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§ Abstract

In this paper we present a consistent viscoelastic model for examining the steady state
spinning of a cylinder in contact with a frictional surface. The formulation of the problem
is modeled after LE TALLEC & RAHIER [Int. J. Numer. Meth. Engng., 37 1159-1186
(1994)] and ODEN & LiN [Comp. Meth. Appl. Mech. Engng. 57 297-367 (1986)]. A non-
physical contribution to the viscoelastic effects of the stress is shown for the commonally
advocated model. A methodology that immediately leads to an appropriate constitution
given an objective viscoelastic model is presented. Numerical examples are presented

showing significant differences between the viscoelastic stresses with respect to past works.
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FIGURE 1.1. Moving reference frame

§1. Introduction

The problem of interest consists of a deformable circular cylinder attached to a rigid
circular core spinning with motion #(t), see Figure 1.1. The outer cylinder is then brought
into contact with a flat frictional surface a distance A from the center of spin. The material
in the cylinder is assumed to be viscoelastic. An approach for arriving at a steady state
solution is to recast this problem onto a moving reference frame. A technique of this
nature in a finite element setting was proposed by LyNCH [1] for the rolling of viscoelastic
plates. For the spinning cylinder, formulations of varying degrees of sophistication have
been proposed by many authors; see e.g. ODEN & LIN [2], LE TALLEC & RAHIER [3],
Papovan & ParRaMODILOK [4], PapOvaN [5], Bass [6]. KENNEDY AND Pabpovan [7],
and other references therein. A crucial issue that seems to have been overlooked in the
spinning cylinder problem is that the circular geometry affects the constitutive relations
when expressed in the moving reference frame. This issue is not relevant to LyNCH's [1]
original work on flat plates by is important for all the subsequent work on the circular
geometry. The recent formalism of LE TALLEC & RAHIER [3] makes this issue nearly

transparent and provides an avenue for the easy specification of the correct constitutive
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relations on the moving reference frame. In fact in [3] a correct set of constitutive relations
are utilized; though, these authors appear not to have recognized the significance of this
outcome of their formulation. Here, we examine the the implications of this formalism

on common convolution integral type models and present a quasi-Newton method for the

solution of the weak form equations.

The paper is divided into four sections. Section 2 describes the kinematics of steady
state spinning, states the equilibrium equations, and derives the weak form equations;
Section 3 introduces the viscoelastic constitutive model and presents a method for solving

the complete problem; in Section 4 a set of examples provide comparisons to the work of

ODEN & Lin [2].

§2. Kinematics and Equilibrium

Consider a point on a deformable cylinder spinning about a fixed axis. This point will
naturally appear differently to an observer on the fixed axis as compared to an observer
spinning with the cylinder. Specifically, the spinning observer will only see the strain of
the point and not its rigid rotation. In solving the steady state spinning of a cylinder,
we formulate the problem on a moving reference frame which is analogous to the rotating
observer. For the spinning cylinder, the moving reference frame is a time dependent
frame whose rotation about the axis of the cylinder is given by 6(¢). For the steady state
case, we can derive equilibrium equations with respect to the moving frame which are
time independent. The final equations contain additional inertial terms associated with

the moving frame. In choosing the presentation of the moving reference frame and the
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subsequent derivation of the weak form expressions, the notational simplifications of LE
TaLLEC & RAHIER [3] are used as they most clearly illustrate the needed constitutive
relations.

A notational convention is first introduced for the moving frame. Next, we consider
an application of this approach to the steady state spinning of a cylinder. The equilibrium
equations and boundary conditions are stated on the fixed reference configuration and a
set of weak form equations are derived. A recasting of the weak form equations onto the

moving reference frame yields a complete statement of the balance equations for the steady

state problem.

2.1. Mowving Reference Frame.

Let the open set B, C R? be the fixed reference placement of a continuum body
containing the material points X, € B,. Points in the fixed reference placement are
mapped to the deformed configuration & C R? by the motion # = &,(X,) where § =
&,(B,) and points in the deformed configuration are denoted by € S. Points in the
moving reference configuration X € B are related to the fixed reference placement by the
motion X = ¢(X,) where B = ¢(B5,). The unknown motion of a particle with respect to
the moving configuration is ¢ = ®(X) = $,0¢07 (X ). We define the deformation gradient
with respect to the moving reference placement as F = GRAD(®) where GRAD(-) denotes
the gradient with respect to X . The associated “right Cauchy-Green” deformation tensor

is given by C = FTF.

2.2, Steady State Spinning of a Cylinder.
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Define the moving reference configuration of a spinning cylinder by the motion

~
b
[t

~——

#(X,) = RX,,

where R is a time dependent rotation # about the axis of the cylinder. For this motion,

the deformation measures with respect to the fixed reference placement become
F,=FR and C,= R'CR, (2.2)

where all quantities with a subscript o are with respect to the fixed reference placement.
The velocity and acceleration of a particle « in the current configuration for the steady

spinning case can be computed as

ox
r o= —— {2 .
T= o X (2.3)
and
Oz oz
T = (e Bulnh 2.
T (aXQQXJraXQ)QX, (2.4)

where §2 = RR7” is the time independent skew-symmetric spin tensor associated with the

mapping from the fixed reference configuration to the moving reference frame.

2.3. Equilibrium. The boundary value problem for the unknown motion @, with
respect to the fixed reference frame is defined by the following equilibrium equations and

boundary conditions; for all X, € B,

DI\"fo[FOSo] + pog = po:i and S, = SCY; (25)

for all X, € 0B

E’)SONO - ? (26)
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and for all X, € 0B%-

b, =P, (2.7)
where S, is the 2nd Piola-Kirchhoff stress tensor, DIV, [-] is the divergence operator with
respect to X, bisa given body force per unit mass, p is a given traction function per
unit reference area, IN, is the reference surface normal, @, is a given surface motion,
887 N OB% = @, and 9B7 U ABY* = 9B, the boundary of B,.

2.4. Weak Form and Linearization. The weak form equations for the equilibrium
problem are formed by multiplying (2.5) by arbitrary admissible weighting functions, inte-
grating over the fixed reference domain, and performing integration by parts on the result.

The resulting weak form expression is,

817 - C . ,
Go(P.: n) = / (FuS, ) X, pob -1 — / p-n+t / pox -1 = 0, (2.8)
B, B, 887 B

where the admissible weighting functions n : B, — R?® and n = 0 on 0BY>. Recasting
(2.8) onto the moving reference frame and substituting in (2.2a) and the steady state

expression for the acceleration (2.4) yields,

(4577)—~/ FS): 5; %p(E—QQX)-n
(2.9)

_ ou on
w/anp"rl""/ (EQX) (gX‘QX)MO

where u = & — X is the displacement field with respect to the moving frame and S is

defined to be

S =RS,R'. (2.10)

In arriving at this result we have assumed that X N = (2X)- N = 0 on the outer

boundary. Thus, (2.9) applies only when the boundary is circular.
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Remark 2.1.
For completeness, we note the contribution to the linearization of (2.9) by the terms
associated with the moving frame. Linearization of (2.9) in the arbitrary direction
v: B — R*® where v = 0 on 9B, yields the tangent

. ~ Jn % .
= D1G(P; = K — — X)) (—=12X), 2.11

where K is the “standard tangent.” []

Remark 2.2.
The tremendous utility of (2.9) stems from the fact that one can create a finite element
model of the cylinder in the moving frame and compute the deformation relative to

it. Thus the steady state problem becomes, essentially, a static analysis. []

§3. Constitution

The final ingredient needed to effect a stress aualysis using (2.9) is a constitutive
relation. Based on LE TALLEC & RAHIER’s [3] notational scheme which leads to (2.9),
one sees that the proper expression for the stress S is a rotated version of a standard fixed

frame constitutive relation for the second Piola-Kirchhoff stress §,.

3.1. Isotropic Elastic Materials. Remarkably for isotropic elastic solids the expression

for S can be given in a form “independent” of R(?). Using the Representation Theorem
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(see e.g. GURTIN [8, §37]) we can write

S =k

P 1
%] Y

C, + ks CZ + k3, (3.1)

where kq, ko, and ks are functions of the invariants of Cy; that is to say I, = tr [C.],
e = 1/2[(tr (C,))* = tr (C2)], and ll¢, = J, = det[C,]. Noting now that S = RS, RT,
we have

S = ki1C + ko C? + k31, (3.2)
where ky. ko, and ks are taken as functions of the invariants I, II~, and Illc since the
invariants of C and C, are identical. Thus § is given entirely in terms of the deformation
from the rotating frame. Knowledge of the true reference configuration is not needed. Note
further that the final expression (3.2) merely involves removing the subscript o’s from all
terms in the “standard expression” (3.1).

2.2, Isotropic Viscoelastic Constitution. In the classical work of ODEN & LIN [2], a
viscoelastic model for § was provided by taking the model of CHRISTENSEN [9] for a fixed
reference frame and effectively “dropping all the subscript 0’s.” A similar situation can also
be observed in [4-7] (though not as clearly, since not all kinematic and stress quantities
that appear were fully defined in these works). Christensen’s original model can be written

in the present notation as:

S,(t) = S°(B,(t)) + L’/’ exp (—(t — s)/7) 6£Ods, (3.3)

- 00

where t is the current time, E, = 1/2(C, — 1), S’e() is the Mooney-Rivlin response

function, and v and 7 are material parameters. In [2] it is proposed that

S(t) = g‘:(E(t))—H// exp (—(t —s)/7) %—f—ds (3.4)

-0
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in the steady state spinning problem. Is is noted that such a relation is inconsistent with
the development leading to the weak form (2.9). Using the proper relation for S, (2.10),
and (3.3) shows

[4

S(t) = S¢(E(t)) + v / exp (—(t — s)/7) g;— {R(t)RT(S)E(S)R(S)RT(t)} ds, (3.5)

J o0
where E = 1/2(C — 1). The error involved in using (3.4) versus (3.5), involves a non-
physical contribution of viscoelastic effects to the stress. In particular the orientation of

the “over-stress” tensor is not properly accounted for in (3.4).

Remark 3.1.

When using (3.5) it is noted that even though R(-) explicitly appears the entire motion
need not be known since R(-) always appears at R(t)R”(s); i.e. only the relative

rotation between two points in time is needed. Due to the steady nature of the

problem this is explicitly give by exp[£2(t — s)]. [

If we consider the more general N-relaxation mechanism model of GOVINDJEE & SIMO

[10] we obtain similar results. In particular the fixed reference frame model is given by

N
S,(t) = 2VWE(C,(t)) + DEV, (1) [Z Q’;(t)} , (3.6)
k=1

where W is the “long-time” hyper-elastic stored energy function for the material, DEV,(-) =

.]0”2/3{(-) —1/3[(") : C,])C; 1}, and QF are a set of viscoelastic second Piola-Kirchhoff over-

stresses. More specifically

Qr(t) = / exp (—(t — s)/7k) % {DEV,(s) [QVW’“(C'O(S))] }ds, (3.7)

—o0
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where 7, are the relaxation times and the W*(-) are stored energy functions associated

with each relaxation mechanism. In this setting, if W¢(-) and W*(.) are isotropic, then

one has that

N
S(t) = 2YW*(C(t)) + DEV(1) [Z Qk(t)J (3.8)

k=1
where DEV(-) = J=%/3{(-) = 1/3[(:) : C]C~'} and

Q*(t) = [ exp (—(t — 8)/7k) —5—9— {R(t)R"(s)DEV [2VW*(C(s))] R(s)R" (1)} ds.

o0

(3.9)
Thus in this more general setting one also has the result that the appropriate stress for

the weak form can be computed without a knowledge of the entire motion of the cylinder.

3.5. Vascoelastic Steady State Space-Time Mapping. The viscoelastic model requires a
history of the particle strains over time. For the steady state problem, the time domain can
be held fixed and computations based on a particles history are mapped onto an angular
position as proposed first by LyNCH [1]. In other words the history data at a past time s for
a material particle currently at say an angle 3 can be found in the steady case by looking
at the state of the material located (at the current time ¢) at the angle 5 — [[£2]|(t — s).
Thus, the history of a particle is shown to be directly related to the annulus of particles

within a fixed radius in the moving reference frame. Applying this result to the viscoelastic
contribution (3.9) gives:
Q"(8) = DEV(B) 2VW*(C(3))] -

8 3 o \ |
fmlym {/ exp (“‘“ “ﬁQHTJ R(B)R" (a)DEV(a) [2VIWV*(C(a))] R(Q)RT([})da} ,
(3.10)

—T
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3.4. Viscoelastic BVP solution.

Relation (2.9) can in principle be solved by a straight-forward Newton method. How-
ever since (3.10) yields a non-local constitution the linearization of the viscous stresses is
non-standard and does not easily fit typical FEM code architectures. Thus we propose a
quasi-Newton methodology where the viscoelastic stresses DEV(¢) [Z e ] are held
fixed during a series of Newton iterations on (2.9). They are then updated based on the

final iterate through an integration of (3.10) and a new Newton sequence is initiated. This

proceeds until convergence.

A one point Euler integration rule is used to integrate (3.10),

Q*(3) = DEV(3)[2VIW*(B)]-

Zmp( i ) RUORT (81DEV(3) [25WH(C3)] RO (3]

(3.11)

where 3; = B—iAf3, Af is the angular resolution of the mesh, and N is the number of points
used in the BEuler approximation. Review of this equation shows that the viscoelastic over-
stress for a point is a weighted sum of all previous points within an annulus containing
the point of interest. Also, the weighting of the sum has an exponential decay which
may require multiple revolutions around the annulus before it decays sufficiently. Thus,
N should be chosen to include all terms which yield a significant contribution to the
viscoelastic stress. We note that each term in the series sum can be mapped directly to a

circumferential element in the finite element model.

§4. Illustrations
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In this section we provide comparisons to the work of ODEN & LIN [2] with particular
emphasis on comparing (3.4) and (3.5). These results will illustrate the necessity for a

consistently formulated viscoelastic model.

We assume 2D plane strain and use a Mooney-Rivlin constitutive relationship ﬁ/"x’(é’ ) =
Ci(Is — 3) + Co(I1~ — 3) with material constants C; = 80 (psi) and Cy = 20 (psi).
The total strain energy function is W¢(C,) = ﬁ*"’@(éo) + U(J,), where C, = JJQ/SC'O,

x(J, — 1), and & is the bulk modulus. A two field pressure-displacement for-

U(J,) =

£ et

mulation is used for the calculation of the problem with x = 1.0 x 10° (psi) to enforce
an incompressibility constraint; see SUSSMAN & BATHE [11]. The density of the material
is p = 0.036 (Ib-sec?/in'). The constitutive parameter 7 = 0.1 (sec) and v = 100 (psi).
The integration of the convolution integrals in (3.4) and (3.5) is performed in a manner

analogous to (3.11). To insure enough terms were included in the summation, we set N

such that 2 revolutions around the cylinder are considered.

We consider a problem definition that is identical to ODEN & LiN [2], with inner
radius R; = 1 (in), outer radius R, = 2 (in). A rigid frictional surface is raised such that
h = .8 (in) in Figure 1.1. The moving reference frame motion is defined by 6(¢) = ||§2]|¢
where the rate of spin [[2|| = 10 (rad/sec). In this work a 4-node bilinear element with
constant pressure is used. This is in contrast to a 9-node biquadratic element with linear
pressure used in ODEN & LIN [2]. To more accurately represent this higher order element,
a finer discretization of the mesh was employed with twice the circumferential and radial
elements. The finite element mesh constructed contains 96 circumferential elements and

6 radial elements. The Newton Raphson Method is used to solve (2.9) with tangent
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(2.11). Upon convergence of the Newton Raphson Method, the viscoelastic update (3.11)
is employed. This process is repeated until no more Newton Raphson iterations are needed
to converge the solution following a viscoelastic update.

The problem was solved in 20 load increments with each increment requiring 7 vis-
coelastic updates. The first increment required 6 Newton iterations which reduced the
residual by 12 orders of magnitude; this was typical of other load increments. The polar
components of the stress S at the Gauss points closest to the outer surface are reported in
Figure 4.1. In the figures the abscissa measures angle in degrees clockwise starting from
(X1, X2) = (2,0). We note that the stresses using Eq. (3.4) fall close to those reported
in [2] but are not exactly the same due to the different element formulation used here.
To clearly illustrate the necessity for a consistent stress formulation, we include only the
viscoelastic contribution to the stresses in Figure 4.2. We see that these results are very
dissimilar. The similarities in Figure 4.1 can be attributed to the fact that the results for

this particular boundary value problem are dominated by elastic stresses.

Remark 4.1.

For the contact and regularized friction we have utilized the formulation and properties
given by ODEN & LIN [2]. This method requires calculation of the slip velocity to

determine the friction forces. The slip velocity is,
wy = v1 + ||9£2]]h. (4.1)

where v, 1s the 1-component of the velocity of the material on the contact surface. In
our implementation, we have used 3-node contact elements, where nodes 2 and 3 are

surface nodes on the cylinder and node 1 is a fixed reference node on the flat contact
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surface. The velocity vy is determined using the following mid-point approximation

(superscripts denote node numbers):

_ ou N 2 3 Xo X1
= HQHS@’ By~ |192]|(ug - uy) (X?-X3)  (X2- X%)}

+ Xol|92]],

where Xy = 1/2(X7 + A7) and Xp = 1/2(X7 + X3). O
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§5. Closure

In this paper we have presented a formulation of steady state rolling of a viscoelas-
tic cylinder using the formalism of LE TALLEC & RAHIER [3] in conjunction with two
convolution models for finite deformation (linear) viscoelasticity. It has been shown that
the proper expressions for the stresses on the moving reference frame involve the addi-
tion of rotational terms that account for the convection of the material as the cylinder
rotates. The importance of the correction involved in using these rotational terms has
been demonstrated by looking at an example problem originally given in [2].

It is remarked in closing that the importance of the rotational terms in the constitutive
relations depends strongly on the geometry, speed of rotation, and material properties. For
instance if the radius of the cylinder is large and the relaxation times small in comparison
to the rotational speed, then the contribution to the viscoelastic stresses will only come
from points near the contact surface. For small contact areas, one could then ignore the

rotational terms as they will be close to the identity.
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