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1 Executive Summary

A large portion of PATH’s effort in the area of Advanced Vehicle Control Systems (AVCS) during the
past several years has focused on the development of theory and technologies that may significantly
increase highway safety and capacity through the use of Automated Highway Systems (AHS). To
continue with the analysis of AHS feasibility, it is necessary to perform exhaustive large scale simu-
lations that will provide information on the impact of the proposed technologies upon system safety
and capacity. In particular, it is necessary to study and evaluate how faults in a vehicle impact the
overall AHS performance and capacity, how the roadside control systems can react to these faults
and perform degraded-mode activities at the higher hierarchical levels, and how the roadside control
system can detect faults either in the vehicle or in its own infrastructure.

When the response of an AHS is being simulated, different degrees of precision are required. In some
sections of the highway the detailed behavior in each vehicle in the section must be simulated to
model vehicle or infrastructure faults, or test vehicle level fault detection and handling algorithms or
degraded mode maneuvers. This level of AHS simulation, where the dynamics of each vehicle is sim-
ulated, is called microsimulation. The AHS microsimulation software currently under development
at PATH is SmartAHS. This software package is based on the hybrid systems language SHIFT [7].

In most sections, it is convenient to model the highway using fluid-like conservation models of traffic
flow, applied to the average traffic characteristics in that section, such as density, flow, and velocity.
This level of AHS simulation is called mesosimulation. Mesoscale simulators do not provide infor-
mation about particular vehicles but are instead capable of simulating large highway networks. The
mesosimulation software used by PATH for analyzing Automated Highway Systems is SmartCAP
[5]. Although it is in principle possible to microsimulate a large scale AHS, the computational cost
is prohibitively high and, in many cases yields no advantage over mesosimulation, except for the few
sections of the highway where it is needed.

The aim of this project is to bridge the simulation gap between SmartAHS and SmartCAP, by
implementing an integrated AHS micro-meso simulation environment for simulating a large scale
AHS network, where both SmartCAP and SmartAHS run simultaneously and interact with each
other. In this simulation environment, most of the highway sections in the AHS are simulated by
the SmartCAP mesosimulation software, except for one or more sections, which are simulated by the
SmartAHS microsimulation software. Highway sections that are microsimulated using SmartAHS
are referred to as µ-windows. The topology of the entire AHS, as well as the location and length of
each µ-window is set up by the user, by means of user interface software, named mminterface. The
benefits of the meso-micro simulation environment are best realized when µ-windows are placed in
the regions where microscopic effects are of greatest interest; by allowing the remainder of the AHS
to be simulated by the more computationally efficient SmartCAP, the meso-micro software is able
to simulate the AHS at a lower computational cost than stand-alone SmartAHS.

This final report documents the theoretical design and software implementation of the integrated
micro-meso simulator. It also provides a brief tutorial on its use, including a simple AHS simulation
example.

The following tasks were executed in this project:

1. The capabilities of SmartAHS were extended by developing a simplified sensor architecture,
a simplified vehicle-roadway environment processor, and a simplified set of regulation-layer
components. Under certain conditions, the simplified set produces identical results as the full
components, and increases simulation speed 4 to 5 fold.
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2. The SmartCAP activity model was extended to include platooning and join/split maneuvers.

3. The interface between SmartCAP and SmartAHS was designed and implemented in SHIFT. A
SmartAHS component was created to schedule and monitor all aspects of the interface between
SmartCAP and SmartAHS.

4. A batch compiler and a MATLAB-based visual interface were created to allow the user to input
simulation parameters, define the highway topology, and view both mesoscale and microscale
simulation outputs simultaneously.

5. The developed integrated meso/microscale simulation software was tested for different scenar-
ios. The PATH hierarchical control architecture, specifically the link, coordination, regulation,
and physical layers, was tested in the meso-microscale simulator.

The meso-micro simulator is well-suited for testing the response of an AHS to situations that are
characterized by localized microscale phenomena, such as: the stalling of an individual vehicle, over-
saturation of a particular artery due to external factors (e.g. a sporting event), emergency vehicle
maneuvers, and changes in highway capacity due to different on-ramp metering policies. The use
of the software is described in Sec. 6 using a simple simulation example. The example shows a
traffic density wave propagating forward from the mesoscale region into the microscale region, thus
demonstrating the functionality of the software.

2 Introduction

At present, the simulation tools available for analyzing highway traffic behavior, and specifically
Intelligent Vehicle Highway Systems (IVHS), generally fall into two categories, according to their
level of modeling detail: microscale and mesoscale simulators.

Mesoscale simulators are usually based on fluid-like models of traffic flow, applied to average traffic
characteristics such as density, flow, and velocity. They do not provide information about particular
vehicles but are instead capable of simulating large highway networks. Microscale simulators are
based on models of individual vehicle dynamics, where the behavior of each vehicle depends on its
locally perceived environment.

Currently, the mesosimulation software used by the California PATH program for analyzing Auto-
mated Highway Systems (AHS) is SmartCAP [5]. This software uses a conservation model of traffic
density, coupled with rules of traffic flow behavior given by a finite set of vehicle activities (e.g. join,
cruise, change lane). SmartCAP allows monitoring of aggregate traffic quantities in an AHS subdi-
vided into sections of approximately 0.5 miles. This level of abstraction has been proven adequate
for reproducing large scale traffic phenomena such as upstream moving waves of congestion and dis-
turbances due to emergency vehicles [19, 20]. Additional traffic flow theory used in the development
of SmartCAP can be found in [6], and is briefly described in Section 3.1.

The highway microsimulation software currently under development at PATH is SmartAHS. This
software package is based on the hybrid systems language SHIFT [7]. SmartAHS was designed to
demonstrate several AHS concepts, including the PATH hierarchical control architecture [22, 23].
This architecture divides the task of controlling vehicles in an AHS into a hierarchical structure.
The upper levels of the architecture (network and link) are devoted to route planning and flow man-
agement across large expanses of highway. The lower levels (coordination, regulation, and physical)
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exist onboard each vehicle, and are responsible for vehicle-based communications, maneuver selec-
tion, motion control, and actuation. Currently, all AHS control layers, except for network, have been
implemented in the SmartAHS environment, and ongoing effort is focused on implementing extended
degraded mode structures [15].

In order to simultaneously capture the occurrence of small scale events and their impact on the
larger highway, through adjustments to higher level controls and the propagation of congestion,
multiple degrees of modeling abstractions are needed. There are many traffic scenarios that are
characterized by both mesoscopic and microscopic effects. For example, in an AHS, it is important
to study and evaluate how faults in a vehicle impact the overall AHS performance and capacity,
how the roadside control systems can react to these faults and perform degraded-mode activities
at the higher hierarchical levels, and how the roadside control systems can detect faults either in
the vehicle or in their own infrastructure. Strategies have been developed to permit emergency
vehicle (EV) transit through an AHS, specifically in the case of stopped traffic [19, 20, 21]. In a
realistic situation, EV transit will depend not only on maneuvers of nearby vehicles but also upon
the effects of traffic blockage on the entire highway. Another example involves on-ramp metering.
Entrance control schemes may be used to determine optimal on-ramp metering rates for a highway
system. Such rates are a function of the overall state of the highway, but implementation of entrance
control laws takes place at the level of individual vehicles. Although it is in principle possible to
microsimulate the entire AHS, the computational cost is prohibitively high (SmartAHS simulation
capabilities are in the range of 30 vehicles with a 25/1 real-to-simulation time ratio on a 4 processor
Sun Sparc Ultra-II computer). Furthermore, in many cases, such as the previous examples, it may
only be necessary to examine selected portions of the AHS at the microscopic scale, while mesoscale
simulation is sufficient for the remainder of the highway.

We have noted that (1) it is not possible to simulate large-scale AHS in SmartAHS in a computa-
tionally efficient manner, and (2) in many situations, we are interested in examining the behavior
of individual vehicles only at specific locations within the AHS, such as near entry and exit stations.
These observations, combined with the need for a tool that is suitable for analyzing extensive AHS
designs, have led us to develop a meso-microscale simulation environment. The meso-micro simulator

• combines the SmartAHS and SmartCAP simulation models,

• allows the user define an AHS geometry, using the SmartCAP input file format, then select
regions of highway, called µ-windows, that will be microsimulated,

• for a given highway configuration, improves simulation speed relative to a purely microsimu-
lated AHS. This is due to the fact that the portions of the AHS outside the µ-windows are
simulated by SmartCAP, and unlike SmartAHS, the simulation cost of SmartCAP does not
increase with the number of vehicles in simulation,

• facilitates simulation set-up and executable file generation through its batch compiler, and
enables visualization of both meso and microscale simulation outputs via its Matlab-based
GUI.

The remainder of this report details the development and design of the meso-micro simulator. Sec-
tion 3 gives background information on both the SmartCAP and SmartAHS models. In Section 4,
secondary accomplishments of this project, in particular the extended versions of SmartCAP and
SmartAHS, are discussed. The primary contribution of this project is the meso-micro simulator, and
the meso-micro software design is described in detail in Section 5. Section 6 contains instructions on
how to set up and run a simple simulation example.

4



3 Background

The main focus of this project was the development of an interface between the mesoscopic AHS
simulator SmartCAP and the microscopic simulator SmartAHS. In this section we review the main
elements of the SmartCAP and SmartAHS simulation models, in order to familiarize the reader with
each simulator, and to introduce notation and terminology that will be used in subsequent sections.

3.1 The SmartCAP model

The SmartCAP model is an example of a mesoscopicmodel of traffic behavior. Its level of abstraction
falls between that of a microscopic model, such as SmartAHS, and a macroscopic model, which may
consist of a series of interconnected links and nodes. A detailed description of SmartCAP can be
found in [5]. Here we give a brief review of the model, and introduce the notation used in Sections 4.1
and 5.4.

SmartCAP is a discrete time / discrete space model. Typically, the highway is divided into sections
of about 250 meters in length. The time interval is on the order of 10 seconds. The behavior of
automated traffic in SmartCAP is governed by two principles: the conservation of vehicles, and the
interaction between the supply of space and the demand given by the activity plan. Automated
vehicles within the AHS are classified into types, according to their origin and destination. Each
type has its own activity plan, which may vary with time and space. The set of all activity plans is
issued by the Traffic Management Center (TMC), which operates according to user defined link layer
control laws, and is assumed to have complete information of the state of the AHS. Each activity
plan consists of a set of probabilities for engaging in a maneuver during the upcoming time interval.
For example, an activity plan may specify that vehicles of type j, in section i, have the following
probabilities:

• 30% will request a split from their current platoon

• 20% will change lanes to the right

• 50% will continue to cruise without change.

Each maneuver or activity has an associated space and time requirement. For example, cruising
as a leader requires more space than cruising as a follower. Changing lanes requires space in both
the current and adjacent lanes. The amount of space used by an activity may vary with speed.
The principle of space supply versus activity demand dictates that the total space required by the
activity plan cannot exceed the available space in each section, for each time interval. If it does,
certain activities are rejected according to rules of prioritization, until the space constraint is satisfied.

Notation:

∆t ... Duration of the time interval
L(i) ... Length of section i
n(i,j,k) ... Number of vehicles in section i, of type j, time interval k
nl(i,j,k) ... Number of leaders in section i, of type j, time interval k
nf (i,j,k) ... Number of followers in section i, of type j, time interval k
v(i,k) ... Average traffic speed in section i during time interval k
q(i,j,k) ... Number of vehicles of type j leaving section i, during time interval k
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ql(i,j,k) ... Number of leaders of type j leaving section i, during time interval k
qf (i,j,k) ... Number of followers of type j leaving section i, during time interval k
APS(i,k) ... Average platoon size in section i during time interval k

The following relations exist among these variables:

n(i,j,k) = nf (i,j,k) + nl(i,j,k)

q(i,j,k) = qf (i,j,k) + ql(i,j,k)

q(i,j,k) = v(i,k) n(i,j,k)
∆t

L(i)

APS(i,k) =

∑
j n(i,j,k)∑
j nl(i,j,k)

The update of the traffic state at every time step is carried out in four steps. First, constraints are
applied to the number of maneuvers commanded by the TMC. This results in an estimate of the
number of completed maneuvers. Then an intermediate state is calculated by assuming that these
maneuvers are completed without forward movement of traffic. The intermediate state, denoted
below with superscript bars, accounts for lateral motions (lane changes) and changes in the numbers
of leaders and followers through joins and splits. The third step is to compute a speed for the
upcoming time interval as the minimum between the command by the TMC and the maximum
allowable speed due to the availability of space in the downstream section. Finally, vehicles are
moved downstream according to the speed of the third step.

Additional notation:

Πm(i,j,k) ... Proportion of vehicles of type j completing maneuver m in section i, during time
interval k. m can take values c, l, r, s or j, representing cruise, lane change
left, right, split or join.

Πm
TMC(i,j,k) ... Maneuver proportions requested by the TMC

Λs
m(j) ... Average space required by vehicles performing maneuver m, in their current lane

Λr
m(j) ... Average space required by vehicles performing maneuver m,

in the lane to their right
Λl

m(j) ... Average space required by vehicles performing maneuver m,
in the lane to their left

TS(i) ... Total space (capacity) of section i
r(i) ... Lane to the right of lane i
l(i) ... Lane to the left of lane i
u(i) ... Lane upstream of lane i
d(i) ... Lane downstream of lane i

Step 1) SmartCAP computes Πm(i,j,k) for every i,j and m. This is done by first checking whether
the following constraint is satisfied in every section i:

∑
j

∑
m

[
n(i,j,k)Πm

TMC(i,j,k)Λs
m(j) + n(r(i),j,k)Πm

TMC(r(i),j,k)Λl
m(j) + n(l(i),j,k)Πm

TMC(l(i),j,k)Λr
m(j)

]
≤ TS(i)
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If so, then Πm(i,j,k)’s are set to Πm
TMC(i,j,k). If not, the proportions are reduced. The set of rules for

estimating the number of completed maneuvers has been extended to include platooning behaviors
in MOU 383. These extensions are explained in detail in Section 4.1.

Step 2) The intermediate state is computed as:

n̄(i,j,k) = n(i,j,k) +Πl
(r(i),j,k)n(r(i),j,k) +Πr

(l(i),j,k)n(l(i),j,k) (1)

Step 3) The average speed is computed as: v(i,k) = min(vTMC(i,k) , vspace(i,k)), where vspace(i,k) is the
speed at which the downstream section fills to capacity, and vTMC(i,k) is the velocity command from
the TMC.

Step 4) Vehicle conservation is applied:

n(i,j,k+1) =
(
1− v(i,k)∆t

L(i)

)
n̄(i,j,k) +

(
v(u(i),k)∆t

L(u(i))

)
n̄(u(i),j,k) (2)

On-ramp and off-ramp flows are treated similarly.

3.2 The SmartAHS model

SmartAHS, a microsimulation framework for Automated Highway Systems, has been developed
by the California PATH program using the hybrid systems language SHIFT [7]. The SmartAHS
software used in this project is an extended version of a library provided by PATH through [17]. The
basic SmartAHS library defines the highway layout, vehicle dynamics and sensor and communication
structures [4]. The general structure of SmartAHS is shown in Fig. 1.

Figure 1: A schematic of SmartAHS architecture

The microsimulation of individual vehicles is based on the PATH multi-layer architecture [22, 23],
shown in Fig. 2. This architecture separates the control activities of an AHS into several levels.
The network and link layers are concerned with routing and regulating aggregate traffic flows over
large-scale highway systems. The coordination, regulation, and physical layers reside on-board each
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automated vehicle. These lower layers handle vehicle-based communications, maneuver selection and
coordination, motion control, and actuation.

All control layers of the PATH hierarchical control architecture, except for network, have been
implemented in SmartAHS. Three of the layers (link, coordination and regulation) were incorporated
into SmartAHS under MOUs 238/310 and 287/311; none of these layers are present in the original
SmartAHS library provided through [17].

Network

Link

Coordination

Regulation

Physical

order
maneuver

maneuver 
complete

sensor
signal

control
signal

routing
table

velocity, 
activity
plans

traffic
info.

incidents

Figure 2: PATH Hierarchical Architecture

One of the primary motivations for developing the meso-micro simulator was our observation of
the computational inefficiency inherent in SmartAHS. SmartAHS simulation capabilities are in the
range of 30 vehicles with a 25/1 real-to-simulation time ratio on a 4 processor Sun Sparc Ultra-II
computer, which indicates that the computational cost of microsimulating an entire AHS, which
could include hundreds or thousands of vehicles, is prohibitively high. The low efficiency of the
original SmartAHS library, in addition to providing incentive for the integration of SmartCAP and
SmartAHS, led us to develop simplified versions of the communication structure, the vehicle-roadway
environment processor (VREP), the sensor environment processor (SEP), the vehicle radar, and the
regulation-layer control systems, as part of MOU 383. These simplified components are described in
Sec. 4.2, while the version of SmartAHS developed under MOUs 238/310 and 287/311 is reviewed
in this section. Additional detail on the version of SmartAHS described in this section can be found
in the appendix of [24].

3.2.1 Physical Layer

The physical layer consists of vehicle dynamics, sensor and actuator dynamics, and other physical
devices. In the SmartAHS library, there are three different types of vehicle dynamics, allowing for
simulations of varying complexity: simple dynamics (kinematics), 2D (flat highway) vehicle dynam-
ics, and 3D (complete) vehicle dynamics [4]. For this project, we have used the simple kinematic
vehicle dynamics exclusively, in order to reduce the computational load. The kinematic vehicle dy-
namics lumps together the steering, engine, and powertrain dynamics. For the braking actuator, a
first order dynamic equation is used to simulate the actuator time delay.

8



3.2.2 Regulation Layer

The regulation control laws are based on the algorithm given by [13], and most of the implementation
in SHIFT can be found in [11]. The structure of the implementation is illustrated in Fig. 3.

AUTOMATON
(e.g. RegAutoAL)

MANEUVER
CONTROLLER

(e.g. MergeController)

REGION
AUTOMATON

(e.g. MergeRegion)

COORDINATION
LAYER

ACCELERATION BOUNDS
AUTOMATON

(e.g. MergeBound)

FUNCTION
(written in C)

(e.g. vDesMerge)

DESIRED VELOCITY

Creation of maneuver
controller

Desired
acceleration
(bounded)

Desired
velocity

State

PHYSICAL
LAYER

Discrete commands
Status
Discrete commands

Current state
Desired
acceleration

SUPERVISOR

(unbounded)

AUTOMATED VEHICLE

Desired acceleration

Maneuver status
(bounded)

Region status
Desired
acceleraion
(bounded)

state
Current

Desired
acceleration
(unbounded)

Platoon leader
velocity and acceleration

Desired
acceleration
(bounded)

Sensor data

REGULATION LAYER

Figure 3: A schematic of regulation layer implementation

The regulation layer implementation consists of two sublayers: the regulation supervisor and the
maneuver control laws. The regulation supervisor selects the appropriate regulation control law
according to the commands it receives from the coordination layer. It creates the maneuver control
law automaton and initiates the maneuver, and then kills this automaton when the maneuver is
completed. The maneuver controller consists of four parts: controller, region automaton, acceleration
bounds automaton and desired velocity function. More details on each part can be found in [11].

All normal mode regulation control laws were implemented in SmartAHS as part of MOUs 238/310
and 287. Lead, merge and split maneuvers are based on the control algorithm given in [13], the follow
controller is given by [18], and the changelane controller uses the same safety criterion given by [2]
along with a simplified stable lateral motion control. Safety is guaranteed by this controller, which
is different from that implemented in SmartPATH [8], for lane change.

3.2.3 Coordination Layer

The coordination layer design is based on that of SmartPATH [8] and the coordination protocol
designs of [12] and [22].
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Link Layer

Regulation Layer

Regulation Supervisor(Type RegAutoAL)

LAN
Communication

Transmitter

Receiver

Capability information

Parameters information

Fault information

Coordination 

Supervisor

maneuver maneuver maneuver maneuver
Lead Merge Split Follow

WAN

Other 

vehicles

Figure 4: A schematic of coordination layer implementation

The coordination scheme consists of three parts: coordination supervisor, maneuver protocols and
communication design. A schematic of the coordination layer implementation is given in Fig. 4. The
coordination supervisor coordinates with different maneuver protocols and manages their initiation
and execution by communicating with other vehicles or roadside systems. Basically it is a discrete-
event system. The maneuver protocols coordinate with other vehicles to guarantee the correctness
and safety of each maneuver. There are two steady state maneuvers: lead and follow, and some
other transient maneuvers such as split, merge, and changelane. The communication system in
the AHS transmits information between vehicles and handles exchange of information between the
vehicles and the roadside system. There are two types of communication among vehicles: local area
networks (LAN) and wide area networks (WAN). The LAN is used to transmit the velocities and
accelerations of both the platoon leader and immediately preceding vehicle to each follower vehicle
in the platoon [14], and the WAN is used for passing maneuver messages among different vehicles.
The roadside system also broadcasts link layer commands to all the vehicles in the AHS.

The coordination supervisor is similar to the regulation supervisor, except it initiates maneuver
protocols instead of regulation control laws. Based on sensor information and messages received
through the communication system, the coordination supervisor initiates either a maneuver initiator
or responder. For example, in Figure 5, when the leader of platoon A receives a link layer broadcast
with a desired platoon length that favors merging, the leader’s coordination supervisor can instantiate
a merge maneuver initiator, then send out a merge request message to the leader of the downstream
platoon B. When the coordination supervisor of the leader of platoon B receives this message, it
will initiate a merge maneuver responder if it is not involved in another maneuver. If it is unable
to engage in a merge, for example because it is already performing a split, it will send a rejection
message, and the maneuver will be aborted. Otherwise an acknowledgment message will be sent and
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the appropriate regulation layer controllers will be activated. Once the merge maneuver concludes,
the leader of platoon A will become a follower and execute the follower protocol, and the leader of
platoon B will become the leader of the new platoon.

The maneuver protocol consists of the coordinated actions among the vehicles involved in a maneuver.
For most of the transient maneuvers such asmerge, split, and changelane, two protocols are needed for
accomplishment of the maneuver: the maneuver initiator and responder. However, for steady-state
maneuvers such as lead and follow, one protocol is enough.

The implementation of communication in SmartAHS is based on the structure proposed by PATH
staff and is different from that of SmartPATH [8]. The communication components must model each
layer of the open systems interconnection (OSI) reference model [9]. The OSI structure provided
by the library [16] is very complex; in order to increase simulation speed, we used the simplified
communication structure developed under MOUs 238/310, 287/311 and 312. In this version of the
communication model, vehicle control is integrated with its own communication devices at the mes-
sage level. For coordination layer communication, the components of the communication structure
include: message, transmitter, receiver, and a monitor with a message queue. These components
interface with the coordination supervisor which processes one message from the queue at a time. A
message consists of originating vehicle ID, destination ID and message string.

v

Platoon A Platoon B

Platoon C

C1C1 C2C2

Figure 5: Message level communication schematic

When one coordination control protocol initiates a request for a maneuver, the message will be
created and sent to the transmitter. The transmitter broadcasts the messages to the specific vehicles
or roadside link layer control systems involved in the maneuver. When the receiver accepts the
message it will pass it through to the coordination controller. The monitor works as a centralized
component for the physical layer in the communication. The monitor functions as a representation
of a set of users adopting the same physical medium; in addition, it models channel properties and
keeps track of the transmitters sharing the channel. Also the monitor models the connection type
(point to point or broadcast channel). The vehicle ID is passed as part of the vehicle to vehicle
communication.

Figure 5 shows the two types of communication that can exist between vehicles in SmartAHS. C1
denotes intraplatoon communication; for example, if the third vehicle in platoon A wants to split, it
sends the split request to the leader of the platoon by communication type C1. This type of message
can be broadcast using the point-to-point connection since each vehicle in a platoon knows the ID of
the leader. Type C2 communication models communication among different platoons. This type is
required to maintain string stability of the platoon. The implementation of communication between
the vehicles and the roadside system is similar to that of the coordination layer.
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3.2.4 Link Layer

The link layer of the AHS hierarchy is dedicated to the management of traffic over large regions, or
links, of an automated highway. A link is assumed to be a stretch of highway, in between entrances
and exits, which may be subdivided into one or more ∼500m sections. The link layer control system,
as implemented in SmartAHS, consists of four main structures:

• a traffic optimizer, which determines desired velocities and lane-change profiles for a single link
of the highway. The optimization algorithm is based on the method described in [10]. The
optimization repeats at a fixed time interval (e.g. every 5 min).

• a stabilizing controller is based on the design in [3], and implemented as the SmartAHS com-
ponent FlowController. This controller determines the commanded velocity and lane-change
proportions for vehicles in the link. These commands are chosen to stabilize the actual link
velocities and lane-change rates about the desired values given by the link optimizer.

• a communications module, LinkTransmitter. The link transmitter component transmits speed
and activity proportion commands (e.g. the proportion of vehicles that should change lane)
to the vehicles in a section. For link layer message processing, each car is equipped with a
LinkMonitor. The link monitor receives the periodic broadcast and processes it. In the case of
activity proportions, the link monitor “tosses a coin” to set an activity flag. The coordination
supervisor interprets this flag together with the vehicle’s state to determine whether to execute
the command, which originated from the proportion.

• a traffic monitor, DensityChecker, that records the vehicle densities and lane change propor-
tions in each section of the link. These measurements are required for the stabilizing control
calculations.

Fig. 6 shows a link, divided into several sections, along with the roadside components associated with
each section. Using the measured section densities, Ki−1, Ki, Ki+1, and the lane-change rate matrix,
Ni, provided by the traffic monitors, along with the desired density, velocity, and lane change rates,
Kd,i, Vd,i, Nd,i, computed by the traffic optimizer, the stabilizing controller for section i periodically
calculates commanded velocities and lane-change rates, Vc,i, Nc,i, which are broadcast to the vehicles
in that section via the LinkTransmitter. More detail on the link layer stabilizing controller can be
found in [3].

4 Supplementary Accomplishments of MOU 383

In addition to the primary task of developing the dual-scale simulator, MOU383 included a number
of secondary tasks, which are described in this section. These tasks were intended to further the
development of the SmartCAP and SmartAHS models.

4.1 Extension of SmartCAP Capabilities

The equations underlying the SmartCAP model, and the notation employed in this section are
described in Section 3.1.
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Figure 6: Schematic of SmartAHS link layer components

SmartCAP was originally written for scenarios involving only independent vehicles. That is, it only
allowed 1-vehicle platoons, or free agents. Later developments extended the model to include basic
platooning maneuvers such as join and split, but did not account for several important constraints on
the number of maneuvers that can be completed. An improved version of SmartCAP was developed
under MOU 383 to more accurately model platooning in the AHS by incorporating constraints on
maximum platoon size and the maximum number of completed maneuvers. The update required the
definition of an extended state (segregating leaders and followers), and various checks performed on
the activity plan issued by the TMC (Traffic Management Center). Equations 1 and 2 of Section 3.1
were replaced with Eq. 3 and 4 below:

n̄(i,j,k) = n(i,j,k) +Πl
(r(i),j,k)n(r(i),j,k) +Πr

(l(i),j,k)n(l(i),j,k) (3)
n̄l(i,j,k) = nl(i,j,k) + (Πs

(i,j,k) −Πj
(i,j,k))n(i,j,k) +Πl

(r(i),j,k)nl(r(i),j,k) +Πr
(l(i),j,k)nl(l(i),j,k)

n̄f (i,j,k) = nf (i,j,k) − (Πs
(i,j,k) −Πj

(i,j,k))n(i,j,k) +Πl
(r(i),j,k)nf (r(i),j,k) +Πr

(l(i),j,k)nf (l(i),j,k)

n(i,j,k+1) =
(
1− v(i,k)∆t

L(i)

)
n̄(i,j,k) +

(
v(u(i),k)∆t

L(u(i))

)
n̄(u(i),j,k) (4)

nl(i,j,k+1) =
(
1− v(i,k)∆t

L(i)

)
n̄l(i,j,k) +

(
v(u(i),k)∆t

L(u(i))

)
n̄l(u(i),j,k)

nf (i,j,k+1) =
(
1− v(i,k)∆t

L(i)

)
n̄f (i,j,k) +

(
v(u(i),k)∆t

L(u(i))

)
n̄f (u(i),j,k)

The computation of the number of completed maneuvers in the single-lane platooning and multiple-
lane platooning cases is explained below.

4.1.1 Single lane platooning

Join and split maneuvers are treated similarly to the original lane change maneuver in SmartCAP.
As described in Section 3.1, they are used to compute an intermediate state (Eq. 1), which assumes
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completion of a portion of the total number of maneuvers requested by the TMC. The intermediate
state is then propagated downstream according to the speed determined by the velocity plan and the
constraint on available space (Eq. 2). The modifications implemented under MOU 383 are related
to the estimation of the number of completed joins and splits. Previously it was assumed that all
joins and splits requested by the TMC were completed. This led to some unrealistic situations;
for example, the number of splits in a section was allowed to exceed the number of followers. The
restrictions of the improved version are based on the following assumptions:

1. Each split involves at least one leader and one follower.

2. Each join involves at least two leaders.

3. Every leader can be involved in at most one join or split.

4. The number of joins and splits may not cause the average platoon size to exceed the maximum
platoon size.

5. Splits and joins are in fair competition for completion as long as the maximum platoon size is not
exceeded. If maximum platoon size is exceeded by the TMC command, splits are preferred.
Fair competition means that the ratio of completed joins to completed splits equals that of
requested joins to requested splits (ρ in Eq. 5).

The problem of estimating the number of completed joins and splits in each section was posed as a
constrained optimization. The objective is to maximize the number of completed maneuvers, without
exceeding the number of maneuvers requested by the TMC, and conforming to a series of constraints
derived from the assumptions listed above. The following notation is used:

For every highway section i, and every time interval k:

ns(i,k) =
∑

j

ns(i,j,k) . . .Number of completed splits

nj(i,k) =
∑

j

nj(i,j,k) . . .Number of completed joins

tf (i,k) =
∑

j

tf (i,j,k) . . .Total number of followers

tl(i,k) =
∑

j

tl(i,j,k) . . .Total number of leaders

dj(i,k) =
∑

j

n(i,j,k)Πj
TMC(i,j,k) . . .Number of joins requested by the TMC

ds(i,k) =
∑

j

n(i,j,k)Πs
TMC(i,j,k) . . .Number of splits requested by the TMC

In the above definitions, the index j represents vehicle types, or different OD pairs sharing the same
section. Eq.(5) then represents the problem to be solved for every section i and time interval k
(indices i and k have been omitted).
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max(ns + nj) (5)
subject to : 2nj + ns ≤ tl

ns ≤ tf

nj

ns
=

dj

ds
= ρ

ns ≥ 0
nj ≥ 0
ns ≤ ds

nj ≤ dj

Additionally, the solution must be such that the resulting average platoon size (APS) does not exceed
the maximum average platoon size (MPS). In SmartCAP, the problem is solved in two steps:

Step 1) Find a solution which ignores the maximum platoon size constraint (i.e. solve Eq.(5)). If
this solution yields a feasible average platoon size then it is kept. A solution to problem (5) is given
by:

n̄s =

{
MIN

[
tl

1+2ρ , tf , ds

]
if ds �= 0

0 if ds = 0

n̄j =

{
ρ × n̄s if ds �= 0
MIN

[
1
2 tl , dj

]
if ds = 0

The resulting average platoon size is:

APS =
tl + tf

tl + n̄s − n̄j

?≤ MPS

If APS ≤ MPS then the solution is kept. If not, we proceed to Step 2.

Step 2) Because the TMC command results in platoons sizes exceeding MPS, we can assume that
some of the joins would have been rejected, and replaced with previously rejected splits. ∆ is defined
as the number of such replacements, and is found as the minimum of three quantities. ñs, ñj are the
corrected numbers of completed splits and joins:

ñs = n̄s +∆ ≤ MIN(tf , ds)
ñj = n̄j −∆

∆ = min

[
1
2
(tl + n̄s − n̄j)

[
APS

MPS
− 1

]
; MIN(tf , ds)− n̄s ; n̄j

]
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Step 3) The total number of completed maneuvers is now used to compute the proportions of
completed maneuvers for each vehicle type. Returning to the fully indexed notation, we have:

Πs
(i,j,k) =

ns(i,k)

ds(i,k)
Πs
TMC(i,j,k)

Πj
(i,j,k) =

nj(i,k)

dj(i,k)
Πj
TMC(i,j,k)

4.1.2 Multiple lane platooning

The previous development was extended to multiple lanes by considering two additional maneuvers:
lane change left and lane change right. It is assumed that lane changes can be performed by leaders or
followers, so there is no need to limit the number of lane changes to the number of free agents (which
are currently not explicitly calculated in SmartCAP). Also, it is assumed that these maneuvers can
be completed within a single section of the AHS. This requires that followers wishing to change lanes
can separate quickly from their platoon with a short split maneuver. Thirdly, it is assumed that
there is no platoon lane change maneuver.

Additional assumptions are:

1. Each lane change maneuver occupies a platoon (leader) in the origin lane.

2. Whenever the maximum platoon size in the origin lane is not exceeded, all maneuvers are
completed in fair competition.

3. If the maximum platoon size is exceeded, a number of joins will be rejected and replaced with
other maneuvers, in proportion to their desired quantities.

4. Leader and follower lane changes both cause a loss of a follower in the origin lane and a gain
of a leader in the destination lane (i.e. no platoon lane change).

5. The average platoon size used to estimate whether the maximum platoon size will be exceeded
as a result of maneuvers is based only on the number of completed joins.

Additional notation:

nl(i,k) =
∑

j

nl(i,j,k) . . .number of completed splits

nr(i,k) =
∑

j

nr(i,j,k) . . .number of completed joins

dl(i,k) =
∑

j

n(i,j,k)Πl(i,j,k) . . .number of left lane changes requested by the TMC

dr(i,k) =
∑

j

n(i,j,k)Πr(i,j,k) . . .number of right lane changes requested by the TMC
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The optimization problem for the multi-lane case is::

max(nl + nr + ns + nj) (6)
subject to : nr + nl + 2nj + ns ≤ tl

ns ≤ tf

nj

ns
=

dj

ds
= ρ1

nr

ns
=

dr

ds
= ρ2

nl

ns
=

dl

ds
= ρ3

ns ≥ 0
ns ≤ ds

Step 1) Again, the MPS constraint has been ignored in (6). Also, the number of lane changes may be
further reduced due to insufficient space in the adjacent lane. The maximizing solution to equation
(6) is:

n̄s =

{
MIN

[
tl

1+2ρ1+ρ2+ρ3 , tf , ds

]
if ds �= 0

0 if ds = 0

n̄j =

{
ρ1 × n̄s if ds �= 0
βdj if ds = 0

n̄r =

{
ρ2 × n̄s if ds �= 0
βdr if ds = 0

n̄l =

{
ρ3 × n̄s if ds �= 0
βdl if ds = 0

with β = MIN

[
tl

dl + dr + 2dj
, 1.0

]

Step 2) Again we check the APS condition:

APS =
tl + tf
tl − n̄j

?≤ MPS

If so, the solution is kept.

Step 3)

If it is violated, it is again assumed that a number ∆ of joins will be aborted, and replaced with splits
and lane changes. The proportions in which ∆ is distributed among other maneuvers are denoted
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γs, γl and γr.

ñj = n̄j −∆ ≥ 0
ñs = n̄s + γs∆ ≤ MIN(tf , ds)
ñr = n̄r + γl∆ ≤ dr

ñl = n̄l + γr∆ ≤ dl

with

γs =
ds

ds + dl + dr
γr =

dr

ds + dl + dr
γl =

dl

ds + dl + dr

∆ is computed as the minimum of five quantities, with similar interpretations as in the single-lane
case:

∆ = min

[
n̄j − tl +

1
MPS

(tl + tf ) ; n̄j ;
1
γs

(MIN(tf , ds)− n̄s) ;
1
γl
(dl − n̄l) ;

1
γr
(dr − n̄r)

]

Step 3 in the multi-lane case is the same as in the single-lane case.

The implementation of these restrictions on the allowable number of joins and splits required explicit
computation of the numbers of leaders and followers in the simulation. This was not available in
previous versions of SmartCAP. The SmartCAP state was therefore expanded, and now includes
separate variables for leaders and followers, which can be tracked by the user with the following
user-functions:

double GetNLead( char *secName, int laneOffset, char *thetaName );
double GetNFollow(char *secName, int laneOffset, char *thetaName );
double GetNFreeA( char *sec‘Name, int laneOffset, char *thetaName );

4.2 Extension of SmartAHS Capabilities

As part of the SmartAHS development task, an alternative set of simplified AHS components was
developed in order to increase run-time speed, and thus allow more vehicles in the SmartAHS window.
Under certain conditions, the simplified set produces identical results as the full components, and
increases simulation speed 4 to 5 fold. Full components can still be used on particular vehicles when
detailed analysis of a particular function is required. The new components include:

• 2D vehicle/roadside environment processor (VREP): Each vehicle has associated with
it a Vehicle Roadway Environment Processor (VREP) that calculates, at each time step, the 3D
position and orientation of the vehicle relative to the road [4]. The simplified VREP identically
matches its 3D counterpart in the case of flat highways (i.e. no inclined ramps or banking
curves).

• Simple radars and sensor environment processor (SEP): The original SmartAHS library
contains elements that enable the modeling of vehicle radar in addition to other sensors. The
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RadarSensor component detects the nearest vehicle, using a radar sensor model which depends
on parameters fov, minRange, and maxRange, i.e. the field of view angle and minimum and
maximum detection ranges, and computes the range and range rate of the detected vehicle. In
order to prevent the sensors from having to search over the set of all AHS vehicles to determine
which ones are in range, the highways are divided into subsections called cells, and a vehicle’s
sensors restrict their searches to the cells immediately surrounding the vehicle. The Sensor
Environment Processor (SEP) is responsible for keeping track of the vehicles that are currently
in each cell [4].

The simplified front radar uses a lookup table to detect the front and back vehicles, and an
algorithm for updating the table when lane changes occur. The side radar remains the same,
but is only activated when needed for changing lanes. Use of these simple radars obviates
the need for an SEP, which is the most computationally intensive component of the software.
Use of the simplified sensors is highly recommended whenever more detailed analysis, such as
sensor fault detection, is not needed.

• Regulation layer controllers: As described in Sec. 3.2, each regulation layer controller
has an associated acceleration bounds automaton, e.g. the acceleration bound component for
the merge controller. This automaton carries out computations to ensure that the velocity,
acceleration, and jerk of a vehicle remain within specified limits [11].

Alternative versions of the regulation layer controllers, such as the merge and split maneuver
controllers, have been developed for this project to reduce computations by removing the
comfort constraint on the applied jerk. This represents a significant reduction in computations,
and yields nearly identical results in most cases.

The components corresponding to each of these extensions to SmartAHS are listed in Table 1.

Type Name SHIFT Filename Description
VREP vrep2D.hs 2D vehicle-roadway environment processor

SimpleRadar simpleradar.hs simplified radar
LeadController lead controller.hs lead maneuver controller
LeadRegion lead region.hs state-space region tracker for lead maneuver

MergeController merge controller.hs merge maneuver controller
MergeRegion merge region.hs state-space region tracker for merge maneuver
SplitController split controller.hs split maneuver controller
SplitRegion split region.hs state-space region tracker for split maneuver

Table 1: Modified SmartAHS components

5 Design of the meso-micro simulator

This section describes the methodology that was followed for combining SmartCAP and SmartAHS.
The approach is based on the concept of the µ-window, which is the user-defined portion of the AHS
network to be simulated in microscopic detail (see Figure 7). The domain of SmartAHS comprises the
µ-window along with some auxiliary sections called transition zones. The remainder of the network
is controlled by SmartCAP. Many aspects of the design are related to the generation of consistent
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Figure 7: µ-window

boundary conditions for the µ-window. The computation of these boundary conditions takes place at
the beginning of every meso-time step (approximately every 10 seconds), and is based on a prediction
of the mesoscopic traffic state for the upcoming time interval. A correction to the mesoscopic state,
designed to compensate for the differences between the predicted and actual boundary flows, is
outlined in Section 5.4. The various tasks of the meso-micro simulator are coordinated by a SHIFT
scheduling component shown in Figure 8. These tasks are listed below with labels that are used for
referencing throughout this section.

T0: Run SmartAHS / Pause SmartCAP for 1 meso-time interval.
T1: Consistency checks: Use recorded boundary flows to correct the meso-state.
T2: Update the link layer velocity and activity plans for the upcoming meso-time interval

using the corrected state.
T3: Compute predicted intermediate meso-state.
T4: Transfer intermediate states to SmartAHS.
T5: Record position of the last vehicle (real or ghost).
T6: Kill all remaining ghost platoons in the upstream transition zone (UTZ).
T7: Run the platoon placement algorithm using the predicted intermediate meso-state.
T8: Create ghost platoons with initial conditions given by the previous step.
T9: Complete meso-state update for the upcoming time interval.

5.1 Boundary requirements for the µ-window

One of the main design issues for the meso-micro simulator was the selection of boundary conditions
for the µ-window. These boundary conditions represent the link between the mesoscopic and micro-
scopic traffic states. They must therefore be chosen in a way that preserves compatibility between
the two models. The following requirements were established as criteria for choosing the boundary
conditions:
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1. They should be such that all density states are conserved. In particular, total numbers of
vehicles for every vehicle type, and proportions of leaders and followers (i.e. average platoon
sizes) should be preserved in the transition through a µ-window boundary. This is equivalent
to requiring that (over every meso-time interval) average flows of leaders and followers, and of
each vehicle type, should agree in the meso- and micro- environments.

2. Microscopic vehicles generated at the upstream boundary should be safe (as defined in [1])
with respect to other vehicles inside the µ-window.

3. Backward moving waves of congestion should travel uninterrupted over upstream and down-
stream boundaries of the µ-window.

An example of a possible but inadequate boundary condition would be to equate meso- and micro-
upstream flows by generating microscopic vehicles at the upstream boundary at regular time intervals
dictated by the predicted mesoscopic flow. For example, if the density in the section immediately
preceding the µ-window were 18 veh/km, traveling at a predicted speed of 100 km/hr, the predicted
flow into the µ-window over the upcoming time interval would be 0.5 veh/sec. This could be generated
by placing one vehicle at the upstream boundary of the µ-window every 2 seconds. The type and
maneuver (leader or follower) of each vehicle would depend on the proportions of the preceding
section. However, this solution may in some cases (e.g. if there is congestion inside the µ-window)
lead to a violation of the safety requirement for the upstream boundary condition. This is because
vehicles are being placed in the µ-window under the assumption that densities and speeds inside it
are evenly distributed.

The boundary conditions implemented in the meso-micro simulator satisfy the requirements outlined
above. They are:
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• At the beginning of the mesoscopic time interval, set the microscopic densities (leaders, follow-
ers, and all types) in the section immediately upstream of the µ-window to the values given by
mesoscopic state. Set the target velocity for these vehicles equal to the predicted mesoscopic
velocity.

• Set the target speed of microscopic vehicles in the section immediately downstream of the
µ-window equal to the predicted average mesoscopic speed.

These boundary conditions do not directly dictate the values of the flows at the boundaries, but
instead specify densities and velocities in the sections upstream and downstream of the µ-window.
This avoids the possibility of violating the safety requirement. Two auxiliary sections are needed
to accommodate these boundary conditions. These are the upstream transition zone (UTZ) and
the downstream transition zone (DTZ). They are described in detail in Sections 5.2.2 and 5.3, and
are represented schematically in Fig. 9. Fig. 9(a) shows a µ-window bounded by upstream and
downstream SmartCAP sections, while Fig. 9(b) shows the topological elements that comprise the
mesoscale and microscale regions of Fig. 9(a).

mesosimulation

(SmartCAP)

mesosimulation

(SmartCAP)

upstream
interface

downstream
interface

microsimulated window

(SmartAHS)

(b)

(a)

... ...

... ...

UTZ DTZ

mesosimulation

microsimulation

traffic flow

SCAP−u SCAP−d

Figure 9: (a) Conceptual drawing and (b) main topological elements of meso-micro simulator

5.2 Elements of the Upstream interface

Vehicles crossing the upstream boundary of the µ-window are influenced by traffic both inside and
outside of the µ-window. Their nominal speed is dictated by the upstream section, but may be
diminished if traffic is congested inside the µ-window. Furthermore, the backward propagation speed
of congestion is determined by the particular regulation layer control laws being used. The upstream
transition zone (UTZ) is designed to provide space for arranging vehicles with initial speeds and
velocities that are within the safety bounds of the regulation layer control laws. The total densities
placed in the UTZ are given by the intermediate meso-state (Eq. 1, task T3). This is the state
assuming that all maneuvers for the coming time interval have been completed, but no vehicles
have moved downstream. The particular arrangement of vehicles in the UTZ (initial positions and
platoon sizes) is calculated by the Platoon Placement Algorithm (PPA, task T7), which is explained
in Section 5.2.2. While in the UTZ, vehicles are not allowed to perform any maneuvers, since these
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are assumed to be completed in the intermediate meso-state. If entry into the µ-window is not
impeded by congestion, the flow measured across the upstream boundary in both meso and micro
environments should be approximately equal, with differences due to rounding and randomness in
the initial vehicle distribution. These differences are cancelled by the meso-state correction task
(T1). Vehicles in the UTZ are of a simple type called the ghost platoon, which lacks many of the
AHS vehicle components. A description of this SHIFT type is given below.

5.2.1 Ghost Platoons

The primary reason for using a specialized vehicle type in the UTZ, instead of the fully-equipped
SmartAHS vehicle type, is computational efficiency. The total number of vehicles simulated is
reduced by replacing each platoon with a single rigid ghost platoon. Another reason is that there is
no easy way in the SHIFT language to delete the subset of vehicles remaining in the UTZ at the end
of the meso-time interval (task T6).

A single ghost-platoon component contains all the information needed to create a platoon of real
vehicles (i.e. number, type and order of vehicles in the platoon), but unlike a standard SmartAHS
vehicle, a ghost platoon lacks detailed regulation and coordination layers. It travels along the UTZ,
controlled by the standard regulation layer leader law, and materializes when it enters the µ-window.
Because it is important to avoid maneuvers taking place inside the UTZ, leaders are not allowed to
request maneuvers until their entire platoon has crossed the boundary.

The behavior of a typical ghost platoon is summarized in Figure 10.

Cruise as
leader Update #vehplatoons

Create real DIE

Figure 10: Schematic of ghost platoon evolution

A ghost platoon has the following state logic and rules:

1. A ghost platoon is created in the UTZ to represent one platoon, and is modeled with a simple
vehicle dynamics and a front sensor, a leader control law and basic information for that platoon,
such as the ordering and types of vehicles. The length of the ghost platoon is equal to the
length of the platoon it represents;

2. Once a ghost platoon enters the first SmartAHS section in the µ-window, it is converted into
a real platoon according to its stored platoon information;

3. Ghost platoons have enough communication structure to deny any requests for maneuvers. For
example, a real vehicle in the µ-window could request a changelane. The ghost platoon will
ignore this request;

4. Once the real platoon has been created, its corresponding ghost platoon destroys itself;

5. Once the SmartCAP simulation time interval has elapsed, all ghost platoons have to be killed
wherever they are located in the UTZ or µ-window, and at the same time, the position and
velocity of the real vehicles farthest downstream in the UTZ are recorded to be used in the
next ghost platoon placement cycle;

6. Ghost platoons are not capable of carrying out any coordination-level maneuvers.
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5.2.2 Platoon Placement Algorithm (T7)

This algorithm translates the upstream meso-simulated densities into a list of discrete SmartAHS
vehicles, in a way that preserves the number of leaders and followers and the average platoon sizes.
It also produces initial positions for each platoon within the UTZ, and a randomized arrangement
of vehicles within each platoon.

The main steps of the algorithm are:

1. Check for available space using the intermediate number of leaders and followers in the upstream
section (n̄l(u,j,k), n̄f (u,j,k)) and the velocity (v(u,k)). These determine the integer numbers of
leaders and followers (na

l (u,j,k), na
f (u,j,k)) to be placed in the UTZ.

2. Platoon sizes: The average platoon size for the intermediate state is:

APS(u,k) =

∑
j (n̄f (u,j,k) + n̄l(u,j,k))∑

j n̄l(u,j,k)

A total of P =
∑

j na
l (u,j,k) + na

f (u,j,k) vehicles must be arranged in
∑

j na
l (u,j,k) platoons, with

an average size approximating APS(u,k). Defining ¯APS(u,k) = trunc(APS(u,k)), the following rule
is used to choose a platoon size PSn for the nth platoon in the set:

PSn =


¯APS(u,k) P − ∑n−1
j=1 PSj ≥ ¯APS(u,k)

P − ∑n−1
j=1 PSj 0 ≤ P − ∑n−1

j=1 PSj < ¯APS(u,k)

0 P − ∑n−1
j=1 PSj = 0

3. Vehicle arrangement in platoons: Once a size has been determined for each platoon, vehicle
types are selected to create the platoons. The first vehicle in the platoon is randomly chosen
from the leader types, and the rest from the pool of followers.

4. Ghost platoon spacing: once platoon size and vehicle arrangements have been determined,
initial positions for each platoon within the UTZ are calculated. The position of the trailing
real vehicle inside the UTZ determines the amount of space available for placing ghost platoons.
The space required by ghost platoons is the sum of the physical length of vehicles and the
headways required by leaders and followers to ensure safety. This space is subtracted from the
total available space to calculate the free space. This amount is then distributed randomly
among platoons.

5.3 Elements of the Downstream interface

At the downstream interface, vehicles are phased out of the microsimulation and transformed into an
equivalent mesoscopic flow. The transformation is carried out in a smooth, computationally efficient
manner by replacing microscale vehicles with ghost vehicles. Ghost vehicles are used in order to:

1. increase simulation speed, by reducing the number of SmartAHS components in simulation, as
soon as vehicles exit the µ-window;
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2. provide continuity between micro and mesosimulated regions. The ghost vehicles track the
average velocity of the downstream mesosimulated flow. In addition, the positions and velocities
of ghost vehicles are detected by the radar of vehicles in the µ-window. Since the ghost vehicles
travel at the same speed as the downstream SmartCAP flow, and the vehicles in the µ-window
maintain safe spacing behind the ghost vehicles, downstream flow conditions (e.g. traffic jams)
can be propagated backward into the µ-window.

The process of removing microsimulated vehicles from the simulation environment is illustrated by
the example of Fig. 11. In the top drawing, vehicle v1 has exited the µ-window and has just crossed
into the DTZ. The stages that follow are:

t = t 1

v1, v2 exit
and release
gv’s

v1v2

micro−window

...

v1v2

t = t 2

t = t 3

gv2 gv1 exits

merging

DTZ

gv1

at end of DTZ
gv2 exits

direction of flow

gv2

Figure 11: Example: downstream interface

1. v1 travels downstream through the DTZ until all its platoon members and/or upstream maneu-
ver partners are inside the DTZ. An upstream maneuver partner of v1 is any vehicle upstream
of v1 that is currently engaged in a pairwise maneuver with v1. In Fig. 11, v2 is merging
with v1, thus v2 is the upstream maneuver partner of v1. If v1 were to disappear, with v2
still inside the µ-window, this would cause referencing errors for v2. Thus, the maneuver pair
is kept intact until it crosses into the DTZ, where both partners can be removed safely and
simultaneously from the microsimulation.

2. When both v1 and v2 are inside the DTZ, they spawn ghost vehicles (gv1 and gv2) before
deleting themselves from the simulation environment. gv2 remains, but gv1 disappears since
only one ghost vehicle per lane (in this case gv2) is needed to preserve the car-following behavior
of vehicles in the µ-window. These events take place within time step t2.

3. gv2 travels along the DTZ until (a) it reaches the downstream end, as in Fig. 11, or (b) another
ghost appears upstream in the DTZ. In either case, gv2 is removed from the simulation.

Flow characteristics are preserved across the downstream micro-meso boundary. The average velocity
and flow rate of vehicles exiting the µ-window are used as inlet parameters for the downstream
mesosimulated region.
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5.4 Consistency enforcing adjustments (T1)

As mentioned in Section 5.1, one of the requirements on the µ-window is that the variable repre-
senting the flow across either of its boundaries have the same value in both the meso- and micro-
environments. These flows are depicted in Figure 12 with the following notation:

qCAP(u,j,k−1) ... # of vehicles in SmartCAP that crossed upstream boundary during time interval k − 1
qAHS(u,j,k−1) ... # of vehicles in SmartAHS that crossed upstream boundary during time interval k − 1
qCAP(d,j,k−1) ... # of vehicles in SmartCAP that crossed downstream boundary during time interval k − 1
qAHS(d,j,k−1) ... # of vehicles in SmartAHS that crossed downstream boundary during time interval k − 1

However, as the task scheduler reaches the end of state T0, it is not necessarily the case that
qCAP(u,j,k−1) = qAHS(u,j,k−1). There are two sources of discrepancy:

• The conversion of real densities to integer numbers of vehicles in the PPA.

• The SmartCAP assumption that density is distributed uniformly within each section.

UTZ DTZ
µ −window

qCAP(u) qCAP(d)

qAHS(u) qAHS(d)

SmartCAP

SmartAHS

Figure 12: Traffic flow across µ-window boundaries

The second source might become significant if, for example, a vehicle stops inside the µ-window,
causing a temporary queue to form near the upstream boundary. If the µ-window is relatively
empty, the SmartCAP speed prediction for the previous section is high. This translates (through
the PPA) into large initial speeds in the UTZ, and a large predicted flow between the UTZ and
the µ-window by SmartCAP. However, the flow measured by SmartAHS after the time interval has
concluded is small, due to the blockage. This discrepancy also affects the densities in the section
upstream of the window, and in this case results in an underestimation of the true speed of growth
of the queue.

The consistency enforcing adjustments to the meso-state described in this section are based on the
assumption that the flows measured in SmartAHS are more precise than the prediction made by
SmartCAP. This is the case in the example described previously, where the assumption of uniformly
distributed densities in SmartCAP caused an overestimation of the upstream boundary flow. The
SmartAHS version of the boundary flows is preferred over the SmartCAP prediction because the
representation of traffic within the µ-window is more precise in SmartAHS than in SmartCAP.

Replacing the SmartCAP flow prediction with its SmartAHS counterpart implies additional adjust-
ments to the densities and velocities in the sections upstream and downstream of the µ-window.
These are given in Eq.(7) through (10). The ← symbol is used to denote that the variable on the
left-hand-side takes the vale given by the right-hand-side. Also, the variables defined at the beginning
of this section are further divided into leaders and followers by adding subscript l’s and f ’s:.
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Upstream density adjustments :

nCAP
(u,j,k) ← nCAP

(u,j,k) + qCAP(u,j,k−1) − qAHS(u,j,k−1) (7)
nCAP

l (u,j,k) ← nCAP
l (u,j,k) + qCAPl (u,j,k−1) − qAHSl (u,j,k−1)

nCAP
f (u,j,k) ← nCAP

f (u,j,k) + qCAPf (u,j,k−1) − qAHSf (u,j,k−1)

Upstream speed adjustments :

vc
(u,k−1) ←

∑
j qAHS(u,j,k−1)∑

j n̄(u,j,k)

(
L(u)

∆t

)
(8)

Downstream density adjustment :

nCAP
(d,j,k) ← nCAP

(d,j,k) − qCAP(d,j,k−1) + qAHS(d,j,k−1) (9)
nCAP

l (d,j,k) ← nCAP
l (d,j,k) − qCAPl (d,j,k−1) + qAHSl (d,j,k−1)

nCAP
f (d,j,k) ← nCAP

f (d,j,k) − qCAPf (d,j,k−1) + qAHSf (d,j,k−1)

Boundary flow adjustments :

qCAP(u,j,k−1) ← qAHS(u,j,k−1) (10)
qCAPl (u,j,k−1) ← qAHSl (u,j,k−1)

qCAPf (u,j,k−1) ← qAHSf (u,j,k−1)

qCAP(d,j,k−1) ← qAHS(d,j,k−1)

qCAPl (d,j,k−1) ← qAHSl (d,j,k−1)

qCAPf (d,j,k−1) ← qAHSf (d,j,k−1)

The adjustments to the boundary flows should take place after the other three in order for the values
of the SmartCAP flows to correspond to those used at the previous time step. To implement these
equations, the µ-window scheduler component keeps track of the numbers of leaders and followers
that enter and exit its boundaries. This information is passed via foreign functions to a C-based
code that implements the meso-state adjustments in SmartCAP. The three C functions involved are
AHStoSC upflow(), AHStoSC corrupvel(), and AHStoSC dnflow(). They can be found in sc.c in
the SmartCAP library.

6 An example

A simple test scenario is presented here to illustrate the use of the input and output user interfaces.
The test network is shown in Figure 13. It is a straight one-lane highway with a bifurcation. The
upstream boundary is supplied with a flow of 1800 vph, divided equally among two vehicle types;
f1 takes the left branch and f2 the right. At the bifurcation, vehicles of type f2 must perform a
lane change maneuver. A µ-window was placed at the bifurcation to focus on these lane change
maneuvers.

Three input files are needed to set up the meso-micro simulation:

1) The SmartCAP input file (SCexample) containing the details of the highway geometry and traffic
demands. A µ-window spanning sections hw 16 to hw 20 is created as follows:
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Figure 13: Test network

//
HIGHWAY hw_16
LANE 1 AUTOMATED NONE_BARRIER MMUP
GEOMETRY LINE 500
//
HIGHWAY hw_17
LANE 1 AUTOMATED NONE_BARRIER MM
LANE 2 AUTOMATED NONE_BARRIER MM
GEOMETRY LINE 500
//
HIGHWAY hw_18
LANE 1 AUTOMATED NONE_BARRIER MM
LANE 2 AUTOMATED NONE_BARRIER MM
GEOMETRY LINE 500
//
HIGHWAY hw_19
LANE 1 AUTOMATED NONE_BARRIER MMDN
GEOMETRY LINE 500
//
HIGHWAY hw_20
LANE 1 AUTOMATED NONE_BARRIER MMDN
GEOMETRY LINE 500
//

The two flow types (f1 and f2) are also defined in the SmartCAP input file. The following lines
determine their origin, destination and demand flows (4 sec/veh = 900 veh/hr):

SECTION FLOW
// FlowTypeName CarType DestHwName DestLane
FLOW f1 passenger hw_35 1
FLOW f2 passenger hw_50 1
//
SECTION INFLOW
// EntryHwName EntryLane
INFLOW hw_1 1
// flowType startTime endTime interval(sec/veh) weight activity
FLOW f1 0 3600 4.00 1.0 automated
FLOW f2 0 3600 4.00 1.0 automated
//
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2) The TMC velocity plan is coded in VEPexample.c by modifying VelocityPlan(). In this example,
the link layer velocity command is maximum speed (GetVmax) throughout the highway:

void VelocityPlan()
{

char secName[28];
int secId, lane;
for ( secId=1; secId<=50; secId++ )
{

sprintf(secName,"hw_%d",secId);
lane = 1;
SetVdesired(secName,lane, GetVmax());

if( secId==17 | secId==18 )
{

lane = 2;
SetVdesired(secName,lane, GetVmax());

}
}

}

3) The activity plan in this example uses only cruise and lane change right maneuvers. Vehicles of
type f2 were assigned a 100% likelihood of changing lanes in sections hw 17 and hw 18. This was
done by modifying ActivityPlan() in TMCexample.c:

void ActivityPlan()
{

int secId, lane;
char secName[20];

% -- Activity plan for type "f1" (all cruise) -----
for ( secId=1; secId<=50; secId++ )
{

sprintf(secName,"hw_%d",secId);
lane = 1;
SetPi(secName, lane, "f1", "join" , 0.0);
SetPi(secName, lane, "f1", "split" , 0.0);
SetPi(secName, lane, "f1", "lcleft" , 0.0);
SetPi(secName, lane, "f1", "lcright", 0.0);
SetPi(secName, lane, "f1", "cruise" , 1.0);
if ( secId ==17 | secId==18 )
{

lane = 2;
SetPi(secName, lane, "f1", "join" , 0.0);
SetPi(secName, lane, "f1", "split" , 0.0);
SetPi(secName, lane, "f1", "lcleft" , 0.0);
SetPi(secName, lane, "f1", "lcright", 0.0);
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SetPi(secName, lane, "f1", "cruise" , 1.0);
}

}

% Activity plan for type "f2" ------------------
for ( secId=1; secId<=50; secId++ )
{

sprintf(secName,"hw_%d",secId);
if ( secId ==17 | secId==18 )
{

lane = 1;
SetPi(secName, lane, "f2", "join" , 0.0);
SetPi(secName, lane, "f2", "split" , 0.0);
SetPi(secName, lane, "f2", "lcleft" , 0.0);
SetPi(secName, lane, "f2", "lcright", 1.0);
SetPi(secName, lane, "f2", "cruise" , 0.0);
lane = 2
SetPi(secName, lane, "f2", "join" , 0.0);
SetPi(secName, lane, "f2", "split" , 0.0);
SetPi(secName, lane, "f2", "lcleft" , 0.0);
SetPi(secName, lane, "f2", "lcright", 0.0);
SetPi(secName, lane, "f2", "cruise" , 1.0);

}
else
{

lane = 2;
SetPi(secName, lane, "f2", "join" , 0.0);
SetPi(secName, lane, "f2", "split" , 0.0);
SetPi(secName, lane, "f2", "lcleft" , 0.0);
SetPi(secName, lane, "f2", "lcright", 0.0);
SetPi(secName, lane, "f2", "cruise" , 1.0);

}
}

}

This completes the definition of input. The next step is to compile the program using mmface. The
configuration file for mmface (mmexample) should contain the appropriate directories and filenames:

#
MESOMICROINTERFACE tmc_c_File
/mminterface/src/TMCexample.c
#
MESOMICROINTERFACE vep_c_File
/mminterface/src/VEPexample.c
.
.
.
MESOMICROINTERFACE SCinput_Input
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/mminterface/SCexample
#

The meso-micro simulator is compiled by typing:

> mmface mmexample

The actual simulation can be executed with either the command line debugger or with TkShift.
The simulation output consisted of 48 vehicle files (e.g. vehicle12.m), 2 SmartCAP output files
(SCexample d.m and SCexample sv.m), and hinfo.m. These were placed, along with SCexample.inp,
generated by mmface, in a data directory called \mmplot\ExampleData\. This information was
provided to mmplot.m:

basedir = ’c:\mmplot\’;
datadir = [basedir ’ExampleData’];
ahstopol = [datadir ’\SCexample.inp’];
captopol = [datadir ’\SCexample’];
numveh=48;

Figure 14 shows the graphic output of mmplot. The mesoscopic state is illustrated in the top half of
the figure, which clearly shows a wave of uncongested traffic flow moving through the µ-window. The
bottom half of the figure shows a microscopic view of the µ-window, which can be used to observe
lane changes in more detail.

0

10

20

Figure 14: Graphical user interface
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