidence-review/20-outcome-measures-
stroke-rehabilitation

4. Santisteban L, Térémetz M, Bleton J-P, Baron J-C, Maier MA, Lindberg
PG. Upper limb outcome measures used in stroke rehabilitation studies: a
systematic literature review. PLoS ONE. (2016) 11:5. doi: 10.1371/journal.
pone.0154792

5. Hebert D, Patrice Lindsay M, McIntyre A, Kirton A, Rumney PG, Bagg S, et al.
Canadian Stroke best practice recommendations: stroke rehabilitation practice
guidelines, update 2015. Int J Stroke. (2016) 11(4):459–84. doi: 10.1177/
1747493016643553

6. Souza ACd, Alexandre NMC, Guirardello EdB. Psychometric properties in
instruments evaluation of reliability and validity. Epidemiologia e Serviços de Saúde.
(2017) 26(September):649–59. doi: 10.5123/S1679-49742017000300022

7. Oña S, Daniel E, Baeza PS-H, Huete AJ, Balaguer C. Review of automated systems
for upper limbs functional assessment in neurorehabilitation. IEEE Access. (2019)
7:32352–67. doi: 10.1109/ACCESS.2019.2901814
8. Lee S, Lee Y-S, Kim J. Automated evaluation of upper-limb motor function
impairment using fugl-Meyer assessment. IEEE Trans Neural Syst Rehabil Eng.
(2018) 26(1):125–34. doi: 10.1109/TNSRE.2017.2755667

9. Appleby E, Gill ST, Hayes LK, Walker TL, Walsh M, Kumar S. Effectiveness of
telerehabilitation in the management of adults with stroke: a systematic review.
PLoS One. (2019) 14(11):e0225150. doi: https://doi.org/10.1371/journal.pone.
0225150

10. Brennan DM, Mawson S, Brownsell S. Telerehabilitation: enabling the remote
delivery of healthcare, rehabilitation, and self management. Stud Health Technol
Inform. (2009) 145:231–48. doi: 10.3233/978-1-60750-018-6-231

11. Mayo NE. Stroke rehabilitation at home. Stroke. (2016) 47(6):1685–91. doi: 10.
1161/STROKEAHA.116.011309

12. Mayo NE, Wood-Dauphinee S, Côté R, Gayton D, Carlton J, Buttery J, et al.
There’s No place like home. Stroke. (2000) 31(5):1016–23. doi: 10.1161/01.STR.31.5.
1016

13. Hillier S, Inglis-Jassiem G. Rehabilitation for community-dwelling people with
stroke: home or centre based? A systematic review. Int J Stroke. (2010) 5(3):178–86.
doi: 10.1111/j.1747-4949.2010.00427.x

14. Billinger SA, Arena R, Bernhardt J, Eng JJ, Franklin BA, Johnson CM,
et al. Physical activity and exercise recommendations for stroke survivors: a
statement for healthcare professionals from the American heart association/
American stroke association. Stroke. (2014) 45(8):2532–53. doi: 10.1161/STR.
0000000000000022
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fresc.2023.1181766/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fresc.2023.1181766/full#supplementary-material
https://doi.org/10.1016/S0140-6736(11)60325-5
http://www.ncbi.nlm.nih.gov/books/NBK304079/
http://www.ncbi.nlm.nih.gov/books/NBK304079/
http://www.ebrsr.com/evidence-review/20-outcome-measures-stroke-rehabilitation
http://www.ebrsr.com/evidence-review/20-outcome-measures-stroke-rehabilitation
https://doi.org/10.1371/journal.pone.0154792
https://doi.org/10.1371/journal.pone.0154792
https://doi.org/10.1177/1747493016643553
https://doi.org/10.1177/1747493016643553
https://doi.org/10.5123/S1679-49742017000300022
https://doi.org/10.1109/ACCESS.2019.2901814
https://doi.org/10.1109/TNSRE.2017.2755667
https://doi.org/https://doi.org/10.1371/journal.pone.0225150
https://doi.org/https://doi.org/10.1371/journal.pone.0225150
https://doi.org/10.3233/978-1-60750-018-6-231
https://doi.org/10.1161/STROKEAHA.116.011309
https://doi.org/10.1161/STROKEAHA.116.011309
https://doi.org/10.1161/01.STR.31.5.1016
https://doi.org/10.1161/01.STR.31.5.1016
https://doi.org/10.1111/j.1747-4949.2010.00427.x
https://doi.org/10.1161/STR.0000000000000022
https://doi.org/10.1161/STR.0000000000000022
https://doi.org/10.3389/fresc.2023.1181766
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/


Swanson et al. 10.3389/fresc.2023.1181766
15. Hou L, Li M, Wang J, Li Y, Zheng Q, Zhang L, et al. Association between
physical exercise and stroke recurrence among first-ever ischemic stroke survivors.
Sci Rep. (2021) 11(1):13372. doi: 10.1038/s41598-021-92736-5

16. Caeiro L, Ferro JM, Costa J. Apathy secondary to stroke: a systematic review and
meta-analysis. Cerebrovasc Dis. (2013) 35(1):23–39. doi: https://doi.org/10.1159/
000346076

17. Mayo NE, Wood-Dauphinee S, Côté R, Durcan L, Carlton J. Activity,
participation, and quality of life 6 months poststroke. Arch Phys Med Rehabil.
(2002) 83(8):1035–42. doi: 10.1053/apmr.2002.33984

18. Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke
hemiplegic patient. 1. a method for evaluation of physical performance. Scand
J Rehabil Med. (1975) 7(1):13–31. doi: 10.2340/1650197771331

19. Gladstone DJ, Danells CJ, Black SE. The fugl-Meyer assessment of motor
recovery after stroke: a critical review of its measurement properties. Neurorehabil
Neural Repair. (2002) 16(3):232–40. doi: 10.1177/154596802401105171

20. Sullivan KJ, Tilson JK, Cen SY, Rose DK, Hershberg J, Correa A, et al. Fugl-
Meyer assessment of sensorimotor function after stroke: standardized training
procedure for clinical practice and clinical trials. Stroke. (2011) 42(2):427–32.
doi: 10.1161/STROKEAHA.110.592766

21. Kwakkel G, Lannin NA, Borschmann K, English C, Ali M, Churilov L, et al.
Standardized measurement of sensorimotor recovery in stroke trials: consensus-
based core recommendations from the stroke recovery and rehabilitation
roundtable. Int J Stroke. (2017) 12(5):451–61. doi: 10.1177/1747493017711813

22. Pan B, Huang Z, Jin T, Wu J, Zhang Z, Shen Y. Motor function assessment of
upper limb in stroke patients. J Healthc Eng. (2021) 2021(February):6621950. doi: 10.
1155/2021/6621950

23. Chen Z-J, He C, Gu M-H, Xu J, Huang X-L. Kinematic evaluation via inertial
measurement unit associated with upper extremity motor function in subacute
stroke: a cross-sectional study. J Healthc Eng. (2021) 2021:4071645. doi: 10.1155/
2021/4071645

24. Del Din S, Patel S, Cobelli C, Bonato P. Estimating fugl-Meyer clinical scores in
stroke survivors using wearable sensors. Annual international conference of the IEEE
engineering in medicine and biology society. IEEE engineering in medicine and
biology society. Annual international conference. (2011): 5839–42. doi: 10.1109/
IEMBS.2011.6091444

25. Rech KD, Salazar AP, Marchese RR, Schifino G, Cimolin V, Pagnussat AS. Fugl-
Meyer assessment scores are related with kinematic measures in people with chronic
hemiparesis after stroke. J Stroke Cerebrovasc Dis. (2020) 29(1):104463. doi: 10.1016/j.
jstrokecerebrovasdis.2019.104463

26. Schwarz A, Veerbeek JM, Held JPO, Buurke JH, Luft AR. Measures of interjoint
coordination post-stroke across different upper limb movement tasks. Front Bioeng
Biotechnol. (2021) 8. doi: 10.3389/fbioe.2020.620805

27. Moretti CB, Hamilton T, Edwards DJ, Peltz AR, Chang JL, Cortes M, et al.
Robotic kinematic measures of the arm in chronic stroke: part 2—strong correlation
with clinical outcome measures. Bioelectron Med. (2021) 7(1):21. doi: 10.1186/
s42234-021-00082-8

28. KimW-S, Cho S, Baek D, Bang H, Paik N-J. Upper extremity functional evaluation
by fugl-Meyer assessment scoring using depth-sensing camera in hemiplegic stroke
patients. PloS One. (2016) 11(7):e0158640. doi: 10.1371/journal.pone.0158640

29. Otten P, Kim J, Son SH. A framework to automate assessment of upper-limb
motor function impairment: a feasibility study. Sensors. (2015) 15(8):20097–114.
doi: 10.3390/s150820097

30. Hobart JC, Cano SJ, Zajicek JP, Thompson AJ. Rating scales as outcome
measures for clinical trials in neurology: problems, solutions, and recommendations.
Lancet Neurol. (2007) 6(12):1094–105. doi: 10.1016/S1474-4422(07)70290-9

31. Swanson VA, Johnson C, Zondervan DK, Bayus N, McCoy P, Joshua Ng YF,
et al. Optimized home rehabilitation technology reduces upper extremity
impairment compared to a conventional home exercise program: a randomized,
controlled, single-blind trial in subacute stroke. Neurorehabil Neural Repair. (2023)
73(1):15459683221146996. doi: 10.1177/15459683221146995

32. Machin D. Clinical trials: Design, conduct, and analysis. Curtis L. Meinert (1986)
monographs in epidemiology and biostatistics. Volume 8. New York and Oxford:
Oxford University Press (1988). 469. £55 ISBN 5035682.” Human
Frontiers in Rehabilitation Sciences 12
Psychopharmacology: Clinical and Experimental 3 (2): 153–153. doi: 10.1002/hup.
470030214

33. Cromwell FS, United Cerebral Palsy Associations. Occupational Therapist’s
Manual for basic skills assessment or primary Pre-vocational evaluation.
Pasadena, Calif: Fair Oaks Print. Co (1960). https://catalog.hathitrust.org/Record/
100818815

34. Wade DT, Wood VA, Heller A, Maggs J, Langton Hewer R. Walking after stroke.
Measurement and recovery over the first 3 months. J Rehabil Med. (1987) 19(1):25–30.
doi: 10.2340/1650197787192530

35. Bohannon RW, Smith MB. Interrater reliability of a modified ashworth scale of
muscle spasticity. Phys Ther. (1987) 67(2):206–7. doi: 10.1093/ptj/67.2.206

36. Bijur PE, Silver W, Gallagher EJ. Reliability of the visual analog scale for
measurement of acute pain. Acad Emerg Med. (2001) 8(12):1153–57. doi: 10.1111/j.
1553-2712.2001.tb01132.x

37. Verheyden G, Nieuwboer A, Mertin J, Preger R, Kiekens C, De Weerdt W. The
trunk impairment scale: a new tool to measure motor impairment of the trunk after
stroke. Clin Rehabil. (2004) 18(3):326–34. doi: 10.1191/0269215504cr733oa

38. Paci M, Nannetti L, Taiti P, Baccini M, Pasquini J, Rinaldi L. Shoulder
subluxation after stroke: relationships with pain and motor recovery. Physiother Res
Int. (2007) 12(2):95–104. doi: 10.1002/pri.349

39. Folstein MF, Folstein SE, McHugh PR. ‘Mini-Mental state’. A practical method
for grading the cognitive state of patients for the clinician. J Psychiatr Res. (1975) 12
(3):189–98. doi: 10.1016/0022-3956(75)90026-6

40. Mathworks. MATLAB (Version 2020b) [Computer software]. (2020). Available
at: https://www.mathworks.com/products/matlab.html.

41. Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the box and
block test of manual dexterity. Am J Occup Ther. (1985) 39(6):386–91. doi: 10.5014/
ajot.39.6.386

42. Ramos M, De Jesus E, Swanson VA, Johnson C, Anderson RK, Rabinowitz AR,
et al. Using large-scale sensor data to test factors predictive of perseverance in home
movement rehabilitation: optimal challenge and steady engagement. Front Neurol.
(2022) 13. doi: 10.3389/fneur.2022.809343

43. Hijikata N, Kawakami M, Ishii R, Tsuzuki K, Nakamura T, Okuyama K, et al.
Item difficulty of fugl-Meyer assessment for upper extremity in persons with
chronic stroke with moderate-to-severe upper limb impairment. Front Neurol.
(2020) 11. doi: 10.3389/fneur.2020.577855

44. Crow JL, Harmeling-van der Wel BC. Hierarchical properties of the motor
function sections of the fugl-Meyer assessment scale for people after stroke: a
retrospective study. Phys Ther. (2008) 88(12):1554–67. doi: 10.2522/ptj.20070186

45. Hsieh Y-W, Hsueh I-P, Chou Y-T, Sheu C-F, Hsieh C-L, Gert K. Development
and validation of a short form of the fugl-Meyer motor scale in patients with stroke.
Stroke. (2007) 38(11):3052–54. doi: 10.1161/STROKEAHA.107.490730

46. Wittmann F, Held JP, Lambercy O, Starkey ML, Curt A, Höver R, et al. Self-
directed arm therapy at home after stroke with a sensor-based virtual reality
training system. J Neuroeng Rehabil. (2016) 13(August):75. doi: 10.1186/s12984-016-
0182-1

47. Alankus G, Kelleher C. (2012). Reducing compensatory motions in video
games for stroke rehabilitation.” In Proceedings of the SIGCHI conference on
human factors in computing systems, 2049–58. Austin Texas USA: ACM. doi: 10.
1145/2207676.2208354

48. Sucar LE, Luis R, Leder R, Hernández J, Sánchez I. (2010). “Gesture therapy: a
vision-based system for upper extremity stroke rehabilitation.” In 2010 Annual
international conference of the IEEE engineering in medicine and biology, 3690–93.
doi: 10.1109/IEMBS.2010.5627458

49. Lin S, Mann J, Mansfield A, Wang RH, Harris JE, Taati B. Investigating the
feasibility and acceptability of real-time visual feedback in reducing compensatory
motions during self-administered stroke rehabilitation exercises: a pilot study
with chronic stroke survivors. J Rehabil Assist Technol Eng. (2019) 6
(January):2055668319831631. doi: https://doi.org/10.1177/2055668319831631

50. Brokaw EB, Eckel E, Brewer BR. Usability evaluation of a kinematics focused
kinect therapy program for individuals with stroke. Technol Health Care. (2015) 23
(1):143–51. doi: https://doi.org/10.3233/THC-140880
frontiersin.org

https://doi.org/10.1038/s41598-021-92736-5
https://doi.org/https://doi.org/10.1159/000346076
https://doi.org/https://doi.org/10.1159/000346076
https://doi.org/10.1053/apmr.2002.33984
https://doi.org/10.2340/1650197771331
https://doi.org/10.1177/154596802401105171
https://doi.org/10.1161/STROKEAHA.110.592766
https://doi.org/10.1177/1747493017711813
https://doi.org/10.1155/2021/6621950
https://doi.org/10.1155/2021/6621950
https://doi.org/10.1155/2021/4071645
https://doi.org/10.1155/2021/4071645
https://doi.org/10.1109/IEMBS.2011.6091444
https://doi.org/10.1109/IEMBS.2011.6091444
https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104463
https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104463
https://doi.org/10.3389/fbioe.2020.620805
https://doi.org/10.1186/s42234-021-00082-8
https://doi.org/10.1186/s42234-021-00082-8
https://doi.org/10.1371/journal.pone.0158640
https://doi.org/10.3390/s150820097
https://doi.org/10.1016/S1474-4422(07)70290-9
https://doi.org/10.1177/15459683221146995
https://doi.org/10.1002/hup.470030214
https://doi.org/10.1002/hup.470030214
https://catalog.hathitrust.org/Record/100818815
https://catalog.hathitrust.org/Record/100818815
https://doi.org/10.2340/1650197787192530
https://doi.org/10.1093/ptj/67.2.206
https://doi.org/10.1111/j.1553-2712.2001.tb01132.x
https://doi.org/10.1111/j.1553-2712.2001.tb01132.x
https://doi.org/10.1191/0269215504cr733oa
https://doi.org/10.1002/pri.349
https://doi.org/10.1016/0022-3956(75)90026-6
https://www.mathworks.com/products/matlab.html
https://doi.org/10.5014/ajot.39.6.386
https://doi.org/10.5014/ajot.39.6.386
https://doi.org/10.3389/fneur.2022.809343
https://doi.org/10.3389/fneur.2020.577855
https://doi.org/10.2522/ptj.20070186
https://doi.org/10.1161/STROKEAHA.107.490730
https://doi.org/10.1186/s12984-016-0182-1
https://doi.org/10.1186/s12984-016-0182-1
https://doi.org/10.1145/2207676.2208354
https://doi.org/10.1145/2207676.2208354
https://doi.org/10.1109/IEMBS.2010.5627458
https://doi.org/https://doi.org/10.1177/2055668319831631
https://doi.org/https://doi.org/10.3233/THC-140880
https://doi.org/10.3389/fresc.2023.1181766
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/

	Exercise repetition rate measured with simple sensors at home can be used to estimate Upper Extremity Fugl-Meyer score after stroke
	Introduction
	Methods
	FitMi overview
	Experimental protocol
	Clinical assessments

	Statistical analysis
	Clinic data analysis
	Home data analysis
	Decision tree


	Results
	Participants
	Heatmap
	Curve fitting
	Home data
	Decision tree

	Discussion
	Insights from the decision tree modeling approach
	Difference between clinic and home performance
	Limitations
	Future work

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References




