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ABSTRACT OF THE DISSERTATION  

Circulating Markers of Immune Activation and Inflammation and  

AIDS-Associated Non-Hodgkin Lymphoma in the Multicenter AIDS Cohort Study (MACS) 

  

by  

Solomon Makgoeng 

Doctor of Philosophy in Epidemiology 

University of California, Los Angeles, 2018 

Professor Shehnaz K. Hussain, Co-Chair 

Professor Onyebuchi Aniweta Arah, Co-Chair 

Background: AIDS-associated non-Hodgkin lymphoma (AIDS-NHL) remains a significant 

public health challenge among HIV-infected individuals. Chronic inflammation and immune 

activation have been documented in the literature to play a crucial role in the etiology of AIDS-

NHL. We summarized results from prior work in a meta-analysis of the associations between 

prospectively measured circulating levels of immune biomarkers and the risk of NHL among 

both HIV-infected and HIV-uninfected populations. Our second study characterized the temporal 

variation in 24 pre-AIDS-NHL diagnosis circulating markers of inflammation and immune 

activation. Finally, we assessed the predictive ability of a set of 13 biomarker levels and AIDS-

NHL diagnosis. 
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Methods: Meta-analysis: Our meta-analysis identified 17 relevant studies from inception of 

major biomedical databases (PubMed, EMBASE, and Web of Science) until January 1, 2017. 

We summarized published results using random-effects models for NHL and several histological 

subtypes of NHL. Longitudinal study: we summarized the slopes and means (intercepts) of 

biomarker trajectories using linear mixed models. Prediction Models: we calculated incremental 

discrimination ability (AUC) of models including biomarkers, individually and concurrently, 

relative to models including only participant characteristics and known risk factors of NHL. 

 

Results: Meta-analysis: Summarizing 17 nested case–control studies, we found elevated levels 

of several biomarkers associated with increased odds of NHL overall: TNF-α, OR=1.18 [95% CI: 

1.04, 1.34]; CXCL13, OR=1.47 [95% CI: 1.03, 2.08]; sCD23, OR=1.57 [95% CI: 1.21, 2.05]; 

sCD27, OR=2.18 [95% CI: 1.20, 3.98]; sCD30, OR=1.65 [95% CI: 1.22, 2.22]; AIDS-NHL 

showing stronger associations with IL-6, TNF-α, sCD27, and sCD30. Longitudinal study: prior to 

HAART, geometric mean biomarkers are elevated for cases relative to controls for IL-2, TNF-α, 

IL-6, sCD27, sIL-2Rα, IP-10, CXCL13, CRP, and pre-HAART slopes were observed to be 

higher for cases relative to controls for sIL-6R, sTNFR2, IL-10. Following HAART initiation, 

geometric mean levels are elevated to a higher degree than pre-HAART for cases relative to 

controls for BAFF, TNF-α, sIL-2Rα, sTNFR2, IP-10, MCP-1, CRP. Prediction Modeling: Models 

including individual biomarkers yielded modest improvements in AUC statistics above a base-

case model that comprised NHL risk factors and other participant characteristics. A model 

including IL-6, IL-10, TNF-α, IP10, and CXCL13, concurrently performed better than all other 

models including individual biomarkers: 0-1: AUC=0.943 95% CI: 0.910, 0.975; 1-3: AUC=0.895 

95% CI: 0.856, 0.934; >3: AUC=0.836 95% CI: 0.787, 0.885. Increments in AUC above the risk 

factors only model were also improved relative to individual biomarker models: 0-1: difference in 
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AUC=0.056 95% CI: 0.021, 0.091; 1-3: difference in AUC=0.032 95% CI: 0.007, 0.057; >3: 

difference in AUC=0.074 95% CI: 0.030, 0.118. 

 

Conclusion: Each study provided further novel evidence of the association between circulating 

biomarkers and AIDS-NHL risk, as well as the utility of biomarkers in risk prediction. Our meta-

analysis provides an overarching summary of evidence that elevated circulating levels of 

several markers are associated with an increased risk of NHL. Longitudinal analyses illustrate 

novel differences between cases and controls in aspects of the trajectories of 24 markers. Our 

prediction models elucidate the ability of a set of 13 marker levels to discriminate between 

AIDS-NHL cases versus controls. The totality of new evidence we provide supports the notion 

that chronic inflammation and immune activation is associated with increased AIDS-NHL risk, 

and that these biomarkers may have utility in the development of clinical risk prediction models.  
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1 CHAPTER I: Background & Introduction 
 

1.1 Non-Hodgkin B-Cell Lymphoma 

1.1.1 Disease Definitions and Classifications 

 

Non-Hodgkin Lymphoma (NHL) comprises several histologically heterogeneous subtypes of 

malignant neoplasms of lymphocyte cells. The broadest taxonomic classification of these 

lymphoprolipherative neoplasms is whether they are derived from T-cells or B-cells, with the 

major of cases in the general population being of B-cell origin.1,2 Additional levels of 

classification consider tumor growth rate (fast growing aggressive tumors versus slow growing 

indolent tumors) and location (systemic versus central nervous system) origin. In the context of 

AIDS-associated NHL (AIDS-NHL), NHL is further classified into AIDS-defining and non-AIDS-

defining subtypes. These include diffuse large B cell lymphoma (DLBCL), primary central 

nervous system lymphoma (PCNSL), Burkitt's lymphoma, and primary effusion lymphoma 

(PEL).3,4 The incidence of AIDS-NHL in the HAART era varies by both AIDS-defining and non-

AIDS-defining subtypes,5 although the overwhelming majority of cases were AIDS-defining with 

DLBCL and Burkitt lymphoma accounting for a majority of cases reported in a recent U.S. 

population based registry study.6 

1.1.2 Epidemiology of AIDS-NHL 

 

AIDS Non-Hodgkin lymphoma (AIDS-NHL) continues to be the most frequently diagnosed HIV-

related malignancy in the U.S. and other developed countries even in the era of multi-agent 

highly active anti-retroviral therapy (HAART).6,7 NHL also remains among the most significant 

causes of AIDS-related death.7–9 The risk of developing AIDS-NHL has long been known to be 

significantly elevated in HIV-positive individuals relative to HIV-negative individuals an early 
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report showing up to a 60-fold multiple in incidence rate.10 Although the risk of developing AIDS-

NHL has decreased with effective HAART, disease risk remains elevated in those receiving 

HAART,7,11,12 in addition, overall survival has improved with HAART receipt, survival outcomes 

still fall short of those of HIV-uninfected individuals.13 In light of the excess risk for NHL among 

treated HIV positive individuals relative to the general population, research into etiologic factors 

contributing to HIV is needed. 

 

1.2 Pathogenesis of AIDS-NHL  

 

There are two primary putative pathogenic mechanisms responsible for AIDS-NHL.3,4 The first 

involves the dysregulated proliferation of Epstein-Barr virus (EBV)-transformed B-cells where T-

cell mediated regulation of B-cell growth has been impaired resulting in the development of 

EBV-positive AIDS-NHL subtypes.3 The other mechanism involves chronic B-cell activation and 

resultant processes that promote oncogenic mutations and translocations.4 There are several B-

cell activation related mechanisms. First, chronic antigenic stimulation of B-cells by HIV infection 

itself may promote B-cell hyperactivation and transformation leading to AIDS-NHL.4 B-cell 

genetic mutations due to chronic stimulation during other viral infections (including EBV, HPV 

and HCV), chromosomal rearrangements (BCL-6 and c-MYC) and deletions (6q), as well as 

mutations in RAS and p53 genes have been shown to be associated with chronic B-cell 

hyperactivation.4,14–17 Another proposed mechanism involves HIV-infected macrophages 

contributing B-cell stimulatory signals that result in a B-cell activation and malignant B-cell 

growth.14,18 Lastly, the leakage of bacteria and bacterial products from intestinal walls into the 

bloodstream (gut microbial translocation) is considered a potential cause of chronic immune 

activation, which includes increased serum levels of pro-inflammatory cytokines and 

chemokines and polyclonal B-cell activation, among HIV-infected individuals.19,20 Specific 

mechanisms that are directly responsible for the intestinal cell depletion (enterocyte apoptosis) 
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that leads to the gut permeability and subsequent microbial translocation are unclear 20, 

although several potential hypotheses exist in the context of HIV infection that point towards 

increased enterocyte apoptosis commensurate with HIV viral activity including the virotoxic 

effect of HIV gp120 and the action of increased pro-inflammatory cytokines that are implicated 

in enteropathy.20–23 Hence, microbial translocation can be considered to have a role in the 

etiology of NHL that is at least in part mediated through immune activation and inflammation. As 

such, we can expect associations between NHL and biomarkers involved in B-cell activation, 

such as cytokines, chemokines, their receptors, along with markers of gut microbial 

translocation. 

 

1.3 Risk Factors for Non-Hodgkin Lymphoma 

1.3.1 Pathogens and Comorbid Factors 

 

Immune dysfunction and associated variables are the most consistently documented risk factors 

for AIDS-NHL among HAART users.4 Low nadir CD4+ T cell count, high HIV viral load and 

duration of infection having been demonstrated to be associated with AIDS-NHL in the HAART 

era.5,6,24 While AIDS-NHL cases attributable to oncogenic viral factors have diminished in the 

HAART era, there are reports of still higher virus-linked AIDS-NHL incidence relative to HIV 

uninfected individuals, and at least one report finding no difference in virus-linked AIDS-NHL 

incidence between HAART recipients and non-recipients.3 Other morbidities reportedly 

associated with AIDS-NHL include obesity, which results in chronic low-level inflammation and 

immune responses that may influence B- and T-lymphocyte function therefore making way for 

NHL 25,26; diabetes mellitus has also been shown to be associated with NHL in the general 

population 27,28 and is also thought to potentiate B-cell lymphoma via high levels of CCL5.29  
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1.3.2 Demographic, Behavioral And Environmental Factors 

 

AIDS-NHL associations with demographic factors, particularly age, have been described in the 

general population as well as among HIV infected.30–34 Behavioral risk factors have been 

explored in the MACS, with recent and 3-year lagged recreational drug use showing increased 

hazards of AIDS-NHL by multiples of 3-4 times for weekly or more frequent use35; the use of 

other recreational drugs was not significantly associated with AIDS-NHL in this study; tobacco 

use has shown no association with AIDS-NHL in an early study of the MACS36 but recent trends 

in smoking rates suggest high tobacco use among lower socio-economic status subgroups37 

and smoking is a known risk factor for non-Hodgkin lymphoma in the general U.S. population.38 

There is some evidence linking environmental and occupational exposures to increased NHL 

risk in various populations. 

 

1.4  The Multicenter AIDS Cohort Study 

 

Details of the MACS have been described and published previously.39,40 To give a brief 

description, the MACS is a prospective cohort study comprising men who have sex with men 

designed to investigate various aspects of HIV infection including the natural history of the 

disease, risk factors for acquiring disease, and the clinical expression of infection. Participants 

were recruited at four academic centers in the U.S. (Baltimore, Maryland, USA/Washington, 

District of Columbia; Chicago, Illinois; Los Angeles, California; Pittsburgh, Pennsylvania). The 

follow-up schedule consisted of semiannual study visits wherein serological, clinical, and 

behavioral data were collected via a variety of methods including blood samples, physical 

examinations, self-report in structured interviews, review of disease registries, and confirmatory 

medical chart review. 



 
 

5 
 

2 CHAPTER II: Circulating Markers of Immune Activation and Inflammation, and Non-
Hodgkin Lymphoma: A Meta-Analysis of Prospective Studies 

 

2.1 Abstract 
 

Background: Chronic inflammation and immune activation are reported to play a key role in the 

etiology of non-Hodgkin lymphoma (NHL). We conducted a meta-analysis on the associations 

between prediagnosis circulating levels of immune stimulatory markers, interleukin 6 (IL-6), IL-

10, tumor necrosis factor α (TNF-α), CXCL13, soluble CD23 (sCD23), sCD27, sCD30, and the 

risk of NHL. 

 

Methods: Relevant studies were identified from PubMed, EMBASE, and Web of Science up to 

January 1, 2017. We calculated summary odds-ratio (OR) estimates for the association 

between one natural log increase in concentration of each biomarker and NHL using random-

effects models for NHL as a composite outcome, and for several histological subtypes of NHL. 

 

Results: Seventeen nested case–control studies were included. Elevated levels of several 

biomarkers were more strongly associated with increased odds of NHL: TNF-α, OR=1.18 [95% 

CI: 1.04, 1.34]; CXCL13, OR=1.47 [95% CI: 1.03, 2.08]; sCD23, OR=1.57 [95% CI: 1.21, 2.05]; 

sCD27, OR=2.18 [95% CI: 1.20, 3.98]; sCD30, OR=1.65 [95% CI: 1.22, 2.22]. In stratified 

analyses, IL-6, TNF-α, sCD27, and sCD30 were more strongly associated with NHL in HIV-

infected individuals compared to HIV-uninfected individuals. Between-study heterogeneity was 

observed across multiple biomarkers for overall NHL, and by subtypes.  

 

Conclusion: This meta-analysis provides evidence that elevated circulating levels of TNF-α, 

CXCL13, sCD23, sCD27, and sCD30 are consistently associated with an increased risk of NHL, 

suggesting the potential utility of these biomarkers in population risk stratification and prediction.  
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2.2 Introduction 
 

Profound immune dysregulation, particularly in the setting of HIV infection or solid organ 

transplantation, is among the strongest risk factors for non-Hodgkin lymphoma (NHL).41 Among 

HIV-infected individuals, two pathogenic mechanisms have been hypothesized to contribute to 

AIDS-NHL.3,4,42 The first is the dysregulated proliferation of Epstein-Barr virus (EBV)-

transformed B cells, resulting from impairment of T-cell-mediated immunity.3 The other is 

chronic B cell activation and resultant downstream processes that promote oncogenic mutations 

and translocations.4 In the setting of solid organ transplantation, a large fraction of NHL is 

attributed to EBV; however, NHL occurrence in long-term transplant survivors appears to be 

caused by factors other than EBV.43–45 

 

 Less severe immune dysregulation, in the form of autoimmune conditions and subclinical 

immune deficiency, has been associated with increased NHL risk.41 Importantly, observational 

studies assessing associations between NHL and serologic measurements of immune markers, 

such as cytokines, chemokines, and soluble receptors, have provided evidence implicating 

alteration in these biomarkers and lymphomagenesis.25,46–48 

 

 Two narrative reviews have been published that descriptively summarize much of the 

relevant literature regarding biomarkers for NHL development,4,49 but neither quantified the 

associations of immunological markers and NHL. A recent meta-analysis of associations 

between NHL and both sCD27 and sCD30 has been published.50 In this study, we aim to 

synthesize evidence that has accumulated in the literature4,49,50 to quantify associations of 

prediagnosis biomarkers of inflammation and immune activation with subsequent NHL for a 

select set of biomarkers. We selected immune biomarkers included in prior reviews,4,49,50 which 

we hypothesize are biologically relevant to NHL etiology (interleukin [IL] 6, IL-10, CXCL13, 
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soluble [s]CD23, sCD27, sCD30, tumor necrosis factor [TNF] -α). Our synthesis of results 

through meta-analysis may contribute towards developing biomarkers for risk prediction in high 

risk populations. 

 

2.3 Materials And Methods 
 

 We conducted this meta-analysis according to the guidelines stated in the Meta-Analysis 

of Observational Studies in Epidemiology (MOOSE) statement.51 We provide a completed 

MOOSE checklist as supplementary material (Supplementary Table 2.4). 

 

2.3.1 Literature Search Strategy  
 

 We executed a literature search in MEDLINE, EMBASE, and Web of Science to 

comprehensively capture publications with dates starting from inception (1966, 1946, and 1900, 

respectively) of the databases up to January 1, 2017. We searched the databases to identify 

observational studies with prospectively collected data on serological immune markers and 

incident NHL. Our article search strategy used controlled database vocabulary where 

applicable, key words, and boolean logic to apply the following search terms and logic: "'non-

hodgkin lymphoma' AND ('interleukin 6' OR 'interleukin 10' OR 'tumor necrosis factor alpha' OR 

‘cxcl13’ OR 'cd23 antigen' OR 'cd27 antigen' OR 'cd30 antigen')". No other restrictions were 

imposed on the search. We sought additional articles from the reference lists of articles 

identified through the database search and of recent review articles,4,49,50 as well as from 

unpublished studies presented at national meetings with permission from willing investigators. A 

library information science specialist was consulted regarding database coverage and 

implementing controlled search vocabulary. 
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2.3.2 Inclusion and Exclusion Criteria 
 

 Studies were included in this meta-analysis if they met the following criteria: (1) studies 

with prospective collection of plasma or serum for measurement of immunological biomarkers; 

(2) original articles reporting odds ratios (OR), hazard ratios, rate ratios, or relative-risks as 

measures of association, or data from which an estimate of the OR could be approximated; (3) 

reported the association between any subset of prediagnosis serum biomarkers of interest and 

NHL risk or the risk of subtypes of NHL as outcomes; and (4) reported estimates adjusted or 

controlled for a minimum of age and sex, but not other biomarkers. For studies of HIV-infected 

participants, adjustment criteria included receipt of highly active antiretroviral therapy (HAART) 

and at least one marker of immunological function (e.g. CD4+ cell counts or duration of 

infection). We excluded case reports, conference abstracts, and review articles. 

 

2.3.3 Data Items and Data Extraction Strategy  
 

 The following data were extracted from each publication: the biomarker(s) being 

assessed, NHL outcome including subtypes, timing of blood draw prior to NHL diagnosis 

(prediagnosis time lag), HIV serostatus, HAART exposure, adjustment variables, sample size 

(counts of cases and controls), country where the study was conducted, the first author's name, 

publication year, and estimates of measures of association with their corresponding 95% 

confidence intervals (CIs) or standard errors for each comparison evaluated, and the document 

identification number for the publication. We also extracted the boundaries of predictor 

categories when biomarkers were analyzed as categorical predictors. Two of the co-authors 

(RSB and SBM) extracted results and information from the manuscripts of eligible studies onto 

spreadsheets, but without double entry. Authors (RSB and SBM) verified the accuracy of the 
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collected data through cross-inspection of entered data. Discordant findings were resolved by 

discussion and consensus between the authors. 

 

2.4 Data Analysis 
 

2.4.1 Data Harmonization of Published Results 
 
 Since all studies reported ORs, we natural log-transformed the ORs and estimated the 

standard errors of the log-ORs by taking the natural logarithm of the upper and lower bound of 

the 95% CIs, then dividing the difference by 3.92 (twice the 97.5th percentile of the standard 

normal distribution).52 Many publications53–59 had analyzed their predictor biomarkers on a 

continuous natural logarithm unit scale, or on a continuous scale that could be rescaled to be 

commensurate with natural logarithm units. For publications25,46–48,50,60–64 presenting ORs 

estimated with categorized predictor biomarkers, we first applied a log-transformation to the 

category boundaries, and calculated the intracategory mid-points. Using a published SAS 

macro,65 we applied a multi-step procedure66,67 that included fitting an inverse-variance weighted 

regression on the log-OR over the mid-points of biomarker categories. This allowed us to obtain 

an estimate of the change in log-odds of NHL for each logarithm-unit change in each biomarker, 

and its corresponding standard error, had the predictor not been categorized in the published 

analysis. For publications47,63 that did not present the category boundaries for biomarkers 

categorized by percentiles, we first estimated the predictor biomarker percentiles assuming a 

normally distributed natural log-transformed biomarker with the mean and the standard 

deviation estimated from available statistics of the distribution using methods previously 

described.68,69 

 

 Considering studies that estimated associations within strata defined by prediagnosis 

time lag, we collapsed the strata by calculating the inverse-variance weighted average of log-
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odds ratios over the time-intervals to produce estimates of biomarker-NHL associations for the 

composite overall NHL outcome averaged over the maximum range of prediagnosis lag time, as 

well as within broader categories of early prediagnosis time lag (defined as 6-10+ years prior to 

diagnosis), and late prediagnosis time lag (0-5 years prior to diagnosis, 0 being within the year 

of diagnosis). We also averaged results for NHL subtype outcomes by groups of subtypes, 

including diffuse large B cell lymphoma (DLBCL), chronic lymphocytic leukemia/ small 

lymphocytic lymphoma/ prolymphocytic leukemia (CLL/SLL/PLL), and follicular lymphoma (FL), 

all aggregated according to Surveillance, Epidemiology, and End Results Program (SEER) 

International Classification of Diseases for Oncology, third edition (ICD-O-3) morphology 

codes.70 

 

2.4.2 Estimation of Meta-Analytic Summary ORs 
 
 Anticipating between-study heterogeneity a priori, we fit a restricted maximum likelihood 

random-effects model71 to calculate summary ORs across studies for each biomarker. We also 

stratified the analyses by subgroups of HIV-serostatus and contrasted the OR estimates across 

serostatus subgroups by estimating a ratio-of-odds-ratios (ROR), and corresponding 95% CIs 

and p-values. Similarly, we calculated pairwise RORs, and their corresponding 95% CIs with p-

values from z-tests to compare the OR estimates between pairs of histological subtypes of NHL. 

In addition, to the extent possible, we carried out stratified analyses within strata defined by 

HAART exposure and prediagnosis time lag ranges (0-5 years and 6-10 years prior to NHL 

diagnosis). 

 

2.4.3 Estimation of Between-Study Heterogeneity 
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 We assessed the presence of statistical heterogeneity between studies by conducting 

Cochran's Q test for statistical heterogeneity. Cochran's Q test statistic is computed as the sum, 

over all studies, of the squared deviation of each log-OR from the overall summary estimate 

weighted by the variance for the given log-OR.72 The Q test statistic follows a Chi-squared 

distribution with k-1 degrees of freedom (where k was the number of studies). We chose a 

statistical significance threshold of a 2-sided p-value < 0.1 to indicate the presence of 

heterogeneity.72 We also calculated Higgins’ I2, a measure of statistical heterogeneity, as the 

proportion of between-study variance relative to overall variance (overall variance being the sum 

of between-study and within-study variance) across the observed study log-ORs.73 I2 ranges 

from 0% for no heterogeneity to 100%, with I2 <25% indicating low heterogeneity, 25%≤ I2 ≤ 75% 

indicating moderate heterogeneity, and I2 >75% signifying high heterogeneity.74 

 

2.4.4 Assessment of Publication Bias & Influential Data 
 
 We assessed publication bias by visual inspection of funnel plots75 of the meta-analytic 

summary estimates of ORs plotted against their respective standard errors for each biomarker 

included in our study. An asymmetric distribution of the plotted points exceeding the 90% 

pseudo-CI of the funnel plot indicate potential presence of publication bias. We also ran Egger's 

regression tests for each funnel plot with p-value <0.1 signaling the presence of potential 

publication bias.76 Furthermore, we quantified the potential effect of publication bias on our 

results using trim-and-fill analyses described by Duval and Tweedie.77,78 Trim-and-fill analyses 

first estimate the results of hypothetically unreported studies using the observed set of study 

results, such that the asymmetric part of the funnel plot is filled. Then, outlying study estimates 

are excluded ("trimmed") from outside of the funnel plot pseudo-CIs. Finally, meta-analytic 

summaries are re-estimated including the estimated hypothetically unpublished results to see if 

they substantially alter final summary estimates. 
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Lastly, we do not include formal assessments of publication quality in our analyses because, 

after applying our inclusion criteria, we expect limited variation in the quality of prospective 

studies retrieved, and such assessments of quality have been shown to have limited utility in 

mitigating bias in estimation of associations.79 

 

 We constructed the final analytic data sets in SAS® version 9.4, Cary, NC. Statistical 

analyses were implemented in R version 3.2.280 with the meta and metafor packages.81,82 

 

2.5 Results 
 

2.5.1 Study Selection 
 

 The flow diagram of our literature search is shown in Figure 2.1, with details of the 

included set of 17 English language papers (no foreign language papers captured by search) 

provided in Table 2.1. We further excluded 1 study58 from the analyses of IL-6 and IL-10, but 

retained it for other analyses, because the cases and controls completely overlapped with those 

of another study.54 Other included studies nested within the same parent cohorts had at most 

only partial, but not complete overlap of study subjects, and therefore were included here 

without modification. For IL-10 analyses, we further excluded another study54 because it 

categorized biomarker levels as detectable versus undetectable. Our included studies 

comprised a total of 8,684 participants (4,047 cases, ignoring sample overlap, of which 11% 

were HIV-infected, and 4,637 controls, of which 13% were HIV-infected), and considered 

biomarkers sampled over a long range of time intervals, from within the year of diagnosis to up 

to 23 years prior to NHL diagnoses (Table 2.1). 
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2.5.2 Meta-Analyses 
 

Meta-Analyses 

 

 Interleukin-6: Ten studies assessed associations between IL-6 levels and NHL. Each 

natural log-unit increase in circulating IL-6 was associated, though not statistically significantly, 

with a 22% increase in odds of NHL, OR=1.22 [95% CI: 0.97, 1.54] (Table 2.2, Figure 2.2). In 

serostatus subgroup analyses, the summary OR estimate was higher among HIV-infected 

subjects, OR=2.07 [95% CI: 1.19, 3.60], compared to HIV-uninfected subjects, OR=1.01 [95% 

CI: 0.97, 1.06], with evidence of a between the two estimates, P<0.001 (Table 2.2, Figure 2.2). 

When considering NHL subtypes (Table 2.3, Supplementary Figure 2.4), we find that levels of 

circulating IL-6 had a modest association with DLBCL and pairwise comparisons of follicular 

lymphoma versus DLBCL showed a modest difference (Table 2.3). 

 

 Interleukin-10: A total of 8 nested case-control studies assessed associations between 

circulating IL-10 levels and NHL. Our summary estimate, OR=1.24 [95% CI: 0.93, 1.63], 

suggests that each natural log-unit increase in circulating IL-10 is associated with a non-

statistically significant increase of 24% in the odds of NHL (Table 2.2, Figure 2.2). Among HIV-

infected subjects we found a moderate association with a wide confidence interval, OR=1.20 

[95% CI: 0.64, 2.24], as well as among HIV-uninfected subjects, OR=1.25 [95% CI: 0.91, 1.72], 

with no meaningful difference between the two estimates, p=0.943 (Table 2.2, Figure 2.2). 

DLBCL and follicular lymphoma showed statistically significant, but modest associations with 

elevated IL-10 levels, and we observed no substantial differences in estimates when conducting 

pairwise comparisons by subtype (Table 2.3, Supplementary Figure 2.4). 
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 Tumor Necrosis Factor-α: A set of 9 studies assessed associations between TNF-α 

levels and NHL. The overall summary estimate of OR=1.18 [95% CI: 1.04, 1.34] (Table 2.2, 

Figure 2.2) illustrates that elevated serum levels of TNF-α are associated with increased risk of 

NHL overall, increasing the odds by 18% per natural log unit. When comparing estimates 

between HIV-infected, OR=1.79 [95% CI: 1.35, 2.37], and HIV-uninfected, OR=1.12 [95% CI: 

1.02, 1.23], we found evidence of a difference in ORs between HIV serostatus groups, p=0.005 

(Table 2.2, Figure 2.2). Analyses within NHL subtypes showed evidence of associations 

between TNF-α and CLL/SLL/PLL only, with no differences found in pairwise comparisons 

between subtypes (Table 2.3, Supplementary Figure 2.4). 

 

 CXCL13: Five studies in total assessed associations between CXCL13 levels and NHL. 

A summary estimate of OR=1.47 [95% CI: 1.03, 2.08] (Table 2.2, Figure 2.2) shows that each 

natural log-unit increase in circulating CXCL13 is associated with a 47% increase in odds of 

NHL. When assessed by serostatus subgroups, the summary OR estimate among HIV-infected 

subjects was OR=2.56 [95% CI: 1.32, 4.96], compared to OR=1.35 [95% CI: 0.95, 1.92] among 

HIV-uninfected subjects with no evidence of a difference by serostatus (Table 2.2, Figure 2.2). 

DLBCL was the only subtype to show an association with NHL with some statistical confidence, 

and pairwise comparisons by subtype showed no meaningful differences (Table 2.3, 

Supplementary Figure 2.4). 

 

 Soluble CD23, CD27, & CD30: Soluble CD23, CD27, and CD30 had 4, 7, and 9 studies 

assessing its relationship with NHL, respectively. Overall, the meta-analytic estimates showed 

increased risk of  NHL associated with higher circulating concentrations of sCD23 (OR=1.57 

[95% CI: 1.21, 2.05]), sCD27 (OR=2.18 [95% CI: 1.20, 3.98]), and sCD30 (OR=1.65 [95% CI: 

1.22, 2.22]) (Table 2.2,Figure 2.3). When we compared HIV-infected versus uninfected 
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subgroups, we observed differences in biomarker associations between NHL and both sCD27 

and sCD30 (Table 2, Figure 3). Elevated levels of sCD23 were associated with DLBCL and 

follicular lymphoma, while all subtypes showed an association with elevated levels of sCD30 

(Table 2.3, Supplementary Figure 2.4). Pairwise comparisons of sCD23 associations with 

follicular lymphoma versus DLBCL showed evidence of differences; similarly, for sCD30, the 

comparison of its association with follicular lymphoma versus its association with CLL/SLL/PLL 

showed evidence of a meaningful difference. No other pairwise subtype differences were 

notable (Table 2.3). 

 

 Prediagnosis Time Lag & HAART Exposure: We conducted analyses stratified by 

early (6 to 10 years prior to NHL diagnosis) versus late collection of biomarkers (0-5 years prior 

to NHL diagnosis) (Supplementary Table 2.6). In the early period, elevated levels of IL-10 

(OR=1.10 [95% CI: 1.03, 1.17]), TNF-α (OR=1.19 [95% CI: 1.05, 1.34]), and sCD30 (OR=1.34 

[95% CI: 1.00, 1.80]) were associated with NHL, while ORs and CIs for other biomarkers 

indicated some positive but uncertain associations with NHL. In contrast, we observed 

comparatively higher OR in the late period for IL-6, TNF-α, CXCL13, sCD23, sCD27, and 

sCD30. Formal comparisons of ORs between the two prediagnosis time strata yielded no 

important differences. We were able to carry out analyses stratified by HAART exposure only for 

IL-6, sCD23, sCD27, and sCD30, with only one study57 providing an estimate for HAART 

exposed individuals (Supplementary Table 2.7). Summary estimates were generally higher 

among HAART unexposed individuals (estimates ranging from OR=1.75 [95% CI: 1.30, 2.36] to 

OR=4.72 [95% CI: 2.81, 7.93]), while the OR estimates for the HAART exposed group were 

generally lower, except for sCD27 for which the sample size was limited (N=9 HAART exposed 

cases, N=37 controls) resulting in potential sparse data bias. We also did not observe any 

evidence of meaningful differences in the OR estimates across HAART exposure strata. 



 
 

16 
 

 

 Heterogeneity: We found substantial heterogeneity in overall and subgroup (HIV 

serostatus, NHL subtypes) analyses. For analyses of the overall composite NHL outcome, all 

Cochran Q tests indicated the presence of heterogeneity (i.e. all two-sided p-values less than 

0.1), while Higgins's I2 values indicated moderate to large magnitudes of heterogeneity ranging 

from I2=63% [95% CI: 23%, 82%] to I2=91% [95% CI: 85%, 95%] (Table 2.2). When we 

conducted subgroup analyses within HIV-serostatus strata, heterogeneity measures decreased 

only modestly where calculable, with most Q tests indicating the presence of heterogeneity 

(Figure 2.2, Figure 2.3, Supplementary Figure 2.4), and I2 proportions ranging from I2=44% 

[95% CI: 0%, 76%] to I2=96% [95% CI: 90%, 99%], within the HIV-uninfected subgroup. Within 

the HIV-infected group sample sizes were small (at most n=3) rendering heterogeneity statistics 

unreliable. When we assessed associations by NHL histological subtypes, we found statistically 

detectable heterogeneity in two-thirds of comparisons (Cochran Q tests <0.1), but with ranges 

of I2 statistics that were reduced compared to those of the composite NHL outcome (Table 2.3). 

We interpret these statistics with caution since the numbers of studies included in the analyses, 

particularly by subgroups, were limited relative to recommended sample sizes for these 

measures.83 

 

 Publication Bias & Influential Data: We provide a set of funnel plots for each analysis 

for our composite overall NHL outcome (Supplementary Figure 2.5). Due to small sample sizes, 

evidence of symmetry in the distribution of meta-analytic summary ORs is inconclusive. Egger’s 

regression tests suggest the presence of potential publication bias for the OR estimates of NHL 

for IL-6, IL-10, CXCL13, sCD27, and sCD30 (p<0.1), although small samples limit the validity of 

this test. Trim-and-fill analyses indicated that studies predicted to be excluded from our 

analyses due to potential publication bias would have attenuated our estimates for all 

biomarkers, while maintaining the same direction of association (Supplementary Table 2.5). 



 
 

17 
 

Influence diagnostics show a few potentially influential studies, one study for IL-6,54 IL-10,25 and 

CXCL1356 (Supplementary Figure 2.6). 

 

2.6 Discussion 
 

 Two patterns become discernible from our analyses: (1) elevated expression of immune 

stimulatory molecules, including cytokines, chemokines, and soluble receptors, precedes an 

NHL diagnosis, and (2) the associated increase in risk is generally higher among HIV-infected 

relative to HIV-uninfected individuals. These two inferences largely corroborate what has 

previously been reported in prior independent reports. These results also suggest that HIV itself, 

due to the immune dysregulation resulting from HIV, or the subtypes that primarily emerge in 

the presence of HIV, are key factors in the association between immune stimulatory molecules 

and NHL. Further, our study findings support the use of these molecules as biomarkers for an 

immune environment that promotes NHL. 

 

 IL-6 is a pluripotent cytokine that can stimulate B cell proliferation and differentiation, 

foster cell survival, and promote tumor growth.84,85 IL-6 has also been linked to pro-inflammatory 

and Th17 immune responses, which are related to autoimmunity86,87 and are closely related to 

risks for NHL.88 We found that the positive association between IL-6 and NHL was stronger 

among HIV-infected compared to HIV-uninfected subjects, suggesting a modifying effect of HIV 

infection. The stronger associations between IL-6 and NHL among HIV-infected subjects could 

also be influenced by the higher proportion of the DLBCL histological subtype in the presence of 

HIV,42,89–91 a subtype that displayed the highest OR in our histological subtype-specific analyses 

for IL-6, particularly when compared to follicular lymphoma. Although these findings present with 

a high level of heterogeneity, they are nonetheless qualitatively consistent with the hypothesized 

etiologic role of IL-6 in the development of NHL. 
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 IL-10 is a pleiotropic cytokine with stimulatory effects on B cells, and is suspected of 

inducing lymphomagenesis by promoting chronic B cell activation.92–94 In a mouse model, IL-10 

was required for the progression of B cell lymphoma,95 and in humans, malignant NHL cells 

produce IL-10.96,97 A growing body of literature, as described in a recent meta-analysis, showed 

that IL-10 gene polymorphisms, especially 3575 T/A and 1082 A/G, were associated with 

increased NHL risk or its subtypes, including DLBCL and follicular lymphoma.98–101 Our analyses 

of NHL subtypes corroborate results from studies of genetic polymorphisms since our study also 

found an association between IL-10 and DLBCL, as well as follicular lymphoma, lending 

credence to the hypothetical function of IL-10 in lymphomagenesis. 

 

 TNF-α is a potent pro-inflammatory cytokine that can induce B cell activation, growth, 

differentiation, apoptosis, and chemotaxis.102–104 Knock-out mouse models of TNF,105 as well as 

genetic association studies in humans,93,106,107 provide evidence of the involvement of TNF-α in 

lymphomagenesis. A potential mechanism through which TNF-α is involved in 

lymphomagenesis is enhancement of B cell survival, differentiation, and proliferation mediated 

by the nuclear transcription factor (NF)-κB pathway. 93,103 We found a higher summary OR 

estimate for NHL among the HIV-infected subgroup compared to the HIV-uninfected group, 

indicating that elevated levels of TNF-α confer higher risk of NHL in the context of HIV-infection. 

In addition, we found evidence of associations between elevated levels of TNF-α and DLBCL 

and follicular lymphoma subtypes. These results are consistent with a hypothesized etiologic 

function of elevated TNF-α levels prior to the onset of NHL. 

 

 CXCL13 and its receptor, CXCR5, are required for B cell homing to follicles in lymph 

nodes,108 suggesting that aberrant CXCL13 expression may be involved in the pathogenesis of 

B cell lymphoma through abnormal chemotaxis of B cells to tissues or abnormal B cell 
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activation.109 In addition, overexpression of the receptor-ligand pair CXCR5/CXCL13 has been 

observed in B cell chronic lymphocytic leukemia,110 and follicular lymphoma cells have been 

seen to secrete CXCL13.111 We found an association between NHL and elevated levels of 

CXCL13, and while our data were insufficient to reliably compare the CXCL13 and NHL 

associations across serostatus groups, we observed a markedly stronger association among 

HIV-positive versus HIV-negative individuals. In addition, DLBCL, a subtype more prevalent 

among HIV-infected populations, showed an association with elevated CXCL13 in our study. 

These results indicate a possible role for CXCL13 in lymphomagenesis, particularly in the 

context of HIV infection. 

 

 CD23, a cell-surface receptor for the Fc portion of IgE, can be proteolytically cleaved 

from the B cell surface to produce its soluble form (sCD23).112 Through the stimulatory action of 

IL-4, IL-13, and infectious agents,113 activated B cells upregulate their expression and cleavage 

of CD23, subsequently increasing concentrations of sCD23 in serum. Serum sCD23 effects 

further B cell stimulation including increases in IL-4-mediated IgH class switch 

recombination,112,114 potentially leading to aberrant recombination which is implicated in 

lymphomagenesis. Additionally, sCD23 may also upregulate monocyte production of IL-6,115 

thereby increasing the likelihood of the development of various NHL subtypes in the context of 

autoimmune conditions.88 Contrasting the OR estimate for NHL among the HIV-infected group 

versus the HIV-uninfected group, we find no substantial differences, suggesting sCD23 may be 

a biomarker of NHL regardless of the presence or absence of HIV. Elevated levels of sCD23 

were associated with DLBCL and follicular lymphoma, with a higher OR estimate for follicular 

lymphoma relative to DLBCL, p=0.001 (Table 2.3), potentially suggesting a greater etiologic role 

for follicular lymphoma versus DLBCL. 
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 CD27 and CD30 are members of the TNF-receptor superfamily.116,117 CD27 is involved 

in the activation of both T and B cells, stimulating proliferation of T cell proliferation118 and 

inducing production of immunoglobulins by B cells.119 CD30 was first discovered, and is 

frequently expressed, on Hodgkin lymphoma Reed-Sternberg cells. It is also found expressed 

on NHL cells, particularly in anaplastic large-cell lymphoma, but is less frequently expressed in 

cells of other NHL subtypes.120 CD30 is also expressed by activated T cells, which secrete 

cytokines that induce B cell activation, differentiation, and proliferation 121,122. Cell membrane-

associated CD27 and CD30 are proteolytically cleaved to produce the soluble forms of these 

molecules (sCD27 and sCD30) found in serum. Serum concentrations of both sCD27 and 

sCD30 have been elevated among those with viral infections and autoimmune diseases.123,124 

The potential role of sCD27 in B cell immunoglobulin production, and that of sCD30 in B cell 

activation, implicates these molecules in lymphomagenesis. Similarly, our study found elevated 

levels of both sCD27 and sCD30 to be associated with NHL overall. Broken down by HIV 

serostatus groups, we found larger magnitudes of ORs among HIV-positive individuals relative 

to those who were HIV-negative, and while the estimates were imprecise due to limited sample 

sizes, this result aligns with prior findings that heightened concentrations of these biomarkers 

precedes NHL, particularly during HIV infection.125,126 In our analyses by subtype, we found that 

sCD27 was associated with DLBCL and follicular lymphoma, and sCD30 showed an association 

with all NHL subtypes. Evidence of differences in OR estimates for follicular lymphoma versus 

DLBCL, and follicular lymphoma versus CLL/SLL/PLL, for sCD23 and sCD30, respectively, 

suggest that higher concentrations of these biomarkers may play a greater role in the 

development of follicular lymphoma relative to the other markers. 

 

Temporal variations in the association between serum biomarkers and NHL may be due 

to etiologic factors or prodromal effects acting at different time intervals.54,57,126,127 We included 

exploratory analyses stratified by the early versus late collection of biomarkers. In the early 
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period, we observed evidence of associations with NHL among several biomarkers (IL-10, TNF-

α, sCD30), and notably stronger associations of several biomarkers (IL-6, TNF-α, CXCL13, 

sCD23, sCD27, sCD30) measured nearer in time to NHL diagnosis, although there were no 

meaningful differences between the two time intervals (Supplementary Table 2.6). hese findings 

are consistent with the inference that these biomarkers are elevated  several years prior to NHL, 

and also that further increases in concentrations of these biomarkers may occur in the tumor 

microenvironment as clinical detectability of malignancy approaches. 

 

 Among the studies based in HIV-infected populations, the vast majority of cases 

and matched controls were HAART-naïve. Recently, serum levels of several immune markers, 

including IL-6, were shown to be elevated in HAART naïve individuals compared to those who 

were HIV-negative, but normalized following HAART therapy.128 With the advent of HAART, the 

etiologic effect of HIV on NHL risk appears to have been attenuated, but not eliminated.4 In 

supplementary analyses, we assessed biomarker-NHL associations stratified by HAART 

exposure, and observed increased odds of NHL associated with higher elevations of biomarkers 

among the HAART unexposed relative to exposed groups for most biomarkers included in these 

analyses: IL-6, sCD23, sCD30 (Supplementary Table 2.7). We note that these analyses are 

exploratory in nature due to limited sample sizes within each stratum (N=1 for all HAART 

exposed; maximum N=3 for HAART unexposed). 

 

 Major strengths of our study include the comprehensive coverage of literature and 

biomarkers with quantitative syntheses of results, and the inclusion of studies with prospective 

collection of immune markers. Prior reports either included a limited set of biomarkers,50 or were 

descriptive in nature, thereby lacking quantitative summaries of published estimates.4,49 An 

additional strength of our study is that we included only studies that utilized a prospective-

specimen collection, retrospective-blinded-evaluation (PRoBE) design with highly comparable 
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control groups, thereby increasing our confidence in the validity of the reports. Furthermore, the 

use of multiplex assays in many of the included studies allowed several biomarkers to be 

analyzed and reported simultaneously, without regard to statistical significance, minimizing the 

'file-drawer' problem of studies hidden from publication due to results that were not statistically 

significant. 

 

 A weakness in our analyses is the modest number of studies for some biomarkers, 

which produced several limitations. First, sparse study counts limited our ability to adequately 

explore modifying factors across studies including prediagnosis time interval of biomarker 

collection, age, sex, and HAART exposure as potential modifiers of biomarker-NHL 

associations. We provide some exploratory analyses of associations by early versus late 

collection of biomarkers prior to NHL, and stratified analyses by HAART exposure, but we note 

the substantial limitations of these analyses. For example, in the lag-time stratified analyses, 

there were overlapping time intervals over which biomarkers were collected such that the 

definitions of "early" versus "late" collection were not strictly mutually exclusive. Secondly, 

estimates of heterogeneity statistics, I2 and Q, have been documented to be biased in small 

samples,83 and outliers tend to have higher influence in small samples. In addition, we did not 

find convincing evidence of potential publication bias partly due to the limited sample sizes that 

render funnel plots and Egger's regression p-values unreliable,129 but also because 

simultaneous analyses of biomarkers from multiplex assays reduce the chance of non-

significant associations going unpublished. 

 

Another limitation of our study is the intrinsic variability in the biomarker quantitation 

among the studies in our analyses. We included studies that use various assay technologies, 

with biomarkers quantitated in different laboratories following different protocols and standards. 

Breen et al. found considerable variability between multiple laboratory sites using high-
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sensitivity multiplex cytokine assays in their quantitation of 13 cytokines, both across study sites 

and multiplex assay technology, despite standardization of samples and laboratory protocols.130 

Noble et al. found significant variation in the quantitation of a standard cytokine provided to 11 

laboratories, with the mean concentrations ranging between 67% and 136% of the grand 

mean.131 An additional contributing factor to heterogeneity in results is that we were unable to 

differentiate between germinal cell versus non-germinal cell lymphomas. Since these subtypes 

differ in etiologic mechanisms and in their interactions with the immune system,132–134 we expect 

these issues to contribute to the observed heterogeneity between studies, even within our 

subtype analyses since we were unable to further stratify by germinal cell origin. 

 

 Lastly, we acknowledge that our study is susceptible to bias due to multiple statistical 

testing of summary estimates, and that multiple comparison adjustments to p-values and 

confidence intervals widen our estimated confidence interval widths,135,136 and attenuate the 

magnitudes of the p-values. However, these adjustments do not invalidate the overall qualitative 

message that, in general, levels of circulating markers are elevated prior to NHL diagnosis 

(Supplementary Table 2.8). 

 

 In conclusion, our summaries concur with the general trends in published estimates, and 

provide a systematic description of the variation in estimates of associations between NHL and 

expression of immune stimulatory molecules. Future research may further strengthen the 

inferences possible from a review such as ours by including larger sets of publications as the 

literature grows, particularly among HIV-infected populations, and pooled individual level data 

studies could allow for more robust control of confounding. Our findings provide support for the 

hypothesis that chronic immune activation is a crucial mechanism in lymphomagenesis, hence 

its biomarkers could, in the future, have utility in developing models for early detection. 
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Records identified through 
database searching 

(MEDLINE/EMBASE/WoS) 
(n = 3,161) 

17 articles 
included in meta-

analysis  

107 Records excluded due to 
duplication  

36 articles 
reviewed in full 

2 Additional records identified 
through references or 
unpublished studies 3,054 Potentially relevant 

articles identified 
for further review 

Records excluded based on 
review of titles and abstracts  

(n = 3,020) 

19 Full-text articles excluded 
 

5 specimen sampled 
 at/post NHL diagnosis 
5 unadjusted means only 
1 genetic study only 
2 review articles 
1 cerebrospinal fluid 
 samples 
1 study among children 
1 cell line study 
1 familial NHL 
1 biomarkers at diagnosis  
1 adjusted for biomarkers 
 

Figure 2.1: Flowchart for Systematic Literature Search and Selection of Studies of 

Circulating Biomarkers and NHL Risk. 
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Table 2.1: Characteristics of 17 Prospective Studies Included in the Meta-Analysis. 

Source Year a 

Location, 
Cohort, 

Enrollment 
Years b Sex Age c Biomarker(s) 

Relevant 
NHL 

Subtypes Cases Controls 

HIV 
Sero- 
status 

Pre-NHL 
Time 

Interval d Covariates e 
Purdue 60 2009 United States, 

PLCO, 1993–
2001 

M/F 55-74 sCD30 B-NHL, 
CLL/SLL, 
DLBCL, FL 

234 234 HIV- 1-10 Matched: Age 
(Baseline), Sex, Race, 
Blood Draw Date 
(Baseline), Center; 
 

Gu 61 2010 United States, 
NYHS, 1985–
1991 

F 35–65 IL-10, IL-6, 
TNF-α 

B-NHL 92 184 HIV- 0-15+ Matched: Age, Race, 
Blood Draw Date; BMI, 
Alcohol Intake, 
Smoking. 

Hosnijeh 48 2010 Italy, EPIC Italy, 
1993–1998 

M/F 35-65 IL-10, IL-6, 
TNF-α 

B-NHL 86 86 HIV- 0-10 Matched: Age 
(Diagnosis), Age 
(Baseline), Recruitment 
(Baseline) Date, Sex, 
Center; BMI, Alcohol 
Intake;  

Breen 54 2011 United States, 
MACS, 1984–
1985/1987–
1991 

M 24-60 IL-6, sCD23, 
sCD27, 
sCD30 

B-NHL, 
DLBCL 

179 179 HIV+ 0-5 Matched: Duration Of 
HIV Infection/Duration 
Since Study Entry Date, 
Expected Sample 
Availability; Age, CD4+ 
T-cells/mm3. 

Purdue 62 2011 United States, 
PLCO, 1993–
2001 

M/F 55-74 IL-10, IL-6, 
TNF-α, 
sCD27 

B-NHL, 
CLL/SLL, 
DLBCL, FL 

297 297 HIV- 1-10 Matched: Age 
(Baseline), Sex, Race, 
Blood Draw Date 
(Baseline), Center; 

Rabkin 55 2011 United States, 
NCI, 1985–
2004 

M/F 29-44 IL-10, IL-6, 
TNF-α 

B-NHL 63 181 HIV+ 0.1-2 Matched: Age 
(Diagnosis), Race, Sex, 
Blood Draw Date 
(Period), CD4+ T-
cells/mm3 (Diagnosis), 
Cohort, Sample Type; 

Vermeulen 
63 

2011 Italy, EPIC, 
1993–1998 

M/F 35-70 sCD30 B-NHL 35 36 HIV- 2-6+ Age (Baseline), Sex; 
BMI 
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Source Year a 

Location, 
Cohort, 

Enrollment 
Years b Sex Age c Biomarker(s) 

Relevant 
NHL 

Subtypes Cases Controls 

HIV 
Sero- 
status 

Pre-NHL 
Time 

Interval d Covariates e 
De Roos 56 2012 United States, 

WHI OS, 1994–
1998 

F 50-79 CXCL13, 
sCD23, 
sCD27, 
sCD30 

B-NHL, 
CLL/SLL/PL
L, DLBCL, 
FL 

491 491 HIV- 0-13 Matched: Age (Birth 
Year), Blood Draw Date 
(Baseline), Region; 

Conroy 25  2013 United States, 
MEC 
Biospecimen 
Subcohort, 
2001–2006 

M/F 45-75 IL-10, IL-6, 
TNF-α 

B-NHL, 
DLBCL, FL 

272 541 HIV- 0-11.5 Matched: Age, Sex, 
Race, Region (State), 
Blood Draw Date & 
Time, Fasting Hours 
(Pre-Blood Draw); 

Hussain 57 2013 United States, 
WIHS, 1994–
1995/2001–
2002 

F <30 - 
≥50 

CXCL13, IL-
6, sCD23, 
sCD27, 
sCD30 

B-NHL 22 78 HIV+ 0.1-4.7 Matched: Age, Race, 
CD4+ T-cells/mm3, 
Duration Since 
Seroconversion; HIV 
Viral Load, HAART, 
Smoking, HCV, 
Education. 

Purdue 47 2013 United States, 
PLCO, 1993–
2001 

M/F 55-74 CXCL13, IL-
10, IL-6, 
TNF-α 

B-NHL, 
CLL/SLL, 
DLBCL, FL 

301 301 HIV- 5-13 Matched: Age 
(Baseline), Sex, Race, 
Center, Blood Draw 
Date & Time;  

Edlefsen 59 2014 United States, 
WHI OS, 1994–
1998 

F 50-79 IL-10, IL-6, 
TNF-α 

B-NHL, 
CLL/SLL/PL
L, DLBCL, 
FL 

491 491 HIV- <3-13 Matched: Age, Blood 
Draw Date, Region; 

Vendrame 
58 

2014 United States, 
MACS, 1984–
1985/1987–
1991 

M 24-70 IL-10, IL-6, 
TNF-α 

B-NHL 176 176 HIV+ 0-5 Matched: Duration Of 
HIV Infection/Duration 
Since Study Entry Date, 
expected sample 
availability; Age, CD4+ 
T-cells/mm3.  
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Source Year a 

Location, 
Cohort, 

Enrollment 
Years b Sex Age c Biomarker(s) 

Relevant 
NHL 

Subtypes Cases Controls 

HIV 
Sero- 
status 

Pre-NHL 
Time 

Interval d Covariates e 
Bassig 46 2015 Shanghai, 

SWHS, 1996–
2000; 
Shanghai, SCS, 
1986–1989; 
Singapore, 
SCHS, 1993–
1998 

M/F 40-74 sCD27, 
sCD30 

B-NHL 218 218 HIV- 0-10+ Matched:  
SCS: Age (Baseline), 
Sex, Blood Draw Date, 
Region (Neighborhood); 
SCHS: Age (Baseline), 
Sex, Baseline Date, 
Biospecimen Collection 
Date, Dialect; SWHS: 
Age (Baseline), Blood 
Draw Date; Age, 
Smoking 

Purdue 64 2015 Finland, ATBC, 
1985–1988 

M 50-69 sCD23, 
sCD27, 
sCD30 

B-NHL, 
CLL/SLL, 
DLBCL 

272 325 HIV- 2-23 Matched: Age 
(Baseline), Blood Draw 
Date, Number of Prior 
Specimen Thaws; 
Smoking. 

Hosnijeh 50 2016 Italy, EPIC Italy, 
1993–1998; 
Sweden, 
NSHDS/VIP, 
1985–2008 

M/F 35-70 sCD27, 
sCD30 

B-NHL, 
CLL/SLL, 
DLBCL, FL 

218 218 HIV- 1-17 Matched: Age 
(Baseline), Sex, Blood 
Draw Date, Cohort, 
Center; 

Epstein 53 2017 United States, 
NHS 1989–
1990; HPFS, 
1993–1994 

M/F 30-75 CXCL13, IL-
10, IL-6, 
TNF-α, 
sCD30 

B-NHL, 
CLL/SLL, 
DLBCL, FL 

600 601 HIV- 0-10+ Age (Blood Draw), 
Race, Blood Draw Time 
of Day, Cohort 

Abbreviations (alphabetical): Alpha-Tocopherol, Beta Carotene Cancer Prevention (ATBC); B-NHL, B cell NHL; BMI, Body Mass Index (in kg/m2); 
CLL/SLL/PLL, chronic lymphocytic leukemia/small lymphocytic lymphoma/ prolymphocytic leukemia; DLBCL, diffuse large B cell lymphoma; EPIC 
Italy, Italian European Prospective Investigation into Cancer and Nutrition cohort; FL, Follicular Lymphoma; HAART, highly active antiretroviral therapy; 
HPFS, Health Professionals Follow-up Study; MACS, Multicenter AIDS Cohort Study; NCI, U.S. National Cancer Institute; NHL, Non-Hodgkin 
lymphoma; NHS, Nurses’ Health Study; NSAID, Nonsteroidal anti-inflammatory drug; NSHDS, Northern Sweden Health and Disease Study; SCHS, 
Singapore Chinese Health Study, SCS, Shanghai Cohort Study, SWHS, Shanghai Women’s Health Study; VIP, Västerbotten Intervention program; 
WHI OS, Women's Health Initiative Observational Study component. 
 
a. Year original article was published. 
b. Country or city, nesting cohort study name, and enrollment period of nesting cohort study. Years reported for Rabkin 55, were years of NHL 
diagnosis in combined NCI cohort data. 
c. Age at enrollment into the nesting cohort study. Where enrollment age not reported, age range from article descriptive statistics provided. 
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Source Year a 

Location, 
Cohort, 

Enrollment 
Years b Sex Age c Biomarker(s) 

Relevant 
NHL 

Subtypes Cases Controls 

HIV 
Sero- 
status 

Pre-NHL 
Time 

Interval d Covariates e 
d. Pre-NHL time interval refers to the range of time intervals, in years, prior to NHL diagnosis wherein venipuncture and blood sample collection was 
conducted. Lower bound of 0 means within the year of, but prior to NHL diagnosis. 
e. Matching factors listed defining matching sets used in conditional regression; additional covariates included in models listed after semicolon. 
Otherwise, covariates for unconditional logistic regression listed for some studies 53,63. Covariates listed are for the analyses of the composite NHL 
outcome. Analyses for subtype outcomes may have used different models (e.g. polytomous logistic regression), and adjusted for additional sets of 
covariates. 
f. Subjects for Rabkin 55 comprised a combination of three HIV-infected cohorts followed at the U.S. National Cancer Institute (NCI). 
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Table 2.2: Meta-Analysis Results for B cell NHL Overall and by HIV serostatus. 

 

 
All Subgroups 

 
HIV Serostatus Subgroups 

  

 

        

Meta- 
Regression 
ROR c for 

HIV+ / HIV- 
 

  
 

 
Q Test b 

 
HIV+ 

 
HIV- 

  Biomarker N OR 95% CI I2 a Q  P 
 

OR 95% CI I2 OR 95% CI I2 Pc 

IL-6 10 
1.22 

[0.97, 1.54] 
80 

[65, 89] 45.61 <0.001 
 

2.07 
[1.19, 3.60] 

82 
[44, 94] 

1.01 
[0.97, 1.06] 

0 
[0, 69] 

1.96 
[1.53, 2.50] <0.001 

IL-10 8 
1.24 

[0.93, 1.63] 
82 

[65, 90] 38.43 <0.001 
 

1.20 
[0.64, 2.24] -- 

1.25 
[0.91, 1.72] 

84 
[69, 92] 

0.96 
[0.33, 2.83] 0.943 

TNF-α 9 
1.18 

[1.04, 1.34] 
63 

[23, 82] 21.46 0.035 
 

1.79 
[1.35, 2.37] 

0 
[-,-] 

1.12 
[1.02, 1.23] 

44 
[0, 76] 

1.58 
[1.15, 2.18] 0.005 

CXCL13 5 
1.47 

[1.03, 2.08] 
89 

[78, 95] 37.00 <0.001 
 

2.56 
[1.32, 4.96] -- 

1.35 
[0.95, 1.92] 

91 
[79, 96] 

1.89 
[0.69, 5.23] 0.218 

CD23 4 
1.57 

[1.21, 2.05] 
90 

[77, 96] 29.24 <0.001 
 

1.59 
[1.23, 2.06] 

0 
[-,-] 

1.58 
[0.93, 2.66] 

0 
[0, 69] 

1.00 
[0.54, 1.87] 0.996 

CD27 7 
2.18 

[1.20, 3.98] 
92 

[87, 96] 79.67 <0.001 
 

4.93 
[3.00, 8.08] 

0 
[-,-] 

1.61 [ 
0.89, 2.93] 

84 
[69, 92] 

3.35 
[1.05, 10.71] 0.041 

CD30 9 
1.65 

[1.22, 2.22] 
90 

[84, 94] 83.01 <0.001 
 

3.69 
[2.40, 5.69] 

11 
[-,-] 

1.40 
[1.11, 1.76] 

44 
[0, 76] 

2.55 
[1.38, 4.73] 0.003 

a. Higgins' I2 statistic measuring the proportion of the observed variance between studies relative to the total variance of a set of studies. 
b. Q Test assessing the degree to which study effect sizes are concordant. 
c. The ratio of odd-ratios compares the odds-ratio for the HIV+ subgroup with that of the HIV- subgroup (HIV+/HIV-). The corresponding p-values test the null 
hypothesis of no difference between the serostatus groups. 
d. Double dash "--" and "-" denote Higgins' I2 statistics, and confidence intervals, that were not calculated due to inadequate sample size, n=1, and n=2, 
respectively. 
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Table 2.3: Meta-Analysis Results for B Cell NHL Subtypes. 

       
Comparison of Summary ORs c 

    
Q-Test b 

Summary  
OR DLBCL 

Follicular 
Lymphoma 

Biomarker Outcome N I2 a Q P OR [95% CI] ROR [95% CI] P ROR [95% CI] P 

IL-6 CLL/SLL/PLL 4 
0 

[0, 0] 0.19 0.996 
0.98 

[0.92, 1.06] 
1.15 

[0.99,1.34] 0.074 
0.97 

[0.87,1.09] 0.652 

 
DLBCL 6 

0 
[0, 74] 4.80 0.570 

1.13 
[0.99, 1.30] 1.00 

 

0.85 
[0.72,1.00] 0.044 

 

Follicular 
lymphoma 5 

9 
[0, 81] 4.41 0.492 

0.96 
[0.88, 1.05] 

  
1.00 

 
IL-10 CLL/SLL/PLL 4 

78 
[41, 92] 13.76 0.008 

1.09 
[0.88, 1.34] 

1.04 
[0.83,1.29] 0.747 

1.01 
[0.81,1.26] 0.955 

 
DLBCL 5 

45 
[0, 80] 7.28 0.201 

1.13 
[1.06, 1.21] 1.00 

 

0.97 
[0.87,1.07] 0.485 

 

Follicular 
lymphoma 5 

66 
[13, 87] 11.93 0.036 

1.09 
[1.02, 1.18] 

  
1.00 

 
TNF-α CLL/SLL/PLL 4 

0 
[0, 66] 1.34 0.854 

1.15 
[1.04, 1.27] 

0.91 
[0.73,1.14] 0.410 

1.21 
[0.89,1.65] 0.214 

 
DLBCL 5 

62 
[0, 86] 10.41 0.064 

1.04 
[0.85, 1.28] 1.00 

 

1.34 
[0.94,1.90] 0.107 

 

Follicular 
lymphoma 5 

66 
[12, 87] 11.82 0.037 

1.39 
[1.04, 1.86] 

  
1.00 

 
CXCL13 CLL/SLL/PLL 4 

77 
[36, 91] 12.81 0.012 

1.43 
[0.97, 2.11] 

1.18 
[0.65,2.12] 0.584 

1.20 
[0.61,2.37] 0.604 

 
DLBCL 4 

85 
[61, 94] 19.43 0.001 

1.69 
[1.08, 2.62] 1.00 

 

1.02 
[0.50,2.08] 0.964 

 

Follicular 
lymphoma 3 

86 
[60, 95] 14.38 0.002 

1.71 
[0.98, 3.00] 

  
1.00 

 
sCD23 CLL/SLL/PLL 2 

99 
[97, 99] 69.59 0.000 

2.62 
[0.74, 9.19] 

0.48 
[0.14,1.69] 0.253 

0.75 
[0.21,2.71] 0.664 

 
DLBCL 3 

49 
[0, 85] 3.90 0.272 

1.25 
[1.11, 1.41] 1.00 

 

1.57 
[1.19,2.08] 0.001 

 

Follicular 
lymphoma 1 -- 0.00 1.000 

1.97 
[1.53, 2.53] 

  
1.00 

 
sCD27 CLL/SLL/PLL 3 

95 
[89, 98] 39.81 <0.001 

2.03 
[0.73, 5.64] 

1.06 
[0.29,3.83] 0.927 

1.08 
[0.22,5.16] 0.927 

 
DLBCL 4 

89 
[74, 95] 26.90 <0.001 

2.15 
[0.99, 4.67] 1.00 

 

1.01 
[0.25,4.18] 0.985 

 

Follicular 
lymphoma 2 

94 
[81, 98] 16.56 <0.001 

2.18 
[0.67, 7.16] 

  
1.00 

 sCD30 CLL/SLL/PLL 4 76 12.70 0.013 1.23 1.38 0.205 1.89 0.028 
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[35, 91] [1.05, 1.44] [0.84,2.26] [1.07,3.35] 

 
DLBCL 5 

88 
[74, 94] 32.94 <0.001 

1.69 
[1.06, 2.71] 1.00 

 

1.37 
[0.67,2.82] 0.387 

 

Follicular 
lymphoma 3 

87 
[64, 96] 15.66 0.001 

2.33 
[1.35, 4.01] 

  
1.00 

 a. Higgins's I2 statistic measuring the proportion of the observed variance between studies relative to the total variance of a set of studies. 
b. Q Test assessing the degree to which study effect sizes are concordant. 
c. ORs and P-values for comparisons of estimates between outcomes for each biomarker. Each ratio of odds ratios (ROR) compares the odds-ratio for 
the column biomarker to that of the row biomarker as reference, for example ORDLBCL/ ORCLL/SLL/PLL=1.15, with corresponding Wald-type confidence 
interval using the square root of the sum of the OR variances. 
d. Double dash "--" denotes statistics that were not calculated due to inadequate sample size. 
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Figure 2.2 Legend:  
OR represented with gray squares with error bars indicate 95% CIs; size of the squares indicates the precision weight of each study in the random-effects 
meta-analysis. Diamonds indicate the summary ORs, with the width denoting the 95% CIs. 

 

CXCL13 

Figure 2.2: Forest Plots for Cytokines and Chemokine. 

 

TNF-α 

 

IL-6 

 

IL-10 
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Figure 2.3: Forest Plots for Soluble Receptors. 

 

sCD23 

 

sCD27 

Figure 2.3 Legend:  
OR represented with gray squares with error bars indicate 95% CIs; size of the squares indicates the precision weight of each study in the random-effects 
meta-analysis. Diamonds indicate the summary ORs, with the width denoting the 95% CIs. 
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2.11 Supplementary Material 
 
 
Supplementary Table 2.4: MOOSE Checklist for Meta-analyses of Observational Studies. 

 

Item No Recommendation 
Reported 
on Page 

No 
Reporting of background should include 

1 Problem definition 3 

2 Hypothesis statement 3 

3 Description of study outcome(s) 3 

4 Type of exposure or intervention used 3 

5 Type of study designs used 4 

6 Study population 4-5 

Reporting of search strategy should include 

7 Qualifications of searchers (e.g., librarians and investigators) 1,4 

8 Search strategy, including time period included in the synthesis and key words 4 

9 Effort to include all available studies, including contact with authors 4 

10 Databases and registries searched 4 

11 Search software used, name and version, including special features used 
(e.g., explosion) 4 

12 Use of hand searching (e.g., reference lists of obtained articles) 4 

13 List of citations located and those excluded, including justification 28, Fig 1 

14 Method of addressing articles published in languages other than English -- 

15 Method of handling abstracts and unpublished studies 4 

16 Description of any contact with authors 4 

Reporting of methods should include 

17 Description of relevance or appropriateness of studies assembled for 
assessing the hypothesis to be tested 3-4 

18 Rationale for the selection and coding of data (e.g., sound clinical principles or 
convenience) 5-6 

19 Documentation of how data were classified and coded (e.g., multiple raters, 
blinding and interrater reliability) 5-6 

20 Assessment of confounding (e.g., comparability of cases and controls in 
studies where appropriate) -- 

21 Assessment of study quality, including blinding of quality assessors, 
stratification or regression on possible predictors of study results -- 

22 Assessment of heterogeneity 6 

23 Description of statistical methods (e.g., complete description of fixed or 
random effects models, justification of whether the chosen models account for 6-7 
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From: Stroup DF, Berlin JA, Morton SC, et al, for the Meta-analysis Of Observational Studies in 
Epidemiology (MOOSE) Group. Meta-analysis of Observational Studies in Epidemiology. A Proposal for 
Reporting. JAMA. 2000;283(15):2008-2012. doi: 10.1001/jama.283.15.2008. 
 
Transcribed from the original paper within the NEUROSURGERY® Editorial Office, Atlanta, GA, United 
Sates. August 2012. 
 
 
 

predictors of study results, dose-response models, or cumulative meta-
analysis) in sufficient detail to be replicated 

24 Provision of appropriate tables and graphics 28+ 

Reporting of results should include 

25 Graphic summarizing individual study estimates and overall estimate Fig 2, 3, 
Supplement 

26 Table giving descriptive information for each study included 28 

27 Results of sensitivity testing (e.g., subgroup analysis) 31, 32, 
Supplement 

28 Indication of statistical uncertainty of findings 31, 32, 
Supplement 
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IL-6 

 

IL-10 

Supplementary Figure 2.4: Forest Plots for NHL Subtype Outcomes. 

Supplementary Figure 2.4 Legend: Error bars indicate 95% CIs; size of the squares indicates the precision weight of each study in the 
random-effects meta-analysis. Diamonds indicate the summary ORs. Case and control sample sizes for were estimated for Purdue, 200922.  
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Supplementary Figure 2.4 continued: Forest Plots for NHL Subtype Outcomes. 
 
 
 
 
 
 
 

 
 

  

 

TNF-α 

 

CXCL13 

Supplementary Figure 2.4 Legend: Error bars indicate 95% CIs; size of the squares indicates the precision weight of each study in the 
random-effects meta-analysis. Diamonds indicate the summary ORs. Case and control sample sizes for were estimated for Purdue, 200922.  
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Supplementary Figure 2.4 continued: Forest Plots for NHL Subtype Outcomes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

sCD23 

Supplementary Figure 2.4 Legend: Error bars indicate 95% CIs; size of the squares indicates the precision weight of each study in the 
random-effects meta-analysis. Diamonds indicate the summary ORs. Case and control sample sizes for were estimated for Purdue, 200922.  
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Supplementary Figure 2.4 continued: Forest Plots for NHL Subtype Outcomes. 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Figure 2.4 Legend: Error bars indicate 95% CIs; size of the squares indicates the precision weight of each study in the 
random-effects meta-analysis. Diamonds indicate the summary ORs. Case and control sample sizes for were estimated for Purdue, 200922.  
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Supplementary Figure 2.5: Funnel Plots Assessing Publication Bias. 

 

TNF-α 

 

IL-10 

 

IL-6 

 

CXCL13 

Supplementary Figure 2.5 Legend: Funnels indicate pseudo 90% (outer) and 95% (inner) confidence intervals 
accounting for between study heterogeneity estimated from the random effects models. Each plot assesses the 
potential influence of publication bias on the association between a given biomarker and the overall NHL 
outcome. Vertical reference lines drawn at point estimate for each analysis. Analyses and assessments of 
publication bias are not independent since most publications examined multiple biomarkers. 
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Supplementary Figure 2.5 continued: Funnel Plots Assessing Publication Bias. 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

Supplementary Figure 2.5 Legend: Funnels indicate pseudo 90% (outer) and 95% (inner) confidence intervals 
accounting for between study heterogeneity estimated from the random effects models. Each plot assesses the 
potential influence of publication bias on the association between a given biomarker and the overall NHL 
outcome. Vertical reference lines drawn at point estimate for each analysis. Analyses and assessments of 
publication bias are not independent since most publications examined multiple biomarkers. 
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Supplementary Table 2.5: Bias Analyses: Egger's Regression P-values and Trim & Fill 
Analyses. 

 

 
Summary of 

  
 

Observed Data 
 

  
 

After Trim-and-Fill * 
Biomarker N OR 95% CI 

 
Egger's P 

 
N OR 95% CI 

IL-6 10 1.22 [0.97, 1.54] 
 

0.012 
 

13 1.02 [0.76, 1.37] 
IL-10 8 1.24 [0.93, 1.63] 

 
0.002 

 
9 1.09 [0.72, 1.65] 

TNF-α 9 1.18 [1.04, 1.34] 
 

0.677 
 

10 1.12 [0.95, 1.33] 
CXCL13 5 1.47 [1.03, 2.08] 

 
0.018 

 
6 1.32 [0.89, 1.94] 

CD23 4 1.57 [1.21, 2.05] 
 

0.841 
 

6 1.25 [0.90, 1.74] 
CD27 7 2.18 (1.20, 3.98) 

 
0.002 

 
9 1.39 (0.63, 3.06) 

CD30 9 1.65 [1.22, 2.22] 
 

<0.001 
 

14 1.13 [0.78, 1.64] 
*Trim-and-fill analyses impute data from studies predicted to have possibly been 
excluded due to publication bias and re-estimate the summary OR estimates. OR 
for trim-and-fill analyses represent the summary estimates including these 
hypothetically missing studies. 
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Supplementary Figure 2.6: Influence Diagnostics: Leave-One-Out Analyses. 
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Supplementary Figure 2.6 continued: Influence Diagnostics: Leave-One-Out Analyses. 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Figure 2.6 Legend: Leave-one-out diagnostic analyses showing the effect of removing a 
given study on the summary meta-analytic estimate. Random effects model refers to the summary OR 
estimate calculated in meta-analyses. 
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Supplementary Table 2.6: Results for All B-Cell NHL by Prediagnosis Time Interval: 
Comparing Early versus Late Biomarker Sample Collection 

 

 
  Prediagnosis Time Interval 

 

       

Meta-
Regression 

 
  

Early (6-10 yrs) * 
  

Late (0-5 yrs) * 
 

Comparison of 
 

Analyte N OR 95% CI 
I2  

95% CI N OR 95% CI 
I2  

95% CI Early vs. Late P 

IL-6† 2 
1.04 

[0.89, 1.21] 
0 

[-,-] 6 
1.44 

[1.00, 2.08] 
87 

[74, 93] 
0.74 

[0.39, 1.40] 0.352 

IL-10 3 
1.10 

[1.03, 1.17] 
0 

[0, 34] 6 
1.12 

[0.98, 1.28] 
44 

[0, 78] 
0.98 

[0.84, 1.15] 0.817 

TNF-α 2 
1.19 

[1.05, 1.34] 
0 

[-,-] 6 
1.25 

[1.01, 1.54] 
85 

[70, 93] 
0.96 

[0.67, 1.36] 0.813 

CXCL13 2 
1.33 

[0.67, 2.62] 
96 

[88, 99] 2 
2.69 

[2.20, 3.28] 
0 

[-,-] 
0.50 

[0.24, 1.06] 0.070 

sCD23 2 
1.41 

[0.98, 2.01] 
92 

[74, 98] 4 
1.62 

[1.21, 2.15] 
89 

[75, 95] 
0.87 

[0.54, 1.39] 0.559 

sCD27 4 
1.50 

[0.96, 2.35] 
88 

[71, 95] 6 
2.64 

[1.34, 5.21] 
96 

[93, 97] 
0.58 

[0.24, 1.45] 0.247 

sCD30 4 
1.34 

[1.00, 1.80] 
87 

[69, 95] 7 
1.89 

[1.28, 2.79] 
94 

[90, 96] 
0.73 

[0.42, 1.27] 0.262 
 
 
Notes:  
* The early category included studies that had categories that had upper bounds of the time intervals that were 
greater than 10 years ( e.g. intervals such as >7, 5–13, 9–13, 8–15, 15–23 years prior to diagnosis) , while the late 
(0-5 year) category included studies with intervals that exceeded the upper bound of 5 years (e.g. 2–6, <7 years prior 
to diagnosis). For these analyses, estimates of associations covering both intervals completely, or nearly completely, 
were excluded. 
† The IL-6 analyses included Vendrame, 2014 and Breen, 2011 which contain completely overlapping study subjects, 
but different assay technologies. We include them here, but not in the manuscript because the results are not 
substantially different with or without exclusion, and given the small sample size, the additional information dominates 
the small bias due to lack of independence for our assessment of associations by prediagnosis time periods and their 
differences. 
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Supplementary Table 2.7: Results for All B-Cell NHL among HIV-infected: Comparing HAART 
exposed versus Unexposed 

 

 
  HAART Exposure Status 

 

       

Meta-
Regression 

 
  

Unexposed* 
  

Exposed* 
 

Comparison 
 

Analyte N OR 95% CI 
I2  

95% CI N OR 95% CI 
I2  

95% CI 
Of Unexposed 
vs. Exposed P 

IL-6 ‡ 3 
2.08 

[1.17, 3.70] 
75 

[92, 18] 1 
1.37 

[0.75, 2.52] 
0 

[-,-] 
1.52 

[0.46, 5.01] 0.493 

sCD23 2 
1.75 

[1.30, 2.36] 
0 

[-,-] 1 
1.18 

[0.61, 2.30] 
0 

[-,-] 
1.48 

[0.72, 3.08] 0.288 

sCD27 2 
4.72 

[2.81, 7.93] 
0 

[-,-] 1 
13.07 

[1.87, 91.52] † 
0 

[-,-] 
0.36 

[0.05, 2.71] 0.322 

sCD30 2 
4.14 

[2.71, 6.32] 
11 
[-,-] 1 

1.55 
[0.46, 5.26] 

0 
[-,-] 

2.67 
[0.73, 9.73] 0.137 

 
Notes: 
* The unexposed group comprises studies comprised 1 study including HAART naive participants. The other 2 
studies with HAART unexposed participants adjusted for HAART, implying the estimate presented is among the 
reference group of HAART unexposed individuals, which we include in these analyses 54,137,138. 
† In the publication assessing HAART exposed individuals 57, there were 9 HAART exposed cases and 37 controls, 
which led to an inflated estimate. 
‡ These analyses included Vendrame, 2014 and Breen, 2011 which contain completely overlapping study subjects, 
but different assay technologies. We include them here, but not in the manuscript because the results are not 
substantially different with or without exclusion, and given the small sample size, the additional information dominates 
the small bias due to lack of independence for our assessment of HAART exposure associations and their 
differences. Analyses presented only if at least one stratum had 2 or more studies. 
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Supplementary Table 2.8: Multiple Comparisons Adjusted P-Values for Overall NHL 

 
 
 

Notes: 
 
*Methods used described in Holm, 1979 and Benjamini & Yekutieli, 2001, were deemed appropriate for 
tests that may contain statistical dependence since biomarker biological functions are not independent. 
 
 

Multiple 
Comparisons 

 
P-Value Adjustment 

Group Biomarker Unadjusted Stepdown Bonferroni* Dependent FDR* 
Overall CXCL13 0.0320 0.0959 0.1160 

 
IL-10 0.1375 0.1651 0.3564 

 
IL-6 0.0825 0.1651 0.2497 

 
TNF-α 0.0100 0.0498 0.0498 

 
CD23 0.0008 0.0055 0.0102 

 
CD27 0.0110 0.0498 0.0498 

 
CD30 0.0011 0.0068 0.0102 

HIV- CXCL13 0.0944 0.4429 0.4265 

 
IL-10 0.1741 0.4429 0.5267 

 
IL-6 0.6025 0.6025 1.0000 

 
TNF-α 0.0151 0.0908 0.1374 

 
CD23 0.0886 0.4429 0.4265 

 
CD27 0.1175 0.4429 0.4265 

 
CD30 0.0043 0.0298 0.0772 

HIV+ CXCL13 0.0054 0.0161 0.0195 

 
IL-10 0.5683 0.5683 1.0000 

 
IL-6 0.0101 0.0201 0.0304 

 
TNF-α <.0001 0.0003 0.0003 

 
CD23 0.0004 0.0017 0.0019 

 
CD27 <.0001 <.0001 <.0001 

 
CD30 <.0001 <.0001 <.0001 

Meta-Regression CXCL13 0.2181 0.6543 0.7917 

 
IL-10 0.9428 1.0000 1.0000 

 
IL-6 <.0001 <.0001 <.0001 

 
TNF-α 0.0052 0.0262 0.0317 

 
CD23 0.9959 1.0000 1.0000 

 
CD27 0.0413 0.1651 0.1873 

 
CD30 0.0029 0.0177 0.0268 



 
 

49 
 

 
3 Chapter III: Temporal Variation of Serum Biomarkers of Immune Activation and 

Inflammation in Non-Hodgkin Lymphoma in the Multicenter AIDS Cohort Study 
 

3.1 Abstract 
 

Background: Chronic inflammation and immune activation are thought to play a crucial role in 

the etiology of AIDS-associated non-Hodgkin lymphoma (AIDS-NHL). Temporal variation in 

biomarkers of inflammation and immune activation may indicate the evolution of latent etiologic 

processes during the development of non-Hodgkin lymphoma (NHL). We investigated the 

temporal variation in 24 biomarkers in the Multicenter AIDS Cohort Study (MACS) to explore the 

manner in which biomarker signatures may show association with AIDS-NHL. 

 

Methods: Serum concentrations of 24 biomarkers of inflammation and immune activation were 

quantitated prospectively from blood samples of MACS participants. In longitudinal analyses of 

these biomarkers using linear mixed-models, we describe the temporal variation in these 24 

biomarkers in the sera of HIV-infected individuals in the MACS who develop AIDS-NHL versus 

those who do not.  

 

Results: We follow 1,918 HIV-infected men from seroconversion over 11,220 longitudinal 

person-visits in the Multicenter AIDS Cohort Study (MACS) from 1984 to 2009. During HAART 

naϊve visits, we observe elevated geometric mean biomarkers for cases relative to controls for 

several biomarkers (IL-2, TNF-α, IL-6, sCD27, sIL-2Rα, IP-10, CXCL13, CRP), and higher rates 

of change (slopes) for cases relative to controls (sIL-6R, sTNFR2, IL-10). Following HAART 

initiation, we find that geometric mean levels are elevated for cases relative to controls (BAFF, 

TNF-α, sIL-2Rα, sTNFR2, IP-10, MCP-1, CRP) with estimates generally higher than those 

observed prior to HAART. No differences in slopes were detectable in our data following 

HAART. 



 
 

50 
 

 

Conclusion: Our results suggest that differences in the trajectories of several biomarkers are 

detectable between individuals who eventually develop AIDS-NHL relative to those who do not. 

These findings suggest that these biomarkers have potential clinical utility in risk stratification 

and risk prediction in HIV-infected populations. 
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3.2 Introduction 
 

HIV associated non-Hodgkin lymphoma (AIDS-NHL) is consistently ranked as the HIV-related 

malignancy with the highest incidence both in the U.S. and other developed countries even in 

the era of wide-spread access to multi-agent highly active anti-retroviral therapy (HAART) 6,7. As 

a cause of morality, AIDS-NHL accounts for the highest proportion of AIDS-related death 7–9. 

The disparity in NHL incidence between HIV-infected individuals relative to the general 

population has long been documented to be large and persistent. AIDS-NHL risk in the pre-

HAART era was documented to be up to a 60-fold multiple in incidence rate 10,139. While the risk 

of developing AIDS-NHL has diminished with effective HAART 140, it remains elevated even 

among individuals receiving treatment 7,11,12. HAART has been reported to improve overall 

survival outcomes, but disparities in survival outcomes are still observed in HIV-infected versus 

HIV-uninfected individuals 13. In this study, we seek to describe potential AIDS-NHL etiologic 

factors in the context of HIV infection.  

 

AIDS-NHL comprises several histologically heterogeneous subtypes. These include diffuse 

large B cell lymphoma (DLBCL), primary central nervous system lymphoma (PCNSL), Burkitt's 

lymphoma, and primary effusion lymphoma (PEL) 3,4. The incidence of AIDS-NHL in the HAART 

era varies by both AIDS-defining and non-AIDS-defining subtypes 5, although the overwhelming 

majority of cases have been AIDS-defining, with DLBCL and Burkitt lymphoma accounting for a 

majority of cases reported in a recent U.S. population based registry study 6.  

 

Among HAART receiving HIV-infected individuals, immune dysfunction and associated factors 

are the most consistently reported risk factors for AIDS-NHL 4. These include low nadir CD4+ T 

cell count, high HIV viral load, and duration of HIV-infection 5,6,24. Although AIDS-NHL cases 

attributable to viral factors are reduced in the HAART era, virus-linked AIDS-NHL incidence 
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continues to be elevated for HIV-infected persons on HAART relative to the general population 

3. Other morbidies associated with AIDS-NHL include obesity 25,26, and diabetes mellitus 27–29. 

The association between behavioral and demographic risk factors and NHL have been 

documented in the MACS and in the general U.S. population, including recreational drug use 35 

and tobacco use 36–38 as well as other demographic factors, most especially age 30–34.  

 

There are two hypothesized pathogenic mechanisms responsible for AIDS-NHL 3,4. One 

mechanism involves the dysregulated proliferation of Epstein-Barr virus (EBV)-transformed B-

cells wherein impaired T-cell mediated regulation of B-cell growth results in B-cell 

hyperproliferation leading to EBV-positive AIDS-NHL subtypes 3. The other mechanism involves 

chronic B-cell hyperactivation and associated processes that promote oncogenic mutations and 

translocations 4. As such, biomarkers involved in B-cell activation, such as cytokines, 

chemokines, their receptors, and other molecules involved in immune activation and 

inflammation, likely serve as mediators of the multiple risk factors for AIDS-NHL that interact 

with the immune system. 

 

Several serum biomarkers of immune activation and inflammation are altered prior to AIDS -

NHL diagnosis including sIL-1R1 14, IL-2 141, IL-4 138,141, IL-5 138, IL-6 54,141, IL-10 54,141,142, IL-11 14, 

IL-29 14, CCL19, CXCL10/IP-10 14,141, CXCL11, CXCL13, sCD23 14,54,143, sCD30 54,126, sCD44 

144, neopterin 141, IgA, M, G and κ and λ free light chains 145, CRP 146–148, and TNF-α 14,141, MCP-

2, MIP-1δ/MIP-5/CCL15, IFN-α, GM-CSF 14. A recent study in the MACS evaluating the effect of 

HAART on the biomarkers included in the current study found that within a year of initiating 

HAART therapy and achieving successful virologic suppression, many of these biomarkers 

return towards levels observed in uninfected individuals 128. In fact, serum biomarker 

concentrations stabilized in the years following HAART initiation (for example IL-2, IL-6, IL-10, 

CXCL13), although there was evidence of persistent residual immune activation due to elevated 
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levels of CXCL10, CRP, sCD14, sTNFR2, TNF-α, sCD27, sGP130, IL-8, CCL13, BAFF, GM-

CSF, and IL-12p70 128. 

 

The current study is an investigation of prospectively quantitated serum biomarkers in the 

MACS to characterize the temporal variation in the mean levels and slopes of temporal 

trajectories of serum biomarkers of immune activation and inflammation. We hypothesize that 

temporal trajectories of biomarkers of immune activation and inflammation will show differences 

in mean levels and slopes between eventual AIDS-NHL cases versus HIV-infected controls, 

even among individuals receiving HAART. To our knowledge, this is the first longitudinal 

assessment of the association of biomarker trajectories with AIDS-NHL in the MACS.   
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3.3 Materials And Methods 
 

3.3.1 Study Design 
 

The biomarker data included in this study were generated from two prior sub-studies in the 

MACS, a longitudinal subcohort 128 and a multi-time-point nested case-control study 146. Details 

of the MACS have been described and published previously 39,40. Briefly, the MACS is a 

prospective cohort study comprising men who have sex with men designed to investigate 

various aspects of HIV infection including the natural history of the disease, risk factors for 

acquiring disease, and the clinical expression of infection. Participants were recruited at four 

academic centers in the U.S. (Baltimore, Maryland, USA/Washington, District of Columbia; 

Chicago, Illinois; Los Angeles, California; Pittsburgh, Pennsylvania). The follow-up schedule 

consisted of semiannual study visits wherein serological, clinical, and behavioral data were 

collected via a variety of methods including blood samples, physical examinations, self-report in 

structured interviews, review of disease registries, and confirmatory medical chart review. 

 

3.3.2 Participant Inclusion 
 

For the subcohort, MACS participants were sampled from the main cohort for a cohort-wide 

study assessing the role of biomarkers of inflammation, immune activation, and microbial 

translocation in the progression of HIV infection and associated sequelae described elsewhere 

128. Participants were included if (1) they had known seroconversion dates, and available serum 

samples at annual visits (2) they were seroprevalent with available serology specimens within 

two years prior to HAART initiation. For all HAART recipients, serum samples were collected 

from study visits immediately before and after treatment initiation, and subsequently every two 

years post-treatment initiation. In our study, we included (1) all available AIDS-NHL cases with 
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biomarker measurements, and (2) all remaining subcohort members who were seroconverters 

or seroprevalent with at least one visit after known, or estimated, HIV-infection date wherein 

serum biomarkers were measured. All 24 biomarkers were measured among these participants. 

 

For the nested case-control study 146, serum samples were collected from MACS participants 

enrolled between 1984–85 or 1987–1991. Cases (n=179) were defined as HIV-infected MACS 

participants diagnosed with AIDS-NHL before April, 2003, with at least one serum sample at a 

visit prior to AIDS-NHL diagnosis. For each AIDS-NHL case, an HIV-infected control was 

selected from among HIV-infected MACS subjects with no lymphoma diagnosis as of April 2003 

(1:1 match). Each case was matched to a control on (1) the duration of HIV-infection if the date 

of HIV-seroconversion was known, or date of entry (within a year) into the MACS cohort if they 

were HIV-seroprevalent, and (2) the expected availability of their serum samples at time points 

comparable to those of cases within a year of collection. Serum samples were collected from 

three possible time intervals prior to NHL diagnosis at 0–1, 1–3, and >3 (at approximately 4) 

years prior to NHL, and comparable time-points for controls. A subset of 13 of the 24 

biomarkers we consider here were measured among these participants: sCD27, CRP, CXCL13, 

GMCSF, IFN-γ, IL-1β, IL-2, IL-6, IL-8/CXCL8, IL-10, IL-12p70, CXCL10/IP-10, TNF-α. 

 

When we combined records from both studies, if there were duplicated visits, we preferred the 

visit from the case-control study because of the higher likelihood of complete biomarker data 

due to the use of sample availability as a matching criterion for that study sample. In our 

combined analytic data set with duplicated visits removed, we have a total of 1,918 MACS 

participants among which 202 developed AIDS-NHL with 11,220 biomarker visits prior to AIDS-

NHL diagnoses (end of follow-up for controls). Our data comprise a total of 13 biomarkers 

measured in both component data sets, and an additional 11 measured only in the subcohort. 
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3.3.3 Biomarkers 
 

For the subcohort, biomarker assays have been described in detail elsewhere 128. In summary, 

two multiplex assay platforms were used to quantify 24 serologic markers of inflammation, and 

immune activation. Serologic markers measured on the Meso Scale Discovery (MSD, 

Gaithersburg, MD) system included CCL 2/MCP1, CCL4/MIP-1β, CCL11/Eotaxin-1, 

CCL13/MCP-4, CCL17/TARC; CXCL10/ IP-10, IL-8/CXCL8 (Ultra-Sensitive Human Chemokine 

7-Plex Kit); interferon gamma (IFN-γ) IL-1β, IL-2, IL-6, IL-8, IL-10, IL-12 p70, TNF-α, granular-

macrophage colony-stimulating factor (GM-CSF) (UltraSensitive Human Pro-Inflammatory 9-

Plex Kit). Biomarkers measured on the Luminex platform (Luminex, Austin, TX) included 

CXCL13/BLC-BCA1, B-cell activating factor (BAFF), sCD14, sCD27, sGP130, sIL-2Rα, sIL-6R, 

sTNFR2 according to the manufacturer’s protocol (R&D Systems, Minneapolis, MN). A high-

sensitivity immunonephelometric assay was used to quantitate complement reactive protein 

(CRP) in a reference laboratory.  

 

To minimize plate-to-plate variability, samples from each individual were measured on the same 

plate; all biomarkers were assessed in centralized laboratories. For CCL11/Eotaxin-1, 

CCL13/MCP-4, CCL17/TARC, IL-8/CXCL8, CXCL10/IP-10, CCL2/MCP1, IL-10, IL12p70, IL-6, 

and TNF-α, intra-assay coefficient of variation (CV) medians ranged from 3.3-14.9, while inter-

assay CVs ranged from 6.6 to 40.5; for BAFF/BLyS, CXCL13/BLC-BCA1, sCD14, sCD27, 

sgp130, sIL2ra, and sTNFR2 the medians of intra-assay CVs ranged from 3.9 to 5.2 while the 

inter-assay variability ranged from 8.8 to 29. All platforms showed acceptable performance for 

chemokines, soluble receptors, and some cytokines with high levels of percentages detected 

and variability measures 128. 
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Biomarker quantitation for the case-control study serum biomarker levels is described in a 

previous study 146. Briefly, several biomarkers were measured using enzyme-linked 

immunosorbent assay (ELISA). sCD27 was quantitated using the PeliKine-compact ELISA kit 

and Toolset according to the manufacturer’s protocol (CLB/Sanquin, Netherlands); complement 

reactive protein (CRP) was measured using the manufacturer prescribed high sensitivity 

protocol (Virgo CRP 150, Hemagen, Columbia, Maryland); serum CXCL13 was measured 

according to manufacturer's protocol (R&D Systems, Minneapolis, MN); IL-6 was measured 

using an ultrasensitive assay (Biosource/Invitrogen, Carlsbad, California); IL-10 was measured 

using a human IL10- specific assay (Biosource International, Camarillo, California).  

 

Another set of immune markers were assessed using Luminex-based multiplexed 

immunoassays. IL-1β, IL-2, IL-8, IL-12p70, GM-CSF, IFN-γ, TNF-α were determined using the 

Fluorokine® MAP Human Inflammation Kit (R&D Systems, Minneapolis, MN, USA). IP-

10/CXCL10 was determined using the Procarta Cytokine Assay (Affymetrix, Santa Clara, CA, 

USA)58. 

 

3.3.4 AIDS-NHL Case Ascertainment 
 

In accordance with MACS protocol, all cancer diagnoses were ascertained at each follow-up 

visit through structured interviews of subjects followed by medical chart abstraction, pathology 

reports from autopsy, and/or matching to state cancer registries 11. As of 2006, all current and 

historically diagnosed cancers were classified by site and histology codes of the International 

Classification of Diseases for Oncology, 3rd edition (ICD-O-3).  
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3.3.5 Covariates 
 

Covariates included measured variables that were known a priori to be confounders in 

assessments of biomarker associations with AIDS-NHL 54,57,141, and any additional variables that 

are known to be risk factors for AIDS-NHL, as described above, while also plausibly potentially 

affecting biomarker levels either directly or through other factors. As such, potential time-

dependent confounders included age at each visit as a continuous variable; self-reported 

tobacco, cocaine, and stimulant drug use (methamphetamine) in the time interval preceding the 

current visit; self-reported frequency of alcohol use (captured as no use, less than twice weekly, 

and more than twice weekly since the last visit); body mass index (categorized as BMI>30 kg/m2 

at each visit); HCV infection status at each current visit (negative versus positive) 128,149. CD4+ T 

cell count was also included as a time-dependent confounder at each visit. Potential time-

invariant confounders included race categorized as non-Hispanic white versus non-white, due to 

category frequencies, and MACS center. Finally, year of HIV infection was considered a 

covariate to control for diagnoses occurring during different treatment and medical practice 

pattern eras, and to address differences in duration of HIV infection when included with age. 

 

Given that we combined data from a matched nested case-control with a subcohort, we 

constructed a covariate indicating whether an observation came from the case-control study or 

subcohort. In addition, we consider the risk set comprising matched cases and controls (with 

subcohort data considered as a single risk set) as a random effect covariate to be included in 

our models to account for the complex matched nature of the included case-control data150.  

3.3.6 Statistical Methods 
 

We followed participants from date of first known HIV infection until AIDS-NHL diagnosis date, 

or last visit date with biomarker data. For participants who seroconverted after enrollment into 
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the cohort, the start of follow-up was HIV seroconversion date. For participants who were 

enrolled into the cohort HIV seroprevalent the start of follow-up was cohort entry date, meaning 

their observed time-at-risk is left truncated. We summarized and tabulated salient 

characteristics of the analytic data set for descriptive purposes and to list potential confounders. 

Covariates were considered potential confounders on the basis of a priori considerations of 

variables that are known risk factors for the AIDS-NHL that may also plausibly differentially 

affect biomarker levels, and included all such measured covariates in our subsequent 

regression modeling. We also graphically explored the outcome biomarker variable distributions 

for concordance with the normal probability distribution. Goodness of fit tests showed that the 

distributions were non-normal, even upon transformation.  

 

For each biomarker we fit a linear mixed model with the natural log-transformed biomarker as 

the outcome, and disease groups (AIDS-NHL cases versus HIV+ controls) as the predictor of 

primary interest. Our models included Kenward-Rogers corrections for degrees of freedom that 

have been shown to confer robustness to departures from normality for data sets larger than 30 

observations 151,152. We parameterized our regression models as follows: first, we included a 

time-invariant indicator variable for case versus control status that provides an estimate of the 

difference in mean log transformed biomarker levels at the beginning of follow-up. Then, to 

estimate changes in biomarker mean levels following HAART relative to pre-treatment levels, 

we included an indicator variable marking all visits that followed the estimated HAART receipt 

date. For estimates of the slopes of temporal trajectories of the biomarker outcomes, we 

included a time variable (scaled to 10's of years) with the origin (t=0) at date of first known HIV 

infection. Finally, we included spline terms, implemented as an interaction of time by case 

status, and time by cases status by HAART, that allowed calculation of contrasts estimating 

differences in temporal slopes by case status prior to and following HAART receipt. Since 

biomarkers were treated as natural log transformed outcome variables in regression models, we 
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present exponentiated regression parameters that represent geometric mean ratios of the 

biomarker slopes and mean levels between comparator and reference levels.  

 

Given the large number of comparisons in our analyses, we applied a false discovery rate 

correction (α=0.05) that is robust to dependency to all the p-values of the regression parameter 

estimates that we present in our results tables 136.  

 

Analyses were performed using SAS procedures in SAS 9.2 Cary, NC. 

 

3.4 Results 
 
We describe participant characteristics of our analytic sample in Table 3.1, at first known HIV-

positive visit, or closest visit. Biomarker availability and summary statistics at the same time-

point appear in Table 3.1. We combined the 179 case-control pairs (n=358) from the nested 

case-control study with HIV-infected participants from the subcohort (n=1,623), and removed 

duplicated person-visits for a combined total of 1,918 participants with at least one post-

seroconversion (or seroprevalent) visit wherein biomarker concentrations were quantified. The 

data set included 202 AIDS-NHL cases among these participants with a total of 638 person 

visits, and 10,582 person visits among controls. We followed participants up to a maximum of 

31.5 years post seroconversion, with a median follow up during HIV infection of 7 years (IQR: 4-

11 years). The majority of AIDS-NHL cases were of DLBCL subtype (52%). AIDS-NHL cases 

were found to be of comparable age 37 (IQR: 32-43 years) to controls, 39 (IQR: 33-44 years). A 

higher proportion cases were of white race (83%) relative to HIV+ controls (62%), with slightly 

lower tobacco use (33%) relative to controls (41%). A higher proportion of AIDS-NHL cases 

tended to have lower CD4+ T-cell counts, 51% with <400 cells/mL versus 38% for HIV+ 

controls.  
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Results from our longitudinal analyses are summarized in subsequent tables (Table 3.3 through 

Table 3.6). Each of the regression parameter estimates is exponentiated so that the results are 

geometric mean ratios for cases relative to controls. For each biomarker we present the ratio of 

geometric means among HAART naϊve visits, that is, the difference between cases and controls 

in regression intercept; then we compare cases and controls on by their biomarker slopes prior 

to HAART receipt. We then present the ratio of biomarker geometric means at HAART receipt, 

that is, the difference between cases and controls in regression intercepts at HAART receipt, 

along with corresponding estimates of the differences in the slopes for cases relative to controls 

following HAART.  

 

Estimates of mean levels: Among cytokines (Table 3.3), when we compare geometric mean 

levels of biomarkers among HAART naϊve visits, we find that IL-2 (MR: 1.09 95%CI: 1.00, 1.19), 

TNF-α (MR: 1.17 95%CI: 1.07, 1.30) and IL-6 (MR: 1.12 95%CI: 1.01, 1.23) levels are elevated 

for eventual AIDS-NHL cases relative to HIV-infected controls. Still considering cytokines (Table 

3.3), following HAART exposure, we find that visits among AIDS-NHL cases have higher 

geometric means levels of BAFF (MR: 1.41 95%CI: 1.12, 1.78) and TNF-α (MR: 1.41 95%CI: 

1.02, 1.94) relative to controls. 

  

Table 3.4 summarizes geometric mean comparisons for serum soluble receptors. We find 

elevated levels of the soluble receptor sCD27 (MR: 1.11 95%CI: 1.03, 1.21) and sIL-2Rα (MR: 

1.16 95%CI: 1.02, 1.32) during HAART naϊve visits for AIDS-NHL cases relative to HIV-positive 

controls. Biomarker means following HAART are elevated for sIL-2Rα (MR: 1.47 95%CI: 1.14, 

1.91), and sTNFR2 (MR: 1.34 95%CI: 1.03, 1.73) among cases relative to controls.  

 

In Table 3.5 we compared chemokine geometric means for HAART naϊve visits by disease 

groups and found elevated levels of IP-10 (MR: 1.23 95%CI: 1.07, 1.42) and CXCL13 (MR: 1.30 
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95%CI: 1.18, 1.43) for AIDS-NHL cases relative to HIV-positive controls. Following HAART 

exposure, higher geometric mean levels of IP-10 (MR: 1.91 95%CI: 1.26, 2.92) and MCP-1 

(MR: 1.31 95%CI: 1.01, 1.70) were observed for AIDS-NHL cases relative to controls.  

 

Lastly, CRP geometric mean levels (Table 3.6) were elevated for AIDS-NHL cases relative to 

controls during HAART naϊve visits (MR: 1.14 95%CI: 1.00, 1.29). CRP levels remained 

elevated for cases versus controls following HAART exposure (MR: 1.66 95%CI: 1.08, 2.53; 

Table 3.6). 

 

Estimates of slopes over time: We estimate biomarker slopes (changes per 10 years) for 

HAART naϊve visits and found cases having higher slopes than controls for trajectories of sIL-

6R (MR: 1.14 95%CI: 1.00, 1.29), sTNFR2 (MR: 1.25 95%CI: 1.04, 1.51), and IL-10 (MR: 1.57 

95%CI: 1.19, 2.06). Following HAART receipt, visits for AIDS-NHL cases are comparable to 

those of HIV-infected controls and we find no differences in slopes. 

 

3.5 Discussion 
 

In this study of prospectively collected serum biomarkers of immune activation and inflammation 

we found two general patterns. First, several biomarker geometric mean levels (IL-2, TNF-α, IL-

6, sCD27, sIL-2Rα, IP-10, CXCL13) are elevated for eventual AIDS-NHL cases relative to HIV-

infected controls prior to HAART receipt, and these differences tend to widen following HAART 

receipt. Second, we find that temporal rates of changes (slopes) of biomarker levels are 

different by case status during the HAART naϊve period, but no differences in rates of change 

are observed following HAART receipt. These two patterns in our results combined mean that 

the trajectories of circulating markers of immune activation and inflammation are altered among 

those who develop go on to develop NHL relative to HIV-infected controls who do not, with 
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AIDS-NHL cases often having higher biomarker levels and higher rates of temporal change 

relative to HIV-infected controls.  

 

We considered 8 cytokines and described the changes in aspects of their trajectories over time, 

with notable variation in the trajectories of BAFF, IL-2, TNF-α and IL-6 (Table 3.3). BAFF is a 

member of the TNF ligand family and plays important roles in B-cell maturation functions and is 

implicated in the development and perpetuation of malignancies 153. It has been shown that 

tumor cells of all NHL histological subtypes express several known BAFF receptors 154, and in 

the context of HIV-infection in the MACS, administration of successful HAART tends to 

attenuate BAFF levels 128. In our sample, prior to HAART receipt, we observe no significant 

differences in the mean level and rate of change aspects of the trajectory of BAFF levels when 

comparing cases to controls. However, following HAART, cases are observed to have higher 

BAFF levels relative to controls. This finding suggests that those individuals who eventually 

become AIDS-NHL cases may not experience reversion of BAFF to normal levels in response 

to HAART, which in turn may increase the risk of lymphoma. 

 

IL-2 is a pro-inflammatory cytokine that stimulates the proliferation of activated B cells 155. IL-2 

primarily functions to mount a cytotoxic immune response to potentially malignant cells through 

the promoting proliferation of natural killer and lymphokine-activated killer cells 155. These two 

facts taken together imply that we could expect to observe elevated IL-2 levels among 

individuals that go on to develop NHL due to chronic B-cell stimulation, as well as increased 

serum concentrations in IL-2 in response to cancerous cells that may lower the incidence of 

malignancies. In accordance with both these facts, results from a prior epidemiologic study 

among treated HIV-infected individuals found an inverse association between IL-2 levels and 

NHL 48, while another prospective study found elevated levels of IL-2 associated with NHL 

among HIV-uninfected subjects 61. We find elevated levels of IL-2 among cases relative to 
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controls prior to HIV treatment with HAART, but no other differences in the temporal trajectory of 

IL-2, which supports the notion that increased levels of IL-2 are associated with NHL through B-

cell stimulatory effects. 

 

There are several epidemiologic studies of TNF-α, and IL-6, that we summarize in a meta-

analysis 156. These studies indicate that TNF-α and IL-6 levels are elevated prior to NHL 

diagnosis. We find that both biomarkers are elevated during HAART naïve visits for cases 

relative to controls. The slopes of both biomarkers exhibit no differences by case status pre- or 

post- treatment. Post-HAART mean levels of TNF-α are elevated for cases relative to controls. 

Taken together, these observations indicate that TNF-α and IL-6 levels remain different between 

eventual AIDS-NHL cases relative to controls from HIV-seroconversion without much variation, 

even though the post-HAART case-control contrast for IL-6 does not quite reach statistical 

significance. It is thus plausible that a cumulative effect of consistently higher levels of TNF-α 

and IL-6 may generate or support lymphomagenic processes or may indicate non-modifiable 

immunologic differences between AIDS-NHL cases relative to controls. 

 

We compared the trajectories of a total of 6 soluble receptors (sCD14, sCD27, sGP130, sIL2R-

α, sIL6R, sTNFR2; Table 3.4) and found that aspects of the trajectories of sCD27, sIL2R-α, 

sIL6R, and sTNFR2 differed by case-control status. We assessed temporal slopes and levels of 

sCD27, a soluble form of CD27 116,117. sCD27 concentrations increase in circulation when CD27 

is proteolytically cleaved from cell membranes to produce its soluble form. CD27 is involved in B 

cell activation 118 and B-cell secretion of immunoglobulins 119 thereby being implicated in B-cell 

hyperproliferation-related malignancy. We find elevated levels of sCD27 among AIDS-NHL 

cases relative to controls during HAART naive visits, with no differences in any aspects of the 

trajectory following HAART receipt. A possible explanation for this observation is that since 

HAART has been observed to reduce sCD27 levels in successfully treated HIV-infected 
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individuals relative to those who are untreated 128, there is a threshold elevation in sCD27 

concentrations, attained only pre-treatment, that confers increased NHL risk. 

 

sIL-2R- α is recognized as a tumor marker for malignant lymphomas in general, including the 

histological subtypes that comprise NHL 155,157. The α chain (CD25) of the IL-2 receptor on the 

cell membrane surface is cleaved by enzymatic proteolytic processes 158–160 and is ultimately 

detected in sera as sIL-2R-α 155,157,158. Lymphoma cells expressing IL-2R combined with 

proteinases in tumor microenvironment have been shown to be correlated with elevated levels 

of sIL-2R in sera 157. In B-cell non-Hodgkin lymphomas, serum sIL-2R is seen to be elevated in 

HIV-uninfected patients with DLBCL and follicular lymphoma (FL) 157,158,161–163 and has been 

studied for its utility as a prognostic factor for both DLBCL and FL 158. We find that levels of sIL-

2R-α are elevated for cases relative to controls during HAART naϊve visits, as well as, to a 

greater extent, post-HAART. This indicates that the response of sIL-2R-α levels to HAART is not 

adequate to reduce the risk resulting from chronically elevated serum concentrations of this 

biomarker. 

 

The sIL-6R/IL-6 complex is involved in B cell proliferation and differentiation, cell survival, and 

tumor growth 84,85. We find that the trajectories of sIL-6R differ between cases and controls only 

in slopes prior to treatment for HIV. These observations can be taken as further evidence that 

the sIL-6R/IL-6/GP130 B-cell signaling processes may be involved in NHL etiology over 

extended periods prior to diagnosis as has previously been reported 164.  

 

TNFR2 is a soluble fragment of TNF receptor 2 (TNFR2) that mediates the pro-inflammatory 

effects of TNF-α 47. TNFR2 is expressed by immune cells and signals activation of nuclear 

factor κ-B pathway (NF-ĸB) which in turn mediates B-cell maturation, proliferation, and survival 

47. Abberant NF-ĸB activation can promote chronic lymphocyte proliferation and survival and 
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has been recognized as an important pathogenetic factor in lymphoma that plays an important 

role in NHL pathogenesis 47,165. Tenuous associations between serum sTNFR2 and NHL have 

been described in the NYU-WHS cohort 61, the PLCO study 166, and a recent study reported a 

strong sTNFR2 - NHL association that was detectable 8-13 years post serum sample collection 

and was consistent across NHL subtypes among uninfected individuals 47. We find significantly 

increased slopes of sTNFR2 concentrations for cases relative to controls prior to HAART 

initiation, and that mean levels remain elevated for cases relative to controls following HAART 

initiation, implicating the residual elevation 128 in sTNFR2 in NHL etiology. Our results comport 

with prior literature and provide support for a role of sTNFR2 in lymphomagenesis 47,165.  

 

We assessed the levels of nine chemokines (IL-8, IP-10, MCP-1, MCP-4, MIP-1β, TARC, 

CXCL13, EOTX, IL-10) and the acute phase reactant, complement reactive protein, and found 

differences by case status in the trajectories of IP-10, MCP-1, CXCL13, and IL-10. We 

considered IP-10 (CXCL10), which acts upon activated T cells and macrophages, and has also 

be shown to stimulate HIV replication in monocyte-derived macrophages and lymphocytes, and 

reduces the amount of MIP-1α, MIP-1β, and RANTES produced by activated peripheral blood 

lymphocytes 167. In this way, IP-10 can thus be linked to B-cell lymphomagenesis through the 

chronic immune activation engendered by HIV-infection 168,169. In our study sample, we find 

increased geometric means among NHL cases relative to HIV-infected controls during HAART 

naϊve visits, and an even greater difference following HAART.  

 

We also assessed trajectories of chemokines of the C-C motif including MCP-1 (CCL2), MCP-4 

(CCL13), MIP-1β (CCL4), and TARC (CCL17) and only found MCP-1 levels to be higher 

following therapy for HIV-infection relative to visits with no treatment. We detected no other 

differences by case status in aspects of the trajectories of C-C motif chemokines. While the 

relationship between NHL and these chemokines has not been investigated, indirect evidence 
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for the role of chemokines of the C-C motif and their receptors in the pathogenesis of NHL 

exists in the form of modest NHL-polymorphism associations 170. The differences in the 

trajectory of MCP-1 by case status may signify underlying immunologic and pathogenic 

processes that are yet to be elucidated fully. 

 

For CXCL13, it is thought that aberrant expression may be involved in the pathogenesis of B 

cell lymphoma through abnormal chemotaxis of B cells to tissues or abnormal B cell activation 

109. Overexpression of the receptor-ligand pair CXCR5/CXCL13 has been observed in B cell 

chronic lymphocytic leukemia 110, and follicular lymphoma cells have been seen to secrete 

CXCL13 111, indicating the possibility that CXCL13 can be a biomarker for NHL and these 

subtypes. In the context of HIV-infection, aberrant expression of the receptor-ligand pair 

CXCR5/CXCL13 has been seen in B cells 171. Increased serum CXCL13 levels have been 

observed among HIV-positive relative to seronegative individuals 127, and it is reported that 

AIDS-NHL tumors express the CXCL13 receptor CXCR5 109. We observe elevated levels of 

CXCL13 among cases relative to controls prior to HAART receipt. These results indicate a 

possible etiologic role for CXCL13 in lymphomagenesis particularly in the context of untreated 

or uncontrolled HIV infection.  

 

We assessed IL-10, a pleiotropic cytokine, that has stimulatory effects on B cells and is linked to 

the development of NHL through promoting chronic B cell activation 92–94 . Malignant NHL cells 

are also known to secrete IL-10 96,97. We have previously summarized results from 

epidemiologic studies showing elevated levels of IL-10 preceding NHL 156. In this study, we 

observe IL-10 levels exhibiting divergent slopes between cases (steeper slopes) and controls in 

the period prior to HAART initiation, and no detectable differences between cases and controls 

in the trajectory of this biomarker after treatment for HIV, implying a reduction in the effect of this 

biomarker on NHL risk in response to HAART.  
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A limitation of our study is that since some of our biomarker data, comprising the majority of 

controls, were repurposed to assess a novel outcome, our biomarker measurements are not 

strictly collected at regular intervals for all participants meaning that we rely the longitudinal 

regression model to interpolate a trend over missing data. Relatedly, sampling probabilities are 

unknown for observations included in our study from the superset of MACS observations. This 

limits our inferences to the sample we include here, limiting generalizations to the main cohort 

or beyond. Having mentioned these weaknesses, there are also several strengths of our study. 

We were able to prospectively assess the experience of a group of men over a substantial 

follow up which reduces biases due to the independent collection of biomarker exposures and 

outcomes. The centralized nature of the specimen testing meant that random variability in the 

measures was reduced; the quality and sensitivity of the assay instrumentation meant that we 

were able to receive measures with the highest possible detection capability. We also included 

a comprehensive set of potentially confounding variables with which we could adjust our 

estimates, lending robustness of our results.  

 

In conclusion, our prospective investigation into 24 markers of immune activation, and 

inflammation provides evidence that levels of several biomarkers are altered relative to controls 

over extended periods of time, and while HAART tends to have a normalizing effect on the 

biomarker levels, there still remain differences between cases and controls that may be 

consequential for AIDS-NHL disease processes. 
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3.9 Tables 
 
Table 3.1 Participant Characteristics at Beginning of Follow-up (HIV-seroconversion) 
 

 Case Status  

Variable Category 
NHL+ 

(n=202) 
NHL- 

(n=1,716) 
Total 

(n=1,918) 

Age Mean (SD) 38 (8) 39 (8) 39 (8) 

 Median (Q1-Q3) 37 (32-43) 39 (33-44) 38 (33-44) 

Calendar Duration (Years) Mean (SD) 5 (3) 9 (6) 8 (6) 

 Median (Q1-Q3) 4 (4-5) 7 (4-12) 7 (4-11) 

Person Visits (Total) Mean (SD) 3 (3) 6 (5) 6 (5) 

 Median (Q1-Q3) 3 (2-3) 5 (3-8) 4 (3-7) 

HAART Received No 169 (84) 374 (22)  543 (28) 

 Yes 33 (16) 1,342 (78) 1,375 (72) 

Race Non-white 35 (17) 649 (38) 684 (36) 

 White 167 (83) 1067 (62) 1234 (64) 

BMI (kg/m3) Overweight/normal/thin (<30.0) 189 (95) 1481 (87) 1670 (87) 

 Obese (30.0+) 10 (5) 227 (13) 237 (12) 

 Missing 3 8 11 (1) 

NHL Histological Subtype Diffuse large B-cell lymphoma 106 (52)  106 (52) 

 Malignant lymphoma, non-
Hodgkin, NOS 62 (31) 

 
62 (31) 

 Burkitt lymphoma/Burkitt cell 
leukemia 21 (10) 

 
21 (10) 

 Lymphoplasmacytic lymphoma 3 (1)  3 (1) 

 B-cell chronic lymphocytic 
leukemia/small lymphocytic 
lymphoma 2 (1) 

 

2 (1) 

 Follicular lymphoma 2 (1)  2 (1) 

 Malignant lymphoma, mixed 
small and large cell, diffuse 1 (1) 

 
1 (1) 

 Primary effusion lymphoma 1 (1)  1 (1) 

 Peripheral T-cell lymphoma, 
NOS 1 (1) 

 
1 (1) 

 Anaplastic large cell lymphoma, 
T- or Null-cell 1 (1) 

 
1 (1) 

 Unknown 2 (1)  2 (1) 

CD4 cell count/mm3 (Categories) <400 100 (51) 633 (38) 733 (38) 

 400-600 46 (23) 423 (25) 469 (24) 
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 Case Status  

Variable Category 
NHL+ 

(n=202) 
NHL- 

(n=1,716) 
Total 

(n=1,918) 

 >600 51 (26) 609 (37) 660 (34) 

 Missing 5 51 56 (3) 

CD4 cell count/mm3 Mean (SD) 440 (274) 533 (318) 523 (315) 

 Median (Q1-Q3) 399 (231-
605) 

497 (307-
719) 

488 (300-
709) 

Hepatitis C Infection HCV Unexposed 179 (89) 1523 (89) 1702 (89) 

 HCV Exposed 23 (11) 191 (11) 214 (11) 

 Missing 0 2 2 (0) 

Smoking Status Non-smoker 130 (67) 966 (59) 1096 (57) 

 Smoker 64 (33) 681 (41) 745 (39) 

 Missing 8 69 77 (4) 

No. Alcohol Drinks Per Week None 28 (14) 273 (16) 301 (16) 

 1 to 3 drinks/week 80 (41) 717 (43) 797 (42) 

 4 to 13 drinks/week 69 (35) 503 (30) 572 (30) 

 More than 13 drinks/week 19 (10) 163 (10) 182 (9) 

 Missing 6 60 66 (3) 

Uncontrolled Diabetes Mellitus No 202 (100) 1663 (97) 1865 (97) 

 Yes 0 52 (3) 52 (3) 

 Missing 0 1 1 (0) 

Stimulant Use No 146 (74) 1186 (72) 1332 (69) 

 Yes 50 (26) 466 (28) 516 (27) 

 Missing 6 64 70 (4) 

MACS Site Baltimore 51 (25) 408 (24) 459 (24) 

 Chicago 50 (25) 392 (23) 442 (23) 

 Los Angeles 76 (38) 560 (33) 636 (33) 

 Pittsburgh 25 (12) 356 (21) 381 (20) 
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Table 3.2: Summary Statistics of Analytes in Component Data Sets by Case Status Over Entire Follow-Up. 

 

 
Sub-Cohort 

 
Nested Case-Control 

  
Cases 

 
Controls 

  
Cases 

 
Controls 

              

 
% 

Geo- 
metri

c 
  

Geo- 
metric 

  
% 

Geo- 
metric 

  

Geo-
metric 

 

 

Detect
-able 

Mean 
(SD) Min-Max 

 

Mean 
(SD) Min-Max 

 

Detect
-able 

Mean 
(SD) Min-Max 

 

Mean 
(SD) Min-Max 

Cytokines 
            

BAFF 100 
7.91 

(0.47) 7.11 - 10.35 
 

7.79 
(0.40) 5.61 - 10.94 

 
-- -- -- 

 
-- -- 

GMCSF 35 
0.79 

(0.63) 0.18 - 5.26 
 

0.86 
(0.67) 0.18 - 5.99 

 
90 

0.29 
(0.31) 0.01 - 2.13 

 

0.22 
(0.27) 0.01 - 2.41 

IFNg 43 
1.07 

(0.56) 0.34 - 3.93 
 

1.07 
(0.54) 0.23 - 6.72 

 
90 

0.46 
(0.47) 0.00 - 3.60 

 

0.34 
(0.42) 0.00 - 2.57 

IL12P70 87 
1.59 

(1.22) 0.34 - 7.55 
 

1.45 
(1.06) 0.22 - 7.82 

 
90 

0.22 
(0.51) 0.03 - 3.08 

 

0.26 
(0.60) 0.03 - 4.76 

IL1B 17 
0.50 

(0.48) 0.09 - 4.27 
 

0.54 
(0.55) 0.08 - 7.27 

 
90 

0.35 
(0.57) 0.01 - 5.13 

 

0.31 
(0.36) 0.01 - 2.46 

IL2 73 
0.70 

(0.38) 0.22 - 2.67 
 

0.66 
(0.43) 0.10 - 5.47 

 
90 

0.45 
(0.47) 0.00 - 2.24 

 

0.29 
(0.45) 0.00 - 2.87 

TNFA 100 
2.63 
(0.5) 1.74 - 5.39 

 

2.52 
(0.52) 0.65 - 7.15 

 
90 

2.41 
(0.56) 0.08 - 4.23 

 

2.10 
(0.60) 0.04 - 4.53 

IL6 99 
0.79 

(0.47) 0.18 - 3.57 
 

0.80 
(0.55) 0.06 - 7.71 

 
94 

0.89 
(0.48) 0.08 - 3.63 

 

0.67 
(0.36) 0.08 - 2.33 

Soluble Receptors 
            

sCD14 100 
14.81 
(0.32) 13.75 - 15.95 

 

14.74 
(0.31) 

11.97 - 
16.12 

 
-- -- -- 

 
-- -- 

sCD27 100 
9.74 

(0.52) 8.68 - 11.70 
 

9.50 
(0.47) 7.78 - 14.09 

 
99 

6.24 
(0.45) 4.94 - 8.31 

 

6.03 
(0.38) 4.98 - 7.47 

sGP130 100 
12.45 
(0.18) 11.84 - 12.98 

 

12.50 
(0.25) 4.83 - 14.77 

 
-- -- -- 

 
-- -- 

sIL2RA 100 
7.88 

(0.49) 6.88 - 10.26 
 

7.49 
(0.45) 4.75 - 10.13 

 
-- -- -- 

 
-- -- 

sIL6R 99 
10.95 
(0.25) 10.34 - 11.66 

 

10.85 
(0.29) 9.07 - 13.13 

 
-- -- -- 

 
-- -- 

sTNFR2 100 
8.31 

(0.49) 7.02 - 10.59 
 

8.05 
(0.45) 6.09 - 11.09 

 
-- -- -- 

 
-- -- 
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Chemokines 
            

IL8 100 
2.86 

(1.00) 1.44 - 7.79 
 

2.91 
(0.93) 0.06 - 7.82 

 
90 

2.87 
(0.91) 0.87 - 8.07 

 

2.67 
(0.90) 0.25 - 7.51 

IP10 100 
6.02 

(0.73) 4.58 - 8.14 
 

5.69 
(0.77) 3.12 - 8.36 

 
59 

7.98 
(0.65) 5.55 - 9.90 

 

7.43 
(0.64) 5.55 - 8.94 

MCP1 100 
6.53 

(0.40) 5.67 - 7.82 
 

6.36 
(0.42) 4.07 - 8.47 

 
-- -- -- 

 
-- -- 

MCP4 100 
6.61 

(0.51) 4.01 - 8.20 
 

6.64 
(0.47) 3.64 - 8.47 

 
-- -- -- 

 
-- -- 

MIP1 100 
4.68 

(0.71) 1.85 - 6.75 
 

4.78 
(0.68) 1.76 - 9.15 

 
-- -- -- 

 
-- -- 

TARC 100 
6.14 

(0.68) 4.73 - 8.53 
 

6.19 
(0.72) 1.31 - 9.18 

 
-- -- -- 

 
-- -- 

CXCL13 99 
5.88 

(0.48) 4.60 - 7.76 
 

5.75 
(0.37) 2.69 - 9.02 

 
100 

4.83 
(1.10) 0.00 - 7.68 

 

4.35 
(1.03) 0.00 - 7.38 

EOTX 100 
7.59 

(0.38) 6.24 - 8.72 
 

7.50 
(0.49) 2.18 - 9.20 

 
-- -- -- 

 
-- -- 

IL10 99 
2.02 

(1.10) 0.76 - 7.77 
 

1.68 
(0.92) 0.2 - 7.77 

 
90 

1.32 
(0.81) 0.01 - 5.46 

 

0.95 
(0.70) 0.01 - 3.72 

Acute Phase Reactant 
           

CRP 95 
1.10 

(0.76) 0.18 - 5.05 
 

1.04 
(0.72) 0.18 - 5.15 

 
99 

1.16 
(0.79) 0.12 - 5.13 

 

0.95 
(0.61) 0.12 - 4.78 

 
Notes: 
a. All biomarker concentration units were pg/mL. 
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BAFF GMCSF IFN-γ IL-12p70 IL-1β IL-2 TNF-α IL-6 

 
MR (95%CI) MR (95%CI) MR (95%CI) MR (95%CI) MR (95%CI) MR (95%CI) MR (95%CI) MR (95%CI) 

HAART Naïve Visits 
       Means 

        
Cases 

1.02 
(0.91, 1.15) 

0.93 
(0.82, 1.05) 

0.97 
(0.87, 1.07) 

1.01 
(0.81, 1.25) 

0.97 
(0.87, 1.07) 

1.09 
(1.00, 1.19)* 

1.17 
(1.07, 1.30)* 

1.12 
(1.01, 1.23)* 

Controls (ref.) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
         Slopes 

        
Cases 

1.10 
(0.93, 1.31) 

1.22 
(1.00, 1.49) 

1.12 
(0.95, 1.31) 

0.99 
(0.72, 1.36) 

1.01 
(0.85, 1.21) 

1.02 
(0.89, 1.16) 

1.02 
(0.87, 1.19) 

1.02 
(0.87, 1.19) 

Controls (ref.) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

         HAART Exposed Visits 
       Means 

        
Cases 

1.41 
(1.12, 1.78)* 

0.94 
(0.59, 1.49) 

1.28 
(0.87, 1.90) 

0.97 
(0.46, 2.05) 

0.85 
(0.51, 1.43) 

1.00 
(0.74, 1.35) 

1.41 
(1.02, 1.94)* 

1.15 
(0.83, 1.61) 

Controls (ref.) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
         Slopes 

        
Cases 

1.00 
(0.80, 1.25) 

1.06 
(0.70, 1.60) 

0.96 
(0.68, 1.34) 

1.05 
(0.52, 2.12) 

1.07 
(0.69, 1.67) 

1.03 
(0.78, 1.35) 

0.97 
(0.73, 1.31) 

0.95 
(0.70, 1.29) 

Controls (ref.) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

         
         Notes: 

  
* Statistically significant at dependent FDR corrected p-value < 0.05. 
§ Results from linear mixed models with each natural log transformed biomarker as outcome, covariates included age, race, BMI, CD4+ T cell counts, HCV infection, 
smoking, alcohol intake, stimulant use, and MACS site. 

 

Table 3.3: Geometric Mean Ratios for Cytokines: Mean Levels and Slopes. 



 
 

75 
 

 

 

 

 

 

  

  
sCD14 sCD27 sGP130 sIL-2Rα sIL-6R sTNFR2 

  
MR (95%CI) MR (95%CI) MR (95%CI) MR (95%CI) MR (95%CI) MR (95%CI) 

HAART Naïve Visits 
Means 

       Cases 
 

1.06 (0.97, 1.16) 1.11 (1.03, 1.21)* 0.94 (0.87, 1.02) 1.16 (1.02, 1.32)* 0.95 (0.87, 1.04) 1.03 (0.91, 1.17) 

Controls (ref.) 
 

1.00 1.00 1.00 1.00 1.00 1.00 

        Slopes 
       Cases 
 

1.01 (0.88, 1.15) 1.04 (0.92, 1.18) 1.05 (0.94, 1.18) 1.17 (0.97, 1.42) 1.14 (1.00, 1.29)* 1.25 (1.04, 1.51)* 

Controls (ref.) 
 

1.00 1.00 1.00 1.00 1.00 1.00 

        HAART Exposed Visits 
Means 

       Cases 
 

1.00 (0.83, 1.20) 1.05 (0.81, 1.36) 0.95 (0.81, 1.11) 1.47 (1.14, 1.91)* 1.15 (0.97, 1.35) 1.34 (1.03, 1.73)* 
Controls (ref.) 

 
1.00 1.00 1.00 1.00 1.00 1.00 

        Slopes 
       Cases 
 

1.19 (1.00, 1.43) 1.25 (0.98, 1.59) 1.10 (0.94, 1.28) 1.20 (0.94, 1.55) 1.07 (0.91, 1.27) 1.21 (0.94, 1.55) 

Controls (ref.) 
 

1.00 1.00 1.00 1.00 1.00 1.00 

   
  

Notes: 

  
* Statistically significant at dependent FDR corrected p-value < 0.05. 

  

§ Results from linear mixed models with each natural log transformed biomarker as outcome, covariates included age, 
race. BMI, CD4+ T cell counts, HCV infection, smoking, alcohol intake, stimulant use, and MACS site. 

 

Table 3.4: Geometric Mean Ratios for Soluble Receptors: Mean Levels and Slopes 
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IL-8 IP-10 MCP-1 MCP-4 MIP-1β TARC CXCL13 EOTX-1 IL-10 

 
MR (95%CI) MR (95%CI) MR (95%CI) MR (95%CI) MR (95%CI) MR (95%CI) MR (95%CI) MR (95%CI) MR (95%CI) 

HAART Naïve Visits 
Means 

         
Cases 

0.84 
(0.64, 1.11) 

1.23 
(1.07, 1.42)* 

1.08 
(0.94, 1.23) 

0.93 
(0.80, 1.08) 

1.07 
(0.86, 1.32) 

0.95 
(0.76, 1.20) 

1.30 
(1.18, 1.43)** 

1.05 
(0.91, 1.21) 

1.05 
(0.87, 1.26) 

Controls (ref.) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

          Slopes 
         

Cases 
1.35 

(0.90, 2.03) 
1.10 

(0.89, 1.35) 
1.08 

(0.89, 1.30) 
1.23 

(1.00, 1.51) 
0.86 

(0.64, 1.17) 
1.03 

(0.75, 1.40) 
1.10 

(0.95, 1.28) 
1.02 

(0.83, 1.24) 
1.57 

(1.19, 2.06)* 

Controls (ref.) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

          
HAART Exposed Visits 

Means 
         

Cases 
0.96 

(0.54, 1.71) 
1.91 

(1.26, 2.92)* 
1.31 

(1.01, 1.70)* 
1.22 

(0.92, 1.61) 
1.23 

(0.81, 1.88) 
1.29 

(0.84, 1.97) 
1.20 

(0.88, 1.64) 
0.80 

(0.61, 1.05) 
1.31 

(0.74, 2.34) 
Controls (ref.) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
          

Slopes 
         

Cases 
1.16 

(0.68, 1.96) 
1.00 

(0.67, 1.49) 
1.01 

(0.78, 1.30) 
0.93 

(0.70, 1.22) 
0.77 

(0.51, 1.15) 
0.79 

(0.52, 1.20) 
1.15 

(0.86, 1.54) 
1.22 

(0.94, 1.60) 
1.34 

(0.78, 2.32) 

Controls (ref.) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

          
     
 

Notes: 
   

 
* Statistically significant at dependent FDR corrected p-value < 0.05. 

 

 

§ Results from linear mixed models with each natural log transformed biomarker as outcome, covariates included age, race. BMI, CD4+ T cell counts, 
HCV infection, smoking, alcohol intake, stimulant use, and MACS site. 

 

Table 3.5: Geometric Mean Ratios for Chemokines: Mean Levels and Slopes 
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Notes: 
* Statistically significant at dependent FDR corrected p-value < 0.05. 
§ Results from linear mixed models with each natural log transformed biomarker as outcome, covariates included age, race. BMI, CD4+ T cell counts, HCV infection, smoking, alcohol 
intake, stimulant use, and MACS site. 

 
CRP 

 
MR (95%CI) 

HAART Naïve Visits 
Means 

 Cases 1.14 (1.00, 1.29)* 

Controls (ref.) 1.00 

  Slopes 
 Cases 1.01 (0.82, 1.24) 

Controls (ref.) 1.00 

  HAART Exposed Visits 
Means 

 Cases 1.66 (1.08, 2.53)* 
Controls (ref.) 1.00 
  Slopes 

 Cases 0.79 (0.53, 1.17) 

Controls (ref.) 1.00 
 

Table 3.6: Geometric Mean Ratios for Acute Phase Reactant: Mean Levels and Slopes. 



 

78 
 

4 Chapter IV: Predictive Utility of Serum Biomarkers of Inflammation, Immune 
Activation, in AIDS-associated Lymphoma in HIV-infected Men in the MACS 
 

4.1 Abstract 
 

Background: Long term immune dysregulation has been documented to be etiologically linked 

to AIDS-associated non-Hodgkin lymphoma (AIDS-NHL). Prospectively measured biomarkers 

of inflammation and immune activation may thus aid in predicting the incidence of AIDS-NHL 

events in high risk population characterized by a chronic immune challenge. We investigated 

the predictive utility of 13 biomarkers in forecasting AIDS-NHL events in the Multicenter AIDS 

Cohort Study (MACS). 

 

Methods: We prospectively ascertained the serum concentrations of 13 biomarkers of 

inflammation and immune activation from stored serum samples of MACS participants from a 

1:1 matched case-control substudy (N=358). At 0-1, 1<-3, and >3 years prior to NHL diagnosis, 

we fit 13 separate random logistic regression models for the prediction of AIDS-NHL with each 

biomarker included in addition to a set of subject characteristics as covariates. We assessed the 

discrimination of the models by calculating area under receiver operating characteristic curve 

(AUC) values to assess the ability of the logistic regression models to discriminate between 

AIDS-NHL cases versus controls. We then fit another logistic regression model including 

multiple predictor biomarkers selected using the rankings of AUC statistics in individual 

biomarker models to select the best combination of biomarkers to include concurrently in a 

model. We also calibrated our models by graphing calibration plots and conducting goodness-

of-fit tests that indicated the differences in predicted disease risks relative to observed disease 

proportions. Finally, we performed bootstrap validation to examine the internal validity of our 

prediction models. 
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Results: Models including individual biomarkers yielded modest improvements in AUC statistics 

above a base-case model that comprised NHL risk factors and other participant characteristics. 

A model including IL-6, TNF-α, IP10, CXCL13, and sCD27, concurrently performed better than 

all other models including individual biomarkers: 0-1: AUC=0.943 95% CI: 0.910, 0.975; 1-3: 

AUC=0.895 95% CI: 0.856, 0.934; >3: AUC=0.836 95% CI: 0.787, 0.885. Increments in AUC 

above the base-case model were also better than any of the models extended using individual 

biomarkers: 0-1: difference in AUC=0.056 95% CI: 0.021, 0.091; 1-3: difference in AUC=0.032 

95% CI: 0.007, 0.057; >3: difference in AUC=0.074 95% CI: 0.030, 0.118. 

 

Conclusion: Biomarkers of immune activation and inflammation provide modesty improved 

discrimination over other participant characteristics and risk factors. Combining biomarkers, IL-

6, TNF-α, IP10, IL-10, CXCL13 in a single model provides the best discrimination and 

calibration over extended follow-up times. Risk prediction models with biomarkers may have 

future clinical utility in identifying patients at high risk for AIDS-NHL. 
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4.2 Introduction 
 

Non-Hodgkin lymphoma (NHL) continues to present a significant public health challenge among 

HIV-infected individuals even with the wide-spread availability of multi-agent highly active anti-

retroviral therapy (HAART) 7,42. Immune dysfunction, particularly chronic immune activation, is 

consistently reported to be a risk factor for AIDS-NHL among HAART users 4,172. Several serum 

biomarkers of immune activation and inflammation are documented to be altered prior to AIDS-

NHL diagnosis including some we consider in this study: IL-6 54,141, IL-10 54,141,142, CCL19, 

CXCL10/IP-10 14,141, CXCL11, CXCL13, sCD27, CRP 54,147,148, and TNF-α 14,141, MCP-2, MIP-

1δ/MIP-5/CCL15, IFN-α, GM-CSF 14. In a prior report we summarize evidence from the literature 

linking pre-diagnosis signatures of circulating markers of inflammation and immune activation 

the risk of NHL 156. In another study, we compared the levels and slopes of temporal trajectories 

of 24 prospectively collected biomarkers among individuals who develop AIDS-NHL relative to 

those who do not.  

 

In this study, we develop exploratory risk prediction models that include biomarkers previously 

described 54,128, in combination with a rich set of prospectively measured participant 

characteristics that serve as predictors. The rationale for this study is to explore the use of these 

biomarker measures in prediction models that provide easily interpretable prediction results with 

potential future clinical utility. While prior literature has shown associations between serum 

biomarkers and AIDS-NHL, there are no reports that develop models that could have direct 

utility as risk prediction tools for identifying patients of high risk and facilitate early detection and 

treatment of AIDS-NHL. We note the importance of the distinction between estimating measures 

of associations versus estimating measures of classification accuracy. It has been shown in the 

literature that a very strong association is a necessary but not sufficient condition for accurate 

classification, meaning that a high association between a covariate and the outcome under 
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study do not necessarily imply better classification of the outcome173,174. Risk prediction models 

are statistical models developed using several risk factors or patient characteristics thought to 

be associated with a health outcome of interest; they are used to predict the probability that an 

individual with a given set of risk factors or characteristics will experience the outcome of 

interest. The health outcome of interest could be the presence of disease (diagnosis) or the 

future progression of a disease (prognosis) 175–178. Examples of such risk prediction tools for 

several other disease outcomes using serum immunologic factors include the use of serum 

FLCs and immunoglobulins in the prediction of multiple myeloma 179–181, serum biomarkers and 

ischemic stroke 182, and multiple circulating immune factors in prediction models for resected 

NSCLC 183.  

 

This study aims to evaluate whether our set of 13 biomarkers improve the discrimination 

between AIDS-NHL cases versus controls relative to a reference model comprising other 

individual subject characteristics or known risk factors for NHL, while exhibiting adequate 

calibration to the data. Discrimination quantifies how well a risk prediction model distinguishes 

between subjects who will develop disease outcomes of interest from those who will not 

experience the events 184,185. Various measures have been proposed to capture discrimination. 

However, the most widespread measure of discrimination accuracy of prediction models is the 

use of AUC 184,186. AUC is the area under the receiver operating characteristic curve. It 

measures the degree to which a risk prediction model can discriminate between those who do 

and do not have a disease of interest. Since the ROC curve plots sensitivity versus 1−specificity 

across a range of cut points for a continuous predictor, higher AUC signifies higher 

discriminative ability of a risk prediction model 187. Calibration is an attribute of a risk calculator -- 

in our case, a logistic regression model. A risk calculator is said to be well calibrated when the 

frequency of disease outcomes among subjects with predictor values X = x is equal to the 

calculator's measure of the probability (risk) of occurrence of that disease in the subject 
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population 178. More loosely, it is a quantity that measures how close predicted outcomes from a 

model are to observed outcomes in the data set. Calibration is evaluated by graphical methods 

such as calibration slope plots or goodness-of-fit tests, and involves comparing the observed 

event rates versus average estimated risk values within subgroups of subjects defined by 

combinations of values of predictors included in the risk prediction model 178.  

 

4.3 Materials & Methods 
 

Details of the MACS have been described and published previously 39,40. We include data from 

a case-control substudy nested within the MACS 54. In this substudy, serum samples were 

extracted from MACS participants enrolled between 1984–85 or 1987–1991. Cases were 

defined as HIV-infected MACS participants diagnosed with AIDS-NHL before April, 2003, with at 

least one serum sample at a visit prior to AIDS-NHL diagnosis (n=179). For each AIDS-NHL 

case, an HIV-infected control was selected from among HIV-infected MACS subjects with no 

lymphoma diagnosis as of April 2003. Cases were matched to controls (1:1 ratio for a total 

sample size of n=358) on the duration of HIV-infection if the date of HIV-seroconversion was 

known, or date of entry (within a year) into the MACS cohort if they were HIV-seroprevalent, and 

also matched on expected availability of their serum samples at time points comparable to 

cases within a year. Serum samples were collected from three possible time intervals prior to 

NHL diagnosis (prediagnosis time point) at 0–1 year (nearest visit to 0.5), 1–3 years (nearest 

visit to 2), and >3 years (nearest visit to 4) prior to AIDS-NHL, with each participant contributing 

at most one sample per interval.  

 

4.4 AIDS-NHL Outcome, Biomarkers, and Covariates 
 

AIDS-NHL diagnoses were ascertained at each follow-up visit through interviews of subjects 

and medical chart abstraction, pathology reports from autopsy, and finally queries of state 
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cancer registries 11. Since 2006, all diagnosed cancers were classified by site and histology 

codes of the International Classification of Diseases for Oncology, 3rd edition (ICD-O-3). Our 

primary outcome was AIDS-NHL diagnosis. Biomarkers were our primary predictors of interest, 

and details of assays to measure their concentration have been described in detail 

elsewhere.128 We considered a comprehensive set of covariates and their corresponding 

functional forms using prior literature 3,4,36,188 and data availability. We included time-dependent 

variables CD4+ T cell counts at each visit as a continuous variable; self-reported tobacco use, 

self-reported stimulant drug use (define as either cocaine or methamphetamine use); self-

reported frequency of alcohol use (captured as no use, less than twice weekly, and more than 

twice weekly since the last visit); body mass index (BMI, categorized as above normal, BMI>25 

kg/m2, versus normal or lower at each visit); HCV exposure status at each current visit (no 

exposure versus any exposure); uncontrolled diabetes mellitus at each visit based on 

classification of A1c>6.5% or fasting glucose >126mg/dL (7.0 mmol/l) 128,149; and estimated 

duration of HIV-infection. Time-invariant confounders included age at NHL diagnosis, race 

categorized as non-Hispanic white versus non-white, and MACS center. 

 

4.5 Statistical Methods 
 

We followed the approach described by Steyerberg 175,176,189,190 for documenting the steps 

involved in developing the prediction models, including data inspection and coding, model 

specification and estimation, and finally assessment of model performance and validation. 

 

Data Inspection: We tabulated descriptive statistics for variables in our study sample and 

explored the distributions of the predictors included in our models at each prediagnosis time 

point of interest. We also presented summary statistics for the distribution of the biomarker 

values and associated levels of missingness.  
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Model Specification and Estimation: At each of 3 prediagnosis time points (0-1, 1<-3, and >3 

years prior to NHL diagnosis) we fit logistic regression models using maximum likelihood 

estimation. For the base-case regression model, we included a set of subject characteristics 

and risk factors for NHL, categorized as described in section 4.4, as covariates namely, age at 

AIDS-NHL diagnosis (age at matched time point for controls), race, MACS center, and at the 

specific AIDS-NHL prediagnosis time point of prediction: duration of HIV-infection, CD4+ T cell 

counts, smoking status, stimulant drug use, alcohol intake, BMI, and HCV infection exposure. 

We then estimated logistic regression models extending the base-case model with each 

extended model additionally including one of 13 biomarkers. A final extended regression model 

included multiple predictor biomarkers selected by assessing the top 5 ranking biomarkers as 

measured by improvement in AUC. 191,192  

 

Assessment of Model Performance and Validation: In assessing the performance of our 

prediction models we were interested in two aspects of predictive accuracy: (1) discrimination, 

and (2) calibration. We tabulated AUCs a measure of discrimination for each of our models and 

estimate the difference between the AUC of the base-case model versus the AUC of the 

extended model including the biomarker. It has been shown that for models containing known 

risk factors exhibiting good discrimination, very large associations of biomarkers with the 

outcome are required in order to observe even a modest improvement in AUC. We therefore 

take a descriptive approach and rank the improvement in AUC between markers. We assessed 

calibration by conducting goodness of fit tests using the Hosmer-Lemeshow test,193 which 

assesses whether observed proportions of AIDS-NHL are concordant with predicted AIDS-NHL 

risk in subgroups defined by the deciles of the predicted risk values. In addition, we cross-check 

the Hosmer-Lemeshow goodness of fit tests with a model based version that is shown to have 

better power to detect departures from concordance in small samples.194 We used locally 
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estimated scatterplot smoothing (loess) to graph calibration plots assessing the degree to which 

our estimated predicted probabilities of AIDS-NHL deviated from smoothed observed 

proportions of AIDS-NHL cases.195 For each plot, a 'span' was defined around each subject 

such that all subjects within that window were used to fit a local regression used to obtain a 

prediction of observed risk for each subject which was then compared to the risk predicted by 

the logistic regression model estimated with risk factors and biomarkers included together as 

predictors. 

 

Finally, we assessed the internal validity of our models via correction of statistical 'optimism' via 

bootstrap techniques as described in Steyeberg.177,196 Optimism is a measure of data overfitting 

when calculating performance statistics such as the AUC. The following steps were used in 

calculating and correcting for optimism196: 

1. Logistic regressions were fit to the original data set (n=358). AUC statistics render 

"apparent" performance. 

2. Bootstrap samples (B=100) were drawn with replacement from the original sample, each 

n=358. 

3. Logistic regressions, specified with the same variables as in step 1, were fit to each of 

the bootstrap samples. These AUC statistics measure "bootstrap" performance. 

4. The regression parameters from step 3 were used to calculate AUC statistics using the 

original data used in step 1. These AUC statistics measure "test" performance. 

5. Optimism is calculated as the difference between bootstrap performance and test 

performance for a total of B=100 optimism estimates. 

6. B=100 optimism corrected estimates are obtained by subtracting each AUC from step 1 

with corresponding optimism estimates in step 5. A final optimism estimated estimate is 

presented as the median of the optimism corrected estimates. Uncertainty intervals for 

the final optimism corrected estimates are presented as the 2.5th and 97.5th quantiles of 

the distribution of the optimism corrected estimates.  
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We also include leave-one-out cross validation AUC statistics as an alternative correction for 

optimism. 

 

All analyses were performed using SAS procedures in SAS 9.2 Cary, NC. 

 

4.6 Results 
 

Descriptive Statistics 

 

We describe participant characteristics of our analytic sample (n=358) in Table 4.1 by 

prediagnosis time point. We observed similar distributions of age and race between cases and 

controls at each time-point. Controls exhibited higher prevalences of overweight and obese 

BMIs relative to controls across time points, while CD4 cell counts were consistently depressed 

among cases relative to controls with the trend intensifying nearing the time of NHL diagnosis. A 

similar trend is observed in behavioral risk factors: smoking, heavy drinking, and stimulant use 

are lower among cases relative to controls, and the trend becomes more pronounced as clinical 

diagnosis of NHL approaches. 

 

We present biomarker median levels and interquartile range boundaries by case status and 

prediagnosis time point in Table 4.2. We consistently observed higher median concentrations 

among cases relative to controls across all time-points, with the only exception being IL-12p70 

where there appear to be no meaningful differences by case status.  

 

Model Predictive Performance 
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For each biomarker, we present AUC statistics, and corresponding Wald 95% confidence 

intervals, assessing the predictive performance of the model, and the increment in AUC over 

that of the base-case model including only participant characteristics and NHL risk factors 

(Table 4.3). We find that in general, the models including the biomarkers improve the AUC 

statistics only marginally (<10%) in absolute terms, frequently with a U-shaped trend in the AUC 

difference statistics from the furthest time-point (3+ years prior to NHL), to the prediagnosis time 

point during the year of diagnosis of AIDS-NHL. The models that had the top 5 incremental 

predictive performance averaged across time points were IL-6 (0-1 years: difference in AUC= 

0.031 95% CI: 0.002, 0.061; 1-3 years: difference in AUC=0.006 95% CI: -0.005, 0.016; >3 

years: difference in AUC= 0.043 95% CI: 0.013, 0.074), TNF-α (0-1 years: difference in AUC= 

0.020 95% CI: -0.006, 0.046; 1-3 years: difference in AUC= 0.025 95% CI: 0.004, 0.046; >3 

years: difference in AUC= 0.018 95% CI: -0.008, 0.043), IP10 (0-1 years: difference in AUC= 

0.020 95% CI: -0.001, 0.041; 1-3 years: difference in AUC=0.014 95% CI: -0.002, 0.030; >3 

years: difference in AUC= 0.022 95% CI: -0.006, 0.050), IL-10 (0-1 years: difference in AUC= 

0.013 95% CI: -0.006, 0.031; 1-3 years: difference in AUC=0.012 95% CI: -0.003, 0.028; >3 

years: difference in AUC= 0.022 95% CI: -0.003, 0.046), CXCL13 (0-1 years: difference in 

AUC= 0.000 95% CI: -0.008, 0.008; 1-3 years: difference in AUC= 0.017 95% CI: 0.002, 0.032; 

>3 years: difference in AUC= 0.028 95% CI: -0.002, 0.054) (Table 4.3). A model including these 

biomarkers concurrently performed better, considering average AUC across time points, than all 

other models that included only individual biomarkers: 0-1: AUC=0.943, 95% CI: 0.910, 0.975; 

1-3: AUC=0.895, 95% CI: 0.856, 0.934; >3: AUC=0.836, 95% CI: 0.787, 0.885 (Table 4.3). The 

increments in AUC above the base-case model were also better than any of the models 

extended using individual biomarkers: 0-1: difference in AUC=0.056 95% CI: 0.021, 0.091; 1-3: 

difference in AUC=0.032 95% CI: 0.007, 0.057; >3: difference in AUC=0.074 95% CI: 0.030, 

0.118 (Table 4.3). 
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We present our assessments of model calibration using goodness of fit tests (Table 4.5), and 

calibration plots (Figure 4.1). Goodness of fit tests indicate that the models including biomarkers 

are generally well calibrated consistently across time-points (all p-values > 0.05, indicating 

adequate calibration). Conversely, the calibration plots indicate that while the overall levels of 

calibration may be adequate, for some biomarkers (CRP, CXCL13, GM-CSF, INF-γ, IP12p70, 

IL1B,IL-2, IL-6, IP10), there is some variability in calibration for the 1-3 year time point, and to a 

lesser extent the 3+ years time-point, when compared to the 0-1 year time-point. This result 

indicates we have the best concordance between predicted and observed NHL risks in the time 

intervals closest to clinical diagnosis of AIDS-NHL. The model comprising the combined 

biomarkers exhibits good calibration overall, although the calibration level varies considerably 

for the >3 years time point in an erratic manner, indicating relatively poor concordance between 

predicted and observed risks, particularly when we consider the calibration levels for the time-

points nearer to NHL diagnosis.  

 

Model Validation 

 

We corrected our AUC estimates in our observed data set and present the updated values 

(Table 4.5). We find that the difference between the 'apparent' AUC estimates and those 

corrected for statistical optimism are all within 5% of each other, which suggests that our 

estimates of AUC are likely to have reasonable applicability to new data sets. 

 

 
4.7 Discussion 
 

There are two trends that become apparent from our analyses. Firstly, that while biomarker 

models provide improved discrimination over other participant characteristics and risk factors, 

they do so only modestly, and the combination of biomarkers (IL-6, IL-10, TNF-α, IP10, 
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CXCL13) provides the best discrimination. Secondly, the improvement in discrimination 

performance due to the addition of biomarkers as predictors tends to be exhibit a "U-shape", 

with greatest performance at the earliest prediagnosis time point, and then another spike in 

performance in the year of AIDS-NHL diagnosis. These findings have scientific import because 

biomarker-disease association does not always translate to measurable disease prediction 

performance. 

 

We considered a rich set of cytokines as potential predictors in our prediction models including 

GMCSF, IFN-γ, IL12p70, IL1β, IL-2, TNF-α, and IL-6. Among these cytokines, logistic 

regression models including IL-6 and TNF-α had the best overall discriminatory capability 

across the prediagnosis time points, with discrimination improving with the approach of AIDS-

NHL diagnosis. IL-6 is a pluripotent cytokine that stimulates B cell proliferation and 

differentiation and promotes tumor growth 84,85 both of which lead to increased risk of NHL. In 

addition, IL-6 is associated with pro-inflammatory and Th17 immune responses both of which 

play a role in autoimmunity 86,87, which in turn is related to risks for NHL88. TNF-α is a pro-

inflammatory cytokine that plays a role in B cell activation, growth, differentiation, apoptosis, and 

chemotaxis 102–104, all of which enhance B-cell hyperactivation associated lymphomagenic 

processes. This is particularly the case in the context of HIV-infection, where even HIV proteins 

imitate the TNF-α signaling pathway thereby increasing the viral reservoir 197, and potentially 

further encouraging a lymphomagenic environment marked by chronic immune activation and 

inflammation. While the absolute values of the AUC statistics were modest, both these 

cytokines do add some value to prediction models for AIDS-NHL, and would be useful to further 

evaluate in a larger study. 

 

We also considered a set of chemokines (IL8, IP10, CXCL13, IL-10) as potential predictors of 

AIDS-NHL among which IP10, IL-10, and CXCL13 had the best performance. The chemokine 
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IP-10 (CXCL10) acts upon activated T cells and macrophages, and has also be shown to 

stimulate HIV replication in monocyte-derived macrophages and lymphocytes, and reduces the 

amount of MIP-1α, MIP-1β, and RANTES produced by activated peripheral blood lymphocytes 

167. With these considerations, IP-10 can be linked to B-cell lymphomagenesis through the 

chronic immune activation engendered by HIV-infection. Consistent with this prior evidence, we 

find that IP10 levels can help discriminate between AIDS-NHL cases and controls over and 

above known risk factors. IL-10, a pleiotropic cytokine with stimulatory effects on B cells, 

promotes chronic B cell activation and is likely etiologically linked to NHL92–94. We found that 

circulating IL-10 levels provide some improvement in predictive ability of our models in 

accordance with its purported etiological role for NHL. We also considered CXCL13 for which 

aberrant expression is thought to be involved in the pathogenesis of B cell lymphoma through 

abnormal chemotaxis of B cells to tissues or abnormal B cell activation.109 Overexpression of 

the receptor-ligand pair CXCR5/CXCL13 has been observed in B cell chronic lymphocytic 

leukemia,110 and follicular lymphoma cells have been seen to secrete CXCL13,111 indicating the 

possibility that CXCL13 can be a biomarker for NHL and these subtypes. We observed that 

levels of CXCL13 improve the discrimination between AIDS-NHL cases and controls indicating 

that CXCL13 could have some utility as a biomarker for AIDS-NHL. 

 

Models that included a combination of the biomarkers (IL-6, TNF-α, IP10, IL-10,  CXCL13) that 

conferred the best improvements in AUC above the base-case model, outperformed all the 

models including individual biomarkers. This finding indicates that a larger study is warranted to 

investigate which biomarkers among our included set, or some larger set of biomarkers, might 

provide the best predictive performance in predicting AIDS-NHL. In addition, more data would 

allow incorporation of more complex predictive modeling strategies than we could employ here 

to assess the precise combinations and functional forms of biomarkers that could yield the best 

clinical prediction. It would also be ideal to have access to an additional independent data set 
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that could be used for external validation of these or similar prediction models. Such validation 

would bring results from prediction model building closer to translation into clinical practice. 

 

There are several data related limitation in our study. First, we were using data from a matched 

nested case-control design, with matching factors being duration of HIV-infection (or date of 

entry (within a year) for HIV-seroprevalent), and expected availability of serum samples. We 

used duration of HIV-infection in our prediction models in logistic regression models that did not 

condition on matched risk set, but did not have the data assessing expected availability of 

serum samples, therefore could not include it leading to potential introduction of bias in our 

estimates. In addition, 'breaking the match' may also introduce biased estimates of risk 

prediction measures in a case-control.198 Secondly, the number of participants included at each 

time point were not equivalent across time intervals meaning that the comparisons of the 

prediction measures were compromised by differences in amounts of information used for each 

estimate. 

 

Our study possesses several strengths. First, we were able to prospectively assess the AIDS-

NHL event history of a group of men over a substantial follow up period which reduces biases 

due to the independent collection of biomarker exposures and outcomes, and also allowed us to 

comprehensively assess the predictive performance of the biomarkers over a significant time-

frame. Centralized labs were utilized in specimen extraction and quantitation meaning that 

random variability in the measures was reduced, and the high quality and sensitivity of the 

assay instrumentation meant that we were able to receive measures with the highest possible 

detection capability. We also included a comprehensive set of risk factors and patient 

characteristics that have either been shown to be associated with NHL risk or could plausibly 

have predictive value. 
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In conclusion, our prospective investigation into 13 markers of immune activation, and 

inflammation provided some evidence that elevated levels of several biomarkers could be used 

to improve models that predict AIDS-NHL incidence in a high-risk population for up to more than 

three years prior to diagnosis. These biomarkers could be considered in larger studies that 

further develop fine-tuned risk prediction models for AIDS-NHL. 
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4.11 Tables and Figures 
 

Table 4.1: Participant Characteristics in Analytic Sample: N=358. 

 Year Prior to NHL Diagnosis 

 0-1 1-3 >3 

Variable Category Control Case Control Case Control Case 

N Total 107 106 149 151 147 150 

Age Median (Q1-Q3) 38 (34-43) 41 (36-45) 37 (33-41) 39 (34-44) 36 (32-40) 37 (32-42) 

Race White, non-Hispanic 92 (86) 93 (88) 131 (88) 130 (86) 126 (86) 123 (82) 

 Hispanic 8 (7) 10 (9) 9 (6) 14 (9) 10 (7) 19 (13) 

 Black, non-Hispanic 4 (4) 3 (3) 6 (4) 7 (5) 9 (6) 8 (5) 

 Other race 3 (3) 0 (0) 3 (2) 0 (0) 2 (1) 0 (0) 

BMI (kg/m3) Normal/Underweight 
(<25.0) 

59 (58) 83 (84) 88 (61) 109 (76) 85 (61) 102 (71) 

 Overweight/Obese 
(25.0+) 

43 (42) 16 (16) 56 (39) 34 (24) 54 (39) 41 (29) 

 Missing 5 7 5 8 8 7 

NHL Histological Subtype Burkitt 
lymphoma/Burkitt 
cell leukemia 

-- 12 (12) -- 17 (12) -- 14 (10) 

 Diffuse large B-cell 
lymphoma 

-- 62 (60) -- 85 (58) -- 84 (57) 

 Follicular lymphoma -- 2 (2) -- 2 (1) -- 2 (1) 

 Lymphoplasmacytic 
lymphoma 

-- 2 (2) -- 2 (1) -- 1 (1) 

 Malignant 
lymphoma, mixed 
small and large cell, 
diffuse 

-- 1 (1) -- 1 (1) -- 1 (1) 



 

94 
 

 Year Prior to NHL Diagnosis 

 0-1 1-3 >3 

Variable Category Control Case Control Case Control Case 

 Malignant 
lymphoma, non-
Hodgkin, NOS 

-- 24 (23) -- 40 (27) -- 45 (31) 

 Unknown -- 3 -- 4 -- 3 

CD4 cell count/mm3 Median (Q1-Q3) 468 
(280-629) 

79 
(23-258) 

513 
(349-688) 

210 
(81-356) 

562 
(437-759) 

385 
(243-550) 

CD4 cell category, 
count/mm3 

<400 46 (43) 90 (87) 47 (32) 118 (81) 31 (21) 79 (54) 

 400-600 25 (24) 10 (10) 41 (28) 17 (12) 55 (37) 37 (25) 

 >600 35 (33) 3 (3) 57 (39) 11 (8) 61 (41) 30 (21) 

 Missing 1 3 4 5 0 4 

Duration of HIV Infection 
(years) 

Median (Q1-Q3) 5 (3-9) 6 (4-9) 4 (2-7) 4 (2-7) 3 (1-5) 3 (1-5) 

Year of HIV Infection 1984-1985 86 (80) 87 (82) 121 (81) 124 (82) 122 (83) 124 (83) 

 1986-1987 8 (7) 10 (9) 10 (7) 13 (9) 12 (8) 14 (9) 

 1988-1989 8 (7) 3 (3) 11 (7) 5 (3) 8 (5) 5 (3) 

 1990-1991 3 (3) 4 (4) 5 (3) 7 (5) 3 (2) 5 (3) 

 1992-1994 2 (2) 2 (2) 2 (1) 2 (1) 2 (1) 2 (1) 

Hepatitis C Infection HCV Unexposed 96 (90) 89 (84) 135 (92) 127 (85) 137 (93) 130 (87) 

 HCV Exposed 11 (10) 17 (16) 12 (8) 22 (15) 10 (7) 19 (13) 

 Missing   2 2 0 1 

Smoking Status Smoker 41 (39) 20 (19) 51 (36) 34 (23) 49 (36) 45 (31) 

 Non-smoker 65 (61) 83 (81) 91 (64) 112 (77) 88 (64) 98 (69) 

 Missing 1 3 7 5 10 7 

No. Alcohol Drinks Per Week None 20 (19) 26 (25) 15 (10) 22 (15) 12 (9) 18 (13) 

 1 to 3 drinks/week 43 (40) 52 (51) 55 (38) 75 (51) 56 (40) 57 (40) 
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 Year Prior to NHL Diagnosis 

 0-1 1-3 >3 

Variable Category Control Case Control Case Control Case 

 4 to 13 drinks/week 33 (31) 21 (21) 56 (39) 41 (28) 57 (41) 52 (36) 

 More than 13 
drinks/week 

11 (10) 3 (3) 18 (13) 8 (5) 14 (10) 16 (11) 

 Missing 0 4 5 5 8 7 

Uncontrolled Diabetes 
Mellitus 

No 106 (99) 106 (100) 147 (100) 149 (100) 147 (100) 149 (100) 

 Yes 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

 Missing 0 0 2 2 0 1 

Stimulant Use No 83 (78) 92 (90) 108 (75) 123 (85) 92 (67) 111 (77) 

 Yes 23 (22) 10 (10) 36 (25) 21 (15) 46 (33) 34 (23) 

 Missing 1 4 5 7 9 5 

MACS Site Baltimore 18 (17) 28 (26) 29 (19) 45 (30) 32 (22) 39 (26) 

 Chicago 16 (15) 16 (15) 25 (17) 31 (21) 25 (17) 38 (25) 

 Los Angeles 46 (43) 45 (42) 62 (42) 58 (38) 62 (42) 58 (39) 

 Pittsburgh 27 (25) 17 (16) 33 (22) 17 (11) 28 (19) 15 (10) 
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Table 4.2: Biomarker Distributions by Prediagnosis Time Point. 

 
  Year Prior to NHL Diagnosis 

 0-1 1-3 >3 

Variable Control Case Control Case Control Case 

N 107 106 149 151 147 150 

Biomarkers Median (Q1-Q3)  
  GMCSF 0.17 (0.01-0.32) 0.32 (0.17-0.52) 0.07 (0.01-0.32) 0.26 (0.01-0.40) 0.11 (0.01-0.33) 0.17 (0.01-0.35) 
  IFN-γ 0.21 (0.12-0.31) 0.43 (0.25-0.76) 0.21 (0.10-0.33) 0.34 (0.19-0.57) 0.21 (0.10-0.31) 0.25 (0.11-0.42) 
  IL12p70 0.03 (0.03-0.03) 0.03 (0.03-0.03) 0.03 (0.03-0.10) 0.03 (0.03-0.03) 0.03 (0.03-0.03) 0.03 (0.03-0.03) 
  IL1β 0.17 (0.01-0.29) 0.24 (0.03-0.47) 0.21 (0.06-0.34) 0.21 (0.03-0.39) 0.26 (0.08-0.41) 0.21 (0.06-0.43) 
  IL2 0.00 (0.00-0.46) 0.55 (0.00-0.83) 0.00 (0.00-0.46) 0.46 (0.00-0.81) 0.00 (0.00-0.33) 0.05 (0.00-0.53) 
  TNF-α 2.09 (1.67-2.44) 2.55 (2.22-2.86) 2.17 (1.74-2.46) 2.46 (2.14-2.81) 2.11 (1.74-2.41) 2.38 (2.02-2.64) 
  IL6 0.58 (0.41-0.83) 0.96 (0.78-1.39) 0.58 (0.41-0.73) 0.77 (0.63-1.05) 0.51 (0.35-0.72) 0.68 (0.48-0.89) 
  sCD27 6.00 (5.81-6.29) 6.22 (5.90-6.58) 6.03 (5.77-6.22) 6.19 (5.93-6.53) 5.91 (5.73-6.13) 6.12 (5.89-6.39) 
  IL8 2.62 (2.22-3.04) 3.05 (2.60-3.61) 2.48 (2.14-2.93) 2.79 (2.36-3.21) 2.53 (2.15-2.97) 2.63 (2.23-3.06) 
  IP10 7.61 (7.15-8.06) 8.22 (7.70-8.76) 7.52 (6.91-8.00) 8.11 (7.68-8.54) 7.28 (6.88-7.79) 7.72 (7.37-8.16) 
  CXCL13 4.39 (3.97-4.74) 5.04 (4.60-5.60) 4.37 (3.88-4.84) 5.01 (4.57-5.42) 4.31 (3.86-4.77) 4.74 (4.39-5.24) 
  IL10 0.73 (0.49-1.04) 1.45 (0.98-2.05) 0.64 (0.43-0.95) 1.17 (0.81-1.72) 0.58 (0.38-1.04) 1.01 (0.58-1.43) 
  CRP 0.84 (0.57-1.18) 1.19 (0.67-1.69) 0.78 (0.46-1.26) 1.02 (0.60-1.61) 0.64 (0.41-1.11) 0.89 (0.48-1.34) 

Notes: 
a. Biomarkers measured on a natural log scale, with units of pg/mL. 
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Table 4.3: Comparing AUC Estimates for Models including Risk Factors Only, versus Biomarker 
with Risk Factors. 

  
Prediagnosis 

 
Model AUC§ 

  
Period 

 

Risk 
Factors 

 
Biomarker 

  
Biomarker 

 
(Years) 

 
Only  

 

+ Risk 
Factors‡ 

 
Difference 

         
sCD27 

 
0-1 

 

0.896 
(0.852, 0.940) 

 

0.900 
(0.857, 0.943) 

 

0.004 
(-0.011, 0.020) 

  
1-3 

 

0.863 
(0.820, 0.905) 

 

0.878 
(0.838, 0.917) 

 

0.015 
(0.000, 0.030) 

  
>3 

 

0.771 
(0.715, 0.826) 

 

0.793 
(0.740, 0.847) 

 

0.023 
(-0.003, 0.048) 

CRP 
 

0-1 
 

0.896 
(0.852, 0.940) 

 

0.900 
(0.856, 0.943) 

 

0.004 
(-0.006, 0.013) 

  
1-3 

 

0.863 
(0.820, 0.905) 

 

0.867 
(0.826, 0.909) 

 

0.005 
(-0.004, 0.014) 

  
>3 

 

0.771 
(0.715, 0.826) 

 

0.800 
(0.748, 0.852) 

 

0.030 
(0.000, 0.059) 

CXCL13 
 

0-1 
 

0.897 
(0.853, 0.941) 

 

0.897 
(0.853, 0.940) 

 

-0.000 
(-0.008, 0.008) 

  
1-3 

 

0.864 
(0.822, 0.906) 

 

0.881 
(0.842, 0.920) 

 

0.017 
(0.002, 0.032) 

  
>3 

 

0.773 
(0.718, 0.828) 

 

0.801 
(0.749, 0.852) 

 

0.028 
(0.002, 0.054) 

GM-CSF 
 

0-1 
 

0.886 
(0.837, 0.934) 

 

0.895 
(0.848, 0.941) 

 

0.009 
(-0.007, 0.026) 

  
1-3 

 

0.865 
(0.821, 0.908) 

 

0.866 
(0.823, 0.909) 

 

0.001 
(-0.005, 0.008) 

  
>3 

 

0.768 
(0.710, 0.825) 

 

0.772 
(0.715, 0.829) 

 

0.005 
(-0.005, 0.014) 

IFN-γ 
 

0-1 
 

0.886 
(0.837, 0.934) 

 

0.901 
(0.856, 0.946) 

 

0.016 
(-0.006, 0.038) 

  
1-3 

 

0.865 
(0.821, 0.908) 

 

0.867 
(0.824, 0.910) 

 

0.002 
(-0.006, 0.010) 

  
>3 

 

0.768 
(0.710, 0.825) 

 

0.783 
(0.727, 0.838) 

 

0.015 
(-0.006, 0.036) 

IL10 
 

0-1 
 

0.886 
(0.837, 0.934) 

 

0.898 
(0.854, 0.943) 

 

0.013 
(-0.006, 0.031) 

  
1-3 

 

0.865 
(0.821, 0.908) 

 

0.877 
(0.836, 0.918) 

 

0.012 
(-0.003, 0.028) 

  
>3 

 

0.768 
(0.710, 0.825) 

 

0.789 
(0.734, 0.844) 

 

0.022 
(-0.003, 0.046) 

IL12P70 
 

0-1 
 

0.886 
(0.837, 0.934) 

 

0.886 
(0.837, 0.935) 

 

0.000 
(-0.007, 0.008) 

  
1-3 

 

0.865 
(0.821, 0.908) 

 

0.870 
(0.827, 0.913) 

 

0.006 
(-0.005, 0.016) 

  
>3 

 

0.768 
(0.710, 0.825) 

 

0.777 
(0.721, 0.834) 

 

0.010 
(-0.006, 0.026) 

IL1β 
 

0-1 
 

0.886 
(0.837, 0.934) 

 

0.899 
(0.854, 0.944) 

 

0.014 
(-0.007, 0.034) 

  
1-3 

 

0.865 
(0.821, 0.908) 

 

0.866 
(0.822, 0.909) 

 

0.001 
(-0.004, 0.006) 

  
>3 

 

0.768 
(0.710, 0.825) 

 

0.772 
(0.715, 0.829) 

 

0.005 
(-0.005, 0.014) 

IL2 
 

0-1 
 

0.886 
(0.837, 0.934) 

 

0.894 
(0.847, 0.940) 

 

0.008 
(-0.008, 0.025) 

  
1-3 

 

0.865 
(0.821, 0.908) 

 

0.870 
(0.827, 0.912) 

 

0.005 
(-0.005, 0.015) 



 

98 
 

  
>3 

 

0.768 
(0.710, 0.825) 

 

0.776 
(0.719, 0.832) 

 

0.008 
(-0.006, 0.023) 

IL6 
 

0-1 
 

0.888 
(0.840, 0.936) 

 

0.919 
(0.880, 0.958) 

 

0.031 
(0.002, 0.061) 

  
1-3 

 

0.860 
(0.817, 0.904) 

 

0.866 
(0.823, 0.909) 

 

0.006 
(-0.005, 0.016) 

  
>3 

 

0.770 
(0.714, 0.827) 

 

0.814 
(0.762, 0.866) 

 

0.043 
(0.013, 0.074) 

IL8 
 

0-1 
 

0.886 
(0.837, 0.934) 

 

0.896 
(0.850, 0.942) 

 

0.011 
(-0.008, 0.030) 

  
1-3 

 

0.865 
(0.821, 0.908) 

 

0.868 
(0.825, 0.912) 

 

0.004 
(-0.005, 0.013) 

  
>3 

 

0.768 
(0.710, 0.825) 

 

0.771 
(0.714, 0.828) 

 

0.003 
(-0.006, 0.013) 

IP10 
 

0-1 
 

0.888 
(0.839, 0.937) 

 

0.909 
(0.865, 0.952) 

 

0.020 
(-0.001, 0.041) 

  
1-3 

 

0.865 
(0.820, 0.909) 

 

0.879 
(0.837, 0.920) 

 

0.014 
(-0.002, 0.030) 

  
>3 

 

0.764 
(0.706, 0.823) 

 

0.786 
(0.730, 0.842) 

 

0.022 
(-0.006, 0.050) 

TNF-α 
 

0-1 
 

0.886 
(0.837, 0.934) 

 

0.905 
(0.863, 0.948) 

 

0.020 
(-0.006, 0.046) 

  
1-3 

 

0.865 
(0.821, 0.908) 

 

0.890 
(0.851, 0.929) 

 

0.025 
(0.004, 0.046) 

  
>3 

 

0.768 
(0.710, 0.825) 

 

0.785 
(0.730, 0.841) 

 

0.018 
(-0.008, 0.043) 

Multiple† 
 

0-1 
 

0.887 
(0.837, 0.937) 

 

0.943 
(0.910, 0.975) 

 

0.056 
(0.021, 0.091) 

  
1-3 

 

0.863 
(0.819, 0.908) 

 

0.895 
(0.856, 0.934) 

 

0.032 
(0.007, 0.057) 

  
>3 

 

0.762 
(0.704, 0.821) 

 

0.836 
(0.787, 0.885) 

 

0.074 
(0.030, 0.118) 

Notes: 
§ AUC is the area under the receiver operating characteristic curve measuring discrimination. 
‡ These models include all the variables in the risk factors only model namely duration of HIV-
infection, age at diagnosis (or at matched time point), CD4+ T-cell count, stimulant use (cocaine use, 
and/or upper use), tobacco smoking, alcohol consumption frequency, BMI, HCV status, and MACS 
center. 
†The model comprising multiple markers concurrently, in addition to risk factors, included IL-6, IL-10, 
TNF-α, IP10, CXCL13. 
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Table 4.4: Optimism Correction of AUC Estimates for Models including Biomarker with Risk Factors 

  
Prediagnosis 

 
 AUC 

  
Period 

 
Apparent    Test Optimism Cross 

Biomarker 
 

 (Years) 
 

Performance§ Bootstrap‡ Performance† CorrectedΨ ValidatedΨ 

       
 

 
sCD27 

 
0-1 

 

0.900 
(0.857, 0.943) 

0.926 
(0.884, 0.959) 

0.875 
(0.847, 0.891) 

0.849 
(0.819, 0.874) 

0.849 
(0.794, 0.904) 

  
1-3 

 

0.878 
(0.838, 0.917) 

0.894 
(0.857, 0.934) 

0.847 
(0.829, 0.864) 

0.831 
(0.810, 0.848) 

0.837 
(0.791, 0.884) 

  
>3 

 

0.793 
(0.740, 0.847) 

0.823 
(0.778, 0.877) 

0.748 
(0.721, 0.768) 

0.718 
(0.684, 0.738) 

0.732 
(0.672, 0.792) 

CRP 
 

0-1 
 

0.900 
(0.856, 0.943) 

0.926 
(0.883, 0.969) 

0.874 
(0.841, 0.888) 

0.847 
(0.814, 0.862) 

0.847 
(0.792, 0.903) 

  
1-3 

 

0.867 
(0.826, 0.909) 

0.883 
(0.843, 0.918) 

0.842 
(0.822, 0.853) 

0.826 
(0.804, 0.844) 

0.826 
(0.778, 0.874) 

  
>3 

 

0.800 
(0.748, 0.852) 

0.831 
(0.784, 0.870) 

0.749 
(0.717, 0.777) 

0.719 
(0.682, 0.760) 

0.744 
(0.686, 0.802) 

CXCL13 
 

0-1 
 

0.897 
(0.853, 0.940) 

0.922 
(0.881, 0.957) 

0.871 
(0.843, 0.884) 

0.845 
(0.816, 0.867) 

0.846 
(0.791, 0.901) 

  
1-3 

 

0.881 
(0.842, 0.920) 

0.900 
(0.860, 0.929) 

0.848 
(0.827, 0.871) 

0.829 
(0.809, 0.863) 

0.842 
(0.795, 0.888) 

  
>3 

 

0.801 
(0.749, 0.852) 

0.835 
(0.785, 0.880) 

0.750 
(0.721, 0.778) 

0.716 
(0.686, 0.750) 

0.744 
(0.686, 0.802) 

GM-CSF 
 

0-1 
 

0.895 
(0.848, 0.941) 

0.925 
(0.879, 0.960) 

0.868 
(0.841, 0.883) 

0.838 
(0.810, 0.864) 

0.832 
(0.772, 0.893) 

  
1-3 

 

0.866 
(0.823, 0.909) 

0.886 
(0.856, 0.921) 

0.844 
(0.825, 0.856) 

0.825 
(0.792, 0.844) 

0.823 
(0.772, 0.874) 

  
>3 

 

0.772 
(0.715, 0.829) 

0.805 
(0.741, 0.855) 

0.734 
(0.708, 0.752) 

0.701 
(0.683, 0.725) 

0.701 
(0.637, 0.765) 

IFN-γ 
 

0-1 
 

0.901 
(0.856, 0.946) 

0.928 
(0.876, 0.962) 

0.871 
(0.845, 0.884) 

0.844 
(0.826, 0.869) 

0.840 
(0.781, 0.899) 

  
1-3 

 

0.867 
(0.824, 0.910) 

0.886 
(0.839, 0.925) 

0.845 
(0.830, 0.858) 

0.826 
(0.814, 0.842) 

0.825 
(0.774, 0.876) 

  
>3 

 

0.783 
(0.727, 0.838) 

0.807 
(0.764, 0.860) 

0.738 
(0.710, 0.755) 

0.713 
(0.673, 0.733) 

0.713 
(0.650, 0.775) 

IL10 
 

0-1 
 

0.898 
(0.854, 0.943) 

0.926 
(0.890, 0.963) 

0.872 
(0.839, 0.885) 

0.844 
(0.802, 0.865) 

0.837 
(0.777, 0.896) 

  
1-3 

 

0.877 
(0.836, 0.918) 

0.899 
(0.857, 0.938) 

0.848 
(0.824, 0.867) 

0.826 
(0.804, 0.847) 

0.834 
(0.785, 0.883) 



 

100 
 

  
>3 

 

0.789 
(0.734, 0.844) 

0.816 
(0.759, 0.866) 

0.743 
(0.720, 0.765) 

0.717 
(0.696, 0.743) 

0.719 
(0.657, 0.782) 

IL12P70 
 

0-1 
 

0.886 
(0.837, 0.935) 

0.916 
(0.872, 0.954) 

0.863 
(0.828, 0.880) 

0.832 
(0.793, 0.861) 

0.823 
(0.761, 0.886) 

  
1-3 

 

0.870 
(0.827, 0.913) 

0.887 
(0.852, 0.922) 

0.844 
(0.825, 0.860) 

0.827 
(0.802, 0.852) 

0.825 
(0.775, 0.876) 

  
>3 

 

0.777 
(0.721, 0.834) 

0.804 
(0.763, 0.858) 

0.738 
(0.712, 0.752) 

0.711 
(0.670, 0.729) 

0.708 
(0.644, 0.772) 

IL1β 
 

0-1 
 

0.899 
(0.854, 0.944) 

0.921 
(0.871, 0.962) 

0.866 
(0.838, 0.878) 

0.844 
(0.821, 0.861) 

0.835 
(0.775, 0.895) 

  
1-3 

 

0.866 
(0.822, 0.909) 

0.885 
(0.838, 0.924) 

0.844 
(0.825, 0.856) 

0.824 
(0.809, 0.841) 

0.821 
(0.769, 0.872) 

  
>3 

 

0.772 
(0.715, 0.829) 

0.807 
(0.756, 0.861) 

0.732 
(0.713, 0.751) 

0.696 
(0.672, 0.719) 

0.697 
(0.633, 0.761) 

IL2 
 

0-1 
 

0.894 
(0.847, 0.940) 

0.925 
(0.881, 0.962) 

0.867 
(0.844, 0.882) 

0.836 
(0.810, 0.859) 

0.831 
(0.770, 0.892) 

  
1-3 

 

0.870 
(0.827, 0.912) 

0.894 
(0.846, 0.934) 

0.845 
(0.825, 0.859) 

0.821 
(0.806, 0.837) 

0.826 
(0.776, 0.876) 

  
>3 

 

0.776 
(0.719, 0.832) 

0.809 
(0.747, 0.862) 

0.738 
(0.712, 0.754) 

0.704 
(0.683, 0.724) 

0.705 
(0.641, 0.768) 

IL6 
 

0-1 
 

0.919 
(0.880, 0.958) 

0.943 
(0.909, 0.973) 

0.879 
(0.842, 0.910) 

0.855 
(0.813, 0.895) 

0.870 
(0.818, 0.922) 

  
1-3 

 

0.866 
(0.823, 0.909) 

0.887 
(0.851, 0.913) 

0.842 
(0.825, 0.853) 

0.821 
(0.798, 0.849) 

0.824 
(0.774, 0.874) 

  
>3 

 

0.814 
(0.762, 0.866) 

0.840 
(0.795, 0.893) 

0.752 
(0.721, 0.789) 

0.727 
(0.690, 0.763) 

0.755 
(0.696, 0.814) 

IL8 
 

0-1 
 

0.896 
(0.850, 0.942) 

0.922 
(0.879, 0.965) 

0.869 
(0.841, 0.881) 

0.843 
(0.812, 0.858) 

0.833 
(0.772, 0.893) 

  
1-3 

 

0.868 
(0.825, 0.912) 

0.891 
(0.838, 0.924) 

0.842 
(0.823, 0.856) 

0.821 
(0.812, 0.844) 

0.824 
(0.773, 0.875) 

  
>3 

 

0.771 
(0.714, 0.828) 

0.804 
(0.759, 0.854) 

0.738 
(0.707, 0.752) 

0.705 
(0.662, 0.726) 

0.702 
(0.638, 0.766) 

IP10 
 

0-1 
 

0.909 
(0.865, 0.952) 

0.939 
(0.903, 0.975) 

0.875 
(0.852, 0.899) 

0.845 
(0.815, 0.877) 

0.847 
(0.789, 0.906) 

  
1-3 

 

0.879 
(0.837, 0.920) 

0.894 
(0.855, 0.935) 

0.848 
(0.830, 0.865) 

0.832 
(0.812, 0.850) 

0.835 
(0.785, 0.885) 

  
>3 

 

0.786 
(0.730, 0.842) 

0.819 
(0.751, 0.873) 

0.748 
(0.715, 0.776) 

0.715 
(0.694, 0.745) 

0.723 
(0.660, 0.786) 

TNF-α 
 

0-1 
 

0.905 
(0.863, 0.948) 

0.930 
(0.900, 0.966) 

0.873 
(0.848, 0.888) 

0.849 
(0.812, 0.870) 

0.842 
(0.785, 0.900) 
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1-3 

 

0.890 
(0.851, 0.929) 

0.912 
(0.845, 0.946) 

0.852 
(0.828, 0.881) 

0.831 
(0.835, 0.864) 

0.851 
(0.805, 0.898) 

  
>3 

 

0.785 
(0.730, 0.841) 

0.811 
(0.755, 0.864) 

0.743 
(0.711, 0.760) 

0.717 
(0.685, 0.737) 

0.717 
(0.655, 0.780) 

Multiple* 
 

0-1 
 

0.943 
(0.910, 0.975) 

0.969 
(0.934, 1.000) 

0.882 
(0.846, 0.931) 

0.858 
(0.825, 0.909) 

0.876 
(0.823, 0.929) 

  
1-3 

 

0.895 
(0.856, 0.934) 

0.919 
(0.878, 0.953) 

0.850 
(0.825, 0.884) 

0.828 
(0.805, 0.866) 

0.847 
(0.798, 0.895) 

  
>3 

 

0.836 
(0.787, 0.885) 

0.872 
(0.822, 0.918) 

0.765 
(0.722, 0.819) 

0.731 
(0.688, 0.787) 

0.764 
(0.706, 0.823) 

Notes: 
§Apparent AUC statistics are calculated from the original data set, with 95% Wald confidence intervals  
‡Bootstrap AUC statistics are calculated on bootstrap samples of the same size as the original data set, N=358. 
†Test AUC statistics are calculated by scoring the original data set using the parameter estimates from fitting a logistic regression 
model on each bootstrap sample; and summarizing the values over the bootstrap replicates. 
ΨOptimism corrected AUC is the Apparent AUC minus the difference between the Bootstrap AUC and Test AUC, while cross validated 
estimates are corrected for optimism using leave-one-out cross validation. 
*The model comprising multiple markers concurrently, in addition to risk factors, included IL-6, IL-10, TNF-α, IP10, CXCL13. 
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Table 4.5: Goodness of Fit Tests Assessing Model Calibration 

 
Time-Point 

 
0-1 

 
1-3 

 
>3 

 
H-L 

Model 
Based 

 
H-L 

Model 
Based 

 
H-L 

Model 
Based 

 

GoF 
Test§ 

GoF 
Test‡ 

 

GoF 
Test§ 

GoF 
Test‡ 

 

GoF 
Test§ 

GoF 
Test‡ 

CRP 0.186 0.410 
 

0.599 0.764  0.554 0.915 
CXCL13 0.606 0.930 

 
0.542 0.512  0.750 0.441 

GM-CSF 0.425 0.214 
 

0.538 0.175  0.966 0.659 
IFN-γ 0.964 0.983 

 
0.123 0.087  0.694 0.650 

IL10 0.725 0.368 
 

0.373 0.845  0.293 0.906 
IL12P70 0.451 0.977 

 
0.179 0.204  0.867 0.561 

IL1β 0.891 0.550 
 

0.140 0.179  0.473 0.720 
IL2 0.205 0.729 

 
0.321 0.167  0.481 0.952 

IL6 0.695 0.961 
 

0.373 0.236  0.231 0.485 
IL8 0.927 0.968 

 
0.143 0.267  0.280 0.116 

IP10 0.907 0.900 
 

0.193 0.943  0.054 0.216 
TNF-α 0.725 0.783 

 
0.286 0.839  0.196 0.852 

sCD27 0.955 0.561 
 

0.540 0.631  0.940 0.973 
IL-6+IL-10+CXCL13+ 
IP10+TNF-α† 0.406 0.610  

0.216 0.701  0.098 0.465 

Notes: 
§ The Hosmer-Lemeshow goodness of fit test was conducted yielding these p-values. 
‡ A model based goodness of fit test was conducted in order to obtain these p-values. 
†The model comprising multiple markers concurrently, in addition to risk factors, included IL-
6, IL-10, TNF-α, IP10, CXCL13. 
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Figure 4.1: Calibration Plots for Models Including Biomarkers 

Figure 4.1 Legend: 
 
Observed risks interpolated using LOWESS are plotted against the estimated probability from the logistic 
risk models. A 45 degree grey dashed line indicates perfect calibration. 
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Figure 4.1 continued: Calibration Plots for Models Including Biomarkers 
 
 

 

Figure 4.1 Legend: 
 
Observed risks interpolated using LOWESS are plotted against the estimated probability from the logistic 
risk models. A 45 degree grey dashed line indicates perfect calibration. 
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Figure 4.1 continued: Calibration Plots for Models Including Biomarkers 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.1 Legend: 
 
Observed risks interpolated using LOWESS are plotted against the estimated probability from the logistic 
risk models. A 45 degree grey dashed line indicates perfect calibration. 
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Figure 4.1 continued: Calibration Plots for Models Including Biomarkers 
 
 
 

 

Figure 4.1 Legend: 
 
Observed risks interpolated using LOWESS are plotted against the estimated probability from the logistic 
risk models. A 45 degree grey dashed line indicates perfect calibration. 
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Figure 4.1 continued: Calibration Plots for Models Including Biomarkers 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1 Legend: 
 
Observed risks interpolated using LOWESS are plotted against the estimated probability from the logistic risk models. 
A 45 degree grey dashed line indicates perfect calibration. 
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Figure 4.1 continued: Calibration Plots for Models Including Biomarkers 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 4.1 Legend: 
 
Observed risks interpolated using LOWESS are plotted against the estimated probability from the logistic risk models. 
A 45 degree grey dashed line indicates perfect calibration. 
 
 
 
 
 

 

IL-6+IL-10+CXCL13+IP10+TNF-α 
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5 Chapter V: Public Health Significance & Conclusions 
 

AIDS-NHL is still the leading cause of mortality among HIV positive persons who progress to 

develop an AIDS defining illness. The exact causes of non-Hodgkin lymphoma (NHL) are still 

largely unknown, although severe immunodeficiency is among the most consistent factors 

associated with increased risk. We were able to examine differences in the signatures of several 

markers of immune activation and inflammation through comprehensive literature review and 

meta-analyses, and through prospective quantitation of several novel markers in the MACS. Our 

studies hence provide a significantly comprehensive body of evidence about circulating markers 

of immune activation and inflammation and their association with, and predictive ability for, 

AIDS-NHL. 

 

In the three studies we present here, we find a consistent and coherent theme in observations: 

that elevated levels of several markers of immune activation, and inflammation are observed to 

precede AIDS-NHL diagnoses over extended periods of time prior to diagnosis. We find that the 

even in the era of widespread administration of highly active multi-agent antiretrovial therapy, 

alterations in these biomarkers from normal levels is associated with increased AIDS-NHL 

incidence, and can thus potentially be used in risk prediction modeling as illustrated by our in 

exploratory risk prediction models.  

 

The sum-total of the findings from our studies provide further evidence for the general 

hypothesis that AIDS-NHL develops in as a result of chronic immune activation and 

inflammation. However, there still remains a need to further elucidate the precise etiologic roles 

of each of the biomarkers we included in our studies. Our studies contribute to the body of 

knowledge that will ultimately provide the impetus for improvements in clinical ability to predict, 
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screen and diagnose AIDS-NHL, to prognosticate and monitor HIV disease progression, and to 

foster improvements in treatment. 
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