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A B S T R A C T 

At z � 1, shock heating caused by large-scale velocity flows and possibly violent feedback from galaxy formation, converts a 
significant fraction of the cool gas ( T ∼ 10 

4 K) in the intergalactic medium (IGM) into warm–hot phase (WHIM) with T > 10 

5 

K, resulting in a significant deviation from the previously tight power-law IGM temperature–density relationship, T = T 0 ( ρ/ 

ρ̄) γ−1 . This study explores the impact of the WHIM on measurements of the low- z IGM thermal state, [ T 0 , γ ], based on the 
b –N H I distribution of the Ly α forest. Exploiting a machine learning-enabled simulation-based inference method trained on Nyx 

hydrodynamical simulations, we demonstrate that [ T 0 , γ ] can still be reliably measured from the b–N H I distribution at z = 0.1, 
notwithstanding the substantial WHIM in the IGM. To investigate the effects of different feedback, we apply this inference 
methodology to mock spectra derived from the IllustrisTNG and Illustris simulations at z = 0.1. The results suggest that the 
underlying [ T 0 , γ ] of both simulations can be reco v ered with biases as low as | � log ( T 0 /K) | � 0.05 dex, | �γ | � 0.1, smaller 
than the precision of a typical measurement. Given the large differences in the volume-weighted WHIM fractions between the 
three simulations (Illustris 38 per cent, IllustrisTNG 10 per cent, and Nyx 4 per cent), we conclude that the b –N H I distribution 

is not sensitive to the WHIM under realistic conditions. Finally, we investigate the physical properties of the detectable Ly α

absorbers, and disco v er that although their T and � distributions remain mostly unaffected by feedback, they are correlated with 

the photoionization rate used in the simulation. 

Key words: galaxy: formation – intergalactic medium – quasars: absorption lines. 
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 I N T RO D U C T I O N  

eing the largest reservoir of baryons in the Universe, the inter-
alactic medium (IGM) plays a crucial role in the evolution of the
niverse and the formation of structures. Based on the canonical

osmological model constrained by many observational studies,
he thermal evolution of the IGM is dominated by two major
hase transition events of the Universe. The first phase transition
s hydrogen reionization caused by the first generation of galaxies at
edshift 6 < z < 20 (Becker et al. 2001 ; Fan et al. 2006 ; McGreer,

esinger & D’Odorico 2015 ; Robertson et al. 2015 ). The second one
s the double reionization of helium (He II → He III ) driven by quasi-
tellar objects (QSOs; see e.g. Madau & Meiksin 1994 ; McQuinn
t al. 2009 ; Khaire 2017 ), which is believed to occur at z ∼ 3
Worseck et al. 2011 , 2018 ; Syphers & Shull 2014 ), where the quasar
uminosity function reaches its peak (see e.g. Hopkins, Richards &
 E-mail: tenghu@ucsb.edu 
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ernquist 2007 ; Khaire & Srianand 2015 ; Kulkarni, Worseck &
ennawi 2019 ). These two-phase transition events heat up the IGM
ramatically to a maximum of 15 000 K while ionizing the IGM. 
After the completion of hydrogen reionization ( �z ∼1–2), the

GM thermal state is shaped by the quasi-equilibrium balance be-
ween photoionization heating from the extragalactic UV background
Haardt & Madau 2012 ; Khaire & Srianand 2019 ; Faucher-Gigu ̀ere
020 ) and various cooling processes including recombinations,
xcitation, cooling due to Hubble expansion, and inverse Compton
cattering of electrons off of the cosmic microwave background
CMB; see e.g. McQuinn 2016 ). All these processes together drive
he IGM to follow a power-law temperature–density ( T –� ) relation: 

 ( � ) = T 0 � 

γ−1 , (1) 

here � = ρ/ ̄ρ is the o v erdensity, T 0 is the temperature at mean
ensity, and γ is the adiabatic index (Hui & Gnedin 1997 ; Mc-
uinn & Upton Sanderbeck 2016 ). These two parameters [ T 0 , γ ]

hus characterize the thermal state of the IGM, making it feasible
o constrain the IGM thermal history (Lidz et al. 2010 ; Becker
© The Author(s) 2023. 
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Figure 1. Examples of simulation skewers for IllustrisTNG (left) and Illustris (right) simulations, probing the structure generated by the same initial condition, 
while the two simulations are post-processed to share the same UV backgrounds photoionization rate, � H I . The flux is plotted in black on the top panel, while 
the temperature T , o v erdensity � , and velocity along LOS v los are shown in black in the second, third, and bottom panels consecutively. 
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t al. 2011 ; Rorai et al. 2017 ; Hiss et al. 2018 ; Walther et al. 2019 ;
aikwad et al. 2021 ) by measuring [ T 0 , γ ] at different epochs. These
easurements impro v e our knowledge of the IGM thermal evolution 

nd shed light on the underlying heating and cooling processes 
nvolved. 

Ne vertheless, the aforementioned po wer-law T –� relationship for 
he IGM could potentially break down at z � 1, where shock heating
aused by large-scale velocity flows (Nath & Silk 2001 ; Cen &
striker 2006 ) and various feedback mechanisms become more 

ommon (Scannapieco, Silk & Bouwens 2005 ; Khaire et al. 2024 ).
pecifically, shock heating at low- z converts a notable fraction of

he cool IGM into warm hot intergalactic medium (WHIM) with T
 10 5 K (Shull et al. 2012 ), causing a substantial dispersion in the

GM T –� distrib ution (Da v ́e et al. 2001 ; Cen & Ostriker 2006 ). As
 result of such dispersion, the IGM T –� distribution can no longer
e fully described by the typical power-law relationship (see Fig. 1 ),
hich introduces additional complexities in the measurement of the 

GM thermal state (Hu et al. 2022 , hereafter Hu22 ). The imperative
uestion is whether the significant shock heating at low- z influences 
he observable, i.e. the Ly α forest, which serves as the primary 
robe of the IGM, and if it does, how might such impacts affect
easurements of the IGM thermal state [ T 0 , γ ]? 
In practice, the IGM thermal state can be measured through various 

tatistical properties of the Ly α forest. Particularly, at z � 3, the Ly
forest is amenable to Voigt profile decomposition (see Hiss et al. 

018 ), where each line can be fit by three parameters: redshift z abs ,
oppler broadening b , and neutral hydrogen column density N H I . 
he IGM thermal state at these redshifts can thus be measured using

he 2D joint b –N H I distribution (Schaye et al. 1999 , 2000 ; Bolton
t al. 2014 ; Hiss et al. 2018 ; Rorai et al. 2018 ). Hu22 introduced a
ew inference method to measure the thermal state [ T 0 , γ ] and the
hotoionization rate � H I of the IGM based on the b –N H I distribution
nd Ly α line density, d N /d z, of the Ly α forest. Such a method
erforms Bayesian inference with the help of neural networks and 
aussian emulators, trained on a suite of Nyx simulations (Almgren 
t al. 2013 ; Luki ́c et al. 2015 ), making it possible to measure the
hermal state of the IGM to high precision for realistic mock data
ets. 

Moreo v er, the thermal state of the IGM at z < 1.7 remains poorly
onstrained, since the Ly α transition below such redshift lies below 

he atmospheric cutoff ( λ∼ 3300 Å), requiring UV observations from 

pace with Hubble Space Telescope (HST). After He II reionization 
 z < 3), the thermal state of the IGM is considered to be dominated
y adiabatic cooling from Hubble expansion, which leads to an IGM
hermal state with T 0 ∼ 5000 K and γ ∼ 1.6 at the current epoch z = 0
McQuinn & Upton Sanderbeck 2016 ). Ho we ver, such a prediction
f low temperatures has not yet been confirmed observationally. 
eanwhile, recent studies have suggested that the Ly α lines appear 

roader than predicted by numerical simulations at z < 0.5 (Gaikwad
t al. 2017 ; Nasir et al. 2017 ; Viel et al. 2017 ; Burkhart et al. 2022 ;
olton et al. 2022a ). This observation is based on the b parameters
cquired from the HST Cosmic Origins Spectrograph (COS) spectra 
Danforth et al. 2016 , referred hereafter as D16 ) data set. While it has
een argued that such a mismatch might be resolved by additional
ources of turbulence, an alternativ e e xplanation would be that the
GM is actually hotter than previously presumed, with T 0 conceivably 
pproaching 10 000 K, implying the existence of unexpected sources 
f heating (Bolton et al. 2022a , b ), which, if true, would change our
nderstanding of the IGM physics thoroughly. 
In this paper, we adopt the Hu22 inference method to investigate

he impact of the WHIM on measurements of the IGM thermal
tate, [ T 0 , γ ], based on the b –N H I distribution of the Ly α forest.
irst, we assess the ef fecti veness of [ T 0 , γ ] as IGM parameters
t low- z by comparing its performance as neural network training
abels against the photoheating labels [ A , B ] (see Section 2.3 ).
hese latter labels are photoheating rate rescaling factors used to 
enerate the Nyx simulation suite with various thermal histories (see 
.g Becker et al. 2011 ). Since our emulators are trained on these
yx simulations generated by varying [ A , B ], the inference method

s naturally inclined to retrieve these photoheating labels. On the 
MNRAS 527, 11338–11359 (2024) 
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Figure 2. Volume weighted T –� distribution for all three simulations at z = 0.1. The log T for each bin are plotted as solid dots with 1–σ T error bars. 
The best-fitting power-law relationship is shown as dashed lines. The Nyx (left) model is the default model which has log ( T 0 /K) = 3.612, γ = 1.588; and 
IllustrisTNG (middle) yields log ( T 0 /K) = 3.627, γ = 1.593; whereas Illustris (right) has log ( T 0 /K) = 3.633, γ = 1.577. The gas phase fractions are shown in 
the annotation. 
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ther hand, if shock heating at low- z causes the T –� distribution of
he Ly α absorbers to deviate from the power-law relationship, the
f fecti veness of [ T 0 , γ ] as labels could be compromised. Thus, our
omparison between these two sets of labels provides insight into the
obustness of [ T 0 , γ ] as IGM parameters at low- z, in the presence of
ubstantial shock heating. 

Afterwards, we explore the potential effects of different feedback
echanisms, which are associated with WHIM, on measurements

f the IGM thermal state, [ T 0 , γ ]. In terms of our inference
ethodology, the question becomes: what would happen if we

sed a simulation grid without feedback to interpret a Universe
hat includes feedback? Would this lead to unbiased [ T 0 , γ ]? To
nswer these questions, we apply the Hu22 inference methodology
o mock data drawn from the Illustris (Genel et al. 2014 ) and
llustrisTNG (Weinberger et al. 2017 ) simulations at z = 0.1. These
wo simulations incorporate galaxy formation models and feedback
echanisms that are not included in the Nyx simulation, which heat

p the IGM substantially at low- z, and transform the cool diffuse
y α gas into WHIM more ef fecti vely compared with Nyx simulation
see Fig. 2 ). We examine the inference results based on these two
imulations and explore whether feedback biases the measurement
f the thermal state [ T 0 , γ ]. 
To further investigate this problem, we explore the specific

mpacts of shock heating and other astrophysical processes, such
s active galactic nucleus (AGN) feedback and UV background
hotoionization, on the physical properties of the Ly α forest at
 = 0.1. Within the three aforementioned simulations, we identify
imulated Ly α absorbers in the simulations and establish a direct cor-
elation between the physical properties of these absorbers (including
emperature T , o v erdensity � , and line-of-sight velocity v los ) and the
bserved Ly α line parameters ( b , N H I ) derived from the absorption
ines detected in corresponding mock spectra. We then examine the
istributions of � and T of these simulated Ly α absorbers across the
hree aforementioned simulations to study the detailed effects of the
eedback and UV background photoionization rate, � H I , on the Ly α
orest. 
NRAS 527, 11338–11359 (2024) 

a  
This paper is organized as follows: In Section 2 , we outline the
imulations and associated processes applied to generate synthetic Ly

forest. It includes post-processing, forward-modelling, and Voigt
rofile fitting. The inference framework and results for all three
imulations are then presented in Section 3 . Section 4 is dedicated
o the investigation of the physical characteristics of low-redshift Ly

forest absorbers in all three simulations. Finally, in Section 5 , we
resent a summary and discussion of our findings. For the sake of
revity, we use log as a shorthand to denote log 10 throughout the
aper. 

 SI MULATI ONS  

n this paper, we utilize the inference framework described in Hu22 ,
hich employs the b –N H I distribution emulator built on neural
etworks trained on a set of Nyx simulations. We also use galaxy
ormation simulations IllustrisTNG and Illustris to investigate the
ow- z Ly α forest under different feedback mechanisms. Since this
ork focuses on the low redshift Ly α forest, we use z = 0.1

imulation snapshots for all three simulations. In this section, we
rst provide a description of the simulations and the implemented
hysical models, followed by the (mock) data processing procedures
mployed in our study. This includes the generation of simulated
ine-of-sight (LOS) of Ly α forest (hereafter referred to as skewers
or simplicity), forward modelling, and the Voigt profile fitting of Ly

lines. The cosmological parameters and thermal states of the three
imulations are summarized in Table 1 . 

.1 Nyx 

yx is an adaptive mesh, massively parallel, cosmological simulation
ode primarily developed to simulate the IGM (Almgren et al. 2013 ;
uki ́c et al. 2015 ). Nyx simulates the dark matter evolution by treating

he dark matter as self-gravitating Lagrangian particles, while it
odels baryons as an ideal gas on a uniform Cartesian grid following

n Eulerian approach. The Eulerian hydrodynamics equations are
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Table 1. Parameters of cosmology and T –� relation (at z = 0.1). 

Parameters Nyx IllustrisTNG Illustris 


m 0.3192 0.3089 0.2726 

� 

0.6808 0.6911 0.7274 

b 0.0496 0.0486 0.0456 
h 0.670 0.677 0.704 
σ 8 0.8288 0.8159 0.809 
n s 0.96 0.97 0.963 

T 0 4093 K 4241 K 4292 K 

γ 1.588 1.593 1.577 
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1 As presented in Appendix A of Martizzi et al. ( 2019 ), there exists a bug 
that affects the IGM temperature of the IllustrisTNG simulation. Ho we ver, its 
effect on the Ly α forest is minimal because the bug predominantly impacts the 
gas with the lowest density . Consequently , we continue to use the uncorrected 
temperature for the IllustrisTNG simulation. 
2 For details of THERMAL suite, see http://thermal.joseonorbe.com 
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olved using a second-order piece-wise parabolic method, which is 
apable of accurately capturing shocks. 

Nyx includes the major astrophysical processes rele v ant to the 
volution of the the Ly α forest. First, gas in the Nyx simulation
s treated as having a primordial composition with a hydrogen 

ass fraction of 0.76 and helium mass fraction of 0.24, and zero
etallicity. Nyx takes into account the process of inverse Compton 

ooling off the microwave background and tracks the total thermal 
nergy loss due to atomic collisional processes. Nyx also implements 
ecombination, collisional ionization, dielectric recombination, and 
ooling following the prescription given in Luki ́c et al. ( 2015 ).
onizing radiation in Nyx is modelled by a spatially uniform but time-
arying ultraviolet background radiation field of Haardt & Madau 
 2012 ), while assuming all cells in the simulation are optically
hin. Furthermore, following standard practice, we allow the UV 

ackground photoionization rate, � H I , to be a free parameter in post-
rocessing while generating mock Ly α skewers. Lastly, Nyx does not 
mplement any galaxy formation or feedback, which simplification 
educes the required computational resources significantly, allowing 
s to run a large ensemble of simulations with different thermal 
istories (see Section 2.3 ), which is required for accurate statistical
nference. 

Each Nyx simulation model used in this study was initialized with 
he same initial condition at z = 159 and evolved down to z = 0.03
n a L box = 20 cMpc h 

−1 simulation box with N cell = 1024 3 Eulerian
ells and 1024 3 dark matter particles. The box size is a compromise
etween computational cost and the need for convergence at least to 
 10 per cent on small scales (large k ). In short, such choices of box

ize and resolution should not affect the line parameters of the Ly α
orest significantly. More discussion of the resolution, box size, and 
onvergence issues can be found in Luki ́c et al. ( 2015 ) and Hu et al.
 2022 ). 

.2 IllustrisTNG and Illustris 

o e v aluate the ef fecti veness of the IGM thermal state [ T 0 , γ ] as the
GM parameters and test the efficacy of our inference framework on 
he realistic IGM, which can be affected by astrophysical processes 
hat are not included in Nyx simulation such as galaxy formation 
nd AGN feedback, we employ Illustris (Genel et al. 2014 ) and Il-
ustrisTNG (Weinberger et al. 2017 ; Nelson et al. 2019 ) simulations,
nd use them as mock observational data in our inference method. 

The IllustrisTNG and Illustris are cosmological hydrodynamic 
imulations powered by the AREPO code (Springel 2010 ). This code 
mploys a moving mesh approach to solve hydrodynamics through 
he Euler equations, and it computes gravitational forces on a quasi-
agrangian moving Voronoi mesh via the tree-PM method. Both 
imulations incorporate a wide range of astrophysical processes for 
alaxy formation, such as star formation, stellar and AGN feedback, 
alactic winds, and chemical enrichment (Marinacci et al. 2018 ; 
aiman et al. 2018 ; Springel et al. 2018 ). They utilize the UV back-
round detailed in Faucher-Gigu ̀ere et al. ( 2009 ) for photoionization
eating and cooling. Other processes for modelling the Ly αforest, 
ike collisional ionization and inverse Compton cooling from the 
osmic microwave background, are also taken into account. 

The primary distinction between IllustrisTNG and Illustris lies 
n their AGN feedback mechanisms, especially regarding AGN 

eedback. Both simulations implement AGN feedback in two modes 
ased on the gas accretion rate on to the central supermassive black
ole: the ‘quasar-mode’ at high accretion rates (Springel 2005 ; 
opkins et al. 2008 ; Debuhr, Quataert & Ma 2011 ) and the ‘radio-
ode’ at low rates (Bower et al. 2006 ; Croton et al. 2006 ; Sijacki

t al. 2007 ). While both use continuous thermal feedback in ‘quasar-
ode’, their ‘radio-mode’ implementations differ. Illustris employs 
 bubble model for radio-mode feedback, accumulating substantial 
eedback energy for e xplosiv e release, often ejecting e xcessiv e
ot gas (Genel et al. 2014 ). Conversely, IllustrisTNG models this
eedback as a kinetic wind, injecting momentum into neighbouring 
egions from the central black hole. This approach better replicates 
strophysical properties like star formation rates and galaxy colour 
istributions (Nelson et al. 2018 ; Pillepich et al. 2018a , b ). 
Both the IllustrisTNG and Illustris simulations we used in this 

tudy have box sizes of 75 cMpc h −1 and 1820 3 baryon and dark
atter particles. Since AREPO is a moving mesh code, we convert

he Voronoi mesh outputs to 1820 3 cartesian grids by dumping the
moothed quantities such as temperature. 1 , density, and velocities on 
rids to generate Ly α forest skewers. A Gaussian kernel with a size
qual to 2.5 times the radius of each Voronoi cell is applied for the
moothing, assuming each Voronoi cell is spherical. We then generate 
kewers for IllustrisTNG and Illustris simulations following the 
pproach discussed in Section 2.4 . In Fig. 1 , we plot two simulation
kewers for IllustrisTNG and Illustris respectively, while the two 
imulations are post-processed to share the same UV backgrounds 
hotoionization rate, � H I (see Section 2.5 for more discussion). The 
ux ( e −τ ) is plotted in the top panel, and the temperature, o v er-
ensity, and LOS velocity profiles are shown in the second, third,
nd bottom panels consecutively. It is worth mentioning that the two
kewers probe the structure generated by the same initial condition, 
uggesting that the differences in T , � , and v los are primarily caused
y different feedback strengths. Specifically, the Illustris exhibits 
igher temperatures due to its stronger feedback, which results in 
eaker absorption features given the same UV backgrounds. More 
iscussion on the differences between Ly α forest in IllustrisTNG 

nd Illustris simulations can be found in Khaire et al. ( 2024 ) and
haire et al. ( 2023 ). 

.3 IGM thermal state and parameter grid 

ollowing Hu22 , we make use of the Thermal History and Evolution
n Reionization Models of Absorption Lines (THERMAL 

2 ) suite of 
yx simulations (see Hiss et al. 2018 ; Walther et al. 2019 ) to model

he IGM with various thermal histories. The suite consists of 48
odels with varying thermal histories, each generated by changing 
MNRAS 527, 11338–11359 (2024) 
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Figure 3. Parameters grid (solid circles) from snapshots of Nyx simulations from the THERMAL suite at z = 0.1, parametrized by the thermal state [ T 0 , γ ]. 
The left-hand panel shows the γ –T 0 grid, whose shape is determined by the photoheating labels [ A , B ] (see Fig. A3 ) and the evolution of the thermal state of 
the IGM. The right-hand panel is γ –� H I grid, showing the 13 � H I values for each point on the γ –T 0 grid. 
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he photoheating rate of the simulation following the prescription
escribed in Becker et al. ( 2011 ), in which the photoheating rate, ε
s assumed as a function of o v erdensity, i.e. 

= εHM12 ( z) A� 

B , (2) 

here εHM12 ( z) stands for the time-varying photoheating rate per H
I ion tabulated in Haardt & Madau ( 2012 ), and the constants A and
 are free photoheating parameters that are varied in the different
yx runs to achieve different thermal histories, which results in
ifferent thermal states at z = 0.1. The distribution of parameters in
ur thermal grid, i.e. the dif ferent v alues of [ T 0 , γ ] are illustrated
n Fig. 3 , and the corresponding values of [ A , B ] are presented in
ig. A3 (see Appendix A for more discussion). 
Conventionally, the thermal parameters [ T 0 , γ ] are obtained by

tting a power law to the T –� relationships (see equation 1 ). Such a
tting procedure is straightforward at higher redshift ( z � 2) where

he T –� distributions of the IGM are tight. Ho we ver, in lo w- z, the
istributions of the IGM temperatures are noticeably broader due to
he e xtensiv e shock heating, which heats up the IGM, resulting in

ore WHIM. The T –� distributions for all three simulations (Nyx
efault model with A = 1, B = 0, and IllustrisTNG and Illustris)
re shown in Fig. 2 . For each simulation, the gas is divided into
our phases depending on the temperature and density, namely the

HIM, Diffuse Ly α, hot halo gas, and condensed, where the cutoffs
re set to be T = 10 5 K and � = 120 3 . It can be seen that there
xist significant dispersion in the T –� distributions of the low- z
GM, i.e. the shock-heated WHIM, for all three simulations, and the
ractions of the WHIM are directly proportional to the strength of the
eedback. Specifically, f WHIM, Illustris > f WHIM, IllustrisTNG > f WHIM, Nyx ,
hile Illustris implements extreme feedback, IllustrisTNG employs
ild feedback and Nyx has no feedback. 
In order to fit the power-law relationship in the presence of dis-

ersion in the IGM T –� distribution, we utilize the fitting procedure
resented in Hu22 , which fits the power-law T –� relationship by
NRAS 527, 11338–11359 (2024) 

 Here, we adopt the cutoff T = 10 5 K, and � = 120 for different gas phases 
ollowing Dav ́e et al. ( 2010 ), and more discussion about the different cutoff 
an be found in Gaikwad et al. ( 2017 ). 

4

s
w
d

inning the Diffuse Ly α gas ( T < 10 5 K and � < 120) into 20
ins based on log � , and applying a least-squares linear fit to the
ean temperatures of the gas in each bin. Here, we modify the fitting

ange to −0.5 < log � < 1.5. 4 , which provides a more accurate
epresentation of the � range of the Ly α absorbers at z ∼ 0.1, which
s the principal subject of this paper. 

Such a fitting procedure is applied to all simulations used in
his study, including all Nyx models and IllustrisTNG and Illustris
imulations. The best-fitting power-law relationship based on [ T 0 , γ ]
nd the T –� distributions are illustrated in Fig. 2 . The figure shows
hat although the three simulations yield very different overall T –�

istributions, their thermal state T 0 and γ are ho we ver similar. 
Furthermore, as described in Hu22 , we vary the UV background

hotoionization rate, � H I , of the Nyx simulations in post-processing
hen the simulation skewers are generated, extending the parameter
rid to [log T 0 , γ , log � H I ]. The value of � H I we used in this study
pans from log ( � H I / s −1 ) = −13.834 to −12.932 in logarithmic
teps of 0.075 dex, which gives 13 values in total (see the right-hand
anel of Fig. 3 ). The range of � H I used here co v ers more than twice
he range obtained by UV background models of Khaire & Srianand
 2019 ) at z = 0.1, achieved by varying the spectral energy distribution
f quasars. Note that the range also co v es more than 2 σ uncertainty
n the � H I measurements (Gaikwad et al. 2017 ; Khaire et al. 2019 ).
n total, the 3D thermal grid consists of 48 × 13 = 624 Nyx models.

As mentioned earlier, T 0 and γ characterize the IGM thermal
tate at z � 2, where the IGM is dominated by the power-law T –
 relationship. Ho we ver, their ef ficacy as parameters for the IGM

hermal state remains uncertain at z � 1, where a significant fraction
f the gas deviates from the power-law T –� relationship due to shock
eating and feedback. In this paper, we e v aluate the ef fecti veness of
he thermal state [ T 0 , γ ] as IGM parametrization at low- z using
he inference framework presented in Hu22 , and we make use of
he photoheating parameters [ A , B ] as an alternative set of labels as
 Such a choice of fitting range of the power law T –� relationship leads to 
lightly different thermal states [ T 0 , γ ] for the three simulations compared 
ith those presented in previous works ( Hu22 ; Khaire et al. 2024 ), but the 
ifference is minor. 
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Figure 4. One of the forward-modelled mock spectra. The simulated spectrum is shown in black, where the model spectrum determined from VPFIT is shown 
in blue, and the noise vector is plotted in red. 
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 comparison. These labels are particularly rele v ant since all Nyx
odels used in the training procedure of our neural network, which 

s the major component of our inference method, are generated by 
arying [ A , B ]. This suggests that our inference framework should
e capable of reco v ering the values of [ A , B ] efficiently. Therefore,
 A , B ] are particularly useful in the e v aluation of the [ T 0 , γ ]. More
nformation about the photoheating labels [ A , B ] is presented in
ppendix. A . 

.4 Mock spectra, forward-modelling, and VPFIT 

e follow the procedure described in Hu22 and generate mock 
pectra by calculating the Ly α optical depth ( τ ) array along the
ock LOS. For each simulation, including all Nyx models and 

llustrisTNG and Illustris, an ensemble of 20 000 skewers is created. 
In this study, we include observational noise and instrumental 

ffects to conduct our analysis under realistic conditions. We generate 
ock data sets with properties consistent with the D16 compilation 

f low redshift Ly α forest spectra, which comprises 82 unique 
uasar spectra observed with the COS on the HST. Among them, 
4 spectra co v er our targeted redshift range of 0.06 < z < 0.16 and
ave signal-to-noise ratio (SNR)s greater than 5 per pixel. These 
pectra segments contribute to a total observational pathlength of 
z ob = 2.136. We follow the forward-modelling procedure described 

n Hu22 . For each mock spectrum, we select one of the 34 spectra
egments randomly, stitching skewers to match the wavelength grid 
f the selected segment 5 . We then convolve these combined skewers 
ith the COS 130M LSF, and add Gaussian noise based on the noise
ectors associated with the chosen spectrum segment. This process 
 The length of the Nyx skewers is 25 Mpc h −1 , corresponding to rough �z 

 0.01. Roughly 10 Nyx skewers are needed for one forwarded-modelled 
ock spectrum. Similarly, for Illustris and IllustrisTNG, which have box sizes 

f 75Mpc h −1 , about 3 skewers are used to generate one mock spectrum. 

a  

t
c

6

nsures that our mock data sets closely replicate the observational 
haracteristics of the COS spectra, allowing for a more accurate and
ealistic analysis. 

For each simulation model, including all Nyx simulation models 
s well as both IllustrisTNG and Illustris simulations, we generated 
000 forward-modelled mock spectra. The total pathlength for each 
imulation is approximately �z tot ∼ 60, which ensures that our 
raining set for the b–N H I distribution emulator (see Section 3.1 )
s large enough and the resulting b–N H I distribution is not biased by
he choice of (mock) spectra. 

We then use VPFIT (Carswell & Webb 2014 ) 6 to fit the Ly α
ines in our simulated spectra to obtain a set of { b, N H I } pairs for
ll of the mock data sets, following the prescription given in Hu22 .
n this paper, as is the convention in low- z Ly α forest analysis, we
pply a filter for both b and N H I , and uses only b–N H I pairs with
2 . 5 ≤ log ( N H I / cm 

−2 ) ≤ 14 . 5 and 0.5 ≤ log ( b /kms −1 ) ≤ 2.5 in our
nalysis (Schaye et al. 2000 ; Rudie, Steidel & Pettini 2012 ; Hiss et al.
018 ). A segment of one of the forward-modelled mock spectra is
hown in Fig. 4 . The simulated spectrum is shown in grey, where the
odel spectrum determined from VPFIT is shown in blue, and the

oise vector is plotted in red. 
The top panels of Fig. 5 display 1D histograms of both b (left) and
 H I (right) for all three simulations, and the bottom panels illustrate

heir relati ve dif ferences when compared to the Nyx simulation (as
iscussed in Section 2.5 , the three simulations used here are d N /d z
atched). The median value for log b and log N H I are indicated by

ashed vertical lines for each simulation. Notably, while the median 
alues of both b and N H I are comparable across the three simulations,
here are distinct differences in the distributions of both parameters 
cross the three simulations. We also notice that the differences in
he b parameters are more significant across the three simulations 
ompared with N H I . 
MNRAS 527, 11338–11359 (2024) 

 VPFIT: http:// www.ast.cam.ac.uk/ ∼rfc/ vpfit.html 
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Figur e 5. Top: Mar ginalized 1D b (left) and N H I (right) distributions for all three simulations. For each simulation, the { b, N H I } data set is obtained by VP-fitting 
an ensemble of 1000 forward-modelled mock spectra. The median values for log b and log N H I are indicated by dashed vertical lines. bottom: The relative 
difference compared with Nyx simulation. The three simulations used here are d N /d z matched. 
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.5 Photoioniztion rate � H I and d N /d z 

t is noteworthy that the three simulations used in this study by default
ave different UV background photoionization rates � H I (for Nyx,
ere we are referring to the default model with log ( T 0 /K) = 3.612
nd γ = 1.588.) This is because the photoionization rate � H I are
uned in post-processing across all three simulations to ensure they
xhibit the same absorber density d N /d z as the one we measured from
16 data set at z = 0.1. Specifically, we apply the aforementioned
P-fitting procedure to D16 spectra (segments) with 0.06 < z <

.16, and obtain d N /d z = 167.3 for absorbers within the limits
2 . 5 ≤ log ( N H I / cm 

−2 ) ≤ 14 . 5 and 0.5 ≤ log ( b /kms −1 ) ≤ 2.5. Such
atching of d N /d z is analogous to the matching of the mean flux of

imulations at high- z for optically thin absorbers (Luki ́c et al. 2015 ).
o match this d N /d z, we tune the photoionization rate, following

he prescription described in Section 2.3 , and set log ( � H I , / s −1 )
 −13.093, −13.021, −13.414 for Nyx, IllustrisTNG, and Illustris,

espectively (see Fig. 6 ). Such mismatch in � H I is caused by the
e generac y between the photoionization rate and different feedback
ecipes used in the simulations. Since both the UV background and
eedback suppress the formation of Ly α absorbers (Khaire et al.
024 ). More specifically, the feedback heats up the IGM, converting
 significant amount of the diffuse Ly α gas into WHIM, which
educes the Ly α transmission caused by the neutral hydrogen H I

n the cool diffuse Ly α gas. To this end, simulations with stronger
eedback exhibit lower d N /d z under the same � H I . 

We measure the d N /d z for the three simulations, including all
yx simulation models and IllustrisTNG and Illustris, each based
n its respective set of 1000 forward-modelled mock spectra. The
elationships between UV background photoionization rate and
 N /d z for all three models are shown in Fig. 6 , where the d N /d z
or Nyx is plotted in blue, IllustrisTNG in green, and Illustris in red,
hile the d N /d z for the D16 data at z = 0.1 is shown as the horizontal
ashed–dotted grey line. Fig. 6 demonstrates that while Illustis has
he strongest feedback, which causes more gas to be collisionally
NRAS 527, 11338–11359 (2024) 

I  
onized, reducing the Ly α absorption, it requires the lowest � H I to
atch the d N /d z to the observed value, and IllustrisTNG, with mild

eedback, has higher for the same UV background. Interestingly,
hereas Nyx employs no feedback mechanism, it requires slightly

ower � H I compared with IllustrisTNG, which implements feedback,
o achieve the same d N /d z. Such a trend, which is opposite to the
orrelation between d N /d z and feedback strength (as seen between
llustris and IllustrisTNG), is caused by the small difference in
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he � , T distributions in Nyx and IllustrisTNG. More specifically, 
llustrisTNG exhibits a slightly higher mass fraction of the diffuse 
y α gas in the particular � , T range that is probed by the Ly α
orest 7 . It is possible that while the mild feedback in the IllustrisTNG
imulation results in a slightly higher WHIM fraction compared with 
yx, it also produces more gas with T ∼ 10 4.5 K and � ∼ 10,
hich is the � , T range probed by the Ly α forest at z = 0.1 (see
ection 4 ). Ho we ver, the detailed astrophysical mechanism leading 

o this specific � –T distribution in IllustrisTNG at z = 0.1 is still
nclear, and we leave it to our future work. 
If not otherwise specified, the three simulations used in this study, 

ncluding Illustris, IllustrisTNG, and Nyx default model, are tuned 
o have the same Ly α line densities, with d N /d z = 167.3, which is
he same value we measured from the D16 data set. 

 INFERENCE  M E T H O D  

.1 Emulating the { b, N H I } distribution 

n this work, we make use of the inference framework following 
u22 , which measures the thermal state and the photoionization 

ate � H I of the low redshift IGM using its b –N H I distribution
nd absorber line density d N /d z. The b –N H I distribution emulator
s built on density-estimation likelihood-free inference (DELFI), 
hich turns inference into a density estimation task by learning 

he distribution of a data set as a function of the labels or parameters
Papamakarios & Murray 2016 ; Alsing, Wandelt & Feeney 2018 ; 
ueckmann et al. 2018 ; Papamakarios, Sterratt & Murray 2018 ; 
lsing et al. 2019 ). Following Hu22 , we make use of pydelfi ,

he publicly available python implementation of DELFI, 8 which 
akes use of neural density estimation (NDE) to learn the sampling 

onditional probability distribution P ( d | θ ) of the data summaries d ,
s a function of labels/parameters θ , from a training set of simulated
ata. Here, the data summaries d are [ log N H I , log b ], and our two
ets of label parameters θ are the thermal state [log T 0 , γ , log � H I ]
nd photoheating labels [ A , B , log � H I ]. The � H I grids are identical
or the two sets of labels. 

We generate two training data sets by labelling the { b, N H I }
airs obtained from our simulated spectra with the two sets of
abels respectively. We train the neural network on the summary- 
arameter pairs for each training data set separately. Our b–N H I 

istribution emulator learns the conditional probability distribution 
 ( b , N H I | T 0 , γ, log � H I ) and P ( b , N H I | A, B, log � H I ) from the
orresponding training data set. These conditional b–N H I distribu- 
ions are then used in our inference algorithm, where we try to find
he best-fitting model given the observational/mock data set, which 
s described in the following section. 

.1.1 Likelihood function 

n Bayesian inference, a likelihood L = P ( data | model ) is used to
escribe the probability of observing the data for an y giv en model.
e adopt the likelihood formalism introduced in Hu22 , which is
 This is different from the mass-weighted or volume-weighted diffuse Ly α
raction, f Ly α , which is defined to include all gas with T ≤ 10 5 K and � ≤
20 following Dav ́e et al. ( 2010 ). Instead, the gas probed by the observed 
ST COS Ly α Forest has a narrow range of � and T which also depends on 

he � H I value used in the simulation (see Section 4 for more details). 
 See https:// github.com/ justinalsing/ pydelfi

Z  

2  

g  

c
c  

s  

p  

p

ummarized as follows: 

ln L = 

n ∑ 

i= 1 

ln ( μi ) −
(

d N 

d z 

)
model 

�z data , (3) 

here μi is the Poisson rate of an absorber occupying a cell in the
– N HI plane with area � N H I i × �bi, i.e. 

i = 

(
d N 

d z 

)
model 

P ( b i , N H I ,i | θ ) �N H I �b �z data . (4) 

he P ( bi, N H I i | θ ) in the equation is the probability distribution
unction at the point ( bi, N H I , i ) for any given model parameters

e v aluated by the DELFI b –N H I distribution emulator described
n Section 3.1 . The �z data is the total redshift pathlength co v ered
y the quasar spectra from which we obtain our { b, N H I } data set,
nd ( d N / d z ) model is the absorber density which is e v aluated for any
iven set of parameters using a Gaussian process emulator (based on
eorge , see Ambikasaran et al. 2016 ), which is also trained on our

raining data sets obtained from the Nyx simulation suite. 
To perform our analysis under realistic conditions, all tests 

erformed in this paper are based on mock data sets consisting of 34
orward-modelled spectra, each corresponding to one of the 34 D16 
uasar spectra, which gives these data sets the same pathlength as
he observation data set with �z ob = 2.136. Each of the mock data
ets is constructed by randomly selecting 34 spectra from the 1000
orward-modelled spectra, while making sure that each of the 34 D16
uasar spectra is represented exactly once, thereby maintaining the 
ntegrity and representativeness of our mock data sets. 

An example of the MCMC posterior obtained based on the 
forementioned likelihood function is given in Fig. 7 . The inference
s conducted using the labels [ T 0 , γ , log � H I ]. The posterior appears
ompact, with the medians of the marginalized posteriors landing 
lose to the true parameters for all three parameters, i.e. within
 σ errors for marginalized 1D distributions. The b –N H I distribution 
eco v ered from the mock data set is presented in Fig. 8 , which is
mulated by our b –N H I distribution emulator, trained on [ T 0 , γ ,
og � H I ], based on the inferred parameters, i.e. median values of the
arginalized 1D MCMC posterior. The plot exhibits a good match 

etween the mock data set (black dots) and the reco v ered b –N H I 

istribution (colour map). 
As a comparison to the IGM parametrization based on the thermal

tate, [ T 0 , γ, log � H I ], the inference result derived from the same
ock data set using the photoheating labels [ A , B , log � H I ] is given

n Appendix. A . 

.2 Inference test 

n inference test is an ef fecti ve method to e v aluate the robustness of a
iven inference algorithm, which usually consists of approximations 
nd emulation/interpolation procedures that might induce additional 
ncertainties, altering the error budget. In practice, an inference 
est can be conducted by performing a set of realizations of the
nference method using mock data sets and e v aluating the robustness
f the resulting posterior probability distributions, which can be 
uantified by the co v erage probability P cov (Prangle et al. 2014 ;
iegel & Gneiting 2014 ; Morrison & Simon 2018 ; Sellentin & Starck
019 ), the proportion of the time that the true parameters used to
enerate a mock data set are contained within the posterior contour
orresponding to a certain probability level P inf . Such calculations 
an be performed for many different probability levels, resulting in a
eries of co v erage probabilities. F or perfect inference, this co v erage
robability P cov is al w ays equal to the probability level of the chosen
osterior contour P inf (shown as the black dashed line in Fig. 9 ). 
MNRAS 527, 11338–11359 (2024) 
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Figure 7. An example of posterior obtained by our inference method based on inference labels [ T 0 , γ , log � H I ]. Projections of the thermal grid used for 
generating models are shown as blue dots, while the true model is shown as red dots. The inner (outer) black contour represents the projected 2D 1(2) σ interval. 
Red lines in the marginal distributions indicate the parameters of true models, while the dashed black lines indicate the 16, 50, and 84 percentile values of the 
marginalized 1D posterior. The true parameters are: log ( T 0 /K) = 3.612 and γ = 1.588, while log ( � H I / s −1 ) = −13.093. 

 

W  

b  

H  

r  

p
 

f  

c  

t  

t  

b  

S  

l  

t  

T
 

m  

e  

e  

t  

3  

−  

3
 

x  

t  

1  

d  

i  

m  

p  

i  

o  

t  

c  

T  

f  

d  

s  

s  

e  

i  

n  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/4/11338/7473705 by guest on 17 April 2024
In this study, we make use of the inference test described in
olfson et al. ( 2022 ), which calculates the co v erage probability

ased on the MCMC posteriors. Compared with the one used in
u22 , this inference test algorithm is more precise and automatically

eturns full co v erage probabilities from 0 to 1 rather than co v erage
robabilities at only a few specific probability levels. 
To e v aluate the ef fecti veness of [ T 0 , γ , log � H I ] as IGM parameters

or inference at low- z, where the IGM T - � distribution is no longer
haracterized by the power-law relationship, we perform inference
ests based on different sets of labels. We compare the result of
he inference test based on labels [ T 0 , γ , log � H I ] with the one
ased on the photoheating labels [ A , B , log � H I ]. As discussed in
ection 2.3 , the comparison between these two sets of labels sheds

ight on the efficacy of [ T 0 , γ ] as IGM parameters at low- z, where
he perv asi ve shock heating causes significant dispersion in the IGM
 –� distribution. 
For each set of labels, we ran 300 realizations of our inference
ethod, each based on a model randomly chosen from the grid. We

xclude models that are close to the boundaries to mitigate boundary
ffects caused by the hard cutoff of the inference prior, which leads to
he truncation of the posteriors. For [ T 0 , γ , log � H I ] gird, we specify
.3 < log ( T 0 /K) < 3.9, 1.0 < γ < 2.3, −13 . 75 < log ( � H I / s −1 ) <
NRAS 527, 11338–11359 (2024) 
13 . 0. We then calculate the full co v erage probabilities based on all
00 MCMC posteriors. 
The results of the inference tests are shown in Fig. 9 , where the

 -axis stands for inferred probability P inf , and the y -axis shows
he co v erage probability, P cov . The shaded re gions indicate the
- σ error for P cov , which is calculated based on the binomial
istribution. The y = x black-dashed line represents a perfect
nference test. It can be seen that for Nyx simulations, our inference

ethod is mildly o v erconfident, and the thermal state [ T 0 , γ ] (blue)
erforms slightly better than the photoheating labels [ A , B ] (red),
.e. P cov / P inf is closer to unity . Quantitatively , for inference based
n the thermal state [ T 0 , γ ], the 68 per cent contour contains the
rue parameters 61.2 ± 2.8% of the time, and the 95 per cent
ontour contains the true parameters 90.4 ± 1.6% of the time.
he results show that the [ T 0 , γ ] are still robust inference labels

or the IGM at low- z, although the shock heating alters the T - �
istribution. This further suggests that shock heating alone does not
ignificantly change our understanding in determining the thermal
tate of the IGM using the Ly α forest. Lastly, while the general
fficacy of the inference framework remains robust, we attribute
ts imperfections to two primary sources: deficiencies within the
eural network used in our inference algorithm, and the boundary
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Figure 8. The colour map is the full b –N H I distribution reco v ered from the 
Nyx mock data set, which is emulated by our DELFI emulator based on the 
best-fitting parameters (median values of the marginalized MCMC posterior), 
where log ( T 0 /K) = 3.682 (3.612) and γ = 1.515 (1.588) and log ( � H I / s −1 ) 
= −13.157 ( −13.093), the true parameters are given in parentheses. Black 
dots are the mock data sets we used in the inference. The contours correspond 
to cumulative probabilities of 68, 95, and 99.7 per cent. For illustration 
purposes, the values of pdf are multiplied by 100 in the colour bar. 

Figure 9. Co v erage probability P cov for inference tests based on different 
labels. The x -axis stands for the inferred probability P inf , and the y -axis shows 
the co v erage probability P cov for the true parameters to fall in the contour 
corresponding to P inf . Blue: Inference test based on the thermal state [ T 0 , γ , 
log � H I ], Red: Inference test based on the photoheating label [ A, B, log � H I ]. 
The shaded regions indicate the 1 σ error for P cov . 
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ffects caused by the truncation of the posteriors when hitting the 
oundary. 

.3 Infer ence r esults for IllustrisTNG and Illustris 

n this section, we employ the IllustrisTNG and Illustris simulations 
s mock observational data to explore the impacts of feedback, 
ainly AGN feedback, on the IGM thermal state [ T 0 , γ ]. More
pecifically, we e v aluate the robustness of our inference method,
uilt on the Nyx thermal grid without galaxy formation and feedback,
hen applied to observational data derived from a (mock) Universe 
ith substantial feedback associated with galaxy formation and 
 GN activities. The in vestigation is brok en down into tw o separate

nquiries. First, it explores the extent to which feedback associated 
ith galaxy formation and AGN activities impacts the Ly α forest. 
econd, it investigates how, given the presence of these effects, the
eedback influences the inferred parameters [ T 0 , γ ]. 

Following the forward-modelling prescription described in Sec- 
ion 2.4 , we generate mock data sets with �z = 2.136, the pathlength
f D16 data set at z = 0.1, for both simulations (see Fig. 11 ),
nd run our inference method on each data set. As discussed in
ection 2.5 , a de generac y e xists between the strength of the AGN
eedback implemented in the simulations and the UV background 
hotoionization rate � H I , both of which suppress the abundance 
f absorbers, hence reducing the d N /d z(see Khaire et al. 2024 , for
ore details). Given that our inference method primarily derives the 

hotoionization rate � H I based on the d N /d z, the resulting � H I al w ays
ligns with the value that generates the equivalent d N /d z in the Nyx
imulation (see Section 2.5 ). Since here we use IllustrisTNG and
llustris simulations with their d N /d z matched to the D16 low- z data
et, the inferred � H I al w ays disagrees with the true values used to
enerate the IllustrisTNG and Illustris simulations. To this end, we 
onduct our inference test in 2D without considering the accuracy 
ith which we reco v er the photoionization rate � H I . Posterior
istributions for the thermal parameters obtained from our inference 
pplied to Illustris and IllustrisTNG are shown in Fig. 10 , where we
ave marginalized over � H I . For these two mock data sets, we infer
hat [log ( T 0 /K), γ ] = [3 . 586 + 0 . 149 

−0 . 074 , 1 . 658 + 0 . 060 
−0 . 128 ] for IllustrisTNG

[3.627,1.593]), and [log ( T 0 /K), γ ] = [3 . 696 + 0 . 080 
−0 . 102 , 1 . 485 + 0 . 093 

−0 . 094 ]
or Illustris ([3.633,1.577]), while the true parameters for the two 
imulations, [ T 0 , γ ] fit , are given in parentheses respectively. 

It can be seen that the true parameters [ T 0 , γ ] fit , obtained by fitting
he T –� distributions of the simulations, are within 1 σ errors (1D
arginalized) for both simulations, and the 1 σ errors for both the

llustrisTNG and Illustris simulations are slightly larger than those 
or Nyx simulations, which is caused by the intrinsic difference 
etween Nyx, IllustrisTNG, and Illustris simulations, where the 
atter two are based on completely different hydrodynamic codes. 
n Fig. 11 , we present both the mock data sets used for inference
nd the b–N H I distributions emulated based on the inference results. 
he plots highlight strong agreement between the emulated b–N H I 

istributions and the respective mock data set for each simulation. 
Nevertheless, it is worth mentioning that the inferred thermal states 

or IllustrisTNG and Illustris presented abo v e are based on realistic
onditions, with total pathlength �z = 2.136. Such a small �z 

akes the inference result vulnerable to randomness induced by the 
election of mock data sets. To address this issue, here we conduct our
nference on IllustrisTNG and Illustris simulations, using data sets 
ith much larger pathlength, specifically with �z = 42.47, which is
0 times the size of the observational data set. The inference results
ield [log ( T 0 /K), γ ] = [3 . 605 + 0 . 031 

−0 . 027 , 1 . 657 + 0 . 022 
−0 . 024 ] for IllustrisTNG

[3.627,1.59]), and [log ( T 0 /K), γ ] = [3 . 680 + 0 . 019 
−0 . 020 , 1 . 483 + 0 . 021 

−0 . 021 ] for
llustris ([3.633,1.58]), while the true parameters for the two sim- 
lations, [ T 0 , γ ] inf , are given in parentheses. The resulting corner
lots are presented in Fig. 12 . These results are used as our inferred
hermal states [ T 0 , γ ] inf for IllustrisTNG and Illustris simulations in
he following part of this study. It is noticeable that the inferred T 0 

or Illustris is higher than the true value with an error � log ( T 0 /K) =
.047 dex, while the γ is below the true value, with �γ = −0.094.
MNRAS 527, 11338–11359 (2024) 
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Figure 10. Posteriors obtained by using IllustrisTNG (left) and Illustris (right) as mock observational data in our inference method. Projections of the thermal 
grid used for generating models are shown as blue dots. The inner (outer) black contour represents the projected 2D 1(2) σ interval. The true parameters for the 
simulations, obtained by fitting the T –� distributions of the simulations, are indicated by the red dot (lines) in the (marginal) distributions, while the dashed 
black lines indicate the 16, 50, and 84 percentile values of the marginalized 1D posterior. 

Figure 11. Joint b –N H I distributions reco v ered from the inference results for IllustrisTNG (left) and Illustris (right) simulations, emulated by our DELFI 
emulator based on the median values of the marginalized MCMC posterior. Black dots are the mock data sets we used in the inference. The contours correspond 
to cumulative probabilities of 68, 95, and 99.7 per cent. For illustration purposes, the values of the pdf are multiplied by 100 in the colour bar. 
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or IllustrisTNG, the offsets between the [ T 0 , γ ] inf and [ T 0 , γ ] fit are
maller, with � log ( T 0 /K) = −0.022 dex, �γ = 0.064. We notice
hat these offsets are smaller than the typical inference precision
btained based on realistic data sets, as shown in Figs 7 and 10 ,
hich report the marginalized 1D 1 σ error in log T 0 , σlog T 0 , ∼0.1
ex and the marginalized 1D 1 σ error in γ , σγ , ∼0.1. For both
imulations, we observe the offsets � log T 0 � 0 . 5 σlog T 0 , and �γ �

γ . 
NRAS 527, 11338–11359 (2024) 
To check the robustness of these results, we use the IllustrisTNG
nd Illustris simulations as mock observational data and perform
nference tests using two different sets of ‘true parameters’: the
 T 0 , γ ] fit obtained from our power-law fits the � − T distribution
f the simulations (see Fig. 2 ), and the [ T 0 , γ ] inf given by our
nference method when applied to an extremely large mock data
et, as described abo v e. Giv en that the inferred � H I for both
llustrisTNG and Illustris simulations consistently deviates from
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Figure 12. Corner plots for IllustrisTNG (left) and Illustris (right), based on the larger mock data set, with �z = 42.72, corresponding 20 times the observational 
data set. Projections of the thermal grid used for generating models are shown as blue dots. The inner (outer) black contour represents the projected 2D 1(2) σ
interval. The true parameters for the simulations, obtained by fitting the T –� distributions of the simulations, are indicated by the red dot (lines) in the (marginal) 
distributions, while the dashed black lines indicate the 16, 50, and 84 percentile values of the posterior. 
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he actual v alues, o wing to the previously mentioned de generac y
etween the photoheating rate and feedback strength, any inference 
ests incorporating the � H I from these two simulations will surely 
ail. To this end, we focus on the inference results on the T 0 –γ

lane and conduct marginalized inference tests by marginalizing the 
osteriors o v er the � H I , in which 2D marginalized contours levels are
odelled by Gaussian mixture models. For each simulation, we run 

00 realizations on each set of ‘true parameters’, and run inference 
ests on the obtained posteriors. The results are shown in Fig. 13 ,
ndicating that our inference method is o v erconfident for both sets of
true parameters’. While the inference method is not able to reco v er
he thermal state [ T 0 , γ ] fit , the thermal state [ T 0 , γ ] inf significantly
mpro v es the outcome of the inference test. These results suggest
hat our inference method is able to robustly reco v er the [ T 0 , γ ] with
mall biases, for simulations that include feedback mechanisms. 

The inference tests imply that there exist offsets for the in-
erred parameters [ T 0 , γ ] inf for IllustrisTNG and Illustris, where 
 log ( T 0 /K) = −0.022 dex, �γ = 0.064 for IllustrisTNG and
 log ( T 0 /K) = 0.047 dex, �γ = −0.094 for Illustris. Ho we ver,

hese offset are insignificant, with � log T 0 � 0 . 5 σlog T 0 , and �γ �

γ . Ho we ver, it is unclear whether the observed differences between
 T 0 , γ ] inf and [ T 0 , γ ] fit can be attributable to the intrinsic difference
etween the Nyx, IllustrisTNG, and Illustris simulations, or if they 
rise from potential de generac y between the IGM thermal state [ T 0 ,
] and the feedback mechanism implemented in the simulation. 
evertheless, the latter hypothesis seems to contrast with the results 
ased on the various statistics of the low- z Ly α forest presented
n Khaire et al. ( 2024 ), which suggests that the impacts from
ifferent feedback models are not distinguishable via the Ly α forest 
nder realistic scenarios, i.e. forward-modelled using the D16 COS 

ata set. The only exception is the case of the Ly α flux power
pectrum at small scales, where minor deviations are observed in 
oth simulations(see Khaire et al. 2023 , for the d N /d z around massive
aloes). To further explore this problem, we examine the physical 
roperties of low - z Ly α absorbers in the following section. 
 LOW-  z LY  α FORESTS  A N D  SIMULATED  

BSORBERS  

.1 Identifying the simulated Ly α absorbers 

o understand whether the lo w- z Ly α forest ef fecti vely probes the
HIM, we attempt to identify the simulated Ly α absorbers, i.e. 

he n H I peaks in the simulation skewers, that give rise to the Ly
lines detected in the mock spectra. This approach allows us to

irectly examine the physical properties ( T , � , and n H I ) of these
imulated Ly α absorbers and draw a direct correspondence between 
hem and the line parameters ( { b, N H I } ) of their corresponding Ly

lines detected in the mock spectra. In this section, we chose to
ocus on the simulated Ly α absorbers in the Nyx simulation at z =
.1 (with default thermal history, i.e. T 0 = 3.612, and γ = 1.588 at
 = 0.1). For clarification, within the context of this study, the ‘terms
imulated Ly α absorbers’ or ‘simply simulated absorbers’ are used 
o denote the n H I peaks that give rise to the Ly α absorption lines in
he mock spectra detected by VPFIT . 

Our approach for identifying simulated Ly α absorbers works 
s follows. First, we include the physical properties, including 
emperature T , o v erdensity � , v elocity along LOS v los , and the
eutral fraction x H I in our skewers and stitch them in the forward-
odelling procedure (see Section 2.4 ). We interpolate the stitched 

kewer on to the forward-modelled wavelength grid, and calculated 
he neutral hydrogen density n H I for each simulation cell, based 
n the neutral fraction x H I , o v erdensity � , and the mean hydrogen
ensity ̄n H . Subsequently, we scan the stitched skewers (in real space)
or n H I peaks, and classify these with n H I > 10 −12 cm 

−3 as potential
imulated Ly α absorbers. The minimal peak H I density is derived
rom both the minimal H I column density for the detected lines
 H I , min = 10 12 . 5 cm 

−2 (see Section 2.4 ) and the maximal length for
imulated absorbers l abs, max = 0.5 Mpc h −1 , which is consistent with
revious studies that attempt to characterize the structures giving rise 
o the Ly α forest at z = 0.1 (Bolton et al. 2022b ; Tillman et al. 2023b ).
MNRAS 527, 11338–11359 (2024) 
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Figur e 13. Mar ginalized co v erage probability P inf for inference tests using IllustrisTNG (left) and Illustris (right) simulations as mock observational data. The 
x -axis stands for the inferred probability P inf , and the y -axis shows the probability for the parameters of the true model to fall in the contour corresponding to 
P cov . The shaded regions indicate the 1 − σ error for P cov . Inference tests with the true parameters set by [ T 0 , γ ] inf are shown in blue, while inference tests with 
the true parameters set by [ T 0 , γ ] fit are shown in red. 
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iven these two parameters, the requisite minimum H I peak density
or simulated absorbers to yield observable Ly α absorption lines is
omputed as n H I , min = 

N H I , min 
l abs, max 

= 

10 12 . 5 cm 

−2 

0 . 5 Mpc/h ∼ 10 −12 cm 

−3 , which
f fecti vely filters out n H I peaks that give rise to Ly α absorption
ines below our sensitivity. We then determine the physical size
or each potential simulated absorber along the LOS, l abs , using a
hreshold at which n H I drops below 1 per cent of its peak value,
hile restricting the maximal size to be l abs, max = 0.5 Mpc/h. We

alculate the H I column densities of the simulated Ly α absorbers,
 H I ,sim 

, by integrating the n H I over the ranges set by aforementioned
hreshold. We observed that the resulting N H I is not particularly
ensitive to l abs , because the n H I peak is so narrow that the majority
f the neutral hydrogen comes from the peak region (see Fig. 14 ). 
After identifying the potential Ly α absorbers, we extract their

OS velocity from the simulation cells, and compute the central
avelength of the expected absorption lines in redshift space,

ccounting for the redshift caused by its LOS v elocity. F or each
nticipated absorption line originating from an n H I peak, we check
hether its central wavelength lies within ± 50 km s −1 of the central
avelength of any Ly α lines detected in the mock spectrum. If so,
e confirm the identification of a simulated Ly α absorber, and take

he T and � at the n H I peak as its values, which is valid since the n H I 
eak is so narrow that the majority of the N H I comes from the region
lose to the peak. While theoretically, the Ly α lines are expected to
e caused by multiple n H I peaks in real space (Garzilli, Theuns &
chaye 2015 ), we disco v er that at z = 0.1, each Ly α line detected in

he mock spectra with 12 . 5 ≤ log ( N H I / cm 

−2 ) ≤ 14 . 5 predominantly
riginates from one single n H I peak in the simulation. It is not a
esolution effect, since the simulation (Nyx) has a grid length ∼ 0.02

pc h −1 , while the simulated absorbers have sizes ∼ 0.5 Mpc h −1 .
s such, we only consider the n H I peak with the highest n H I value

f multiple n H I peaks contribute to the same detected absorption
ine. 

Fig. 14 showcases examples of the simulated Ly α absorbers,
longside their corresponding absorption lines in the mock spectra
nd the related simulation skewers. The top panel depicts the flux
black), noise vector (green), and the model fitted by VPFIT (blue).
NRAS 527, 11338–11359 (2024) 
he central wavelength of Ly α lines identified by VPFIT are
ndicated by orange vertical lines, and the corresponding simulated
bsorbers are indicated by orange dashed lines in the second panel
and all other panels below). The log N H I ,fit , b fit reported by VPFIT
re given in the annotation, together with the log N H I ,sim 

, b thermal cal-
ulated based on the simulation, whereas the b thermal = (2 kT /m H I ) 1 / 2 

s the thermal component of the b- parameters computed based on the
 of the simulated Ly α absorbers (see equation 5 ). The second panel
epicts the neutral hydrogen density n H I , while the shaded regions
epresent the identified Ly α absorbers along LOS, which are used as
he integral ranges while computing the N H I ,sim 

. The orange vertical
ashed lines show the n H I peaks of the confirmed simulated Ly α
bsorbers, while the purple vertical dashed lines show the potential
imulated Ly α absorbers that do not cause detectable Ly α lines. The
rey horizontal dashed line represents the minimal H I peak density,
 H I , min = 10 −12 cm 

−3 . The third, fourth and fifth panels show the
 v erdensity � , temperature log T , and LOS velocity v los (black solid
ines). The brown horizontal dashed line in the fourth panel stands for
 = 10 5 K, which divides the cool diffuse Ly α gas and the WHIM.
he left-hand panel shows a simulated Ly α absorber in the diffuse
y α phase, while the right left-hand panel shows a simulated Ly α
bsorber arising from the WHIM phase. 

We perform the identification procedure for all 1000 mock spectra,
isco v ering 34 011 potential simulated Ly α absorbers,i.e. n H I peaks,
mong which 10 510 are identified as simulated Ly α absorbers and
atched to their respective absorption lines identified by VPFIT.
he discrepancy between potential and confirmed Ly α absorbers

s due to the inclusion of minor n H I peaks, that are too weak to
ause any detectable Ly α line, which is indicated by purple vertical
ines in the left panel of Fig. 14 . Lastly, approximately 2 per cent of
he lines detected by VPFIT could not be matched to any simulated
 y α absorber . These anomalies could potentially result from false

dentification of the VPFIT induced by noise. None the less, given
he rarity of these cases, omitting them should not influence our
tatistical results or conclusions. 

To validate our identification method, we compare the observed
ine parameters, reported by VPFIT , with the values calculated from



Impact of the WHIM on IGM thermal state 11351 

Figure 14. Illustration of a segment of one of the forward-modelled mock spectra (top panel) with the absorption lines detected by VPFIT and the corresponding 
skewer. The top panel depicts the flux (black), noise vector (green), and the model fitted by VPFIT (blue). The central wavelength of Ly α lines identified by 
VPFIT are indicated by orange vertical lines, and the corresponding simulated absorbers are indicated by orange dashed lines in the second panel (and all other 
panels below). The log N H I ,fit , b fit reported by VPFIT are given in the annotation, together with the log N H I ,sim 

, b thermal calculated based on the simulation. 
The second panel depicts the neutral hydrogen density n H I , while the shaded regions represent the identified Ly α absorbers along LOS, which are used as the 
integral ranges while computing the N H I ,sim 

. The orange vertical dashed lines show the n H I peaks of the confirmed simulated Ly α absorbers, while the purple 
vertical dashed lines show the potential simulated Ly α absorbers that do not cause detectable Ly α lines. The grey horizontal dashed line represents the minimal 
H I peak density, n H I , min = 10 −12 cm 

−3 . The third, fourth and fifth panels show the o v erdensity � , temperature T , and LOS velocity v los . The brown horizontal 
dashed line in the fourth panel stands for T = 10 5 K. left: A Ly α absorbers in the diffuse Ly α phase. right: A Ly α absorbers in the WHIM phase. 
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he simulation. In Fig. 15 , we showcase the N H I ,fit (left) and b fit 

right) for all Ly α lines fitted by VPFIT, compared with the N H I ,sim 

nd b thermal , respectively, both calculated from the corresponding 
imulated Ly α absorbers identified in the Nyx simulation. The left- 
and panel indicates a strong correlation between the fitted N H I ,fit 

nd the N H I ,sim 

calculated from the simulation, implying that the 
 H I peaks identified by our method are indeed the simulated Ly α
bsorbers responsible for the Ly α lines detected in the mock spectra.
he right panel demonstrates that the bulk of b fit lies abo v e the dashed

ine representing b fit = b thermal . This result aligns with the nature of
he b -parameter, as given by 

 = 

√ 

b 2 thermal + b 2 notherm 

, (5) 
MNRAS 527, 11338–11359 (2024) 
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Figure 15. The observed variables N H I ,fit , b fit fitted by VPFIT compared with the physical quantities N H I ,sim 

and b thermal of the simulated absorbers identified 
in the simulation skewers, where the N H I ,sim 

is calculated by integrating the n H I of the absorbers along the LOS, and the b thermal is computed by assuming the 
broadening of the Ly α lines are pure thermal. Left: N H I fit versus N H I ,sim 

. Right: b fit versus b thermal . The dashed–dotted line in the right-hand panel represents 
the b- parameter resulting from the combination of the thermal component b thermal and a turbulence in the IGM with b notherm 

= 20 km s −1 . 
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9 As previously mentioned, for each simulated Ly α absorber, we use the T and 
� at its n H I peak, which dominates the Ly α absorption. To this end, when 
calculating the volume-weighted gas fractions, we do not take the physical 
size into account, but instead, only consider the one simulation cell where the 
n H I reaches its maximum. This is reasonable since typical n H I peaks seen in 
this study are so narrow that most of the N H I comes from the peak cell. As 
a result, the so-called volume-weighted gas fractions for simulated absorbers 
are ef fecti vely unweighted. This approach is used for all gas fractions related 
to simulated Ly α absorbers throughout this paper. 
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here the b notherm 

is the non-thermal component of the b -parameter
esulting from combinations of Hubble flow, peculiar velocities and
urbulence in the IGM. Equation ( 5 ) demonstrates that the b thermal is
he lower limit of the b -parameter, which corresponds to the lower
ight cutoff of the b–N H I distribution (see the colour maps in Figs 8
nd 11 as examples. More discussions on this topic can be found in
chaye et al. 1999 , Rudie, Steidel & Pettini 2012 , Bolton et al. 2014 ,
nd Hu22 ). Furthermore, the right-hand panel of Fig. 15 gives a rough
orrelation between the b fit and b thermal and provides an approximate
stimation of the strength of the non-thermal broadening of the Ly

lines at z = 0.1. It suggests that for the Nyx simulation, the
on-thermal contribution to the b -parameter can be modelled by a
turbulent’ motion in the IGM with b notherm 

∼ 20 km s −1 (indicated
y the black dashed–dotted line in Fig. 15 ). 
We summarize the ( � , T ) for the ensemble of simulated Ly α

bsorbers identified in the Nyx simulation in Fig. 16 . Considering
hat we have established one-to-one correspondence between the
imulated absorbers and observed (mock) absorption lines, we
mploy a consistent filter to both sets, which selects Ly α lines
ith, 12 . 5 ≤ log ( N H I / cm 

−2 ) ≤ 14 . 5 and 0.5 ≤ log ( b /km s −1 ) ≤ 2.5
see Section 2.4 ). In the upper panels, we plot the volume-weighted
D marginal distributions of � and T for all simulation grid cells,
uxtaposed with the 1D distributions of � and T for the simulated Ly

absorbers, showing that the simulated Ly α absorbers, in general,
ave higher temperature and overdensity, compared with the full
imulation. The peaks of the � and T distributions of the simulated
y α absorber highlight the specific range of � and T to which the
y α forest is sensitive at z = 0.1. More specifically, the Ly α forest

s most sensitive to the IGM characterized by log � = 0.92 and T =
0 4.27 K. It is worth mentioning that, as mentioned in Section 2.3 ,
he Ly α optical depth τLy α is dependent on � H I . Consequently, the
egions to which the Ly α forest is sensitive also depend on � H I . This
oint will be fully discussed later in Section 4.3 . 
The bottom left panel of Fig. 16 shows the (volume-weighted) T –
 distributions for simulated Ly α absorbers (left), and all grid cells
NRAS 527, 11338–11359 (2024) 
n the simulation (right), while the volume-weighted gas fractions 9 

re given in annotations for simulated absorbers and the whole
imulation in the left-hand and the right-hand panel, respectively.
he black contours in both panels illustrate the 1 σ and 3 σ (68 and
9.7 per cent) contours for the T –� distribution of the simulated Ly
absorbers. The T –� distribution of the simulated Ly α absorbers

ppears to be scattered at low- z, extending into the WHIM phase,
ue to the perv asi ve ef fects of shock heating. As per the gas phase
ractions of the Ly α absorbers shown in the bottom left panel,
pproximately 7 per cent of the absorbers originate from the WHIM
hase, suggesting that the low- z Ly α forest does probe the WHIM
see the right panel of Fig. 14 as an example), although its sensitivity
s notably limited given the small fraction of lines arising from this
hase. Such a result aligns with Tepper-Garc ́ıa et al. ( 2012 ) regarding
he detectability of the Broad Ly α Absorbers (BLAs) at low- z under
ealistic conditions. 

.2 Simulated Ly α absorbers in IllustrisTNG and Illustirs 

o further study the effects of the feedback mechanisms on the
y α forest at z = 0.1, we identify the simulated Ly α absorbers

n both the IllustrisTNG and Illustris simulations, and pair them
o the corresponding absorption lines present in the mock spectra,
ollowing the method outlined in Section 4.1 . For each simulation,
e carry out the identification process across 1000 mock spectra and
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Figure 16. Distributions of � and T of the simulated Ly α absorbers in the Nyx simulation, compared with the full simulation. The ensemble consists of 10 510 
absorbers, all obtained from the 1000 spectra discussed in Section 4.1 . The top panels show the 1D distributions of T (right) and � (left) for the whole simulation 
(green) compared with simulated Ly α absorbers (blue). The medians of the T and � for the simulated absorbers are indicated by dashed black lines. The bottom 

panels plot the 2d T –� distributions for the Ly α absorbers(left) and for the whole simulation(right), while the contours for 1 σ , 3 σ (68 and 99.7 per cent) of the 
T –� distribution of the absorbers are shown in both panels. The volume-weighted gas phases for absorbers and the whole simulation are given in the left-hand 
panel and the right-hand panel, respectively. The best-fitting power-law T –� relationships are given in the bottom panels as comparisons. 
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ummarize the physical properties of the simulated absorbers. It is 
orth mentioning that here the IllustrisTNG and Illustris simulations 

re tuned to have identical d N /d z, which requires different � H I values
see Section 2.5 ). 

We plot the marginalized 1D distributions of the � and T for
oth IllustrisTNG (top) and Illustris (bottom) in Fig. 17 . The 
lots show that the o v erall distributions of T and � for the two
imulations are e vidently dif ferent due to their different feedback 
ecipes. F or instance, the e xtreme feedback in Illustris simulation 
esults in much more WHIM compared with IllustrisTNG, causing 
 secondary peak in its T distribution. Ho we ver, the distributions
f T and � for the absorbers in both simulations are comparable,
ith log ( T med /K) = 4.33, log � med = 0.97 for IllustrisTNG, and

og ( T med /K) = 4.16, log � med = 0.72 for Illustris. Moreo v er, we
isco v er that the differences in log ( T med /K) and log � med for the
hree simulations are actually caused by the dif ferent � H I v alues
sed for the three simulations. The rele v ant discussion is presented

n Section 4.3 . W
The (volume-weighted) 2D T –� distributions for simulated Ly α
bsorbers in both IllustrisTNG (top) and Illustris (bottom) simula- 
ions are shown in the left column of Fig. 18 , whereas the (volume-
eighted) 2D T –� distributions for the whole simulations are given

n the right column as comparisons. The volume-weighted gas 
ractions are given in the annotation for simulated absorbers and full
imulation in the left-hand and the right-hand panels, respectively. 
or the simulated Ly α absorbers, 12.2 per cent (10.7 per cent) of

he Ly α absorbers arise from the WHIM for IllustrisTNG (Illustris),
hile the value for Nyx simulation is approximately 7 per cent. The
 σ and 3 σ (68 and 99.7 per cent) contours for the T –� distributions
or the simulated Ly α absorbers are also given in the Figure, showing
hat their T - � distributions are more scattered compared with these
n Nyx simulation, especially for the WHIM phase absorbers. These 
ifferences are caused by stronger shock heating in IllustrisTNG 

nd Illustris simulations compared with Nyx simulation, caused by 
heir feedback mechanisms. Ho we ver, while the (volume-weighted) 

HIM fractions for the two simulations are remarkably different, 
MNRAS 527, 11338–11359 (2024) 
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Figur e 17. Mar ginalized 1D � and T distributions of the simulated Ly α absorbers in the IllustrisTNG (top) and Illustris (bottom) simulation. The medians of 
the T and � for the simulated absorbers are indicated by dashed black lines. The o v erall � and T distributions of the full simulations are plotted as comparisons. 
The two simulations share the same d N /d z, which is the same value observed in the D16 data set. 
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.8 per cent for IllustrisTNG and 38.0 per cent for Illustris, the
HIM fractions for the Ly α absorbers are similar, both around

1 per cent. Furthermore, in Section 4.3 we demonstrate that the
mall difference in WHIM fractions for simulated absorbers in the
wo simulations actually arises from the different � H I values used in
he two simulations. Such a fact implies that the low- z Ly α forest
oes not probe the WHIM ef fecti vely under realistic conditions,
hich is consistent with the conclusion drawn by Khaire et al.

 2024 ). 

.3 Simulations under the same � H I 

onsidering that the calculation of the Ly α optical depth τLy α

nvolves � H I , and given that the observed absorption feature (i.e.
he Ly α forest) consistently probes regions with τLy α ∼ 1, it
ollows that the T and � of these regions probed by the Ly α
orest, are influenced by the � H I values. Such an argument can
e qualitatively demonstrated by the fluctuating Gunn–Peterson
pproximation (FGPA; see Weinberg et al. 1997 ) 

Ly α ∝ x HI n H ∝ 

n 2 H T 
−0 . 7 

� 

∝ 

� 

2 . 7 −γ

� 

∝ 

T 2 / ( γ−1) −0 . 7 

� 

, (6) 
NRAS 527, 11338–11359 (2024) 

HI HI HI 
here the τLy α denotes the Ly α optical depth and the n H is the
ydrogen number density. Since the Ly α forest al w ays probes the
egion with τLy α ∼ 1, the last two terms in equation ( 6 ) suggest that
he � H I is in positive correlation with � and T, respecti vely, gi ven
he γ ∼ 1.6 at z = 0.1. 

In our analysis, the three simulations are tuned to match d N /d z.
o we ver, due to the degeneracy between � H I and feedback mech-

nisms, each simulation ends up with a distinct � H I value (refer to
ection 2.5 ). As a result, the T and � distributions of the simulated
y α absorbers in these simulations are influenced not just by the
eedback but also by the varying � H I values. To isolate and examine
olely the impact of feedback, we post-process the IllustrisTNG and
llustris simulations to align with the � H I value used in Nyx, set at
og ( � H I /s 

−1 ) = −13 . 093. With this consistent � H I across the three
imulations, we re-perform the analysis from the prior section and
ummarize the results below. It is worth mentioning that the o v erall
 –� distributions of simulations are determined by the cooling and
eating processes during their evolution and are not altered by the
ost-processing of the � H I . 
We plot the marginalized � and T distributions and their median

alues for Ly α absorbers in Nyx, IllustrisTNG, and Illustris simu-
ations with the same d N /d z in Fig. 19 . Interestingly, for simulations
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Figure 18. T –� distributions of the Ly α absorbers in the IllustrisTNG (top) and Illustirs (bottom) simulations, compared with the T –� distributions of full 
simulations (right). The contours for 1 σ , 3 σ (68 and 99.7 per cent) of the T –� distribution of the absorbers are shown in both panels. The volume-weighted 
gas phases for absorbers and the whole simulation are given in the left-hand panel and the right-hand panel, respectively. The best-fitting power-law T –� 

relationships are given as comparisons. The two simulations are d N /d z matched. 
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ith the same d N /d z, the T and � for absorbers are correlated with
ts � H I . More specifically, with � H I , Illustris < � H I , Nyx < � H I , IllustrisTNG 

see Fig. 6 ), we obtain T med, Illustris < T med, Nyx < T med, IllustrisTNG and
 med, Illustris < � med, Nyx < � med, IllustrisTNG . 
We plot the marginalized � and T distributions and their median 

alues for Ly α absorbers in the three simulations under the same 
 H I in Fig. 20 . Under the same � H I , the T and � distributions for

imulated absorbers in all three simulations become almost identical, 
aving nearly the same median values for T and � , respectively.
uch a result suggests that while feedback e vidently af fects the
 v erall T –� distributions of the low- z IGM (see Fig. 2 ), their
mpacts on the physical properties of the low- z Ly α forest (i.e.
he T and � distributions) are not distinguishable under realistic 
onditions. 

In Fig. 21 , we plot the 2D T –� distributions of the simulated
y α absorbers in IllustrisTNG (left) and Illustris (right), under the 
ame � H I . While the o v erall IGM T –� distributions for the two
imulations are evidently different (see Fig. 2 ), the T –� distributions
f the simulated Ly α absorbers in these two simulations are similar,
nd the gas phase fractions for absorbers in both simulations are 
lmost identical, suggesting that the small difference in the WHIM 

ractions of the simulated absorbers shown in Fig. 18 are caused
y different � H I values. Such results indicate that the � H I has
 much stronger impact on the Ly α forest compared with the
eedback mechanisms implemented in IllustrisTNG and Illustris 
imulations. 

 SUMMARY  A N D  DI SCUSSI ON  

n this paper, we explore the effects of the WHIM, which causes
ignificant dispersion in the IGM T –� distribution, on the low- z 
y α forest and the IGM thermal state [ T 0 , γ ] measured from it.
e first e v aluate the ef fecti veness of [ T 0 , γ ] as IGM parameters

nder the inference framework presented in Hu22 , and compare its
erformance with the photoheating labels [ A , B ]. We disco v er that the
hermal state [ T 0 , γ ] still parametrizes the IGM ef fecti vely in spite
f the dispersion in the IGM T –� distribution. We further apply
he inference method to IllustrisTNG and Illustris simulations which 
mplement dif ferent v ariants of feedback, potentially making them 
MNRAS 527, 11338–11359 (2024) 
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M

Figur e 19. Mar ginalized 1d distribution of T (left), and � (right) of the simulated Ly α absorbers identified in Nyx (blue), IllustrisTNG (green), and Illustris 
(yellow) simulations. The medians of log T and log � are indicated by vertical dashed lines. The three simulations are turned to have identical d N /d z. 

Figur e 20. Mar ginalized 1d distribution of T (left), and � (right) of the simulated Ly α absorbers identified in Nyx (blue), IllustrisTNG (green), and Illustris 
(yellow) simulations. The medians of log T and log � are indicated by vertical dashed lines. The three simulations used here are post-processed to have the same 
UV background photoionization rate, with � H I = −13.093. 
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etter approximations to the real Universe. We discover that the [ T 0 ,
] of these two simulations can be reco v ered using the inference
ethod within reasonable offsets. Considering the inference results

nd the huge difference across the three simulations in the IGM
HIM fractions, we conclude that the Ly α forest does not probe the
HIM ef fecti vely under realistic conditions, and the IGM thermal

tate [ T 0 , γ ] is not affected by the shock heating caused by AGN
eedback and other astrophysical processes significantly at z =
.1. To further confirm our conclusion, we identified the Ly α
bsorbers in all three simulations at z = 0.1, and pair them to
he corresponding absorption lines identified in the mock spectra.
he physical properties of the simulated Ly α absorbers support
ur conclusion that the observable Ly α forest are not affected by
he substantial WHIM in the low- z, and the thermal state [ T 0 , γ ]

easured from the Ly α forest remains solid. In this section, we
ummarize our paper and present our discussion as follows. 
NRAS 527, 11338–11359 (2024) 
(i) We compare the performance of [ T 0 , γ ] as neural network
raining labels against the photoheating labels [ A , B ], i.e. the pho-
oheating rate rescaling factors used to generate the Nyx simulation
uite with various thermal histories. Given that the [ A , B ] parameters
ere actually used to generate the simulation outputs, one might
 xpect that the y would serv e as a better set of labels than [ T 0 , γ ].
o we ver, the inference results show the efficacy of these two sets of

abels are comparable, suggesting that the [ T 0 , γ ], which parametrize
he power law T –� relationship, still ef fecti vely characterize the Ly

observ ables at lo w- z, notwithstanding the dispersion in the T –�

istribution induced by shock heating at low- z. 
(ii) We explored the degree to which the presence of feedback

an influence or bias the inference of the IGM thermal state param-
ters from the b–N H I distribution. In the context of our inference
ramework, this question becomes: what would happen if we used
 simulation grid without feedback to infer the thermal state of
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Figure 21. T –� distributions of the simulated Ly α absorbers in the IllustrisTNG (left) and Illustirs (right) simulations under the same � H I . The contours for 
1 σ , 3 σ (68 and 99.7 per cent) of the T –� distribution of the absorbers are shown in both panels. The volume-weighted gas phase fractions for absorbers in both 
simulations are given, respectively. 
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 Universe that has strong feedback? Would the feedback lead to 
iased inference? To address these questions, we apply our inference 
rocedure trained on Nyx simulations without feedback to mock data 
ets from the IllustrisTNG and Illustris simulations which include 
eedback, whereby the latter serve as potential proxies for the real 
niverse. We find that the [ T 0 , γ ] of IllustrisTNG and Illustris

an be reco v ered within small offset, where � log ( T 0 /K) = −0.022
ex, �γ = 0.064 for IllustrisTNG and � log ( T 0 /K) = 0.047 dex,
γ = −0.094 for Illustris. These offsets are smaller than the typical 

recision afforded by a realistic data set, i.e. � log T 0 � 0.5 σlog T 0 ,
nd �γ � σγ . 

(iii) We developed a method to identify regions in the simulation 
esponsible for the Ly α absorption lines identified via Voigt- 
rofile fitting, allowing us to determine their temperature T and 
 v erdensity � from the simulation skewers. For the Nyx simulations,
he simulated Ly α absorbers have a median density log � median = 

.92, a median temperature T median = 10 4.27 K, and about 7 per cent
f the simulated Ly α absorbers have T > 10 5 , making them outliers
rom the power-law T –� relationship. This low fraction is consistent 
ith the previous study of Tepper-Garc ́ıa et al. ( 2012 ) on the low- z
LAs. 
(iv) As pointed out in previous work (Bolton et al. 2022a ; Khaire

t al. 2024 ; Tillman et al. 2023a ), the Ly α forest is affected by the UV
ackground, which impacts the d N /d z. Nevertheless, we observe that
he temperature and o v erdensity of the region probed by the low- z
y α forest are also affected by the UV background photoionization 
ate � H I used in the simulation. For d N /d z matched simulations, the
 and � of the simulated Ly α absorbers are correlated with its � H I 

espectively . Specifically , the Ly α forest probes regions with higher 
 and � given a higher � H I . This is because for Ly α absorbers with
Ly α ∼1, the fluctuating Gunn–Peterson approximation implies that 
 H I ∝ � 

2 . 7 −γ ∝ T 2 / ( γ−1) −0 . 7 , where γ ∼ 1.6. 
(v) We post-processing the three simulations to share the same 
 H I , allowing us to explore the effects of different mechanisms. 
nder the same � H I , the T and � distributions of the simu-

ated Ly α absorbers across all three simulations become almost 
ndistinguishable, converging to nearly identical median values, 
hile the o v erall IGM T –� distributions remain different among

he simulations, due to their distinct feedback mechanisms. For 
he WHIM fractions, the volume-weighted WHIM fractions for 
llustrisTNG and Illustris stand at 9.8 and 38.0 per cent, respectively,
ut the WHIM fractions for the simulated Ly α absorbers in both
imulations are nearly identical, averaging around 11.6 per cent. 
his suggests that while feedback significantly alters the low- 
 IGM T –� distribution, especially the WHIM phase gas, their
mpacts on the low- z Ly α forest is indistinguishable under real-
stic conditions. Such a conclusion aligns with the results derived 
rom various statistics of the low- z Ly α forest by Khaire et al.
 2024 ). 

e have thus far demonstrated the robustness of the thermal state
 T 0 , γ ] as IGM parameters at low- z, in spite of the dispersion in the
 –� distribution induced by shock heating. We also pro v ed that the
u22 inference framework can effectively measure the thermal state 

 T 0 , γ ] notwithstanding the feedback mechanisms implemented in 
he IllustrisTNG and Illustris simulations. Looking ahead, we plan 
o apply the Hu22 inference methodology to simulations with more 
exible and sophisticated feedback mechanisms, including EAGLE 

Schaye et al. 2015 ) and CAMELS suite (Villaescusa-Navarro et al.
021 ). The outcomes will provide us with a deeper understanding of
he impact of various feedback processes on low- z IGM. Moreo v er,
y applying our methodology on archi v al HST COS and space
elescope imaging spectrograph (STIS) data sets, we expect precise 

easurements of the low- z IGM thermal state. These results will
inpoint the onset of the discrepancy in the b parameters of the low-
 Ly α forest between current simulations and observations, which 
s essential for unravelling the underlying physics and acquiring a 
omprehensive picture of the IGM thermal evolution at low- z after
he epoch of helium reionization. 
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parameters at low- z, notwithstanding the substantial dispersion in 
the IGM T - � distribution induced by perv asi ve shock heating at this 
redshift. 

Figure A2. The colour map is the full b–N H I distribution reco v ered from the 
Nyx mock data set, which is emulated by our DELFI emulator based on the 
best-fitting parameters (median values of the marginalized MCMC posterior), 
where A = 3.695 (1.0) and B = 1.507 (0.0) and log ( � H I / s −1 ) = −13.237 
( −13.093), the true parameters are given in parentheses. Black dots are 
the mock data sets we used in the inference. The contours correspond to 
cumulative probabilities of 68, 95, and 99.7 per cent. For illustration purposes, 
the values of pdf are multiplied by 100 in the colour bar. 

Figure A3. Parameters grid (blue circles) from snapshots of hydrodynamic 
simulations of the THERMAL suite at z = 0.1 parametrized by the thermal 
state [ A , B ]. 
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igure A1. An example of posterior obtained by our inference method based
n [ T 0 , γ , � H I () ]. Projections of the thermal grid used for generating models
re shown as blue dots, while the true model is shown as red dots. The
nner (outer) black contour represents the projected 2D 1(2) σ interval. 
he parameters of true models are indicated by red lines in the marginal
istributions, while the dashed black lines indicate the 16, 50, and 84
ercentile values of the posterior. The true parameters are: A = 1.0 and
 = 0.0, log ( � H I / s −1 ) = −13.093. 

PPENDIX  A :  INFERENCE  BA SED  O N  T H E  

H OTO H E AT I N G  LABELS  [  A ,  B ]  

n this section, we present our inference results using the framework 
here different Nyx models are labelled by the photoheating param- 

ters [ A , B ] instead of the thermal state [ T 0 , γ ], and the inference
ethod returns [ A, B, log � H I ]. The inference is conducted following

he procedures described in Section 3 , based on the DELFI b–N H I 

istribution emulator trained on training data set labelled by [ A , B ,
og � H I ], which returns P ( b , N H I | A, B, log � H I ). 

The simulation grid, parametrized by the photoheating labels [ A ,
 ], is given in Fig. A3 . An example of the MCMC posterior obtained
ased on the aforementioned likelihood function is given in Fig. A1 .
he inference method returns A = 1.321 (1.0), B = −0.190 (0.0),
 H I = −13 . 160 ( −13.093), whereas the true values are given in the
arentheses. The posterior appears compact, with the medians of 
he marginalized posteriors landing within 1 σ errors for all three 
arameters. The b–N H I distribution reco v ered from the mock data 
et is presented in Fig. A2 , which is emulated by our DELFI b–N H I 

istribution emulator based on the inferred parameters. 
We perform an inference test following the Section 3.2 , in which

e also exclude models that are too close to the parameter boundaries
o a v oid the truncation of the resulting posteriors. Specifically, we
nly use models with 3.3 < log ( T 0 /K) < 3.9, 1.0 < γ < 2.3, −13 . 75 <
og ( � H I / s −1 ) < −13 . 0. The result of the inference test is shown in
ig. 9 . The performance looks comparable to the one based on the

hermal state [ T 0 , γ ], suggesting that [ T 0 , γ ] are still ef fecti ve IGM
MNRAS 527, 11338–11359 (2024) 
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